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ABSTRACT

The appearance of an object is the result of complex light interaction with the
object. Beyond the basic interplay between incident light and the object's
material, a multitude of physical events occur between this illumination and the
microgeometry at the point of incidence, and also beneath the surface. A given
object, made as smooth and opaque as possible, will have a completely different
appearance if either one of these attributes - amount of surface mesostructure
(small-scale surface orientation) or translucency - is altered. Indeed, while they
are not always readily perceptible, the small-scale features of an object are as
important to its appearance as its material properties. Moreover, surface
mesostructure and translucency are inextricably linked in an overall effect on
appearance. In this dissertation, we present several studies examining the
importance of surface mesostructure (small-scale surface orientation) and
translucency on an object's appearance.
First, we present an empirical study that establishes how poorly a mesostructure
estimation technique can perform when translucent objects are used as input.
We investigate the two major factors in determining an object's translucency:
mean free path and scattering albedo. We exhaustively vary the settings of
these parameters within realistic bounds, examining the subsequent blurring
effect on the output of a common shape estimation technique, photometric
stereo. Based on our findings, we identify a dramatic effect that the input of a
translucent material has on the quality of the resultant estimated mesostructure.
In the next project, we discuss an optimization technique for both refining
estimated surface orientation of translucent objects and determining the
reflectance characteristics of the underlying material. For a globally planar
object, we use simulation and real measurements to show that the blurring effect
on normals that was observed in the previous study can be recovered. The key
to this is the observation that the normalization factor for recovered normals is
proportional to the error on the accuracy of the blur kernel created from
estimated translucency parameters.
Finally, we frame the study of the impact of surface normals in a practical,
image-based context. We discuss our low-overhead, editing tool for natural
images that enables the user to edit surface mesostructure while the system
automatically updates the appearance in the natural image. Because a single
photograph captures an instant of the incredibly complex interaction of light and
an object, there is a wealth of information to extract from a photograph. Given a
photograph of an object in natural lighting, we allow mesostructure edits and
infer any missing reflectance information in a realistically plausible way.
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Chapter 1

Introduction

As our eyes pan around a room, our brains are performing a rapid classification process:

``That's a shiny chair; that's a cardboard coffee sleeve; that's an orange flower pot.'' If

we were to take this data as input to computer-aided design software, the appearance of

these objects would probably translate as lacking. What we would have failed to represent

is thewoven fabric chair, the corrugated cardboard coffee sleeve, and the ceramic orange

flower pot. The realism is in the details - in this case, the microgeometry. Fine aberrations

on the surface of an object compound, resulting in a richness that does not go unnoticed by

our visual system. Because of this, we seek to highlight the importance of capturing and

fully making use of microgeometric information in the digital capture and representation

of appearance.

One can look at the geometry of objects in two ways: locally or globally. On the

whole, we recognize large changes in the overall geometry of an object as its shape. It

is this synthesis of three-dimensional information that enables us to make mental leaps

at assessing an object's identity or function. On a smaller scale, however, we may never

really notice the small aberrations on the surface of an object. If we do, we may have

had to touch it, hold it very closely to our eyes, or see it interact with another surface.

Physical effects like light transmission, friction and gravity may help to reveal the small-

scale texture or detail on an object.
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What happens when we take microgeometric information for granted? If we try to

recreate objects that exhibit such detail, this lack of cohesion between physics and the

object itself may become much more noticeable. We have seen how sensitive humans

can be at detecting irregularities in the digital rendering of human faces (a phenomenon

known as the ``uncanny valley.'') On its own, the microgeometry of an object may be

imperceptible to us. We are usually made aware of sub-millimeter inaccuracies of an

object either through rigorous measurement and validation or by our perceptual system's

prowess at recognizing physical implausibilities.

It is important to try to estimate the surface orientation of objects as well as possible,

irrespective of an object's level of translucency, gloss, or placement in a scene. Fields

such as medicine and anthropology often rely on accurate recordings of object shape and

reflectance for records. The entertainment industry also strives for fine manipulation of

object geometry, especially after they have rigorously captured this data from a real-world

scene. Yet, inaccuracies in shape estimation and object reflectance continue to persist

due to constraints on time, data, or technology.

On an even larger scale, digitally rendered scenes present numerous challenges in

the context of microgeometric complexity. The subtle undulation of an object's surface

may greatly impact, for instance, the refraction of light cast through its translucent form

and onto a nearby surface. The color of one translucent object may interreflect with that

of another. Shadow edges can become harder or softer depending on the level of detail

and properties of the light grazing an object. Inject numerous light sources and com-

plex shapes into a scene, and the interactions among objects and physical phenomena

become multitudinous.

When the estimates for surface shape are inaccurate, the resultant inconsistencies in

appearance can be traced down to the particle-level of an object. Overall appearance of

a material is directly tied to two factors: geometry and reflectance. An interesting topic

continues to be the role of error in geometric information and its greater impact in relation

to all visual phenomena in a scene and appearance. This has become our area of interest.

3



In the rest of this text, we explore the effects of surface orientation accuracy on appear-

ance in various ways. First, we take a common shape estimation algorithm and present

it with more realistic input - input that violates its rigid assumptions - and examine the

results in a regimented, empirical study. Following this, we introduce a method for refin-

ing the result of the previous output. Finally, we introduce an image editor that engages

the user with the mesostructure of an object, permitting the user to alter the underlying

surface normals and obtain an updated reflectance image. The entirety of this work is an

examination of the impact of surface normals on object appearance, and it reveals the

diversity of information that awaits in a single photograph of an object.
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Chapter 2

Background

Differences between objects at the particle-level have direct ties to the performance of

the methods used to acquire objects' geometry. For the purposes of assessing which

methods to use, it is imperative to understand what type of material is at hand. The

material properties of objects range from diffuse to specular, opaque to translucent - and

in combinations of these properties. In the following section, we establish the basis for

the descriptions of light transport and material reflectance, and we define the techniques

and models that are used repeatedly throughout our experimentation.

2.1 Bidirectional Reflectance Distribution Function (BRDF)

Describing the appearance of a material begins with describing the interaction of incident

light and the surface of the material. We make use of the bidirectional reflectance distri-

bution function (BRDF) to make this distinction [40]. However, to understand the concept

of a BRDF, we must first understand the intuition behind the quantities ``radiance'' and

``irradiance.'' Radiance stems from radiant power (flux.) While flux measures energy

flow through a surface for a period of time, irradiance measures this incident flux on a

surface, per unit surface area (with units of watts/m2.) Similarly, radiance (measured in

watts/(steradian·m2) is a way of expressing how much power arrives at or leaves from a
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surface point in terms of solid angle and unit projected area. Solid angle is the surface

area of a unit sphere that is encompassed by the projection of an object (or area) from

the center of the unit sphere to the surface of the unit sphere.

The BRDF of a material is the ratio of its differential exitant radiance (dL) to differential

incident irradiance (dE) at a point xi. It can also be thought of as the ratio of differential

exitant radiance to incident irradiance, Li modulated by the angle between the surface

normal nxi (surface direction at that point) and the incident light direction, ωi. The BRDF

has units sr-1 (steradians-1). The formulation of the BRDF is shown in Eq. 2.1:

fr(xi, ωi, ωo) =
dLo

dE
=

dLo

Li(ωi · nxi)dωi
. (2.1)

This 4D function is defined at a point xi on the surface for a pair of incident ωi and

exitant ωo lighting directions. The value of a BRDF is always positive, and can vary,

per material, per wavelength. Whether or not one interchanges the incident and exitant

directions, however, the value of the BRDF will remain the same - an example of what

is termed ``Helmholtz reciprocity.'' A BRDF is a powerful, technical descriptor of material

appearance.

A more intuitive definition of the BRDF would be that it represents the portion of inci-

dent light that reflects off the surface of a material, for a particular direction. The outgoing

directionality of the reflected light is dependent on the underlying material. The BRDF is

a canonical model upon which more complex material reflectances are characterized. It

is also just one component of a larger system that describes all of the light transport in

a scene and thus the entirety of the image formed within the human brain, a camera, or

any other light-sensor.

2.2 Types of BRDFs

There are special classes of BRDFs under which we can organize many materials: spec-

ular, diffuse, and glossy. Diffuse BRDFs describe reflection of light that is uniform over

6



Figure 2.1: A sampling of diffuse (a, c, f); specular (e, g, h); and glossy (b, d, i) BRDFs from
Matusik et al. [35].

the whole hemisphere of directions. Specular BRDFs describe the reflection of light in a

single direction only. Glossy BRDFs describe reflection that is a combination of these re-

sponses, focused at a small solid angle around the mirror (specular) direction. Together,

these generalized BRDF characterizations comprise many types of material reflectances,

as shown in Fig. 2.1.

Diffuse BRDFs

For materials that are diffusely reflecting, or, ``Lambertian,'' the value of the BRDF is in-

dependent of outgoing direction, as light is isotropically scattered. In Fig. 2.2 we illustrate

incident light on a diffuse material that is then reflected in all directions over the hemi-

sphere.

Since light is distributed uniformly in all outgoing directions for the diffuse BRDF, the

reflectance of the surface will look the same from any vantage point. This type of re-

flectance is a limit-case, in that it presents an idealized material that does not allow light

7



to penetrate the surface and exit at another point, nor can the light undergo any amount

of absorption at the particle-level. Consequently, a tight coupling of incident irradiance to

exitant radiance is maintained. In other words, the point of incidence is equal to the point

of exitance. One can see this from Lambert's model for the diffuse BRDF:

fr(xi, ωi, ωo) =
ρ

π
, (2.2)

where ρ, the reflectance or, ``albedo'', can take on any value from 0 to 1 but remains

constant for the entire hemisphere in this special case of a BRDF.

The strong assumption of a Lambertian material underlies many methods that seek

to estimate the surface orientation of objects. This type of material, however, is far from

the reality of the composition of everyday materials.

Specular BRDFs

A specular BRDF is, in other words, a mirror-BRDF. In this case, illumination from each

direction ωi, incident on this surface, is reflected into a particular reflected direction ωo,

depending on the surface normal at the incident point, nxi . Specifically, ωo forms the same

angle with nxi that ωi does, which is called the ``mirror direction.'' The formal description

of the formation of ωo is shown in Eq. 2.3. Consequently,this reflected energy will only be

seen if the view direction aligns with this reflected direction, and when the surface normal

direction is exactly halfway between the incoming irradiance direction and the reflected

direction.

ω⃗i

Figure 2.2: Diagram of diffuse reflectance. Incident light from direction ωi hits the surface and
scatters in all directions.
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ωo = 2(ωi · nxi)nxi − ωi (2.3)

Once it is determined that amaterial exhibits some degree of specularity, it is important

to incorporate the controlling effect of the Fresnel equations into the BRDF. The Fresnel

equations utilize the indices of refraction of two different media that meet at the material's

surface, and calculate the portion of light that is reflected from the surface and what portion

(may be) transmitted into the surface.

Fresnel transmission is comprised of two equations, shown in Eq. 2.4 and Eq. 2.5,

where θi is the angle between nxi and ωi.

Fts = 1−

∣∣∣∣∣∣∣∣
η1 cos θi − η2

√
1−

(
η1
η2

sin θi
)2

η1 cos θi + η2

√
1−

(
η1
η2

sin θi
)2

∣∣∣∣∣∣∣∣
2

(2.4)

Ftp = 1−

∣∣∣∣∣∣∣∣
η1

√
1−

(
η1
η2

sin θi
)2

− η2 cos θi

η1

√
1−

(
η1
η2

sin θi
)2

+ η2 cos θi

∣∣∣∣∣∣∣∣
2

(2.5)

Eq. 2.4 is the formulation for Fresnel transmission that dictates transmissivity for light

that is polarized perpendicularly to the plane of incidence, and Eq. 2.5 is the formulation

for the parallel analog. Because together, Fresnel transmission and reflection conserve

energy, each of Fts and Ftp can also be calculated from polarized Fresnel reflectance

components 1 − Frs and 1 − Frp , respectively. Usually, the final transmission term, Ft,

is calculated as the average of Fts and Ftp. This is valid, assuming that the incoming

illumination is fully unpolarized. In both equations, ωi is the angle of incident illumination,

wt is the angle of the refracted (transmitted) ray, η1 is the index of refraction of the first

medium, and η2 is the index of refraction of the second, through which the transmission

is occurring.
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Glossy BRDFs

Glossy BRDFs fall somewhere between diffuse and specular BRDFs. There are different

ways of modeling these BRDFs. They can be considered the result of a specular BRDF

that has undergone a change in surface roughness. In this case, microgeometric pertur-

bations roughen the surface at a local scale but preserve the global smoothness of the

object. Thinking of this another way, this formulation is essentially a specular BRDF with

a ``blurred'' reflectance. This would form a cone or lobe, of specularity. However, glossy

surfaces can also be the result of multi-layered materials that are diffuse or specular.

One could think of glossy materials as being the sum of diffuse and specular com-

ponents, in a more theoretical sense. In the Phong BRDF model [42], reflectance is the

weighted sum of a diffuse and specular component. This model is not physically-based,

however; it is purely empirical because its parameters have no basis in physical character-

istics. There are many different models that simulate gloss with many different methods.

