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Abstract

The generation of adaptive and reflexive behavior is a challenging task in artificial
intelligence and robotics. In this thesis, we develop a framework for knowledge
representation, acquisition, and behavior generation that explicitly incorporates
semantics, adaptive reasoning and knowledge revision. By using our model, semantic
information can be exploited by traditional planning and decision making frameworks
to generate empirically effective and adaptive robot behaviors, as well as to enable
complex but natural human-robot interactions.

In our work, we introduce a model of semantic mapping [102], we connect it with
the notion of affordances [46], and we use those concepts to develop semantic-driven
algorithms for knowledge acquisition, update, learning and robot behavior generation.
In particular, we apply such models within existing planning and decision making
frameworks to achieve semantic-driven and adaptive robot behaviors in a generic
environment. On the one hand, this work generalizes existing semantic mapping
models and extends them to include the notion of affordances. On the other hand,
this work integrates semantic information within well-defined long-term planning
and situated action frameworks to effectively generate adaptive robot behaviors. We
validate our approach by evaluating it on a number of problems and robot tasks. In
particular, we consider service robots deployed in interactive and social domains,
such as offices and domestic environments. To this end, we also develop prototype
applications that are useful for evaluation purposes.
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Chapter 1

Introduction

We must think things not words, or at least
we must constantly translate our words into
the facts for which they stand, if we are to
keep to the real and the true.

— Oliver Wendell Holmes Jr.

Robotic platforms and their applications are rapidly becoming consumer prod-
ucts, aimed at helping and supporting everyday life. The recent development of
autonomous devices typically recalls the concept of intelligent agents, capable of
smoothly interacting with humans, understanding their requests, and taking into ac-
count their needs, habits and interaction modes. To define and describe intelligence,
meaningful traits such as the “adjustment or adaptation” to the environment [38],
as well as “the ability to reason, plan, solve problems, think abstractly, comprehend
complex ideas, learn quickly and learn from experience” [48] have been repeatedly
identified by researchers and psychologists. Yet, generating such behaviors on robots
and reproducing these qualities through static software1 is generally difficult, mostly
unsatisfactory and error prone in uncontrolled scenarios.

Many attempts to incorporate characteristics of reasoning, planning and adap-
tation in robots have been made, through automated decision making solutions
(e.g., Markov decision processes [110]) or, more generally, by adopting prescriptive
models that provide optimal decisions. However, these approaches typically rely on
a plethora of parameters (e.g., the state of the environment) that must be modeled,
but cannot be exhaustively uncovered, tracked or carved by robotic experts even
through a continuous guess-and-check process [114, 120]. Additionally, such methods
generally define a reactive paradigm of situated action and learning, where action
and perception are continuously interleaved to achieve a goal that is intrinsically
designed within the agent [135] (e.g., through a reward or cost function). Although
this enables efficient control and decision making frameworks, situated approaches
do not easily scale to dynamic uncontrolled scenarios, and hardly achieve both
long timescale goal deliberation and complex reflection (i.e., self-adaptation, meta-
reasoning) capabilities. Hence, their use comes at the cost of poor generalization

1By static software, we mean hand-written and pre-programmed software generated by an expert.
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situated
activity

reflectiondeliberation

Figure 1.1. Interrelations between the problems of deliberation, situated action and
reflection.

skills to novel settings and unintuitive behavior models, that are mostly disconnected
from the semantics of the world and from common human-robot interaction patterns.

To tackle this problem, both explicit models as semantic maps [109, 115] and
implicit representations, such as deep neural networks [79, 80, 88] have been recently
adopted in robotics to capture world concepts and to model semantics. Despite
enabling simple forms of reflection, semantic maps typically represent abstract
knowledge and have little connection to decision making frameworks and their
reactive paradigm. However, they explicitly capture (and expose) a semantic model
of the world. For this reason, they are mostly adopted for high-level task planning
and have almost no influence on situated action and decision making. Deep neural
networks, instead, have been successfully adopted to implicitly model and encode
world semantics, while directly determining agent policies [89, 143, 88]. Unfortunately,
captured models are generally difficult to interpret, cannot be used within traditional
planning frameworks and require large amounts of training data. Hence, the use of
deep learning in robotics comes at the cost of giving away long timescale planning
and data efficiency, in place of multiple and long data acquisition sessions that are
potentially unfeasible for the robot (or must be simulated).

In our work, we develop a framework for knowledge representation, acquisition
and behavior generation for robots that explicitly incorporates semantics, adaptive
reasoning and knowledge revision, both for high-level planning and situated action
in interactive environments. In this sense, our attempt consists in interconnecting
the previously introduced problems of deliberation, situated action and reflection in
an autonomous agent, as shown in Figure 1.1. Under this perspective, the central
thesis of our research is the following:

Spatial semantics is necessary to obtain accurate and intuitive
world models that enable both deliberation and situated activ-
ity. This type of information can be exploited by traditional
planning and decision making frameworks to generate empiri-
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cally effective and adaptive robot behaviors, as well as to en-
able complex but natural human-robot interactions.

To validate this thesis, we introduce a model of semantic mapping, connect it
with the notion of spatio-temporal affordance maps, use those concepts to develop
semantic-driven algorithms for knowledge acquisition, update, learning and robot
behavior generation, and apply such models and algorithms to prototype robotics
systems deployed in highly interactive and social environments. More specifically, we
introduce a model for semantic mapping, that extends and formalizes previous
definitions [102], as well as the notion of spatio-temporal affordance maps. We
apply such models within existing planning and decision making frameworks to
achieve semantic-driven and adaptive robot behaviors in a generic environment. To
obtain human-level interactions and to reduce the number of tracked parameters,
we additionally adopt, in our robotic applications, intuitive and natural interaction
modes. On the one hand, this work generalizes existing semantic mapping models and
extends them to the the notion of affordance, typical of ecological robotics [32, 58].
On the other hand, this work integrates semantic information within well-defined
long-term planning and situated action frameworks to effectively generate adaptive
robot behaviors.

The remainder of this introduction is organized as follows. While the contributions
of our work are explicated in Section 1.5, we first introduce a motivating example
(Section 1.1) and we discuss the notions of deliberation, situated action (Section 1.2),
prescription and reflection (Section 1.3). Then, we describe the general approach of
this thesis (Section 1.4) and the prototype systems on which we evaluate our ideas
(Section 1.6). Finally, we describe the structure of this thesis in Section 1.7.

1.1. Motivating Example
To motivate our work, we present a robotic example, that illustrates the fundamental
issues that justify the use of semantic information at multiple scales, both for
deliberation and situated activity, as previously described.

For the purposes of our example, we introduce Sandy. Sandy is a wheeled
holonomic mobile robot which can manipulate objects through a robotic arm mounted
on its base, and can perceive the surrounding environment as well as recognize objects
through a camera mounted on its arm. Sandy lives in a simple world, illustrated in
Figure 1.2, that is composed of three platforms (A, B, and C), where it verbally and
physically interacts with a human, Daniele. Typically, Daniele uses platform A for
placing his slotted screwdrivers, platform B for keeping cross-head screwdrivers and
platform C for storing hammers. However, Daniele is always thinking about new
scientific discoveries, and sometimes he leaves his slotted screwdrivers on platform
B.

