10 research outputs found

    Probabilistic fuzzy logic framework in reinforcement learning for decision making

    Get PDF
    This dissertation focuses on the problem of uncertainty handling during learning by agents dealing in stochastic environments by means of reinforcement learning. Most previous investigations in reinforcement learning have proposed algorithms to deal with the learning performance issues but neglecting the uncertainty present in stochastic environments. Reinforcement learning is a valuable learning method when a system requires a selection of actions whose consequences emerge over long periods for which input-output data are not available. In most combinations of fuzzy systems with reinforcement learning, the environment is considered deterministic. However, for many cases, the consequence of an action may be uncertain or stochastic in nature. This work proposes a novel reinforcement learning approach combined with the universal function approximation capability of fuzzy systems within a probabilistic fuzzy logic theory framework, where the information from the environment is not interpreted in a deterministic way as in classic approaches but rather, in a statistical way that considers a probability distribution of long term consequences. The generalized probabilistic fuzzy reinforcement learning (GPFRL) method, presented in this dissertation, is a modified version of the actor-critic learning architecture where the learning is enhanced by the introduction of a probability measure into the learning structure where an incremental gradient descent weight- updating algorithm provides convergence. XXIABSTRACT Experiments were performed on simulated and real environments based on a travel planning spoken dialogue system. Experimental results provided evidence to support the following claims: first, the GPFRL have shown a robust performance when used in control optimization tasks. Second, its learning speed outperforms most of other similar methods. Third, GPFRL agents are feasible and promising for the design of adaptive behaviour robotics systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Probabilistic fuzzy logic framework in reinforcement learning for decision making

    Get PDF
    This dissertation focuses on the problem of uncertainty handling during learning by agents dealing in stochastic environments by means of reinforcement learning. Most previous investigations in reinforcement learning have proposed algorithms to deal with the learning performance issues but neglecting the uncertainty present in stochastic environments.Reinforcement learning is a valuable learning method when a system requires a selection of actions whose consequences emerge over long periods for which input-output data are not available. In most combinations of fuzzy systems with reinforcement learning, the environment is considered deterministic. However, for many cases, the consequence of an action may be uncertain or stochastic in nature. This work proposes a novel reinforcement learning approach combined with the universal function approximation capability of fuzzy systems within a probabilistic fuzzy logic theory framework, where the information from the environment is not interpreted in a deterministic way as in classic approaches but rather, in a statistical way that considers a probability distribution of long term consequences.The generalized probabilistic fuzzy reinforcement learning (GPFRL) method, presented in this dissertation, is a modified version of the actor-critic learning architecture where the learning is enhanced by the introduction of a probability measure into the learning structure where an incremental gradient descent weight- updating algorithm provides convergence.XXIABSTRACTExperiments were performed on simulated and real environments based on a travel planning spoken dialogue system. Experimental results provided evidence to support the following claims: first, the GPFRL have shown a robust performance when used in control optimization tasks. Second, its learning speed outperforms most of other similar methods. Third, GPFRL agents are feasible and promising for the design of adaptive behaviour robotics systems

    The 11th Conference of PhD Students in Computer Science

    Get PDF

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Interactive generation and learning of semantic-driven robot behaviors

    Get PDF
    The generation of adaptive and reflexive behavior is a challenging task in artificial intelligence and robotics. In this thesis, we develop a framework for knowledge representation, acquisition, and behavior generation that explicitly incorporates semantics, adaptive reasoning and knowledge revision. By using our model, semantic information can be exploited by traditional planning and decision making frameworks to generate empirically effective and adaptive robot behaviors, as well as to enable complex but natural human-robot interactions. In our work, we introduce a model of semantic mapping, we connect it with the notion of affordances, and we use those concepts to develop semantic-driven algorithms for knowledge acquisition, update, learning and robot behavior generation. In particular, we apply such models within existing planning and decision making frameworks to achieve semantic-driven and adaptive robot behaviors in a generic environment. On the one hand, this work generalizes existing semantic mapping models and extends them to include the notion of affordances. On the other hand, this work integrates semantic information within well-defined long-term planning and situated action frameworks to effectively generate adaptive robot behaviors. We validate our approach by evaluating it on a number of problems and robot tasks. In particular, we consider service robots deployed in interactive and social domains, such as offices and domestic environments. To this end, we also develop prototype applications that are useful for evaluation purposes

