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Abstract

We present a novel method to estimate an approximation of the reflectance characteristics of optically thick, ho-
mogeneous translucent materials using only a single photograph as input. First, we approximate the diffusion
profile as a linear combination of piecewise constant functions, an approach that enables a linear system mini-
mization and maximizes robustness in the presence of suboptimal input data inferred from the image. We then fit
to a smoother monotonically decreasing model, ensuring continuity on its first derivative. We show the feasibility
of our approach and validate it in controlled environments, comparing well against physical measurements from
previous works. Next, we explore the performance of our method in uncontrolled scenarios, where neither lighting
nor geometry are known. We show that these can be roughly approximated from the corresponding image by mak-
ing two simple assumptions: that the object is lit by a distant light source and that it is globally convex, allowing
us to capture the visual appearance of the photographed material. Compared with previous works, our technique
offers an attractive balance between visual accuracy and ease of use, allowing its use in a wide range of sce-
narios including off-the-shelf, single images, thus extending the current repertoire of real-world data acquisition
techniques.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture—Reflectance I.3.3 [Computer Graphics]: Picture/Image Generation—Display Algo-
rithms I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Shading

1. Introduction

Rendering algorithms have evolved considerably over the
past decades, which in turn has motivated new acquisition
methods of reflectance data from real-world objects. While
this is still an active area of research [WLL∗08,GJJD09], the
ability to estimate the reflectance characteristics of materials
from a single image remains a considerable challenge. Given
sparse photographic input, it is impossible to infer the exact
geometry and lighting captured in a photograph, which are
necessary for an accurate capture. Thus, additional hardware
and multiple images are usually employed to obtain that in-
formation.

In this work, we present a method to obtain an approxima-
tion of the Bidirectional Subsurface Scattering Reflectance
Distribution Function (BSSRDF) of translucent, homoge-
neous objects from a single image, based on the diffusion ap-
proximation [JMLH01]. Under unknown lighting conditions
and assuming no previous knowledge of the scene, this is a
very ill-posed problem, which makes it impossible to recover

the exact BSSRDF. Our goal is to devise a simple image-
based capture algorithm which yields a physically plausible
function that captures the appearance of the material and can
be used for rendering. Figures 1, 9 and 10 show some of our
results.

Our algorithm is robust and captures accurate BSSRDFs
under controlled conditions, compared against physically
measured data. We test its robustness in uncontrolled envi-
ronments, where neither the lighting nor the geometry in the
image are known. To approximate these, we extend existing
techniques to the more difficult case of translucent materials.
We show that even in the presence of such suboptimal input,
our estimated BSSRDF succeeds at capturing the visual ap-
pearance of such materials.

2. Previous Work

A wide range of methods for measuring reflectance prop-
erties from real-world samples exists. These typically use
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Figure 1: Starting with a single image, and without any other prior information, we capture an approximation of the subsurface
scattering properties of objects with varying degrees of translucency. Then, we use the estimated BSSRDFs to render objects
made of similar materials. From left to right: grape, orange soap and wax. The source photos are shown in the insets.

specialized equipment such as a gonioreflectometer and/or
photographic input obtained over a range of known view-
ing and lighting directions, e.g. [LKG∗03, ST06]. Single
image approaches that require prior knowledge about the
shape of the object have also been developed [BG01]. These
methods usually aim at capturing a representation of the
BRDF of opaque objects; we refer the reader to the excel-
lent existing literature for a more comprehensive descrip-
tion [DRS07, WLL∗08].