When Daniele asks the robot to “bring the slotted screwdriver on the platform”,
the robot faces a very ambiguous command [10]. To properly execute this command,
Sandy needs to understand the semantics of its environment and explicitly reason
about Daniele’s preferences for storing his tools. Additionally, Sandy must evaluate
the actions that are afforded by the current situation. In particular, it needs to
understand whether Daniele already has the screwdriver, and he wants the robot to
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Platform A

Platform C
Platform B

Figure 1.2. Motivating example: sketch of Sandy’s environment.

bring it on a platform, or if he is asking for the tool, which is still on a platform. In
the former case, Sandy can take the screwdriver, navigate to platform A and leave
the object. In the latter case, the robot must navigate to platform A, presumably
take the screwdriver and bring it to Daniele.

However, things are not as easy as they appear. Although Sandy does not know
it yet, Daniele is often inaccurate, as he is focusing on his latest scientific discoveries.
Hence, during the execution of its long-term plan, the robot eventually faces the
situation in which the slotted screwdriver is not on platform A. At that moment,
the generated plan is no longer supported by the current scenario and needs to be
interrupted or modified. Still, Sandy can reason using its semantic knowledge and
understand that B, which is also used for storing some screwdrivers, can occasionally
hold the desired tool. Hence, the robot updates its knowledge about Daniele (and
his distraction), modifies its plan to visit B and reconsiders the decision it needs to
take. After finding the slotted screwdriver on B, Sandy can reach the position in the
space that best allows (or affords) the object pick-up, and finally take the desired
tool. To bring it to Daniele, the robot has to approach his human companion in a
friendly way, and show that the object handover is finally possible. Intuitively, Sandy
needs to evaluate Daniele’s activities during time, his position in the environment
and approach him from the front side. In other words, the robot needs to decide his
motion in the best possible way (i.e., from the front) to support his planned action
(i.e., perform the handover). Nevertheless, to start the handover, Sandy also needs
to wait for the attention of Daniele. Only at that point the action is possible and
the task is over.

Clearly, to successfully complete is assignment, Sandy increasingly exploited
its environmental semantic knowledge, as well as its strongly adaptive reasoning
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both for high-level planning and situated action. Hence, the goal of this thesis
consists in contributing towards the development of a real world agent, endowed
with capabilities that are similar to those of Sandy.

1.2. Deliberation and Situated Activity
Our claim is that spatial semantics is necessary to obtain accurate and intuitive
world models that enable both deliberation and situated activity. Importantly,
differentiating between deliberative and situated approaches, as well as integrating
them in a robotic system, is essential to generate effective agent’s behaviors. For this
reason, we now review these two models and use them to motivate the perspective
of this thesis.

Deliberation refers to the purposeful development of long-term courses of action
that is carried out, typically through the use of a (symbolic) model of the world, in
order to achieve some specified objectives. Often, a deliberative agent is practically
realized through a top-down, four-step sense-model-plan-act [100, 42] architecture
and is capable of dealing with complex situations. Under this perspective, in fact,
the planning activity is considered as a form of problem solving, where tasks are
decomposed into sub-tasks and a path is found from an initial state to a desired
goal. Here, each path is an exact and clear specification of the agent’s courses of
action. Still, the applicability of this schema in robotics scenarios is strongly limited
by the computational resources demanded for modeling and planning [60], by the
uncertainty of the world against exact behavior specifications, as well as by the large
amount of prior knowledge that the agent requires.

In contrast to deliberative theories, Suchman [137] introduces the concept of
situated action, where plans do not model exact sequences specifying behavioral
details, but rather represent action maps (i.e., a simplifications or sketches) that
need concrete in-situ instantiatiations to agents’ contingencies. In this sense, the
planning problem is subsumed by the larger problem of situated action, that is
characterized as follows:

That term underscores the fact that the course of action depends in
essential ways upon the action’s circumstances. Rather than attempting
to abstract action from its circumstances and reconstruct it as a rational
plan, the approach is to study how people use their circumstances to
achieve intelligent action. Rather than build a theory of action out of
a theory of plans, the aim is to investigate how people produce and find
evidence for plans in the course of situated action. (Suchman, 1987)

In robotics, such paradigm is typically realized through reactive behavior-based
control architectures [14, 2, 60] and hybrid control architectures [3, 27, 111, 26]. The
former are implemented in a bottom-up fashion to immediately consider sensory in-
formation. Reactive architectures, however, often fail at integrating world knowledge
and generalizing to complex situations. The latter are based on layered partitions of
deliberative and reactive functionalities. Hybrid approaches attempt to combine the
benefits of deliberation and reaction, while reducing their specific inconveniences.
This is obtained, for example, by binding a set of reactive behaviors to a hierarchical
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Figure 1.3. Boud’s model of reflection [13].

planner [3, 26], controlling reactive layers with symbolic planners [27], or using
deliberative modules as “advice” to reactive layers [111].

In this thesis, we adopt a hybrid architecture that binds reactive behaviors (i.e.,
situated action) to high-level planners. In doing so, we integrate semantic knowledge
at each partition to generate empirically effective and adaptive robot behaviors, as
well as to enable complex but natural human-robot interactions.

1.3. Prescription and Reflection
In the beginning of this chapter, we state that adaptive behaviors can be efficiently
obtained through prescriptive situated approaches, but these methods do not easily
scale to dynamic uncontrolled scenarios, where both long timescale goal deliberation
and complex self-adaptation for model revision (i.e., reflection) are required. In fact,
to adapt to the dynamic environment in our example, Sandy adopts a self-reflective
behavior that updates decisions and world models for the execution of the assigned
task. In this section, we explicate the notions of prescription and reflection, as well
as their relation to this thesis.

Computational models adopted for decision making in autonomous agents are
typically prescriptive, as they are based on the utility maximization and rationality
assumptions of normative theories. As such, prescriptive approaches provide optimal
and practical solutions that are tuned to specific situations and the needs of real
decision makers (i.e., what agents should and can do). On the one hand, these
solutions are mostly inflexible and often do not reflect empirical findings about
human behaviors [128], dominated by cognitive limitations and biases, framing
effects [141], heuristics and preferences. On the other hand, different behavioral
(descriptive) models are available, that attempt to explain similar phenomena
– see, for example, Prospect Theory [62], and specific attempts have been made
to study the integration of human-robot dynamics for decision making [19]. Still,
descriptive methods are rarely adopted in robotics, where the practicality and efficacy
of prescriptive methods are desirable properties. In practice, solutions that are based
on prescriptive approaches, such as Markov Decision Processes, are nowadays widely
adopted and represent state-of-the art methodologies for autonomous intelligent
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agents.
To tackle the limitations of prescriptive approaches, and to increase their effective-

ness in dealing with human behaviors, reflection capabilities (see Figure 1.3) can be
integrated within autonomous decision makers. Reflection, in fact, is an important
human activity that is used to recapture experience, think about it and evaluate
it [13]. In this sense, multiple functionalities in computation require reflection [84]
and define a reflective computation model that is characterized as follows:

Reflective computation does not directly contribute to solving problems in
the external domain of the system. Instead, it contributes to the internal
organization of the system or to its interface to the external world. Its
purpose is to guarantee the effective and smooth functioning of the object
computation. (Maes and Nardi, 1988)

To obtain a similar model, Weber and Coskunoglu [147] propose a relaxation of
the rigid data requirements and assumptions of prescriptive models. This relaxation
is based on the anticipation and detection of non-normative behaviors, as well as
on their explication to the decision maker by means of a reflective language [44, 84]
(e.g., Prolog), a knowledge base and inference mechanisms for symbolic manipulation.
More recently, Zhang et al. [150] also address the problems of interpreting human
actions, recognizing new situations, and making appropriate decisions. To this
end, they introduce an indicator measure that allows a robot to self-reflect and
reason about the novelty of observations with respect to previously learned models.
This metric is then used for decision making in autonomous robots to evaluate the
execution risk of the agent’s actions or, from the perspective of this thesis, their
equivalent affordability.

Back to our example, Sandy clearly adopts a self-reflective behavior during the
execution of its assignment and while interacting with Daniele. After not finding
the slotted screwdriver on the expected platform, in fact, the robot reconsiders both
its world knowledge and its planned behavior. However, despite the introduction of
predictive [151] and risk-sensitive [150] applications in decision frameworks, Sandy’s
capabilities are far beyond those of a real autonomous agent. In particular, existing
decision making and planning tools still lack of integrated semantic knowledge,
interaction as well as preference modeling capabilities. In this thesis, by adopting
a meta-logic language to model world knowledge as proposed in [147] as well as
an affordance-based action selection strategy, we leverage semantic information to
generate robot behaviors through both prescriptive decision and planning frameworks.
In our work, these frameworks are supported by flexible control methodologies, rich
knowledge bases, and simple forms of meta-reasoning that support explanatory and
interaction capabilities.

1.4. Leveraging Semantics and Interaction for Robot
Policy Learning

As introduced in the previous sections, it is important for a robot to be able to use
semantic information and to revise its knowledge at multiple levels of abstraction,
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coherently with a hybrid control architecture. At the deliberation level, this corre-
sponds to using a flexible world model featuring easily upgradable, but rich abstract
information. For situated action, instead, this amounts to having an explicit notion
of spatio-temporal information, that integrates both the semantics and physical
dynamics of the environment.

Intuitively, to capture this type information, the robot needs to actively operate
within the environment and, possibly, interact with humans. In fact, on the one
hand, a priori models cannot represent world knowledge appropriately, due to wrong
assumptions, modeling inaccuracies and, ultimately, lack of full information; on
the other hand, active interaction, both with the environment and with humans,
facilitates information gathering as well as knowledge grounding and contextual-
ization. For example, in the previously discussed scenario where our robot Sandy
is assigned a pick-up task, directly operating within the environment enables the
agent to autonomously collect new information about Daniele and to develop new
behavioral models. With the newly generated behaviors, Sandy is able to robustly
interact with its companion and accurately decide for the best action sequences.

Similarly, in this thesis we generate robot behaviors by collecting semantic
information through interaction with the environment and collaboration with humans.
Under this approach, illustrated in Figure 1.4, at each time-step the robot interacts
with the environment by using its current world model to generate, at each abstraction
layer, a plan, a sequence of actions or an action. During their execution, a set of
events are separately collected for each layer – these can include, but are not limited
to, cooperation with humans and observation of new sensory information. This
information is finally adopted, at each partition of the world model, for updating and



1.5 Contributions 9

amending previous knowledge as well as for generating the next time-indexed robot
behavior. Importantly, during this process a priori knowledge is not completely
rejected, and it can be exploited as a starting world model or, in the case of controlled
domains, it can be used to mediate between the experience of the robot and the
punctual knowledge of the domain expert.

While the previous introduction presents the background and underlying assump-
tions of our approach in its general form, later in this thesis we first introduce the
models that enable this process both for deliberation and situated action, and then
we detail the algorithms that implement these mechanisms at each partition of the
world model.

1.5. Contributions
The main contributions of this thesis to behavior generation and to the support of
semantic-driven approaches in the robotics community are the following:

• The novel formal model of semantic mapping extends and formalizes pre-
vious definitions [102] of semantic maps, supports knowledge revision method-
ologies for long-term deliberation and aims at uniforming semantic mapping
solutions for knowledge representation. Such formal model includes a de-
scription of the semantic mapping process, and extends it to an incremental
setting for knowledge acquisition and behavior generation. On top of this,
our contribution includes a first (to the best of our knowledge) discussion of
hypotheses for metrics and evaluation criteria for semantic maps, as well as
the use of the model to build a dataset that is based on real sensor data.

• The novel spatio-temporal affordance model extends the notion of spa-
tial semantics, connecting it to the dynamics of the environment and thus
enabling semantic-driven situated behaviors. This concept builds on ecological
theories (as introduced in Section 2.2), and extends previous approaches by
directly connecting the environment, its spatial semantics and their evolu-
tion. Our contribution includes the formalization of a novel model that is
both time-invariant and time-dependent, and that directly represents action
semantics. Additionally, it defines a procedure for learning such representation,
and establishes a direct connection between the notion of spatio-temporal
affordances and the concept of semantic maps.

• The online semantic knowledge acquisition schema implements a new
paradigm for model update at the deliberation level and relies both on human-
robot interaction and robot experience. This schema defines a principled
methodology for collecting semantic information by using our model of semantic
maps. Additionally, it accounts for a task-oriented evaluation of the procedure,
by using the acquired knowledge to generate behaviors via reasoning and
inference.

• The affordance-based situated action and control paradigm integrates
standard decision making methodologies with the notion of spatio-temporal
affordances, as well as implements semantic-driven behaviors during situated
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Figure 1.5. Example from the benchmarking dataset for semantic maps: view of the Robot
Innovation Facility of Peccioli.

action for robot control. In particular, the paradigm leverages Monte Carlo
tree search and data aggregation (see Section 2.4.2 and 3.3) to learn a policy
by means of our model of spatio-temporal affordances. Our approach defines
and evaluates a novel procedure for learning both time-invariant and time-
dependent spatio-affordances in the context of Markov decision processes.

• The affordance learning model and the system dynamics prediction
model connect a learning framework to the affordance-based situated action
and control paradigm, and implement our knowledge update schema at a
reactive level. The system dynamics prediction model, in particular, enhances
previous approaches to obtain accurate simulations of dynamics models that
can be used for generating accurate control policies.

1.6. Prototype Systems and Empirical Evaluations
We empirically validate our approach by evaluating it on a number of problems and
tasks for service robots. These robots are deployed in interactive and social domains,
such as offices and domestic environments. To this end, we develop prototype
applications that are useful for research purposes, although not yet ready for the
market.

In our first application, we adopt the formal model of semantic map – that we
develop in this thesis – to manually annotate environmental information coming from
sensor data. We employ the generated models to construct a benchmarking dataset
for semantic maps (Figure 1.5), thus paving the way to comparative evaluations
between different approaches. In our second prototype application, we instead adopt
our model of semantic mapping for enabling robots to acquire knowledge and execute
tasks through interactive behaviors.

We use our model of spatio-temporal affordances (Figure 1.6) for supporting
a robot while learning both action semantics and situated policies. In particular, we
apply our algorithms for learning affordance guided policies on a humanoid platform
that performs human-robot handovers.
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(a) DIAGO: one of the “social robots” on
which we implemented our prototype
applications.

(b) Spatio-temporal affordance map for
an interactive humanoid robot.

Figure 1.6. Prototype applications using the concept of spatio-temporal affordance maps.

Finally, we test our dynamics learning methods on a number of simulated and
real world benchmarking applications, including a simulated helicopter and a Baxter
robot.

1.7. Thesis Organization

This thesis is organized into four parts: Preliminaries, Models, Algorithms, and
Conclusions. Each part and chapter of the thesis is organized and described as follows:

Part I, Preliminaries: The main background techniques and theories that are
employed in the thesis and related work for semantic mapping, affordance and
policy learning in robotics.
Chapter 2 Review of the main concepts related to semantic mapping

and knowledge representation, affordance theory and ecological
robotics; review of decision making models and processes; intro-
duction of the notations and terminology adopted in the thesis.

Chapter 3 Critical analysis and review of the literature related to semantic
mapping, reasoning and affordance-based approaches in robotics;
review of imitation learning, reinforcement learning and optimal
control theories, dataset aggregation methodologies and inverse
problems for reinforcement learning; analysis of relations among
the approaches in literature and discussion of their limitations.
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Part II, Models: Formalization of semantic mapping and spatio-temporal
affordance map models.
Chapter 4 Introduction of an easily extensible formalism for representing

knowledge in semantic maps and definition of the semantic map-
ping process. Use of the formalism for the generation of a semantic
mapping dataset.

Chapter 5 Notion of spatio-temporal affordance maps, formalization and
general schema of a spatio-temporal affordance map.

Part III, Algorithms: Online semantic mapping, policy learning with spatio-
temporal affordance maps, dynamics learning and random feature inverse rein-
forcement learning.
Chapter 6 Semantic mapping algorithm for online knowledge acquisition,

update and use based on smooth and multi-modal human-robot
interactions. The approach is validated by means of a thought
experiment and on service robots deployed in office and domestic
scenario.

Chapter 7 Policy learning algorithms for robot control, that leverage the use
of continuously refined spatio-temporal affordance maps, Monte
Carlo tree search and data aggregation.

Chapter 8 Review of system identification and predictive state representation
theory; data aggregation and predictive state representation algo-
rithms for learning dynamics models in model-based reinforcement
learning.

Part IV, Conclusions: Brief discussion of open research problems and con-
cluding remarks.
Chapter 9 Summary, conclusions and final remarks of the thesis. Open

research opportunities, possible extensions and applications of the
thesis work, limitations, and critical discussion.

1.8. Related Publications
Portions of this thesis have previously appeared as the following workshop, conference
and journal publications:

2016

• Riccio, F., Capobianco, R., and Nardi, D. Learning Human-Robot Handovers
Through π-STAM: Policy Improvement With Spatio-Temporal Affordance Maps. In
Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2016).
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• Riccio, F., Capobianco, R., and Nardi, D. Using spatio-temporal affordances
to represent robot action semantics. Workshop on Machine Learning Methods for
High-Level Cognitive Capabilities in Robotics at IROS (2016).

• Venkatraman, A., Capobianco, R., Pinto, L., Hebert, M., Nardi, D., and
Bagnell, J. A. Improved Learning of Dynamics Models for Control. International
Symposium on Experimental Robotics, ISER (2016).

• Riccio, F., Capobianco, R., and Nardi, D. Using Monte Carlo Search With Data
Aggregation to Improve Robot Soccer Policies. Proceedings of the 20th International
RoboCup Symposium (2016).

• Sun, W., Capobianco, R., Gordon, G. J., Bagnell, J. A., and Boots, B.
Learning to smooth with bidirectional predictive state inference machines. Proceedings
of the 32nd Conference on Uncertainty in Artificial Intelligence, UAI (2016).
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and Simulation for Autonomous Systems, MESAS (2016).
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Chapter 2

Background

Whatever is a reality today, whatever you
touch and believe in and that seems real for
you today, is going to be – like the reality of
yesterday – an illusion tomorrow

— Luigi Pirandello

The idea of generating semantic-driven robot behaviors originates from existing
concepts in robotics and artificial intelligence. In particular, this thesis extends and
formalizes previous definitions of semantic maps, connecting them with the notion
of spatio-temporal affordances and spatial semantics. This extension directly applies
to existing planning and decision making frameworks, through which adaptive robot
behaviors can be generated. In this chapter, we review the key elements and concepts
of existing semantic map representations, and we introduce the planning and decision
making approaches that we rely upon in this work. Finally, we familiarize the reader
with the notations and terminology that we adopt throughout this thesis.

2.1. Elements of Semantic Mapping
The problem of learning and representing the semantics of environments based on
their spatial location, geometry and appearance [75] is often referred in the literature
with the term “semantic mapping” [102].
Definition 2.1. A semantic map is a map that contains, in addition to spatial
information about the environment, assignments of mapped features to entities of
known classes. Further knowledge about these entities, independent of the map
contents, is available for reasoning in some knowledge base with an associated
reasoning engine. (Nüchter and Hertzberg, 2008)

Semantic maps should not only assign a certain number of labels or properties
to relevant features of the environment (like in Goerke and Braun [47], Mozos et al.
[92]), but also provide a representation of this knowledge in a form usable by the
system for reasoning and behavior generation.

In this section, we review the key elements and concepts of existing semantic map
representations. We then adopt these ideas and tools, and we use them throughout
this thesis to develop and present our models and algorithms (Chapters 4 and 6).
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Figure 2.1. Examples of occupancy grid maps, from the Radish dataset [57].

2.1.1. Grid Maps and Topological Graphs

Grid maps and topological graphs are core elements of the standard navigation stack
of an autonomous robot. They are spatial representation of environments, that are
respectively modeled by means of grids (Figure 2.1) or expressed in terms of their
connectivity (Figure 2.2). More formally:

Definition 2.2. An occupancy grid map or grid map is a fixed-size grid that
statically models the occupancy of the environment. Each cell of the grid is a binary
random variable Ci, whose state can be free (1) or occupied (0), and the map M is
represented as a probability distribution

p(M) =
∏
i

p(Ci = 1). (2.1)

Definition 2.3. A topological graph is a concise description of the structure of
the environment. It is an explicit representation of the connectivity between regions
and objects, based on an abstraction of the environment in terms of places (modeled as
vertices) and movements between places (modeled as edges) [33]. Such representation
consists of a graph G = (V,E), where V is a set of vertices and E is a set of edges
among them.

These representation are generally used in semantic maps to associate a spatial
reference to each semantic annotation.
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Figure 2.2. Example of a topological graph, from Khandelwal and Stone [66].

2.1.2. Knowledge Bases, Terminological and Assertion
Components

Annotations and labels that belong to a semantic map are typically stored in a
Knowledge Base (KB). A knowledge base is used by a robot both for reasoning and
planning, by means of a reasoning engine.

Definition 2.4. A knowledge base is a set of sentences, each of them expressed
in a certain knowledge representation language, that represent some assertions about
the world [124].

Definition 2.5. A reasoning engine is a software that uses information stored
in a knowledge base, infers logical consequences, and draws new conclusions.