    Adaptive control of compliant robots with Reservoir Computing

    Get PDF
    In modern society, robots are increasingly used to handle dangerous, repetitive and/or heavy tasks with high precision. Because of the nature of the tasks, either being dangerous, high precision or simply repetitive, robots are usually constructed with high torque motors and sturdy materials, that makes them dangerous for humans to handle. In a car-manufacturing company, for example, a large cage is placed around the robot’s workspace that prevents humans from entering its vicinity. In the last few decades, efforts have been made to improve human-robot interaction. Often the movement of robots is characterized as not being smooth and clearly dividable into sub-movements. This makes their movement rather unpredictable for humans. So, there exists an opportunity to improve the motion generation of robots to enhance human-robot interaction. One interesting research direction is that of imitation learning. Here, human motions are recorded and demonstrated to the robot. Although the robot is able to reproduce such movements, it cannot be generalized to other situations. Therefore, a dynamical system approach is proposed where the recorded motions are embedded into the dynamics of the system. Shaping these nonlinear dynamics, according to recorded motions, allows for dynamical system to generalize beyond demonstration. As a result, the robot can generate motions of other situations not included in the recorded human demonstrations. In this dissertation, a Reservoir Computing approach is used to create a dynamical system in which such demonstrations are embedded. Reservoir Computing systems are Recurrent Neural Network-based approaches that are efficiently trained by considering only the training of the readout connections and retaining all other connections of such a network unchanged given their initial randomly chosen values. Although they have been used to embed periodic motions before, they were extended to embed discrete motions, or both. This work describes how such a motion pattern-generating system is built, investigates the nature of the underlying dynamics and evaluates their robustness in the face of perturbations. Additionally, a dynamical system approach to obstacle avoidance is proposed that is based on vector fields in the presence of repellers. This technique can be used to extend the motion abilities of the robot without need for changing the trained Motion Pattern Generator (MPG). Therefore, this approach can be applied in real-time on any system that generates a certain movement trajectory. Assume that the MPG system is implemented on an industrial robotic arm, similar to the ones used in a car factory. Even though the obstacle avoidance strategy presented is able to modify the generated motion of the robot’s gripper in such a way that it avoids obstacles, it does not guarantee that other parts of the robot cannot collide with a human. To prevent this, engineers have started to use advanced control algorithms that measure the amount of torque that is applied on the robot. This allows the robot to be aware of external perturbations. However, it turns out that, even with fast control loops, the adaptation to compensate for a sudden perturbation, is too slow to prevent high interaction forces. To reduce such forces, researchers started to use mechanical elements that are passively compliant (e.g., springs) and light-weight flexible materials to construct robots. Although such compliant robots are much safer and inherently energy efficient to use, their control becomes much harder. Most control approaches use model information about the robot (e.g., weight distribution and shape). However, when constructing a compliant robot it is hard to determine the dynamics of these materials. Therefore, a model-free adaptive control framework is proposed that assumes no prior knowledge about the robot. By interacting with the robot it learns an inverse robot model that is used as controller. The more it interacts, the better the control be- comes. Appropriately, this framework is called Inverse Modeling Adaptive (IMA) control framework. I have evaluated the IMA controller’s tracking ability on sev- eral tasks, investigating its model independence and stability. Furthermore, I have shown its fast learning ability and comparable performance to taskspecific designed controllers. Given both the MPG and IMA controllers, it is possible to improve the inter- actability of a compliant robot in a human-friendly environment. When the robot is to perform human-like motions for a large set of tasks, we need to demonstrate motion examples of all these tasks. However, biological research concerning the motion generation of animals and humans revealed that a limited set of motion patterns, called motion primitives, are modulated and combined to generate advanced motor/motion skills that humans and animals exhibit. Inspired by these interesting findings, I investigate if a single motion primitive indeed can be modulated to achieve a desired motion behavior. By some elementary experiments, where an MPG is controlled by an IMA controller, a proof of concept is presented. Furthermore, a general hierarchy is introduced that describes how a robot can be controlled in a biology-inspired manner. I also investigated how motion primitives can be combined to produce a desired motion. However, I was unable to get more advanced implementations to work. The results of some simple experiments are presented in the appendix. Another approach I investigated assumes that the primitives themselves are undefined. Instead, only a high-level description is given, which describes that every primitive on average should contribute equally, while still allowing for a single primitive to specialize in a part of the motion generation. Without defining the behavior of a primitive, only a set of untrained IMA controllers is used of which each will represent a single primitive. As a result of the high-level heuristic description, the task space is tiled into sub-regions in an unsupervised manner. Resulting in controllers that indeed represent a part of the motion generation. I have applied this Modular Architecture with Control Primitives (MACOP) on an inverse kinematic learning task and investigated the emerged primitives. Thanks to the tiling of the task space, it becomes possible to control redundant systems, because redundant solutions can be spread over several control primitives. Within each sub region of the task space, a specific control primitive is more accurate than in other regions allowing for the task complexity to be distributed over several less complex tasks. Finally, I extend the use of an IMA-controller, which is tracking controller, to the control of under-actuated systems. By using a sample-based planning algorithm it becomes possible to explore the system dynamics in which a path to a desired state can be planned. Afterwards, MACOP is used to incorporate feedback and to learn the necessary control commands corresponding to the planned state space trajectory, even if it contains errors. As a result, the under-actuated control of a cart pole system was achieved. Furthermore, I presented the concept of a simulation based control framework that allows the learning of the system dynamics, planning and feedback control iteratively and simultaneously

    Interactive Imitation Learning in Robotics: A Survey

    Full text link
    Interactive Imitation Learning (IIL) is a branch of Imitation Learning (IL) where human feedback is provided intermittently during robot execution allowing an online improvement of the robot's behavior. In recent years, IIL has increasingly started to carve out its own space as a promising data-driven alternative for solving complex robotic tasks. The advantages of IIL are its data-efficient, as the human feedback guides the robot directly towards an improved behavior, and its robustness, as the distribution mismatch between the teacher and learner trajectories is minimized by providing feedback directly over the learner's trajectories. Nevertheless, despite the opportunities that IIL presents, its terminology, structure, and applicability are not clear nor unified in the literature, slowing down its development and, therefore, the research of innovative formulations and discoveries. In this article, we attempt to facilitate research in IIL and lower entry barriers for new practitioners by providing a survey of the field that unifies and structures it. In addition, we aim to raise awareness of its potential, what has been accomplished and what are still open research questions. We organize the most relevant works in IIL in terms of human-robot interaction (i.e., types of feedback), interfaces (i.e., means of providing feedback), learning (i.e., models learned from feedback and function approximators), user experience (i.e., human perception about the learning process), applications, and benchmarks. Furthermore, we analyze similarities and differences between IIL and RL, providing a discussion on how the concepts offline, online, off-policy and on-policy learning should be transferred to IIL from the RL literature. We particularly focus on robotic applications in the real world and discuss their implications, limitations, and promising future areas of research

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore