
Probabilistic Fuzzy Logic Framework in
Reinforcement Learning for Decision

Making

WILLIAM HINOJOSA

School of Computing, Science and Engineering
University of Salford, Salford, UK

Submitted in Partial Fulfilment of the Requirements of the
Degree of Doctor of Philosophy, September 2010

CONTENTS

Contents i

List Of Figures vi

List Of Tables ix

Acknowledgements xi

Acronyms xiii

Glossary xiv

Abstract xxi

1. Introduction 1

1.1 Motivation...!

1.2 Research Goal...4

1.3 Summary of Contributions..4

1.4 Outline of Dissertation...^

2. Knowledge Acquisition 9

2.1 Introduction...9

2.2 What Is Knowledge Acquisition?...10

2.3 Machine Learning... 11

2.3.1 Learning-Based Classification ..14

2.3.2 Problem-Based Classification ...18

2.4 Conclusions...25

CONTENTS

2.5 Summary... 26

3. Reinforcement Learning 27

3.1 Introduction... 27

3.2 Reinforcement Learning and the Brain...28

3.3 Common Terms ..30

3.3.1 The Agent...................................30

3.3.2 The Policy..30

3.3.3 The Environment...31

3.3.4 The Reward32

3.4 Reinforcement Learning Taxonomy...32

3.5 Model-Based Methods..33

3.6 Model-Free Methods................... ..34

3.6.1 Critic Only Methods................................ ..34

3.6.2 Actor Only Methods.......................35

3.6.3 Actor-Critic35

3.7 On-Policy / Off-Policy Methods..............................40

3.8 Reinforcement Learning Algorithms.. 41

3.8.1 Temporal Difference ...41

3.9 Reinforcement Learning In Decision Making ..49

3. 10 Reinforcement Learning For Control ...51

3.1 1 Conclusions.. --.............---..--..........-52

4. Probabilistic Fuzzy Inference Systems 54

II

CONTENTS

4.1

4.2

4.2.1 Uncertainty Taxonomy..56

4.2.2 Sources of Uncertainty ..57

4.2.3 Dealing with Uncertainty ..59

4.3 Fuzzy Logic ..62

4.3.1 Fuzzy Inference Systems...65

4.4 Probabilistic Theory..66

4.5 Probabilistic Fuzzy Logic Systems...69

4.6 Learning Methods for Fuzzy Systems ..73

4.6.1 Neuro-Fuzzy Systems..74

4.6.2 Fuzzy Logic and Genetic Algorithms ...76

4.6.3 Fuzzy-Reinforcement Learning...79

4.7 Conclusions...80

4.8 Summary...81

5. GPFRL Generalized Probabilistic Fuzzy-Reinforcement Learning 82

5.1 Introduction..-............82

5.2 Structure..83

5.3 Probabilistic Fuzzy Inference ...84

5.4 Reinforcement Learning Process..88

5.4.1 Critic Learning ..89

5.4.2 Actor Learning ..91

5.5 Algorithm Description..92

III

CONTENTS

5.6 Discussion...96

5.7 Summary... 100

6. Experiments 101

6.1 Introduction... 101

6.2 Decision Making Experiments.. 102

6.2.1 Random Walk Problem ...102

6.2.2 Mobile Robot Obstacle Avoidance ...122

6.3 Control Experiments... 135

6.3.1 Cart-Pole Balancing Problem..135

6.3.2 DC Motor Control ...151

6.4 Summary... 163

7. Concluding Discussion 164

7.1 Introduction... 164

7.2 Contributions of This Work.. 165

7.3 Observations... 167

7.4 Future Work.. 168

7.4.1 Theoretical Suggestions ..169

7.4.2 Practical Suggestions... 170

7.5 Final Conclusions ...170

References 171

Appendix 182

Appendix A 183

Random Walk Problem 183

IV

CONTENTS

SARSA... 184

Q-Learning...186

GPFRL ... 188

Appendix B 191

Cart-Pole Problem 191

Main Program... 192

Reinforcement Learning Program.. 196

Fuzzy Logic Program ...199

Cart-pole Model...202

Random Noise Generator...204

Mathematical Functions ...206

Appendix C 207

DC Motor Control Problem 207

DC Motor model..208

Motor-Mass System ...209

Reinforcement Learning Program..210

Fuzzy Logic Program ...212

Mathematical Functions ...214

ITAE/IAE Calculation..216

Appendix D 218

Khepera HI - Obstacle Avoidance Problem 218

Main ...219

V

LIST OF FIGURES

Figure 1.1: Flow of the dissertation.. 8

Figure 2.1: Knowledge acquisition taxonomy.. 11

Figure 2.2: Supervised learning scheme... 22

Figure 3.1: Sagital view of the human brain... 29

Figure 3.2: Reinforcement learning taxonomy... 33

Figure 3.3: Actor-critic architecture.. 36

Figure 4.1: Uncertainty taxonomy (Tannert et al., 2007). 57

Figure 4.2: Basic structure of a FIS.. 65

Figure 4.3: Different configurations of neuro-fuzzy systems............................... 76

Figure 5.1: Actor-critic architecture.. 84

Figure 5.2: GPFRL algorithm flowchart... 93

Figure 6.1: A 5x5 dimension grid world for a total of 25 states......................... 102

Figure 6.2: Static starting point learning rate comparison.................................. 106

Figure 6.3: Standard deviation for 100 plays.. 106

Figure 6.4: Static starting point utility value distributions for a) SARSA and b) Q-

learning.. 107

Figure 6.5: Static starting point GPFRL probabilities distribution..................... 107

Figure 6.6: Random starting point, learning rate comparison............................. 110

VI

LIST OF FIGURES

Figure 6.7: Random starting point, standard deviation comparison for 100 plays.

... no

Figure 6.8: Random starting point SARSA and Q-Learning utility value

distribution.. 111

Figure 6.9: Random starting point GPFRL probabilities distribution................. 111

Figure 6.10: Windy grid world.. 114

Figure 6.11: Static starting point in the windy random walk.............................. 116

Figure 6.12: Static starting point in the windy random walk.............................. 118

Figure 6.13: SARSA utility value distribution for the windy grid world........... 118

Figure 6.14: GPFRL probabilities distribution for the windy grid world........... 119

Figure 6.15: Khepera III mobile robot.. 124

Figure 6.16: Measured reflection value vs. Distance, extracted from (Prorok et al.,

2010)... 126

Figure 6.17: Clustering of IR inputs into 4 regions.. 127

Figure 6.18: Membership functions for the averaged inputs 128

Figure 6.19: IR sensor distribution in the Khepera III robot............................... 129

Figure 6.20: The controller structure.. 130

Figure 6.21: Khepera III sensor reading for 30 seconds trial.............................. 133

Figure 6.22: Internal reinforcement E(t)... 133

Figure 6.23: Cart-pole balancing system.. 136

Figure 6.24: Trials distribution over 100 runs.. 141

VII

LIST OF FIGURES

Figure 6.25: Actor learning rate, alpha, vs. number of failed runs..................... 145

Figure 6.26: Actor learning rate, alpha, vs. number of trials for learning.......... 146

Figure 6.27: Critic learning rate, beta, vs. number of failed trials...................... 146

Figure 6.28: Critic learning rate, beta, vs. number of trials for learning............ 146

Figure 6.29: Cart position at the end of a successful learning run...................... 148

Figure 6.30: Pole angle at the end of a successful run.. 148

Figure 6.31: Applied force at the end of a successful learning run..................... 148

Figure 6.32: Signal generated by the stochastic noise generator........................ 149

Figure 6.33: Motor with load attached.. 151

Figure 6.34: Membership functions of the error input.. 156

Figure 6.35: Membership functions for the rate of change of the error.............. 157

Figure 6.36: Screen capture of the developed software for the DC Motor example.

... 159

Figure 6.37: Trials for learning... 160

Figure 6.38: Motor error in steady state.. 161

Figure 6.39: Motor response to a random step reference.................................... 162

VIII

LIST OF TABLES

Table 3.1 Actor-critic algorithm ... 39

Table 3.2 Q-Learning on-policy TD control algorithm .. 47

Table 3.3 SARSA on-policy TD control algorithm .. 48

Table 5.1 GPFRL Algorithm .. 95

Table 6.1 Parameters used for the random walk experiment.............................. 105

Table 6.2 Parameters used for the random walk experiment.............................. 114

Table 6.3 Centre and standard deviation for all membership functions. 129

Table 6.4 Coefficient values for the RL algorithm... 132

Table 6.5 Cart-pole model parameters.. 137

Table 6.6 Cart-pole membership function parameters.. 139

Table 6.7 Parameters used for the cart-pole experiment..................................... 140

Table 6.8 Probabilities of success of applying a positive force to the cart for each

system state... 141

Table 6.9 Learning method comparison for the cart-pole balancing problem.... 144

Table 6.10 DC Motor Model Parameters.. 152

Table 6.11 Membership function paremeters for error input.............................. 157

Table 6.12 Membership function parameters for rate of error input................... 157

IX

Table 6.13 Coefficient values for the RL algorithm... 157

Table 6.14 Probability matrix showing the probability of success of performing

action al for every rule... 161

X

ACKNOWLEDGEMENTS

This dissertation is the product of many years of enjoyable effort and is the result

of not only the hard work of one individual, but of many, each one being equally

important for its correct development.

To start with, I would like to thank my supervisor, Dr. Samia Nefti, for her

incredible productive collaboration, critics, guidance, and patience. I thank her for

generously sharing her talents, energy, and good advice.

I was especially lucky to have the collaboration Dr. Uzay K aymak from the

Econometric Institute, Erasmus School of Economics, Erasmus University at

Rotterdam, whose wise comments and advice greatly contributed to the

development of the theoretical part of this work.

I thank my family; my parents, who never stopped supporting me, I thank their

patience, commitment, support, and advice when I needed the most. Also, to my

beloved sister Johanna, for her constant support and affection. They always

believed in me and pushed me forward. Certainly, their love and support have

made me the person I am today.

Big thanks go to my beautiful partner Lucy, whose love and affection made all my

time here much more enjoyable. I thank her for teaching me what I needed to

know about this wonderful country, for supporting and understanding me and for

tolerating my irregular schedules and my frequent lateness. I am also thankful for

her help in proofreading this dissertation.

XI

ACKNOWLEDGEMENTS

A special acknowledge goes to one of my closest and best friends, Alvaro

Vallejos, who greatly helped me in the completion of this dissertation. His expert

advice greatly helped me to quickly and effectively solve several MS Office crises

in different moments. I wouldn't have done it without his help... at least not with

such a nice format!

I will not forget that I've greatly enjoyed these last years because all my wonderful

friends and colleagues, who enriched my years at Salford University: Xavier Sole,

loannis Sarakoglou, Elmabruk Abulgasem, Ahmed Al-Dulaimy, May Bunne,

Nelson Costa, Antonio Espingardeiro, Indra Riady and Rosidah Sam. Thanks for

always being there, for the good times, for the moments of laughter, for all the

ideas we share and all the discussions we had. Their presence and constant

support transformed the studies that this project concludes into an unforgettable

experience. They all became a family in this journey.

Finally, I am grateful to all the members of the School of Computer Science and

Engineering who kindly helped me in many different ways, especially to Lynn

Crankshaw a nd Ruth Brec kill. Finall y 1 thank The Univ ersity of S alford for

providing a fantastic environment for doing my research.

XII

ACRONYMS

AI Artificial Intelligence

DP Dynamic Programming

FIS Fuzzy Inference System

IR Infra-red

MC Monte Carlo Methods

MDP Markov Decision Process

NN Neural Networks

PFL Probabilistic Fuzzy Logic

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

SARSA State-Action-Reward-State-Action

TD Temporal Difference

XIII

GLOSSARY

Actor-critic

Agent

Average-reward

methods

Discount factor

Refers to a class of agent architectures, where the actor

plays out a particular policy, while the critic learns to

evaluate actor's policy. Both the actor and critic are

simultaneously improving by bootstrapping on each

other.

A system that is embedded in an environment. The

controller or decision-making entity choosing actions

and learning to perform a task. Examples include mobile

robots, software agents, or industrial controllers.

A framework where the agent's goal is to maximize the

expected payoff per step. Average-reward methods are

appropriate in problems where the goal is to maximize

the long-term performance. They are usually much more

difficult to analyze than discounted algorithms.

A scalar value between 0 and 1 which determines the

present value of future rewards. If the discount factor is

0, the agent is concerned with maximizing immediate

rewards. As the discount factor approaches 1, the agent

takes more future rewards into account. Algorithms

which discount future rewards include Q-learning and

TD(lambda)

XIV

GLOSSARY

Discounting

Dynamic

programming

Environment

Episode

Function

approximation

Markov chain

Markov decision

problem

If rewards received in the far future are worth less than

rewards received sooner, they are des cribed as being

discounted. Humans and animals appear to discount

future rewards hyperbolically; exponential discounting

is common in engineering and finance.

A collection of calculation techniques for finding a

policy that maximises reward or minimises costs. Is a

class of solution methods for solving sequential decision

problems with a compositional cost structure.

The external system that an agent is "embedded" in, and

can perceive and act on.

A time segment of learning with task dependent starting

and ending conditions.

Refers to the problem of inducing a function from

training examples. Standard approximates include

decision trees, neural networks, and nearest-neighbour

methods.

A model for a random process that evolves over time

such that the states (like locations in a maze) occupied in

the future are independent of the states in the past given

the current state.

A model for a controlled random process in which an

agent's choice of action determines the probabilities of

transitions of a Markov chain and lead to rewards (or

XV

GLOSSARY

costs) that need to be maximised (or minimised).

Essentially, the outcome of applying an action to a state

depends only on the current action and state (and not on

preceding actions or states)

Model The agent's view of the environment, which maps state-

action pairs to probability distributions over states. Note

that not every reinforcement learning agent uses a model

of its environment. Basically it's a mathematical

description of the environment.

Model-based These compute value functions using a model of the

algorithms system dynamics. Adaptive Real-time DP (ARTDP) is a

well-known example of a model-based algorithm.

Model-free These directly learn a value function without requiring

algorithms knowledge of the c onsequences of doin g actions. Q -

learning is the best known example of a model-free

algorithm.

Monte Carlo A class of methods for learning value functions, which

methods estimates the value of a state by running many trials

starting a t th at state , th en a verages th e tot al r ewards

received on those trials.

Policy The decision-making function of the agent, which

represents a mapping from situations to actions. Can be

considered a deterministic or stochastic scheme for

choosing an action at every state or location.

Policy evaluation Determining the value of each state fona given policy.

XVI

GLOSSARY

Policy

improvement

Policy iteration

POMDP

Return

Reward

Sensor

State

Temporal

difference

algorithms

Forming a new policy that is better than the current one.

Alternating steps of policy evaluation and policy

improvement to converge to an optimal policy.

Partially observable Markov decision problem. State

information is available only through a set of

observations.

The cumulative (discounted) reward for an entire

episode.

An immediate, possibly stochastic, payoff that results

from performing an action in a state represented by a

numerical signal to the learning agent indicating task

progress or completion or the degree to which a state or

action is desirable. Reward f unctions can be use d to

specify a wide range of planning goals

Agents perceive the state of their environment using

sensors, which can refer to physical transducers, such as

ultrasound, or simulated feature-detectors.

This can be viewed as a summary of the past history of

the system, which determines its future evolution.

A class of learning methods, based on the idea of

comparing temporally successive predictions. Possibly

the single most fundamental idea in all of reinforcement

learning.

XVII

GLOSSARY

Temporal

difference

prediction error

Unsupervised

learning

Value function

Value iteration

A measure of the inconsistency between estimates of the

value function at two successive states. This prediction

error can be used to improve the predictions and also to

choose good actions.

The area of machine learning in which an agent learns

from interaction with its environment, rather than from a

knowledgeable teacher that specifies the action the agent

should take in any given state.

Is a mapping from states to real numbers, where the

value of a state represents the long-term reward

achieved starting from that state, and executing a

particular policy. The key distinguishing feature of RL

methods is that they learn policies indirectly, by instead

learning value functions. RL methods can be contrasted

with direct optimization methods, such as genetic

algorithms (GA), which attempt to search the policy

space directly. A function def ined ov er states, which

gives an estimate of the total (possibly discounted)

reward expected in the future, starting from each state,

and following a particular policy.

A single iteration of policy evaluation followed by

policy improvement.

XVIII

' Whether or not you think you can do

something, you are probably right"

-Henry Ford.

XIX

To my parents.

For their help in pursuing my dreams for

so long, so far away from home...

XX

ABSTRACT

This dissertation focuses on the problem of uncertainty handling during learning

by agents dealing in stochastic environments by means of reinforcement learning.

Most previous investigations in reinforcement learning have proposed algorithms

to deal with the learning performance issues but neglecting the uncertainty present

in stochastic environments.

Reinforcement learning is a valuable learning method when a system requires a

selection of actions whose consequences emerge over long periods for which

input-output data are not available. In most combinations of fuzzy systems with

reinforcement learning, the environment is considered deterministic. However, for

many cases, the consequence of an action may be uncertain or stochastic in nature.

This work proposes a novel reinforcement learning approach combined with the

universal function approximation capability of fuzzy systems within a

probabilistic fuzzy logic theory framework, where the information from the

environment is not interpreted in a deterministic way as in classic approaches but

rather, in a statistical way that considers a probability distribution of long term

consequences.

The generalized probabilistic fuzzy reinforcement learning (GPFRL) method,

presented in this dissertation, is a modified version of the actor-critic learning

architecture where the learning is enhanced by the introduction of a probability

measure into the learning structure where an incremental gradient descent weight-

updating algorithm provides convergence.

XXI

ABSTRACT

Experiments were performed on simulated and real environments based on a

travel planning spoken dialogue system. Experimental results provided evidence

to support the following claims: first, the GPFRL have shown a robust

performance when used in control optimization tasks. Second, its learning speed

outperforms most of other similar methods. Third, GPFRL agents are feasible and

promising for the design of adaptive behaviour robotics systems.

XXII

Chapter 1

Introduction

1.1 Motivation

Learning algorithms can tackle problems where pre-programmed solutions are

difficult or impossible to design. Depending on the level of available information,

learning agents can apply one or more types of learning. According to the

connectionist learning approach (Hinton, 1989), these algorithms are mainly of

three kinds: supervised, unsupervised and reinforced learning. Unsupervised

learning is suitable when target information is not available and the agent tries to

form a model based on clustering or association amongst data. Supervised

learning is much more powerful, but it requires the knowledge of output patterns

corresponding to input data. However, in dynamic environments, where the

outcome of an action is not immediately known and is subject to change, correct

target data may not be available at the moment of learning, which implies that

supervised approaches cannot be applied. In these environments, reward

information, whose availability can be only sparse, may be the best signal that an

agent receives. For such systems, reinforcement learning (RL) has proven to be a

CHAPTER 1: INTRODUCTION

more a ppropriate meth od than supe rvised or u nsupervised meth ods w hen the

systems require a selection of actions whose consequences emerge over long

periods for which input-output data are not available (Berenji and Khedkar, 1992).

A RL problem can be defined as a decision process where the agent learns how to

select an action based on feedback from the environment. It can be said that the

agent learns a policy that maps states of the environment into actions. Often, the

RL agent must learn a value function, which is an estimate of the appropriateness

of a control action given the observed state. In many applications, the value

function that needs to be learned can be rather complex. It is then usual to use

general function approximation methods, such as neural networks and fuzzy

systems for approximating the value function. This approach has been the start of

extensive research on fuzzy and neural reinforcement learning algorithms, and is

the focus of this dissertation.

In most combinations of fuzzy systems and reinforcement learning, the

environment is considered deterministic, where the rewards are known and the

consequences of an action are well defined. In many problems, however, the

consequence of an action may be uncertain or stochastic in nature. In that case, the

agent deals with environments where the exact nature of the choices is unknown,

or it is difficult to foresee the consequences or outcomes of events with certainty.

Furthermore, an agent cannot simply assume what the world is like and take an

action a ccording to tho se a ssumptions. Instead, it nee ds to consider multiple

possible contingencies and their likelihood. In order to handle this key problem,

instead of predicting how the system will respond to a certain action, a more

appropriate approach is to predict a system probability of response (Berg et al.,

2004).

In this dissertation, it is proposed a novel reinforcement learning approach that

combines the universal function approximation capability of fuzzy systems and

CHAPTER 1: INTRODUCTION

probability theory. The proposed algorithm, seeks to exploit the advantages of

both fuzzy inference systems and probabilistic theory to capture the probabilistic

uncertainty of real world stochastic environments. This will allow the agent to

choose an action based on a probabilistic distribution able to minimize negative

outcomes (or maximize positive reinforcements) of future events.

The proposed generalized probabilistic fuzzy reinforcement learning (GPFRL)

method is a modified version of the actor-critic learning architecture, where

uncertainty handling is enhanced by the introduction of a probabilistic term into

the actor and the critic learning. The addition of the probabilistic terms enables the

actor to effectively define an input-output mapping by learning the probabilities of

success of performing each of the possible output actions. In addition, the final

output of the system is evaluated considering a weighted average of all possible

actions and their probabilities.

The introduction of the probabilistic stage in the system adds robustness against

uncertainties and allows the possibility of setting a level of acceptance for each

action, providing flexibility to the system while incorporating the capability of

supporting multiple outputs. In the present work, the transition function of the

classic actor-critic is replaced by a probability distribution function. This is an

important modification, which enables us to capture the uncertainty in the world,

when the world is either complex or stochastic. By using a fuzzy set approach, the

system is able to accept multiple continuous inputs and to generate continuous

actions, rather than discrete actions as in traditional RL schemes. This dissertation

will show that the proposed GPFRL is not only able to handle the uncertainty in

the input states, but also has a superior performance in comparison with similar

fuzzy-RL models.

CHAPTER 1: INTRODUCTION

1.2 Research Goal

The root of the proposed RL method is based on the introduction of probabilistic

theory, in order to take advantage of its uncertainty handling capabilities, enabling

agents to take decisions under the uncertainties inherent to stochastic

environments, while keeping or improving the learning performance of similar

existing methods.

Many of these past studies concentrated on increasing the learning speed and to

test this, they assumed a predetermined kinematic structure, thus those studies

were not generalized enough to be applied to other models and did not consider

the uncertainty of real physical environments. The fundamental approach used

here is to incorporate probabilistic theory to avoid deterministic actions, which,

according to the literature review, is predominantly encouraging in order to

achieve the best performance under uncertainty.

The development of this research pursued a bottom-up strategy, in which, the core

functionalities of the typical actor-critic reinforcement learning method were

created while introducing probabilistic theory, then, optimised through the

gradient descent method, and finally tested in four different platforms.

1.3 Summary of Contributions

It will be seen later that the GPFRL framework is a modified version of the actor-

critic technique. This by itself is not a new concept, but GPFRL is unique in

several other aspects. The following contribution is derived from the work

described in this dissertation:

A Generalized Probabilistic Fuzzy Reinforcement Learning method intended for

continuous states and actions and is able to learn input-output mappings through

CHAPTER 1: INTRODUCTION

interactions with the environment. This method tackles 3 issues in control systems

and decision making processes.

 Uncertainty in the outcome of actions is handled by a

probabilistic approach.

 Learning from interaction, where system model is not readily

available is handled by using reinforcement learning.

 Uncertainty in the inputs, which is handled by using a fuzzy

logic control method.

The developed algorithm exhibits a comparatively fast learning speed and

flexibility as it can be used for several different systems, where control or decision

making under uncertainty is paramount. This concept has been tested through 4

different experiments:

 The random walk.

 The cart-pole balancing problem.

 A DC motor control.

 A real time experimental investigation of obstacle avoidance for

a Khepera III mobile robot.

1.4 Outline of Dissertation

The logical structure and flow of the dissertation is summarised by Figure 1.1.

The rest of this dissertation is organized as follows:

CHAPTER 1: INTRODUCTION

• Chapter 2 Reviews some basic concepts on knowledge

acquisition and machine learning defining the main advantages

and difficulties on its use.

• Chapter 3 Introduces the reinforcement learning problem and

its biological origin, defining some commonly used terms within

the reinforcement learning literature then, it presents a survey of

different kind of reinforcement learning methods and analyses

some commonly used algorithms for reinforcement learning.

Finally it presents the use of reinforcement learning in the fields

of decision making and control.

• Chapter 4 Analyses the importance of uncertainty handling;

reviews the concepts of fuzzy inference systems, then, it

introduces the reader to probabilistic theory and its application

to fuzzy logic. Finally, it presents an overview of fuzzy logic

learning in general.

• Chapter 5 Presents an overview of the complete GPFRL

architecture and proposes a novel probabilistic reinforcement

learning method.

• Chapter 6 In this chapter, we perform some experiments

employing the proposed GPFRL architecture. Four experiments

are presented in this dissertation: a random walk on a 2-

dimensional grid world, a control of a classic cart-pole

balancing problem, GPFRL as a DC motor controller and finally

the proposed GPFRL is implemented in a Khepera III mobile

robot for obstacle avoidance.

CHAPTER 1: INTRODUCTION

• Chapter 7 This chapter recalls the contributions of this work; it

then states some observations and proposes some possible

extensions and directions for future research.

Four appendices complement the chapters above as follows: first, appendix A

contains the code used for the random walk example. Second, appendix B

contains the code used for the cart-pole example. Appendix C contains the code

used for the DC motor example. Finally, appendix D, contains the code used to

operate the Khepera III mobile robot.

CHAPTER 1: INTRODUCTION

Chapter 1
Introduction

BACKGROUND

Chapter 2
Knowledge
Acquisition

Chapter 3
Reinforcement

Learning

Chapter 4
Probabilistic Fuzzy
Inference Systems

CONTRIBUTIONS

Chapter 5
GPFRL Architecture

and Learning

CASE STUDIES

Chapter 6
Experiments

I
Chapter 7

Conclusions and
Further Work

Figure 1.1: Flow of the dissertation.

Chapter 2

Knowledge Acquisition

2.1 Introduction

In its early beginnings, knowledge acquisition was seen as the transfer of

expertise in problem solving from a human expert to a knowledge-based system.

Since manual methods for this process were found to be very difficult and time

consuming, knowledge acquisition was considered the bottleneck to building

expert systems. To solve this problem, several different approaches like machine

learning and data mining have been developed. This dissertation concerns an

extension to a particular knowledge acquisition and knowledge based systems

technique called reinforcement learning.

The rest of this chapter is organized as follows; section two will provide a review

of the concepts of knowledge acquisition, section three presents an in-depth

review of machine learning concepts and some of the most well-known

algorithms used for machine learning, and finally section four and five presents

the conclusions and summary of the present chapter. The aim of this chapter is to

CHAPTER 2: KNOWLEDGE ACQUISITION

situate the approach in this dissertation rather than provide a detailed review of

the very wide range of research that falls under knowledge acquisition field.

2.2 What Is Knowledge Acquisition?

In computer science knowledge acquisition can be defined as the transfer and

transformation of potential problem solving expertise from some knowledge

source to a program (Kohonen, 1988).

Knowledge acquisition has been recognised as a bottleneck in the development of

knowledge based systems due to the difficulty in capturing the knowledge from

the experts; that is externalising and making explicit the tacit knowledge,

normally implicit inside the expert's head.

Knowledge acquisition techniques can be grouped into three categories: manual,

semi-automated (interactive) and automated (machine learning and data mining).

For the manual and semi-automated category, the expert must only answer simple

questions (cases); so that the more data is labelled by the expert, the better the

obtained results (Liu and Li, 2005). However, one problem of this approach is that

we do not know in advance how many cases we will need to ask in order to get an

accurate model and asking thousands of cases to the expert is usually impractical.

Therefore, an automatic way to infer an appropriate behaviour is highly desired.

Automated methods provide an automatic way to learn behaviours from data

(machine learning) or to extract patterns from it (data mining). Data mining is a

branch of computer science and artificial intelligence. It can be defined as the

process of extracting patterns from data and it can be seen as an increasingly

important tool by modern business to transform data into business intelligence

giving an informational advantage. It is currently used in a wide range of profiling

10

CHAPTER 2: KNOWLEDGE ACQUISITION

practices, such as marketing, surveillance, fraud detection, and scientific

discovery.

The main difference between these two methods is that data mining can be

defined as a process of applying several different methods like neural networks,

clustering, genetic algorithms, decision trees and support vector machines to data

with the intention of uncovering hidden patterns (Kantardzie, 2002), whilst

machine learning is the study of computer algorithms that improve automatically

through experience (Mitchell, 1997). Figure 2.1 shows the taxonomy of

knowledge acquisition and its link to some of the most common reinforcement

learning methods. The darker blocks mark the categories that contain the

algorithm proposed in this work.

••-•: Manual j

Semi-
automatic

Data
mining

x: Machine
learning

Figure 2.1: Knowledge acquisition taxonomy.

Supcn isctl

l.ins«pcrvi?,ed
learning

Reinforcement
learning

2.3 Machine Learning

Learning, like intelligence, covers su ch a broad range of processes that it is

difficult to define precisely, such as knowledge acquisition, understanding and

skill acquisition by study, instruction or experience and even modification of a

behavioural tendency by experience. Before describing machine learning, we

11

CHAPTER 2: KNOWLEDGE ACQUISITION

should be clear what is meant by learning. In (Hebb, 1949) learning is defined as

the ability to perform new tasks or perform old tasks better (faster, more

accurately, etc.) as a result of changes produced by the learning process.

Furthermore, when this learning is achieved by a machine, rather than a person, it

is called machine learning.

This learning c apability is an inherent characteristic of human bein gs, which

enable us to acquire "ability" or "expertise" so we can improve our performance

while executing repetitive tasks. Similarly, machine learning usually refers to the

changes in systems that perform certain tasks. Such tasks can involve recognition,

diagnosis, planning, robot control, prediction, etc. These system changes can be

either enhancements to already performing systems or synthesis of new systems.

It can be said then, that a machine has learned whenever its structure, program, or

data has been changed, based on its inputs and/or in response to external

information, so that there is an improvement in its expected future performance.

In other words, ma chine lea rning inv olves dev eloping c omputer s ystems that

automatically improve their performance over a specific task, through experience.

Now that we have defined what machine learning is, the next question to ask is,

why should machines have to learn? There are several reasons why machine

learning is important. An important reason, especially for the fields of human

psychology is that the achievement of learning in machines might help us

understand how animals and humans learn. But for the engineering fields some of

the reasons presented by (An et al., 1988) are:

 Some tasks cannot be defined well except by example; that is,

we might be able to specify input/output pairs but not a concise

relationship between inputs and desired outputs. Machine

learning methods can be used to adjust their internal structure to

produce correct outputs for a large number of sample inputs.

12

CHAPTER 2: KNOWLEDGE ACQUISITION

 It is possible that hidden among large piles of data are important

relationships and correlations. Machine learning methods can

often be used to extract these relationships.

 Some machines might not work well when certain

characteristics of the working environment are not completely

known at design time. Machine learning methods can be used

for on-the-job improvement of existing machine designs.

 The amount of knowledge available about certain tasks might be

too large for explicit encoding by humans. Machines that learn

this knowledge gradually might be able to capture more of it

than humans would want to write down.

 Under stochastic environments, machines that can adapt to a

changing environment would reduce the need for constant

redesign.

 New knowledge about tasks is constantly being discovered by

humans. Continuing redesign of AI systems to conform to new

knowledge is impractical, but machine learning methods might

be able to track much of it.

It is important to highlight that, the techniques of machine learning do not interact

directly with a human expert, but instead with data descriptions of the problem to

be solved. For example; supervised learning, the most common machine learning

paradigm, involves presenting a computer program with a "training set" of

example problem descriptions, together with the known solution in each case. The

machine learning program is then able to infer a pattern to the example/solution

pairs such that it is afterwards able to solve problems which it has not seen before.

13

CHAPTER 2: KNOWLEDGE ACQUISITION

In the next two subsections, two different ways to classify machine learning

algorithms are presented.

2.3.1 Learning-Based Classification

There are many ways to classify the machine learning paradigms. (Langley, 1995)

classifies the learning paradigms according to the way they learn in five

categories: inductive learning (e.g., acquiring concepts from sets of positive and

negative examples); instance-based; analytical learning (e.g., explanation-based

learning and certain forms of analogical and case-based learning); connectionist

learning methods and evolutionary algorithms.

2.3.1.1 Inductive Learning

Inductive learning seeks to find a general description of a concept from a set of

known examples and counterexamples. It is assumed that the known examples

have to be representative of the whole space of possibilities. Given an encoding of

the known background knowledge and a set of examples represented as a logical

database of facts, an inductive learning system will derive a hypothesised logic

program which entails all the positive and none of the negative examples. The

resulting description distinguishes not only between the known examples of the

concept (a recall task), but can also be used to make predictions about unknown

examples.

Inductive learning employs condition-action rules, decision trees, or similar

logical knowledge structures, where the information about classes or predictions

is stored in the rule actions sides of the rules or the leaves of the tree. Learning

algorithms in the rule-induction framework usually carry out a greedy search

through the space of decision trees or rule sets, using statistical evaluation

functions to select attributes to incorporate into the knowledge structure.

14

CHAPTER 2: KNOWLEDGE ACQUISITION

Some examples of inductive learning include:

 Approximate identification (PAC-learning) (Valiant, 1984).

 Boosting (Schapire, 1990).

 TDIDT (Top-Down Induction of Decision Trees) (Quinlan,

1986).

2.3.1.2 Instance-Based Learning

Represents knowledge in terms of specific cases or experiences and relies on

flexible matching methods to retrieve these cases and apply them to new

situations. Instead of performing explicit generalization, it compares new problem

instances with instances seen in training, which have been stored in memory.

Some examples of Instance-based learning include:

 K-nearest neighbor algorithm (Fix and Hodges, 1951).

 Locally weighted regression (Cleveland, 1979).

2.3.1.3 Analytic Learning

Analytic learning represents knowledge as rules in a logical form (as inference

rules) usually by employing a performance system that uses search to solve multi-

step problems. This knowledge is acquired by applying background knowledge

(from rigorous expert explanations) to very few examples (often only one). Some

issues with analytic learning are:

 The background knowledge and complex structure necessary to

store explanations make analytic learning systems infeasible for

large-scale information retrieval.

15

CHAPTER 2: KNOWLEDGE ACQUISITION

 Analytic learning systems are domain-knowledge intensive, thus

requiring a complete and correct problem-space description.

One of the best well-known examples of analytic learning is:

 Explanation-based learners (EBL) (Mitchell et al., 1986).

2.3.1.4 Connectionist Learning

In connectionist learning the knowledge is represented as a multi-layer network of

threshold units that spreads activation from input nodes through internal units to

output nodes. Many proponents of connectionist learning believe that this form of

learning is the nearest to that of the human brain. In connectionist learning, the

weights on the links determine how much activation is passed on in each case.

The activations of output nodes can be translated into numeric predictions or

discrete decision about the class of the input. This connectionist paradigm aims at

massively parallel models that consist of a large number of simple and uniform

processing elements interconnected with extensive links, that is, artificial neural

networks and their various generalisations. In many connectionists' models,

representations are distributed through a large number of processing elements.

This parallel nature makes connectionist learning algorithms good at flexible and

robust processing. The most well-known algorithm of this group is:

 Back propagation (Rumelhart et al., 1986).

The back propagation algorithm uses two-layer networks in which every node in a

layer receives,,an, input from every node in the preceding layer. The term back

propagation refers to the procedure for updating weights across the layers.

Starting from the final output, the difference b etween the a ctual a nd des ired

output (the error) is divided and allocated to the directly contributing nodes. These

16

CHAPTER 2: KNOWLEDGE ACQUISITION

nodes, in turn, do the same to their inputs, with the resulting effect that weight

changes are propagated backwards through the network.

2.3.1.5 Evolutionary Learning

Evolutionary learning is defined as any kind of learning task which employs as its

search engine a technique belonging to the evolutionary computation field

(Michalewicz, 1996). Evolutionary learning is a set of optimisation tools inspired

by natural evolution, were a population of candidate solutions (individuals) are

transformed (evolved) through a certain number of iterations of a cycle,

containing an almost blind recombination of the information contained in the

individuals and a selection stage that directs the search towards the individuals

considered good by a given evaluation function. In this scheme, the characteristics

of an individual which is fit (and therefore good at competing for resources) are

more likely to be passed to the next generation than the characteristics of an unfit

individual.