Often, a knowledge base for semantic maps is represented in Description Log-
ics (DL) [96] or in Prolog, and it is composed by two elements that are called
terminological box (Tbox) and assertion box (Abox) [29].

Definition 2.6. The TBox stores a set of universally quantified assertions, stating
general properties of concepts and roles [29].

Definition 2.7. The ABox contains TBox compliant assertions on individual
objects [29], such as instances of certain concepts.

Several reasoning tasks can be performed on a DL knowledge base, such as
computing the subsumption relation between two concepts or checking logical
implications of certain assertions.

2.1.3. The Symbol Grounding Problem
One of the main challenges of semantic mapping consists in tackling the symbol
grounding problem [53], that is the issue of associating spatial representations, as
introduced in Section 2.1.1, with symbolic annotations stored in the knowledge base
of a semantic map (Section 2.1.2).
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environment effects

actions

Figure 2.3. Ecological model adopted in this thesis.

Definition 2.8. The symbol grounding problem consists of the interpretation
of a formal symbol system and its connection to anything that is non-symbolic, such
as sensory representations.

Multiple approaches have been proposed to perform symbol grounding and to
represent semantic maps. In this thesis, we review some of them in Section 3.1.

2.2. Ecological Robotics and Affordances
Recently, the relationship between the agent and its environment has been used
by researchers to build complex and flexible representations of behaviors, that are
able to better address the dynamics of the world. These representations are named
affordances and, by directly modeling the interaction of an agent with its own
environment, they leverage the theories of ecological psychology [56]. Ecological
theories, in fact, consider animals and their environments as “inseparable pairs”,
that have to be described according to the behavior of the animal itself [32]. The
extension of this perspective to the robot domain defines an alternative paradigm of
ecological robotics.

Definition 2.9. Under the paradigm of ecological robotics, a robot and its envi-
ronment are considered as a unique system, in which the environment provides the
information for the adaptation of the agent’s behavior and the dynamics of the world
directly affects action choices.

Affordances, in particular, have been originally introduced by Gibson [46] as
action opportunities that objects offer.

Definition 2.10. The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. An affordance is equally a fact of
the environment and a fact of behavior. It is both physical and psychical, yet neither.
An affordance points both ways, to the environment and to the observer. (Gibson,
1979)

Alternative models exist, that consider affordances as relations between animals
and features of situations [23], or where action opportunities depend on the experience
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of the agent [101]. In this work, we adopt a definition of affordances (Figure 2.3)
that depends on the experience of the agent and whose shape, or distribution, is
modified by events that occur in the environment at each time, as effects of the
agent’s actions.

Definition 2.11. An affordance is a value function that represents the desirability
of an action over a full environment, given its state at a certain time.

While we present existing literature on affordances (used in robotics) in Sec-
tion 3.2, we use this notion in Chapters 5 and 7.

2.3. Petri Net Plans
In this section, we introduce the concept of Petri Net Plans (PNPs), that we leverage
in this thesis (Chapter 6) for executing our long-term sequence of actions and, hence,
for implementing our deliberated plans.

Petri Net Plans (PNP) [154] is a rich formalism for plan representation, based
on Petri Nets [93] that can be used to express non-instantaneous actions, sensing
and conditional actions, action failures, concurrent actions, interrupts, and action
synchronization (in a multi-agent context). More formally:

Definition 2.12. A Petri Net is a directed bipartite graph, in which nodes represent
either transitions (events, represented by bars) or places (conditions, represented
by circles). The directed arcs describe which places are pre-conditions (inputs) or
post-conditions (outputs) for each transition.

Definition 2.13. Petri net plans are Petri Nets of a restricted form, where:

• input places (pi) model the initial configurations of the network before the
action has been executed;

• execution places (pe) model the configurations during which the action is
executed. These places are also used to create hierarchical plans by calling a
sub-plan while visiting this place;

• output places (po) model the final configurations of the network after the
execution of the action;

• start transitions (ts) model the events that trigger the execution of the action;

• end transitions (te) model the events that trigger the end of the action. In a
sensing action there are a true (tet) and a false (tef

) end transitions that fire
depending on the outcome of the query made to the knowledge base.

Under this formalism, plans are composed of basic actions – i.e., specific combi-
nations of places and transitions – that can be combined through a set of operators
for executing complex tasks. These actions can be ordinary (Figure 2.4a) or sensing
actions (Figure 2.4b). The former have a certain duration, while the latter depend
on one or more conditions, that are verified at run-time by querying an external
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(a) PNP ordinary action. (b) PNP sensing action.

Figure 2.4. Ordinary and sensing actions in a Petri Net Plan.

knowledge base. No restriction is imposed on the knowledge base, which is supposed
to be updated by other modules according to the perceptions of the agent.

Basic actions can be composed by using a set of operators for single and multi-
agent plans. Here we recall some of the single-agent operators (Figure 2.5), referring
the reader to Ziparo et al. [154] for a formal and more complete definition of the
available operators:

• sequence: a sequence is obtained by merging two places of different PNPs.
It can be applied to any place except for the execution ones, as shown in
Figure 2.5a;

• interrupt: an interrupt connects the execution place of an action (or sub-
plan) to a non-execution place of another network. It causes the temporary
termination of the action (or sub-plan) under anomalous conditions, as shown
in Figure 2.5b. Interrupts are also used to repeat a portion of a plan that do
not achieve its post-conditions in order to implement while-loops;

• loop: loops enable the repetition of a portion of the plan until a certain event
occurs (do-until), or if a set of actions needs to be repeated a given number of
times (do-n-times) (Figure 2.5c).

• fork and join: each token in a Petri Net Plan can be considered a thread in
execution. Through fork and join, threads can be created and synchronized.
An example of a fork followed by a join is shown in Figure 2.5d.

2.4. Models of Decision Processes
Multiple approaches have been adopted for implementing decision making in au-
tonomous agents, with the goal of obtaining mathematical frameworks to represent
decision problems and then infer optimal solutions. In this section, we review the
Markov Decision Processes (MDPs) and Partially Observable Markov Decision Pro-
cesses (POMDPs), prescriptive frameworks that aim at maximizing the expected
utility of a sequence of interactions with a stochastic process.
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(a) The PNP sequence operator. (b) The PNP interrupt operator.

(c) The PNP loop operator. It can be
used to define definite or indefinite
loops.

(d) The PNP fork and join operators.

Figure 2.5. Operators in a Petri Net Plan.

Figure 2.6. Examples of Markov Decision Process as a graph, from Sutton and Barto [138].

2.4.1. Markov Decision Processes
The Markov Decision Process (MDP) is a prominent model for planning and decision
making in discrete settings. Under this framework, which we also adopt in this thesis
(Chapters 7 and 8), the set of states S and actions A of an agent are described in
terms of graph nodes and edges (Figure 2.6). Each pair (s, a), composed by a node
s and an arc a, has an associated reward rs,a and the transition between states can
be deterministic or stochastic. More formally:

Definition 2.14. A Markov decision process is a tuple

M = (S,A, T,R, γ),

where:

• S is the set of states of the environment;

• A represents the set of actions;
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• T : S ×A× S → [0, 1] is the transition function that models the probabilities
of transitioning from state s ∈ S to s′ ∈ S when taking action a ∈ A;

• R : S ×A→ R is the reward function;

• γ ∈ (0, 1] is a discount factor.

In this setting, transitions and rewards are assumed to be Markovian – i.e., a
function of the current state only, and decisions are represented through a policy π,
that defines the behavior of an agent by mapping states to actions. Policies can be
classified as deterministic or stochastic. A deterministic policy π(s) specifies a
unique action based on the current state, while stochastic policies choose actions
according to a probability distribution π(a|s) ∈ [0, 1]. More classes of policies exist,
that can be categorized as non-stationary or stationary depending on whether
they respectively maintain a notion of time or not.

By executing a policy, an agent interacts with its environment in discrete time-
steps and defines a sequence (or a trajectory) of state-action pairs ζ = (st, at),
with t = 0, . . . , T , and an associated cumulative reward R(ζ) =

∑T
t=0 γ

tR(st, at).
In the case of deterministic agents (i.e., agents with deterministic policies), the goal
consists in finding a policy π(s) that maximizes its expected cumulative reward
Eζ∼π[R(ζ)] over a finite or infinite time horizon T . This can be obtained by using
the notions of state-value function V π(s) (Eq. 2.2) and action-value function
Qπ(s, a) (Eq. 2.3) of a policy

V π(s) =
∑
a

π(a|s){R(s, a) + γ
∑
s′

T (s, a, s′)V π(s′)} (2.2)

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)V π(s′). (2.3)

Intuitively, the state-value function corresponds to the value of the expected
return when starting in state s and following policy π from there, while the action-
value function represents the value of the expected return when taking action a in
state s and then following policy π.

By using these concepts and solving their corresponding Bellman optimality
equations [138]

V ∗(s) = max
a
{R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)} = max
a

Q∗(s, a) (2.4)

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′) max
a′

Q∗(s′, a′) (2.5)

= R(s, a) + γ
∑
s′

T (s, a, s′)V ∗(s′)

an optimal policy can be greedily determined with one look-ahead, as in Eq. 2.6, or
just by choosing the best action according the optimal action-value function 2.7.

π∗(s) = arg max
a
{R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)} (2.6)

π∗(s) = arg max
a
{Q∗(s, a)}. (2.7)
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Figure 2.7. Steps of one iteration of Monte Carlo Tree Search, from Browne et al. [15]

In fact, the policy improvement theorem establishes a criterion for comparing
policies and, hence, for defining optimality. Note that, although this theorem
explicitly considers deterministic policies, similar principles apply in the case of
stochastic policies.

Theorem 2.1. Given any pair of deterministic policies π′ and π, if

Qπ(s, π′(s)) ≥ V π(s)

holds for all s ∈ S, then π′ is at least as good as, π. Hence, for all states s ∈ S, π′
must obtain an expected return greater than or equal to π:

V π′(s) ≥ V π(s).

Hence, whenever the relation Qπ(s, a) ≥ V π(s) holds, it is better to change π
so that action a is chosen in state s. Based on this, a simple mechanism of policy
iteration can be developed, that interleaves between policy evaluation (Eq. 2.6)
and policy improvement (Eq. 2.6) until convergence. Other approaches, instead,
perform value iteration by directly updating V ∗(s) through Eq. 2.4 and 2.5.

2.4.2. Monte Carlo Tree Search
As we explained in the previous section, either value iteration or policy iteration
can be used to solve MDPs and obtain optimal policies. However, these approaches
are often unfeasible in domains characterized by very large state spaces, such as
multi-agent systems. This is due, for example, to complex dynamics and costly
computations for full state space explorations, including portions of it that are
“non interesting” for the considered agent. For this reason, tractable algorithms
have been developed, that approximate state-action values by collecting random
samples in the decision space and by building a search tree according to the results.
Among them, Monte Carlo Tree Search (MCTS) is a statistical algorithm that
can be used with little or no domain knowledge [15], and that recently led to notable
successes [133].
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MCTS evolves through multiple iterations, each of which is composed of four
fundamental steps – illustrated in Figure 2.7 – that build a search tree to support
action planning:

• selection: a selection policy is used to reach a leaf node from the root of the
current tree – i.e., in each node, starting from the root, an action is applied
according to the selection policy;

• expansion: when the leaf node is non-terminal, the leaf is expanded by creating
new child nodes – according to the available (or possible) actions – and selecting
one of them;

• simulation: a default policy (e.g., random) is adopted starting from the new
node until an outcome is achieved or termination is reached;

• back-propagation: each traversed node in the tree updates its statistics accord-
ing to the achieved outcome. To evaluate the statistical significance of the
outcome, more simulations are typically carried out before back-propagation.

As described, MCTS is achieved by means of two policies: a selection (or tree) policy,
that is used within the tree, and a default policy, used to carry out simulation.
Intuitively, iteration after iteration, the algorithm builds a partial tree that is used
to estimate action values through simulation. These estimates improve with the
number of iterations, and they are used to guide the construction of the tree itself.
While further details can be found [15], in this thesis (Chapter 7) we leverage a
variant of MCTS that is named Upper Confidence Bounds for Trees (UCT).

UCT models the node selection step of the algorithm as a multi-armed bandit
problem. To this end, the algorithm maintains a count of its visits to each state
and action, and adopts a simple upper confidence bound strategy – UCB1 [5] – to
balance between exploration and exploitation on the tree. In particular, at each
iteration h = 1 . . . H, the algorithm simulates the execution of each legal action in
sh and selects the best action a∗h as

e = C ·
√

log(
∑
a n(sh, a))

n(sh, a) (2.8)

a∗h = arg max
a

Q(sh, a) + e, (2.9)

where Q(sh, a) is the action value function, C is a constant that multiplies and
controls the exploration term e, and n(sh, a) is the number of occurrences of a in sh.
The action value function Q(s, a) is obtained by back-propagating the final reward
of each simulation to all the traversed states s.

2.4.3. Linear-Quadratic Regulators

The Linear-Quadratic Regulator (LQR) is a special case of MDP characterized by
continuous states and actions, linear state dynamics and quadratic cost functions.
More formally:
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Definition 2.15. A linear-quadratic regulator is a special MDP, represented as
a tuple

L = (S,A, A,B,Σ, Q,R),

where:

• S = Rm is the continuous state space;

• A = Rn is the continuous action space;

• A ∈ Rm×m and B ∈ Rm×n are linear matrices that define the linear transition
function st+1 = Ast +Bat + νt, while ν ∼ N (0,Σ) is Gaussian noise;

• Q and R are positive semi-definite matrices that parametrize the reward func-
tion as −s>t Qst − a>t Rat.

For this class of problems, a solution can be efficiently computed by defining a
total cost J - or a value function - accumulated over a certain horizon T . When
the Gaussian noise ν is not present – i.e., the transition function is deterministic,
at a time-step t the optimal cost-to-go J = s>Pts is obtained through the optimal
policy π∗(s) = −Kts, where Kt is defined in terms of the solution Pt ∈ Rm×m to the
discrete-time Riccati difference equation:

Kt = −(R+B>Pt−1B)−1B>Pt−1A (2.10)
Pt = Q+K>t RKt + (A+BKt)>Pt−1(A+BKt). (2.11)

This procedure corresponds, in all respects, to a sequence of value iteration
updates starting from P0 = 0 and performed in closed form. Similar solutions can be
derived in presence of ν – i.e., when the transition function is stochastic. Finally, this
approach can also be adopted in the case of non-linear systems by simply computing,
around the trajectory generated by the current policy, a linear approximation of the
transition function and a quadratic approximation of the reward function. In this
thesis, we use linear-quadratic regulators for some of our experiments in Chapter 8.

2.4.4. Partial Observability
The Partially Observable Markov Decision Process (POMDP) is an extension of
the MDP where the states are not fully accessible. Under this common setting, in
fact, the agent only receives some state-dependent observations, rather than the
true states, while the underlying states, transitions and rewards functions remain
unchanged from the traditional MDP. More formally:

Definition 2.16. A partially observable Markov decision process is a tuple

P = (S,A,O, T,R, Z, γ),

where:

• S is the set of states of the environment;
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• A represents the set of actions;

• O is a set of observations;

• T : S ×A× S → [0, 1] is the transition function that models the probabilities
of transitioning from state s ∈ S to s′ ∈ S when taking action a ∈ A;

• R : S ×A→ R is the reward function;

• Z : S ×O → [0, 1] is the observation dynamics that models the probability of
observing o ∈ O from state s ∈ S;

• γ ∈ (0, 1] is a discount factor.

Since the agent does not directly observe the state of the environment, this
framework is connected to the notions of belief state and belief space. A belief
state b(s) = p(s) is a probability distribution over the states, while the belief space
the is the set of all possible probability distributions – i.e., the available probability
space. At each time, the agent updates its belief according to

b′(s) = ηZ(s, o)
∑
s′

T (s, a, s′)b(s′), (2.12)

where b′(s) =
∑
s′ T (s, a, s′)b(s′) is the action update rule and b′(s) = ηZ(s, o)b(s) is

the observation update rule, with η normalization factor.

2.5. Notation and Terminology
In this section we describe the notation and terminology that we adopt throughout
this thesis. In particular, we adhere to the following notation, where each x, or xi,
is a variable:

• Sets of values: {xi} = {x1, . . . , xn};

• Vectors of values: x = (x1, . . . , xn)>;

• Probability distribution: p(X = x) = p(x)

• Conditional probability distribution: p(Y = y | X = x) = p(y | x);

• Expectation of a function f(x): E[f(x)] =
∑
x p(x)f(x);

Additionally, we refer to the following dictionary of terminologies:

• Metric map: occupancy grid map, as introduced in Definition 2.2;

• System dynamics: transition function T (s, a, s′) as defined in the Markov
Decision Process framework;

• i.i.d.: independent and identically distributed.
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Chapter 3

Related Work

Consider your origins: you were not made to
live as brutes, but to follow virtue and
knowledge.

— Dante Alighieri

In this chapter, we review existing methods for learning semantic knowledge
and generating robot behaviors, under a variety of assumptions and with multiple
techniques. These approaches have been grouped in three different sections: Seman-
tic Knowledge and Robot Reasoning (Section 3.1), Affordance-Based Methods in
Robotics (Section 3.2), and Approaches to Policy Learning (Section 3.3), reflecting
the three key concepts adopted in this thesis. We discuss the relation between these
concepts as well as our models and algorithms both in Section 3.4 and throughout
the following chapters of this thesis.

3.1. Semantic Knowledge and Robot Reasoning

The development of semantic-based methodologies in robotics has been an active
research area in the last few years. After Kuipers [77], who described spatial
information as essential to commonsense knowledge, many authors focused on the
idea of environmental semantics for robots. Such increasing interest is motivated by
the need of designing cognitive robots, that are capable of acting and collaborating by
understanding the environment in which humans live, as well as the way they operate
in it. Nevertheless, the ability to communicate represents a strict requirement for
collaboration between two or more agents. When dealing with humans, this can be
naturally achieved by enabling robots to use spoken language, based on the learned
semantics of the world.

In this section we review the approaches to semantic knowledge representation,
acquisition, and inference that have been adopted in robotics. In particular, while
defining a general taxonomy of these methods, we mostly focus on representation
and knowledge acquisition issues, that help us to correctly collocate our work and
to highlight its main similarities and differences with respect to previous literature.
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Figure 3.1. Taxonomy of approaches for semantic mapping.

3.1.1. Semantic Mapping
There exists a large literature on the problem of learning and representing the seman-
tics of environments based on their spatial location, geometry and appearance [75].
This activity is usually referred to as “semantic mapping”. Such a term, although
originally describing a difficult process that deals with heterogeneous information (i.e.,
not limited to spatial knowledge), has strong implications. Semantic maps should,
in fact, not only assign a certain number of labels or properties to relevant features
of the environment, but also provide a representation of this knowledge in a form
usable by a robotic system. Indeed, semantic mapping is the incremental process of
mapping relevant information of the world (i.e., spatial information, temporal events,
agents and actions) to a formal description supported by a reasoning engine [21, 102],
with the aim of learning to understand, collaborate and communicate.

Ongoing research on semantic mapping typically considers autonomous agents
endowed with navigation and manipulation skills, without specific assumptions on
communicative or collaborative behaviors. Based on this, several approaches have
been proposed, that can be grouped in two main categories:

• fully automated methods for the classification of locations and objects [41, 16,
39, 47, 148, 12, 92, 51];

• techniques that exploit the support of the user in the knowledge acquisition
and learning process [76, 149, 108, 99, 54, 109, 113, 145].

Automated methods can be further specialized into two smaller groups. A
first group of methods relies upon laser-based metric maps, that are automatically
segmented and labeled through classification and clustering [41]. Very often, in
these approaches, topological maps are extracted for robot navigation [16, 39, 47].
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Figure 3.2. Multi-layered semantic map representation, from Zender et al. [149].

The second set of techniques, instead, uses visual features for object recognition
and place categorization [148], or a combination of visual and range information
provided by RGB-D cameras [92]. Significant progress has been made in this kind
of automated semantic mapping [51], although robustness and generalization still
represent the main difficulties of these approaches.

In human augmented mapping, users play a central role in facilitating symbol
grounding, while objects and spaces are still autonomously recognized by the robot.
The interaction between humans and robots is generally uni-modal, and it is achieved
through spoken language. For example, Zender et al. [149] generate conceptual
representations of indoor environments by merging a priori knowledge and sensor
information, while the user supports the acquisition process through place labeling.
On the one hand, this method has been followed by multiple authors, by adopting
mixed initiative strategies [108] or probabilistic knowledge representations [99]; on
the other hand, the degree of commitment required from the user varies greatly
among different approaches. Pronobis and Jensfelt [109], for example, use a multi-
layered mapping approach that collects semantic information and integrates the
user input, whenever provided, only as additional properties about existing objects.
Conversely, Walter et al. [145] fully rely on natural language descriptions to generate
human-centric models of their environments. Few alternative approaches adopt
more complex models of collaboration, based on clarification dialogues [76], narrated
guided tours [54] or rich multi-modal interactions, including speech, vision, and
pointing devices [113].