Capturing and modeling the BSSRDF of translucent ma-
terials is a harder problem that generally requires the use of
special measuring setups and long capture sessions (see for
instance [JMLH01, GLL∗04, WMP∗06]). Camera-projector
systems have also been used to measure reflectance of small
material samples [PvBM∗06, TGL∗06]. More recent ap-
proaches aim to capture BSSRDF models using more prac-
tical camera equipment. Donner and colleagues [DWd∗08]
use multi-spectral images to measure skin reflectance, re-
quiring samples to be taken in front of their capture setup.
Another approach exploits cross-polarization photography
and uses 20 photographs from a single viewpoint to acquire
a layered reflectance model of skin [GHP∗08]. The final ex-
ample in this kind of approaches requires sampling a cube
of the material to be captured, constraining the position of
the camera and light source [WZT∗08]. Other alternative ap-
proaches aim to separate the subsurface scattering compo-
nent of objects in an image, either by adding a set of diffuse
priors [WT06] or using high-frequency patterns of illumina-
tion in a set of images [NKGR06]. No specific reflectance
model parameters are estimated, and thus using the results
in a different context remains an open problem. The recently
published SubEdit system [STPP09] includes the possibility
of hallucinating a BSSRDF from two inputs: a single pho-
tograph under fixed lighting, plus previously acquired data
from one or more different BSSRDFs. The user assigns scat-
tering profiles from the measured data set to representative
points in the image, and the effect is propagated across the
surface. Our approach does not require the user to mark cor-
responding scattering functions and does not require the use
of previously measured data. The Lit Sphere user-guided ap-

pearance transfer approach [SMGG01] transfers shading in-
formation from an image of a lit sphere to a complex object.
In contrast to our work, this approach requires user interac-
tion and would not allow relighting of the original material.
It is also unclear how such approximation could be extended
for translucent materials.

Recently, there have been two works that focus on esti-
mating translucency properties from single images [MSY09,
MMTG09]. Both propose methods that approximate scatter-
ing properties of objects under controlled settings, based on
the dipole approximation. In contrast to our approach, they
require the 3D location of the camera, the lighting configu-
ration of the scene and the geometry of the target object to
be known a-priori. Additionally, the method by Mukaigawa
et al. [MSY09] require the use of manually-rotated polariz-
ing filters and light-absorbing black sheets during the cap-
ture. As acknowledged in their paper, their approach is quite
unstable despite this dedicated hardware; this limits the ap-
plicability of the method, as their reduced set of results sug-
gests.

3. BSSRDF Estimation

Our BSSRDF estimation is based on the diffusion approx-
imation [JMLH01] and is performed in two steps. First,
the diffusion profile is expressed as a linear combination
of piecewise constant basis functions, resulting in a linear
system that can be efficiently solved applying the Quasi-
Minimal Residual method [BBC∗94]. This increases the ro-
bustness of the method in the presence of suboptimal input
derived from our ill-posed, uncontrolled scenarios. The sec-
ond step performs a smoothing over the profile, eliminat-
ing discontinuities on the first derivative and ensuring phys-
ical plausibility. A reasonable option for the algorithm de-
sign would be a single-step non-linear optimization. How-
ever, our preliminary tests [MMTG09] show that due to the
ill-posed and underconstrained nature of the problem, this
usually reaches local minima, yielding no plausible results.

In this section we introduce our approach for controlled
environments, where both the geometry and the main light
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direction in the scene are known. This allows us to demon-
strate the validity of our BSSRDF estimation algorithm.
Next, we extend our method in Section 4 for the ill-posed
case of single images, showing how to leverage rough esti-
mates of both shape and light direction.

3.1. Algorithm

We take as input a photo of a translucent object. As we aim
to capture subtle reflectance variations, we avoid quantized
data by using the RGBE high dynamic range format. Given
an alpha matte O of the object in the image, we first dis-
card pixels representing highlights by simply assuming that
the minimum of the derivative of the histogram of the input
image indicates the start of the highlight [KRFB06]. This
defines I⊆O as the set of object pixels from which we will
estimate subsurface light transport information†. We subse-
quently minimize the effect of indirect lighting by finding
the pixel in O with the lowest luminance, and subtracting
that value from the pixels in I. These simple operations help
increase the accuracy of the input data.