One of the most representative algorithms of this group is generic algorithms

(GA). Genetic algorithms attempt to find solutions to problems by mimicking this

evolutionary process (Holland, 1992). GAs supports a population of individuals,

each one representing a possible solution to the problem of interest. Although

proponents of genetic algorithms recognise that the approach does not always

deliver the optimal solution to a problem, they argue that the approach can deliver

a "good" solution "acceptably" quickly.

Some evolutionary learning techniques include:

 Genetic algorithms (Holland, 1992).

 Genetic programming (Barricelli, 1954).

 Evolutionary programming (Fogel et al., 1966).

17

CHAPTER 2: KNOWLEDGE ACQUISITION

2.3.2 Problem-Based Classification

A better classification, using a more general problem-based point of view suggests

three main categories, supervised learning, unsupervised learning and

reinforcement learning.

2.3.2.1 Supervised Learning

Supervised learning is a machine learning technique for function approximation

obtained from 'training data. A supervised learning problem is one where we are

supplied with data as a set of input/output pairs, assumed to have been sampled

from an unknown function and we wish to reconstruct the function that generates

the data.

Supervised learning networks learn by being presented with pre-classified training

data (i.e. input and target output pairs). This type of learning requires a "trainer"

or "supervisor", who supplies the input-output training pairs. The learning agent

adapts its parameters using some algorithms in order to generate the desired

output patterns from a given input pattern and it achieves this by generalizing

from the presented data to unseen situations in a "reasonable" way. This is

equivalent to having a supervisor who can tell the agent how the output should

have been, so that the learning agent can learn from the "example". Most

supervised learning techniques attempt to increase the accuracy of their function

approximation through generalization: for "similar" inputs, the outputs are

assumed "similar".

In general, the goal of the supervised learning is to estimate a function g(-v),

given a set of points (x,g(.x)). The basic problem of supervised learning deals

with predicting the response variables from the independent variables. In essence,

the input X is a collection of p associated variables, and for each A', an

18

CHAPTER 2: KNOWLEDGE ACQUISITION

observed value Y, of the output, is the supervisor. The goal is to train the learner,

using the training set based on N samples of the pair (Y,X), so that it can

predict the value 7(,v) from a future observation x. The output of the function

can be a continuous value (regression), or can predict a class of the input object

(classification). Figure 2.2 shows a basic scheme of general supervised learning

algorithms.

The four more important issues to consider in supervised learning are:

• Bias-variance trade-off. The performance of an estimator 9"

of a parameter 9 is measured by its mean square error (MSE)

that is shown to be: MSE = Var(d'} + Bias(9'^~. Although the

lack of bias is an attractive feature of an estimator, it does not

guarantee the lowest possible value of the mean square error.

This minimum value is attained when a proper trade-off is found

between the bias of the estimator, and its variance. So as to

make the value of the above expression smallest. As a matter of

fact, it is commonly observed that introducing a certain amount

of bias into an otherwise unbiased estimator can lead to a

significant reduction of its variance, so much so that

the MSE will be reduced and therefore the performance of the

estimator will be improved.

• Function complexity and amount of training data. If the true

function is simple, then an "inflexible" learning algorithm with

high bias and low variance will be able to learn it from a small

amount of data. But if the true function is highly complex, then

the function will only be learnable from a very large amount of

19

CHAPTER 2: KNOWLEDGE ACQUISITION

training data and by using a "flexible" learning algorithm with

low bias and high variance.

• Dimensionality of the input space. If the input states vectors

have are of a large dimension, the learning problem can be

difficult even if the true function only depends on a small

number of those features. This is because the many "extra"

dimensions can confuse the learning algorithm and cause it to

have high variance. Hence, high input dimensionality typically

requires tuning the classifier to have low variance and high bias.

• Noise in the output values. If the desired output values are

often incorrect, then the learning algorithm should not attempt to

find a function that exactly matches the training examples. This

is another case where it is usually best to employ a high bias,

low variance classifier.

The proposed GPFRL method tackles all this shortcomings in several different

ways. The model bias is one of the main reasons why reinforcement learning

algorithms often need so many trials to successfully learn a task. Although there is

no general solution to this problem this problem can be tackled by learning

probabilistic models in order to reduce model bias, by incorporating the model's

uncertainty into planning and policy learning as has been proposed by (Deisenroth

and Rasmussen, 2010) who proposed that in order to reduce model bias, it is

required a probabilistic model to faithfully describe the uncertainty of the model

in regions of the state space that have not been encountered before. Moreover, this

model uncertainty is required to be taken into account during the policy

evaluation. (Deisenroth and Rasmussen, 2010) implemented the probabilistic

model using a Gaussian process, which also allows for closed form approximate

inference for propagating uncertainty over longer horizons.

20

CHAPTER 2: KNOWLEDGE ACQUISITION

The function complexity and amount of training data issue is a non important

issue in reinforcement learning methods as training data is not required.

Reinforcement learning algorithms can be considered "flexible" as they are able to

learn complex true functions with low bias and high variance.

To enhance the generalization ability of average reward reinforcement in

continuous state space, this dissertation proposes an improved algorithm based on

fuzzy inference system. In reinforcement learning, agent accesses to knowledge

through the interaction with the environment. The reward signal from the

environment carries out comprehensive appraisal of the effect of the action, which

is operated by the agent. However, when the learning environment is complex and

continuous, it will increase the difficulty of learning process and reduce the

learning efficiency. In response to these disadvantages, we use fuzzy inference

system as the approximator to generalize the continuous state space.

A final issue is whether the environment is noisy or deterministic. Noise may

appear, for example, in the rules which govern transitions from state to state, and

in the final reward signal given at the terminal states. Fuzzy inference systems are

intrinsically able to reduce the effect of the noise in the input and output values as

it is discussed in (Saade, 2011). Most of the ordinary adaptive controllers are

based on a special noise prediction and estimation, and if the nature of the noise

changes or its statistical characteristics altered then these controllers will have

poor performance, while on-line learning controllers, such as the one proposed in

this dissertation, can self-adapt themselves to such changes and still maintain high

performance.

Over the last decade, supervised learning has been the focus of research of many

computer scientists, with several different methods developed. Some of the most

remarkable of these methods are back propagation, artificial neural networks,

logistic regression, naive Bayes and decision trees within others.

21

CHAPTER 2: KNOWLEDGE ACQUISITION

Training Data
Input Desired Output-.

Network

I arR«:t

^^
Weight Error

Trainiri!|* Algorithm
(optimization

me (hod)

Objective Function

Figure 2.2: Supervised learning scheme.

2.3.2.2 Unsupervised Learning
In absence of supervisors, the desired output for a given input instance is
unknown; therefore the supervisor has to adapt its parameters by itself. In this
case, such type of learning is called "unsupervised learning". In unsupervised
learning, the goal is harder because there are no pre-determined categorizations.

l

In contrast with supervised learning, unsupervised learning is focused to solve a
class of problems in which the goal is to determine how the data is organized or
classified. In unsupervised learning the learning agent is presented with a training
set of vectors without function values so the problem consists in partitioning this
training set into subsets. For an unsupervised learning rule, the training set
consists of input training patterns only. Therefore, the learning agent is trained
without using any supervisor, so that the learning agent learns to adapt based on
the experiences collected from the previous input training patterns.

22

CHAPTER 2: KNOWLEDGE ACQUISITION

If we consider a learning agent an input sequence jc,, x 2 , x,,..., where x, is the

sensory input at time t. This input, or data, could correspond to any kind of

sensory input, an image from a camera, a sound, etc. The machine simply receives

inputs x,, x 2 , x,,... but obtains neither supervised target outputs, nor rewards

from its environment. Despite that the machine never receives any feedback from

its environment, it is possible to develop a formal framework for unsupervised

learning based on the notion that the machine's goal is to build representations of

the input that can be used for decision making, predicting future inputs, efficiently

communicating the inputs to another machine, etc.

Some unsupervised learning issues include:

 Objective function not a s obv ious a s in supe rvised lea rning.

Usually try to maximize likelihood (measure of data

compression).

 Local minima (non convex objective).

 Uses infe rence as subr outine (ca n b e slow - no worse than

discriminative learning).

Some of the forms of unsupervised learning methods include clustering which is

the assignment of a set of observations into subsets (clusters) so that observations

in the same cluster are similar in some way and blind source separation based on

Independent Component Analysis (ICA) (Comon, 1994).

Some examples of unsupervised learning algorithms include:

 A Kohonen map, or self-organizing feature map (Kohonen,

1988).

 Hebbian learning (Hebb, 1949).

23

CHAPTER 2: KNOWLEDGE ACQUISITION

2.3.2.3 Reinforcement Learning

In reinforcement learning, the learning agent does not explicitly know the input-

output instances; instead it receives feedback from its environment. This feedback

signal helps the learning agent to decide whether the selected action will receive a

reward or a punishment based on its performance. The learning agent thus adapts

its parameters based on the rewards or punishments of its actions.

Reinforcement learning is a current and important topic of research, where efforts

are placed in the design and study of RL algorithms that can make an efficient use

of the available information while having good computational scalability.

Reinforcement learning differs from supervised learning in two important aspects;

First, supervised learning is learning from examples provided by a knowledgeable

external supervisor, whilst reinforcement learning is defined not by characterizing

learning algorithms, but by characterizing a learning problem (Sutton and Barto,

1998) so that the agent never sees examples of correct or incorrect behaviour.

Instead, it receives only positive and negative rewards for the actions it tries.

Supervised learning is an important kind of learning, but alone it is not adequate

for learning from interaction. In interactive problems it is often impractical to

obtain examples of desired behaviour that are both correct and representative of

all the situations in which the agent has to act. In some cases, like uncharted

territories, an agent must be able to learn from its own experience. Second, the

exploration-exploitation dilemma is of important consideration in reinforcement

learning whilst the entire issue of balancing exploration and exploitation does not

even arise in supervised learning.

When compared to unsupervised learning, the main difference is that in

unsupervised learning the learner receives no feedback from the world at all,

whilst the reinforcement learning agent receives information regarding the success

or failure of the actions taken. In addition, unsupervised learning agents, learn to

24

CHAPTER 2: KNOWLEDGE ACQUISITION

differentiate the input data, in order to classify it, in reinforcement learning, the

agents learn input-output mappings through repeated interactions with the

environment.

2.4 Conclusions

The concept of knowledge is still a not well defined one. Research has yet to

conclude the underlying mechanism in the human or animal brain that enables us

to learn. Learning has been defined as the process of acquiring a skill or

knowledge in the case of humans. The concept of learning itself is no different if

applied to a machine. Many learning methods of machine learning are inspired in

biological mechanisms of our brains.

Problem-based classification of machine learning algorithms can be further

divided into tree subcategories. Supervised learning is basically learning from

examples, where sets of input-output pairs are presented to the learner, which then

through some algorithm like the back propagation algorithm, a function is

approximated in order to generalize future inputs. In unsupervised learning, the

learning agent doesn't receive any feedback whatsoever from the environment,

yet, it is able to recognize features of the input sets, and classify it. Finally, in

reinforcement learning, the learning agent receives sparse information from the

environment, regarding a state of success or failure as a result of a previous

action.

Reinforcement learning can overcome some important limitations of supervised

learning present in cases where "example sets" are not readily available, instead it

uses a reinforcement signal in order to find an optimal policy either for a decision

making or a control action. Learning by reinforcement is much more difficult than

supervised learning. RL systems must learn from limited or poor information

25

CHAPTER 2: KNOWLEDGE ACQUISITION

(reinforcement signal) in contrast with supervised learning, where the information

consists on a complete set of input-output examples. In many cases the

information required to create input-output sets for training might not be

available/accessible.

2.5 Summary

This chapter presented a brief review on knowledge acquisition, its definition and

classification, highlighting and precisely locating the scope of this work. It was

presented two types of classifications for knowledge acquisition; a learning based

classification and a problem-based classification. Additionally a brief overview of

different learning methods has been provided. The next chapter will describe in

more detail the reinforcement learning problem, and will provide an introduction

to reinforcement learning and several different reinforcement methods.

26

Chapter 3

Reinforcement Learning

3.1 Introduction

Reinforcement learning is an important aspect of much learning in most animal

species. In the context of machine learning, reinforcement learning refers to a set

of different methods oriented to solve a specific group of problems. Such

problems consists on determining or approximating an optimal policy through

repeated interactions with the environment (i.e., based on a sample of experiences

of the form state-action-next state-reward). In many cases, like in uncharted

scenarios, an agent will benefit the most in learning from its own experience

(Sutton and Barto, 1998).

The rest of this chapter is organized as follows; section two will explain how RL

is produced in the human brain, section three provides a brief review of the most

commonly used RL terms that will be used through all the rest of this dissertation.

Section four presents RL taxonomy, sections five to seven will provide an

overview of the classification of RL methods. In section eight, a more detailed

27

CHAPTER 3: REINFORCEMENT LEARNING

review of some of the most well-known methods is presented. Sections nine and

ten describe the use of RL methods for decision making and control and finally,

section eleven summarizes the contents of this chapter.

3.2 Reinforcement Learning and the Brain

In nature it is observable that humans and animals can learn novel behaviours

under a wide variety of environments; the animal brain seems to have certain

mechanisms that enable us to learn behaviours based on past experiences

(Blackmore, ;2006). In psychological theory, reinforcement is a term used in

operant conditioning and behaviour analysis for the delivery of a stimulus

(immediately or shortly) after a response, that results in an increase or decrease in

the probability of that response. Recently reinforcement learning models have

been applied to a wide range of neurobiological and behavioural data. Specifically

the computational function of neuro-modulators such as dopamine, acetylcholine,

and serotonin have been addressed using the reinforcement learning framework

(Niv, 2009). More specifically, it has being proposed by (Doya, 2002) that:

 Dopamine signals reward prediction error.

 Serotonin controls the time scale of prediction of future rewards.

 Noradrenalin controls the width of exploration.

 Acetylcholine controls the rate of memory updates.

From all these mentioned neuro-modulators, dopamine is the most studied,

perhaps due to its implication in certain brain conditions such as Parkinson's

disease, schizophrenia, and drug addiction as well as its function in reward

learning and working memory. The link between dopamine and RL was made in

the mid '90s based on a hypothesis that viewed dopamine as the brain's reward

28

CHAPTER 3: REINFORCEMENT LEARNING

signal. Recent research (Schultz et al., 1997) discovered that the firing rate of

dopamine neurons in the ventral tegmental area and substantia nigra (Figure 3.1),

appear to mimic the error function in the temporal difference algorithm (section

3.6.1).

Striatum

Siibstantia
nigra

Ventral
cgrncrital

area

Figure 3.1: Sagital view of the human brain.

When the amount of actual reward is larger than animal's expectation of reward

this dopamine neurons fire in the midbrain, therefore it appears that dopamine

neurons can be considered to code the reward prediction error. In the

reinforcement learning algorithm, the reward prediction error has an essential role

to learn the optimal behaviour. Therefore, its being hypothesized that a

reinforcement learning algorithm is implemented in the basal-cortico circuit of the

brain (Doya, 2002).

Despite that some systems, like reinforcement learning as outlined above, can be

used to describe many phenomena found in animal behaviour, the question

remains whether all known modes of animal behaviour can be attributed to

29

CHAPTER 3: REINFORCEMENT LEARNING

systems based on relatively simple rules, or whether other structures are required

for higher (intelligent) processes, for example: behaviours that rely on reflecting,

or reasoning.

3.3 Common Terms

The next subsections describe the most important terms used in reinforcement

learning that will be use through the entire dissertation.

3.3.1 The Agent

A system moves and/or interacts with the environment through specific actions.

The agent observes the state of the environment, and uses a learned policy in

order to select an appropriate action (output). The agent also must have a goal or

goals relating to the state of the environment. For example, an agent can be a

robot moving over the floor, or a manipulator trying to reach for a specific part.

3.3.2 The Policy

The policy (n] is a decision rule that dictates w hat action' to take at every

possible state. The goal of the learning agent is to find a policy that maximizes the

total expected reward (or the total discounted rewards) that it will receive over

time, known as "the expected return". For example: for the present dissertation,

given any particular state, the use of the policy will determine a probability

distribution for the agent's future rewards, or as we will call it, a probability of

success.

30

CHAPTER 3: REINFORCEMENT LEARNING

3.3.3 The Environment

The environment is the external and immediate world to the agent. The

environment interacts with the agent, dynamically affecting its state. It can be

represented in many different ways. For example: the environment for a robot can

be composed by the walls surrounding it or the friction of its wheels with the

floor, or the floor inclination; the environment for a system like the cart-pole

(described in Chapter 6) is composed by the gravity forces acting on the mass.

Agent environments are classified based on different properties that can affect the

complexity of the agent decision-making process (Russell and Norvig, 1994).

• Accessible or inaccessible: An accessible environment is one in

which the agent can obtain complete, timely and accurate

information about the state of the environment.

• Deterministic or non-deterministic: In a non-deterministic

environment, the state that will result f rom a n a ction is not

guaranteed even when the system is in a sim ilar state. This

uncertainty presents a greater challenge to the agent designer

than deterministic systems.

• Static or dynamic: Static environments remain unchanged

except for the res ults p reduced b y th e actio ns of the agent.

Whilst dynamic environments are created when other processes

operate in them, thereby changing the environment outside the

control of the agent.

• Discrete or continuous: An environment is discrete if there are

a fixed, finite number of actions and percepts in it.

31

CHAPTER 3: REINFORCEMENT LEARNING

3.3.4 The Reward

The reward function is a signal that expresses the failure or success of performing

a specific action and it is extracted from a state observation; in other words the

reward maps each perceived state (or a state-action pair) of the environment to a

single number. The reward indicates the intrinsic desirability of the observed

state; therefore, if a policy selected action returns a negative reward, then the

policy may be changed in order to select a different action for that given state in

the future. For example, a simple system like the cart-pole can be credited with a

reward of zero for every action that keeps it in balance and punished with a

reward of -1 as soon as the controller takes an action that leads the pole out of

balance. In the case of the grid world problem, where we want to use a value

based reinforcement learning algorithm to learn how to reach the goal state as

quickly as possible, a natural way to model goal states in a reward function is to

give a positive reward on reaching the goal state and zero reward on all other

steps. In the grid world this would translate to a positive reward for reaching the

goal state and zero reward on each other step. However, this reward function

would then require a discount factor strictly lower than one. Otherwise, any action

that eventually exits the grid world is optimal and there is no incentive to reach

the goal quickly. An alternative method would be to set the reward for each

transition to some negative value and to use this as an incentive to find the goal

quickly.

3.4 Reinforcement Learning Taxonomy

Being a very flexible learning technique, to date, several methods and algorithms

have been developed. Each of these can be classified under one or more categories

according to different criteria. There are mainly three basic criteria to classify

reinforcement learning methods:

32

CHAPTER 3: REINFORCEMENT LEARNING

 By the presence of a system model.

 By its structure.

 By the way they learn and select a correct policy.

Figure 3.2 presents a chart showing the reinforcement learning taxonomy, along

with some well-known algorithm examples. In Figure 3.2 the shaded blocks show

the model that forms the principal focus of this dissertation. Figure 3 .2 also

present the classification of some well-known reinforcement learning methods.

: Reinforcement

With]_
model J

_f Without ")
~~1 model J H

"j"~

Prioritized
Sweeping

[Critic]_
only J

critic J~~

_f Policy ^| _
~~[gradient J

- EAKL.
1 J

Temporal 11
difference J 1

Dynamic 1
Programing J

J

Temporal 1
Difference |

REINFORCE

^
SARSA

AHC

rrOTTDT

Figure 3.2: Reinforcement learning taxonomy.

3.5 Model-Based Methods

Model-based or indirect methods act in two phases: first, they learn the transition

probability and reward functions and second, they make use of those transition

probabilities in order to compute the Q function by means of, for example, the

33

CHAPTER 3: REINFORCEMENT LEARNING

Bellman equations. Some of the best well know algorithms in this category are:

Dyna (Roy et al., 2005) and prioritized sweeping (Demspster, 1969, Moore and

Atkeson, 1993).

3.6 Model-Free Methods

Model free or direct methods learn the policy by directly approximating the Q-

function with updates from direct experience. These methods are sometimes

referred to as the Q-learning family of algorithms. See (Sutton, 1988) or (Watkins,

1989). SomeiOf the best well know algorithms in this category are: adaptive

heuristic critic (AHC) learning (Barto et al., 1983), Q-learning (Watkins, 1989)

and SARSA (Rummery and Niranjan, 1994).

Model free methods can be further classified in three sub groups depending on

whether the algorithm focuses on learning the policy or the value function, critic

only, actor only, and actor-critic (Barto et al., 1983).

3.6.1 Critic Only Methods

Also called v alue function-based methods, are based on the idea to f ind the

optimal value function a nd then to derive an opti mal policy from this value

function. Some of the most important learning algorithms in RL are critic-only

methods, such as:

 Dynamic programming (Bellman, 1957).

 Temporal Difference (Sutton and Barto, 1987, Sutton, 1988).

34

CHAPTER 3: REINFORCEMENT LEARNING

3.6.2 Actor Only Methods

In contrast with critic only methods, actor only methods learn the policy, which is

a function a(s) that depends only on the current state and therefore a value

function is never defined.

In actor only methods, the learning agent uses an explicit representation of its

behaviour with the goal of improving it by searching the space of possible policies

P. Therefore, an actor only method will be feasible, if its search space is restricted

to a subset of P. In so doing, a large portion of prior knowledge can be integrated

into the learning task and hence, the search complexity be reduced. However, in

some cases, incorporating large amounts of background knowledge is hard to

accomplish, e.g. whe n the task is not fully understood making it difficult to

specify an appropriate subclass of policies.

Some important actor only algorithms include:

 Associative Reinforcement Learning Algorithms (Barto and

Anandan, 1985).

 Policy gradient algorithms (Cheeseman, 1985).

o REINFORCE (Williams, 1992).

 EARL, evolutionary algorithm RL (Moriarty et al., 1999).

3.6.3 Actor-Critic

As proved by (Kalyanakrishnan and Stone, 2009) both previously described

methods have strong theoretical foundations, however, their performance cannot

be assured for the c ases when the agent has to cope with deficient function

35

CHAPTER 3: REINFORCEMENT LEARNING

approximation and partial observability. Critic only methods have a superior

sample complexity and asymptotic performance when provided complete state

information; yet, critic only methods are robust to inadequate function

approximation and noisy state information.

Although value function-based methods and actor-only methods are contrasting

approaches to solve reinforcement learning tasks, it is possible to combine their

advantages. Actor-critic (AC) methods are TD methods that have a separate

memory structure to explicitly represent the policy independent of the value

function. The policy structure is known as the actor, because it is used to select

actions, and the estimated value function is known as the critic, because it

criticizes the actions made by the actor. When combined into an AC structure, the

learning is always on-policy: the critic must learn about and critique whatever

policy is currently being followed by the actor. The critique takes the form of a

TD error (a scalar signal) and represents the sole output of the critic which drives

all learning in both actor and critic, as seen in Figure 3.3.

-Staic-

AetoX ActionW F.nvironnicMii

Figure 3.3: Actor-critic architecture.

36

CHAPTER 3: REINFORCEMENT LEARNING

In an AC system at any given time, the critic is learning the values for the Markov

chain that comes from following the current policy of the actor. The actor is

constantly learning the policy that is greedy with the respect to the critic's current

values.

AC methods were among the first reinforcement learning algorithms to use

temporal-difference learning. These methods were first studied in the context of a

classical conditioning model in animal learning by (Sutton and Barto, 1981).

Later, (Barto et al., 1983) successfully applied AC methods to the cart-pole

balancing problem, where they defined for the first time the terms actor and critic.

In the simplest case of finite-state and action spaces, the following AC algorithm

has been suggested by (Sutton and Barto, 1998). After choosing the action at in

the state s, and receiving the reward r,, the critic evaluates the new state and

computes the temporal-difference (TD) error, 5t , according to (3.1):

(3.1)

where y is the discounting rate and V is the current value function implemented

by the critic. After that, the critic updates its value function:

(3.2)

where a, is the critic's learning rate at time t. The key step in this algorithm is

the update of actor's parameters. If TD error is positive, the probability of

selecting action a = a, in the state s = s, in the future should be increased since

action a has resulted in a better than expected state value. By reverse logic, the

probability of selecting a, in the state s, in the future should be decreased if the

37

CHAPTER 3: REINFORCEMENT LEARNING

TD error is negative. Suppose the actor chooses actions stochastically using the

Gibbs softmax method:

(3.3)

where 0(s,a] is the value of the actor's parameter indicating the tendency of

choosing action a in state s . Then, these parameters are updated as follows:

0(sl ,al)<-0(s,,al) + fiSl (3.4)

where J3t is the actor's learning rate at time t. A more detailed description of the

temporal difference algorithm will be given in chapter 3.8.1.

An AC system first updates the value in every state once, then it updates the

policy in every state once, finally the process is repeated, this occurs in the form

of incremental value iterations. This process is a form of dynamic programming,

which is guaranteed to converge to the optimal policy. If it instead updates all the

values repeatedly in all the states until the values converge, then updates all the

policies once, then repeats, then it reduces to policy iteration, another form of

dynamic programming with guaranteed convergence. If it updates all the values N

times between updating the policies, then it reduces to modified policy iteration,

which is also guaranteed to converge to optimality.

It would seem that an actor-critic system with a lookup table is guaranteed to

converge to optimality no matter what. Surprisingly, that is not the case. Although

it always converges for /<0.5 (Williams & Baird 1993), it does not always

converge for larger y, as shown by (Baird, 1999).

38

CHAPTER 3: REINFORCEMENT LEARNING

TABLE 3.1 ACTOR-CRITIC ALGORITHM
Algorithm

Input: States seS, Actions aeA(s), Initialize a, y.

Output: Policy ft(s,a) responsible for selecting action

a in state s .

for (all seS, aeA(s}) do

p(s,a)<-0;
ep(s 'a)

n(s,a)<r

end
while True do

Initialize s ;
for (/ = 0; t<Tm ; t = t + l) do
Choose a from musing ;r(s,a) ;

Take action a, observe r, s' ;

p(s,a)<^p(s,a)
e p(!

n{s,d)<-

b=\

S

end
end

We conclude listing some of the most important advantages of using actor-critic

methods:

• Explicit representation of policy as well as value function.

• Minimal computation to select actions.

• Can learn an explicit stochastic policy.

39

CHAPTER 3: REINFORCEMENT LEARNING

• Can put constraints on policies.

• Appealing as psychological and neural models.

Table 3.1presents a pseudo code example for the actor critic learning method. The
best well known example of an actor-critic algorithm is the adaptive heuristic
critic algorithm (AHC) (Barto et al., 1983) where this concept was introduced for
the first time.

3.7 On-Policy / Off-Policy Methods

In either of the model-based or the model-free methods there are two basic
strategies to update the policy's value function, on-policy learning and off-policy
learning.

Off-policy methods can update the estimated value functions using hypothetical
actions, those that have not actually been tried. Again, the behaviour policy is
usually "soft" (includes an element of exploration). As an added advantage, off-
policy algorithms can separate exploration from control, whilst on-policy
algorithms cannot. A well know off-policy learning method is Q-Learning
(Watkins, 1989) which is described in more detail in section 3.8.2.

In contrast with off-policy methods, on-policy methods learn the value of the
policy that is used to make decisions using results from executing the actions
determined by some policy, so that the value functions are updated based strictly
on experience. These policies are usually non-deterministic and include an
element of exploration to the policy. An example of an on-policy learning method
is the SARSA algorithm (Rummery and Niranjan, 1994) will be described in more

detail in section 3.8.3.

40

CHAPTER 3: REINFORCEMENT LEARNING

3.8 Reinforcement Learning Algorithms

3.8.1 Temporal Difference

As with other artificial learning algorithms, TD methods (Sutton, 1988) have been

the subject of study of neuroscience. In research studies it has been discovered

that the firing rate of dopamine neurons in two key areas of the brain, the ventral

tegmental area (VTA) and substantia nigra (SNc) (see Figure 3.1), appear to

mimic the error function as described by (Schultz et al., 1997). This error function

reports the difference between the estimated reward at any given state or time step

and the actual reward received, so that the larger the error function, the larger the

difference between the expected and actual reward. When this is paired with a

stimulus that accurately reflects a future reward, the error can be used to associate

the stimulus with the future reward. Several experiments using brain scanners

have dopamine cells appear to behave in a similar manner.

Temporal-difference (TD) methods were formalized and studied by (Sutton, 1988)

as a solution to the problem of making multi-step predictions of future events

based on past experience. Before Sutton's formalization, well-understood

techniques for learning predictions were trained using differences between

predictions and the actual future outcomes. With TD methods, learning was

applied using the differences between temporally successive predictions.

The example used by Sutton is that of a weatherman making a prediction on

Monday about if it will rain on Saturday. The conventional approach would have

been to wait until Saturday, observe if it rained, and then update the function to

make better prediction on future similar Mondays. With Sutton's method, the

weatherman would make a second prediction of Saturday's rain on Tuesday. The

temporal-difference error between Monday and Tuesday's predictions could be

used to improve predictions for similar Mondays. Sutton refers to the intuition of

41

CHAPTER 3: REINFORCEMENT LEARNING

temporal-difference learning as "learning a guess from a guess". TD methods are

incremental, so they require fewer computational resources than their

counterparts.

With other approaches, extra work is required to keep track of all the predictions

and then to finally update them when their target values are available. Sutton also

claims that TD methods are more data efficient than the competing approaches;

they converge faster and learn better predictions with limited data (Sutton, 1988).

TD learning is a method that combines Monte Carlo ideas and dynamic

programming (DP) ideas (Sutton and Barto, 1998), and takes the best from these

two methods: it can learn directly from raw experience and without a model of the

environment's dynamics, like Monte Carlo methods and at the same time it can

update estimates based in part on other learned estimates, without waiting for a

final outcome like DP do. These methods can also be combined like in TD(A)

algorithm, which integrates TD and Monte Carlo methods. It is important to

highlight that the differences in these methods are based in the way they approach

the prediction problem (policy-evaluation) consists on estimating the value

function V for a given policy n. Obviously, TD methods have an advantage

over DP methods in that they do not require a model of the environment, of its

reward and next-state probability distributions.

Both TD and Monte Carlo methods use experience to solve the prediction

problem. Given some experience following a policy n, both methods update their

estimate V of V. If a non-terminal state st is visited at time t, then both

methods update their estimate V(sl] based on what happens after that visit.

Roughly speaking, Monte Carlo methods wait until the return following the visit

is known, then use that return as a target for V(s,). A simple Monte Carlo

method suitable for non-stationary environments can be expressed as

42

CHAPTER 3: REINFORCEMENT LEARNING

where r, is the actual return following time t and a is a constant step-size

parameter. Whereas Monte Carlo methods must wait until the end of the episode

to determine the increment to F(5,)(only then is r: known), TD methods need

wait only until the next time step. At time / + 1 they immediately form a target

and make a useful update using the observed reward >; +1 and the estimate F(S,+1).

In order to express the simplest TD method, known as ZD(0), let r, be the

reinforcement on time step t and Rt the correct prediction that is equal to the

discounted sum of all future reinforcement. The discounting is done by powers of

factor of 7 such that reinforcement at distant time step is less important.

(3-6)

where 0 < y < 1 .

The signal x{ is the information available to the system at time t to enable it to

make the prediction p, . In other words, p: is a function of x, , and we can

write p, = P(x,), where P(x,) is a prediction function and Pt denote the

prediction function at step / , the goal of the algorithm is to update Pt to a new

prediction function Pl+l at each step. The discount factor determines how strongly

future values of r influence current predictions. The problem, then, is to select a

function P so that p, = P(x,)~ R, as closely as possible for t = 0,1,2,... . This is

called, the infinite-horizon discounted prediction problem.

(3.7)

43

CHAPTER 3: REINFORCEMENT LEARNING

by changing the index of / to start from 0 .

/X+2 (3.8)

(3.9)

(3.10)

Thus, the reinforcement is the difference between the ideal prediction and the

current prediction.

For t = 0,1,2,.... Therefore, since P,(xl+l) is the estimate of Rl+l available at

times-step t , one can estimate /?, by the quantity

Rl =rM +yP,(xM) (3.11)

That is, the current prediction function, Pt , applied to the next input, XM ,

multiplied by y, gives an estimate of the part of the prediction target that would

otherwise require waiting forever to obtain.

It is possible then, to express the temporal difference error SM as:

P,(x,) (3.12)

In effect, the target for the Monte Carlo update is rt , whereas the target for the TD

update is rM +yV, (•?,+,). The most obvious advantage of TD methods over Monte

Carlo methods is that they are naturally implemented in an online, incremental

fashion. With Monte Carlo methods, one must wait until the end of an episode,

because only then the return will be known, whereas with TD methods one need

44

CHAPTER 3: REINFORCEMENT LEARNING

only wait one time step. Surprisingly often, this turns out to be a critical

consideration. Some applications have very long episodes, so that delaying all

learning until an episode's end is just too slow. Other applications are continual

and have no episodes at all. Finally, some Monte Carlo methods must ignore or

discount episodes on which experimental actions are taken, which can greatly

slow learning. TD methods are much less susceptible to these problems because

they learn from each transition regardless of what subsequent actions are taken.

TD methods learn their estimates in part on the basis of other estimates. They

learn a guess from a guess, without waiting for an actual outcome (they

bootstrap). While doing this is certainly convenient, the real issue is if

convergence to the correct answer can still be guarantee.

For any fixed policy n, the TD algorithm described above has been proven to

converge to V, in the mean for a constant step-size parameter if it is sufficiently

small, and with probability one if the step-size parameter decreases according to

the usual stochastic approximation conditions (Barricelli, 1954).

If both TD and MC methods converge asymptotically to the correct predictions,

then the obvious next issue becomes which method learns fastest. At the current

time this is an open question in the sense that no one has been able to prove

mathematically that one method converges faster than the other (Sutton and Barto,

1998). In practice, however, TD methods have consistently been found to

converge faster than MC methods on stochastic tasks.

3.8.1.1 Q-Learning

One of the most important off-policy TD control algorithms is Q-Learning,

originally developed by (Watkins, 1989), is a form of model-free reinforcement

learning that can also be viewed as a method of asynchronous dynamic

programming (DP). In its simplest form, 1-step Q-Learning, it is defined by:

45

CHAPTER 3: REINFORCEMENT LEARNING

(3.13)

Q-Learning provides agents with the capability of learning to act optimally in

Markovian domains by experiencing the consequences of actions, without

requiring them to build maps of the domains. It works by learning an action-value

function that gives the expected utility of taking a given action in a given state and

following a fixed policy thereafter. One of the strengths of Q-learning is that it is

able to compare the expected utility of the available actions without requiring a

model of the environment.

In Q-learning, selecting the action with the best Q-value is necessary only at the

update step, which classifies it as an off-policy method. The behaviour is

separated from the learning process so any exploratory action can be taken while

learning is progressing. After the Q-values have converged, the action with the

best Q-value is always selected as in all reinforcement learning methods.

Therefore, it can be said that Q-learning learns the greedy policy (the policy

expected to result in the optimal policy).

A pseudo-code example of a Q-Learning algorithm is presented in Table 3.2,

(Sutton and Barto, 1998).

Additionally, considering a problem with discrete states and actions where the Q-

ftmction can be represented as a table with one entry for every state-action pair, it

has been shown that under certain boundary conditions Q converges with

probability 1 to the optimal value function, Q* (Watkins, 1989, Watkins and

Dayan, 1992). These boundary conditions are:

• At time step / , the learning rate a, , must have the following

characteristics:

46

CHAPTER 3: REINFORCEMENT LEARNING

a =00
v < 3 - 14)
2, or, 2 <oo

• The environment must be finite, Markovian, and stationary.

Under this conditions, if the agent visits all the states and picks all the actions an
infinite number of times and the policy converges in the limit to the greedy policy
(3.13) the Q estimate will converge to the optimal, true Q-function Q* with
probability 1.

TABLE 3.2 Q-LEARNING ON-POLICY TD CONTROL ALGORITHM
Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode) :

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q

Take, .auction a, observe r, s'
Choose a' from s' using policy derived from Q

s <— s'', a <— a'
Until s is terminal

Other convergence studies include:

• Assume unique maxima of Q (Littman, 2001)

3.8.1.2 SARSA

The SARSA (State-Action-Reward-State-Action) algorithm (Rummery and

Niranjan, 1994) is a temporal difference (TD) method for learning a Markov

decision process policy (e.g. learns action-value functions by making estimations
based on previous estimations rather than learning a state-value function) and is

almost identical to Q-learning. SARSA was created as an alternative to Q-learning

47

CHAPTER 3: REINFORCEMENT LEARNING

(Watkins and Dayan, 1992), which, as seen in the previous section, it updates the

policy based on the maximum reward of available actions. The difference between

these two methods is that SARSA learns the Q values associated with taking the

policy it follows itself, while Q-learning learns the Q values associated with

taking the exploitation policy while following an exploration/exploitation policy.

For an on-policy method we must estimate Q" (s,a) for the current behaviour

policy n for all states s and actions a according to:

(3.15)

where s, is the state of the agent at time t, at is the action chose by the agent, rl+l

is the reward the agent gets for choosing action a,, st+l is the state that the agent

will now be in after taking that action, and finally the action at+] , is the action the

agent ends up taking. The SARSA learning agent will interact with the

environment and update its policy based on the actions taken. The Q value

Q(s,, a,) represents the possible reward received at time step t + l for taking

action a in state s , plus the discounted future reward received from the next

observation. In (3.15) this Q value is updated by a temporal difference error, with

a learning rate a .

If sl+l is terminal, Q(Sl+l ,al+l) is defined as zero. As in all on-policy methods, we

continually estimate Q" for the behaviour policy n, and at the same time change

n towards greediness with respect to Q".

TABLE 3.3 SARSA ON-POLICY TD CONTROL ALGORITHM

Algorithm

Initialize Q(s,a) arbitrarily

Repeat (for each episode) :_________________________

48

CHAPTER 3: REINFORCEMENT LEARNING

Initialize s
Choose a from s using policy derived from Q

Repeat (for each step of episode):
Take action a, observe r, s'
Choose a' from s' using policy derived from Q

s <— s'; a <— a'
Until s is terminal ____________________________ ___

A pseudo-code example of a SARSA algorithm is presented in Table 3.3 (Sutton

andBarto, 1998).

In 2000 (Singh et al., 2000) demonstrated the convergence of the one step SARSA

algorithm to the optimal solution. Considering the same boundary condition

described in the previous section, optimality is reached by using s- greedy

policies, were greedy actions are chosen most of the times with a small probability

£, while some other non-greedy actions are chosen randomly. This is done to

achieve the right balance between exploration and exploitation so that after an

infinite number of trials (infinite experience), all state-action pairs are visited an

infinite number of times so that, in the limit, the policy converges to the greedy

policy.

3.9 Reinforcement Learning In Decision Making

Decision making can be considered an important skill for animals and humans

acting and surviving in environments only partially understood, where rewards

and punishments are assigned for their successes or failures (Dayan and Daw,

2008). Conclusive studies have shown that is a primitive neural network model of

the Basal Ganglia system in animals, that slowly learns to make decisions on the

basis of the relative probability of rewards (Frank and Claus, 2006) as it have

being shown by a series of influential models proposing that the responses of

49

CHAPTER 3: REINFORCEMENT LEARNING

dopamine neurons can be identified with the error signal from temporal difference

(TD) learning (Daw, 2003).

In artificial systems, decision-making environments are characterized by a few

key concepts: a set of decisions, a state space, a set of actions, and outcomes. The

actions can move the decision-maker from one state to another (i.e. induce state

transitions) producing outcomes. These outcomes are assumed to have a

numerical (positive or negative) utility, which can change according to the

motivational state of the decision-maker or by direct experimental manipulation.

Typically, the decision-maker starts off not knowing the rules of the environment

and has to learn or sample these from experience as in a Markov decision process

(MDP). In a MDP, a decision maker is faced with the problem of correcting the

behaviour of a probabilistic system as it evolves through time. In a MDP the agent

can choose an action with the goal of computing a sequence of actions that will

result in the system performing optimally with respect to some predetermined

performance' criterion (Gardiol and Kaelbling, 2006).

Decision making algorithms are very useful tools for many fields, ranging from

finances to control, and reinforcement learning algorithms have proven to be a

very useful tool for finding value functions for future decisions. Decision theory

has been combined with reinforcement learning algorithms in order to manage

uncertainty in state-transitions as in (Gaskett, 2003). This approach was further

improved in (Pednault et al., 2002, Rogova et al., 2002) where the use of cost-

sensitive sequential algorithms improved the performance when there is

uncertainty regarding the selection of future actions.

50

CHAPTER 3: REINFORCEMENT LEARNING

3.10 Reinforcement Learning For Control

An important advantage of learning in control systems is that learning can reduce

or completely eliminate the need for an accurate model of the dynamics of a

system or its environment. As it has been seen before, reinforcement learning does

not require the model of the system or the environment to perform, rather is solely

guided by a reinforcement signal. When it is applied to control, the policies are

fine-tuned based on performance errors (An et al., 1988) as it will be explored in

the DC motor example in Chapter 6.4. The problem of control is the problem of

finding the optimal policy ;:*, which can be accomplished by finding the optimal

action value function Q*.

Reinforcement learning (RL) has been shown to be an effective technique for

deriving controllers for a variety of systems, such as:

• Cart-pole balancing problem (Barto et al., 1983), where the goal

is to stabilize a vertical pole by applying an horizontal force to a

car. The reinforcement learning task in this experiment consists

on finding the direction of this force (to the left or right) for

every system state, derived from the cart position, speed and the

pole angle and radial speed.

• Mobile robots (Willgoss and Iqbal, 1999, Gaskett et al., 2000).

In this study a reinforcement learning algorithm is implemented

in small mobile robots, in order to learn behaviours to that can

allow the robot to complete a certain assigned task under noisy

infrared information.

51

CHAPTER 3: REINFORCEMENT LEARNING

• Motor control (Hinojosa et al., 2008). In this study, a fuzzy-

reinforcement learning algorithm is applied to control a DC

motor position by learning the rule matrix of a fuzzy controller.

3.11 Conclusions

Reinforcement learning provides a set of very useful methods for learning in cases

there the model of the environment or system is not available. The most

remarkable advantage in the use of reinforcement learning methods is in its use on

systems where complete feedback information is not available, as RL only

requires information about the success or failure of an action.

Temporal difference learning is a prediction method, mostly used for solving the

reinforcement learning problem. TD learns how to predict a value that depends on

future values of a given signal. It was also seen that the SARSA and Q-learning

algorithms are very similar, while SARSA updates Q(s,a) for the policy it is

actually executing, Q-learning updates Q(s,a) for a greedy policy (uses max(a)

to pick action to update). It can be said that Q-learning will, learn the "true"

optimal policy, but SARSA will learn about what it's actually doing.

The two main fields of application of reinforcement learning are decision making

and control problems. So far reinforcement learning have been used successfully

in several different applications under both fields, yet some more practical and

real-world applications need to be tested.

3.12 Summary

', ; i ! \,

This chapter explained the reinforcement learning process in the human brain.

Then, it introduced the principles of reinforcement learning and important

52

CHAPTER 3: REINFORCEMENT LEARNING

common terms used in the reinforcement learning literature. Additionally a

complete classification of several reinforcement learning methods was provided.

Two important temporal difference-based algorithms for reinforcement learning

have been described: Q-learning and SARSA. This chapter concludes explaining

the use of reinforcement learning in decision making and control systems.

The next chapter will introduce the concept of uncertainty and explains several

methods developed for dealing with this issue. It also provides an introduction to

fuzzy logic and probabilistic theory as two important methods for dealing with

uncertainty.

53

Chapter 4

Probabilistic Fuzzy Inference
Systems

4.1 Introduction

As we have seen in the previous chapter, reinforcement learning can be a

powerful tool in the decision making process when the learning agent is dealing

with stationary observable environments. But in reality, stationary and observable

environments are only possible in virtual worlds (simulation). When the learning

agent is embodied and interacting with a real environment uncertainty is

unavoidable. The inputs are prone to electrical noise, systematic errors, and

different kinds of perturbations that will make them inaccurate. At the same time,

the outcome of the actions taken is not always fully predictable. This

unpredictability b ecomes e vident for c ases wh ere th e ag ent has to d eal with

uncharted or unknown stochastic environments.

In the last few decades, fuzzy logic have been the focus of interest of researchers

as a way to deal with noisy input data in a natural human-like way, proving to be

54

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

an excellent tool to deal with non-statistical uncertainty. It became obvious that

the combination of probabilistic theory with fuzzy logic would be the next step

up, covering the uncertainty gap, by providing a way of handling statistical

uncertainty. Probabilistic fuzzy logic systems have quickly become the focus of

modern research with applications in areas such as finance, weather forecast and

robotics.

The rest of this chapter is organized as follows; section two presents an

introduction to uncertainty defining its common sources and common methods to

deal with this issue. Then, in section three, an overview of fuzzy logic systems

including some common learning methods used to optimize fuzzy inference

systems is presented. Following, in section four, an introduction to probabilistic

theory is given and in section five, the advantages of combining probabilistic

theory and fuzzy logic into probabilistic fuzzy logic is explained. Section 6

presents some important learning methods for fuzzy logic and outlines an

introduction of reinforcement learning applied to fuzzy logic. Sections seven and

eight provide the relevant conclusions and summary.

4.2 Uncertainty

We humans, are constantly deciding many of our actions without having complete

data about the facts we are analysing, in other words, we must take decisions in

the light of uncertain knowledge about a situation. As a consequence questions

like how do I fill the gaps in my own knowledge?, what should I do when not all

the details are known? And, how should I deal with unpredictable events? These

are questions every human must constantly face. In the same way this are also

issues that learning agents have to be able to handle. This set of questions

constitutes what it will be referred since now on as uncertainty. But, what exactly

is uncertainty?

55

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

Uncertainty is a term used to identify situations or states where the perceived

environment or the outcome of an action cannot be precisely described. It is

originated from insufficient information (vagueness) or from redundant discordant

information (ambiguity) about the world and can be produced by many reasons,

including: inherent limitations to model the world, noise, perceptual limitations in

a physical agent, like error in sensor measurements and the approximate nature of

many algorithmic solutions embedded in this agents.

Uncertainty comes in many different ways and in the real world, it is impossible

to avoid uncertainties. When designing intelligent systems, the problem of how to

handle uncertain, imprecise and incomplete information arises. According to

(Dwivedi et al., 2006) uncertainty arises at different levels. At an empirical level,

uncertainties are associated with the errors in measurements and resolution limits

of the sensors. At a cognitive level, it arises from the vagueness and ambiguities

in natural language. At a social level, uncertainty is created and maintained by

people for different reasons, like privacy.

4.2.1 Uncertainty Taxonomy

In 2000, (Regan et al., 2000) proposed that uncertainty can be group in two

categories: epistemic uncertainty and linguistic uncertainty, where epistemic

refers to uncertainties originated by indeterminate facts and linguistic uncertainty

refers to uncertainties originated by indeterminacy in the language. Later in 2007,

(Tannert et al., 2007) proposed a new categorization that considered other sources

of uncertainties as it is depicted in Figure 4.1. In this same figure, the dark shaded

boxes indicate the classification of the uncertainties that this work addresses.

56

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

Ipistemological
Uncertainty -j

Subjective
Uncertainly

Ontological
Uncertainty

Moral
Uncertainty

Rule
Uncertainty

Knowledge Quasi-rational ; : Intuition guided Rule guided
ilded decision decision i | decision '•• ', decision

Figure 4.1: Uncertainty taxonomy (Tannert et al., 2007).

4.2.2 Sources of Uncertainty

Uncertainty arises from many different sources, as a result, the method used to
handle uncertain information in a system have direct impact on its performance.
In the case of the Epistemological uncertainty, the sources of uncertainty can be

grouped in four categories:

• Noise and Conflicting Data:

o Observations of the environment are not precise.
Sensors in physical agents induce randomness on its

output.

o Measurement errors.

o Systematic errors

• Uncertain change:

57

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

o The world does not behave deterministically.

o Successor states cannot be predicted.

o Physically embodied agents are unpredictable (e.g.

wear and tear).

• Incompleteness ("ignorance"):

o Incomplete domain knowledge.

o Incomplete information (e.g. models of physical

things are only approximate).

• Selection among the alternatives.

As a contrast with epistemological uncertainty, linguistic uncertainty as described

by (Regan et al., 2000) can be originated due to:

• Vagueness, constitutes a form of uncertainty and it is defined as

the character of which with contours or limits lacking precision

or clearness (Bacon, 2009). Bertrand Russell was the first to

have discussed of them in the bald man paradox; at the

beginning, man is not bald. Then he loses his hair one by one; at

the end, he is a bald person. Therefore it should be a hair whose

loss converted the man into a bald person. This is of course

absurd. In truth the concept of bald person is vague. There are

men certainly bald, others not, and between them, there are men

for whom this is not completely true to define them like bald or

not (Sainsbury, 1995).

58

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

• Ambiguity is the uncertainty due to lack of clarity and/or lack of

precision. Is a term used in under conditions where information

can be understood or interpreted in more than one way and is

distinct from vagueness, which is a statement about the lack of

precision contained or available in the information. Can be due

to purposive strategy (e.g., to confuse) or by lack of knowledge.

There are two types of ambiguity :

o Discord (conflict) is the disagreement in choosing

among several alternatives, and

o Non-specificity is the uncertainty related to

alternatives represented by a set. It is present when

two or more alternatives are left unspecified.

• Context dependency. In phonetics the dependency on the

context about what it is being said can generate uncertainty on

the information that it carries.

4.2.3 Dealing with Uncertainty

In science and technology, the ultimate goal of a learning agent (e.g. a physical

agent) is to obtain true information (e.g. an accurate representation of the

surrounding world), so that it can to perform effectively by taking an appropriate

action. However, this is impossible due to imperfections in measurements,

missing information or model mismatches. If this uncertainty could be

significantly reduced, we will become more "confident" that a desirable event will

happen, or that an undesirable event will not. If an accurate representation of this

world is not attainable, then an effective way to deal with this inaccuracy is

needed.

59

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

To date there are several methods for dealing with uncertainty. According to

(Akerkar, 2005) these can be grouped in three categories:

• Fuzzy Logic Methods

• Symbolic Methods

o Non-monotonic reasoning

o Possibility theory

• Statistical Methods

o Certainty factors

o Probabilistic theory

o Dempster-Shafer theory

4.2.3.1 Fuzzy Logic Methods

One of the first attempts to represent uncertainty was introduce with the

development of fuzzy set theory (Zadeh, 1965). Fuzzy logic theory focuses on

ambiguities in describing events rather than uncertainties about the occurrence of

an event (Akerkar, 2005), due to this, it fails to handle uncertainty by itself, as it

only handles degrees of truth. Later on, (Zadeh, 1978) developed a broader

framework for uncertainty representation called possibility theory (a symbolic

method), which is also known as a fuzzy measure. In (Zadeh, 1978) a normal

fuzzy membership function was interpreted as a possibility measure.

4.2.3.2 Symbolic Methods

Symbolic methods represent uncertainty belief as being: true, false or neither true

or false. Symbolic methods have the advantage of using a well-defined reasoning

60

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

and inference framework with a simple mechanism, but it does not provide a

quantitative notion of uncertainty; whilst statistical methods try to represent

beliefs that are uncertain but for which there may be some supporting or

contradictory evidence (Akerkar, 2005) and offers advantages in genuine

randomness and exceptions scenarios. We can contrast statistical with symbolic

methods observing that probability theory is based on one type of measure: the

probability measure. Whilst possibility theory is based on two types of measures:

the possibility and the necessity measure (Dubois, 2006).

4.2.3.3 Statistical Methods

Statistical methods provide a method for representing beliefs that are not certain

(or uncertain) but for which there may be some supporting (or contradictory)

evidence. Statistical methods can be used to summarize or describe a collection of

data; in addition, patterns in this data may be modelled in a way that accounts for

randomness and uncertainty in the observations, and then, used to draw inferences

about the process being studied.

• Certainty factors are mostly used in areas where expert's

judgments a re a vailable, whil st pr obability the ory is use d in

cases where statistical data is available. A certainty factor is a

number e[-l,l] that reflects the degree of belief in a

hypothesis, positive certainty factors indicate that there is

evidence that the hypothesis is valid. The larger the certainty

factor, the greater is the belief in the hypothesis. When CF=1,

the hypothesis is known to be correct. A CF=-1 implies that the

hypothesis is effectively disproved, CF=0 implies that there is

neither evidence regarding the hypothesis being true or false.

61

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

• Probability theory is the oldest and possibly still best

developed. Several other theories are based on or are

generalizations of probability theory, such as upper and lower

probabilities, certainty factors or Bayesian networks.

• Dempster-Shafer Theory (DST) is a mathematical theory of

evidence. The seminal work on the subject is done by Shafer

(Shafer, 1976), which is an expansion of previous work done by

Dempster (Demspster, 1969). The theory came to the attention

of AI researchers in the early 1980s, when they were trying to

adapt probability theory to expert systems. The DST is based on

two ideas: the idea of obtaining degrees of belief for one

question from subjective probabilities for a related question, and

Dempster's rule for combining such degrees of belief when they

are based on independent items of evidence. In a finite discrete

space, Dempster-Shafer theory can be interpreted as a

generalization of probability theory where probabilities are

assigned to sets as opposed to mutually exclusive singletons. In

traditional probability theory, evidence is associated with only

one possible event, whilst in DST, evidence can be associated

with multiple possible events.

4.3 Fuzzy Logic

The idea of fuzzy logic (FL), was originally introduced by Prof. Lotfi Zadeh and it

was presented not as a control methodology, but rather as a way of processing

data by allowing partial set membership rather than crisp set membership or non-

membership (Zadeh, 1973).

62

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

FL, similarly to some other scientific theories, is not a new theory but rather, an

extension to previous theories, in particular, to the conventional Boolean logic. As

a contrast with traditional crisp logic, FL is based on fuzziness and uncertainty

and concerns with the general concept of "degree of truth" in the sense that the

degree of truth is no longer limited to zero and one. PL's core concept was
founded atop the fuzzy set theory (Zadeh, 1965), in which belonging to a set is not

a binary rough criteria, but rather it has some uncertainty inside that allows a
partial membership.

This particular characterization of fuzzy logic systems provides them with several

advantages. Firstly, fuzzy logic systems have the ability to represent and
manipulate linguistic variables and sentences with a natural language. This feature

enables us to incorporate human expert knowledge in the form of fuzzy if-then
rules and fuzzy membership functions. Secondly, fuzzy logic systems have an

outstanding capability to map the typical nonlinear relation of input-output model

without a precise mathematical formulation (Liu and Li, 2005).

Besides these two remarkable characteristics, fuzzy logic systems are able of
handling and representing non-statistical uncertainty (Meghdadi and Akbarzadeh-

T., 2001). The universal approximation property of fuzzy logic systems

guarantees their ability for modelling deterministic complex and uncertain

systems. These superior traits however can be degraded by the existences of

statistical (e.g. randomness) and probabilistic uncertainties.

Other key characteristics of FL systems are:

• Based on natural language (imprecise but very descriptive)

• Easy to understand.

• Based on very simple mathematical concepts.

63

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

• Flexibility.

• With any given system, it is easy to add on more functionality

without starting again from scratch.

• Very robust and forgiving of operator and data input errors.

• Ability to model nonlinear functions of arbitrary complexity.

• Present a convenient way to map from an input space to an

output space.

• It can be built on top of human expertise (capable of formulating

expert's knowledge)

• Easy interpretation of the results, because of the natural rules

representation.

• Easy extension of the base of knowledge through the addition of

new rules.

• Can be blended with conventional control techniques, not

necessarily to replace them, but in many cases, to augment and

simplify their implementation.

And the most important drawbacks of FIS are:

• Incapable to generalize, as it only answers according to what is

written in its rule base.

• Not robust against topological changes of the system (stochastic

environments), such changes would demand alterations in the

rule base.

64

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

• Depends on the existence of an expert to determine the inference
logical rules.

4.3.1 Fuzzy Inference Systems

A FIS is the process of formulating a mapping from a given input to an output
using fuzzy logic, as it can be seen in Figure 4.2. This mapping then provides the

basis from which decisions can be made, or patterns classified (McNeill and Thro,

1994). Therefore, it is possible to classify FIS as expert systems with actions

based on a , set.,of rules, were the antecedents and the consequents are expressed in
linguistic terms, resembling human natural language. This important characteristic

makes FIS very easy to understand and allows the operator to incorporate human
("a priori") expert knowledge in the form of fuzzy if-then rules and fuzzy

membership functions.

Input 1

Input 2 '

Non-fuzzy
inputs (crisp)
numbers limited
to a range

Rule 1

Rule 2 § + •••••••••••»• Output

Rule 3

Fuzzy reasoning De-fuzzyfication Result: a crisp
All rules evaluated of results number
in parallel

Figure 4.2: Basic structure of a FIS.

FIS has been successfully applied in many different fields ranging from automatic

control and expert systems to data classification, decision analysis and computer

vision. Due to this multidisciplinary nature, FIS became associated with a rather

65

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

large number of methods such as fuzzy-rule-based systems, fuzzy expert systems

(Siler and Buckley, 2004), fuzzy modelling, fuzzy associative memory (Kosko,

1991), and the one of especial concern for this work, fuzzy logic controllers.

When a FIS is used for controlling systems it is called fuzzy logic controller

(FLC). FLC are especially advisable for cases where the mathematical model of

the system to' be controlled is unavailable, and the system is known to be

significantly nonlinear, time varying, or to have a time delay. Within the area of

automatic control, FIS have had great success in the field of robotics. FLC are

particularly suitable for implementing systems with stimulus-response behaviour,

since fuzzy rules provide a natural framework to describe the way the system

"should react" whilst providing human reasoning capabilities in order to capture

uncertainties (Jang et al., 1997).

One of the first control systems built using fuzzy set theory (and one of the most

commonly used) is the Mamdani's fuzzy inference method (Mamdani and

Assilian, 1975). Mamdani's effort was based on Zadeh's paper on fuzzy

algorithms (Zadeh, 1973) for complex systems and decision processes.

Another important method is the Sugeno inference method. In general, Sugeno

systems can be used to model any inference system in which the output

membership functions are either linear or constant.

4.4 Probabilistic Theory

From all the methods for dealing with uncertainty mentioned earlier in this

chapter, probabilistic theory is the oldest (can be back traced to the early 1960s)

and the best understood of all. As a contrast with FL, probability theory concerns

with the concept of "probability of truth" and gives information about the

likelihood of an event in the future by representing information through

66

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

probability densities. Therefore, probability and fuzziness are concepts that

represent two different kinds of uncertainty, statistical and non-statistical,
respectively.

In recent years this probabilistic approach has become the dominant paradigm in a

wide array of problems, ranging from financial (Berg et al., 2004, Almeida and

Kaymak, 2009), control (Liu and Li, 2005, Blackmore, 2006, Hinojosa et al.,

2008), robotics (Thrun, 2000, Valavanis and Saridis, 1991, Park et al., 2007,

Thrun et al., 2000, Jaulmes et al., 2005), and for representing uncertainty in

mathematical models (Ross, 2004). Some research work, ai; in (Cheeseman,

1985), supports the ide a that a 11 the num erous sc hemes for representing a nd

reasoning about uncertainty featured in the AI literature are unnecessary as

probability theory can easily and effectively deal with this issue.

Probability theory attempts to quantify the notion of probable. The general idea is

divided into two concepts:

• Aleatory (objective) probability, which represents the

likelihood of future events whose occurrence, is governed by

some random phenomena.

• Epistemic (subjective) probability, which expresses the

uncertainty about the outcome of some event, in the lack of

knowledge or causes.

If w e apply the concepts of pr obabilistic theor y to the par ticular c ase of a n

embodied agent, this approach becomes divided in two fields, (Thrun, 2000):

•as.
• Probabilistic perception: Deals with the uncertainty about the

external world, as captured by the sensors of the embodied agent

67

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

by using a probability distribution of the captured data instead of

discreet values.

• Probabilistic control: Given the uncertainty about the

environment, a learning agent faces the task of taking a decision

about its next action which consequences might be uncertain,

especially over the long-term.

In this same particular case, a probabilistic controller will need to anticipate to

various contingencies that might arise in uncertain worlds, by blending

information gathering (exploration) with robust performance-oriented control

(exploitation). In this case, the uncertainty of the state is propagated forward in

order to obtain a probabilistic representation of a long-term behaviour.

There are two broad views on probability theory for representing uncertainty: the

frequentist and the subjective or Bayesian view.

• The Frequentist View, sometimes also referred as "empirical"

or "a posteriori" view of probability, relates to the situation

where an experiment can be repeated indefinitely under identical

conditions, but the observed outcome is random. Empirical

evidence suggests that the relative occurrence of any particular

event, i.e. its relative frequency, converges to a limit as the

number of repetitions of the experiment increases, therefore,

probabilities are defined in the limit of an infinite number of

trials.

• The Subjective View, was originally introduced by (Pearl,

1982, Pearl, 1988) and further developed later by (Lauritzen and

Spiegelhalter, 1988). The subjective or Bayesian view of

probability is used as a belief where the basic idea in the

68

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

application of this approach is to assign a probability to any

event based on the current state of knowledge and to update it in

the light of the new information. The conventional procedure for

updating a prior probability in the light of new information is by

using Bayesian theorem where subjective probabilities quantify

degrees of belief.

Other less common views can include the classical view, sometimes referred as "a

priori" or "theoretical" and the axiomatic view, which is a unifying perspective

aimed to provide a satisfactory formal structure for the development of a rigid

theory by focusing on the question "How does probability work?" rather than

trying to define what probability is.

As probabilistic methods and fuzzy techniques are good for processing

uncertainties (Zadeh, 1995, Laviolette and Seaman, 1994), it would be beneficial

to endow FLS with probabilistic features. The integration of probability theory

and fuzzy logic has been the subject of many studies as in (Liang and Song,

1996). In the next section probabilistic fuzzy logic systems will be described in

more detail.

4.5 Probabilistic Fuzzy Logic Systems

In the previous chapter we have seen that statistical uncertainty may be viewed as

a kind of uncertainty concerning the occurrence of an event in the future.

Statistical uncertainty is best represented with probability, which gives us the

likelihood of occurrence of an outcome, presented in a statistical manner.

However, there are other types of uncertainty present, for example, the uncertainty

related to perception. These other types of uncertainty should best be modelled

69

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

explicitly by using paradigms other than probabilistic modelling (Berg et al.,
2004).

On the other hand, fuzzy systems have two important traits: a universal

approximation property, which guarantees the ability for modelling deterministic,
complex, and uncertain systems (non-stochastic uncertainty); and its inherent

ability for handling and representing non-statistical uncertainties. These superior
traits however can be severely degraded by the existence of statistical

uncertainties (like randomness) and probabilistic elements (Meghdadi and

Akbarzadeh-T., 2001).

In order to deal with these issues, the concept of probabilistic fuzzy logic (PFL)
emerges with the goal of enhancing the universal applicability of fuzzy systems

by bridging the gap between fuzziness and probability. The need for this
integrated framework is highlighted in situations where both types of uncertainty

exist concurrently and where each of the fuzziness and probability concepts alone

are necessary but not sufficient, e.g. the representation of non-deterministic real

world systems.

Probabilistic fuzzy logic systems work in a similar way as regular fuzzy logic

systems and encompass all their parts: fuzzification, aggregation, inference and

defuzzification but they incorporate probabilistic theory to improve the stochastic

modelling capability. Already in the early 80's, Zadeh defined probabilities on

discrete fuzzy sets, (Zadeh, 1984). The same idea is continued by (Pan et al.,

1996), where Bayesian inference is applied to fuzzy distributions.

In order to model uncertainty, (Meghdadi and Akbarzadeh-T., 2003) defined

probabilities on the rules of fuzzy systems. In this case, a fuzzy rule will be

expressed as follows:

70

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

Rj : If .Y, is A*... x, is A*... and x, is A, then "y" could be B}

with a probability of success of /?,,,..., Bk with a probability

of success of pjk and Bn with a probability of success of pjn

where R} is the/h rule of the rule base, A* is the hth linguistic value for input i t

and h = {\,2....,qi } where qi is the total number of membership functions for

input .v . Variable y denotes the output of the system and Bt is a possible value

for y, with k = {\,2,...,n] being the action number and n is the total number of

possible actions that can be executed. The probability of this action to be

successful is pik , where / = {\,2,...,m} is the rule number and m is the total

number of rules. So that p}l + pj2 + • • • + pin - \.

According to (Berg et al., 2002) a method for defining probabilities on fuzzy sets

is developed by first defining the probability of a singleton fuzzy event as:

P(S,) = Ps f(x,)= X /fv. (**)fM (•>•»
^e.V

In (4.1), f(xk] = P(xk) by definition and xk is a fuzzy sample. If the above

definition is extended to a countable set of discrete fuzzy events Ab defined on

the sample space Q a vector of membership values is obtained, where:

ft^(xt) = m^ (4.2)

Then for a fuzzy partition it can be said that:

(**) = ! Vx, (4.3)

71

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

Now we can rewrite several probability theory properties for fuzzy sets.

• The membership function of the intersection:

/f 4»rut (**) = /^ (**) t*Bc (xk) (4-4)

AT.E.V

The conditional probability is shown in (4.6), where xp is a finite set of

representative samples.

(4.6)

And finally we can express the total law of probability as:

(4.7)

(Liu and Li, 2005) who applied it to solve a function approximation problem and

a control robotic system, showing a better performance than an ordinary FLS

under stochastic circumstances. Other PFS applications include classification

problems (Berg et al., 2002) and financial markets analysis (Berg et al., 2004).

This new concept not onl y has the advantages of the approximate reasoning

property of fuzzy systems, but it can also be regarded as an extension to

conventional FL in the sense that the latter is a special case of the former with

zero degree of randomness. In a PFL the truth values are not only specified with a

degree of truth between zero and one, but also with a probability of truth in the

form of a probability number or a probability distribution. Consequently, in a PFL

system, the degree of truth and the probability of truth are simultaneously

72

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

considered. Therefore, it is expected from this PFL to have an increased capability

in handling both, statistical and non-statistical uncertainty, simultaneously.

4.6 Learning Methods for Fuzzy Systems

Fuzzy logic is an effective tool for solving many nonlinear control problems,

where the nonlinear behaviour of the system makes it difficult, if not impossible,

to build an analytical model of the system. Additionally, fuzzy set theory provides

a mathematical framework for modelling vagueness and imprecision. However,

building a fuzzy controller has its own difficulties.

The process of designing a FLC has two challenging tasks: defining the controller

structure and, second, finding the numerical values for the controller parameters.

These challenges arise due to a lack of a well-established theoretical approach;

rather, they are entirely based on the empirical experience of a human operator,

which is transferred into the FLC. However, the extraction of the expert's

knowledge is not always an easy task; decision rules with complex structures and

an excessively large number of variables necessary to solve the control task

introduce difficulty in performing the knowledge extraction.

A direct solution to these problems is to use learning algorithms in order to

replace or enhance the human operator "a priori" knowledge. Fuzzy logic

learning can be used to automatically provide a solution for these issues, thereby

removing human input from the design.

Several techniques reported in recent literature to create such intelligent

controllers include the use of algorithms such as neural networks, genetic

algorithms, and more recently reinforcement learning, in order to learn and

optimize a fuzzy logic controller.

73

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

The result of combining FIS and learning algorithms has several important

advantages, such as higher robustness, shorter development time, and less

assumptions about the dynamical behaviour of the plant, that makes it attractive
for application to real-world problems.

4.6.1 Neuro-Fuzzy Systems

Neural networks (NN) have the ability, to learn complex mappings, generalize

information, and classify inputs. The combination of NN with FL results in a

hybrid intelligent system that synergizes these two techniques by incorporating

the human-like reasoning of fuzzy systems with the learning and connectionist

structure of NN (Fuller, 2000). This combination, referred as Neuro-fuzzy
hybridization was proposed by (Jang, 1993) and is also known as fuzzy neural
network (FNN) or Neuro-fuzzy system (NFS) in the literature. The main strength

of Neuro-fuzzy systems is that they are universal approximators with the ability to

solicit interpretable IF-THEN rules and involves two contradictory requirements

in fuzzy modelling: interpretability and accuracy. This leads to the division of the

Neuro-fuzzy research field into two areas: linguistic fuzzy modelling (focused on

interpretability), and precise fuzzy modelling (focused on accuracy).

Neural networks and FL can be combined in several different ways depending on

the specific requirements and challenges imposed by the control task. According

to (Nauck et al., 1997) Neuro-fuzzy systems can be classified in three categories:

• Cooperative Neuro-Fuzzy System: The system goes through a

pre-processing phase where the NN mechanisms of learning

determine some sub-blocks of the fuzzy system like the FIS

membership functions or the fuzzy rules. Once the FIS

parameters are determined, the NN goes to the background. This

is depicted in Figure 4.3 a).

74

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

• Concurrent Neuro-Fuzzy System: The NN and the fuzzy

system work continuously together. In general, the NN assists

the FIS continuously to determine the required parameters

especially if the input variables of the controller cannot be

measured directly. This can be done by pre-processing the

inputs and/or post-processing the outputs. This is depicted in

Figure 4.3 b).

• Hybrid Neuro-Fuzzy System: In the hybrid or fused Neuro-

fuzzy system, the NN are used to learn some required

parameters of the fuzzy system (parameters of the fuzzy sets,

fuzzy rules, and/or weights of the rules), share data structures

and knowledge representations. This is depicted in Figure 4.3 c).

The use of NN in combination with FL has provided several benefits and it enjoys

real world applicability. However, there are still important drawbacks:

• Requires input-output training pairs, which are not always

available.

• Computationally expensive.

• Increased complexity, compared with fuzzy only or NN only

methods.

75

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

—— +•

———— 1-|

Fuzzy Control

Rul^Base

\
Neural Network

/(')

x.(0
a)

— -
r uzzification

•«
i L

Neural Network y(0

b)

Fuzzy Control
yi(0 y(')

'

Neural Network

t

y2(f)

Xi(f)

X2(f)

c)
Figure 4.3: Different configurations of neuro-fuzzy systems.

4.6.2 Fuzzy Logic and Genetic Algorithms

As discussed in the previous sections, when designing a FLC, the operator will
find two difficulties: how to establish the structure of the controller and, second,
how to set numerical values of the controller parameters.

To tackle these problems, a new kind of algorithms called genetic algorithms
(GA) was proposed by (Holland, 1992), based on the Darwinian principle of
survival of the fittest for reproduction and mutation.

Genetic algorithms (GA) are stochastic search techniques that operate without an
explicit knowledge of the task domain by using only the fitness of evaluated

76

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

individuals. This feature makes the method universal and allows training of fuzzy

systems of arbitrary configuration and of arbitrary sets of fuzzy system parameters

(NgandLi, 1994).

For any given task, the learning process will go through the following steps:

• Take every possible solution and create a population of possible

solutions.

• Test different regions of the population in terms of the strength

of its solution (i.e. how good it is).

• The strongest solutions in a population will be mated resulting

in the creation of offspring, which would replace the weakest

solutions of the population.

• Repeat for several generations until the GA cannot find a better

solution.

When combined with FLC, there are several ways GA can enhance the FIS

overcoming its limitations:

• Tuning the controller parameters. According to (Driankov et

al., 1996), some of the parameters that can be altered to modify

the controller performance are:

o The scaling factors for each variable.

o The fuzzy sets representing the meaning of linguistic

values.

o The if-then rules.

77

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

• Learning the controller structure. The GA is configured to

modify the topology of the FLC which can include changes like:

o Adding/deleting membership functions.

o Changing the shape of membership functions.

o Consequently, adding/deleting rules.

o Changing the type of fuzzyfication/defuzzyfication
methods.

The use of GA is a strong alternative for many optimization problems not only for
its efficiency, but also for their inherent simplicity and versatility, they are often
not diff icult to im plement onto e xisting a pplications. GA are a Iso v ery time
efficient, capable of finding solutions to problems in a short amount of time.

According to (Goldberg, 1994) some important advantages include:

• Ability to solve hard problems quickly and reliably.

• Easy to interface to existing simulations and models.

• Extensibility.

• Easy to hybridize.

Although GA provide a good and efficient solution for many optimization

problems, its use is still restricted due to some intrinsic limitations such as:

• Certain optimisation problems cannot be solved by means of
genetic algorithms. This occurs du e to poorly known fitness

functions.

78

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

• There is no absolute assurance that a genetic algorithm will find

a global optimum nor it can assure a constant optimisation

response time. Evolution is inductive; in nature life does not

evolve towa rds a good solut ion it evolves away from bad

circumstances. This can cause a species to evolve into an

evolutionary dead end.

• Genetic algorithms have optimisation response times are much

larger than other learning methods.

For online control of real systems, random solutions and convergence issues, as

the ones described, seriously limit the applicability of GA use in real time

applications.

4.6.3 Fuzzy-Reinforcement Learning

In a FIS the rules governing the system are described linguistically using terms of

natural language, and then they are transformed into fuzzy rules. These linguistic

descriptions are constructed subjectively according to prior knowledge of the

system, making the process highly dependent on the expert's knowledge. If the

expert's knowledge about the system is faulty or the dynamics of the plant are

either unknown or are too complex to be solved analytically. A learning method to

fine-tune the parameters of the FIS will be needed in order to achieve optimality.

As described before, a plausible solution for the above described problem is the

use of supervised learning, which uses input-output data in the development of the

fuzzy model. When these input-output training data sets are available and reliable,

supervised learning has proved to be more efficient than reinforcement learning

(Anderson, 1986, Barto and Jordan, 1987). However, this is not always the case,

in the supervised approach; the fuzzy rules are constructed based on the input-

79

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

output data, which can be faulty, damaged or noisy so that the obtained rules may

not be reliable. Additionally the system might require the selection of control

actions whose consequences emerge over uncertain periods of time for which

input-output training data sets are not readily available. In this case, the use of

reinforcement learning techniques are more appropriate than supervised learning

(Berenji and Khedkar, 1992).

Recent studies have proved that reinforcement learning can be used to fine-tune

fuzzy logic controllers successfully; either for structure identification as in (Lin

and Xu, 2006, Lin and Lee, 1994) or for parameter identification like the

Generalized Approximate-Reasoning-Based Intelligent Controller (GARIC)

presented by (Berenji and Khedkar, 1992, Berenji and Khedkar, 1998) and the

Generalized Reinforcement Learning Fuzzy Controller (GRLFC) developed by

(Mustapha and Lachiver, 2000).

4.7 Conclusions

The state of uncertainty is defined for situation where the perceived information

or the outcome of an action cannot be clearly defined due to factors as incomplete

information or ambiguous contradicting information. Therefore the development

of methods to deal with this issue is important so that a more accurate prediction

of future outcomes can be used to select present actions.

Several theories for handling uncertainty have been developed for different types

of uncertainties. The best developed and most often used is probability theory,

which quantifies the likelihood of an imperfect (noise or otherwise corrupted)

information to be a correct one.
i ' \ \ ; v" ''

Fuzzy sets, unlike probability and related theories, provide a mean to represent

vagueness, instead of quantifying the likelihood of an event. These sets generalize

80

CHAPTER 4: PROBABILISTIC FUZZY INFERENCE SYSTEMS

the concept of a truth value, assigning a membership value instead, to a set of

events. The basic assumption is that the data is vague, due to set-valued

information, and fuzzy sets can serve as a compressed description of imprecise,

generally contradicting pieces of such information.

Several authors combined probabilities and fuzzy sets, the attempts range from

using probability theory related methods on fuzzy models to defining concepts of

probability theory on fuzzy sets.

4.8 Summary

This chapter explored the unavoidable issue of uncertainty, explaining its different

sources and the existing methods to deal with this problem. Two methods for

dealing with different aspects of uncertainty have being described; fuzzy logic and

probabilistic .theory. Finally a framework combining these two methods was

described.

In the next chapter, the development of a method using the described probabilistic

fuzzy logic theory in combination with reinforcement learning will be described.

81

Chapter 5

GPFRL Generalized Probabilistic
Fuzzy-Reinforcement Learning

5.1 Introduction

The previous chapters described two major issues in the design of fuzzy logic

systems. Forgone side fuzzy logic systems (FLS) are only able to handle fuzziness,

non-statistical and non-stochastic uncertainties but, do not possess the capability

to handle statistical and stochastic uncertainties. On the other hand, if the

extraction of the expert's knowledge is difficult, the decision rules have complex

structures and the number of variables necessary to solve the control task is

excessively large. The design of the FLS becomes too complex. And the risk of

achieving sub-optimal performance is high.

The proposed solution merges 3 different paradigms in order to deal with the

described issues. First a FIS is combined with probabilistic theory as described in

chapter 4 into a probabilistic fuzzy logic PFL. This combination enhances the

uncertainty handling capabilities of fuzzy logic system or probability alone.

82

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

Despite of the added benefit of combining these two paradigms, doing this adds

complexity to the system, making it more difficult for a human expert to configure

or even to understand, so that an optimal configuration becomes unlikely. Second

the introduction of reinforcement learning into the PFL ensures an optimal
configuration of the system.

V

The present chapter presents such an algorithm, combining fuzzy logic systems
with probabilistic theory and reinforcement learning into a Generalized

Probabilistic Fuzzy-Reinforcement Learning (GPFRL) algorithm, able to handle

all the above mentioned issues.

In this novel algorithm the reinforcement learning stage is used to find

probabilities of success of each fuzzy system state. This algorithm features a

novel value function update algorithm that incorporates a probabilistic term, so

that the uncertainty is considered in the learning stage. As it will be seen in the

results of the experiments presented in chapter 6, this yielded to improved

learning speeds, faster convergence and robustness in light of input and output

uncertainties.

The rest of this chapter is organized as follows; section two describes the

architecture of our proposed GPFRL, section three describes the fuzzyfication and

defuzzyfication method used in our proposed approach. Section four details the

GPFRL learning process. The description of our proposed approach is given in

section five and finally section six summarizes the contents of the present chapter.

5.2 Structure

The proposed algorithm uses an Actor-Critic method. This kind of methods are a

special case of temporal difference (TD) methods (Barto et al., 1983) formed by

two structures. The Actor is a separate memory structure to explicitly represent

83

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

the control policy which is independent of the value function, which its function is

to select the best control actions. The Critic has the task to estimate the value

function and it is called that way because it criticizes the control actions made by

the actor. TD error depends also on the reward signal obtained from environment

as a result of the control action. Figure 5.1 shows the actor-critic configuration;

where r represent the reward signal, 7 is the internal enhanced reinforcement

signal and a is the selected action for the current system state.

CRITIC

•-r
ITT

FUZZYFlCATION ACTOR a --i SYSTEM
I/I.

V OU I f-'U I

Figure 5.1: Actor-critic architecture.

5.3 Probabilistic Fuzzy Inference

After an action at eA = {al ,a2 ,...,att } is executed by the system, the learning

agent performs a new observation of the system. This observation is composed by

a vector of inputs that inform the agent about external or internal conditions that

84

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

can have a direct impact on the outcome of a selected action. These inputs are

then processed using Gaussian membership functions according to

Left shoulder: juHt\ = -

1 if x < C L

othenvise

Centre MFs: (5.1)

Right shoulder: jU*(t) = • r- ^ Rif x < c

othenvise

where n}L 'L ' /;} is the firing strength of input x,, / = {l,2,...,/} is the input number,

L, C and R specify the type of membership function used to evaluate each input;

x, is the normalized value of input i ; c*L 'L ' R ' is the centre value of the Gaussian

membership function and cr'" '*' is the standard deviation for the corresponding

membership function.

These success probabilities p]k are the normalization of the s-shaped weights of

the actor, evaluated at time step / and are defined as

P,(') = -

7=1

where S is an s-shaped function given by

(5.2)

\ + e~
(5.3)

85

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

and wjk (t) is a real-valued weight that maps rule / with action k at a time / .

The total probability of success of performing action ak considers the effect of all

individual probabilities and combines them using a weighted average where, M

are all the consequents of the rules and Pk (t), is the probability of success of

executing action ak at time step t . The final action to be selected will be a

weighted combination of all actions and their probabilities.

IX (')•/>,(')
rk ('} = ——m —————

IX (0j =i

In (5.4) Mj (/) is the T-norm and is implemented by the product:

where //, is the j'h membership function of rule R,. Furthermore, fuzzy basis

functions are defined as follows:

(5.6)

In most reinforcement learning implementation, there is an issue concerning the

trade-off between "exploration" and "exploitation" (Sutton and Barto, 1998). It is

the balance between trusting that the information obtained so far is sufficient to

make the right decision (exploitation) and trying to get more information so that

better decisions can be made (exploration). For example, when a robot faces an

86

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

unknown environment, it has to first explore the environment to acquire some

knowledge about the environment. The experience acquired must also be used

(exploited) for action selection to maximize the rewards (Kantardzie, 2002).

Choosing an action merely considering Pk (?) will lead to a exploiting behaviour.

In order to create a balance, (Barto et al., 1983) suggested the addition of a noise

signal with mean zero and a Gaussian distribution. The use of this signal will

force the system into an explorative behaviour where different than optimum

actions are selected for all states; thus a more accurate input-output mapping is

created at the cost of learning speed. In order to maximize both, accuracy and

learning speed an enhanced noise signal is proposed. This new signal is generated

by a stochastic noise generator defined in (5.7).

t) (5.7)

Where TV is a random number generator function with a Gaussian distribution,

mean zero and a standard deviation ak which is defined as

< 5 ' 8)

The stocha stic noise generator us es the p rediction of e ventual reinforcement,

pk ({] shown in (5.1 1), as a damping factor in order to compute a new standard

deviation. The result is a noise signal which is more influential at the beginning of

the runs, boosting exploration, but quickly becomes less influtiitial as the agent

learns, leaving the system with its default exploitation behaviour.

87

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

5.4 Reinforcement Learning Process

The learning process of a GPFRL is based on an Actor-Critic reinforcement

learning scheme, where the actor learns the policy function and the Critic learns

the value function using the TD method simultaneously. This makes possible to

focus on on-line performance, which involves finding a balance between

exploration (of uncharted territory) and exploitation (of current knowledge).

Formally, the basic RL model consists of:

• A set of environment state observations O

• A set of actions A .

• A set of scalar "rewards" r

At each discrete time step t, the environment generates an observation o(t) of

the environment and acquires a set of inputs x, e X , then the agent performs and

action which is the result of the weighted combination of all the possible actions

ak & A , where A is a discrete set of actions. The action and observation events

occur in sequence, o(/), a(t), o(t + \}, a(t + \),... which will be called

experience. In this sequence, each event depends only on those preceding it.

RL typically requires an unambiguous representation of states and actions and the

existence of a scalar reward function. For a given state, the most traditional of

these implementations would take an action, observe a reward, update the value

function and select, as the new control output, the action with the highest expected

value (probability) in each state (for a greedy policy evaluation). The updating of

the value function is repeated until convergence is achieved. This procedure is

usually summarized under policy improvement iterations.

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

The parameter learning of the GPFRL system includes two parts: the Actor

parameter learning and the Critic parameter learning. One feature of the Actor-

Critic learning is that the learning of these two parameters is executed

simultaneously.

Given a performance measurement Q(t] and a minimum desirable performance

Qmm we define the external reinforcement signal r as

(0, V £>(/)>£} >0 I u\) umn
\-l,VO<Q(t)<Qmm

The internal reinforcement, F, expressed in (5.10), is calculated using the

temporal difference of the value function between successive time steps and the

external reinforcement.

t)- Pk (t-\) (5.10)

where y is the discount factor used to determine the proportion of the delay to the

future rewards and the value function pk (t) is the prediction of eventual

reinforcement for action ak and is defined as

where vjk is the Critic weight of the / rule, described by (5.13).

5.4.1 Critic Learning

The goal of reinforcement learning is to adjust correlated parameters in order to

maximize the cumulative sum of the future rewards. The role of the Critic is to

89

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

estimate the value function of the policy followed by the Actor. The TD error is

the temporal difference of the value function between successive states. The goal

of the learning agent is to train the Critic to minimize the squared TD error Ek (t)

described as

(5.12)

We use the gradient descent method in order to find the updating rule for the

weights vjk of the Critic (Baird and Moore, 1999)

where /3 is the learning rate.

Rewriting (5.13) using the chain rule:

It i i\ ,, lt\ /?_*il2 * \ ' k ^ ' (^ 14^
V.,.(t + \ 1 = V.t l/l-p ._ , . -~——TT'T——TT V 3 - 1 ^

(0 -'

" M =y (5.16)

(5.18)

90

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

In (5.19) /?' is the new Critic learning rate.

5.4.2 Actor Learning

The main goal of the Actor is to find a mapping between the input and the output

of the system that maximizes the performance of the system by maximizing the

total expected reward. We can express the Actor value function A. (?) according

to

Equation (5.20) represents a mapping from an m dimensional input state derived

from .v(/)eR"' to an n dimensional state ak eE".

Then we can express the performance function Fk (t) as

l) (5.21)

Using the gradient descent method we define the actor weight updating rule as

"><' +1>-">«-g$ (5 '22)

where a is a positive constant that specifies the learning rate of the weight wjk .

Then using the chain rule:

91

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

dW]k (t]

(• }dPjk (t) dWjk (t]

-

Hence, we obtain

Equation (5.29) represents the generalized weight update rule.

5.5 Algorithm Description

In Figure 5.2 the GPFRL algorithm flowchart is presented. The overall structure is

equivalent to the one of the actor critic methods. The flowchart of the left shows

the sequence of the main program, which can be configured for many executions

or "runs". The purpose of this is to average the resulting values (such as number

92

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

of trials for learning, rewards, etc.), in order to obtain more representative results.

The flowchart on the right shows the main GPFRL algorithm.

observe the
environment

update v nnd w

j < — m n x
pMys?

yes

ri'M't V .iml IV

1=1

f

calculate
prou.ibili'ii.", of

success

choose nn
.x.tior using
probabilities

compute
irtunic'l

reinforcement

i

t< = m<tx
 ri.ils?

SL't system to

roinforc <

,-,.1

yes

f

IM-cl

oni|ju'i- (.jrror
riicdirtion

cotuputo
-no *" prt'.dit lion i)f

rcmtorcomun:

Figure 5.2: GPFRL algorithm flowchart.

93

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

Table 5.1 shows the proposed GPFRL pseudo code.

94

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

____________TABLE 5.1 GPFRL ALGORITHM______
Algorithm

Initialize vjk and wjt
Repeat (for each episode):

Initialize 5
Choose a from s using policy derived from Pk

Repeat (for each step of episode):

7=1

2

Choose a' from s' using policy derived from

Compute r(V) from performance index

i

P)k

Get inputs

Fuzzy fy inputs compute >

Until s is terminal

95

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

5.6 Discussion

This chapter presented the development of a probabilistic fuzzy-reinforcement

learning algorithm. The fusion of these two paradigms has been the focus of

researchers for many years for the unique advantages of these two methods. When

combined with fuzzy logic systems, the RL task can two tasks, to fine tune the

controller either performing structure identification, as studied by (Lin and Xu,

2006, Lin and Lee, 1993, Wang et al., 2007) or as a parameter identification like

in: (Berenji and Khedkar, 1992, Lin and Lee, 1993, Wang et al., 2007). The work

presented in this dissertation concentrates on the latter issue. In similar way the

combination of fuzzy logic with probabilistic theory have been envision to be an

excellent way to manage information in the presence of different kinds of

uncertainties. It is to the best of the authors understanding that no similar method

have combined these three paradigms, at least not in the same synergistic way as

it is presented in this work.

Nevertheless, there is a great amount of research concerning different methods to

improve or combine reinforcement learning in order to improve/expand its

capabilities. The original work can be found in (Barto et al., 1983) where a box

system was used for the purpose of describing a system state based on its input

variables, which the agent was able to use to decide an appropriate action to take.

The previously described system uses a discrete input, where the system was

described as a number which represented the corresponding input state. A better

approach will consider a continuous system characterization, like in (Lin, 1995)

whose algorithm is based on the AHC but with the addition of continuous inputs,

by ways of a two layers neural network but show poor performance in its learning

time. Berenji introduced GARIC (generalized ARIC) in (Berenji and Khedkar,

1992) the use of output stage and the use of structure learning in his architectures,

further reducing the learning time. Another interesting approach was proposed by

96

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

Lee (Lee, 1991) which uses neural networks and approximate reasoning theory,
but an important drawback in Lee's architecture is its inability to work as a
standalone controller (without the learning structure). C. T. Lin's developed two
approaches: a reinforcement neural-network-based fuzzy logic control system
(RNN-FLCS) (Lin and Xu, 2006) and a Reinforcement Neural Fuzzy Control
Network (RNFCN) (Lin, 1995) both were endowed with structure and parameter
learning capabilities. L ater, C. J. Lin developed FA LCON-RL (reinforcement
learning strategy based on fuzzy adaptive learning control network) method (Lin
and Lee, 1993), Jouffe's FACL (fuzzy AC learning) method (Jouffe, 1998), C. K.
Lin's RLAFC (reinforcement learning adaptive fuzzy controller) method (Lin,
2003), Wang's FACRLN (fuzzy Actor-Critic reinforcement learning network)
method (Wang et al., 2007). Zarandi proposed a Generalized Reinforcement
Learning Fuzzy Controller (GRLFC) method (Zarandi et al., 2008) that was able
to handle vagueness on its inputs but overlooked the handling of ambiguity, an
important component of uncertainty, although his approach showed a fast
learning, this can be due to the reduced testing time (33000 time steps compared
to the standard 500000) used in its trials, also the structure of his system became
complex by using 2 independent FISs. Several other (mainly model-free) fuzzy
RL algorithms have been proposed, being mostly Q-learning (Jouffe, 1998, Lin,
2003, Almeida and Kaymak, 2009, Lin and Lin, 1996) or acto--critic techniques
(Jouffe, 1998, Lin, 2003). Most of the cited algorithms present many different
improvements to RL, but they fail to provide a way of handling a wide spectrum
of uncertainty, in the same proportion it is done by using a probabilistic fuzzy

system.

In the last few years some similar studies merged 2 or more of the paradigms
proposed in this dissertation; in 2000 (Strens, 2000) uses the idea that the
uncertainty in the environment's underlying Markov Decision Process (MDP)
model can be encoded with a probability distribution. He initially constructs a

97

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

distribution over all possible MDP models, referred to as hypotheses, and keeps

updating this distribution after observing evidence at each time step. This

distribution is referred to as the agent's belief. The policy at any time is given by

sampling a hypothesis from the current belief and determining the optimal policy

for that hypothesis. With time, the peak of the distribution shifts towards the true

MDP and so the policy converges to the optimal one. This approach implicitly

optimizes the tradeoffs between exploration and expectation in the sense that

agents will naturally tend to explore more often in the beginning of the learning

process and less when nearing convergence.

Dearden et al. propose a similar framework in their work on Bayesian Q-learning

(Dearden et al,, 1998). However, instead of uncertainty in the environment, they

model uncertainty in the value of information associated with performing an

exploratory action. While this does not learn the underlying model of the

environment, it provides a more structured approach to measuring the tradeoffs

between exploration and exploitation. Namely, the agent can directly compare the

value of expected future rewards to the value of gaining exploratory information

and make a choice based on this comparison. Through the course of learning the

uncertainty is reduced and the selected actions converge to the optimal policy.

Some years later, a better solution was proposed by (Poupart et al., 2006), where

they model the environment and the uncertainty in it with a Partially Observable

MDP (POMDP). A POMDP is an extension of an MDP where the state space is

not fully observable but instead can be reasoned about through an explicitly

defined set of observations. In this dissertation, the underlying MDP model of the

environment is considered a part of the state space (i.e., the partially observable

part) and is learned through the course of acting. (Poupart et al., 2006) show that

in this case the optimal value function is the upper envelope of a set of

multivariate polynomials and develop an algorithm that exploits this fact to

compute an optimal policy offline. Their algorithm is practical because it allows

98

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

online learning with minimal computation overhead (only belief monitoring is

performed) and at the same time maximizes the expected total reward. The

approach also optimizes exploration and exploitation directly, since the action

selection process implicitly takes into account how the belief will change as a

result of the selected action.

Fuzzy Inference Systems (FIS) can be used to facilitate generalization in the state

space and to generate continuous actions (Jouffe, 1998). In (Jouffe, 1998), the

state-space coding is realized by the input variable's fuzzy set. The selection of

more than one fuzzy state at any point of time results in smooth transition between

a state and its neighbours and consequently, smooth changes between actions.

Additionally, reinforcement learning has been used in conjunction with fuzzy

inference systems, basically for the task of optimization by using two different

methods:

• Methods based on policy iteration, driving to Actor-Critic architectures

(Berenji and Khedkar, 1992).

• Methods based on v alue it eration and generalize Q-Learning (Berenji,

1996, Glorennec and Jouffe, 1997, Glorennec, 2000). In (Glorennec,

2000), a Q-Learning algorithm was used for the optimization of a zero

order Takagi-Sugeno fuzzy inference system, with a constant conclusions.

In the rest of this dissertation, it is considered that a Takagi-Sugeno fuzzy

inference system and continuous state and action spaces are used. The FIS

structure is fixed a priori by the user and the fuzzy sets for the inputs and output

are supposed fixed. Our approach, consist in determining the optimal conclusions

of the fuzzy inference system.

99

CHAPTER 5: GPFRL GENERALIZED PROBABILISTIC FUZZY-REINFORCEMENT
LEARNING

5.7 Summary

This chapter described a novel general method for decision making and control

systems that combines probabilistic fuzzy logic theory with reinforcement

learning. The presented method uses the actor-critic structure, were a critic is

composed by a state-value function based on temporal difference learning, which

is used to criticize the actions of the actor (action/decision maker). The actor task

is to use state information to decide an appropriate action to take, based on

probabilities of success. These probabilities of success are found by sequential

interactions of the agent and its environment by using our proposed reinforcement

learning algorithm. This chapter concludes presenting a discussion describing

several other methods found in the literature, that use reinforcement learning.

The next chapter presents four specific experiments performed, in order to test

different aspects of our proposed method, as convergence, learning speed, and

stability and robustness under uncertainty. Whilst comparing it with other

methods under similar conditions.

100

Chapter 6

Experiments

6.1 Introduction

In this chapter, we consider a number of examples regarding our proposed
reinforcement learning approach. In section two, we consider a random walk
problem under a grid world in order to evaluate the convergence of the learning
algorithm while comparing its performance with two classic temporal difference
algorithms, SARSA and Q-Learning. In section three, we used a classic
benchmark for learning algorithms, the control of a simulated cart-pole system;
this was used to compare the performance of our proposed algorithm with other
reinforcement learning approaches. Section four describes the control of a loaded
DC motor whilst in section five; our algorithm was implemented in a real mobile
robot for solving the navigation problem of obstacle avoidance. Finally, section
six summarizes the contents of this chapter.

101

CHAPTER 6: EXPERIMENTS

6.2 Decision Making Experiments

6.2.1 Random Walk Problem

A random walk problem is a mathematical formalisation of a trajectory that

consists of taking successive random steps. The results of random walk analysis

have been applied to computer science, physics, ecology, economics, psychology,

and a number of other fields as a fundamental model for random processes in

time.

The purpose of this experiment is to provide a mean to evaluate the updating rule,

the convergence, and stability of our proposed GPFRL and compare it with other

two well-known TD learning methods, SARSA and Q-Learning. Figure 6.1 shows

an example of a 5x5-grid world. In Figure 6.1, the learning agents start from the

upper right corner marked as "S" (start state) and the task of the learning agent is

to find the shortest path from the state "S" and the state "G" (goal state) in the

shortest possible time. In the above example there are many possible solutions,

two of them are marked with a red line and a blue line in Figure 6.1. In any case,

the shortest path consists in six steps.

N

w

\7

11

16

21

12

17

22 23

13[14

iir~G|
24

10

15

20

25

Figure 6.1: A 5x5 dimension grid world for a total of 25 states.

102

CHAPTER 6: EXPERIMENTS

6.2.1.1 Grid World exploration

In this experiment the learning problem is to learn how to choose the correct
direction to take for every state, in order for the learning agent to reach the goal
state with the fewest amounts of steps. To accomplish this task the learning agent
will explore every option for every state, evaluate the long term outcome and then
update the value functions of every state, so that the next time this state is visited,
the learning agent will be able to select the action with the highest probability of
success, in other words, that will allow the agent to reach the goal state with the
smallest number of steps.

It becomes clear that the probabilities of success for each of the choices for every
given state will diverge from their initial values towards their real values in direct
proportion with the number of times the state is visited. Therefore in order to find
accurate probabilities for every action for every state, all states must be visited as
many times as possible. The main disadvantage of this exploratory behaviour is
that is time consuming. A direct solution will be to eliminate the exploratory
behaviour of the agent so that it will become "greedy" and will choose always the
actions that are considered to be optimal. The danger with this approach is that
there will be many states "unvisited", therefore the probabilities of success of the
possible actions for each one of this states will be unknown.

In order to achieve a balance between exploration-exploitation a stochastic signal
is introduced to the action selection process. Considering that'there is only one
learning agent 'for every action and every learning agent assigns a probability

value to every action according to (6.1)

P\=Pk +>lk (6.1)

103

CHAPTER 6: EXPERIMENTS

Where rjk was defined in (5.7) and (5.8). If there is only one action with a

probability value equal to max(P'i) and this probability value is equal or greater

than a predefined threshold value of s\s e{0,l}, then the action is selected.

Otherwise, an action a e s is selected randomly. The value of s can be defined

by the programmer in order to introduce a more explorative behaviour or a more

exploitative one.

6.2.1.2 Deterministic Environment

6.2.1.2.1 System Description

This grid world uses a rectangular grid to illustrate value functions for a simple

finite MDP. The cells of the grid correspond to the states of the environment. At

each cell, four actions are possible: North, South, East, and West, which

deterministically cause the agent to move one cell in the respective direction in

the grid.

All episodes start in the upper left corner state, or state "1", 5(1, 1), and proceed

either North, South, East or West by one state on each step, with equal

probability. The task is to find an optimal policy which will let the agent move

from 5(1, 1) to G(ing , wg) with minimized cost (number of moving steps).

For the present example, we used a 10 by 10 grid world, for a total of 100 possible

states, with the initial position of the learning agent set at (1, 1) (state "1") and the

goal state was fixed at (5, 6) (state "46"). A state order can be assigned according

to eq. (6.2), where m and n are the vertical and horizontal axis positions of the

grid and «max is the total number of rows of the grid world.

"max * (AM - 1) + « (6 - 2)

104

CHAPTER 6: EXPERIMENTS

For the SARSA and Q-Learning algorithms the agent receives a reward of zero,
"0" for every step that is not the goal and a reward of one "1" when it reaches the
goal and then ends this episode. In our approach there are four learning agents,
where each one learns the probabilities of success of going in each one of the four
directions. So for every step that the agent takes that result with the agent being in
a state closer to the goal state, it receives a reward of one, "1"; in the same way
for every step it takes in a direction that is not towards the goal, it receives a
punishment of "-1". Actions that would take the agent off the grid leave its
location unchanged, but also result in a reward of -1. Other actions result in a
reward of 0.

____TABLE 6.1 PARAMETERS USED FOR THE RANDOM WALK EXPERIMENT.____
Parameter SARSA Q-Learning GPFRL

a O4 OA 0.003
(3 - 0.005
Y 0.95 0.95 0.95
g'" ; 0.01 O.Q1 0.01

The discount factor j was set to 0.95 for all the algorithms that we have carried
out in this example. For the action selection policy of TD algorithm, we use an e-

greedy policy (e = 0.01).

The parameters used for these tests are shown in Table 6.1. In addition, the
corresponding code is shown in Appendix A. The described tests were completely

coded and evaluated using MATLAB®.

6.2.1.2.2 Fixed start state

For this test, the system was set to execute 40 trials and the results were stored
and averaged for 100 plays. Figure 6.2 shows the average number of steps the
agent takes for reaching the goal state from a static starting position in the grid
world. It can be observed that the system not only converges to an optimum faster
than the SARSA and Q-Learning algorithms, but also that it does so with less

105

CHAPTER 6: EXPERIMENTS

steps in the first trial and an overall fast convergence. Figure 6.3 shows a

graphical comparison of the standard deviations for the three algorithms, it can be

observed that the GPFRL and Q-Learning algorithm have a standard deviation

near zero, whilst SARSA showed a standard deviation of 10 in average.

Average Number of Steps

°0 5 10 15 20 25 30 35 40
Trials

Figure 6.2: Static starting point learning rate comparison.

Standard Deviation
100

80

-SARSA
-Q-Learning
-GPFRL

"0 5 10 15 20 25 30 35
Trials

Figure 6.3: Standard deviation for 100 plays.

40

106

CHAPTER 6: EXPERIMENTS

1 .

O.5 i

O,
o

a) SARSV

10 ~0

b) Q-Learning

.,-""" """"!,. v(»
1

.-"ft :

,-"!"' 1 \ '-•../:. ! = -
-... •;•/. Ik '> 'v/ ; \ x;>,

•:'• ;-/A ; i \ - ;-\. o
•'.'-•-~^X' '• • 1 A-"-, "'"-< o* 1~ ^ \ 'i ; 'i:<^c>"" 10

5* v -'Nv- r^-^r

) . ..- ";•"'

.
i " /

•'•' 1

,. /

" -• •-' / •/ i

5" '''•':'.'-''..

\ '
\

\ '' '' '-"'"

.i -'-"•'.'--' 10

10 0

Figure 6.4: Static starting point utility value distributions for a) SARSA and b) Q-
learning.

a) \Vt-st

/'V
0.52

0.51

0.5

0.49

0.48

-- .^"
JLJ^'.\tS

---4""""
,-, \ •*•-... -/\.,i •
-^/ r-^, //, /.>i--^^-"
~^--*^/ \.\/ "'•••

-•-.. .,-••-''

''"T""1, -'• "" 1 '"~ -.

! S '' '' •• '< :"^-^'~~. ':a5 r ^^3&^-^'
o.4i """"[...••-••"'"•-•-. .;' ' --

"10 O L " --^,. --"''""'''•-- .^.-'~>'
10

10 0 10 0

c) South
a) K'uth

/?(
0.6

0.5

0.4
.

0

0 r~?-< - •
•-•/ ' I ^

! ! ! ! \
1 ;!JV-

.-.•ridJ. ! '\
'?~-—-'T:-^ --

"••'*'

--— -.

'^C^.
"'""• ^~~*~^~z~~-~-~-

0.52 T - - "]
! "
! - • i'

' " •! 0.51 1 •' "" : . .f"A
: 1 : -;.---C'-~' : • ''•

^•-:3.-,-. : °-5-i •^•^-. r^^ I !\'\
^~" '• .. \':"\ ?'•*•• ??-~--±J

o.49i - ' < • -v;
••-, .L - ""•---.

0.48-!-..- " -.;"'..--'' 10 o •--._,--• --_..

\""1T":"T;

""""'•--

10
5

10 0 " 10 0

Figure 6.5: Static starting point GPFRL probabilities distribution.

Figure 6.4 shows in a) the utility value distribution using SARSA algorithm and in

b), the utility value distribution using the Q-Learning algorithm. Both obtained

107

CHAPTER 6: EXPERIMENTS

after 40 trials of the random walk experiment, starting from a static position

towards a static goal.

Figure 6.5 shows the probabilities of success of taking direction a) West, b) East,

c) South, and d) North; obtained after 40 trials of the random walk experiment

using the GPFRL algorithm, again, starting from a static position towards a static

goal.

In the temporal difference algorithms, SARSA and Q-learning, the goal state have

a reward of "1", with this methods, the learning agent constructs a mapping

"backwards" in other words, it assigns values to the states according to the

proximity to the goal, in consequence, in order to start assigning values the

learning agent must have visited the goal state at least once. For especially large,

complicated (stochastic) environments this task can be very time consuming and

inefficient.

The value assignment can be clearly visualized in Figure 6.4 where its hill shape

indicate the relative value of the corresponding state, in relation with the value

assigned to the goal state. In this case the learning agent follows a greedy policy

(exploitation), where it will follow the path with the highest steep. This can also

be noticed by observing the "flat" surrounding states to the hill, where no value

have been assigned, indicating that either this states have not been visited or that

the visit did not lead to a state with an assigned value. In an exploration mode, it

can be expected all the states to be visited, and a value assigned to each.

Figure 6.5 shows a surface area generated by all the states and the probabilities

associated to them. Each subplot corresponds to these probabilities as seen by

each one of the four learning agents. In this graphs it can be observed a series of

hills and dips, as a contrast with the SARSA and Q-Learning methods where only

one hill could be devised. For the GPFRL graphs, the dips can be understood as a

low probability of taking the corresponding direction from that state. This can be

108

CHAPTER 6: EXPERIMENTS

contrasted by observing the complimentary graph, where the hills are replaced by

dips and vice versa. This constitutes a richer source of options for the decision

making process.

Another important thing to notice is the small probability values observed in

Figure 6.5, since the system is configured to follow the greedy policy, the learning

agent does not need a large difference of probabilities between to actions to select

one, therefore it will always select the action with the highest probability

numerical value. Forcing the learning agent to randomly select actions with small

probability values, will lead to a exploration mode, where a larger surface is

explored and states are visited more often, generating higher probability values

6.2.1.2.3 Random start state

For our second set of tests under the grid world, we used a random starting state

for each trial and compared the results obtained. Also the number of trials was

extended to 100 averaged for over 500 plays. Figure 6.6 shows the comparison of

the average number of steps to reach the goal for the SARSA, Q-Learning and

GPFRL; in Fi gure 6.8 we show the uti lity v alue dist ribution of the SARS A

algorithm a), and the Q-Learning algorithm b). In contrast Figure 6.9 shows the

probability distribution for the GPFRL algorithm. Figure 6.7 shows a much

increased standard deviation for SARSA and Q-learning which did not

approached zero even after many trials. It can also be seen in Figure 6.7 that the

GPFRL have a low and steady standard deviation for all trials, which means that

for every run, the Khepera III robot with the GPFRL followed the shortest path

with a number of steps difference as large as the distance between the goal and the

farthest-from-the-goal starting point.

109

CHAPTER 6: EXPERIMENTS

Average Number of Steps

5 10 15 20 25 30 35 40
Trials

Figure 6.6: Random starting point, learning rate comparison.

Standard Deviation
5000-

"0 5 10 15 20 25 30 35 40
Trials

Figure 6.7: Random starting point, standard deviation comparison for 100 plays.

110

CHAPTER 6: EXPERIMENTS

a) SARSA

0.5,

^f
10

Vis I
1

0.5

10

10 0 10 0

Figure 6.8: Random starting point SARSA and Q-Learning utility value
distribution.

a> \Yc.vl

0.7 . -

0.6!

0.5;

0.44

10 0

c> South

o<i tV,m-
0.3,

0

10

10

10

b) Enst

0.61 -\

0.31
0

10 0

0.6

OJ5

0.4 \

0.3
0

Noitli

10 0

10

10

Figure 6.9: Random starting point GPFRL probabilities distribution.

Ill

CHAPTER 6: EXPERIMENTS

Figure 6.8 Shows: a) the utility value distribution for SARSA algorithm and b),

the utility value distribution for the Q-Learning algorithm; obtained after 100

trials of the random walk experiment, starting from a random position towards a

static goal.

Figure 6.9 shows the probabilities of success of taking direction a) West, b) East,

c) South, and d) North; obtained after 100 trials of the random walk experiment

using the GPFRL algorithm, starting from a random position towards a static goal.

6.2.1.2.4 Discussion

The fixed start experiment is an example of a completely deterministic

environment with no stochasticity in the inputs or outputs (i.e. the stochastic

signal generator is set to £ = 0.01). For this experiment, the relative position

between the start and the goal states are the same for all the trials. It can be

observed that the proposed algorithm exhibits a faster convergence into the

optimum path, whilst SARSA and Q-Learning learned the correct path in similar

time but in a slighter slower time. This is attributed to the way the temporal

difference error updates the value function in every time step as a in the SARSA

and Q-Learning the learning agent must wait to reach the goal in order to update

the value function.

It is also important to notice that the optimal value of a for SARSA and Q-

Learning is the same (0.4), whilst for the GPFRL is significantly lower (0.003);

since there is no stochastic signal added to the system, only one value function

update is necessary for the learning agent to differentiate states and take an

adequate decision for every state; so after the first trial the learner have coarse

idea of the optimal path. In the case of SARSA and Q-Learning, the learner,

doesn't have any information about the optimal path until it reaches a state where

the value function has been previously updated. It becomes obvious that the

addition of a stochastic signal will "confuse" in the first trials, as any initial coarse

112

CHAPTER 6: EXPERIMENTS

information it have becomes modified randomly forcing the learner to go through

the same state several more times in order to be able to differentiate the decisions

to make for every state.

6.2.1.3 Stochastic Environment

6.2.1.3.1 System description

This section presents results on a different version of the grid world called the

windy grid world problem with the addition of stochasticity. The purpose of this

experiment is to evaluate the influence of environment stochasticity on the

performance of our proposed GPFRL and compare it with that of SARSA and Q-

Learning. This is done by adding two kinds of stochasticity: policy stochasticity

and environment stochasticity into the windy grid world, verifying the advantages

of the GPFRL in a broader setting.

Uncertainties in the input states become inherent under these stochastic

conditions, allowing us to evaluate the uncertainty handling ability of our

proposed method.

As in the previous case, the agent has to move from the start (S) to goal (G) state.

In the windy grid world version there is a crosswind upward through the middle of

the grid in such a way that the final cell is shifted upward by stochastic wind. The

strength of which varies from column to column. The numbers under the grid

represents the wind strength in the column above, as seen in Figure 6.10, and

indicate the number of cells shifted upward. For example, if the agent is one cell

to the right of the goal, then the action left takes it to the cell just above the goal.

Let us treat this as an undiscounted episodic task, with constant rewards of-1 until

the goal state is reached.

13

CHAPTER 6: EXPERIMENTS

0 01 1 221100
Figure 6.10: Windy grid world.

In Figure 6.10 the arrows shows the direction of the stochastic wind, so that the

number under the columns represent the number of cells the learning agent will be

shifted in direction of the wind when it reaches its corresponding column.

We also added environment and policy stochasticity to the windy grid world

problem and compared the performance results with the deterministic case in

order to evaluate the uncertainty effect over the learning agent. The environment

stochasticity was added by moving the agent with a probability of 20% in a

random direction instead of the direction corresponding to the action. The policy

stochasticity was added by using e=0.2 instead of 0.01.

6.2.1.3.2 Windy grid world with stochastic signal

Table 6.2 shows the used parameters for SARSA algorithm and the GPFRL

algorithm under the windy grid world experiment. u

TABLE 6.2 PARAMETERS USED FOR THE RANDOM WALK EXPERIMENT.
Parameter SARSA GPFRL

114

CHAPTER 6: EXPERIMENTS

a
ft
y
£

0.1
-

0.95
0.2

0.00025
0.005
0.95
0.2

For this test, the system was set to execute 40 trials and the results were stored
and averaged for 100 plays. Figure 6.2 shows the average number of steps the
agent takes for reaching the goal state from a static starting position in the grid
world. It can be observed that the system not only converges to an optimum faster
than the SARSA algorithm, but also that it does so with a considerably lower
steps in the first trial a quick convergence to zero and solid stability thereafter.

It is to note, that in our experiments the Q-Learning algorithm never converged.
The addition of a policy other than a greedy one produced a divergence in the Q-
values found by the algorithm. The present results will only show a comparison

between SARSA and the proposed GPFRL.

Figure 6.11 shows the results of the windy grid world experiment for SARSA and
the GPFRL algorithm. The GPFRL algorithm shows handled the added

stochasticity and learned the optimal (shortest) path to the goal in. a short time.

115

CHAPTER 6: EXPERIMENTS

Average number of Steps
1000

800

SARSA
600

1 -GPFRL
400

200

Qt) 5 10 15 20 25 30 35 40
Trials

Figure 6.11: Static starting point in the windy random walk.

The standard deviation values for the data in Figure 6.11 are shown in Figure
6.12. It can be observed here that after the GPFRL have found the optimal path it
follows it ever after; this can be seen in the standard deviation values that
approximate to 0. On the other side, SARSA, not only does not converge to the
optimal path but it succeeds to find the goal states in a large number of steps with
a standard variation of around 100.

Figure 6.13 shows the distribution of the Q-values after a learning trial for the
SARSA algorithm under the windy grid world experiment. The large flat area is
understood as an un-explored area which never leads the agent to the goal state.

116

CHAPTER 6: EXPERIMENTS

p(t)
0.52

0.5

0.48 L.-
10

P(t)
0.6 r -

0.5

0.4
10

a) South

0 0

c) liasl

0 0

n 1 U

0.6

0.4-
10

p(0

b) North

" ' '• v -I 1

(fo
d)West

: '...--^<:W \i-
).5| <^'^:^"! ,'[.-•-

10

10

0 0

Figure 6.14 shows the probabilities of success of taking direction a) West, b) East,

c) South, and d) North; obtained after 100 trials of the random walk experiment

using the GPFRL algorithm, starting from a random position tov/ards a static goal.

117

CHAPTER 6: EXPERIMENTS

Standard Deviation
1000

800

s.u
55

600

400

200

°d

-SARSA
-GPFRL

5 10 15 20 25 30 35 40
Trials

Figure 6.12: Static starting point in the windy random walk.

SARSA

V(s)

0 0
Figure 6.13: SARSA utility value distribution for the windy grid world.

118

CHAPTER 6: EXPERIMENTS

a) South b) North

Figure 6.14: GPFRL probabilities distribution for the windy grid world.

6.2.1.3.3 Discussion

In this experiment an important observation is the reduction of the optimal update

rate, a in contrast with the previously studied in the experiment proposed in
?

chapter 6.2.1.2. As stochasticity increases, a high update rate does not directly

contribute the learning speed as the information collected from the environment is

not reliable (due to the added uncertainty) it can be better understood if a small

value of a is considered as a cautious decision, in which case a larger number of

decisions are needed in order for the system to find the correct decisions.

With the added stochasticity, the Q-Learning method failed in all trials to learn the

optimal solution thus, its results were removed from the c omparison graphs.

119

CHAPTER 6: EXPERIMENTS

Whilst SARSA was able to find a path between the start state and the goal state,
its solution was not optimal in all cases. As a contrast, the proposed GPFRL
learned the path between the start and the goal state in a few trials, and its solution
was optimal in all cases, thus proving the uncertainty robustness of the proposed
method.

6.2.1.4 Conclusions

The GPFRL is conceptually simple which relies on well-established ideas from
Bayesian statistics. A decisive difference between the proposed GPFRL and
common RL algorithms, as SARSA and Q-Learning, is the use of a probabilistic
model for the transition dynamics, which mimics two important features of
biological learners: the ability to generalize and the explicit incorporation of
uncertainty into the decision making process. These model uncertainties have to
be taken into account during long-term planning to reduce model bias. Beyond
specifying a reasonable cost function, GPFRL does not require expert knowledge
to learn the task.

In the presented experiment, the GPFRL algorithm was tested in a grid world
environment under different conditions. First a standard deterministic version of
the grid world was used to test the SARSA, Q-learning and GPFRL algorithm in a
random walk using a fixed starting state and following a random starting state.
The purpose of this experiment was to test the ability of our algorithm to handle
randomness and to test its exploration/exploitation characteristics. The results can
be observed in Figure 6.2 and Figure 6.6 for the fixed starting state and the
random starting state respectively. The obtained results were conclusive; the
GPFRL outperformed the classic SARSA and Q-learning algorithms in terms of
learning rate. The GPFRL converged to the optimal solution in a shorter time and
showed good stability in both experiments. In the random starting state
experiment the difference was more remarkable. The GPFRL algorithm found the

120

CHAPTER 6: EXPERIMENTS

optimal (shortest) path in fewer than ten trials, whilst SARSA and Q-learning

algorithms required around fifty trials with very unstable initial choices.

In the second set of experiments, the GPFRL was tested in a highly stochastic

version of the grid world, the windy grid world. In this case, "wind" was added to

the standard grid world, in order to add environment stochasticity. Also the greedy

term was increased from 0.01 (greedy behaviour) to 0.2 (more exploration) in

order to add randomness. Under these conditions Q-learning failed to converge

whilst SARSA converged to a non-optimal policy. Again the GPFRL showed a

strong uncertainty resistance, by converging to the optimal policy in three trials

and showed a very stable behaviour thereafter.

In all the experiments described, an important factor that contributed to the fast

learning speed is the use of a richer reward scheme, where an internal

reinforcement signal is provided. Whilst in SARSA and Q-Learning the agent

receives a positive reward every time the agent reaches the goal state, in the

GPFRL method, the agent receives a reward in every state. This reward is

calculated by shaping the external reward (given at the goal state) by using

temporal difference as described in (5.10). This internal reinforcement or reward

signal represents an estimation of the reward for the current state as a difference

between the prediction of eventual reinforcement of the current state and that of

the previous state, as it was first described by (Barto et al., 1983).

Optimal design of reward functions has been studied before as in (Laud and

DeJong, 2003,'Mataric, 1994) where different experiments showed faster learning

rates. In 1998, (Dorigo and Colombetti, 1998), suggested the use of reward

shaping which import behaviourist concepts and methodology into RL, and

discussed a model for automatic training of a RL agent. In the scheme they

consider, the automatic trainer has an abstracted specification of the task, and it

automatically rewards the agent whenever its behaviour is a better approximation

121

CHAPTER 6: EXPERIMENTS

of the desired behaviour. However, it has been suggested (Marthi, 2007) that this

notion of shaping goes well beyond of using a rich reward scheme.

It is clear that a well-designed reward function may facilitate learning, promote

faster convergence, and prevent aimless wandering. Also, as pointed out by Laud

(Laud and DeJong, 2003), if the optimal value can be provided as a reward, the

RL task successfully collapses to greedy action selection.

Beyond this specific application, however, the larger and more important issue is

whether learning from experience can be useful and practical for more general

complex problems. Certainly the quality of results obtained in this study suggests

that the approach may work well in practice, and may work better than we have a

right to expect theoretically

6.2.2 Mobile Robot Obstacle Avoidance

The two most important topics in mobile robot design are planning and control.

Both of them can be considered a utility optimization problem, in which a robot

seeks to maximize the expected utility (performance) under uncertainty (Thrun,

2000).

In order to increase the flexibility of robots, facing unforeseen changes such as

changes in their environments or sensor failure, the amount of predefined

knowledge used in the control strategy has to be kept as low as possible. The

present experiment, presents an automatic learning algorithm that uses

reinforcement learning in order to find sensor-motor couplings through the robot's

interaction with the environment.

Although the results obtained in many different test and simulated domains look

promising, RL techniques have rarely been implemented in application requiring

122

CHAPTER 6: EXPERIMENTS

real robots. Robotic applications present difficult challenges to RL methods,

nevertheless its experience based motivation, high reactivity and effectively
layered structure are still of great potential.

While recent techniques have been successfully applied to the problem of robot

control under uncertainty (La, 2003, Pineau et al., 2003, Poupart and Boutilier,

2004, Roy et al., 2005), they typically assume a known (and stationary) model of
the environment. This dissertation, discusses the problem of finding an optimal

policy for controlling a robot in a partially observable domain, where the model is

not perfectly known, and may change over time; whilst proposing that a

probabilistic approach is a strong solution not only to the navigation problem, but

also to a large range of robot problems that involves sensing and interacting with

the real world. However, few control algorithms make use of full probabilistic
solutions and as a consequence; robot control can become increasingly fragile as

the system's perceptual and state uncertainty, increase.

Reinforcement learning enables an autonomous mobile robot to sense and act in

its environment to select the optimal actions based on its self-learning mechanism.

Two credit assignment problems should be addressed at the same time in

reinforcement learning algorithms, i.e., structural and temporal assignment
problems. The autonomous mobile robot should explore various combinations of

state-action patterns to resolve these problems.

In our third experiment, the GPFRL algorithm was implemented on a Khepera III

mobile robot (Figure 6.15) in order to learn a mapping that will enable itself to

avoid obstacles. For this case, four active learning agents were implemented to

read information from infrared (IR) distance sensors and learn the probabilities of

success for the preselected actions.

123

CHAPTER 6: EXPERIMENTS

Figure 6.15: Khepera III mobile robot.

In this experiment the GPFRL algorithm is implemented in a personal computer
with a wireless link to a Khepera III mobile robot. All the computations were
performed offline and the data was send and received via a Bluetooth link
between the PC and the robot. The software was developed in C++ using
Microsoft Visual Studio.

The algorithm consists in two software threats, were one thread manages the
communication and the second executes the GPFRL algorithm.

Thread one, requests data from the robot, the robot receives the request, and sends
the data corresponding to the values of its IR sensors, the PC sends a speed
command for each wheel of the robot and receives a robot acknowledge of the
successful transmission, then the whole process repeats. All the information is
stored in a blackboard, where the speeds of the wheels and the IR data is
continuously written and updated.

The second thread reads the IR data from the blackboard, and selects an
appropriate action using a probabilistic fuzzy logic controller where the rules are
updated every cycle using the proposed GPFRL algorithm. The selected action is
then transformed into wheel speeds and the information is written in the

blackboard.

124

CHAPTER 6: EXPERIMENTS

6.2.2.1 The Input Stage

The Khepera III robot is equipped with 9 IR sensors distributed around it. For

every time-step an observation o, e O of the system state is taken. It consists of a

sensor reading XL (t), k = l,2,...,/ where / is the number of sensors and ^ is the

measured distance at sensor k. The value of xk is inversely proportional to the

distance between the sensor and the obstacles where *A (/) = 1 represents a

distanced between sensor k and the obstacle and xk (/) = 0 corresponds to an

infinite distance.

The input stage is composed by two layers: the input layer and the regions layer as
shown in Figure 6.17.

In order to reduce the dimensionality problem a clustering approach was used.
Signals from sensors 2, 3, 4, 5, 6 and 7 are averaged (weighted average using the
angle with the orthogonal as a weight). They inform about obstacles in the front.
Signals from sensors 1, 8 and 9 are grouped together and averaged. They inform
about obstacles behind the robot as it can be observed in Figure 6.19. Another
clustering procedure is applied to signals coming from sensors 1, 2, 3 and 4,
which inform about obstacles to the right, and IR sensors 5, 6, 7 and 8, which
inform about obstacles to the left.

(6.3)

In (6.3) x* the result of the averaging function, where R, R = {\, 2,3, 4},

represents the evaluated region: front, back, left, and right, IRS is the input value

125

CHAPTER 6: EXPERIMENTS

of sensor 5 and 9* is the angle between the sensor orientation and the orthogonal

line R.

Internally, the Khepera HI robot receives a numerical value from the IR sensors.

Figure 6.16 shows the relationship between the actual distance and the received

value of the IR sensors of the Khepera HI mobile robot. In this graph it can be
observed the uncertainty in the measurements as a variation between an estimated

range model and the raw sensor measurements, the graph in Figure 6.16 also
shows the variation range of such measurements. The received value is inversely

proportional with the distance and ranges between 0 and 4000 for distances

between 0 and 25cm.

Estimated range model
Raw sensor measurements

500 50001000 1500 2000 2500

Raw IR values [xW]
Figure 6.16: Measured reflection value vs. Distance, extracted from (Prorok et al.,

2010).

Figure 6.17 shows how the nine signals acquired from the sensors are grouped

inside the network into the 4 predefined regions. In this figure lines LI and L2,

are two of the four orthogonal lines.

126

CHAPTER 6: EXPERIMENTS

Input layer Regions

IR1 —

IR2 _

IR3 —

IR4 —

—— "(X1)

~~"(V 2y

— 0
— *Cx4\

IR5

IR6

IR7

IR8

IR9

Figure 6.17: Clustering of IR inputs into 4 regions.

The signals from the averaging process are then fuzzified using Gaussian

membership functions as specified in (6.4). Two membership functions (a left

shouldered and a right shouldered) with linguistic names of "far" and "near" were

used to evaluate each input in order to keep computation time to a minimum so

that many sets of data could be analysed every second (approximately one every

30 milliseconds). At first we have considered the 3 membership functions: ju'k (t)

-far distance, ^ (t) medium distance and //*(/) -near distance for each

infrared sensor. Preliminary experiments with 3 membership functions combined

into a number of 18 rules for the inference system which demanded a long time

for calculations with no observable improvement in performance. In fact it had a

negative impact on the learning, by decreasing its learning speed. For this reason

we have decide to take only the following membership functions: juk (?) -far and

127

CHAPTER 6: EXPERIMENTS

tf(t) -near, defined in eq. (6.4). These membership functions are depicted in

Figure 6.18. The near and far values span over a normalization of the measured
reflection value, where according to Figure 6.16 the crossing value correspond
approximately to 4cm of distance between the sensor and the obstacle (wall).

Far:

Near

\fxk <c L

otherwise

otherwise

(6.4)

0 0.2 0.4 0.6 0.8 1

Figure 6.18: Membership functions for the averaged inputs

128

CHAPTER 6: EXPERIMENTS

L1

Figure 6.19: IR sensor distribution in the Khepera III robot.

The centre and standard deviation values used in Figure 6.18 were manually

adjusted for this particular case and their values are shown in Table 6.3. For this

experiment, using (6.3), clusters with average distances of 0.15 or below generate

a negative reinforcement signal (reward) of -1 (robot collides with an obstacle),

and zero reward is given in every other situation. We use a discount factor, y of

0.95 which causes the learning system to prefer shorter solutions.

TABLE 6.3 CENTRE AND STANDARD DEVIATION FOR ALL MEMBERSHIP FUNCTIONS.

0.2 0.4 0.08 0.08

129

CHAPTER 6: EXPERIMENTS

6.2.2.2 The Rules Stage

In this layer the number of nodes is the result of the combination of the number of
membership functions that each region has and it is divided in two sub groups,

each one of them triggers two antagonistic actions and are tuned by independent

learning agents. Figure 6.20 shows the interconnection between the rules layer
and the rest of the network.

Regions Membership Rule
functions layer

Behaviour Output
layer layer

V
\ F r

Figure 6.20: The controller structure.

As a result of the clustering method used, the number of rules is reduced from 16

rules to 8 rules. These groups of rules are independent from each other, and

combine the information from different regions of the robot. Preliminary

experiments using three and four membership functions in the inputs, showed no

considerable increase in performance but a considerable delay in the learning time

as the number of rules increased exponentially. Furthermore, a small number of

rules make possible the addition of some a priori knowledge about avoiding

obstacles, further reducing the learning time.

130

CHAPTER 6: EXPERIMENTS

The result of the application of each rule is a preselected behaviour. For example,

for rule Rl:

If region F=Far and region B=Near then do Bl with p = p, and B2 with p = p2

For each rule all the behaviours are selected but with different probability of

success, then they are combined and defuzzified into wheel speed. The different

behaviours or actions are described in the next section.

6.2.2.3 The Output Stage

Finally the output stage consists in an action selection algorithm. The action is

described as a vector, A} , j = l, 2,. ..,m, where "m" is the maximum number of

actions, in this case, four, being:

• AI = Forward.

• A2 = Backwards.

• AS = Turn left.

• A4 = Turn right.

These actions are expressed as a vector where each term represents a relative

wheel motion such that: forward: (1, 1), backwards: (-1, -1), turn right: (1, -1) and

turn left: (-1, 1). The velocity is then computed using

(6.5)

where v =(v,, v2)and each of its terms represent the normalized speed of each of

the wheels. Evaluating (6.5) on both maximum and minimum cases of ?; , obtain

131

CHAPTER 6: EXPERIMENTS

v.max -(2,2) (6.6)

In order not to saturate the speed controller of the robot's wheels, the velocity for
each wheel is expressed as:

(6-7)

In (6.7) Vmax is the maximum allowed speed for the wheels of the robot and VLIR

is the final speed commanded to each wheel.

6.2.2.4 .Results

Figure 6.21 depicts the distance information coming from the IR sensors. The
signal spikes indicate obstacle detection (wall). A flat top in the spikes indicates
saturation was produced due to a crash against an obstacle. After the learning
process, the robot avoids all the obstacles successfully. In our simulations based
on real time, the average learning time was around 350 time steps corresponding
to 7 seconds.

Table 6.4 shows the RL parameters used for this particular experiment.

TABLE 6.4 COEFFICIENT VALUES FOR THE RL ALGORITHM.
a J3 7
7 (X03O95

132

CHAPTER 6: EXPERIMENTS

f \ J I A -

10: -

5-

Figure 6.21: Khepera III sensor reading for 30 seconds trial.

LU

4.0 -i
3.5
3.0
2 5 -

2.0 -
1.5 -

1.0

0.5]
0.0

0

nun
4 6 8 10 12 14 16 18 ^20 22

Time (s)
Figure 6.22: Internal reinforcement E(t).

-J
30

30
~]

H

Figure 6.22 represents the squared average of the reinforcement signal versus

time, ach one of the spikes represents high reinforcement values (in this case

negative reinforcements) which were given at every collision, after around 16

133

CHAPTER 6: EXPERIMENTS

seconds the spikes are reduced (truncated) showing that the Khepera III mobile
robot has effectively learned to avoid obstacles.

6.2.2.5 Conclusions

The proposed GPFRL is more practical than the basic fuzzy controller since the
FIS is self-tuning based on the reinforcement signal. It is more practical to obtain
reinforcement signal that only give rewards and punishments with respect to the
states reached by the robot rather than desired behaviours of all situation in which
the robot has to do.

In this experiment the GPFRL algorithm was has been exploited to facilitate real-
time dynamic learning and control of a Khepera III mobile robot. The GPFRL
generalizes the continuous input space with fuzzy rules and has the capability of
responding to smoothly varying states with smoothly varying actions using fuzzy
reasoning. Additionally it is possible for prior knowledge to be embedded into the
fuzzy rules, enabling the robot to explore interesting environments and reducing
the training time significantly.

In preliminary experiments, where the learning agents in the Khepera III robot
were configured to use a greedy policy (the learning agent chooses the action with
maximum desirability, which is considered satisfactory thereafter) resulted in sub
optimal solutions (e.g. a backwards and forward motion, in case when a

straightforward motion is optimal).

Some differences have been found in the Khepera's ability to negotiate different
environments with the effectiveness of the avoidance learning system varying for
different configurations of obstacles. However, only limited performance loss has
been observed in transferring from a learned environment to a new one, which is
quickly compensated if the Khepera is allowed to adapt its strategies to suit the

134

CHAPTER 6: EXPERIMENTS

new circumstances. Therefore it can be concluded that the learning system is

capturing some fairly general strategies for obstacle avoidance.

Since the primary task of obstacle avoidance is satisfied, a further improvement of

optimality of solution should include a form of stochastic action exploration and a

longer action sequence history. But these aspects go beyond the scope of this

dissertation. Moreover, to achieve the global path planning navigation a goal

seeking behaviour must be included and coordinated with the local obstacle

avoidance task.

6.3 Control Experiments

6.3.1 Cart-Pole Balancing Problem

In order to assess the performance of the proposed approach, the GPFRL

algorithm is implemented in a simulated cart-pole balancing system. This model

was used to compare GPFRL (for both discrete and continuous actions) to the

original AHC (Barto et al., 1983), and other related reinforcement learning

methods.

For this case the membership functions (centres and standard deviations) and the

actions are preselected. The task of the learning algorithm is to learn the

probabilities of success of performing each action for every system state.

6.3.1.1 System Description

The pole-balancing problem is a pseudo-standard benchmark problem from the

field of control theory and artificial neural networks for designing and testing

controllers on complex and unstable nonlinear systems. The cart-pole system,

depicted in Figure 6.23, is often used as an example of inherently unstable and

135

CHAPTER 6: EXPERIMENTS

dynamic systems to demonstrate both modern and classic control techniques, as
well as the learning control techniques of neural networks using supervised
learning methods or reinforcement learning methods. In this problem a pole is
attached to a cart which moves along one dimension. The control tasks is to train
the GPFRL to determine the sequence of forces and magnitudes to apply to the
cart in order to keep the pole vertically balanced and the cart within the track
boundaries for as long as possible without failure. Four state variables are used to
describe the system status, and one variable represents the force applied to the
cart. These are: the displacement x and velocity x of the cart, and the angular

displacement 9 and its angular speed 9. The action is the force / to be applied

to the cart. A failure occurs when \6\ > 12° or |jc| > 2.4m . The success is when the

pole stays within both these ranges for at least 500,000 time steps.

The differential equations for the dynamics of the cart-pole system are the ones
proposed by (Barto et al., 1983). Equation (6.8) is the differential equation of
motion of the pole; equation (6.9) is the differential equation of motion of the cart.
The discrete time equations for the cart position and velocity are shown in (6.10)
and the discrete time equations for the pole angle and angular velocity are shown

in (6.11).

Figure 6.23: Cart-pole balancing system.

136

CHAPTER 6: EXPERIMENTS

=

-f-ml92 sme + nc sgn (x)
ml

4 mcos 9
3 mr. + m

-// sgn(x)
m + m

(6.8)

(6.9)

(6.10)

\ \\\" ^

where g is the acceleration due to gravity, mc is the mass of the cart, m is the mass

of the pole, / is the half-pole length, |ac is the coefficient of friction of cart on

track, and n p is the coefficient of friction of pole on cart. The values used are the

same as the ones used by (Barto et al., 1983) being:

TABLE 6.5 CART-POLE MODEL PARAMETERS.
Parameter

6
9
e
X

X

X

t
T

f

g
me

Description
Angle of the pole in radians
Angular velocity of the pole

Acceleration of the pole
Cart position, measured as a relative offset from

the middle of the track
Velocity of the cart

Acceleration of the cart
Time

Discrete integration time step for the simulation
Magnitude of the force applied to the centre of

the carts mass at time
Acceleration due to the gravity

Mass of the cart

Units
rad

rad/s
rad/s2

m
m/s

m/s2
s
s
N

m/s2
kg

Value

0.02
[-10, 10]

-9.8
1

137

CHAPTER 6: EXPERIMENTS

mP Mass of the pole kg 0.1
1 Half-pole length m 0.5

uc Coefficient of friction of the cart on the track - 0.0005
HP_____Coefficient of friction of the pole on the cart - 0.000002

In order to solve these equations there are several methods available as: Euler,
Heun, Runge-Kutta (RK4) and others. In general, the RK4 method is the one used
most commonly if a fixed-interval method is required. The programming is not
too arduous, and the accuracy is substantially better than Euler's or Heun's
methods, good enough for many applications. Nevertheless, it is important to
consider that purpose of this experiment is not to provide an accurate description
of the system response but rather to provide a comparison and testing platform,
therefore the Euler method is chosen, as this is been used in most of the works
presented for comparison in this section. These equations were simulated by the
Euler method using a time step of r = 20ms (50Hz).

For the simulation of this system it will be assumed that:

• The electrical system for response is instantaneous.

• The wheels of cart do not slip.

• The motor torque limit is not encountered.

The design of the fuzzy logic controller, specifically, the membership functions
parameters consider the following criteria:

• If there is no knowledge about the system, identical membership functions
whose domains cover the region of the input space evenly are chosen, and
for every possible combination of the input fuzzy variables, a fuzzy rule is

considered.

138

CHAPTER 6: EXPERIMENTS

• Since the number of rules depends on the number of inputs and the

number of membership functions within each input, the fuzzification layer

only uses 2 membership functions, so that the resulting number of rules is
16(24).

• The parameters of the fuzzy membership functions are based around

similar and well documented experiments by: (Berenji and Khedkar, 1992)

who used a reinforcement learning approach to tune a FIS in order to

control an inverted pendulum of similar characteristics to the one

described in this dissertation.

• The final values of the membership functions have been found by trial and

error based on experiment criteria from (Tanaka and Wang, 2001)

Table 6.6 presents the fuzzy logic controller parameters for the four system inputs,

x, x, 6>, and <9.

TABLE 6.6 CART-POLE MEMBERSHIP FUNCTION PARAMETERS.
Input

x
x
e
e

Centre N
-1.5
-0.5
-1.8
-0.5

Centre P

1.5
0.5
1.8
0.5

Standard deviation

0.93
0.31
1.12
0.31

Table 6.7 shows the selected parameters for our experiments, where a is the actor

learning rate, P is the critic learning rate, i is the time step in seconds, and y is the

temporal difference discount factor. The learning rates were selected based on a

sequence of experiments as shown in the next section, the time step is selected to

be equal to the standard learning rate used in similar studies and the discount

factor was selected based on the basic criteria that for values of y close to zero, the

system is almost only concerned with immediate consequences of its action. For

values approaching one, future consequences become a more important factor in

139

CHAPTER 6: EXPERIMENTS

determining optimal actions. In reinforcement learning the biggest concern is the

long-term consequences of actions, so the selected value for y is chosen to be
0.98.

TABLE 6.7 PARAMETERS USED FOR THE CART-POLE EXPERIMENT.
a /3 Y T

45.0 0.000002 0.98 0.02

6.3.1.2 Results

The Pole Balancing problem is used to compare our GPFRL approach to other
reinforcement learning methods. These methods are the original AHC described
in (Barto et al., 1983) and ten other reinforcement learning methods, namely,
Andersen's method (Lin, 1995), Lee's method (Lee, 1991), Berenji's GARIC
architecture (Berenji and Khedkar, 1992), Lin's RNN-FLCS method (Lin and Xu,

2006), the FALCON-RL method (Lin and Lee, 1993), Jouffe's FACL method
(Jouffe, 1998), C. K. Lin's RLAFC method (Lin, 2003), Wang's FACRLN

method (Wang et al., 2007), C.-T. Lin's RNFCN method (Lin, 1995) and
Zarandi's GRLFC method (Zarandi et al., 2008). This detailed comparison is
presented in Table 6.9, from which it can be seen that our GPFRL system required
the smallest number of trials. All GPFRL experiments have been obtained with an
FIS made of 16 rules (two Gaussian membership functions for every input). Fields
where information was not available are marked as N/I and fields with

information not applicable are marked as N/A.

For this experiment, 100 runs were performed and a run ended when a successful

controller was found or a failure run occurred. A failure run is said to occur if no
successful controller is found after 500 trials. The number of pole balance trials

was measured for each run and their statistical results are shown in Figure 6.24.

140

CHAPTER 6: EXPERIMENTS

45 ^

40

35

30

25

20

1£

10

5

0 0 0

0-10 11-12 13-14 15-16 17-13 19-20
Trial number

Figure 6.24: Trials distribution over 100 runs.

Table 6.8 shows the probabilities of success of applying a positive force to the
cart for each system state after a complete learning run. It can be observed that
values close to 50% are barely "visited" system states which can ultimately be
excluded, furthermore reducing the number of fuzzy rules. This can also be
controlled by manipulating the value of the stochastic noise generator, which can

either force exploration, increasing the learning time, or it can force exploitation,
which will ensure a fast convergence but less states will be visited.

TABLE 6.8 PROBABILITIES OF SUCCESS OF APPLYING A POSITIVE FORCE TO THE CART
FOR EACH SYSTEM STATE.

x,x

N

P

N

0,0
N
P

0,0
N
P

N
0.45
0.77

N
0.04
0.56

P
0.51

1
P

0.6
0.61

P

0,0
N
P

0,0
N
P

N
0.38
0.57

N
0.25
0.53

P
0.50
0.71

P
0.48
0.53

Table 6.8 represents all the possible states for the cart-pole system which results
from the combination of all the input membership values. The main division,

groups the states according to the cart position and speed, and it is divided in four

141

CHAPTER 6: EXPERIMENTS

sections. Each of these sections is further divided in four sections, according to

the pole angle and angular speed. This generates a total number of possible states

for the system of sixteen. For example, if we take the lower right corner of the

first division of the table, this corresponds to a state where the position of the cart

is positive and its speed is positive (moving to the right); logically this state will

always require a force to be applied to the left (negative force) therefore, the

probabilities of success of applying a force with a positive value, should be low. A

further analysis including the position of the pole will assign lower probabilities

for the case where the pole angle is negative and falling (negative radial speed),

and higher probabilities for the case where the pole angle is positive and falling

(positive radial speed) which correspond hierarchically to the values observed in

Table 6.8.

After each iteration, the learning agent will try to use the current probability

values as an input-output mapping; then a corresponding action will be executed,

and a new reinforcement signal will be assigned according to the result of this

action. After several iterations, the probabilities converge to their optimal values

(e.g. the values shown in Table 6.8). This probability values are consider optimal,

when two conditions are met:

1. Subsequent iterations produce little or no change to the probabilities.

2. The actions generated as a consequence of this probabilities, are able to

balance the pole within the specified range, for the duration of a

predetermined amount of time.

3. The actions generated as a consequence of this probabilities, are able to

keep the cart within the specified range, for the duration of a

predetermined amount of time.

142

CHAPTER 6: EXPERIMENTS

The final optimal force to be applied to the cart every time step is calculated
according to:

143

CHAPTER 6: EXPERIMENTS

TABLE 6.9 LEARNING METHOD COMPARISON FOR THE CART-POLE BALANCING
PROBLEM.

« s" "3

II

>". c

— SJ

•5 I
' ~

o

c o c
/L / /

o8 -

o o
z z;

i" -r
7. 7.

7 ^

O O O O O V
7 £ /L S. \£ v

7 7

Z > Z Z

7
Z
a:

2 ^ - £ z £ ^
P r,', ^ - ± 7. ^

X ^ u. ^ 2^ ^ u-,_J C" . _rf- ~' < *

144

CHAPTER 6: EXPERIMENTS

The minimum and the maximum number of trials over these 100 runs are 2 and

10, with an average number of trials is 3.33 with only 4 runs failing to learn. It is

also to be noted that there are 59 runs that took between 3 and 4 trials in order to

find correctly learn the probability values of the GPFRL controller.

In order to select an appropriate value for the learning rate, a value that minimizes

the number of trials required for learning but at the same time minimizes the

number of no-learning runs (a run in which the system executed one hundred or

more trials without success), a set of tests were performed and their results are

depicted in Figure 6.25-Figure 6.28.

In Figure 6.25 and Figure 6.26 it can be observed that the value of alpha does not

have a direct impact on the number of failed runs (which is in average 10%) as it

does with the learning speed, with a value higher than forty five there is no

significance increase on the learning speed. For these tests the program executed

the learning algorithm twenty two times, each time consisting of one hundred

runs, from which the average was taken.

In the following graphs the solid black line represents the actual results, whilst the

dashed line is a second order polynomial trend line.

16 -

14

§12

llQ
ro

_0)

§ 8•z.
6 -

18 22 26 30 34 38 42 46 50 54 58
Alpha

Figure 6.25: Actor learning rate, alpha, vs. number of failed runs.

145

CHAPTER 6: EXPERIMENTS

J5 4.5
ro 4'C

•S 3.5

1 3

i2.5

18 22 26 30 34 38 42 46 50 54 58

Alpha
Figure 6.26: Actor learning rate, alpha, vs. number of trials for learning

100 ->
90 -

80
in _
c 70

-5 60 -
I 50 -
S 40
| 30 -

20
10 -I
0

0.000001 0.000002 0000008 0.000032 0.000128
Beta

Figure 6.27: Critic learning rate, beta, vs. number of failed trials.

I 4.0

S3.5
•§3.0

| 2.5

o2.0

| 1.5 -

0.5 -

0.0
0.000001 0.000002 0.000008 0.000032 0.000128

Beta

Figure 6.28: Critic learning rate, beta, vs. number of trials for learning

146

CHAPTER 6: EXPERIMENTS

For the second set of tests (Figure 6.27 and Figure 6.28), the values of beta were

changed whilst keeping alpha at 45. It can be observed that there is no significant

change in the number of failed runs with an increase of beta for values under
0.000032. With beta values over this, the number of non-learning runs increases
quickly. Contrary, for values of beta below 0.000032 there is no major increase on

the learning rate. The results of one of the successful runs are shown from Figure
6.29 to Figure 6.32.

Figure 6.29 shows the cart position with respect to the centre of the assigned area,

the cart offset with respect with this centre has been observed to take different

values in different experiments, with oscillations of similar values (close to a 0.6m

peak to peak). It is an understandable effect, as the learner was not train to keep
the cart near the centre; rather it was trained to keep the pole in balance and to

keep the cart within certain limits.

The pole angle 9 is shown in Figure 6.30, where oscillations centred on zero can

be observed. As a difference with the cart, a successful pole balance can only be

maintain if the pole is as vertical as possible, hence, oscillations of around 0.4deg,

on average, peak-to-peak can be observed.

After a successful set of trials, the control force f is presented (Figure 6.31). It is

important to notice that / is an external force and it is only applied to the cart in

order to keep the pole balanced. The mean of the applied force is around 1 with a

peak-to-peak value of ±1.

The stochastic noise is shown in (Figure 6.32) and it was captured also at the end

of a set of trials, consequently the display of small values, indicates that the

learning agent has effectively explore many states, making the system to follow a

greedy behaviour, where exploitation is preferred over exploration.

147

CHAPTER 6: EXPERIMENTS

100 200 500 600

Figure

300 400
Time (s)

6.29: Cart position at the end of a successful learning run.

0 100 200 500300 400
Time (s)

Figure 6.30: Pole angle at the end of a successful run.

600

100 200 500 600300 400
Time (s)

Figure 6.31: Applied force at the end of a successful learning run.

148

CHAPTER 6: EXPERIMENTS

100 200 500 600

Figure

300 400
Time (S)

6.32: Signal generated by the stochastic noise generator.

6.3.1.3 Conclusions

In this dissertation a new method for optimizing fuzzy inference systems based on
reinforcement learning and probabilistic theory has been proposed. In this section
the proposed method was applied to a cart-pole system. The cart-pole system was
controlled by a fuzzy inference system. The structure of the fuzzy inference
system was fixed a priori.

Before learning, the average time until failure was about 25-100 time steps (up to
1 second). Within a few trials one could observe trials with well over 100000 time
steps balancing time. After the learning, the fuzzy controller was able to stabilize
the pendulum, initially and for comparison purposes, for 500,000 time steps.
Further experimentation with the algorithm running unconstrained, the GPFRL
algorithm was able to balance the pole for periods over lOmillion time steps
(equivalent to 55 simulated hours).

The deficiencies in the input representation of the pole's state were overcome by
using a fuzzyfier. The weak, initial strategy of random action-selection was
transformed into a nearly deterministic choice of the better action for each state.
Each action is quickly chosen by calculating the output of the controller (actor)
every time step. These characteristics make this approach a well-suited option to

149

CHAPTER 6: EXPERIMENTS

refining the control of a real-time task, and can do so e ven when given an

inappropriate representation and with few clues as to what a good strategy would
be.

An important thing to consider is that the proposed method was not configured to

control the pole with a high precision; rather it was developed with the simple task

of avoiding the pole to fall out of the specified angular range and avoid the cart to

leave the specified distance range. Nevertheless the GPFRL balanced the pole

with an angular deviation of 0.4deg from the vertical. This proposes the idea that

perhaps redefining the goal of the learning, from learning to keep the pole within

a range to learning to minimize the angular error between the pole and the vertical

axis, could potentially reduce this angular deviation error, leading to more stable

results, but with the cost of longer learning periods.

Finally, a number of alterations remain to be tried that will probably result in a

faster learning. Some of the minor changes that can be made include:

• Adapting the parameter values during learning (optimization of

membership function parameters and the number of rules) will potentially

improve the performance of the proposed method.

• Using averages of past input values in updating weights rather than the

single input from the previous step as done here.

• Also, a potentially great improvement in performance might result from

the addition of a mechanism for learning a model of the problem even

before goals are specified.

150

CHAPTER 6: EXPERIMENTS

6.3.2 DC Motor Control

This experiment consists of a DC motor with a gear head reduction box. Attached

to the output shaft there is a lever (considered to have no weight) of length L and

at the end of this a weight W. The starting point (at which the angle of the output

shaft is considered to be at angle 0) is when the lever is in vertical position, with

the rotational axis (motor shaft) over the weight, so the motor shaft is exerting no

torque. For this particular example the following parameters are used: L=0.5m

and W=0.5kg.

Figure 6.33 shows the motor arrangement in its final position (reference of 90°)

Motor

Figure 6.33: Motor with load attached.

The mathematical model used for this test is described by:

._
(6.13)

0=-
J

(6.14)

151

CHAPTER 6: EXPERIMENTS

These equations can also be represented in state-space form. If we choose motor
position, motor speed, and armature current as our state variables, we can write
the equations as follows:

-'
dt\0

-R/L -KJL
KJJ -D/J

\/L o
o -i/j (6.15)

In the above equations, / is the instant current in amperes, V is the instant voltage
across the motor terminals, Re is the winding resistance, Ke is the motor constant,

9 is the rotation speed of the rotor, K, is the armature constant, D is the damping
factor, T is the total torque applied to the motor rotor at a particular time step, and
J is the moment of inertia generated by the rotor movement.

As with the car-pole example, it is important to consider that the purpose of this
experiment is not to provide an accurate description of the system response but
rather to provide a testing platform. Nevertheless, as the learning algorithm does
not depend on the system model, the selection of a more accurate method will not
have a considerable effect on the final performance, and will increase the design
complexity unnecessarily. Finally, this motor model is solved using a time step r
of 0.00001 seconds, and are described:

= 0(t)+T-0(t)

(6.16)

(6.17)

(6.18)

The corresponding parameters used for this example are shown in Table 6.10:

TABLE 6.10 DC MOTOR MODEL PARAMETERS.
Parameter Description Unit Value

152

CHAPTER 6: EXPERIMENTS

Re
Ke
L
Kt
D
J

Electric resistance
Motor constant

Electric inductance
Armature constant

Damping ratio
Moment of inertia of the rotor

a
V/rad/s

H
N.m/A
N.m/s

(kg.m2/s2)

0.611
0.02587885

0.00012
0.0259

0.00000432
0.00000333

6.3.2.1 Control Signal Generation

For the present approach let's assume that there are only 2 possible actions to

take: direct or reverse voltage, that is, the controller will apply either 24V or -24V

to the motor spinning it clockwise or counter clock wise. At high commutation

speeds the applied signal will have the form of a PWM whose duty cycle controls

the direction and speed of rotation of the motor.

The selection of either of the actions described above will depend on the

probability of success of the current state of the system. The goal of the system is

to learn this probability through reinforcement learning.

The inputs to the controller are the error and the rate of change of the error as it is

commonly used in fuzzy controllers.

6.3.2.2 Failure Detection

For the RL algorithm to perform, an adequate definition of failure is critical.

Deciding when the system has failed and defining its bias is not always an easy

task. It can be as simple as analysing the state of the system, like in the case of the

classic cart pole problem (Barto et al., 1983); or it can get complicated if the agent

needs to analyse an external object, for example in a welding machine, a positive

reinforcement can be attributed if the weld has been successful or a failure if it has

not.

For many modern control systems, the use of performance indices, constitute very

important design tools available to Engineers. It provides a quantitative way to

153

CHAPTER 6: EXPERIMENTS

measure a system performance in a mathematical way, so that an "optimum

system" can be designed and evaluated. Four of the most well-known methods

are: ISE, IAE, ITAE and ITSE which are defined as follows (Schapire, 1990):

CO

=]\e(t)\dt (6.19)

= \te(t)\dt (6.20)

(6.21)

(6.22)

Where e(t) is the difference between the reference position and the actual motor

position (system error). The IAE is computed at every time step, and is compared

with a selectable threshold value. A control system failure is considered when the

measured IAE is over the stated threshold thus generating a negative

reinforcement and resetting the system to start a new cycle.

The proposed system continuously analyses the performance of the controller,

through computing the integral of absolute error (IAE) and the (ITAE). These

indexes were selected based upon experimentation, rather than a mathematical

analysis. After some trial and error, the results obtained with the ITAE and IAE

indexes consistently outperformed the results obtained with the ISE and ITSE

indexes with respect to the final performance of the controller. In any case none of

them proved to have a direct effect on the learning.

154

CHAPTER 6: EXPERIMENTS

The IAE index is especially sensitive to system overshoot; changes in the

reference can produce sudden changes in the error value making the IAE index

less forgiving to overshoot. Introducing a time parameter into the IAE index, as in

the I TAB, makes the index spe cially se nsitive to remaining errors over long

periods of time, rather than larger errors produced on time steps near t = 0 this

provides an excellent measure of steady state errors. By using these two

performance indexes our proposed GPFRL system is able to configure the

probabilistic controller to minimize both, overshoot and steady state errors.

In this example, the performance index criterion will penalize a response that has

errors that persist for a long time, thus making the agent learn to reduce the

overshoot and furthermore the steady state error.

Due to sudden changes in the reference signal used for this particular example the

following method is used in evaluating the IAE and ITAE thresholds dynamically:

^ I

Then, the reward signal "r" is defined according to (6.25)

0. >

It immediately becomes obvious that for fixed reference signals over extended

periods of time, the performance indexes will eventually overcome the maximum

values; nevertheless this does not imply low performance of the controller. It is

155

CHAPTER 6: EXPERIMENTS

imperative so, to establish a period of time over which the system IAE and ITAE

should remain within acceptable limits (t<t]im).

It is important to notice that the definition of an appropriate performance index

and consequently, the corresponding reward signal, is highly dependent of the

particular system under measure and its desired behaviour. For any given system,

the definition of a rewarding or punishable circumstance can be more than a trivial

problem with more than one solution. In the current example the selection of the

IAE as a performance measure, can generate rewards that can "teach" the system

to avoid overshoots. In similar way the selection of the ITAE as a performance

measure, generates rewards (or punishments) that will lead the system to avoid

steady state errors. It becomes clear that the appropriate selection of a

performance measure can greatly affect the final performance of the controller, as

each one tries to punish (or reward) different events.

6.3.2.3 System Configuration

The membership functions used to fuzzyfi the inputs are depicted in Figure 6.34

and Figure 6.35. Their parameters were selected based on experience, and are

shown in Table 6.11 and Table 6.12.

Fuzzy Error Input

150 100 -50 (» 50 100 150
Figure 6.34: Membership functions of the error input.

156

CHAPTER 6: EXPERIMENTS

TABLE 6.11 MEMBERSHIP FUNCTION PAREMETERS FOR ERROR INPUT.
LargeN MediumN SmallN SmallP MediumP LargeP

~C ^85 ^52 Il6l16^5 52 85
Q" 18 14 14 14 14 18

Fuzzy Rate of Change of Error Input

/ A. V u '° V'\ ' A/^ A ;/V7'V \
\
\

V
-100 -50 0 50 100

Figure 6.35: Membership functions for the rate of change of the error.

TABLE 6.12 MEMBERSHIP FUNCTION PARAMETERS FOR RATE OF ERROR INPUT.
LargeN SmallN Centre Small? LargeP

C ^70 ^350 35 70
a 15 15 15 15 15

The Reinforcement Learning agent requires some parameters to be defined. Table

6.13 shows the values selected by following two selection principles (Wang et al.,

2007).

First, by adjusting the discount factor y, we were able to control the extent to

which the learning system is concerned with long-term versus short-term

consequences of its own actions. In the limit, when y = 0, the system is myopic in

the sense that it is only concerned with immediate consequences of its action. As

7 approaches 1, future costs become more important in determining optimal

actions. Because we are rather concerned with long-term consequences of its

actions, the discount factor had to be large, i.e., we set y - 0.95 .

TABLE 6.13 COEFFICIENT VALUES FOR THE RL ALGORITHM.
a yg Y

157

CHAPTER 6: EXPERIMENTS

1 0.95

Second, if a learning rate is small, the learning speed is slow. In contrast, if a
learning rate is large, the learning speed is fast, but oscillation occurs easily.
Therefore, we chose small learning rates to avoid oscillation, such as a = 7, ft =1

6.3.2.4 Test Bench

A screen capture of the developed software is shown in Figure 6.36. The control
window provide the choice of visualizing the response of the motor (angle) or the
error; in the lower part it provides a real time visualization of the probabilities of
success of applying a positive voltage to the motor (rotate the rotor clockwise).

In the upper part 4 different sections provide the following options:

• RL Parameters: Steps to balance is not used for this example,
max errors, is the maximum number of failures allowed on each
run, random range allows the user to indicate the standard
deviation of the Gaussian random error generator in percentage,
so that a 20% will correspond to a random number generated
with a Gaussian distribution of mean zero and standard

deviation of 0.4.

• Control Parameters: Reference angle indicates the angle the
motor is expected to be (reference), the motor angle shows the
current angle of the motor shaft, error, shows the difference
between the current shaft angle and the reference angle, and rate
of error, indicates the speed at which the error is changing.

• Fuzzy Parameters: the first line shows the applied voltage in
real time and the second line shows the generated internal

reinforcement signal 7.

158

CHAPTER 6: EXPERIMENTS

• Output: shows the trial number and the result condition (failure

or success). The next two lines show the IAE and ITAE value
criteria.

Steps to bf ! an;e: 0

Max errors: ~j

RefXMl range ; e- E ;' 0

Control Psiafteters
Refe'erce angle:
Motor Ang ;

Er^ix:

Rate GfS'tO':

Output

Thai*, o

ITAE . 0

O)

100

50

0

-50

Motor Response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5K
Time

Figure 6.36: Screen capture of the developed software for the DC Motor example.

The corresponding relevant code is presented in Appendix C at the end of this

dissertation. The complete code and a screen captured video are provided in the

attached CD.

6.3.2.5 Results

The coded program search for possible probability values, and adjust the

corresponding one, accordingly. As for all the experiments of this section, it is

called "one test" to a set of trials performed by the agent until the probabilities of

159

CHAPTER 6: EXPERIMENTS

success are learnt so that the system does not fail. A trial is defined as the period,

in which a new policy is tested by the Actor, if a failure occurs, then the policy is
updated and a new trial is started.

For this experiment two different tests were performed. The first test consisted on
a step signal of 90deg as reference signal, after the learning is completed the
signal is inverted (-90deg), so that the learning agent can explore different states,
and then continues inverting every 1.5 seconds. This test can be run by executing
the stand alone executable file RL_MOTOR_SS.exe found in X:\DC Motor
Control Problem, where X is the CD drive letter. The results of this test can be
seen in Figure 6.37 and Figure 6.38.

0.2 0.4 0.6 0.8 1 1.2
Time

Figure 6.37: Trials for learning.

1.4

160

CHAPTER 6: EXPERIMENTS

0.098
0.105

Time (s)

Figure 6.38: Motor error in steady

3.105

state.

Figure 6.37 illustrates the learning process. The system starts 90° apart from the
reference. After four trials, the agent configured the fuzzy logic rules so that the
error rapidly converged to zero. Figure 6.38 shows the steady state error after a
successful learning run. It can be observed the average error in steady state is
around 0.0965deg or in percentage an error of 0.1% with no overshoot and a very
fast rise time.

This test was performed twenty times; the agent was able to learn the probability
values in four trials in every single test. The values for each probability after
every test were observed to be, in every case, similar to the ones shown in Table

6.14.

TABLE 6.14 PROBABILITY MATRIX SHOWING THE PROBABILITY OF SUCCESS OF
PERFORMING ACTION Al FOR EVERY RULE.

6 VLN e

LN 0.49

SN 0.49

C 0.49

SP 0.47

LN

0.49

0.38

0.18

0.07

SN

0.49

0.00

0.00

0.07

SP

0.49

0.62

0.99

0.93

LP

0.50

0.50

0.77

0.92

VLP

0.50

0.50

0.51

0.53

161

CHAPTER 6: EXPERIMENTS

LP 0.49 0.48 0.48 0.51 0.98 0.82

100
80
60 |J
40 i!
20 1
0

-20
-40
-60
-80

-100 — .

i

/ i
i i
i i
i i
i

0.0 1.4 2.8 4.1 5.4 6.6 7.9 9.0

Figure 6.39: Motor response to a random step reference.
10.1

The second test consisted in presenting a square signal of random values. This test

can be run by executing the stand alone executable file RL_MOTOR_RS.exe

found in X:\DC Motor Control Problem, where X is the CD drive letter. Figure

6.39 shows the motor angle when a random step signal is used as reference.

In the second test, it was observed that the agent learns to control the motor in 10

trials for a positive signal and further 2 trials in average when the signal is

inverted. This happens because the controller have already a good approximation

of the control parameters around a state where the error is close to zero, so it

requires less trials to complete the rule matrix of probabilities with the final

values.

6.3.2.6 Conclusions

This section presented an experiment on a simulated DC motor for control using

the proposed GPFRL algorithm. The key ingredient of this framework is a

probabilistic model for the transition dynamics, as in the previous cases this

experiment shown that the explicit incorporation of a probability term into the

162

CHAPTER 6: EXPERIMENTS

decision making process provided a fast learning, flexibility and robustness in the
configuration of a fuzzy inference system for optimal control. To our best
knowledge, we can confirm an unprecedented speed of learning.

6.4 Summary

This chapter presented four experiments used to test different aspects of the
proposed GPFRL method. The experiments performed were: random walk on a
grid world, cart-pole balancing problem, DC motor control and mobile robot
navigation. Results and conclusion have been detailed for each experiment.

The next chapter provides a final conclusion and observations and proposes some
topics for future research.

163

Chapter 7

Concluding Discussion

7.1 Introduction

This work has explored the different advantages and limitations of three different

popular paradigms, fuzzy logic systems, probabilistic theory and reinforcement

learning separately. It was concluded that each of this paradigms could very well

complement the drawbacks of the others and seamlessly work together in a

cooperative rather than competitive way.

Fuzzy logic systems are good at generalizations, and due to its distinctive

characteristics, it is able to handle non-statistical uncertainties, and fuzziness;

however under certain conditions, the design and development of rather large or

more complex systems can be too complicated for human operators.

Reinforcement learning methods have been an intense focus of research in the last

decade. Research has proven that reinforcement learning can be successfully used

in many different areas, such as decision making or control. A remarkable

164

CHAPTER 7: CONCLUDING DISCUSSION

characteristic is that RL methods do not require input-output pairs for training or

previous knowledge of the environment model. RL only uses sparse signal
information in order to reach to optimal conclusions. Therefore using RL for

automatic tuning of fuzzy logic parameters have also being the focus of recent
research.

Probabilistic theory is still one of the most effectives way (and most explored) to
deal with uncertainties, especially stochastic uncertainty. The fusion of
probabilistic theory with fuzzy logic controllers have shown to be a powerful tool
for practical areas such as finance and weather forecasting. Both paradigms can
work in collaboration, in order to complement each other. As a result,
probabilistic fuzzy logic system can handle a very large range of uncertainties.

The present work combines these three paradigms into a novel method, able to
learn optimal policies for control or decision making whilst being resistant to
stochastic, non-stochastic, uncertainties, randomness and fuzziness. Four different
experiments were carried on to ratify our claims; a classic cart-pole balancing
problem, a controller for a DC motor, a random walk within a grid world and a
windy grid world, and finally a real Khepera 111 mobile robot.

The rest of this chapter is organized as follows; Section two highlights the
contributions of this dissertation. In section three some important observations are
described. Section four proposes some future work and in section five the final

conclusions'^ given.

7.2 Contributions of This Work

As a recall from the introduction, a list of the contributions of this work can be

summarized in:

165

CHAPTER 7: CONCLUDING DISCUSSION

• This work presented a novel algorithm, able to find optimal

policies under uncertainties in an automatic way.

• The algorithm described in this work proposed a modification to

the actor critic reinforcement learning method where, the

introduction of a probabilistic term in the learning provided a

more effective way to deal with uncertainty while dramatically

improving the performance of the system.

• Through several different experiments, the proposed method has

demonstrated a high performance under situations of decision

making and control.

• The observed results of this work showed that the GPFRL

method can find its major application in the uncalibrated control

of non-linear, multiple inputs, and multiple output systems,

especially in situations with high uncertainty.

• The GPFRL algorithm was compared in a grid world, with the

well-established RL methods, SARSA and Q-learning. In this

experiment the GPFRL method showed not only a strong

convergence but also a much faster one.

• GPFRL has learned to control the classically "hard" inverted

pendulum system with a comparatively better performance than

other methods in terms of learning speed and accuracy.

• The GPFRL proved to be a good method for optimizing control

systems. This was tested in the DC motor example, where the

proposed method was used to find the rule matrix of a fuzzy

166

CHAPTER 7: CONCLUDING DISCUSSION

logic controller, with the task of regulating the position of a
motor shaft.

• The GPFRL method was implemented on a Khepera III robot
with the task of avoiding obstacles. The results of this
experiment were conclusive, a fast learning rate, and a statistical
solution to the obstacle avoidance problem was found.

7.3 Observations

This section presents some observations gathered during the development of this
work.

• Through the process of design and evaluation of the presented
method it was observed that the selection of a n appropriate
"reinforce" signal becomes crucial for the success of the
learning process. In reinforcement learning, the agent is not
aware of the system it is working on, nor the objective it have, it
only works on the basis of a "success" or "failure" signal.
Therefore, the appropriate selection of a reinforce signal
becomes, in other words, what is it to be considered success or
failure. This question might become obvious on simple linear
systems, but with more complex systems and tasks, the
definition or generation of this signal can be of high complexity.

• Some interesting results were observed along the testing of more
complex systems, like the Khepera III mobile robot. Having in
mind that the purpose of the reinforcement learning algorithm
was to learn how to avoid obstacles, some interesting effects

were observed:

167

CHAPTER 7: CONCLUDING DISCUSSION

o The learning agent "concluded" that if the robot does

not move, it will not crash, therefore after crashing for

the first time in one experiment the robot stop

moving.

o The learning agent "concluded" that if the robot spins

over its own axis, it will not crash, therefore after

crashing for the first time in another experiment the

robot started spinning.

o After including an algorithm that promotes forward

motion of the robot, the learning agent "concluded"

that if the robot moves forward and backwards only a

small distance, it will not crash, therefore after

crashing for the first time in one experiment the robot

presented the described behaviour.

• The above observations presented a real challenge at the time of

designing an experiment. All of the above cases can be

considered a successful learning from the RL point of view,

although the final behaviours were completely unpredictable and

diverse. This suggests that care must be taken when designing

systems with learning agents, where the selection of actions can

lead to undesired behaviours despite of a successful learning.

7.4 Future Work

Nothing is perfe ct a nd no work c an e ver be com plete, there will a Iways b e

tradeoffs, and this work is no exception. Therefore it is suggested some future

168

CHAPTER 7: CONCLUDING DISCUSSION

improvements based on the shortcomings of this proposed algorithm. These

suggestions are divided in two groups, theoretical and practical suggestions.

7.4.1 Theoretical Suggestions

• Learning still is a black box in most of the cases. The presence

of uncertainty and the concept of knowledge itself make it

intrinsically difficult if not impossible to model and analyze the

final behaviour of a learning system; therefore no system with

unsupervised learning should be unsupervised. It is suggested

the research of methods combining the probability estimation of

reinforcement learning, as the one proposed in this work, with

other methods that can incorporate the knowledge of human

operators; especially for situation where the result of selecting

actions or beha viours with a relativ ely "high" pr obability of

success can have considerable consequences. As an example, it

can be suggested the use of prospect theory, which is a method

of calculating decisions not only based on probabilities of

success but also based on a risk evaluation.

• For cases were the training is episodic, the study of a way of

storing the rewards obtained during an episode so that they can

be backward updated could allow a better and more efficient

updating, of course, at the expense of requiring more memory.

• In this work, the fuzzy inference systems have been manually

configured with good results. Nevertheless, the implementation

of structure/parameter learning can further improve the

169

CHAPTER 7: CONCLUDING DISCUSSION

performance of the controller and reduce the tuning phase time
considerably.

7.4.2 Practical Suggestions

• Although mathematical models of dynamical systems can be

accurate to a high degree, it doesn't come close to real systems

in terms of uncertainty. Therefore, it is highly suggested a more

rigorous testing of the pr oposed GPFRL m ethod on systems

interacting with real environments, such as with mobile robots

navigating on uncharted environments, highly nonlinear

manipulators, etc.

• Moreover, it is suggested the exploration on how this proposed

algorithm performs on more challenging tasks, especially in

systems with higher dimensional states.

7.5 Final Conclusions

It is my belief after observing the results of the proposed algorithm, that the

objectives of this dissertation have been successfully met. I can also anticipate the

effective solution to more complex problems using this algorithm. As any

approach, there are limitations and shortcomings in the proposed algorithm, which

should be improved further.

170

REFERENCES

AKERKAR, R. 2005. Introduction to artificial intelligence, PHI Learning Pvt.
Ltd.

ALMEIDA, R. J. & KAYMAK, U. 2009. Probabilistic fuzzy systems in value-at-
risk estimation. International Journal of Intelligent Systems in Accounting,
Finance and Management, 16, 49-70.

AN, C. H., ATKESON, C. G. & HOLLERBACH, J. 1988. Model-based control
of a robot manipulator, Boston, USA, MIT Press.

ANDERSON, C. W. 1986. Learning and problem-solving with multilayer
connectionist systems. University of Massachusetts.

BACON, A. 2009. Vagueness and uncertainty. BPhil, University of Oxford.

BAIRD, L. C. 1999. Reinforcement learning through gradient descent. Doctor of
Philosophy, Carnegie Mellon University.

BAIRD, L. C. & MOORE, A. 1999. Gradient descent for general reinforcement
learning. Advances in Neural Information Processing Systems 2. MIT
Press.

BARRICELLI, N. 1954. Esempi numerici di processi di evoluzione. Methodos,
45-68.

BARTO, A. G. & ANANDAN, P. 1985. Pattern recognizing stochastic learning
automata. IEEE Transactions on Systems, Man and Cybernetics, SMC-15,
360-374.

BARTO, A. G. & JORDAN, M. I. 1987. Gradient following without
backpropagation in layered networks. IEEE First Annual International
Conference on Neural Networks, 2, 629-636.

BARTO, A. G., SUTTON, R. S. & A NDERSON, C. W. 1983. Neuron-like
adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, 13, 835-846.

171

REFERENCES

BELLMAN, R. E. 1957. Dynamic programming, Princeton, New Jersey,
Princeton University Press.

BERENJI, H. R. 1996. Fuzzy Q-learning for generalization of reinforcement
learning. 5th IEEE International Conference on Fuzzy Systems. New
Orleans, Louisiana, USA.

BERENJI, H. R. & KHEDKAR, P. 1992. Learning and tuning fuzzy logic
controllers through reinforcements. IEEE Transactions on Neural
Networks, 3, 724-740.

BERENJI, H. R. & KHEDKAR, P. S. 1998. Using fuzzy logic for performance
evaluation in reinforcement learning. 18, 131-144.

BERG, J. V. D., KAYMAK, U. & BERG, W.-M. V. D. 2004. Financial markets
analysis by using a probabilistic fuzzy modelling approach. International
Journal of Approximate Reasoning, 35, 291-305.

BERG, J. V. D., KAYMAK, U. & BERGH, W.-M. V. D. 2002. Fuzzy
classification using probability-based rule weighting. IEEE International
Conference on Fuzzy Systems. Honolulu, HI, USA.

BLACKMORE, L. 2006. A probabilistic particle control approach to optimal,
robust predictive control. AIAA Guidance, Navigation and Control
Conference.

CHEESEMAN, P. 1985. In defense of probability. 9th International Joint
Conference on Artificial Intelligence. Los Angeles, California: Morgan
Kaufmann Publishers Inc.

CLEVELAND, W. S. 1979. Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, 74, 829-836.

COMON, P. 1994. Independent component analysis: a new concept? Signal
Processing, 36,287-314.

DAW, N. D. 2003. Reinforcement learning models of the dopamine system and
their behavioral implications. PhD, Carnegie Mellon University.

DAY AN, P & DAW, N. D. 2008. Decision theory, reinforcement learning, and
the brain. Cognitive, Affective, & Behavioral Neuroscience, 8, 429-453.

DEARDEN, R., FRIEDMAN, N. & RUSSELL, S. 1998. Bayesian Q-learning.
Proceedings of the 15th national conference on Artificial intelligence. CA,
USA: AAAI Press.

172

REFERENCES

DEISENROTH, M. P. & RASMUSSEN, C. E. 2010. Reducing model bias in
reinforcement learning. Workshop on Learning and Planning from Batch
Time Series Data. Whistler, BC, Canada.

DEMSPSTER, A. P. 1969. Upper and lower probability inferences for families of
hypotheses with monotone density rations. Annals of Mathematical
Statistics, 40, 953-969.

DOR1GO, M. & COLOMBETTI, M. 1998. Robot shaping: an experiment in
behavior engineering, Cambridge, Massachusetts, The MIT Press.

DOYA, K. 2002. Metalearning and neuromodulation. Neural Networks, 15, 495-
506.

DRIANKOV, D., HELLENDOORN, H. & REINFRANK, M. 1996. An
introduction to fuzzy control, New York, Springer-Verlag.

DUBOIS, D. 2006. Possibility theory and statistical reasoning. Computational
Statistics & Data Analysis, 51, 47-69.

DWIVEDI, A., MISHRA, D. & KALRA, P. K. 2006. Handling uncertainties
using probability theory to possibility theory. Directions Magazine.
Kanpur, India: India Institute of Technology.

FIX, E. & HODGES, J. L. 1951. Discriminatory analysis, nonparametric
discrimination: consistency properties. California, USA: California
University at Berkley.

FOGEL, L. J., OWENS, A. J. & WALSH, M. J. 1966. Artificial intelligence
through simulated evolution, John Wiley & Sons.

FRANK, M. J. & CLAUS, E. D. 2006. Anatomy of a decision: striato-
orbitofrontal interactions in reinforcement learning, decision making, and
reversal. Psychological Review, 113, 300-326.

FULLER, R. 2000. Introduction to neuro-fuzzy systems, Berlin, Physica-Verlag
HD.

GARDIOL, N. H. & KAELBLING, L. P. 2006. Computing action equivalences
for planning under time-constraints. Learning and Intelligent Systems.
Cambridge, Massachusetts, USA: Massachusetts Institute of Technology.

GASKETT, C. 2003. Reinforcement learning under circumstances beyond its
control. International Conference on Computational Intelligence for
Modelling Control and Automation Vienna, Austria.

173

REFERENCES

GASKETT, C., FLETCHER, L. & ZELINSKY, A. 2000. Reinforcement learning
for a vision based mobile robot. International Conference on Intelligent
Robots and Systems.

GLORENNEC, P. Y. 2000. Reinforcement learning: an overview. European
Symposium on Intelligent Techniques. Aachen, Germany.

GLORENNEC, P. Y. & JOUFFE, L. 1997. Fuzzy Q-Learning. Procedings of The
IEEE International Conference on Fuzzy Systems. Barcelona, Spain.

GOLDBERG, D. E. 1994. Genetic and evolutionary algorithms come of age.
Communications of the ACM, 37, 113-120.

HEBB, D. O. 1949. The Organization of Behavior: A Neuropsychological
Theory, New York, USA, Wiley.

HINOJOSA, W., NEFTI, S., GRAY, J. & KAYMAK, U. 2008. Reinforcement
learning for probabilistic fuzzy controllers. International Conference on
Control. Manchester, UK.

HINTON, G.V.E. 1989. Connectionist learning procedures. Artificial Intelligence,
40,185-234.

HOLLAND, J. H. 1992. Genetic algorithms. Scientific American Magazine, 267,
66-73.

JANG, J.-S. R. 1993. ANFIS: Adaptive-Network-based Fuzzy Inference Systems.
IEEE Transactions on Systems, Man and Cybernetics, 23, 665-685.

JANG, J.-S. R., SUN, C.-T. & MIZUTANI, E. 1997. Neuro-fuzzy and soft
computing, Prentice Hall.

JAULMES, R., PINEAU, J. & PRECUP, D. 2005. Probabilistic robot planning
under model uncertainty: an active learning approach. In: GRUDIC, G. &
MULLIGAN, J. (eds.) NIPS Workshop on Machine Learning Based
Robotics in Unstructured Environments. Whistler, Canada.

JOUFFE, L. 1998. Fuzzy inference system learning by reinforcement methods.
IEEE Transactions on Systems, Man, and Cybernetics, 28, 338-355.

KALYANAKRISHNAN, S. & STONE, P. 2009. An empirical analysis of value
function-based and policy search reinforcement learning. 8th International
Conference on Autonomous Agents and Multiagent Systems. Budapest,
Hungary: International Foundation for Autonomous Agents and
Multiagent Systems.

174

REFERENCES

KANTARDZIE, M. 2002. Data mining: concepts, models, methods, and
algorithms, WileyBlackwell.

KOHONEN, T. 1988. Self-organization and associative memory, Berlin,
Springer.

KOSKO, B. 1991. Neural networks and fuzzy systems: a dynamical systems
approach to machine intelligence, Prentice Hall.

LA, B. M. 2003. Mobile robot navigation using fuzzy reinforcement learning.
Proceedings of The 9th National UROP Congress.

LANGLEY, P. 1995. Elements of machine learning, San Francisco, CA, Morgan
Kaufmann.

LAUD, A. & DEJONG, G. 2003. The influence of reward on the speed of
reinforcement learning: an analysis of shaping. Proceedings of The 20th
International Conference on Machine Learning (ICML), 440—447.

LAURITZEN, S. L. & SPIEGELHALTER, D. J. 1988. Local computations with
probabilities on graphical structures and their application to expert
systems. Journal of the Royal Statistical Society B, 50, 157-224.

LAVIOLETTE, M. & SEAMAN, J. W. 1994. Unity and diversity of fuzziness-
from a probability viewpoint. IEEE Transactions on Fuzzy Systems, 2, 38-
42.

LEE, C.-C. 1991. A self-learning rule-based controller employing approximate
reasoning and neural net concept. International Journal of Intelligent
Systems, 6,71-93.

LIANG, P. & SONG, F. 1996. What does a probabilistic interpretation of fuzzy
sets mean? IEEE Transactions on Fuzzy Systems, 4, 200-205.

LIN, C.-J. & LIN, C.-T. 1996. Reinforcement learning for an ART-based fuzzy
adaptive learning control network. IEEE Transactions on Neural
Networks, 7,709-731.

LIN, C.-J. & XU, Y.-J. 2006. A novel genetic reinforcen.ent learning for
nonlinear fuzzy control problems. Neurocomputing, 69, 2078-2089

LIN, C.-K. 2003. A reinforcement learning adaptive fuzzy controller for robots.
Fuzzy Sets and Systems, 137, 339-352.

175

REFERENCES

LIN, C.-T. 1995. A neural fuzzy control system with structure and parameter
learning Fuzzy Sets and Systems, 70, 183-212.

LIN, C.-T. & LEE, C. S. G. 1993. Reinforcement structure/parameter learning for
neural-network-based fuzzy logic control systems. IEEE International
Conference on Fuzzy Systems. San Francisco, CA, USA.

LIN, C.-T. & LEE, C. S. G. 1994. Reinforcement structure/parameter learning for
neural-network-based fuzzy logic control systems. IEEE Transactions on
Fuzzy Systems, 2,46-63.

LITTMAN, M. L. 2001. Value-function reinforcement learning in Markov games.
Journal of Cognitive Systems Research 2, 2, 55-66.

LIU, Z. & LI, H.-X. 2005. A probabilistic fuzzy logic system for modelling and
control. IEEE Transactions on Fuzzy Systems, 13, 848-859.

MAMDANI, E. & ASSILIAN, S. 1975. An experiment in linguistic synthesis
with a fuzzy logic controller. International Journal of Man-Machine
Studies, 7, 1-13.

MARTHI, B! 2007. Automatic shaping and decomposition of reward functions.
In: GHAHRAMANI, Z. (ed.) Proceedings of The 24th International
Conference on Machine Learning Corvallis, Oregon, USA: ACM.

MATARIC, M. J. 1994. Reward functions for accelerated learning. Proceedings
of The 11th International Conference on Machine Learning (ICML), 1 SI-
189.

MCNEILL, F. M. & THRO, E. 1994. Fuzzy logic: a practical approach, Morgan
Kaufmann Pub.

MEGHDADI, A. H. & AKBARZADEH-T., M.-R. 2001. Probabilistic fuzzy logic
and probabilistic fuzzy systems. 10th IEEE International Conference on
Fuzzv Systems. Melbourne, Australia.

MEGHDADI, A. H. & AKBARZADEH-T., M.-R. 2003. Uncertainty modeling
through probabilistic fuzzy systems. 4th International Symposium on
Uncertainty Modelling and Analysis. College Park, Maryland, USA.

MICHALEWICZ, Z. 1996. Genetic algorithms + data structures = evolution
programs, London, UK, Springer-Verlag.

MITCHELL, T. 1997. Machine learning, McGraw-Hill.

176

REFERENCES

MITCHELL, T. M., KELLER, R. M. & KEDAR-CABELLI, S. T. 1986.
Explanation-based generalization: a unifying view. Machine Learning, 1,
47-80.