Most shiny materials are glossy and not specular because they are not perfect reflec-

tors of light in the canonical specular formulation. Like specular reflection, however, the

shape of the specular lobe of a glossy material is still dependent on incident light direction,

making the glossy BRDF sensitive to complex light interactions.

Within a scene, the illumination bouncing off of the various surfaces of objects creates

a complex scenario of light transport. Each recursive bounce of light that is sensed by

the eye or a camera is the result of all of its previous interactions with materials. It helps

to consider this situation in a more formal way.

2.3 Image Formation

Light is electromagnetic energy that, when it enters a scene, can reveal forms, reflect

material color, and encounter numerous scattering and absorption events in its travel

through space. A succinct way of describing the entirety of the radiance leaving each
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point in a scene, due to the multitudinous events of light transport at any given instant

is through Kajiya's rendering equation [30]. This equation, Eq. 2.6, which outputs the

observed radiance, Lo at a surface point, x, incorporates the BRDF but also other scene

conditions that impact the appearance of any given point in the scene.

Lo(xi, ωo, λ, t) = Le(xi, ωo, λ, t) +

∫
Ω
fr(xi, ωi, ωo, λ, t)Li(xi, ωi, λ, t)(ωi · nxi)dωi. (2.6)

The BRDF is important to include in this model because it characterizes the distribution

of reflected radiance at the point in question. However, the format of most terms is defined

in a more explicit formulation that includes the wavelength, λ, and point in time, t, in which

the illumination is occurring. The reason behind this formulation is that the rendering

equation provides the radiance that is observed in a scene, at a specific point, at the

precise moment, and for the exact wavelength of the electromagnetic spectrum that is

originally hitting the scene. This could vary across the electromagnetic spectrum and

through time. The result is a composition of all light interactions up to that moment that

exits at the point x in a certain direction, ωo. Because of this, the incoming reflectance

information is integrated over the entire hemisphere, Ω.

The next term in the integration is, Li, which represents the amount of incident irra-

diance from direction ωi that is hitting the surface at point xi. This illumination may carry

with it the interactions of one or more surfaces elsewhere in the scene, so it is important

to incorporate it into the reflected radiance at this instant in time.

As we touched on before, surface orientation is easily described as a vector called

a ``normal'': the direction that is perpendicular to a tangent plane at that point on the

surface. The inner product, (ωi · nxi), the last term in the integration, is the cosine of the

angle between the surface normal at point xi and each incident lighting direction. This

inner product is commonly known as the ``foreshortening'' term: incident irradiance at that

point on the object is proportional to this clampled (positive) cosine. We see this cosine
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in Eq. 2.1, the BRDF model. This factor also underlies the shading differences across a

surface with varying geometry. Hence, it is a modulator on reflectance and the incoming

irradiance.

Lastly, if the surface emits its own light at xi, an additional term for emitted radiance,

Le, is added to the total radiance. Light sources are, themselves, components of a scene,

so they are accounted for in this term. The rendering equation is non-trivial to solve in its

entirety for each point in a scene but many rendering techniques vary in the approxima-

tions made to speed up the computation. For instance, the techniques of path tracing and

photon mapping use a Monte Carlo technique to stochastically arrive at a solution. De-

spite the rendering equation's high degree of fidelity to physics, it is technically too simple

to fully describe all visual effects, especially subsurface light transport.

The above model for light transport in a scene is a simplified case of the full range

of light scattering that is possible in the world. It does not account for complex light ef-

fects, such as diffraction (when the wavelength of light is roughly the same size or larger

than an orifice that it hits), or polarization-specific effects, among other phenomena. One

common effect is that of subsurface light scattering. In this case, a photon will scatter

or be absorbed after an inestimable number of interactions with particles in a translucent

object's substrate. This characteristic of light interaction with translucent objects is a phe-

nomenon that plays a significant role in the rest of our work and frames the rendering

equation as a special case of a more robust scattering model.

2.4 Bidirectional Subsurface Scattering Reflectance Distribu-

tion Function (BSSRDF)

Light that penetrates the surface of a material at certain point will undergo subsurface

scattering. In this case, light that enters at point xi will exit the surface not only at that

same point as surface reflectance, but likely at any other possible surface point, xo. This
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Figure 2.3: Underneath the surface of a translucent material, light scattering from direction ωi and
hitting surface point xi incurs a number of scattering ``events'' within the medium before exiting at
some other point xo and traveling in direction ωo.

subsurface scattering is depicted in Fig. 2.3.

Between the points of entrance and exit, both scattering and absorption events can oc-

cur at the particle level. Underneath the surface, there can either be one scattering event

before the particle exits through the surface (single scattering) or more than one scatter-

ing event (multiple scattering), as shown in Fig. 2.4 Each type of scattering is modeled

slightly differently in practice, i.e. when simulating subsurface light transport. Together,

these events are known as subsurface scattering.

For rendering purposes, the outgoing radiance of a translucent material can be cal-

culated similarly to the rendering equation, Eq. 2.6, but allowing for volumetric scattering.

Notice the dependence on the outgoing position introduced by volumetric scattering. The

analytical formulation in Eq. 2.7 integrates over both incident position (area) and direction

(incident illumination angle):

Lo(xo, ωo) =

∫
A

∫
Ω
S(xi, ωi, xi, ωo)Li(xi, ωi)(ωi · nxi)dωidA(xi). (2.7)

The subsurface diffusion portion of the integral, S, can be described analytically by

the bidirectional subsurface scattering reflectance distribution function (BSSRDF), an 8D
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Figure 2.4: A photon scattered from a translucent surface can either exit immediately at the point
of entry via surface reflectance (``s.r.''), scatter once before exiting as single-scattering (``s.s'') or
undergo multiple scattering (``m.s.'' ) before exiting.

function [40] over incident position xi, outgoing position xo, incident direction ωi and out-

going direction ωo:

S(xi, ωi;xo, ωo) = S1(xi, ωi;xo, ωo) + Sd(xi, ωi;xo, ωo), (2.8)

in which S1 and Sd comprise the single- and multiple scattering components of the full

subsurface light transport. Themultiple scattering component of subsurface light transport

is generally considered to be a diffusion process [45], leading to the development of many

models that approximate subsurface light transport.

Multiple Scattering

The diffusive portion of subsurface scattering is known as ``multiple scattering.'' A pho-

ton in the process of multiple scattering is undergoing successive scattering ``events.''

An event could be either one of absorption or of scattering, denoted by the coefficients,

σa and σs, respectively. The absorption coefficient signifies the rate at which the pho-

ton would lose radiant flux due to absorption by an encountered particle; the scattering

coefficient is similar. Taken together, the entirety of the photons comprising a beam of
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light undergo these events with varying probability and a certain distribution of possible

scattering directions, dictated by the medium through which the photons are traveling.

One way of modeling the multiple scattering phenomenon is with diffusion theory. In a

diffusion approximation of multiple scattering, the assumption is made that the material at

hand is a homogeneous and semi-infinite slab. In Jensen et al. [29], a detailed explanation

of a diffusion approximation for multiple scattering is given, and it includes several key

points underlying the intuition behind the diffusion approximation for multiple scattering,

including:

• The scattering profile of a highly scattering medium tends to be isotropic.

• The direction of the flux of irradiance is from high density to low.

The particular analytical model for the diffusion approximation is described well in Jensen

et al. [29]; with additional conditions in place, the model can be adjusted to work within

the physical boundaries of a homogeneous medium. For complex shapes (non-slabs),

however, the diffusion approximation decreases in reliability as a model, as geometric

idiosyncrasies interfere with the pattern of fluence in the medium. For small or slowly

varying regions, however, the diffusion approximation acts as a relatively accessible, al-

beit simplified, estimation of the scattering profile of a beam of light through a translucent

medium.

Multiple scattering, Sd, is formulated as follows:

Sd(xi, ωi;xo, ωo) =
1

π
Ft((ωo · nxo)Rd(||xi − xo||)Ft((ωi · nxi), η), η), (2.9)

in which nx is the surface normal at position x, Rd(||xi−xo||) is the diffuse reflectance de-

scribing the subsurface transport from point xi to xo, and each Ft is a Fresnel transmission

term with index of refraction η, one for incident illumination, one for exitant illumination.

As mentioned previously, the Fresnel terms dictate the proportion of light that is reflected

or transmitted through an interface between differing media. Rendering only the multiple
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scattering contribution with incident illumination from a single direction, Eq. 2.7 can be

simplified as Eq.2.10:

L(xo, ωo) =
1

π

∫
A
Ft((ωo · nxo), η)Rd(||xi − xo||)Ft((ωi · nxi), η)Li(xi, ωi)(ωi · nxi)dxi,

(2.10)

There are two, key parameters to any model describing subsurface light transport.

The first parameter is ``scattering albedo,'' which is defined as: α = σs
σs+σa

, the ratio of

the scattering coefficient, σs over the sum of this scattering coefficient and the absorption

coefficient, σa. This sum in the denominator is also known as the ``extinction coefficient,''

which is often denoted as σt. The other parameter is called the ``mean free path,'' or

ld. Mean free path is defined as: ld = 1
σs+σa

. Together, scattering albedo and mean

free path dictate the magnitude and extent of the diffusion of subsurface light transport,

respectively. A mathematical model for describing translucency should incorporate these

parameters in some way because the scattering and absorption coefficients are tied to

the physical properties of each translucent material.

The scattering direction of photons through a translucent material can be largely back-

wards, out of the surface of the material and in the hemisphere of directions centered

on ωi, isotropic, forwards, in the hemisphere of directions opposite ωi, or somewhere

within this range. This distribution of likely directions is known as the ``phase function,''

p(g, ωi
′ · ωi

′), given in terms of the mean cosine g ∈ [−1,+1], and the refracted incident

and outgoing directions ωi
′ and ωo

′ respectively.

The phase function is integral to a description of translucency because it dictates the

overall scattering ``lobe'' of the particles. The mean cosine, g, itself dictates whether

single scattering is mostly forward, into the material (g = 1.0), mostly isotropic (g = 0), or

backwards, out of the material (g = −1.0). These types of scattering profiles are illustrated

in Fig. 2.5.

In our analysis, we employ the dipole-diffusion approximation for Rd [29], introduced
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Figure 2.5: The direction of scattering is dictated by the phase function, p, and the general scat-
tering direction is dictated by the mean cosine parameter, g. Left: backward, g = −1.0, Center:
isotropic, g = 0.0, Right: forward, g = 1.0

by Jensen et al., which is an approximation of subsurface diffusion for globally planar,

homogeneous materials such as milk, wax, or marble, calculated in line with the normal

direction at a point on the surface of the object. Rd provides the means of photon diffusion

underneath the surface - the ``scattering profile.'' The idea of the dipole diffusion model is

to embed two hypothetical point light sources above and below the scene for which one is

trying to simulate diffusion. The modeling of the fluence between these ``positive'' (lower)

and ``negative'' (upper) light sources for all incoming light source directions results in the

dipole diffusion model, the analytical formulation for which Rd is shown in Eq. 2.11:

Rd =
σ′
s

4π(σ′
s + σa)

[
(σtrdr + 1)

e−σtrdr

σ′
td

3
r

+ zv(σtrdv + 1)
e−σtrdv

σ′
td

3
v

]
in which,

σ′
s = σs(1− g)

and

σ′
t = σ′

s + σa

(2.11)

The coefficient σtr is the effective transport coefficient (a measure of the rate of diffusion

in the medium,) dr is the distance between our point of incidence xi and the light source,
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and dv is the distance between xi and either of the virtual light sources that hypotheti-

cally sit near the boundary of the surface. The purpose of using ``reduced'' versions of

coefficients, such as σ′
t, the reduced extinction coefficient, is to incorporate the potential

anisotropy introduced by g, the mean free path.

One could substitute any of the applicable diffusion models for Rd. For instance,

the dipole model has been extended to account for multiple layers [12]. More recently,

the quantized diffusion model [10] was developed to better approximate subsurface light

transport for a wider range of materials but approximating the two-dimensional diffusion

profile as a sum of Gaussians. It can also simulate diffusion from an oblique (non-normal)

direction by offsetting the centers of the Gaussians used. Building upon this approach,

Habel et al.'s [21] photon beam diffusion model is able to approximate diffusion (also at

oblique angles) more efficently than the former. Instead of incorporating diffusion approx-

imation through a sum of Gaussians, this process is replaced by Monte Carlo simulation

with incorporated importance sampling. The benefit of choosing one of these latter models

is that they account for diffusion at non-normal directions, and thus are more appropriate

for non-slab, rough surfaces. For simple cases of translucency on a plane and didactic

examples, the standard dipole model is sufficient. To describe the translucency of curved

or more geometrically complex surfaces, quantized or photon beam diffusion are more

appropriate.

Single Scattering

Because the distance traveled by a particle that undergoes single scattering is often not

far from the point of incidence, single scattering is usually approximated using a BRDF.

A popular model for single scattering is that of Hanrahan and Krueger [22], which can be

substituted for the single scattering S1 term:

fr
1(x, ωi, ωo) = αF

p(g, ωi
′ · ωo

′)

|(nxo · ωi
′)|+ |(nxo · ωo

′)|
, (2.12)
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where α is the scattering albedo, and F is the product of the incident and exitant transmis-

sion terms Ft. Since single scattering is often approximated as a BRDF; it is also consid-

ered as not breaking the assumption that incident irradiance is tightly coupled to exitant

radiance. While not exactly Lambertian, if g is largely backscattering, single scattering can

have an approximate Lambertian behavior for a large range of incident directions. The

mean cosine, g, and index of refraction, η, are of particular importance to study within the

context of single scattering as their values can vary widely in real-world materials.

Lowering Dimensionality

The unique feature of subsurface scattering as a whole is that, through the diffusion pro-

cess, the angular distribution of outgoing radiance becomes disconnected from the in-

cident irradiance direction. While both single and multiple scattering are generated as

functions of incident and exitant light direction, the observed effect is ambiguous. There-

fore, the observed radiance from a translucent material can be written as the sum of the

exitant radiance due to single scattering L1 and the exitant radiance due to multiple scat-

tering Ld:

L(xo, ωo) = L1(xo, ωo) + Ld(xo, ωo). (2.13)

The above simplification is possible due to the linearity of light transport, the phe-

nomenon that the combined effect of lighting in a scene is equal to the sum of the individ-

ual effects of the light sources. The benefit is that this process can be simplified to a 4D

problem from and 8D problem, one that is irrespective of incident light direction, ωi.

Overall, one could think of subsurface scattering as pseudo-diffuse behavior, since

each light particle travels rather erratically underneath the surface of the material, again

independent of a particular incident light direction. The problem occurs when incident light

intersecting any given point on the surface can contribute to exitant radiance at another

point. This characteristic violates the terms of Lambertian reflectance and disconnects
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incident irradiance from exitant radiance [45]. Many shape estimation algorithms assume

a tight relationship between incident and exitant radiance. Consequently, the common

presence of subsurface scattering in materials renders these materials potentially unus-

able in these algorithms.
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Chapter 3

Impact of Translucency on Normal

Estimation

Countless materials at hand exhibit some degree of translucency, such as skin, fruit, milk,

jade, and the list goes on. It is tempting to apply photometric stereo to objects constructed

from these materials despite the fact that they do not comply with the assumed material

standards, because it is such a simple procedure. To determine the extent to which the

result of photometric stereo [48], a popular shape-estimation algorithm, degrades in the

presence of translucent input, we have executed an empirical study using both simulation

and data from a real capture.

According to theory, the photometric stereo technique should not hold for non-Lambertian

materials. In the following project, published in [36] we investigate the range of accuracy

in results from photometric stereo when it is applied to arbitrarily translucent materials.

We seek to confirm our expectations that for a widely-used technique, the applicability of

photometric stereo is limited.
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3.1 Motivation

Digitally reproducing the appearance of physical objects is a difficult and important prob-

lem in computer graphics and computer vision. Both shape and reflectance need to be

accurately characterized in order to obtain a faithful reproduction. While modern geom-

etry acquisition techniques are capable of achieving sub-millimeter accurate results [25],

thesemethodsmake no guarantees on the accuracy of the resulting surface normal. How-

ever, accurate surface normals are important to faithfully reproduce surface reflectance.

A practical solution is to directly acquire surface normals that are then subsequently used

to augment the high resolution geometry [39].

In this study, we empirically investigate the impact of violating the assumption of cou-

pled incident and exitant radiance on the accuracy of photometric stereo. In other words,

we evaluate its accuracy on translucent materials. We perform simulations based on

Jensen et al.'s [29] dipole-diffusionmodel and compute the accuracy of photometric stereo

as a function of mean free path, scattering albedo, mean cosine of the phase function,

and number of light source directions. Our analysis shows that the ratio of geometric fea-

ture size versus mean free path and single scattering play an important role, whereas the

other parameters influence the error less. We demonstrate the validity of our analysis on

a physical material sample.

To the best of our knowledge, the relation between the coupling of incident and ex-

itant radiance has not yet been explored in the context of photometric stereo. With the

ever-increasing drive for higher resolution geometry, understanding this relation and its

impact on the accuracy of photometric stereo becomes critical as materials that at low or

moderate resolution appear diffuse, can exhibit subsurface light transport when examined

at a finer resolution.
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3.2 Background

In the process of creating a digital representation of an object, we often need to photo-

graph or scan an object quickly, and as accurately as possible, capture its geometry and

reflectance. There may not always be room for a scanner or imposing gantry in the ac-

quisition area. For just an estimation of the surface orientation of the visible points of the

object, how can we do this quickly and in a small amount of space?

A general technique is ``shape-from-shading'': shading information in the photograph

of an object is used as input to an algorithm that then infers surface orientation from shad-

ing differences, which present themselves as foreshortening, or cosine falloff term. One

such enduring version of this technique is the photometric stereo method for computing

surface orientation [48]. The goal of this method is to obtain an estimate of the surface

normal, at each pixel, of a target object. It is important to note that, for Lambertian re-

flectance, foreshortening does not depend on the viewing angle but only on the angle

between the incident lighting direction and the surface normal direction.

Using photographs of the object taken from the same vantage point, photometric

stereo calculates the surface normal at each visible point of the object, discretized per

pixel. Fig. 3.1 shows sample input images and the final, photometric stereo output of the

landscape of three-dimensional normals of a sphere, in which the normals are encoded

in red, green, and blue (RGB) values. A change horizontally in red, indicates a change in

the x-direction, a change vertically in green is a change in the y-direction, and a change

in depth, or the z-direction, is a change in blue.

The algorithm assumes that the illumination in each input image is a single, directional

light source. For a light source to be "directional," the rays emanating from the source

must be parallel. Illumination of this kind is difficult to achieve in practice. Hence, it is

assumed that the target object is sufficiently smaller than the light source. Notice that the

amount of input images in Fig. 3.1 is three. This is not an arbitrary number. The amount

of input images must be greater than or equal to the dimensionality of the surface normals
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Figure 3.1: Sample input to the photometric stereo algorithm - Top: A sphere lit from three dif-
ferent lighting directions and photographed from the same viewpoint. Bottom: RGB-encoded
normals calculated for the sphere.

for which the algorithm is solving, which is typically three dimensions for this image-based

algorithm. The radiance intensity at each pixel of these u input images can be formulated

as:

l =
ρ

π
(n · d), (3.1)

in which n is the unnormalized normal, d is the light source direction, and l is resultant

radiance image. The foreshortening term appears again in this equation, causing the

shading variation over the surface of the target object. Returning to the full collection of

input images then, we have:
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l1 =
ρ

π
(n1 · d1)

l2 =
ρ

π
(n2 · d2)

l3 =
ρ

π
(n3 · d3),

. = .

. = .

. = .

lu =
ρ

π
(nu · du),

a linear system of equations. For the three unknowns of the three-dimensional surface

normal, we need three input images that contain the known radiance (intensity) values,

and their associated three lighting directions. (Lighting directions can be obtained by

capturing a Lambertian sphere under the appropriate light sources and solving for them,

since the normals of a sphere are known.) We can concatenate all of this information into

a single linear system as shown in Eq. 3.2 to solve for all of the surface normals for which

there is an intensity value, using the least squares method.

L =
ρ

π
(N ·D) (3.2)

L is a 1×umatrix of radiance values observed, per photograph, under one of u known

light source directionsD = [d1, d2, d3...du] (a 3×umatrix). Each column inD represents an

individual incident lighting direction, representing the illumination in one photograph. N is

a u×3matrix of the unknown values for all surface normals. The final step is to normalize

the normals returned in N to remove the effect of ρ, thus calculating the traditional output

of photometric stereo.

Photometric stereo is a lightweight method for capturing surface normals of an ob-

ject in that it requires little data as input, commonplace acquisition equipment, and little

processing time. In all, a minimum of only three photographs of the target object is re-

quired to solve the system of equations for each surface normal. It is this ease-of-use,
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however, that is routinely abused because virtually zero real-world objects have perfectly

diffuse reflectance because they exhibit some degree of translucency, or subsurface light

transport. The validity of inferring shading information from differences in foreshortening

only holds as long as all incident light is reflected from the same point at which it makes

contact with the surface, which is not true with translucent materials. Therefore, to some

degree, one is usually violating the assumptions made by the photometric stereo method.

Because it is so straightforward, the photometric stereo method is ubiquitous. Our

first goal was to characterize the degree of accuracy achieved by the photometric stereo

method for calculating surface normals of translucent objects. With this information, we

could characterize the degree to which the major parameters dictating translucency have

an effect on the results.

The idea of the simulated, empirical study is to have full control over all variables in

a typical photometric stereo setup, including presenting the method with its ideal input.

With full control, we can vary the parameters of translucency for our simulated material

and ensure that for each independent variation, the rest of the parameters remain the

same.

Photometric stereo is supposed to be ideal for ``smooth surfaces with few disconti-

nuities.'' To push these assumptions to the limit, we design a simulated target input: a

globally smooth, sinusoidal surface. The overall texture of the surface is smooth, but there

is surface normal variation to measure. However, there are no sharp discontinuities in the

variation, and the surface remains the same throughout the simulation, irrespective of its

level of translucency.

The ``ground truth'' surface normals are computed from the surface with Lambertian

material qualities. The test surface with approximate illumination positions and exhibiting

the Lambertian material is shown in Fig. 3.2. It is important to note how light position

is important, as the center and right images of Fig. 3.2 are virtually identical. We were

careful to position lights so that the surface would show intensity variation for at least three

of the input images, to be able to calculate the surface normals.
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Figure 3.2: Simulated image of a Lambertian, sinusoidal surface illuminated from three different
directions by a directional light source.

Figure 3.3: Simulated image of a translucent, sinusoidal surface illuminated from three different
directions by a directional light source.

By varying the two main parameters that dictate translucency, scattering albedo, α,

and mean free path, ld, we can create an arbitrarily translucent surface. In Fig. 3.3, one

can see an example of the same illuminated surface, but with non-Lambertian settings,

exhibiting a degree of translucency.

Even with the human eye, it is apparent that there is a significant difference in the

appearance of the surface as its illuminated. The contours of the surface appear less

sharp in the translucent version than in the Lambertian version. This is a key observation

that underlies not only the intuition behind this empirical study - that subsurface scattering

confounds the incident illumination signal and introduces error in the result of photometric
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stereo - but also further work in this dissertation. Next, we discuss the simulation setup

in more specific terms.

3.3 Prior work

While not widely applicable in its original manifestation, photometric stereo has since been

extended and generalized to handle, among other singularities, shadowing, specularities,

and general surface reflectance. Since its inception, several variants have been proposed

that extend photometric stereo to handle more general lighting conditions (e.g., [37, 4]),

shadows (e.g., [3]), non-Lambertian reflectance (e.g., [20, 1]), etc. Ma et al. [34] exploit

differences in polarization behavior of illumination to estimate photometric normals, and

observe that there is a discrepancy between so-called ``diffuse'' and ``specular'' normals

and conclude that this is due to interreflections and subsurface scattering. None of the

above has analyzed the impact of the different parameters of subsurface scattering on

the accuracy of photometric stereo.

Capturing geometry for translucent objects has long been a recognized problem in

computer graphics. Goden et al. [18] elaborated on the difficulty by measuring the bias

in depth measurements of marble under laser range scanning. Of course, if one is able

to coat a translucent surface with a diffuse material, the problem is avoided. Goesele et

al. [19] demonstrate the effectiveness of this approach by "dusting" a translucent object

with a diffuse powder to circumvent the problem of subsurface scattering. This is not

always possible, as objects might be malleable or fragile. We want to assume that any

target object for which its geometry needs to be acquired must be touched as little as

possible. Thus, reflectance from multiple scattering is exposed.

Given the fact that reflectance from multiple scattering is the source of unreliability in

shape estimation techniques, some have tried to isolate it from direct reflectance when

taking measurements. For example, Nayar et al. [38] use high-frequency, sinusoidal il-

lumination patterns to separate direct from multiple-scattered illumination. Furthermore,
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Holroyd and Lawrence [24] formally analyze the applicability and expected error of using

this separation technique on optical triangulation methods. In a similar vein, Ma et al. [34]

use a spherical gradient illumination pattern to isolate direct surface reflection from sub-

surface scattering information. Single scattering is, of course, nearly direct reflection in

practice. Recognizing this, Inoshita et al. [27] have reconstructed the shape of a translu-

cent object by only looking at the single scattering component. Unfortunately, it is difficult

to separate single scattering from specular reflection. In our approach to the problem,

we want to employ a lightweight acquisition procedure with conventional photographic

equipment.

3.4 Empirical Study

To study the effects of translucency on the accuracy of photometric stereo, we simulate

subsurface light transport in a simplified setting, using a fully simulated target object (sur-

face), camera, and light sources. This allows us to carefully control all of the relevant

parameters and study the influence of each of the translucency parameters separately.

Our goal is to vary these parameters, as well as the index of refraction of the test material,

and analyze the output of photometric stereo to gain intuition about the effect of translu-

cency on the quality of the results. To begin, we consider a simulation of a homogeneous,

optically dense, translucent material as our target surface. We then progress to a physical

setup.

Setup

In our simulation, we consider a homogeneous, optically dense, translucent material, and

model the 8D BSSRDF [40] over incident position xi, outgoing position xo, incident direc-

tion ωi and outgoing direction ωo as the sum of a single scattering and a multiple scattering
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term, as in Eq. 2.8:

S(xi, ωi;xo, ωo) = S1(xi, ωi;xo, ωo) + Sd(xi, ωi;xo, ωo).

In our simulation of multiple scattering effects, we use the dipole-diffusion approxi-

mation of Jensen et al. [29] and for single scattering, we use the Hanrahan and Krueger

model [22]. We ignore surface reflectance and assume directional (i.e., distant lighting).

Furthermore, we only consider subsurface light transport and ignore interreflections.

The simulation scene consists of an orthographic camera looking down (along the Z

axis) onto a planar homogeneous sample of 10cm2. The sample only exhibits sinusoidal

surface depth variation (with a wavelength of 1cm and an amplitude of π
2 cm) along the X

axis, while remaining constant along the Y axis, as shown in Fig. 3.4. The surface sample

is illuminated by a variable number of light sources equally distributed in a 40◦ cone around

the view direction, ensuring that foreshortening is non-zero (i.e., (nxi · ωi) ≥ 0) for any

surface point xi and ``directional'' lighting direction ωi. Unless noted, we employ three

light sources in our simulations.

For each lighting direction, the outgoing radiance is computed for every surface point

xo at a resolution of 500 × 500 (a pixel to mm ratio of 0.2), and fed into a least squares

photometric stereo algorithm. For each estimated photometric surface normal n̂xo , the

error with the ground truth normal nxo is computed as the angle between the estimated

and ground truth normal expressed in radians: |arccos (n̂xo · nxo)|.
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Figure 3.4: The ground truth normal map employed in our simulations. The sample size is 10cm2,
and the amplitude of the sinusoidal normal variation is π

2 cm. The inset shows the false-color coding
of the normals.

Multiple Scattering

For our first experiment we only consider multiple scattering, and set η = 1.0 (i.e., Ft = 1),

and g = 0. In this case, the outgoing radiance, L(xo, ωo), from Eq. 2.10 becomes:

L(xo, ωo) =
1

π

∫
A
Ft((ωo · nxo), η)Rd(||xi − xo||)Ft((ωi · nxi), η)Li(xi, ωi)(ωi · nxi)dxi,

=
1

π

∫
A
Rd(||xi − xo||)(ωi · nxi)dxi. (3.3)

We only consider one incident light direction, ωi, and the diffusion approximation, Rd,

serves as the multiple scattering component of this simplifed version of the BSSRDF.

Here, we see that because the incident light direction ωi is independent of the result of

subsurface diffusion, that ωi can be drawn outside of the integral:

=
1

π
(ωi ·

∫
A
Rd(||xi − xo||)nxidxi). (3.4)
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However, we can also consider this dot product in its full form, in which each component

is multiplied before being summed:

ωix

∫
A
nxix

Rddxix + ωiy

∫
A
nxiy

Rddxiy + ωiz

∫
A
nxiz

Rddxiz,

which amounts to taking the inner product of ωi and a surface normal that is being mod-

ulated by the diffusion function, this altered normal designated as, n̂xo :

=
γxo

π
(n̂xo · ωi). (3.5)

in which γxo is a spatially varying scale factor that represents variations in the albedo map,

and n̂xo is the normalized blurred surface normal that is the result of the sum of the surface

normals around xo weighted by the diffuse reflectance Rd. The spatially varying scale

factor depends on the incident Fresnel transmittance. Given that Fresnel transmittance

depends upon the angle between the incident light direction, ωi, and the surface normal at

that point, the frequency of this scale factor is directly dependent on the spatial frequency

and complexity of the object's surface.

Despite a varying albedo of γxo , Equation (3.5) is roughly the Lambertian reflectance

model, the blurred normal n̂xo standing in for the true surface normal. An alternative

interpretation is that the blurred normal is proportional to the convolution of the normal

field with the diffuse reflectance: n̂xo ∼ (n ∗ Rd)xo . The eventual result of computing

photometric stereo on this surface will be the blurred surface normal n̂xo .

From this analysis it follows that the accuracy of photometric stereo on a translucent

material (only exhibiting multiple scattering and with an index of refraction of 1.0), de-

pends on the shape of the diffuse reflectance Rd. If Rd is a delta function (and thus no

subsurface scattering occurs), then the blurred normal n̂ will exactly match the ground

truth normal n. To better understand the impact of the shape of the diffuse reflectance

Rd, we plot (Fig. 3.5) the average error on the setup described above for a dense sam-
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Figure 3.5: The average angular error plot for photometric normals computed from observa-
tions under three directional light sources, and for multiple scattering only, without taking Fresnel
transmittance into account (i.e., η = 1.0) for scattering albedo α ∈ [0.1, 1.0] and mean free path
ld ∈ [0.35, 6.5].

pling of scattering albedo α (vertical axis ranging from 0.1 to 1.0) and mean free path ld

(horizontal axis ranging from 0.35 to 6.5)

From Fig. 3.5 it can be seen that the average error increases with increasing ld --

increasing mean free path implies a more translucent material. Indeed, at the extreme

right, the extent of the diffuse reflectance profile significantly exceeds the wavelength of

the sinusoid, and all normal variation is essentially blurred away. This is illustrated in

Fig. 3.6 where we repeat a single line (horizontal) from the recovered normal map for

a fixed α = 0.8 and increasing ld (vertical). Note that changing the wavelength of the

sinusoidal surface variation, is equivalent to scaling mean free path inversely by the same

scale factor [13]. Thus, changing the relative size of the geometric features results in a

similar average error plot but scaled along the Y-axis.

Effect of Index of Refraction

The previous analysis employs an index of refraction of 1.0 which is not very realistic. If

we allow the index of refraction to take on other values than 1 (i.e., Ft ̸= 1), then we can

make two observations. First, the exitant Fresnel transmittance term is independent of xi
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Figure 3.6: The impact of varying mean free path (vertical axis) on a slice from the normal map.
As mean free path increases, the features in the normal map gradually become blurred out.

and thus does not impact the integral over the irradiance. Second, for plausible indices

of refraction, Ft remains fairly constant over a large portion of its domain, varying only

significantly towards grazing angle. However, towards grazing angle the foreshortening

goes to zero, limiting the impact of the drop in Fresnel transmittance. Therefore, we

can approximate Ft((ωi · nxi), η)(nxi · ωi) by Ft0 × (nxi · ωi), where the scalar Ft0 is the

transmittance at normal incidence (Fig. 3.7). Thus, we can arrive at Equation (3.5) more

generally as follows:

L(xo, ωo) =
1

π

∫
A
Ft((ωo · nxo), η)Rd(||xi − xo||)

Ft((ωi · nxi), η)(ωi · nxi)dxi,

≈ Ft0Ft((ωo · nxo), η)

π

(ωi ·
∫
A
Rd(||xi − xo||)nxidxi),

=
γxo

π
(n̂xo · ωi), (3.6)
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Figure 3.7: A comparison of Ft(ωiz ,η)max(0,ωiz )
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for varying indices of refraction.

where the Fresnel transmittance terms are absorbed in the scale factor γxo , yielding a

similar expression as before. In Fig. 3.7 the diffuse reflectance Rd changes only slightly in

shape as index of refraction changes. This justifies an approximation ofFt((ωi · nxi), η)(nxi · ωi)

by Fresnel transmission at normal incidence.

Fig. 3.8 shows the average error for indices of refraction of 1.1, 1.3 and 1.5. As pre-

dicted, the difference with the average error plot (with index of refraction of 1.0) shown in

Fig. 3.5 is minimal.

Single Scattering

As we saw in Equation (2.13), observed radiance from a translucent material is a linear

combination of the contributions from single scattering and multiple scattering. Because

photometric stereo is also a linear process, each resulting normal that it computes is also a

linear combination - of the blurred multiple scattering normal n̂d, and the single scattering
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Figure 3.8: The average angular error plot for photometric normals computed from observations
under three directional light sources, and for multiple scattering only, with varying index of refrac-
tion η ∈ {1.1, 1.3, 1.5}, for scattering albedo α ∈ [0.1, 1.0] and mean free path ld ∈ [0.35, 6.5].

normal n̂1:

n̂xo =
γ1n̂

1
xo

+ γdn̂
d
xo

|γ1n̂1
xo

+ γdn̂d
xo
|
. (3.7)

The relative contribution of single scattering to the resulting estimated photometric

normal depends on the normalization constants γd and γ1, which in turn depend on the

mean cosine g. Fig. 3.9 shows error plots for g = −0.5, 0.0,+0.5. We observe that, while

the accuracy improves for all cases, the impact of backscattering (i.e., g < 0) is stronger

than of isotropic scattering (g = 0), which in turn is stronger than forward scattering.

However, for |g| → 1, the reflectance behavior is significantly non-Lambertian, at which

point the presence of single scattering negatively impacts the accuracy of the estimated

normals.
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Figure 3.9: The average angular error plot for photometric normals computed from observations
under three directional light sources, and for multiple scattering and single scattering (i.e., η = 1.3)
with the mean cosine g ∈ {−0.5, 0.0,+0.5}, for scattering albedo α ∈ [0.1, 1.0] and mean free path
ld ∈ [0.35, 6.5].

Lighting Directions

As a final, simulated experiment, we increased the number of light source from three to

four, and solve for the photometric normal in a least squares sense. Using more than

three light sources helps in improving the photometric normal estimate for regular, diffuse

surfaces. Fig. 3.10 shows the average error plot for multiple scattering (η = 1.3). Due to

the diffusion of exitant radiance, increasing the number of light source does not provide

additional information, and the obtained photometric normals are identical. From this it

can be concluded that increasing the number of light source directions, will not yield a

significant improvement in accuracy.
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Figure 3.10: The average angular error plot for photometric normals computed from observations
under four directional light sources, and for multiple scattering only, with η = 1.3, scattering albedo
α ∈ [0.1, 1.0] and mean free path ld ∈ [0.35, 6.5].

Physical Validation

We show the validity of our analysis by capturing the photometric normals of a translu-

cent soap sample. For the capture setup, we position 3 (or more) Quantum flash light

sources at different positions that will illuminate the target object. Again, in practice, the

target object is sufficiently smaller than the cone of illumination such that the flashes take

on a pseudo-directional role. The camera should be placed at a position that maximizes

the vantage of the illuminated portion of the object in each photograph. Three or more

photographs are taken from this view direction, each illuminated by a different flash di-

rection. This essentially provides us with three different samples of the outgoing radiance

at each point, to use as our input L matrix. As long as the light source directions in D

are also known, we can solve for N . Light source directions can be calibrated for using a

Spectralon or specular sphere.

We estimate both the normals from multiple scattering only, and from the full subsur-

face scattering light transport (i.e., single scattering and multiple scattering). Out setup

consists of a DSLR camera located approximately 1.5m away from the subject, and four

flash light sources placed around the camera aimed at the sample. We place a linear

polarizer in front of the camera, and to the light sources. We tune the linear polarizers on
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the light sources such that specular reflections from a dielectric ball are canceled out (i.e.,

cross polarized). We calibrate the light directions and intensities of the individual flash

lights using a Spectralon sphere. Next, we capture two pairs of four photographs, one

pair cross polarized I0i , and one pair I90i where we rotate the linear polarizer on the cam-

era by 90 degrees. The images I0i will only display (half of) multiple scattered light, and

I90i contains all reflected components: (half of) multiple scattering, (full) single scattering,

and is potentially polluted by specular surface reflectance. The sum of both Ii = I0i + I90i

is equivalent to a photograph without a polarization filter in front of the camera.

Cross-polarized Red Channel Cross-polarized Green Channel

Cross-polarized Blue Channel Unpolarized Blue Channel

Cross-polarized

Unpolarized

Polarization Difference

Figure 3.11: Left: Photometric normals estimated from a translucent soap sample. Note how
multiple scattering blurs out most surface details compared to the multiple+single scattering pho-
tometric normal map. Further observe the effect of the wavelength dependent diffuse reflectance
Rd on the sharpness of the photometric normals. Right-top: a cross-polarized captured image,
exhibiting only multiple subsurface scattering, used to compute the multiple scattering photometric
normals. Right-middle: polarization difference image showing the specular surface reflectance
and single scattering removed by cross polarization. Right-bottom: unpolarized photograph of
the translucent soap, showing both reflectance due to multiple as well as single scattering.
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Fig. 3.11 shows (on the right from top to bottom) 2I0i , Ii−2I0i , and Ii for a single lighting

direction. The difference image shows the amount of single scattering that was canceled

out in I0i . Note, that this difference also clearly contains some specular ``pollution'', which

will affect the photometric results. Fig. 3.11 (right) shows the resulting photometric nor-

mals computed from I0i (computed separately for the red, green and blue color channels)

and the photometric surface normals computed from the blue color channel of Ii.