Our BSSRDF estimation process leverages the fact that
within optically thick materials, single scattering effects
are negligible [JB02]. Light distribution can be considered
isotropic and thus we can expect the dipole diffusion approx-
imation to hold. This allows us to express multiple subsur-
face scattering as:

L(xout ,ωout)=
1
π

Ft(η ,ωout)
∫

A
Rd(‖xout−xin‖)E(xin)dA(xin)

(1)

where L(xout ,ωout) refers to the outgoing radiance at a spe-
cific point xout in a specific direction ωout , Ft(η ,ω) is the
Fresnel transmission coefficient and η represents the relative
index of refraction. Rd(‖xout − xin‖) is called the diffuse re-
flectance function, and depends on the distance between the
incident and outgoing points and the properties of the cor-
responding translucent material (e.g. absorption coefficient,
scattering coefficient, albedo or phase function). E(xin) is
the irradiance at a given point on the surface, expressed as:

E(xin) =
∫

Ω

Ft(η ,ωin)L(xin,ωin)|nin ·ωin|dωin (2)

where L(xin,ωin) represents incident radiance from direction
ωin. Given that we have roughly eliminated highlights and
indirect illumination from the object matte, we assume that
the outgoing radiance is mainly due to subsurface scattering.
So the pixel values in I are taken as a good estimator for the
radiance L in Equation 1.

The two terms in Equations 1 and 2 that define the prop-
erties of the translucent material are the index of refraction

† Alternatively, the user can manually define a more specific suit-
able region. All the results shown in this paper, however, have been
computed with our default definition of I

η and the diffuse reflectance function Rd(‖xout − xin‖). We
use a standard value of η = 1.3 [XGL∗07,WZT∗08]. Conse-
quently, the only unknown in our model is Rd(‖xout − xin‖).
Different formulations for this function have been previ-
ously proposed. Note that our method is independent of the
specific definition of this function. From Equation 2, and
assuming directional light sources, we build the front ir-
radiance map E, similar to the Translucent Shadow Maps
technique [DS03]. Different from TSM, we also define the
back irradiance map Eb, in order to approximate the whole
light transport through the object. Notice that this is just a
separation of the surface, and that this information is not
present (but approximated) from the photograph. The irra-
diance maps are defined per color channel in RGB space,
and our algorithm is applied to each channel independently.

Figure 2: Definition of some of the parameters used in our
algorithm.

Assuming an orthogonal projection, the view vector c for
each point p is c = (0,0,1). Considering ωout = c in Equa-
tion 1, this yields Li = L(pi,c) for each pixel in I. Therefore
we can now express Equation 1 in terms of depth, surface
normals, camera and irradiance maps as follows:

Li =
1
π

Ft(η ,c) ∑
j∈O

(
Rd(r)E j∆A+Rd(rb)Eb, j∆Ab

)
(3)

where Li represents the color of a pixel, ∆A = |c ·ni|−1 is a
factor related to the screen-space projection of the area of
the object in a single pixel (similarly for ∆Ab), and r and rb
represent Euclidean distances in 3D space from point pi on
the front of the object to points p j and pb, j (see Figure 2).

Approximating the diffuse reflectance function: The
only unknown in Equation 3 is the diffuse reflectance func-
tion Rd , which defines the properties of a translucent ma-
terial. As we have seen before, standard minimization-
optimization algorithms could be used to estimate it. How-
ever such algorithms would be very time consuming, would
require defining a specific model for the Rd function and
might not converge to a plausible solution.

We thus opt for an efficient, robust two-step method. We
first approximate Rd by a linear combination of a set of ba-
sis functions. This linear combination enables us to apply
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Piecewise constant Piecewise linear [MSY09] Zero-mean gaussian Hermite polynomials Legendre polynomials
Number of functions 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

Estimation time 24 s 31 s 37 s 32 s 45 s 59 s 10 m 20 m 31 m 86 s - - 91 s 198 s 14 m
Condition number 2.9 ·103 2.2 ·104 5.9 ·104 1.6 ·104 1.9 ·106 6.3 ·106 1.7 ·107 7.4 ·107 2.3 ·108 1.9 ·1012 - - 4.6 ·107 2.1 ·109 1.9 ·1010

Error 1.13 0.69 0.86 2.70 1.86 5.24 134.23 356.84 1708.74 3.47 - - 5.23 5.41 4.85

Table 1: Results from our basis functions tests for the skull made of whole milk material [JMLH01] from Figure 3. For an
increasing number of basis functions, the table shows estimation time, condition number of the matrices and error of the
resulting diffusion profile (defined as

∫ 1
0
[
Rd(r)−∑

m
h=1 ŵhBh(r)

]2 dr, where Rd is the original diffusion profile). For more than
20 Hermite polynomials the system does not converge. For piecewise linear representation, the first row refers to the number of
points of the piecewise linear representation.

Equation 3 for each pixel i ∈ I. We first rewrite Equation 3
as:

Li = ∑
j∈O

(
K jRd(r)+Kb, jRd(rb)

)
(4)

where K j = π−1Ft(η ,c)E j∆A (with a similar definition for
Kb, j). Next, we estimate Rd by a linear combination of m
basis functions:

Rd(r)≈
m

∑
h=1

ŵhBh(r) (5)

where Bh(r) represents the basis functions (discussed at the
end of this section) and ŵh are the weights assigned to each
basis function. Equation 4 now yields:

Li = ∑
j∈O

(
K j

m

∑
h=1

ŵhBh(r)+Kb, j

m

∑
h=1

ŵhBh(rb)

)
(6)

This equation applies to every pixel i ∈ I, so the com-
plexity of this algorithm is O(p2) (where p is the number
of pixels of the image). However, we have found that down-
scaling I to a resolution of around 200x200 (preserving the
aspect ratio of the input image) yields valid approximations
for Rd while greatly reducing computation times. Applying
the equation to each pixel of the scaled I we get a linear sys-
tem defined by the matrix product A ·X = B, for n pixels and
m basis functions, with:

aih = ∑
j∈O

(
K jBh(r)+Kb, jBh(rb)

)
(7)

XT
m×1 =

(
ŵ1 ŵ2 ... ŵm

)
(8)

BT
n×1 =

(
L1 L2 ... Ln

)
(9)

Resolution method: To solve the equivalent system
(AT A)X = (AT B) we note that some columns in A may
contain values close to zero. This leads to a highly ill-
conditioned matrix, while the related basis functions have
negligible influence in the final solution. We thus set the
associated weights ŵh to 0 and remove the corresponding
columns from A. Although this approximation reduces the
condition number, the system is still ill-conditioned; we im-
prove it further by using a Jacobi pre-conditioner for (AT A),
and solve the system using the Quasi-Minimal Residual
(QMR) method [BBC∗94].

Basis functions: In order to choose an appropriate set
of basis functions, we rendered translucent objects using
measured materials [JMLH01]: in their work, the authors
obtain scattering parameters by illuminating the surface of
a translucent sample with focused white light and photo-
graph it using a 3-CCD video camera. We then used the
resulting renderings along with known geometry and light-
ing as input to approximate their diffusion profiles test-
ing different options: uniformly distributed piecewise con-
stant functions, zero-mean gaussians (inspired by the work
of d’Eon et al [dLE07]), Hermite and Legendre polyno-
mials. Another option that has been previously used to
represent diffusion profiles are piecewise linear polynomi-
als [XGL∗07, MSY09]. To be able include them in our
tests we use the more recent formulation by Mukaigawa et
al [MSY09].

Zero-mean gaussian functions, Hermite and Legendre
polynomials show high condition numbers, thus leading to
unstable linear systems (see Table 1). Hermite polynomials
do not even converge for 20 basis functions or more, while
gaussian functions show very high errors. On the other hand,
the condition number of piecewise linear functions [MSY09]
is two orders of magnitude higher, and the error between
two and six times larger than piecewise constant functions,
which show the best overall behavior while being the fastest
to compute. We thus choose to represent diffusion profiles
with these basis functions in the first step of our algorithm.
A good compromise between detail in the estimation and
system stability is reached by using between 20 and 30 basis
functions.

This difference between the stability of piecewise con-
stant functions and the other presented options becomes very
relevant in the case of inaccurate inputs, which is always
the case when generalizing to uncontrolled single images
(see Section 4). We found that, in those cases, more unsta-
ble bases such as Legendre polynomials or piecewise linear
functions lead to higher condition numbers and the QMR
method does not often converge to a solution.

Smoothing: In our second step, we fit this piecewise con-
stant profile to a continuous, differentiable, monotonically
decreasing function. This helps to eliminate noise and avoid
discontinuities in the renderings, while keeping the function
physically plausible. Our algorithm does not impose a par-
ticular model for this function, although the logical option
would be to fit both scattering and absorption of the dipole
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Reduced albedo Reduced extinction (mm−1)
[JMLH01] Estimated Error [JMLH01] Estimated Error

R G B R G B R G B R G B R G B R G B
Apple 0.9987 0.9986 0.9772 0.9969 0.9985 0.9686 0.18% 0.01% 0.88% 2.2930 2.3934 2.0160 2.2428 2.3216 2.0202 2.19% 3.00% 0.21%
Cream 1.0000 0.9995 0.9949 1.0000 1.0000 0.9967 0.00% 0.05% 0.18% 7.3802 5.4728 3.1663 7.4580 5.9233 3.4267 1.05% 8.23% 8.22%
Marble 0.9990 0.9984 0.9976 1.0000 1.0000 1.0000 0.10% 0.16% 0.24% 2.1921 2.6241 3.0071 2.3543 2.7351 3.0359 7.40% 4.23% 0.96%
Potato 0.9965 0.9873 0.8209 1.0000 0.9999 0.9145 0.35% 1.27% 11.40% 0.6824 0.7090 0.6700 0.6690 0.6806 0.5651 1.97% 4.00% 15.65%
Skim milk 0.9980 0.9980 0.9926 0.9898 1.0000 0.9981 0.82% 0.20% 0.56% 0.7014 1.2225 1.9142 0.6875 1.2602 1.8943 1.99% 3.08% 1.04%
Whole milk 0.9996 0.9993 0.9963 1.0000 1.0000 0.9818 0.04% 0.07% 1.46% 2.5511 3.2124 3.7840 2.4968 3.1725 3.7553 2.13% 1.24% 0.76%

Table 2: Comparison between the measured properties of several materials [JMLH01] and the estimated properties resulting
from our method, fitted to the dipole model.

model [JMLH01]. However, working with a single image, it
is not possible to deduce the physical size of the object nor
the power of the light source, both necessary to obtain the
corresponding dipole diffusion profile.

Thus, we propose a piecewise cubic polynomial R̂d(r) in-
stead, using Hermite interpolation. This model is generic
and not associated to any physically-based BSSRDF model,
which makes the method more flexible. The set of points and
derivatives of this function is obtained by using a Simulated
Annealing algorithm to minimize the following energy func-
tion:

E = wd

∫ 1

0

(
R̂d −

m

∑
h=1

ŵhBh

)2

dr+wp

∫ 1

0

(
R̂d
′)2

δ
R̂d
′
(
R+)dr+ws

∫ 1

0

(
R̂d
′′)2

dr

(10)

where δ represents the Dirac measure function and wd , wp
and ws represent the weights of each term (which we ex-
perimentally set to 1, 10 and 10−4, respectively). The first
term is related to the difference between the smoothed func-
tion and the linear combination; the second term preserves
the physical plausibility of the profile by penalizing positive
derivatives, and the third term preserves the smoothness of
the function. The dependencies on r have been omitted for
the sake of clarity.

Validation: In order to validate our BSSRDF estimation
algorithm independently of the accuracy of the input data,
we first test it under known geometry and lighting (which al-
lows us to use the dipole model): we again rendered objects
with different measured material parameters [JMLH01] and
then used the resulting images as input to our algorithm. To
derive reduced albedo and extinction coefficients and thus
provide an accurate numerical comparison, the estimated
piecewise constant diffusion profiles were fitted in this case
to the dipole model. Note that, as stated before, this fitting to
the dipole is not possible for uncontrolled environments, and
is introduced here for validation purposes only. For the rest
of the paper, we use the piecewise cubic polynomial previ-
ously introduced.

Table 2 compares our results with the original physically
measured data [JMLH01]; it can be seen how our method
yields very small residual error for most materials. As a re-
sult, both the profiles and the overall look of the images ren-
dered with them are very similar to the ground truth (see Fig-
ure 3). The differences are due to the coarse modeling of the
Rd function by a limited number of basis functions, given the
intrinsic trade-off between this number and the conditioning
of the linear system.
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Figure 3: Top two rows: Comparison between renderings
using physically measured materials [JMLH01] and our es-
timated diffusion profiles. Bottom row: Comparison of diffu-
sion profiles. Please refer to the supplementary material for
the whole set of profiles.

4. Estimation from Uncontrolled Single Images

We have demonstrated the suitability of our method in con-
trolled environments. In this section we extend our approach
to a much more challenging scenario: approximating dif-
fusion profiles from uncontrolled single images. This is a
heavily ill-posed problem, given that neither the light direc-
tion nor the geometry are known in this case. Therefore, in-
stead of trying to recover an exact physically-based BSS-
RDF (which is obviously impossible), we aim to estimate a
plausible representation that yields results similar to the ma-
terial depicted in the input image.

We leverage the findings by Fleming and col-
leagues [FB05], who conclude that humans do not
understand translucency through accurate inverse optics,
but instead perceive the overall look of translucent materials
based on simple image heuristics. This suggests that a
suitable approximation of both the shape of the object
and incident light direction may suffice for our purposes.
We extend the usability of existing techniques, originally
devised for opaque objects, and show that they can still
yield plausible results when complying with our initial
assumptions of global convexity and distant light sources.

Estimating shape: Estimating shape from a single im-
age of an opaque object is an under-constrained problem by
itself. Previous works, however, have shown how rough ap-
proximations can work well in the context of material edit-
ing [KRFB06] or the simulation of caustics [GSLM∗08]. We
note that this estimation is even harder if the object is translu-
cent, given the softening effects of subsurface scattering; we
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aim to find a similar approximation that works well for our
purposes.

We base our estimation on three sources of information:
pixels in the contour (which we assume to lie on the im-
age plane at Z=0), shading information across its surface
and the assumption of global convexity [LB00]. Inspired by
previous approaches [KRFB06, Joh02], we reconstruct the
depth map Z of an object as the weighted sum of a base
layer (which encodes global convexity) and a detail layer
(which encodes high frequency), both obtained by means of
the bilateral filter. We use values of σspatial ∈ [0.08..0.1] and
σintensity ∈ [0.3..0.5] for the bilateral filter, while the weights
for adding the base and detail layers are usually 0.8 and 0.2
respectively (thus favoring global convexity over details).
We rely on additional non-linear spline functions to reshape
the base layer and boost its apparent "inflation" [KRFB06].
Given the inherent bass-relief ambiguity, we reverse the re-
sulting signal if necessary to comply with our global convex-
ity assumption, which yields our final depth map Z. A nor-
mal map N is subsequently computed from Z. Additionally,
a back depth map Zb plus the corresponding back normal
map Nb are generated. We make the simplifying assumption
that the back of the object can be approximated by mirroring
Z. While this is a strong simplification to circumvent the fact
that we do not have information about the back portion of the
object in the image, this straightforward operation suffices to
produce good results when the object is not strongly illumi-
nated from its back side. In fact, note that the heart-shaped
soaps from Figure 10 and the mouse-shaped soap from Fig-
ure 1 are not symmetrical (their back face is plain) but still
yield plausible profiles.

It could be argued that a simpler depth-recovery technique
could be used instead, but in our experiments (which can be
found in the supplementary material‡ ) this approach showed
a good compromise between quality of the results and ease
of use. We nevertheless restrict our estimations to simple ge-
ometries in order to minimize the impact of this error on the
BSSRDF estimation, leaving the field of depth estimation
from complex translucent geometries still open for further
research. In the future, more accurate techniques could be
trivially included at this stage.

Estimating light direction: Several existing methods can
estimate light source directions from a single image, but usu-
ally at the expense of assuming some previous knowledge or
including a calibration object in the scene [ZY01, WS02].
In contrast, our goal is to obtain the dominant light direc-
tion starting with a single, off-the-shelf image, and thus we
cannot impose such restrictions to our inputs.

We apply the method recently proposed by Lopez-Moreno
et al. [LMHRG10], which performs a two-step analysis of
the luminance channel of an object: first, the pixels of the

‡ http://giga.cps.unizar.es/∼amunoz/projects/EG2011_bssrdf

contour O′ are clustered by a k-means algorithm to identify
the number of light sources in the scene, as well as their az-
imuth θi direction (in image-space) and relative intensities.
Second, zenith angles φi are approximated for each light di-
rection by analyzing gradients in the interior of the object.
The pair (θi,φi) defines the recovered 3D direction for each
light.

Note that the original light detection algorithm was de-
signed for opaque objects. In order to assess how well it ex-
tends to translucent objects, we tested it in controlled scenes
with incident lights at specific directions over different ob-
jects with varying degrees of translucency. In our tests with
different degrees of translucency, the error of the algorithm
was always less than 20◦, which has been found to be below
perceptual threshold [LMSSG10]. The complete test with
the different geometries, levels of translucency and light po-
sitions, plus another test of the behavior of the BSSRDF es-
timation algorithm when the input light directions are not
accurate, can be found in the supplementary material.

Size of the object: Automatic estimation of the actual size
of an object from a single photograph is not possible. Given
that the diffusion profile Rd is a function of distance, we use
a normalized unit distance equal to the width of the object
in the image, and distribute all the piecewise constant basis
functions in the range [0,1]. In order to change the relative
apparent size of the new rendered objects, it is possible to
scale the diffusion profile as follows [STPP09]:

R′d(r) =
1
s2 Rd(

r
s
) (11)

where s is the scaling factor and R′d is the scaled diffusion
profile. Figure 4 shows the effect of this scaling.

5. Results and Discussion

Figure 5 shows the complete validation of the whole
pipeline. We first rendered a heart-shaped object with three
different measured materials (potato, marble and apple). We
then used the rendered images as the only input to our al-
gorithm (no geometry nor lighting are known) and approxi-
mated the BSSRDF from them. Finally, we re-rendered the
same object with the resulting function. As it can be seen, the
estimated materials achieve a very good visual match when
compared to the original renderings.

We solve Equation 6 in 30-40 seconds on a Dual Opteron
@2.2 GHz with 4 GB of RAM, using between 20 and 30
basis functions for our representation. The smoothing step
takes around 20 additional seconds. The recovered BSSRDF
for the different materials can be directly used for render-
ing with no restrictions: for different geometries and under
different illumination conditions. Figures 1 and 10 show sev-
eral results for a wide range of translucent materials, includ-
ing wax, soap, milk, ketchup, orange juice, detergent, grape
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Figure 4: Relative sizes for the same material. Left: blue
soap from Figure 10. Right: grape from Figure 1

and human skin§. Our method works well even for extremely
complex materials like skin, although it obviously cannot re-
produce the subtleties of light transport in its multi-layered
structure. Note that the renderings include additional specu-
lar highlights (Phong model) not captured with our method.
The lighting in those figures has been set up to match the
source image for easy direct comparison: more results un-
der different lighting conditions and geometries can be seen
in Figure 9 or the supplementary video, and with different
relative sizes for the same material in Figure 4.

Figure 5: Validation of the whole algorithm. Top row: ren-
der of measured materials [JMLH01]. Bottom row: our re-
sulting estimations without any prior information. From left
to right: potato, marble and apple.

As the results show, our method is fairly robust to inac-
curate inputs, although it presents some limitations. In the
case of uncontrolled images, large errors in depth or light
estimations¶ may of course lead to larger errors in the re-
sults. We are, therefore, bound by the current state of the
art in depth and light approximation algorithms from single
images, which in practice means that the algorithm works
better with images showing simple, convex shapes lit from

§ Please refer to the supplementary material for higher-resolution
versions, along with the mattes, depth, recovered diffusion profiles
and light directions for each material.
¶ Examples can be found in the supplementary material
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Figure 6: Comparison between our estimated potato ma-
terial from Figure 5 and the source potato material
from [JMLH01]. Left column: Applying both materials to a
new geometry. Middle column: Applying both materials to
new geometry under new illumination conditions. Right col-
umn: Larger size of the geometry

one direction. Furthermore, our approximation of the geom-
etry of the back side prevents us from estimating the material
from objects that present a strong illumination from its back.

Our algorithm works only with the information that is
present in the source image. It is therefore expected to be
less accurate with sub-optimal input data when estimating
parts of the diffusion profile that are not represented in the
source image and thus sub-optimally represented in the cap-
tured profile. Figure 6 (top row) shows our captured potato
material from Figure 5 rendered over different geometry and
light directions; the bottom row depicts the equivalent re-
sults using the physically measured material [JMLH01] for
comparison purposes. Our algorithm, handles this lack of
information pretty well when geometry or lighting change
substantially from the original image. However, when the
size of the geometry changes, the final rendering may devi-
ate from the ground truth reference, as the render is access-
ing parts of the diffusion profile that were not represented
in the source image. Nevertheless, the resulting profile is
still plausible. Extreme scenarios in which the source image
does not contain enough translucency information (no no-
ticeable shading gradients, planar surfaces with no remark-
able features or strong back lighting) obviously translate into
ill-conditioned linear systems that lead to erroneous pro-
file estimations (which show as different gradients or even
color shifts). Figure 7, left, shows a small object with little
gradients. Conceptually, it only provides information about
the leftmost part of the diffusion profile. On the other hand,
Figure 7, right, presents an object illuminated from behind,
which only provides info about the rightmost part of the pro-
file. Both cases translate into numerical instability of the lin-
ear system and therefore lead to wrong captures.

Furthermore, by using the diffusion approximation, our
work assumes that objects are homogeneous and optically
thick, which is not the case for very small objects, or areas
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Figure 7: Examples of failure cases. Left: source apple ren-
dering input with poor subsurface scattering information
and its captured material. Right: source marble rendering
with strong backlight and its estimated material. The lack
of information on the image or breaking our initial assump-
tions may lead to wrong profiles, even in controlled setups.

that present sharp edges and high curvature surfaces. Violat-
ing these assumptions may lead again to wrong profiles, or
even make the QMR iterative method fail to converge.

Our method can also be potentially used in an image-
editing context, by transferring the captured profile in an im-
age object to another. By applying the same depth estimation
technique both to the source and target objects, a new depic-
tion of the latter can be created (see Figure 8). The main
drawback of the technique is the double depth estimation
process, which tends to accumulate larger errors in the final
result. We believe this is an interesting line of future work.

Figure 8: Example of our technique as an image-editing
tool. From left to right: original photograph, transfer of the
wax material from the candle to the owl, and transfer from
the purple wax in Figure 1 to the owl.

6. Conclusions

The approach presented in this work allows us to approx-
imate a representation of multiple subsurface scattering in
optically thick, homogeneous materials from a single image.
In the absence of any prior knowledge (geometry and light-
ing), we face an extremely ill-posed scenario, where a phys-
ically accurate solution is simply impossible to obtain. We
have shown how to overcome such scenario and still obtain
good results, offering an attractive balance between visual
accuracy and ease of use. Our acquired data can be directly
used for rendering, while also offering a potentially interest-
ing application as an image-editing tool.

Future research lines include the extension of our tech-
nique to heterogeneous materials or more complex BSSRDF
models. Our method will also benefit from future advances
in image-based light detection and depth extraction algo-
rithms. This will allow us to extend our results to more com-
plex objects in a wider range of scenarios. In any case, we

believe that the range of materials shown demonstrate the
current practicality of the method, and hope that the contri-
butions of this paper inspire new research in this and other
related areas.
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