MOORE, A. W. & ATKESON, C. G. 1993. Prioritized sweeping: reinforcement
learning with less data and less real time. Machine Learning, 13, 103-130.

MORIARTY, D. E., SCHULTZ, A. C. & GREFENSTETTE, J. J. 1999.
Evolutionary algorithms for reinforcement learning. Journal of Artificial
Intelligence Research, 11, 241 -276.

MUSTAPHA, S. M. & LACHIVER, G. 2000. A modified actor-critic
reinforcement learning algorithm. Canadian Conference on Electrical and
Computer Engineering. Halifax Nova Scotia Canada.

NAUCK, D., KLAWONN, F. & KRUSE, R. 1997. Foundations of neuro-fuzzy
systems, New York, John Wiley & Sons.

NG, K. C. & LI, Y. 1994. Design of sophisticated fuzzy logic controllers using
genetic algorithms. 3rd IEEE International Conference on Fuzzy Systems.
Orlando, FL , USA.

NIV, Y. 2009. Reinforcement learning in the brain. Journal of Mathematical
Psychology, 53, 139-154.

PAN, Y., KLIR, G. J. & YUAN, B. 1996. Bayesian inference based on fuzzy
probabilities.

PARK, J.-J., KIM, J.-H. & SONG, J.-B. 2007. Path planning for a robot
manipulator based on probabilistic roadmap and reinforcement learning.
International Journal of Control, Automation, and Systems, 5, 674-680.

PEARL, J. 1982. Reverend Bayes on inference engines: a distributed hierarchical
approach. American Association of Artificial Intelligence National
Conference on AI. Pittsburgh, Pennsylvania, USA.

PEARL, J. 1988. Probabilistic reasoning in intelligent systems: networks of
plausible inference, San Mateo, California, USA, Morgan Kaufmann
Publishers, Inc.

PEDNAULT, E., ABE, N. & ZADROZNY, B. 2002. Sequential cost-sensitive
decision making with reinforcement learning. 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 259-
268.

177

REFERENCES

PINEAU, J., GORDON, G. & THRUN, S. 2003. Point-based value iteration: an
any time algorithm for POMDPs. International Joint Conference on
Artificial Intelligence (IJCAI). Acapulco, Mexico.

POUPART, P. & BOUTILIER, C. 2004. VDCBPI: an approximate scalable
algorithm for large POMDPs. Advances in Neural Information Processing
Systems. Vancouver, British Columbia, Canada.

POUPART, P., VLASSIS, N., HOEY, J. & REGAN, K. 2006. An analytic
solution to discrete Bayesian reinforcement learning. Proceedings of the
23rd International Conference on Machine Learning. New York, NY,
USA: ACM.

PROROK, A., ARFIRE, A., BAHR, A., FARSEROTU, J. R. & MARTINOLI, A.
2010. Indoor Navigation Research with the Khepera III Mobile Robot: An
Experimental Baseline with a Case-Study on Ultra-Wideband Positioning.
International Conference on Indoor Positioning and Indoor Navigation.
ETH Zurich, Switzerland.

QUINLAN, J. R. 1986. Induction of decision trees. Machine Learning, 1, 81-106.

REGAN, H. M., COLYVAN, M. & BURGMAN, M. A. 2000. A proposal for
fuzzy International Union for the Conservation of Nature (IUCN)
categories and criteria. Biological Conservation, 92, 101-108.

ROGOVA, G., SCOTT, P. & LOLETT, C. 2002. Distributed reinforcement
learning for sequential decision making. 5th International Conference on
Information Fusion.

ROSS, T. 2004. Fuzzy logic with engineering applications, John Wiley & Sons
Ltd.

ROY, N., GORDON, G. & THRUN, S. 2005. Finding approximate POMDP
solutions through belief compression. Journal of Artificial Intelligence
Research, 23, 1-40.

RUMELHART, D. E., HINTON, G. E. & WILLIAMS, R. J. 1986. Learning
internal representations by error propagation. Parallel distributed
processing: explorations in the microstructure of cognition. MIT Press.

RUMMERY, G. A. & NIRANJAN, M. 1994. On-line q-learning using
connectionist systems. Cambridge: Cambridge University.

178

REFERENCES

RUSSELL, S. & NORVIG, P. 1994. Artificial intelligence: a modern approach,
Prentice Hall.

SAADE, J. J. 2011. Fuzzy sets and inference as an effective methodology in the
construction of intelligent controllers Transactions on Internet Research 7,
3-17.

SAINSBURY, R. M. 1995. Paradoxes, Cambridge University Press.

SCHAPIRE, R. E. 1990. The Strength of Weak Learnability. Machine Learning,
5, 197-227.

SCHULTZ, W., DA VAN, P. & MONTAGUE, P. R. 1997. A neural substrate of
prediction and reward. Science Magazine, 275, 1593 - 1599.

SHAFER, G. 1976. A mathematical theory of evidence, Princeton, New Jersey,
Princeton University Press.

SILER, W. & BUCKLEY, J. J. 2004. Fuzzy expert systems and fuzzy reasoning,
New Jersey, Wiley-Interscience.

SINGH, S., JAAKKOLA, T., LITTMAN, M. L. & ARI, C. S. 2000. Convergence
Results for Single-Step On-Policy Reinforcement-Learning Algorithms.
Machine Learning, 38.

STRENS, M. 2000. A Bayesian framework for reinforcement learning.
Proceeedings of the 17th International Conference on Machine Learning.
Stanford University, California: ICML.

SUTTON, R. S. 1988. Learning to predict by the methods of temporal differences.
Machine Learning, 3, 9-44.

SUTTON, R. S. & BARTO, A. G. 1981. Toward a modern theory of adaptive
networks: expectation and prediction. Psychological Review, 88, 135-170.

SUTTON, R. S. & BARTO, A. G. 1987. A temporal-difference model of classical
conditioning. 9th Annual Conference of the Cognitive Science Society.
Seattle, WA.

SUTTON, R. S. & BARTO, A. G. 1998. Reinforcement learning: an introduction,
Cambridge, MA, MIT Press.

TANAKA, K. & WANG, H. O. 2001. Fuzzy control systems design and analysis:
a linear matrix inequality approach. New York, John Wiley & Sons, Inc.

179

REFERENCES

TANNERY, C., ELVERS, H.-D. & JANDRIG, B. 2007. The ethics of
uncertainty. In the light of possible dangers, research becomes a moral
duty. EMBO Reports, 8, 892-896.

THRUN, S. 2000. Probabilistic algorithms in robotics. AIMagazine, 21, 93-109.

THRUN, S., BEETZ, M., BENNEWITZ, M., BURGARD, W., CREMERS, A.
B., DELLAERT, F., FOX, D., HAHNEL, D., ROSENBERG, C., ROY,
N., SCHULTE, J. & SCHULZ, D. 2000. Probabilistic algorithms and the
interactive museum tour-guide robot Minerva. International Journal of
Robotics Research, 19,972-998.

VALAVANIS, K. P. & SARIDIS, G. N. 1991. Probabilistic modelling of
intelligent robotic systems. IEEE Transactions on Robotics and
Automation, 7, 164-171.

VALIANT, L. G. 1984. A theory of the learnable. Communications of the ACM
Magazine, 27, 1134-1142.

WANG, X.-S., CHENG, Y.-H. & YI, J.-Q. 2007. A fuzzy actor-critic
reinforcement learning network. Information Sciences, 177, 3764-3781.

WATKINS, C. J. C. H. 1989. Learning from delayed rewards. Doctor of
Philosophy, King's College.

WATKINS, C. J. C. H. & DAYAN, P. 1992. Q-learning. Machine Learning, 8,
279-292.

WILLGOSS, R. A. & IQBAL, J. 1999. Reinforcement learning of behaviours in
mobile robots using noisy infrared sensing. Australian Conference on
Robotics and Automation. Brisbane, Australia.

WILLIAMS, R. J. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning,-^, 229-256.

ZADEH, L. A. 1965. Fuzzy sets. Information and Control, 8, 338-353.

ZADEH, L. A. 1973. Outline of a new approach to the analysis of complex
systems and decision processes. IEEE Transactions on Systems, Man, and
Cybernetics, 3, 28-44.

ZADEH, L. A. 1978. Fuzzy sets as a basis for theory of possibility. Fuzzy Sets
and Systems, 1,3-28.

180

REFERENCES

ZADEH, L. A. 1984. Fuzzy probabilities. Information Processing and
Management, 20, 363-372.

ZADEH, L. A. 1995. Probability theory and fuzzy logic are complementary rather
than competitive. Technometrics, 37,271-276.

ZARANDI, M. H. F., JOUZDANI, J. & ZARANDI, M. F. 2008. Reinforcement
learning for fuzzy control with linguistic states. Journal of Uncertain
Systems, 2, 54-66.

181

Appendix

182

Appendix A

Random Walk Problem

183

APPENDIX A

SARSA

% Constants

% Size of the Grid
gridsize = 10;

% Location of reward
rewardM = ceil(gridSize/2);
rewardN = rewardM+1;

% Location to start from
startM = 1;
startN = 1;

% Parameters
alpha =0.4; % Step-size
epsilon = 0.01; % e-Greedy behaviour for maximum stability
gamma =0.95; I Discount
totalPlays 100; % Number of plays to average over
totalTrials = 40; % Trials per play

% Total # steps for each trial over all plays
totalNumSteps = zeros(totalTrials, 1);

% Total reward values over all plays
totalReward = zeros(totalTrials, 1);

% Start walking SARSA

for j = 1 : totalPlays
I Store # steps for each trial
numSteps = zeros (totalTrials, 1);

% Initialize V(s)
grid = zeros(gridsize, gridsize);
grid(rewardM, rewardN) = 1;

for i = 1 totalTrials
% Current position on grid is represented by m,n
m = startM;
n = startN;
prevM = startM;
prevN = startN;

% Begin stepping through a path
found = 0;
while(found == 0)

% increment # steps taken this trial
numSteps(i) = numSteps(i) + 1;

% pick an action and avoid going over grid borders
N = m-1;
if(N < 1)

N = 1;

184

APPENDIX A

end
E n+1 ;
if(E -> gridSize)

E = gridSize;
end
S = m+1;
if(S > gridSize)

S = gridSize;
end
W = n-1;
if(W < 1)

W = 1;
end
choices [grid(N,n), grid(m,E), grid(S,n), grid(m,W)];

% choose the path with the maximum value, or explore
indices = find(choices == max (choices));
maximum = max(choices);
if((length(indices) == 1) ss (rand(l) epsilon >= 0))
index = indices(1);

else
index = ceil(length(choices) * rand(l)); % randomly select direction

end

%Take action
if(index == 1) % grid(m-l,n)
m = N;

elseiflindex == 2) % grid(m,n+l)
n = E;

elseif(index == 3) % grid(m+l,n)
m = S;

elseif(index == 4) % grid(m,n-l)
n = W;

else
disp ('error ');

end

I stop after this step if the reward was found
if(m == rewardM && n == rewardN)

found =1;
end

%Expected discounted reward
expDiscReward = gamma*grid(m,n);

% calculate prediction error
predErr = expDiscReward grid(prevM,prevN) ;

% V(s) = V(s) + alpha [r 1 + V(s') V(s)]
grid(prevM,prevN) = grid(prevM,prevN) + alpha*predErr;

% update values for next step, and directional choices
prevM = m;
prevN = n;

end
end

% Update storage matrices for across all plays
totalNumSteps = totalNumSteps + numSteps;

end

% Outputs

% Average number of steps across all plays
plot(totalNumSteps / totalPlays, 'color', 'k'. 'LineStyle 1 , '-');

185

APPENDIX A

Q-LEARNING

% Constants

% Size of the Grid
gridSize = 10;

% Location of reward
rewardM = ceil(gridSize/2);
rewardN = rewardM+1;

% Location to start from
startM = 1;
startN = 1;

% Parameters
alpha 0.4; % Step-size
epsilon = 0.01; % e-Greedy behaviour for maximum stability
gamma 0.95; % Discount
totalPlays = 100; % Number of plays to average over
totalTrials = 40; % Trials per play

% Total # steps for each trial over all plays
totalNumSteps = zeros(totalTrials, 1);

% Total reward values over all plays
totalReward = zeros(totalTrials, 1);
averageReward = zeros(totalTrials, 1);

% Start walking Q-Learning
%————————————————————_____________

for j = 1 : totalPlays
% Store # steps for each trial
numSteps = zeros(totalTrials, 1);

% Initialize V(s)
grid = zeros(gridSize, gridSize);
grid(rewardM, rewardN) 1;

for i = 1 totalTrials
% Current position on grid is represented by m,«
m startM;
ii startN;
prevM = startM;
prevN = startN;

% Begin stepping through a path
found = 0;
while(found == 0)

% increment # steps taken this trial
numSteps(i) = numSteps(i) + 1;

% pick an action and avoid going over grid borders
N = m-1;
if(N < 1)

186

APPENDIX A

N = 1,
end
E = n+1;
if(E > gridSize)

E = gridSize;
end
S = m+1,
if(S > gridSize)

S = gridSize;
end
W = n-1;
if(W < 1)

W 1;

end
choices [grid(N,n), grid(m,E), grid(S,n), grid(m,W)];

% choose the path with the maximum value, or explore
indices find(choices == max(choices));
maximum max(choices);
if((length(indices) == 1) ss (rand(l) epsilon >= 0))

index = indices(1);
else

index = ceil(length(choices) * rand(l)); % randomly select direction
end

%Take action
iffindex == 1) % grid(m-l,n)
m = N;

elseiffindex == 2) % grid(m,n+l)
n = E;

elseif(index == 3) % grid(m+l,n)
m = S;

elseiffindex == 4) % grid(m,n-l)
n = W;

else
disp('error') ;

end

% stop after this step if the reward was found
if(m == rewardM && n == rewardN)

found = 1,
end

%Expected discounted reward
expDiscReward = gamma*maximum;

% calculate prediction error
predErr = expDiscReward grid(prevM,prevN);

% V(s) V(s) + alpha[r' + V(s') V(s)]
grid(prevM,prevN) = grid(prevM,prevN) + alpha*predErr;

% update values for next step, and directional choices
prevM m;
prevN = n;

end
end

% Update storage matrices for across all plays
totalNumSteps = totalNumSteps + numSteps;

end

% Outputs

% Average number of steps across all plays
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle'. •-');

187

APPENDIX A

% Constants

GPFRL

% Parameters
Alpha
beta
epsilon
gamma
totalActions
totalAgents

= 0.003;
= 0.005;
= 0.01;
= 0.95;
= 4;
= totalActions;

% Simulation control
gridSize = 10;
totalstates = gridSize*gridSize;
rewardM
rewardN
startM
startN
totalPlays
totalTrials

= ceil(gridSize/2);
= rewardM f 1;
= 1;
= 1;
= 100;
= 40;

% Variables
totalNumSteps
totalReward

% Actor learning rate
% Critic learning rate
% Exploration/explotation control parameter
% Discount factor
% Number of possible actions
% Total number of learning agents

% Size of the Grid
% Total number of system states
% Location of reward in M axe
% Location of reward in N axe
% Location to start from in M axe
% Location to start from in N axe
% Number of plays to average over
% Trials per play

= zeros(totalTrials, 1);% Total # steps for each trial over all plays
= zeros(totalTrials, totalAgents);

% Start walking - GPFRL

for j = 1 : totalPlays
% Store # steps for each trial
numSteps = zeros(totalTrials, 1) ;

% Initializing actor and critic weights
" = zeros(totalstates, totalAgents);
w = zeros(totalstates, totalAgents);

for i = I : totalTrials
disp(j+(i/100))
% Current position on grid is represented by m,n
m = startM;
n = startN;
prevM = startM;
prevN = startN;

% Clean some variables
p = zeros(totalAgents,1);
oldp p;

% Begin stepping through a path
found = 0;
while(found == 0)

% Increment # steps taken this trial
numSteps(i) = numSteps(i) + 1;

Find probabilities from actor weights

APPENDIX A

sumWeights = zeros(totalAgents, 1) ;
ro zeros (totalstates, totalAgents);
for agent = 1 : totalAgents

for state = 1 . totalstates
ro(state, agent) = logsig(w(state, agent));
sumWeights (agent) sumWeights(agent) + ro(state, agent);

end
end

% Perform an observation (using boxes system)
stidx = ((m 1) * gridSize) + n;
X zeros.(totalstates, 1);
X(stidx) = 1;

% Finding final probability
P = zeros(totalAgents, 1);
for agent = 1 totalAgents

P(agent) = ro(stidx, agent);
end

% Creating action set avoiding grid borders
N = m 1;
if(N < 1)

N = 1;
end
E = n +• 1;
if(E > gridSize)

E = gridSize;
end
S m 4- 1;
if(S > gridSize)

S = gridSize;
end
W n 1;
if(W < 1)

W = 1;
end

% Initializing values
Nu = zeros(totalAgents, 1);
stdev = zeros (totalAgents, 1);

% Stochastic random number generator
for agent 1 totalAgents

stdev(agent) = 2*logsig(p(agent))-1;
Nu(agent) = stdev(agent)*randn;
if Nu(agent) >= 1

Nu(agent) = 1;
elseif Nu(agent) <= -1

Nu(agr--nt) = -1;
end

end

% Finding choices (Probability + explotation/exploration)
choices = zeros(totalAgents, 1);
for agent=l:totalAgents

choices(agent) = P (agent)+Nu(agent) ;
end

% Choose the path with the maximum probability, or explore
indices = find(choices == max(choices));
maximum = max(choices);
if((length(indices) == 1) && (maximum >= epsilon))

index = indices(1);
else

index = ceil(length(choices) * rand), % randomly select direction
end

%Take action

189

APPENDIX A

r=zeros(totalAgents,1);
if(index == 1) % grid(m-l,n)
m = N;
r(index) = sign(m-rewardM);

elseif(index == 2) % grid(m,n+l)
n E;
r (index) = sign(rewardN-n) ;

elseif(index == 3) % grid(m+l,n)
m = S;
r(index) = sign(rewardM-m);

elseif(index == 4) % grid(m,n-l)
n = W;
r(index) = sign(n-rewardN);

else
disp('error random number too big');

end

% Stop after this step if the reward was found
if(m == rewardM && n == rewardN)

found = 1;
end

% Saving prediction information
oldp = p;
p = zeros(totalAgents, 1) ;

% Computing the prediction of eventual reinforcement
for agent = 1:totalAgents
p(agent) = v(stidx,agent);

end

% Computing the prediction error using temporal differences method
rbar=zeros(totalAgents,1);
for agent = 1:totalAgents
predErr = gamma*p(agent) oldp(agent);
rbar(agent) r(agent) + predErr;

end

% Learning thev value functions
for agent = 1 : totalAgents

for state = 1 : totalStates
w(state, agent) = w(state, agent) + alpha * rbar(agent) * X(state) * (1 /ro (
state, agent)) * exp (-w (state, agent)) * sumWeights(agent);

v(state, agent)=v(state,agent)-beta*gamma*rbar(agent)*X(state);

end
end

% update values for next step, and directional choices
prevM m;
prevN n;

end
end

% Update storage matrices for across all plays
totalNumSteps = totalNumSteps +• numSteps;

end

% Outputs

% Average number of steps across all plays
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-');

190

Appendix B

Cart-Pole Problem

191

APPENDIX B

MAIN PROGRAM

// RL_Prob_Cart_Pole.cpp
#include "stdafx.h"
#include "Mathrl.h"
^include "Cartpole.h"
#include "RLearning.h"
#include "Fuzzy.h"
Sinclude "FilePrint.h"
#include <math.h>
#include "Rgenerator.h"

Defines the entry point for the console application

#define MAX_FAILURES
#define MAX STEPS
Sdefine MAX EXEC
define FMAX
#define RUNS

#define PI

100 /* Termination criterion. */
500000 /* Stability criterion */
1 /* Number of executions of the whole program */
10. Of /* Maximum force to use */
10 /* number of times the program will run inside an

/* execution cicle */
3.14159265358979323846f

V

#define ALPHAINIC O.OSf
#define BETAINIC 0.000002f

CMathrl mathrl;
CCartpole cartpole;
CRLearning rlearning;
CFuzzy fuzzy;
CRgenerator gen;

float
int

gain_sel[MAX_EXEC] [2] ,
output[10];

void printTrialsDistributionl int* trials){

//init output vector
for(int i = 0; i < 10; i + +) output[i] = 0;
for(int i = 0; i < RUNS; i++){

if(0*MAX_FAILURES/50<trials[i]SStrials[i]<=1*MAX
output[0] = output[0]++;

else if(l*MAX_FAILURES/50<trials[i]SStrials[i]<=2
output[1] = output[1]++;

else if(2*MAX_FAILURES/50<trials[i]SStrials[i]<=3
output[2] = output[2]++;

else if(3*MAX_FAILURES/50<trials[i]SStrials[i]<=4
output[3] = output[3]++;

else if(4*MAX_FAILURES/50<trials[i]SStrials(i)<=5
output[4] = output[4]++;

else if(5*MAX_FAILURES/50<trials[i]S&trials[i]<=6
output [5] = output[5]++;

else if(6*MAX_FAILURES/50<trials[i]SStrials[i]<=7
output[6] = output[6]++;

else if(7*MAX_FAILURES/50<trials[i]SStrials[i]<=8
output[7] = output[7]++;

else if(8*MAX_FAILURES/50<trials[i]SStrials[i]<=9
output [8] = output[8]++;

else if(9*MAX FAILURES/50<trials[i])

FAILURES/50)

*MAX_FAILURES/50)

MAX_FAILURES/50)

MAX_FAILURES/50)

MAX_FAILURES/50)

MAX_FAILURES/50)

*MAX_FAILURES/50)

*MAX_FAILURES/50)

*MAX FAILURES/50)

192

APPENDIX B

output[9] = output[9]++;

printf("Trials Distribution \n");
for(int i = 0; i < 10; i++)(

printf("%d ", output[i]);

)

int _tmain(int argc, JTCHAR* argv[]){
float force;
float N;
float stoch_noise;
float avg_trials;
float alpha;
float beta;
float E = 0.0;
float temp = 0.0;
float alpha_rate = O.Of; // Set to 0 for non changing config
float beta_rate = l.Of; // Set to 1 for non changing config
int steps = 0,

exec = 0,
failures= 0,
failed = 0,
trials[RUNS],
run = 0;

alpha (float)ALPHAINIC;
beta = (float)BETAINIC;

while! exec < MAX_EXEC){
printf ("Execution number: %d \n \n", exec + 1),

for(int i 0; i < RUNS; i++){
trials [i) = 0;

}

/*—— Set centre and standard deviation values to Fuzzy MFs ---*/
fuzzy.set_values();

run = 0;
while(run < RUNS)(

failures = 0;
steps = 0;

/*-— Initialize action and heuristic critic weights and traces ---*/
rlearning.reset ();

/*-— Starting state is (000 0) ——*/
cartpole.reset ();

/*--- Aquire inputs and fuzzyfy -—*/
fuzzy.fuzzyfyf cartpole.get_x(), cartpole.get_x_dot(), cartpole.get_x_dotdot(

), cartpole.get_theta(), cartpole.get_theta_dot(), cartpole.get_theta_dotdot());

/*--- Transfer mu values from fuzzy class to RL class ---*/
fort int i 0; i <• 16; i++)(

rlearning.set_mu(i, fuzzy.get_mu(i));
)

/*--- Reinforcement is 0. Prediction of failure given by v weight. ——*/
rlearning.set_r(0.0);

/*-— Prediction of failure for current state ---*/
rlearning.set_p(0.0);
rlearning.calc_oldp();
rlearning.calc_p();

/*—— Iterate through the action-learn loop. ——*/

193

APPENDIX B

while) steps < MAX_STEPS && failures < MAX_FAILURES){ // Executes 1 trial
/*- — Calculatin the stochastic noise —— */
N = 1 / (1 + exp(2 * rlearning.get_p()));

stoch_noise (float) gen. randn_notrig (0, N) / 10;

/*--- Calculating output from ASE — -*/
rlearning.calc_output (stoch_noise);

/*--- calculating force to use —— */
force = FMAX * rlearning.get_output ();

/* —— Apply action to the simulated cart-pole —— */
cartpole.calculate_cart_pole (force),

/*- — Aquire inputs and fuzzyfy — -*/
fuzzy. fuzzyfyl cartpole .get_x (), cartpole .get_x_dot (),

cartpole.get_x_dotdot (), cartpole .get_theta (), cartpole . get_theta_dot (),
cartpole. get_theta_dotdot ()) ;

fort int i = 0; i < 16; i++){
rlearning.set_mu(i, fuzzy .get_mu(i)) ;

}

iff fuzzy. fail_f lag){
/*- — Failure occurred. - — */
failed = 1;
failures++;
printff "Trial %d was %d steps\n", failures, steps);
steps = 0;

/*- — Starting state is (000 0) - — */
cartpole. reset ();

/* —— Aquire inputs and fuzzyfy ---*/
fuzzy . fuzzyfy (cartpole . get_x (),

cartpole .get_x_dot (),
cartpole . get_x_dotdot (),
cartpole .get_theta (),
cartpole .get_theta_dot (),
cartpole .get_theta_dotdot ());

fort int i = 0; i < 16; i++)(
rlearning. set_mu (i, fuzzy .get_mu(i));

)

/*- — Reinforcement upon failure is -1. Prediction of failure is 0. ---*/
rlearning. set_r(-1.0);
rlearning. set_p(0.0) ;
rlearning. calc_oldp () ;

}
elsef

/*- — Not a failure. - — */
failed = 0;

/* —— Reinforcement is 0. Prediction of failure given by v weight. - — */
rlearning. set_r (0.0),
rlearning. calc_oldp(),
rlearning. calc_p();

}

/*--- Heuristic reinforcement is: current rein forcement *• gamma * new
failure prediction previous failure prediction —— */

rlearning. calc_rhat ();

/* —— Calculating E —— */
E = (float) (0.5 * rlearning. get_rhat() * rlearning. get_rhat ()) ;

/*--- Updating the learning weights ---*/
rlearning. upd_weights (alpha, beta);

194

APPENDIX B

if (failed) (
/* —— If failure, zero all traces. ---*/
rlearning. reset traces () ;

}
else{

/*- — Otherwise, update (decay) the traces. — -*/
rlearning. upd_traces ();

(
steps++;

}
if (failures >= MAX_FAILURES) (

printf ("Pole not balanced. Stopping after %d failures \n \n", failures);
trials [run] = (int) failures;

)
else{

trials[run] = (int) failures + 1;
printf("Pole balanced successfully for at least %d steps \n \n", steps);

(
if (run == RUNS 1) (

for(int i = 0; i < MAX_STEPS; i++){

temp = 0 ;
for(int i = 0; i < RUNS; i++){

temp += (float) trials [i] l.Of;
}

avg_trials = (float) (temp / RUNS) ;
printf("Average number of trials was %f \n \n", avg_trials) ;

printTrialsDistribution (trials) ;
printf ("\n\n") ,

vg_trials=(float)((temp-(MAX_FAILURES*output[9]))/(RUNS-output[9]));
•rintf("Real average number of trials was %f \n \n \n", avg_trials);

gain_sel[exec][0] avg_trials;
gain_sel[exec][1] = (float)output[9];
exec++;

alpha += alpha_rate;
beta *= beta_rate;

)
printf("Alpha distribution: \n");
for(int i = 0; i < MAX_EXEC; i++){

printf("%f ", gain_sel[i][0]),
}
printf("\n");
fort int i = 0; i < MAX_EXEC; i++){

printf("%f ", gain_sel[i][1]);

while(1);
return 0;

195

APPENDIX B

REINFORCEMENT LEARNING PROGRAM

#include "StdAfx.h"
#include "RLearning.h"
ftinclude "math.h"

CRLearning::CRLearning(void) (}
CRLearning::-CRLearning(void){ }

void CRLearning::reset(void){
for(int i = 0; i < NSTATES; i++)(

C_w[i] 0.0;
C_v[i] = 0.0;
C_muhat[i] = 0.0;
C_e[i) = 0.0;

void CRLearning::reset_traces(void){
for(int i = 0; i < NSTATES; i++){

C_e[i] = 0;
C_muhat[i] = 0;

void CRLearning::set_r(float r){
C_r = r;

void CRLearning::set_p(float p){
C_p = p;

II-

void CRLearning::set_mu(int k, float mu){
C_mu[k] = mu;

/* Calculates the final probability of executing an action */
void CRLearning: :calc_output (float noise){

float tempi = 0;
float temp2 = 0;

for(int i = 0; i <- NSTATES; i++){
C_ro[i] = sfuncl C_w[i]) ;
tempi += C_ro[i] * C_mu[i];
temp2 += C_mu[i];

C_P - templ/temp2;
C_output = C_P + noise;

196

APPENDIX B

/ Calculates the internal reinforcement signal */
void CRLearning::calc_rhat(void)(

C_rhat = C_r + (GAMMA * C_p) C_oldp;

/* Calculates the prediction of eventual reinforcement */
void CRLearning::calc_p(void)(

C_p = 0;
for(int i = 0; i < NSTATES; i++)

C_P += (C_v[i] * c_mu[i]) ,•

/* Stores old value of p */
void CRLearning: :calc_oldp (void)(

C_oldp C_p;

/* Update the weights of v and w */
void CRLearning: :upd_weights (float A, float B){

f or (int i = 0; i < NSTATES; i++) {
C_w[i] += A * C_rhat * C_mu[i] * C_e[i];
C_v[i] -= B * C_rhat * C_mu[i];
if(C_w[i] >= 10) C_w[i] = 10;
else if(C_w[i] <= -10) C_w[i] = -10;

/* Update the value of the traces */
void CRLearning: :upd_traces (void){

fort int i = 0; i < NSTATES; i++){
C_e[i] = (1 / C_ro[i]) * exp(-C_w[i])

float CRLearning: :TSugenol (void)(
float tempi 0.0;
float temp2 0.0;

fort int i = 0; i < NSTATES; i++)(
tempi += (C_am[i] * C_mu[i]);
temp2 += C_mu[i];

)
return) tempi / terap2) ;

)
// „———————— ———————————————

float CRLearning: :TSugeno2 (void)(
float tempi = 0.0;
float temp2 = 0.0;

for(int i = 0; i < NSTATES; i++)(
tempi += (C_ro[i] * C_mu[i]);
temp2 += C_mu[i];

)
return! tempi / temp2);

/* Implements an S-shaped function */
float CRLearning::sfunc(float s){

return ((float)(2.0 / (1.0 + exp(-s))) 1);

197

APPENDIX B

/* Implements a selecting function */
float CRLearning::gfunc(float s)(

if(s >= 0.5) return 1.0;
else return -1.0;

float CRLearning::get_rhat(void){
return C_rhat;

float CRLearning::get_output(void){
return C_output;

float CRLearning::get_p(void)(
return C_p;

198

APPENDIX B

FUZZY LOGIC PROGRAM

tinclude "StdAfx.h"
^include "Fuzzy.h"
#include <math.h>

CFuzzy::CFuzzy(void){)
CFuzzy::~CFuzzy(void)(}

void CFuzzy::set_values(void)(
set_centers();
set_sigmas();

void CFuzzy::set_centers(void){
// x
inputl.centre[0] = -l.Sf;
inputl.centre[1] = l.Sf;

// x_dot
input2.centre[0] = -O.Sf;
input2.centre[1] = O.Sf;

// theta
inputs.centre[0] = -l.Sf;
inputs.centre[1] = l.Sf;

// theta_dot
input4.centre[0] = -O.OSf;
input 4.centre[1] = O.OSf;

float CFuzzy::gaussian(float A, float c, float s){
float tmpl, tmp2;

tmpl = (x - c) / s;
tmp2 = (float)((-0.5) * tmpl * tmpl);

return exp(tmp2) ;
}
II-

float CFuzzy : :gaussian2 (float x, float c, float s)(
float tmpl, tmp2;

if (c < 0) {
if(x. <= c) return 1;
else{

tmpl = (x c) / s;
tmp2 = (float) ((-0.5) * tmpl * tmpl);
return exp (tmp2) ;

else(
if(x >= c) return 1;

199

APPENDIX B

elsef
tmpl = (x c) / s;
tmp2 = (float)(-0.5
return exp(tmp2);

tmpl * tmpl);

void CFuzzy::fuzzyfy(float xl, float x2, float x3, float x4, float x5, float x6)(
int cntl, cnt2, cnt3, cnt4;
int i 0;

C_cl
C_c2
C_c3
C_c4
C_c5
C c6

xl;
x2;
x3;
x4;
x5;
x6;

for(cntl = 0; cntl <2; cntl++){
for(cnt2 = 0; cnt2 <2; cnt2++)(

f or (cnt3 = 0; cnt3 <2; cnt3++)(
for(cnt4 = 0; cnt4 < 2; cnt4++){

C_ul = gaussian2(C_cl, inputl.centre[cntl] ,
C_u2 = gaussian2(C_c2, input2.centre[cnt2],
C_u3 = gaussian2(C_c4, inputs.centre[cnt3],

inputl.sigma[cntl]
input2.sigma[cnt2]
inputs.sigma[cnt3]

C_u4 = gaussian2(C_c5, input4.centre[cnt4], input4.sigma[cnt4]),

mu[i] = MINf C_ul, C_u2, C_u3, C_u4);
iff mu[i] <= O.OOOOOlf) mu[i] = O.OOOOOlf;

/* —— To signal failure — -*/
iff C_cl < -2.4 || C_cl > 2.4 I I C_c4 < MINANGLE I I C_c4 > MAXANGLE)

fail_flag =1; // Failure
else fail_flag = 0; // Not failure

float CFuzzy: : get_mu(int k)(
return mu[k] ;

float CFuzzy::get_centre(int in, int c)(
switch (in){

case 1: return inputl.centre[c];
case 2: return input2.centre[c];
case 3: return input3.centre[c];
case 4: return input4.centre [c];

}
II-

float CFuzzy::MIN(float a, float b, float c, float d)(
float temp;

temp = a;
iff temp >= b) temp = b;
iff temp >= C) temp = c;
iff temp >= d) temp = d;

return temp;

200

APPENDIX B

void CFuzzy::set_sigmas(void){

// x
inputl.sigma[0] = inputl.centre[1] * SIGMA;
inputl.sigma[l] inputl.centre[1] » SIGMA;

// x_dot
input2.sigma[0] input2.centre[1] * SIGMA;
input2.sigma[l] input2.centre[1] * SIGMA;

// theta
inputs.sigma[0] inputs.centre[1] * SIGMA;
inputs.sigma[l] = inputs.centre[1] * SIGMA;

// theta_dot
input4.sigma[0] = input4.centre[1] * SIGMA;
input4.sigma[1] = input4.centre[1] * SIGMA;

void CFuzzy::adapt_sigmas()(

201

APPENDIX B

CART-POLE MODEL

((include "StdAfx.h"
((include "Cartpole.h"
#include <string>
((include <iostream>
tinclude "math.h"

((define GRAVITY
((define MASSPOLE
((define MASSCART
((define LENGTH
((define FRICTION_COEF_CART
ftdefine FRICTION COEF~POLE

-9.8f
O.lf
I.Of
0.5f
O.OOOSf
0.000002f

ftdefine TOTALMASS { MASSPOLE + MASSCART)
((define MASSPOLE LENGTH (MASSPOLE * LENGTH)

((define FOURTHIRDS

#define TAU

((define M PI

1.33333333333333333333f

0.02f /*seconds between state updates*/

3.14159265358979323846f

CCartpole::CCartpole(){
this->theta = 0;
this->theta_dot = 0;
this->theta_dotdot = 0;
this->x = 0;
this->x_dot = 0;
this->x_dotdot = 0;
this->Nc = 1; //It has to be positive in the first loop
this->frictionf = (FRICTION_COEF_CART * sgn(this->Nc * this->x_dot));

CCartpole::-CCartpole (void){)

/*—— Implementation of the dinamics of the cart-pole system ——*/
void CCartpole::calculate_cart_pole(float force){

float numerator, costheta, sintheta, brackets, denominator, theta_dot_square,
denominator_brackets;

costheta = cos(this->theta);
sintheta = sin(this->theta);
theta_dot_square = this->theta_dot * this->theta_dot;

/*—— Calculate theta_dot_dot ——*/
brackets=(force +• (MASSPOLE_LENGTH * theta_dot_square * sintheta) (sgn(this-