As predicted by our analysis, it can be clearly seen that the photometric normals com-

puted from only multiple scattering exhibits very little surface detail. Since mean free path

and scattering albedo are wavelength dependent, the ``blur'' kernel Rd differs. Conse-

quently, the photometric surface normals for the different color channels differ slightly, re-

sulting in blurrier normals for the red color channel (longer wavelength), and the sharpest

normals for blue (shorter wavelength). This illustrates, that indeed as predicted, an in-

crease in mean free path yields more blurred surface normals, and thus less surface

details. While the photometric normals computed from Ii are biased due to specular sur-

face reflection, it can be seen how much surface detail is lost by only considering multiple

scattering.

Our input and assumptions for both the simulation and physical experiment were rela-

tively idealistic. It would be interesting to replicate this experiment but while also including

interreflections, not cross-polarizing to remove specularity, and finally validating with a full

particle simulation. The drawbacks suffered by using the photometric stereo method on

translucent objects are also pertinent to shape-from-shading methods, so this type of rig-

orous study has valuable application as-is and as a model for future investigations.

3.5 Conclusion

The benefit of this rigorous study is that we have identified which are the key contributing

parameters to error on estimation of surface normals for translucent objects when using

photometric stereo. Neither index of refraction nor scattering albedo have a large impact
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on the severity of the error. Rather, it is the relative size of the mean free path versus

geometrical feature size that strongly dictates the accuracy of results. We have validated

this in simulation and with a physical sample and setup.

Essentially, the estimation of the surface normals of a translucent object using pho-

tometric stereo results in a blurred version of what the result would have been, had the

object been Lambertian in appearance. This finding also establishes the remainder of

our work in this dissertation, as we explore the effect and control of surface normals on

appearance of objects comprised of many kind of materials.
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Chapter 4

Normal Estimation Refinement for

Translucent Materials

The previous empirical study highlights a key fact: increasing translucency sufficiently

disassociates reflected radiance from incident irradiance so as to render the photometric

stereo method for computing surface normals (and potentially shape-from-shading tech-

niques) inaccurate. The simple fundamentals of themethod and its usability remain attrac-

tive, however. Additionally, the wavelength of incident illumination has as an additional,

significant effect on the quality of estimate of the surface normals. These contributing fac-

tors lead us to wonder what information about this disassociation can be retrieved from the

original image to tailor a surface normal estimation and correct for any of its inaccuracies.

Therefore, as a continuation of our findings, we have developed a procedure for taking

multispectral (red, green, blue) photometric surface normals calculated for a translucent

object and inferring both the ground truth normals and the scattering and absorption (re-

flectance) coefficients. This idea developed from the observation that the photometric

normals estimates tended towards greater accuracy with shorter wavelengths of light.

This suggests that, given the proper constraints, the solution can be pushed towards the

limit case - ground truth normals - while incidentally estimating the reflectance coefficients

that led to each successive estimate.
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4.1 Prior Work

There has been significant work on estimating the shape of translucent objects, as we

explored earlier in the empirical study. There as also been extensive work on estimating

the subsurface scattering properties of translucent objects. Despite this, we believe that

the small acquisition overhead that our method would requires makes our approach more

lightweight.

A significant amount of previous research has relied on more explicit methods for ac-

quisition of the scattering and absorption coefficients that dictate subsurface scattering

behavior. For example, Jensen et al. [29], Goesele et al. [19] and Weyrich et al. [46] use

lasers and a custom contact-measurement device, respectively, to discretely sample the

subsurface diffusion profile of translucent objects. In a similar fashion, Ghosh et al. [16]

and Peers et al. [41] employ high frequency illumination patterns to sample the subsurface

diffusion at various points on the surface of objects. Any of these approaches can be hin-

dered by surface mesogeometry that disrupts the reading of the diffusion profile. Rather

than work around geometric features, our approach incorporates them in the refinement

towards the final estimation of reflectance parameters in the optimization. Our approach

also does not require high frequency illumination, only requiring the original, directional

lighting already used in the photometric stereo process.

Not all previous research has required high-frequency lighting. Donner et al. [14] indi-

rectly estimate the concentration of chromophores in skin frommultispectral observations,

but the approach is limited to skin. Zhu et al. [50] relate surface curvature to dipole pa-

rameters, but require a complex gantry for lighting and photography, which is more than

the setup or data that we require and acquire using photometric stereo.

In our solution, we prioritize minimization of input to the system and prior knowledge

about the material of the object surface at hand. We jointly refine both the initial, inaccu-

rate estimation of surface normal values for a translucent object and the parameters that

dictate this particular material's degree of translucency, namely α′ and ld.

43



4.2 Background

In the discussion of the BSSRDF in Chapter 2, we present the model for multiple scatter-

ing, Eq. 2.9. It incorporates the Fresnel transmission terms (incident and exitant) and the

function for diffuse reflectance of subsurface light transport. These terms are modulated

by the energy-conserving constant, 1
π . This equation can be used in describing outgoing

radiance but 2.9 is not, on its own, a model for calculating outgoing radiance.

By incorporating L, the incident irradiance term, and foreshortening (the dot-product

between the incident lighting direction ωi and the surface normal at that point, nxi , we can

then integrate over all incident lighting directions and area on the surface, A to arrive at

a formal expression of outgoing radiance emanating from a translucent object in Eq. 4.1.

This is described in more detail in Jensen et al. [29].

L(xo, ωo) =
1

π

∫
A
Ft((ωi · nxi), η)Rd(||xi − xo||)Ft((ωo · nxo), η)L(ωi)(ωi · nxi)dxi. (4.1)

The diffusion approximation function, Rd, can be substituted with any appropriate

model. In reference to our empirical study, the dipole approximation from Jensen et al.

[29] is an appropriate choice for homogeneous applications. However, a more recent for-

mulation of a BSSRDF diffusion function, based on the dipole model, is the photon beam

diffusion model by Habel et al. [21], which is more robust to non-planar surfaces and

oblique illumination angles. Recall that a good diffusion function will take into account α

and ld, the main translucency parameters. Again, the value of α is tied to the magnitude of

the peak of the BSSRDF kernel, and the magnitude of ld is approximately proportional to

the width of the kernel. Therefore, appearance of observed radiance, the image observed

by a camera or our eyes is highly dependent on the settings of these parameters.

Indeed, from our previous work, we have seen that the BSSRDF can also be con-

sidered a ``blur'' on what the photometric stereo result would be for the same surface
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Figure 4.1: The predominant signal that is convolved by the blurring effect of subsurface scat-
tering, is incident irradiance and its interaction with the surface normal at the point of incidence,
xi. Thus, outgoing Fresnel transmission at the point xo can be considered independently of the
blurring operation.

orientation but with Lambertian reflectance. It is a blur, in fact, on incident irradiance.

Thus, from Eq. 4.1, we can pull out the effect of outgoing Fresnel transmittance from this

blurring, rewriting the equation (for incident lighting direction ωi) as such :

L′
ωi

= Rdωi
∗ Iωi (4.2)

with L′ representing outgoing radiance divided by outgoing Fresnel transmittance, and I

the product between the foreshortening factor and incident Fresnel transmittance. This is

illustrated in Fig. 4.1, as one can see that the diffusion is a blurring centered around the

point of incidence and not strongly tied to the point of exitance.

Recall, also, the formulation of the observed radiance for general multiple scattering.

In Eq. 3.5, we have derived observed radiance for translucent materials in terms of a

convolution of the ground truth normal with the diffusion approximation formulated as a

kernel. If there were no impact of Fresnel transmission (i.e. Ft = 1.0), then essentially,

each blurred normal, n̂, is the result of the operation shown in Eq. 4.3, a convolution

between the diffuse BSSRDF Rd and the ground truth normal, n:
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n̂ ∼ Rd ∗ n. (4.3)

Given this formulation, a deconvolution should retrieve the original, ground truth normal.

Of course, any deconvolution is ill-posed and can never fully retrieve the original, unadul-

terated input. Also, there is generally a non-trivial contribution of Fresnel transmittance.

Even an approximation of the ground truth signal, however, would be an improvement on

the blur.

Hence, in this experiment, we perform a blind deconvolution on the set of question-

able surface normals, to recover the ground truth. Moreover, as we progress through the

blind deconvolution, which we formulate as an iterative, preconditioned conjugate gradi-

ent method, we can not only acquire a better estimate of the surface normals but also

simultaneously refine the translucency parameters and refine them, determining which

values give us the ``blurred'' normals with which we began. However, we choose to re-

cover not α, but α′ = σ′
s

σs+σa
because σ′

s = σs(1 − g), thus giving us further control over

the directionality of scattering in the refinement of the estimation. The process then be-

comes a joint optimization, simultaneously and alternately recovering the parameters of

translucency and the ground truth normals.

Since we already use photometric normals as input, we do not have to perform a sep-

arate shape-estimation step like many other approaches. This is, in fact, the entirety of

the set of geometric information that must be acquired for the entire joint optimization pro-

cess. The RGB surface normals to refine, along with the observed radiance images, and

initial estimates for the translucency parameters, are the input to the optimization. Recall

also, from our previous study, that the results of photometric stereo on translucent ob-

jects are wavelength dependent. This means that we should always take care to exploit

this progression of detail that is revealed with illumination by increasingly shorter wave-

lengths. Closely inspect Fig. 4.2 and notice the fine creases of the hand that become

more visible as shorter wavlengths, towards ultraviolet, light are used. For this reason,

46



Figure 4.2: Results of photometric stereo computed from images of a hand illuminated in infrared,
red, green, blue, and ultraviolet light.

we consider our algorithm in both per-channel and multi-channel variations, across the

visible electromagnetic spectrum.

4.3 Project Overview

From the output of photometric stereo (normalized surface normals), we can initialize the

joint optimization for acquiring both the estimated ground truth surface normals and the

reflectance parameters for the particular material that comprises the object. The general

procedure is to deblur the irradiance calculated from the input, estimate the reflectance

parameters for computation of the dipole model for subsurface diffusion, re-estimate the

surface normals, and compare regenerated irradiance images to the original, deblurred

irradiance images in a least squares fashion. It is this comparison that propels the joint

optimization towards further refined normals and reflectance parameters. The following

section describes the process in more detail.
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Algorithm

Overall, the procedure is a joint optimization, which begins with input of the originally es-

timated photometric normals for each wavelength (R,G, and B.) The following procedure

forms the basis of the optimization, wherein the L2 norm between the observed radiance

images and re-computed radiance images (incorporating the current translucency param-

eter estimates) is minimized.

As part of the input, we have several (at least three) observed radiance images. Given

these images, L, the optimization searches for settings of the translucency parameters,

α and ld that produces a diffusion kernel that, when convolved with the product of a given

estimated normal map and lighting directions D, results in the observed radiance. It also

simultaneously produces an improved estimate of the ground truth surface normals. The

optimization used is the Hooke and Jeeves [26] method, chosen because it is not neces-

sary to calculate the derivative of the gradient of the system at any point; the ``function''

itself is nonlinear and the search space unconstrained. Thus, this pattern-matching opti-

mization technique is a good option.

Estimate Irradiance Images The initial aim is to recover irradiance images from the

original observed radiance images. Initially, outgoing Fresnel transmission is removed

from the observed radiance images, L. Because Rd is an effective blur on the incident

irradiance and foreshortening factor, it has no effect on outgoing Fresnel transmittance.

In other words, Eq. 4.1 becomes:

L(xo, ω⃗o) ≈
Ft((ωo · nxo), η)

π
(ωi ·

∫
A
Rd(||xi − xo||)Ft((ωi · nxi), η)(ωi · nxi)dxi), (4.4)

so Ft((ωo · nxo), η) can be divided from each value in L. This is done in keeping with the

fact that for L′, outgoing radiance divided by outgoing Fresnel transmission, L′ = Rd ∗ I,

and we wish to recover the parameters that produce Rd.

Deblur Irradiance At this point, we have estimates for α and ld. Next, the algorithm
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progresses, using α and ld to form Rd, from which L is deconvolved, or ``deblurred.'' In

this experiment, we use the photon beam diffusion method of Habel et al. [21] as the

BSSRDF model. The deconvolution is performed using the preconditioned conjugate

gradient (PCG) method. This gives an estimate of the deblurred irradiance, I.

Estimate Surface Normals Here, a running approximation of the surface normals

n̂ is computed. The algorithm computes n̂ through not only photometric stereo but also

a non-linear optimization (again, Hooke and Jeeves [26]), so as to mitigate the ingrained

effect of incident Fresnel transmission. Returned with the estimated normals is the nor-

malization factor, ρ, the albedo.

Blur with Estimated Translucency Parameters Subsequently, a running estimate

of the observed radiance, Lest is computed from a re-blurring of n̂ with a kernel built with

the current estimates for α and ld, then by multiplying by outgoing Fresnel transmission,

and finally taking the dot-product with the lighting directions in D. Consequently, the al-

gorithm can compute the root mean square (RMS) error, ||L − Lest||2. This error is the

overall metric that determines the fitness of the currently-estimated translucency param-

eters (which also implicates the value of the currently-estimated ground-truth normals.)

The process repeats until the solution converges.

There are two driving factors in the above, joint optimization, which is also outlined in

Fig. 4.3, a flow chart of the algorithm. One factor consists of the differences in irradiance

estimates that naturally fall out of having estimated irradiance from constantly-changing

reflectance parameters σa and σs, per light source. The other key contributor is the fluc-

tuation of ρ throughout the optimization, which, as it achieves values closer to 1, would

suggest an increasingly ``Lambertian-like'' estimated irradiance, and thus, an approxi-

mate ground truth estimate for the surface normals. Interestingly, the magnitude of this

normalization factor is proportional to the level of accuracy of the current estimate of the

translucency parameters themselves. To verify the accuracy of the current estimate in a

way that is agnostic of noise, however, we compare the computed radiance images from

the lighting directions and the current parameters to the observed radiance images.
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Divide observed radiance
images, L, by outgoing
Ft to estimate irradiance

images, I.

Deconvolve Rd from I
with estimates of
α and ld, using

preconditioned conjugate
gradient method.

Compute surface
normals, n, using
photometric stereo

optimized with Hooke
and Jeeves method.

Compute Lest from n. Using
current estimates for
α and ld, build Rd

and blur Lest.
Compute ||L− Lest||2.

Figure 4.3: A flow chart of the ground truth surface normal and translucency parameter estimation
algorithm. Overall, the error metric, ||L−Lest||2, is minimized via the Hooke and Jeeves method.

To further drive the solution towards a minimum, the optimization can incorporate

the radiance calculations simultaneously, per color-channel, in the search space for a

minimum. Light interaction with the material at hand differs, per color-channel, and not

always in a deterministic way due to unforeseen material and chemical structure of the

underlying material. Therefore, each channel will produce slightly different results for the

estimated, recovered normals and thus the original translucency parameters.

Overall, the deblurring process requires themost time in this pipeline. Evenwith CUDA

implementation for theGPU, and a target deblurring region of 80 x 80 pixels, the estimation

takes 1-2 hours. For each color channel, c, the final result will take c times as long, as

we obtain an estimate per color channel separately, then recombine them in a final, multi-

channel joint optimization.

We also wish to see how well the estimation can work, given real ground truth data

of an objects with the same surface normals, but each with either opaque or translucent

characteristics. Thus, we built a capture system to verify results of the optimization.
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Acquisition

It is non-trivial to find a pair of objects with exactly the same structure but comprised of

different materials, one opaque and one translucent. So for validation purposes, we can

sometimes build our own complementary pair. For instance, we use an opaque mold

for the opaque object, and cast a translucent version out of soap, using the mold, for its

translucent counterpart. This result is incorporated into our later results.

Calibration for real data requires a multi-pronged approach. As with photometric

stereo before, we use a Spectralon sphere to calibrate for the light source directions,

given the fact that we know the surface normals for a sphere. We must also calibrate

for absolute radiance of the samples - in other words, because all light sources are not

placed exactly equidistant with respect to each other and to the target object. Therefore,

we must compensate for differences in light source power among all of the images, and

for power fall-off within a given image. To do this, we divide each image of the target

object by the respective image of a Spectralon plane.

Data acquisition for this project proceeds similarly to that of the empirical study. Through-

out this pipeline, normals are estimated via photometric stereo. We try to ensure that the

region of interest on the target object is globally planar to minimize error introduced by

shadows, interreflections, and radiance falloff. Of course, we are interested in objects

with microgeometric aberrations. Therefore, we place the plane of our target object per-

pendicular to the view direction of the camera. We then ensure that the camera is cross-

polarized with respect to each flash and the target object to eliminate effects of specularity

and single scattering. We then proceed with photometric stereo.

From here, we proceed with the traditional photometric stereo capture setup from

the first study, in which we mount a DSLR camera (Nikon D700) among four, roughly

equidistant light sources aimed at the target object. Then, radiance images are captured

for each object, from which the surface normals can be calculated using the acquired

lighting directions.
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4.4 Results

Our results consist of running the algorithm on several captured translucent materials with

varied surface mesostructure and comparing the results to known parameters for α and

ld as well as to the ground truth normals (if known.) We also have results of a simulation

in which we apply translucent parameters to surface normals and try to retrieve what we

know to be the ground truth.

Fig. 4.4 shows a sample output of the algorithm, an estimation of the ground truth

normals captured from a sample of scored, pink soap. Because soap is a mold-able

material, we were able to first capture the ground truth normals of a diffusemold, then pour

the molten soap on the mold, and calculated the result for the (inverted) translucent soap

on the same geometry. We can see the per-channel original output of photometric stereo,

followed by the per-channel refinement by the algorithm. One can see the improvement

towards shorter wavelengths that penetrate the translucent material less, and thus scatter

shorter distances below the surface. The result for the blue channel itself, Fig. 4.4(h) rivals

that of the multi-channel optimization, Fig. 4.4(e). The last row shows the complementary

result of the algorithm, the estimated BSSRDF scattering profiles from the estimates for

α and ld.

Noise, amplified by successive deconvolutions, becomes problematic in estimating

the parameters and contributes to the error in estimation. One can easily see the amplified

noise in the red channel estimation (f) of Fig. 4.5. Employing the multi-channel approach

to estimation enables the algorithm to mitigate some of this noise because the signal can

be regularized across all channels, resulting in a better estimate. Still, a degree of noise

persists. Because it is usually difficult to make molds of desired translucent objects, most

of our tests did not have the benefit of ground truth normals against which to compare

results. There are, however, readily available measured parameters for ld and α, acquired

in a laboratory setting, against which we can compare results for other materials.

In Table 4.1, we see the estimated translucency parameters for a range of materials

52



Jo
in
tO

pt
im

iz
at
io
n

G
ro
un

d
Tr
ut
h

Ph
ot
og

ra
ph

Red Green Blue

Bl
ur
re
d

Si
ng

le
C
ha

nn
el

O
pt
im

iz
at
io
n

BS
SR

D
F
Pr
of
ile
s

(a)

(e)

(i)

(j) (k) (l)

(b) (c) (d)

(f) (g) (h)

40 0 4

Single Channel Optimization
Joint Optimization

Ground Truth

0 4
1e-06

1e-05

0.0001

0.001

0.01

Figure 4.4: (a) Ground truth surface normals captured directly from the mold used to cast the
normal variation on the pink soap material (i). (b-d) Naively applying photometric stereo directly
on the observations yields blurred normals. (f-g) Result from our method computed on each
channel seperately. (e) Result from joint optimization on all color channels simultaneously. (j-l)
Corresponding ground truth and recovered BSSRDF profiles.

for which we also estimated the ground truth surface normals. The mean free path, ld,

is more difficult to estimate than the scattering albedo, α. The amount of error incurred,

however, has little effect on the overall scattering profile shape.

4.5 Discussion & Limitations

The overarching limitation of our method is that it is only applicable to globally planar

surfaces. Significant curvature to the surface would result in a deformed scattering kernel,

thus creating spatial variance in the effect of subsurface scattering on outgoing radiance,

per surface normal. Our model is robust to slightly curved surfaces, however, and an

interesting further trajectory would be to stress-test the system to determine the tolerance-
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Figure 4.5: Result for Cheddar Cheese (i). For this example, no ground truth normals are avail-
able. (b-d) Naively applying photometric stereo directly on the observations yields blurred nor-
mals. (f-g) Result from our method computed on each channel seperately. (e) Result from joint
optimization on all color channels simultaneously. (j-l) Corresponding ground truth and recovered
BSSRDF profiles.

level of the optimization in terms of surface curvature.

As in our first project, we use cross-polarized images to isolate multiple scattering in

the observed radiance images. This is imperfect for translucent materials that have a

more structural medium. This would be problematic for translucent crystalline materials

such as a block of sugar, and in fact, the complex geometric network of the material would

probably disrupt diffusion too much to use these types of materials as input.

The results of this system are promising, and we believe that we could incorporate a

more advanced deconvolution algorithm in the future to improve further on these results.

Ideally, we would be able to mitigate better the amplification of noise from successive

deconvolutions. We look forward to broadening the capability of this optimization process.
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Table 4.1: BSSRDF parameters estimated using the joint multi-channel deconvolution versus
ground truth parameters.

Material Parameter R G B

Pink Soap

est. α 0.999 0.991 0.991
g.t. α 0.999 0.992 0.987
est. ld 0.333 0.284 0.235
g.t. ld 0.288 0.221 0.207

White Soap

est. α 0.999 0.998 0.991
g.t. α 0.999 0.999 0.998
est. ld 0.302 0.223 0.156
g.t. ld 0.309 0.219 0.179

Cheddar Cheese

est. α 0.999 0.968 0.790
g.t. α 0.999 0.977 0.875
est. ld 0.329 0.289 0.168
g.t. ld 0.431 0.414 0.305

Potato

est. α 0.967 0.997 0.967
g.t. α 0.999 0.996 0.956
est. ld 1.027 1.057 1.037
g.t. ld 1.029 0.947 1.025

4.6 Conclusion

All subsurface light transport data is inherently encoded in a photograph of a translucent

object. Of course, this proliferation of light interactions is so complex, and so disruptive

to the relationship between the incoming and outgoing irradiance and radiance positions

that it is difficult to tease useful data from such a photograph. In this work, we have made

progress in recognizing the effect of subsurface light transport on image-based surface

normal calculations - effectively a blur on ground truth normals. By applying the typical

inverse of a blurring operation, a deconvolution, we have both acquired a better estimate

of the surface normals of a translucent object and a description of the blur itself. We hope

that this algorithm can be further tested in the future for its robustness to curved surfaces

and varying degrees of surface roughness. We look forward to fully describing the power

of this method in the near future.
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Chapter 5

Image-Based Microgeometry

Manipulation

There is a great deal of potential for replicating three-dimensional effects through extract-

ing reflectance and shape information from a single image of an object. In the case of

estimating shape information, the results of photometric stereo and shape-from-shading

(SfS) algorithms are highly dependent on the subject at hand. The material, the degree

of translucency, and the surface mesostructure all contribute to the overall appearance

of the object. Taken as this confluence of complicated, light-based interactions, we ask:

how can we generalize the reflectance in a photograph, as-is, and use it to make image-

based modifications to the surface mesostructure of an object? What are the challenging

cases, and how can we mitigate these challenges for both a photo-realistic result and

an enjoyable experience for the user? To explore these questions, we have constructed

a system, a user-interactive interface for editing the surface mesostructure of an input

object that automatically updates the reflectance in the original photograph.
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5.1 Prior Work

Image-based shape editing is a growing research area. In one vein, the challenge of

editing the shape of an object given limited information has been formulated in terms of

two-dimensional textures. In the work of Fang and Hart [15] a texture on a surface is

deformed when a user identifies source and target curves for the surface. The operation

only occurs in image-space, however, and so does not serve to alter per-pixel surface ori-

entation of the object in the image. Kautz et al. [31] have addressed shape-editing from

the angle of the bidirectional texture function (BTF), a six-dimensional spatially-varying

function for describing a texture from various view and illumination angles. However, the

BTF-approach is generally too involved for photographic image-editing, in which surface

mesogeometry ought to be plausible, but accuracy is not strictly necessary at the micro-

geometric level. Others, such as Wu et al. [49] allow the user to perform edits at the fine,

normal-level, but this project consists predominantly of refining only a normal estimation

itself, considered to be poor. It does not do this in view of further appearance editing,

and thus is itself too complex a process for our needs. In our approach, we would rather

avoid the overhead of rigorously designing an explicit model such as a BTF and, instead,

implicitly solve for the full hemisphere of values.

Another growing area for investigation are methods for editing reflectance using only

image-based approaches, an attractive strategy that also avoids lengthy or impossible

data acquisition in a laboratory environment. While Khan et al. [32] achieve promising

results of edited materials from a single image, the edited reflectance is still limited to

usage on the original geometry of the input material. Similarly, White and Forsyth [47]

are limited to editing the reflectance of white or off-white objects in video frames. The

artistic approach to applying a particular reflectance is to use a "lit sphere" approach in the

vein of Sloan et al. [44], wherein the reflectance effects are encoded in a fully-described

sphere for later application to drawn or rendered objects in the future. Continuing this idea,

Zubiaga et al. [51] recreate the lit sphere for non-photorealistic objects for the transfer of
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appearance. Sloan et al. and Zubiaga et al. do not account for shadowing as we do, and

the latter work must have a full sphere of reflectance information from which to begin.

We have found particularly inspiring the work of Cabral et al. [7]. They present the idea

of a reflected radiance map - a sampling of the hemisphere of possible exitant radiance

responses to a particular lighting configuration, for a particular BRDF. They estimate the

reflected radiance map for use in rendering the appearance of a novel object. They do

not, however, account for real-world photographs as input or for complex BRDFs. To the

best of our knowledge, no one has developed a system that will simultaneously estimate

reflected radiance for a particular BRDF from real scenes and allow the editing of surface

geometry.

The idea of appearance transfer, however, has been of increasing interest in graphics.

An important milestone in appearance transfer is the work of Hertzmann et al. is "image

analogies" [23]. Through their algorithm using paired reference images as a rule for ap-

pearance transfer, they achieve texture synthesis by example, but the resultant textures

can be thought of as more like global, mesogeometry filters that achieve certain artistic

effects. Each effect is taken from and applied to an image in a strictly two-dimensional

sense; whereas we are interested in three-dimensional shape so that we may photo-

realistically edit it and then transfer appearance. Similarly, Ramanarayan et al. [43] seek

a visual equivalence metric in for identifying cases in which simpler illumination or geom-

etry than that which was input may be used instead to achieve a desired effect. From

the textural standpoint, Diamanti et al. [11] use exemplars to transfer appearance. This

algorithm suffers in quality from cases of pattern-repetition, however. Our material-based

approach maintains a smooth gradient regardless. We approach this project with appear-

ance transfer in mind but require it to function in the context of real, naturally-lit objects

and the materials from which they are composed.

Lastly, machine-learning/training-based techniques are currently used to solve similar

problems in appearance transfer. The idea is that, given enough machine- or human-

annotated input, the algorithmwill ``learn'' relations between images. In the work of Laffont
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et al. [33], outdoor scenes can appear to change time of day or climate. In Glondu et

al. [17], fracture-patterns are learned and applied to arbitrary objects to show wear. With

these techniques and others like them in the area of machine-learning, the pre-processing

or offline overhead is usually steep. Keeping in mind that we want our users to be able

to, on a whim, import an image for editing, significant pre-processing time will not do.

Thus, we have weighed what we would consider to be a tolerable online workload against

convenience.

5.2 Background

This project differs from both of the previous projects discussed in a fundamental way.

Thus far, we have seen projects that hold measurement accuracy as the priority, both from

empirical and practical standpoints. Given what we have learned from these studies about

the strong tie between appearance and microgeometry, we are interested in creating a

framework whereby a user can input a photograph of an object in a real-world environment

and an estimate of its surface normals, make edits to the microgeometry of the object,

and let the system make the corresponding change to the object's reflectance. The heart

of this project is grounded in the fact that, in most cases, all of the information required

for further editing of surface orientation is already incorporated into the photograph of the

scene.

Our approach is based on the editing of reflected radiancemaps. Highlighted in Cabral

et al. [7], a reflected radiance map is considered to be the complement to a traditional, in-

cident radiance map, in which the hemisphere of incident light in a scene is reconstructed.

The reflected radiance map is the hemisphere of responses to this incident radiance for

a particular material, for one possible orientation of the hemisphere of directions.

In other words, one can consider a reflected radiance map to be the convolution of the

traditional, irradiance map with the BRDF of a material. To illustrate this, picture an object,

such as the mug in Fig. 5.1, made of a homogeneous material that possesses a certain
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Figure 5.1: Mug illuminated with distant light. Image courtesy: [8].

degree of geometric aberration on its surface, placed in a well-lit environment. One could

sample the reflected radiance for the material that comprises that object, at each known

surface orientation point. With only a subset of samples, it would be feasible to interpolate

for unknown values of radiance and to be able to solve for the entire reflected radiance

map. From here, an interested user could then execute image editing operations that alter

the known geometry of the object's surface and accordingly update the radiance through

a look-up system of the reflected radiance map. This accessibility to known reflectance,

with incorporated illumination, has motivated the image editing tool that we have created.

This is not a simple problem, as real-world environments present numerous chal-

lenges to appearance editing. The problem quickly becomes non-trivial for realistic ex-

amples of both the environment (irradiance) map and the BRDF. In the style of Cabral et

al. [7], we assume distant lighting in the scene so as to generalize the relationship be-

tween a particular value for the resultant radiance map with a particular normal direction

anywhere it is identified. This makes the problem tractable but also heavily constrains the

types of objects for which the approach is initially valid. Any target object in the scene that

exhibits shadowing or interreflections either from itself or surrounding objects becomes

challenging, as the underlying BRDF may, in fact, be homogeneous but be immediately

unrecognizable as such in the presence of these phenomena.

Extracting information from a photograph requires careful consideration of the inter-

actions between materials and illumination. Teasing apart the relative contributions of re-
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flectance and illumination is a severely under-constrained problem. To understand what is

at play in a photographed scene, we consider both reflectance, environment illumination,

and their combined effect.

Irradiance Environment Maps

Each surface point of an object illuminated in a photograph incorporates incident irradi-

ance information from all visible angles at that surface point. An irradiance environment

map is essentially a comprehensive description of the illumination emanating from all an-

gles, incident to a point on a surface. In a photograph, irradiance E can be calculated

as:

E =

∫
Ω
L(xi, ωi)(ωi · nxi)dωi, (5.1)

where L is the incident lighting at point xi from direction ωi; and nxi is the direction of the

surface orientation at the point xi. This product is integrated among every direction over

the sphere of directions, Ω.

An environment map is usually captured by taking two photographs of a specular

globe and composing the photos to create a 360-degree depiction of the irradiance in-

cident at that point in the scene. Depending on the lighting distribution, this signal can

range in frequencies, adding to the potential complexity of the observed reflectance in the

scene. Fig. 5.2 is an example of a rather high-frequency irradiance environment map (or

``light probe'') [9]. This environment map can be used as a distant illumination source,

surrounding a scene from the simple to the complex.

Understanding the concept of an irradiance map is helpful in understanding what is

seen in a typical photograph of an object - the reflectance of both the incoming illumination

in all of its complexity, combined with the reflectance of the object material itself. It is a

difficult problem in computer graphics to tease apart material reflectance and illumination.

What happens when the object in the scene is adjusted, its structure altered or rotated?
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Figure 5.2: Example of a captured irradiance environment map [9].

At any given point, both its shading and its modulation by illumination will potentially be

changed completely. For this reason, we are motivated to investigate the editing of sur-

face normals in the context of a target object with illumination ``baked in'' to its material

reflectance.

Reflected Radiance

As complex as incident irradiance illumination can be, the object itself reflect light in a

complex way, depending on its BRDF and geometric properties. Our tool focuses on the

editing of a target object in a photograph. Any edits to the object's surface geometry will

affects it reflectance at those points, which in turn is a convolution between reflectance

and the incident irradiance. Hence, observed radiance Lo at a point on the surface of an

object is:

Lo = α

∫
Ω
fr(ωi, ωo)L(xi, ωi)(ωi · nxi)dωi, (5.2)
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where α is the surface albedo and fr(ωi, ωo) is the bidirectional reflectance distribution

function (BRDF), which is the ratio of reflected radiance (in direction ωo) to incident irra-

diance (in direction ωi) at that point on the surface.

Comparing Eq. 5.2 with Eq. 5.1 again emphasizes that what results in a calculation

of outoing radiance is a convolution of the BRDF with the lighting factor. From one pho-

tograph alone, it is extremely difficult to automatically determine what reflectance values

are due to surface reflectance and what result from incident lighting. If a full description

of either of these values is provided, they can be separated. Typically, however, we do

not have access to explicit descriptions of either BRDF or lighting. It is more convenient

to be able to work with the reflectance convolved and as-is. Our system for editing re-

flected radiance works within this construct, that it is not worth the pre-processing effort

of separating illumination, and still generates a photo-realistic result. Next, we discuss

our solution for harnessing reflected radiance for image-based, surface mesostructure

editing.

5.3 System Overview

The goal of this user-interactive system is to enable the user to make mesostructure edits

to the surface of a target object in a photograph, as if the user is manipulating the texture

of the surface in three-dimensions. For ease-of-use, we also prioritized limiting the input

to the system. The operation is effectively that of a stamp, one that perturbs the under-

lying surface normals locally but maintains the global object shape. Depending on the

``stamps'' activated in the system, the user can make any number of edits to the surface

mesostructure of the object.

Our main assumptions about the input to the system are twofold. First, we assume

that there is a photograph of a target object to be edited, illuminated by approximately

distant illumination, and that a mask has been applied to isolate the target object in the

image. Practically speaking, the photograph is probably a scene of an object in a well-lit
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room or outdoors in diffuse light. We will refer to this image as the ``target image.'' The

second assumption is that there is a way to obtain a decent approximation of the object's

surface normals. It must be the case that either an image with pixel-to-pixel correspon-

dence, encoding the surface normals, is included along with the target image, or that the

illumination conditions of this target image permit the usage of the SfS technique in Barron

et al. [2] to estimate the surface normals from the photograph. When photometric stereo

data is not available as input, the system incorporates the SfS technique of Barron et al.

to estimate surface normals. We chose this method for its robustness to heterogeneous

materials. In either case, we encode each of the three-dimensional components of the

surface normals as an RGB-value (x → R, y → G, z → B) to facilitate extraction of this

information. Given these two images, the system refines them for eventual extraction of

reflected radiance information.

Image Pre-processing

Again, assuming that there is a per-pixel correspondence between the pixels of the target

image and that of the surface normals, the system imports the images and processes them

further. When working with photographs, haloing effects caused by spherical aberration

can hallucinate nonzero pixel values for which there is no surface normal measurement.

Anticipating this as a potential effect, the system first erodes the edges of the target object

and surface normals using the OpenCV library ``erode'' function [6], and an example of

this operation is shown in Fig. 5.3. From this, we can be sure that only valid pixels are

considered for reuse in an image-based edit.

Binning

Following this pre-processing stage, the system then collects a series of information that

culminates in the re-organization of the pixels into a latitude-longitude (lat-long), two-

dimensional format, in which 0° ≤ θ ≤ 180° and 0° ≤ ϕ < 360°, and each of these
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Figure 5.3: Left: Example of a rendered, glossy sphere input, which had been masked with the
computed normals; however, hallucinated pixels remain around the rim. Right: Improved input,
the edge of which has been eroded to remove the halo around the rim. Rendering: Mitsuba [28].

positions represents the surface normal value from the sphere of possible directions. For

any given photograph of a target object, we will see roughly a hemisphere of normal val-

ues represented because the field of view of the camera will only be able to capture a

hemisphere of three-dimensional directions, more or less. This, of course, depends on

the angle of view of the camera lens. Each of these discretized ``bins'' may represent one,

many, or zero reflected radiance values depending on the shape of the object at hand.

It is important to track all of the values attributed to each surface direction and, likewise,

to all of the pixel locations on the target image that map to each lat-long value for later

usage by the the algorithm for reflected radiance replacement later in the system.

Hole-filling

At this point in the system, we have all of the observed, reflected radiance collated by

location. It is likely that not all of the possible directions on the hemisphere have been

observed, so there will be ``holes'' to take into account in case the editing operating shifts

any normal values to these locations on the hemisphere. Because of this, we employ an

interpolation scheme based on Delaunay triangulation.

For each missing value in the discretized, lat-long map of radiance values per normal

position, the value is projected onto the unit sphere and located with respect to the nearest
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three, known reflectance values. These values form the outer points of a triangle that is

then subdivided into three sub-triangles that share the missing point. The interpolated

value of this missing point, the centroid, c, is then calculated as the weighted sum of the

values of the three, outer points. Finally, the centroid is projected onto the unit sphere,

by the following metric, to determine to which hemisphere it should be projected:

1. Calculate the center of mass of all points in three-dimensional space, m.

2. Calculate the following two dot products, a and b, given the surface normal, n at

each point p:

a = (n · c)

b = (n ·m)

3. If a and b are both positive or both negative, do not change the sign of c.

Otherwise, c = −c.

This subdivision-projection scheme was chosen to approximate the spherical distribution

of radiance incoming towards the target object. The center of mass is not necessarily

on the unit sphere of points, hence this point needs to be reprojected to conform to the

spherical distribution. This process is repeated based on a preset tolerance level for

a side-length of a triangle. Once all sides are shorter than this length, the process is

terminated. A visualization of this process is shown as a series of ``inflated'' convex hulls

in Fig. 5.4.

The weight of each contribution is proportional to the ratio of the area of the sub-

triangle that coincides with the missing point, to the area of the full triangle. Since it would

be physically impossible to edit a normal to face the rear of the hemisphere of values and

enable it to be visible, only the hemisphere of values is necessary. A before-and-after set

of images depicting the reflected radiance map is shown in Fig. 5.5. From this point, the

user can proceed to interact with the system, making edits with the application's tools.
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Figure 5.4: Progression of reflected radiance map ``inflation'' depicted as a convex hull generated
from surface normal points input to the system. The inflation begins with the original input (left)
and iterates, subdividing triangles and projecting points to the hull, to arrive at the final inflation
(right.) Rendering: Blender [5].

Editing

As the user interacts with the system, he or she has the opportunity to perturb themesostruc-

ture of the surface of the target object by applying functions that effectively stamp the sur-

face of the object. The user can select a quadrilateral region of the surface which is then

warped to mimic a three-dimensional application of a similar tool, using a homography.

The homography warps the borders of the selection box according to the average normal

direction of the underlying surface. Then, the user has a number of stamps to choose

from, including: blur, randomized normals, sharpening, waves with alternating vertical

pitches, squared bumps, and a dimple, a selection of which is shown in Fig. 5.6.

Figure 5.5: Left: Original natural image input; Top-Right: Original collected reflectance radiance
map for hemisphere (green plastic ball). Bottom-Right: Interpolated result to which novel surface
normal directions can be attributed.
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Figure 5.6: Examples of stamps (depicted as surface normals encoded in RGB) in the system:
waves, bumps, random (within a hemisphere of angles), and a concave dimple, respectively. (Not
pictured but also available: blurring and sharpening.)

Reflectance Look-up

After the user applies the stamp, the system automatically processes the warped bound-

aries of the selected region and rotates the underlying normals, one by one. To preserve

the underlying mesostructure of the surface and yet perturb the surface according to the

stamp, a quaternion rotation is built that composes the initial rotation of the normal (rotated

from the canonical direction) with the desired rotation dictated by the stamp. This step is

critical to the photo-realism of the result. Finally, the system updates the reflectance in

this region by searching for each of the warped normals in the reflected radiance map.

When the system initially collects the original set of observed, reflected radiance val-

ues on the target object, these values represent a direct sampling of the interaction be-

tween the global illumination in the scene and the material that comprises our target ob-

ject. In other words, some or all of the multi-bounce, indirect lighting and interreflectance

illumination in the scene is factored into the visible reflected radiance at each point. There-

fore, it is prudent to try to quantify this complex, secondary contribution of reflectance.

Consider the example of wanting to edit a cube comprised of a homogeneousmaterial,

with moderate gloss to its finish. This glossiness, paired with the lighting in the scene

(however distant it might be), will create variation in reflectance across the surface of the

cube. Now, imagine that there is a multitude of objects also in the scene with the target

cube. The contribution of multiple bounces of light, reflecting off of these objects and back

onto the cube will further confound the heterogeneity of reflectance across the surface.
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For one surface normal at a location on a face of the cube, its reflectance might vary,

because of this global illumination contribution, from a different portion of that face that

points in the same direction. Which color should a pixel be that, once edited, takes on the

value of this normal? Hence, we created a global illumination scale factor to compensate

for this difference.

Global Illumination Correction

The scale factor typifies the average contribution of global illumination for this particular

surface normal direction. Once we have the collated lists of surface normal directions

and image locations to which they map, we take the average pixel value of each color-

channel for all of these image locations, per normal. For each valid pixel that could be

edited, this factor is calculated by dividing from the original pixel value this average RGB

value for all matching normals, and it is recorded for later use. Upon editing,the value at

the image position of the current pixel being edited is divided by the scale factor for this

position; then the scale factor of the pixel value that is closest, in Euclidean distance, will

be multiplied at the current position.

The editing of the normals may result in new normals that have either been observed

originally in the target image or for which the system has interpolated values. To update

the reflectance of the edited region, the system conducts a look-up of the normal: if there

has only been one observation of a radiance value for this normal direction, the value

is copied in; however, if multiple candidate values exist for this direction, the value for

which its image location is closest, in Euclidean distance, to the image location of the

current pixel is chosen. Finally, the global illumination correction factor is multiplied to the

reflectance at this pixel location, as previously detailed. The system proceeds until the

entire region is updated, and finally the border of the edited region is feathered in using

Laplacian blending.

Fig. 5.7 shows screenshots of the editing application. It first presents the user with the
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normals of the object that she wishes to edit (top) After the user selects a drawing tool

and clicks and drags to select a region on the image, a pop-up menu gives her options

for the operation to perform on the underlying surface normals. If she chooses the stamp

option (middle), then an additional sub-menu appears (bottom), giving the user the option

of the type of stamp to apply. Then the system takes over, processing the edit as defined

above, and the user can access the result as an image of the edited natural image, in a

pre-defined location.

5.4 Results

The results of using our editing application reveal encompassing of many material-types

and shapes as input. The benefit of considering reflectance in terms of the fully intertwined

material and illumination is that, barring sharp geometric discontinuities and interreflec-

tions, the system is tolerant of a range of specularity. Here, we show examples of edits

produced through the input of both simulated and real photographs.

The benefit of this tool is that it permits a stamping-action in a physically plausbile

way. Applying an editing tool to an image of an object with highly varying surface geome-

try produces realistic results. In Fig. 5.8, the wave stamp is applied to the right portion of

a simulated object, over the edge of the ``window'' and around the side of the sphere-like

portion. The stamp successfully appears to curve around the corner. There is aliasing

in the image, which can be attributed to the heavy shadowing present in the collected,

reflected radiance; yet the edit is fairly robust. The high-frequency shadowing is most ap-

parent in the interpolated reflected radiance map, seen in Fig 5.9. Varied geometry varies

the shading across the surface, thereby presenting many possible candidate reflectance

values to one normal. However, the candidate values closet in Euclidean distance are

chosen. High-frequency shadows remain one weakness of the system, as evidenced by

the aliasing.

Yet another interesting result is the velveteen bag, shown in Fig. 5.10. There is com-
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plex shading, especially along the crimped neck of the bag. The dimple stamp creates

a believable depression in the body of the bag, as well as on the crimped region, in the

lower-left. The lower-right image also shows the dimple stamp applied but without the

global illumination scaling factor applied. Without it, shadowing from competing surface

normals in more shadowed regions of the bag dominates where it should not, defeating

illumination consistency.

Subtle texture, along with preservation of overall surface variation can be captured

in the edited region. For instance, in Fig. 5.11, the weave of the cotton is maintained

through the application of the bump-stamp, in the top-right image. Furthermore, both

effects, in combination, present themselves in the application of the same stamp but on

the more ridge-like region of the object (lower-left image.) Without assigning importance

to individual surface normal inforation for meso-structure level edits, this detail would be

lost.

Relatively severe deformations are also possible, as depicted in Fig. 5.12. This glossy

peapod exhibits specularity, depth discontinutiy (at the edge where the pea and the pod

meet), and highly varying surface normals. When the dimple stamp is applied to the

surface of this object, it not only creates a believable, hemispherical depression in the

object, but it also takes into account the depth-edge and its associated shadowing.

On more specular input, such as the aluminum in Fig. 5.13, the editor's dimple stamp

also produces a convincing edit to the natural image. The convex depression of the stamp

contains a highlight due to the new orientation of the surface at that point. The edit does,

however, reveal noise. This is due to the face that the new normals have not been ob-

served in the input image. High frequency input, like the shiny object at hand, does not

interpolate as smoothly as a more diffuse object would, with the same geometry.

These results demonstrate a flexible underlying system that produces strong results

even when the application is presented with a variety of textures and glossiness as in-

put. As long as the input does not exhibit significant regions of self-shadowing or contain

interreflecting heterogeneous regions or other objects, the result is photorealistic.

71



5.5 Discussion & Limitations

For this work, we aremotivated by increased interest in computer-aided editing of photore-

alistic environments. In undertaking this problem ourselves, we recognize the importance

of maintaining photorealistic fidelity yet facilitating ample user-exploration. Given that this

system only mimics three-dimensionality, it is a simulation of real data, by default. How-

ever, we provide tools that function within realistic constraints of this simulation, namely,

that the visible, edited surface normals cannot inherit values that extend beyond the angle

of view of the camera.

It follows that he more surface normals the object contains, the better range of angular

information there is of both the object's material and the irradiance environment map.

In the worst case scenario, the object is completely flat, exhibiting one surface normal

value. This would obviously be a pointless seed for the interpolated reflected radiance

map. Even cubes are a poor starting point. The quality of the system's result is highly

dependent on the angular complexity of the input.

On the other hand, if the object exhibits too good of an angular sampling of the ir-

radiance map - in other words, if it is highly specular - then this variance would make

ambiguous the relationship between surface orientation and the final reflected radiance

value. This is especially a problem if multiple (completely disparate) radiance values map

to the same surface normal. The problem worsens as object shape becomes less com-

plex, yet is very specular.

The system also suffers in the presence of input that contains high-frequency shadow-

ing or overt interreflectance. This is because the scaling term that we apply to compensate

for shadows only serves to correct for slowly varying change in luminance. Otherwise, a

stark change in reflectance is assumed to be either part of the heterogeneous material

of the object or the non-uniformity of the distant lighting. Currently, it is the responsibility

of the user to recognize when a target object is exhibiting any of these conditions and to

expect that the system has already attempted to incorporate these phenomena into the
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interpolated reflected radiance map. Therefore, certain edits will incorporate inaccurate

reflectance information.

The realism of the results is also only as accurate as the estimation of the surface

normals, of course. As one can see in Fig. 5.14, the blue bag, in fact, has a fold or ridge

towards the top. It is a depth discontinuity, and the negligible shading difference along it

is not strong enough to be detected by the photometric stereo algorithm. Consequently,

it is a region in which the opportunity to withdraw reflectance information is lost, whether

or not the user realizes it. This system has great potential for continued development,

integrating compensation techniques for more challenging or more arbitrary input.

5.6 Conclusion

We have demonstrated our system, an image-based editor that mimics three-dimensional

manipulation of surface mesostructure. It enables a user, even a novice graphic artist,

to apply surface normal perturbation ``stamps'' to alter the surface texture of an object

in a photograph. Our system is robust to diffuse, glossy, and moderately shadowed tar-

get objects. We have not yet incorporated the ability to import highly complex scenes,

crowding the target object and forcing significant interreflectance. With the system's con-

tinued use, we expect to gain feedback for the most useful direction to take for potential

improvements.

A desired follow-up study to this investigation is establishing the per-normal relation-

ship between two different materials under the same illumination. In other words, a pow-

erful addition to the tool would be a swapping mechanism by which the user could edit

multiple objects in the same scene and have the ability to swapmaterials between objects.

The difficulty is in avoiding shadowed and interreflected regions while trying to establish

the transfer function. This study would be a promising future project, based on this editing

application.

73



Figure 5.7: Screenshots of the editing application. Top: initial editing window, on which the user
selects a region to edit. Middle: Editing tool pop-up menu. Bottom: The stamping sub-menu.
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Figure 5.8: Top-Left: Surface normals of rendered, diffuse object. Top-Right: Object illuminated
by environment map. Bottom-Left: Original input. Bottom-Right Object stamped with waves,
which bend around the corner. Rendering: Mitsuba [28].

Figure 5.9: Interpolated reflected radiance map for the brown, diffuse object. Note the black
spots scattered throughout, due to the high-frequency shadowing introduced by the object's self-
shadowing geometry.
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Figure 5.10: Top-Left: Original input of a velveteen bag, inset is a close-up of the original crimped
region. Top-Right: Dimple stamp applied to flat portion of input, causing an apparent impression
in the surface. Bottom-Left: Dimple stamp also applied to crimp in the bag neck. Notice how the
crimping is preserved underneath. Bottom-Right: Dimple applied to the same region on the crimp,
this time without global illumination scaling factor. Notice the excessive shadowing introduced.

Figure 5.11: Top-Left: Original input of a pink, cotton sock. Top-Right: Bump stamp applied to
flat portion of input, causing apparent bumps in the surface. Bottom: Bump stamp also applied to
ridge of sock.

Figure 5.12: Left: Original input of a glossy peapod figure. Right: Dimple stamp applied to input.
Notice that the depth-edge is included in the depression, as well as the shadowing associated with
such a discontinuity.
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Figure 5.13: Left: Original input of crumpled ball of aluminum. Right: Dimple stamp applied to
input. Notice that the underlying, complex geometry is still preserved.

Figure 5.14: The blue bag exhibits a fold or ridge (left) that is not detected in the normals (right.)
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Chapter 6

Conclusion

In this dissertation, we have investigated, from multiple directions, the distinct impact that

surface normals have on an object's appearance. We present experiments and tools that

reveal the seemingly subtle properties that can actually have an impressive effect on sur-

face orientation measurement and appearance. Sometimes these parameters can even

convince the viewer that certain textural properties are inherent to an object's material.

Refining and perturbing these parameters can be done through both the manipulation of

the factors that dictate an material's translucency, or alternatively, manipulation of its

surface normals.

These three projects - the empirical study of photometric stereo, subsequent surface

normal refinement, and the reflected radiance appearance editor - underscore the depth

of information encoded in photographs. Because our visual system can tolerate slight in-

accuracies in appearance estimation and yet can also be extremely critical about appear-

ance, the tolerance-level of an object's digitized appearance depends on the desired ap-

plication. Perhaps the illusion of translucency is actually desired. Perhaps the application

only requires an estimate of the general shape of an object, and neither microgeometric-

nor mesostructural-level accuracy is necessary.

The digitized world is only as realistic as our methods of rendering it, and there is a

wealth of ways in which we can do so. We have to choose wisely and take into account
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what information we can extract about the properties of objects of interest. Future work

in broadening how important surface normal measurement and mesostructural perturba-

tions are to many morealgorithms and assumptions, is an exciting opportunity. We hope

to continue projects in this area, especially stemming from the latter two projects, push-

ing these experiments to the limit. For the surface-normal refinement: how curved of a

surface is really tolerable for recovering ground truth normals? For the mesostructure

editor: how can we transfer appearance, still keeping in mind that unknown reflectance in

certain directions must be inferred? The three-dimensional world of infinitesimal shapes

and their appearances is captured in photographs, locked within. This information is ours

for the taking.
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