>x_dot) * FRICTION_COEF_CART)) / TOTALMASS;

numerator = (GRAVITY * sintheta) - costheta * brackets ((FRICTION_COEF_POLE *
this->theta_dot) / (MASSPOLE_LENGTH)) ;

denominator brackets = FOURTHIRDS ((MASSPOLE * costheta * costheta) / TOTALMASS

denominator = LENGTH * denominator_brackets ;
this->theta dotdot = numerator / denominator;

202

APPENDIX B

I*- — Calculate x_dotdot - — */
this->x_dotdot (force + (MASSPOLE_LENGTH * ((theta_dot_square * sintheta) - (

this->theta_dotdot * costheta))) (sgn(this->x dot) * FRICTION COEF CART)) /
TOT ALMAS S; ~ ~

/*- — Update state variables (Euler's method) —— */
this->x += TAU * this->x_dot;
this->x_dot += TAU * this->x_dotdot;
this->theta += TAU * this->theta_dot ;
this->theta_dot += TAU * this->theta dotdot;

}

void CCartpole: : reset (){
this->theta = 0;
this->theta_dot 0;
this->theta_dotdot = 0;
this->x = 0;
this->x_dot = 0;
this->x_dotdot 0;
this->Nc = 1;
this->frictionf = (float) (FRICTION_COEF_CART * sgn(this->Nc * this->x_dot)) ;

}

//Consultant functions
float CCartpole: :get_theta()(

return this->theta;
)

float CCartpole: :get_theta_dot (){
return this->theta_dot ;

)

float CCartpole: :get_theta_dotdot(){
return this->theta_dotdot;

}

float CCartpole: :get_x()(
return this->x;

)

float CCartpole: :get_x_dot (){
return this->x_dot;

(

float CCartpole: :get_x_dotdot (){
return this->x_dotdot;

}

//Math functions
float CCartpole: :sgn(float x){

if(x < 0) return -1;
else if (x >= 0) return I;

}

/* To calculate sin of a number in degrees */
float CCartpole: :sin2 (float degrees){

return sin(degrees * M_PI / 180) ;

/* To calculate cosine of a number in degrees */
float CCartpole: :cos2 (float degrees)(

return cos (degrees * M_PI / 180) ;

203

APPENDIX B

RANDOM NOISE GENERATOR

flinclude "StdAfx.h"
tinclude "Rgenerator .h"
include <cmath>
#include <cstdlib>

CRgenerator : : CRgenerator (void) { }
CRgenerator : : -CRgenerator (void) ()

//"Polar" version without trigonometric calls
double CRgenerator: :randn_notrig (double mu, double sigma) {

static bool deviateAvailable=false; // flag
static float storedDeviate; // deviate from previous calculation
double polar, rsquared, varl, var2;

// If no deviate has been stored, the polar Box-Muller transformation is
// performed, producing two independent normally-distributed random
// deviates. One is stored for the next round, and one is returned.
if (IdeviateAvailable) {

// Choose pairs of uniformly distributed deviates, discarding those
// that don't fall within the unit circle
do (

varl=2.0*(double (rand ()) /double (RAND_MAX)) 1.0;
var2=2.0*(double (rand ()) /double (RAND_MAX)) 1.0;
rsquared=varl*varl+var2 * var2 ;

) while (rsquared>=l . 0 I I rsquared == 0.0);

// Calculate polar tranformation for each deviate
polar=sqrt (-2 . 0*log (rsquared) /rsquared) ;

// Store first deviate and set flag
storedDeviate=varl*polar;
deviateAvailable=true;

// Return second deviate
return var2*polar*sigma + mu;

}

// If a deviate is available from a previous call to this function, it is
// returned, and the flag is set to false.
else {

deviateAvailable=false;
return storedDeviate*sigma + mu;

/******+**+**************»***********-**+**»*************»*********************/

// Standard version with trigonometric calls
#define PI 3.14159265358979323846

double CRgenerator : :randn_trig (double mu, double sigma) {
static bool deviateAvailable=f alse; // Flag
static float storedDeviate; // Deviate from previous calculation
double dist, angle;

204

APPENDIX B

// If no deviate has been stored, the standard Box-Muller transformation is
// performed, producing two independent normally-distributed random
// deviates. One is stored for the next round, and one is returned.
if (IdeviateAvailable) {

// Choose a pair of uniformly distributed deviates, one for the
// distance and one for the angle, and perform transformations
dist=sqrt(-2.0 * log(double(rand()) / double(RAND_MAX)));
angle=2.0 * PI * (double(rand()) / double(RAND_MAX));

// Calculate and store first deviate and set flag
storedDeviate=dist*cos(angle);
deviateAvailable=true;

// Calculate return second deviate
return dist * sin(angle) * sigma + mu;

}

// If a deviate is available from a previous call to this function, it is
// returned, and the flag is set to false,
else {

deviateAvailable=false;
return storedDeviate*sigma <- mu;

205

APPENDIX B

MATHEMATICAL FUNCTIONS

#include "StdAfx.h"
#include "Mathrl.h"
#include <math.h>

CMathrl::CMathrl(void){(
CMathrl::-CMathrl (void){}

// Returns the result of multiplication operation
float CMathrl::cmul(float C_op_A, float C_op_B){

return(C_op_A * C_op_B);

// Returns the logic "and"
float CMathrl::cand(float C_op_A, float C_op_B)(

if(C_op_A •> C_op_B) return! C_op_B) ;
else return(C_op_A);

// Returns the minimum of the set
float CMathrl::cmin(float C_op_A, float C_op_B)(

if(C_op_A > C_op_B) return (C_op_B) ;
else return) C_op_A);

ti

ll Returns the maximum of the setfloat max(float x, float y) ,
float CMathrl: :cmax(float C_op_A, float C_op_B)(

if(C_op_A > C_op_A) return (C_op_A);
else return! C_op_B) ;

// Returns the s-shaped function to limit between -1 and 1
float CMathrl : :csfunc (float C_s)(

float temp;
temp = (float) (1.0/1 1.0 f exp (C_s)));
return (temp) ;

206

Appendix C

DC Motor Control Problem

207

APPENDIX C

DC MOTOR MODEL

tpragma once
ttinclude "Actuators.h"

/*—— Inicializing parameters -—*/
void DCMotor::init(void)(

A_theta_dot = 0.0;
A_i = 0.0;
A_i_dot = 0.0;
A_theta = 0.0;

/*—— DC Motor model ——*/
void DCMotor::run(float A_volt, float A_torque)(

float A_thetaacc, A_templ, A_temp2;

A_templ = A_volt - (Res * A_i) (Ke * A_theta_dot) ;
A_i_dot = A_templ / L;

A_temp2 = (Kt * A_i) - (Damp * A_theta_dot) A_torque;
A_thetaacc = A_temp2 / J;

// Update the four state variables, using Euler's method.
A_theta += TAU » A_theta_dot;
A~theta_dot += TAU * A_thetaacc;
Ai += TAU * A_i_dot;

208

APPENDIX C

MOTOR-MASS SYSTEM

#pragma once
#include "System.h"

/*—— Mass for motor ——*/
float motor_mass(float S_theta) (

float S_sintheta, S_torque;

S_sintheta = sin(S_theta);
S_torque = M * G * d * S_sintheta;

return S_torque;

/*--- Sign function ——*/
float sgn (float value){

if (value <= 0) return
else return 1;

209

APPENDIX C

REINFORCEMENT LEARNING PROGRAM

#pragma once
#include "RLearning.h"

void CRLearning::init_rl_values(void){
for (int i = 0; i < N_RULES; i++) {

Crl_w[i] = 0.0;
Crl_v[i] = 0.0;
Crl_ubar[i] = 0.0;
Crl_e[i] =0.0;
Crl_prob[i) = random! 100);

void CRLearning: :set_state(float u, int k) {
Crl_u[k] = u;

/* —— Computes the probability of success - — */
void CRLearning: : get_prob () (

float tempi = 0.0;
float temp2 = 0.0;

for (int i = 0; i < N_RULES; i++) (
Crl_prob[i] = s_shaped (Crl_w[i]);
Crl_ace[i] = s_shaped(Crl_v[i]) ;
tempi += Crl_prob[i] * Crl_u[i];
temp2 += Crl_u[i];

Crl_y = tempi / temp2;

/*-— Choose an action -—*/
void CRLearning::get_action(){

if(0.5 < Crl_y) Crl_a = 1;
else Crl a -1;

void CRLearning::upd_trace(){
for (int I = 0; i < N_RULES; i++) (
Crl_e[i] = (1 / Crl_prob[i]) * exp<-Crl_w[i]) ,

/*-— Computes the future failure prediction -—*/
void CRLearning::get_p(){

// Remember prediction of failure for current state.
Crl_oldp = Crl_p;
Crl_p = 0;

210

APPENDIX C

if (!Crl_fail) {
// Computing the future failure prediction
for (int i = 0; i < N_RULES;

Crl_p += Crl_v[i] * Cr

/* —— Updating the weights —— */
void CRLearning: :upd_weights ()(

// Computing Heuristic reinforcement
Crl_rhat = (float) Crl_r + GAMMA * (Crl_p Crl_oldp) ,

for (int i = 0; i < N_RULES; i++) {
// Update all weights.
Crl_w[i] += ALPHA * Crl_rhat * Crl_u[i] * Crl_e[i],
Crl_v[i] -= BETA * Crl_rhat * Crl u[i];

void CRLearning: :upd_r (int x, int error) {
Crl_i = r;
Crl_error = error;
if(Crl_error >= 0) Crl_error = -1;
else Crl_error 1;

/* —— Set the random range —— */
void CRLearning: : set_random_range (float range) (

Crl_rdm_range = range;

/* —— Set the fail flag —— V
void CRLearning: : set_fail_f lag (bool fail) {

Crl fail = fail;

II-

void CRLearning::reset_traces()(
for (int i =-0; i•< N_RULES; i++)

Crl_e[i] = 0.0;

211

APPENDIX C

FUZZY LOGIC PROGRAM

#pragma once
((include "Fuzzy.h"

/*-— Setting the centres of the input membership functions -—*/

void CFuzzy::set_centers(){
// Error MF
CF_MF_J1[0] = -85;
CF_MF_J1[1] = -52;
CF_MF_J1[2] = -16.5;
CF_MF_J1[3] = 16.5;
CF_MF_J1[4] = 52;
CF_MF_J1[5] = 85;

// Error rate of change MF
CF_MF_J2[0] -70;
CF_MF_J2[1] = -35;
CF_MF_J2[2] = 0;
CF_MF_J2[3] = 35;
CF_MF_J2[4] = 70;

/*--- Setting the standard deviations of the input membership functions ---*/

void CFuzzy :: set_sigmas (){
// Error MF
CF_MF_SJ1[0] = 18;
CF_MF_SJ1[1] = 14;
CF_MF_SJ1[2] = 5;
CF_MF_SJ1[3] = 5;
CF_MF_SJ1[4] = 14;
CF_MF_SJ1[5] = 18;

// Error rate of change MF
CF_MF_SJ2[0] 15;
CF_MF_SJ2[1] 15;
CF_MF_SJ2[2] 15;
CF_MF_SJ2[3] 15;
CF_MF_SJ2[4] = 15;

void CFuzzy :: set_sigma (float sig)(
CF_SIGMA = sig;

/*—— Gaussian function ——*/
float CFuzzy::Gaussian(float x, float c) (

float tmpl, tmp2;
tmpl = (x c) / CF_SIGMA;
tmp2 = -0.5 * tmpl * tmpl;
return exp(tmp2) ,

212

APPENDIX C

/*--- Fuzzyf ication ---*/
void CFuzzy: :Fuzzy_G (float XI, float X2) {

int k = 0;
float tempi, temp2, tempo, temps;

for (int j = 0; j < 5; j++) (// Error dot
tempc = CF_MF_J2[j] ;
temps = CF_MF_SJ2[j] ;
set_sigma (tc-mps) ;
temp2 = Gaussian(X2, tempc) ;

// Error
for(int i = 0; i < 6; i++){

tempc = CF_MF_Jl[i] ;
temps = CF_MF_SJl[i] ;
set_sigma (temps) ;
tempi = Gaussian(XI, tempc) ;
if (i == 0) (

if (XI <= CF_MF_J1[0]) {
tempi = 1;

f (i == 5) {
if (XI >= CF_MF_J1[5]) (

tempi = 1;

CF_u[k] = MUL(tempi, temp2) ;

213

APPENDIX C

MATHEMATICAL FUNCTIONS

#include "mFunctions.h"

using namespace std;

#ifdef JDEBUG
#define new DEBUG_NEW
#endif

/*-— Returns the minimum of the set -—*/
float min(float mF_x, float mF_y){

iff mF_x > mF_y) return (mF_y) ;
else return(mF x);

/*—— Returns the maximum of the setfloat ——*/
float max (float mF_x, float mF_y){

if(mF_x > mF_y) return (mF_x) ;
else return(mF_y);

/*—— Calculates the probability of succes if turning right, from 0 to 100% ——*/
float s_shaped(float mF_s)(

float mF_x;

mF_x = 1 / (1.0 + expf -max(-50.0, min(mF_s, 50.0)))) ;

return mF_x;

/*—— Make random floating point numbers in interval from 0 to 1 ---*/
float random(float mF_range)(

double mF_r;
int32 mF_seed;

// random seed
mF_seed time(0);

// Uses the seed to generate a Mersenne random number
TRandomMersenne rg(mF_seed);

// Random number will be -0.5 to 0.5
mF_i = (mF_range * (rg.Random!) 0.5))/ 100;

return ((float) mF_i);

float MUL (float op_A, float op_B){
return(op_A * op_B);

214

APPENDIX C

float AND (float op_A, float op_B){
iff op_A > op_B) return(op B) ;
return(op_A); ~

215

APPENDIX C

ITAE/IAE CALCULATION

tpragma once
#include "Error.h"

void CError::init(){
CE_i = 0;
CE_error = 0.0;
CE_error_old = 0.0;
CE_error_dot = 0.0;
first_run = true;
CE_fail - false;

void CError: :set_theta_ref(float theta_ref) {
CE_theta_ref theta_ref;

void CError :: set_perf_limit (float itae_limit, float iae_limit) (
CE_ITAE_limit = itae_limit;
CE_IAE_limit = iae_limit;

void CError: : reset_perf () (
CE_ITAE = 0.0;
CE_IAE = 0.0;

void CError : :get_error (float theta, float t) (
float error_dot_tmp;

CE_theta_old = CE_theta;
CE_theta = theta;
CE_theta_dot = CE_theta CE_theta_old;

CE_error_old = CE_error;
CE~error = CE_theta_ref CE_theta;
error_dot_tmp = CE_error - CE_error_old;

if (error_dot_tmp > 0.1) error_dot_tmp 0.1;
if (error_dot_tmp < -0.1) error_dot_tmp -0.1;

CE_error_dot - 10000 * error_dot_tmp;

// Failure detection
CE_ITAE += t * (abs (CE_error)) * TAU;

if (CE_ITAE <= 0) CE_ITAE = 0 ;

if (t < 0) ;;

CE IAE += (abs (CE_error)) * TAU;

216

APPENDIX C

if (CE_ITAE < CE_ITAE limit S CE IAE < CE IAE limit) {
CE_r =0; ~ ~
CE_fail = false;

else {
CE_r = -1;
CE_fail = true;

if (first_run) (
CE_error_dot 0.0;
first_run false;

217

Appendix D

Khepera III - Obstacle Avoidance
Problem

218

APPENDIX D

MAIN

// Mthreading_Serial.cpp . Defines the entry point for the console application.

((include "stdafx.h"
((include "Serial.h"
#include <iostream>
((include <stdlib.h>
((include <windows.h>
((include <process.h> // needed for _beginthread()

using namespace std;

// Constants
((define
((define
((define
((define
((define
((define
#define
((define
((define
((define
((define
/ /

SENSORN UMBER
AGENTNUM
RANGE
MAXPROX
CENTREF
CENTREN
SIGMA
ALPHA
BETA
GAMMA
SPEEDMAX '

13
4
4000
0.15
0.20
0.40
0.08
7
0.03
0.95
12000

// Total number of sensor
// Number of learning agents
// Range of sensors
// Minimum distance before being considered a
// Centre of far gaussian membership function
// Centre of near gaussian membership function

failure

// Standard deviation for the gaussian functions
// Actor learning rate
// Critic learning rate
// Discounted temporal difference constant
// Maximum allowed speed

// Function prototypes
void Initialize; void);
void PrintMatrix(char select);

// Threads
void KheperaCom (void);

// Serial
int OpenSerial (int com);
int SerialWrite (int command);
int SerialReadf void);
int SerialClose(void);
int ShowError (LONG lError, LPCTSTR IptszMessage) ,

// Probabilistic Fuzzy
void Fuzzyfif void);
float Mint float op_A,
float Max(float op_A, float op_B);
float Mul(float op_A, float op_B, float op_C

float s);

float op_B, float op_C, float op_D)

float op_D)
float Gauss_far(float x, float c,
float Gauss_near(float x, float c,
float s_shape (float s) ;

// Reinforcement Learning
void Reinforce! void);

float s

// Variables
int LeftSpeed;
int RightSpeed;

// Left wheel speed
// Right wheel speed

219

APPENDIX D

nt sensnum = 0;
int converted = 0;
int Sensor[SENSORNUMBER];
float X[SENSORNUMBER];
float XCluster[4];
float mu[16];
float p[AGENTNUM];
float p_old[AGENTNUM];
float old_ro[AGENTNUM] [SENSORNUMBER] ,
float ro[AGENTNUM][SENSORNUMBER];
float w[AGENTNUM][SENSORNUMBER];
float v[AGENTNUM][SENSORNUMBER];
float E[AGENTNUM];
float P[AGENTNUM];
float temp[2];
float r_hat[AGENTNUM];
float r[AGENTNUM];
int behaviour[AGENTNUM][2] = {

char LSpdStr[5];
char RSpdStr[5];
char Data[101];
char szBuffer[101];
int COM = 1;
LONG ILastError = ERROR_SUCCESS;
DWORD dwBytesRead 0;
enum{ EOF_Char =13 };
// ———————————————————————————.

// IR sensor data is stored here
// Normalized sensors data
// Clustered sensors data
// System state matrix

(2.5, 2.5),
(-1, -1),
{-1, 1),
{ 1, -1)

// Clasess declarations
CSerial serial;

// Main thread
int _tmain(int argc, _TCHAR* argv []) (

// Initializing data
Initialize () ;

// Opening serial port
OpenSerial (COM) ;

// Waiting loop
while (true) {

KheperaCom() ;
Fuzzyfi () ;
Reinforce () ,

// Closing serial port
SerialClose () ;

// Exiting main function
return 0;

// Thread to send and receive data from Khepera sensors and to Khepera motors
void KheperaCom (void){

SerialWrite{ 4); // Send motors speeds
Sleep (100); // Gives time to the serial port to pass the data
SerialWrite (3), // Send request of sensor data
SerialRead (); // Read data sent from Khepera Robot and store it in

// the global variable Sensor []

220

APPENDIX D

// Initialize robot data
void Initialize) void){

fort int j = 0; j < SENSORNUMBER; j++){
Sensor [j] = 0;

for (int i 0; i < 4; i++) {
Pti] = 0;
p_old[i]= 0;

for (int i = 0; i < 4; i++){
for(int j = 0; j < SENSORNUMBER; j++){

v[i] [j] = 0; // Critic weight initialization
w[i][j] = 0; // Actor weight initialization

I II / 1 II I II 1 1 1 1 1 1 1 / 1 1 1 / 1 / 1// / // // 1 //I/ //// 1 // / 1/ / // /// / ///// / / /// /// / /// / ////// //
II Serial functions

// ———
// Opens the serial port
int OpenSerial (int com) {

int flag = I;

II Attempt to open the serial port (COM1)
ILastError = serial .Open (_T ("COM1") , 0, 0, false) ;
if (ILastError != ERROR_SUCCESS)

return :: ShowError (serial . GetLastError (), _T("Unable to open COM-port"));
else{

printf("COM successfully open\n");
flag 0;

}

// Setup the serial port (115200, 8, N, 1) using hardware handshaking
ILastError = serial . Setup(CSerial : :EBaudll5200,

CSerial : :EData8,
CSerial : : EParNone,
CSerial: :EStopl) ;

if(ILastError != ERROR_SUCCESS)
return :: ShowError (serial .GetLastError (), _T("Unable to set COM-port setting")

);
else{

printf("Setup done\n") ;
flag = 0;

}

// Setup handshaking
ILastError = serial .SetupHandshaking (CSerial : :EHandshakeOf f);
if(ILastError != ERROR_SUCCESS)

return :: ShowError (serial . GetLastError (), _T ("Unable to set COM-port
handshaking")) ;

elsef
printfl "Handshaking done\n\n");
flag = 0;

}

return flag;

// Sends data to Robot
int SerialWrite (int command) {

char s_data[25] ;

APPENDIX D

switch) command) {
case 0:

// Starts Braitenberg in IR mode
// \r Adds the "return key pressed" command
strcpy_s (s_data, "A,0\r");
break;

case 1:
// Starts Braitenberg in Ultra Sound mode
strcpy_s (s_data, "A, l\r");
break;

case 2 :
// Stops Braitenberg modes
strcpy_s (s_data, "A,2\r");
break;

case 3
// Requests IR sensors data
strcpy_s (s_data, "N\r");
break;

case 4 •
// Convert int to string
converted = sprintf_s (s_data, "D, l%i, l%i\r", LeftSpeed, RightSpeed) ;
break;

ILastError = serial . Write (s_data);
if{ ILastError != ERROR_SUCCESS)

return : :ShowError (serial .GetLastError (), _T("Unable to send data"));

return 0;

// Reads data sent by robot
int SerialReadf void){

// Register only for the receive event
ILastError = serial . SetMask (CSerialCSerial

CSerial
CSerial
CSerial
CSerial
CSerial
CSerial

:EEventBreak
:EEventCTS I
:EEventDSR I
:EEventError
:EEventRing I
:EEventRLSD I
:EEventRecv) ;

if (ILastError != ERROR_SUCCESS)
return ::ShowError(serial.GetLastError(), _T("Unable to set COM-port event

mask"));

// Use 'non-blocking' reads, because we don't know how many bytes
// will be received. This is normally the most convenient mode
// (and also the default mode for reading data).
ILastError = serial.SetupReadTiraeouts(CSerial::EReadTimeoutNonblocking) ;
if (ILastError != ERROR_SUCCESS)

return ::ShowError(serial.GetLastError(), _T("Unable to set COM-port read
timeout."));

// Keep reading data, until an EOF (CTRL-Z) has been received
int j 0;
bool fContinue true;
sensnum = 0;
do{

// Wait for an event
ILastError = serial.WaitEvent();
if (ILastError != ERROR_SUCCESS)

return ::ShowError(serial.GetLastError(), _T("Unable to wait for a COM-port
event."));

// Save event
const CSerial::EEvent eEvent = serial.GetEventType ();

222

APPENDIX D

// Handle break event
if (eEvent & CSerial::EEventBreak){

printf("\n### BREAK received ###\n");
}

// Handle CTS event
if (eEvent & CSerial::EEventCTS){

printf("\n### Clear to send %s ###\n", serial.GetCTS()?"on":"off") ;

// Handle DSR event
if (eEvent & CSerial::EEventDSR){

printf("\n### Data set ready %s ###\n", serial.GetDSR()?"on"•"off"};
}

// Handle error event
if(eEvent 4 CSerial::EEventError){

printf("\n### ERROR: ");
switchf serial.GetError()){
case CSerial::EErrorBreak:

printf("Break condition");
break;

case CSerial::EErrorFrame:
printf("Framing error"),
break;

case CSerial::EErrorIOE:
printf("IO device error");
break;

case CSerial::EErrorMode:
printf("Unsupported mode");
break;

case CSerial::EErrorOverrun:
printf("Buffer overrun");
break;

case CSerial::EErrorRxOver:
printf("Input buffer overflow"),
break;

case CSerial::EErrorParity:
printf("Input parity error");
break;

case CSerial::EErrorTxFull:
printf("Output buffer full");
break;

default:
printf("Unknown");
break;

}
printf(" ###\n");

}

// Handle ring event
if (eEvent & CSerial::EEventRing)(

printf("\n### RING ###\n");
)

// Handle RLSD/CD event
if (eEvent & CSerial::EEventRLSD)(

printf("\n### RLSD/CD %s ###\n", serial.GetRLSD()?"on":"off");
}

// Handle data receive event
if (eEvent & CSerial::EEventRecv)(

// Read data, until there is nothing left
do{

// Read data from the COM-port
ILastError serial.Read(szBuffer, sizeof(szBuffer)-1, sdwBytesRead) ,

// Verifying if there is error in transmition

223

APPENDIX D

if (ILastError != ERROR_SUCCESS)
return : :ShowError (serial .GetLastError (), TC'Unable to read from COM-

port."));

if (dwBytesRead > 0) (
// Finalize the data, so it is a valid string
szBuf fer [dwBytesRead] '\0';

// Transfering the read data to a fixed buffer
for(int i = 0; i < (int) dwBytesRead; i++) (

if((szBuffer[i] >.= ',')&&(szBuffer[i] != '\r')){
Data[j] - szBuffer[i] ;
j++;

)
else(

Sensor [sensnum] = atoi(Data);
sensnum++;
for (int y=0; y<50;y++){

Datafy] = '\0';
}
j = 0;

// Check if EOF (CTRL+'['l has been specified
if(strchr(szBuffer, EOF_Char))

f Continue = false;
}

} while (dwBytesRead == sizeoff szBuffer) - 1) ; // End receiving
) // End of receive event

(while (fContinue); // Finish waiting for any event

// Closes the serial port
int SerialClose (void) (

serial. Close (} ;

return 0;

// Shows error message
int ShowError (LONG lError, LPCTSTR IptszMessage)(

// Generate a message text
TCHAR tszMessage [256] ;
wsprintf (tszMessage, _T ("%s\n(error code %d)"), IptszMessage, lError);

// Display message-box and return with an error-code
: :MessageBox(0, tszMessage, _T ("Fatal Error") , MB_ICONSTOP |MB_OK) ;
return 1;

(

iiiiiiiiiiiiiiniiiuiii
II Fuzzy functions

// _________________ —— —— — — —— —— —— —— —— —— —— — — — —— —— —— —— —— —— ——
// Fuzzyfies the clustered values of inputs and returns the system state mu[i]
void Fuzzyfif void)(

float centref = (float) CENTREF;
float centren = (float) CENTREN;
float sigma = (float) SIGMA;

for(int j = 0; j < SENSORNUMBER; j++)(
X[j] = (((float) Sensor [j]) / ((float) RANGE));

224

APPENDIX D

// Clustering the sensors signals
XCluster[0] = (float) ((x[3] -t- X[4] + X[5] + X[6]) / 4
XCluster[1] = (float) ((x[l] + X[8] + X[9]) / 3) ;
XCluster[2] = (float)((x[l] + X[2] f X[3]) / 3);
XCluster[3] = (float)((X[6] + X[7] + X[8]) / 3);

/* Fuzzyfing the inputs */
mu[0] = Mul(Gauss_far(XCluster[0], centref, sigma

Gauss_far(XCluster[1], centref, sigma),
Gauss_far(XCluster[2], centref, sigma),
Gauss_far(XCluster[3], centref, sigma))

mu[l] = Mul(Gauss_far(XCluster[0], centref, sigma
Gauss_far(XCluster[1], centref, sigma),
Gauss_far(XCluster[2], centref, sigma),
Gauss_near(XCluster[3], centren, sigma)

mu[2] = Mul(Gauss_far(XCluster[0], centref, sigma
Gauss_far(XCluster[l], centref, sigma),
Gauss_near(XCluster[2], centren, sigma),
Gauss_far(XCluster[3], centref, sigma))

mu[3] Mul(Gauss_far(XCluster[0], centref, sigma
Gauss_far(XCluster[1], centref, sigma),
Gauss_near(XCluster[2], centren, sigma),
Gauss_near(XCluster[3], centren, sigma)

mu[4] Mul(Gauss_far(XCluster[0], centref, sigma
Gauss_near(XCluster[l], centren, sigma),
Gauss_far(XCluster[2], centref, sigma),
Gauss_far(XCluster [3], centref, sigma))

mu[5] = Mul(Gauss_far(XCluster[0], centref, sigma
Gauss_near(XCluster [1], centren, sigma),
Gauss_far(XCluster[2], centref, sigma),
Gauss_near(XCluster[3], centren, sigma)

mu[6] = Mul(Gauss_far(XCluster [0], centref, sigma
Gauss_near(XCluster[1], centren, sigma),
Gauss_near(XCluster[2], centren, sigma),
Gauss_far(XCluster[3], centref, sigma))

mu[7] = Mul(Gauss_far(XCluster[0], centref, sigma
Gauss_near(XCluster[1], centren, sigma),
Gauss_near(XCluster[2], centren, sigma),
Gauss_near(XCluster[3], centren, sigma)

mu[8] = Mull Gauss_near(XCluster[0], centren, sigma
Gauss_far(XCluster[1], centref, sigma),
Gauss_far(XCluster[2], centref, sigma),
Gauss_far(XCluster[3], centref, sigma))

mu[9] = Mull Gauss_near(XCluster[0], centren, sigma
Gauss_far(XCluster[1], centref, sigma),
Gauss_far(XCluster[2], centref, sigma),
Gauss_near(XCluster[3], centren, sigma)

mu[10] = Mul (Gauss_near(XCluster[0], centren, sigma
Gauss_far(XCluster[1], centref, sigma),
Gauss_near(XCluster[2], centren, sigma),
Gauss_far(XCluster[3], centref, sigma))

mu[ll] = Mul (Gauss_near(XCluster[0], centren, sigma
Gauss_far(XCluster[l], centref, sigma),
Gauss_near(XCluster[2], centren, sigma),
Gauss_near(XCluster[3], centren, sigma)

mu[12] = Mul (Gauss_near(XCluster[0], centren, sigma
Gauss_near(XCluster[1], centren, sigma),
Gauss_far(XCluster [2], centref, sigma),
Gauss_far(XCluster [3], centref, sigma))

mu[13] Mul (Gauss_near(XCluster[0], centren, sigma
Gauss_near(XCluster [1], centren, sigma),
Gauss_far(XCluster[2], centref, sigma),
Gauss_near(XCluster[3], centren, sigma)

mu[14] = Mul (Gauss_near(XCluster[0], centren, sigma
Gauss_near(XCluster[1], centren, sigma),
Gauss_near(XCluster [2], centren, sigma),
Gauss_far(XCluster[3], centref, sigma))

mu[15] =Mul(Gauss_near(XCluster[0], centren, sigma
Gauss near(XCluster[1], centren, sigma),

// Front sensing
// Back sensing
// Left sensing
// Right sensing

225

APPENDIX D

Gauss_near(XCluster[2], centren, sigma),
Gauss_near(XCluster[3], centren, sigma)) ;

// Returns the minimum of the set
float Min(float op_A, float op_B, float op_C, float op_D){

if(op_A > op_B) return! op_B) ;
else return! op_A), ~

// Returns the product of the set
float Mul (float op_A, float op_B, float op_C, float op_D) (

return (float) (op_A * op_B * op_C * op_D) ;

// Returns the maximum of the setfloat max(float x, float y) ;
float Max (float op_A, float op_B)(

if(op_A > op_B) return (op_A);
else return (op_B) ;

// Gaussian membership function for far distances
float Gauss_far(float x, float c, float s){

float tmpl, tmp2;

if(x <= c) return 1.0;
elsef

tmpl = (x c) / s;
tmp2 = (float) ((-0.5) * tmpl * tmpl),
return (float) exp (tmp2);

// Gaussian membership function for near distances
float Gauss_near(float x, float u, float s){

float tmpl, tmp2;

if(x >= c) return 1.0;
else{

tmpl = (x c) / s;
tmp2 = (float) ((-0.5) * tmpl * tmpl);
return (float) exp (tmp2);

I 1 / 1 1 1 1 1 1 1 1 1 / 1 1 II I /1 1 1 1 1 1 1 1 1 1 1 1 1 1 / 1 1 1 1 II 1 1 II /1 1 1 II 1 1 / 1 1 1 1 1 1 1 1 / 1 1 1 1 1 1 H 1 1 1 1 1 1' 1 1/
II Reinforcement functions -r .
// ———
// Main reinforcement learning function
void Reinforce (void) (

// Resetting the external reinforcement signal
r[0] 0;
r[l] 0;
r[2] 0;
r[3] = 0;

// Critic
for(int i = 0; i < AGENTNUM; i++){

p_old[i] pti] ;
p[i] = 0;
for(int j = 0; j < 16; j++)(

// Prediction of eventual reinforcement

226

APPENDIX D

p[i] += mu[j] * v[i] [j] ;

// Finding the external reinforcement signal
for(int i = 0; i < AGENTNUM; i++) (

if (XCluster[i] >= MAXPROX) r[i] = -1;
)

f or (int i = 0; i < AGENTNUM; i++) {
// Internal reinforcement signal
r_hat[i] = r[i] +• (float) (GAMMA * p[i]) p old[i];

}

// Calculating the square error
for(int i = 0; i < AGENTNUM; i++){

E[i] = (float) (0.005 * r_hat[i] * r_hat[ij),
}

// Calculating the probability of success for each agent
forf int i = 0; i < AGENTNUM; i++){

f or (int j = 0; j < 16; j++){
ro[i] [j] = s_shape(w[i] [j]);

j
}

for(int i = 0; i < AGENTNUM; i++){
temp[0] = 0;
temp[l] = 0;
f or (int j 0; j < 16; j++){

temp[0] += ro[i][j] * mu[j];
temp[l] += mu[j] ;

}
P[i] = temp[0] / temp[l];

}

// Assigning the selected behaviours
temp[0] = 0;
temp[l] = 0;
for (int i = 0; i < AGENTNUM; i++){

temp[0] += (float) behaviour [i] [0] * (P[i]);
temp[l] += (float) behaviour [i] [1] * (P[i]);

)

//// Calculating speed of the wheels
LeftSpeed = (int) (SPEEDMAX * temp[0]),-
RightSpeed = (int) (SPEEDMAX * temp[l]);

// Reinforce values... finding the weights
for(int i = 0; i < AGENTNUM; i++) (

for(int j = 0; j < 16; j++){
w[i][j]+= (float) ALPHA * r_hat[i] *mu[j] * (l/ro[i] [j]) * (exp f-w[i] [j])) ,
v[i][j]-= (float (BETA * r_hat[i] * mu[j];

if(w[i] [j] >= 5.0) w[i] [j] = 5.0;
if(w[i][j] <= -5.0) w[i] [j] = -5.0;
iff v[i][j] >= 10.0) v[i][j] = 10.0;
iff v[i][j] <= -10.0) v[i][j] = -10.0;

}
}
PrintMatrix('P') ;

// S-function implementation
float s_shape (float s) {

return (float) (1 / (1.0 + (float) exp (-s))

227

APPENDIX D

// Screen writing functions for certain values
void PrintMatrix(char select)(

switch! select) {
case 'w' :

printf ("\nW") ;
f or (int i = 0; i < 4 ; i++){

printf ("\n\nThis is r_hat%i: %f", i, r_hat[i]);
printf ("\nAgent %i:\n", i);
for(int j = 0; j < 16; j++)(

printf (" %f", w[i] [j]) ;

break;
case 'v' :

printf ("\nV") ;
for(int i = 0; i < 4; i++)(

printf ("\n\nThis is r_hat%i:
printf ("\nAgent %i:\n", i);
f or (int j = 0; j < 16; j++

printf (" %f", v[i][j]);

%f", i, r_hat[i]);

){

break;
case ' r ' :

printf ("\nro") ;
printf ("\n av spd:%f", (((float) LeftSpeed + (float) RightSpeed) / 2):
f or (int i = 0; i < 4; i++)(

printf ("\n\nThis is r_hat%i: %f", i, r_hat[i]);
printf ("\nAgent %i:\n", i);
f or (int j = 0; j < 16; j++)(

printf (" %f", ro[i) [j]) ;

break;
case ' P' :

for(int i = 0; i < 4; i++)(
printf P\nP[%i] : %f", i, P[i]);

)
printf ("\n") ;
break;

case 'S 1 :
printf ("Left: %i Right: %i\n"
break;

LeftSpeed, RightSpeed);

228