Importantly, current research on semantic mapping presents an extreme hetero-
geneity of methodologies for representing learned maps – that prevents comparative
evaluations, standard validation and evaluation procedures, and benchmarking
strategies. For example Galindo et al. [41] represent environmental knowledge by
anchoring sensor data to symbols of a conceptual hierarchy, based on description
logic. The authors validate their approach by building their own domestic-like
environment and testing the learned model through the execution of navigation
commands. Zender et al. [149] generate a multi-layered representation (Figure 3.2),
ranging from sensor-based maps to a conceptual abstraction (an OWL-DL ontology).
Except for individual modules, their experimental evaluation is mainly qualitative.
Pronobis and Jensfelt [109], instead, represent a conceptual map as a probabilistic
chain graph model and evaluate their method by comparing the belief of the robot
of being in a certain location against the ground truth. Pangercic et al. [105] in-
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Figure 3.3. Conceptual map from Pronobis and Jensfelt [109].

vestigate the representation of “semantic object maps” (Figure 3.4) by means of
a symbolic knowledge base (in description logic) associated to Prolog predicates
(for inference). The authors demonstrate their approach on a PR2 robot which has
to open a cabinet and to detect handles based on an a priori given semantic map.
Finally, Bastianelli et al. [9] use a Prolog knowledge base containing both specific
environmental knowledge and the general domain information. The knowledge base
is linked to the physical environment by means of a matrix-like data structure
generated on top of a metric map. Once again, the experimental validation is based
on qualitative evaluations of the robot behavior, given a certain command and the
learned semantic map.

In practice, none of the cited works can compare the performance of their
semantic mapping method against each other. In this sense, it is important to
remark that even the simplest semantic map goes far beyond “simple” labeling of
spatial features. Although they are built on top of sophisticated SLAM procedures,
computer vision and machine learning algorithms, semantic maps must support
reasoning over the acquired knowledge. Hence, on the one hand, semantic mapping
methods cannot be directly evaluated on metrics and datasets available for other
algorithms, since they do not take into account any kind of reasoning capability. On
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Figure 3.4. Semantic object maps, from Pangercic et al. [105].

the other hand, approaches proposed in literature lack any kind of standardization
and typically underestimate these questions. In particular, two main issues emerge
from the analysis of the state-of-the-art: 1) the absence of a common formalism for
representing semantic maps and, consequently, 2) the lack of suitable validation and
evaluation techniques.

3.1.2. Understanding Space

Spatial ability is the capacity to understand and reason about spatial relations, and
it is repeated within basic activities such as navigation, horizontality perception
and mental object rotations. In artificial intelligence, multiple attempts have been
made to emulate human reasoning in spatial related tasks. Frank [37], for example,
discusses a formal method for qualitative reasoning about distances and directions
in a geographic space. While directions are expressed both through a cone and
a projection based representation, his approach only yields approximate results.
Zimmermann and Freksa [153], instead, use the “double cross” calculus and compare
relative point positions against vectors, rather than single points. Finally, Balbiani
et al. [8] adopt geometric primitives in the rectangle algebra to approximate spatial
regions, at different granularities. The reasoner evaluates spatial relations considering
the rectangle distribution within the environment.
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Similar principles have been applied in robotics for critical tasks such as perception-
based target search and self-localization. Busquets et al. [17], for example, enable
multiple robots to navigate in unstructured environments through qualitative com-
putation of landmark locations, that are categorized according to fuzzy sets of
distances and angles. Klenk et al. [68] use data from a mobile robot to generate a
relational representation of semantically labeled objects, showing how the boundary
of a context-dependent spatial region can be defined using anchor points. Sjöö et
al. [134], instead, use perceptual measures of two spatial relations, in and on, to
guide a robot in a landmark-based object search. Kunze et al. [78] investigate how
probabilistic models of qualitative spatial relations can improve the performance
in object search tasks. Finally, Santos et al. [126] present a probabilistic algorithm
for robot self-localization that is based on a topological map constructed from the
observation of spatial occlusions.

While most of these works assume a complete or static knowledge about the
environment, such a hypothesis typically leads to inappropriate robot behaviors in
practice. Back to the example in the introduction of this thesis, in the initial world
model provided to Sandy, the slotted screwdriver is located on platform A. However,
due to the non-static nature of the environment this information gets invalidated by
incoming sensor data. At that point, in order to complete its assigned pick-up task,
the robot needs to update its model, infer new information and explore a different
platform. In subsequent sections of this thesis, we contribute in enhancing robot
knowledge through an incremental and online process that can revise and update
information while exploiting spatial relations.

3.2. Affordance-Based Methods in Robotics

The concept of affordances was originally introduced by the American psychologist
J. J. Gibson [46], who described them as action opportunities that objects offer,
independently of agents’ perceptual abilities. Gibson’s ecological approach has
been embraced both in human-computer interaction [101] and in robotics, where
affordances have been mostly adopted for behavior-based control [125]. In this
context, in fact, they have been used to represent [104], learn [73] and exploit [67]
object related actions in dynamic scenarios. Recently, this concept has been extended
to describe environments as a combination of spatial affordances for generating and
supporting adaptive robot behaviors [83, 35, 117].

In this section we review the methods for representing, learning and using
affordances in robotics. In particular, we make a general distinction between
approaches based on object affordances and spatial affordances. This helps us to
highlight the main similarities and differences of our work with previous literature.

3.2.1. Object Affordances

Affordance theory has been introduced in robotics for representing action possibilities
over objects that are perceived by a robot within the environment. In particular,
multiple studies focused on learning consequences of specific actions in a given
situation, as well as learning object properties that afford a certain behavior.
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Figure 3.5. Robot control system exploiting affordances, from Ugur et al. [142].

In the case of prescriptive behaviors, consequence prediction is generally use-
ful [147] and can be easily applied in the context of decision making and action
planning. Metta [87] and Fitzpatrick [86, 36], for example, enable a robot to fa-
miliarize itself with objects through actions and to recognize other actors (such as
humans) – based on their effects on learned objects. Similarly, Stoytchev [136] adopts
a behavior-based approach to ground tool affordances in robot behavioral repertoires.
By choosing random actions, the robot observes effects on environmental objects
and exploits their expectation to solve tool-using tasks. Montesano et al. [90, 91]
learn statistical relations between actions, object properties and action effects as
object affordances. Based on them, they run simple imitation games that exploit
both task interpretation and planning capabilities. Also, Ridge et al. [118] describe
a vision platform that uses a robotic arm to interact with objects and attempts to
learn affordance properties as action effects. Finally, Koppula et al. [73] extract a
descriptive labeling of both sequences of human activities and associated affordances,
corresponding to interactions with objects.

On a slightly different perspective, multiple studies focus on affordance discovery
as a tool for improving specific robot behaviors. For instance, Murphy [94] uses
three mobile robots to evaluate a methodology that isolates reliable affordances.
Eventually, such affordances are exploited for executing specific robot behaviors.
Cos-Aguilera et al. [28] propose a model that integrates behavior selection and
affordance learning through the monitoring of internal motivations. They apply
this model to an autonomous robot that interacts with objects in its environment
while attempting to survive. Ugur et al. [142] analyze how affordances can affect
autonomous robot control and, more specifically, how a mobile robot equipped with
a 3D laser scanner can learn to perceive the traversability affordance and use it
for navigation, as illustrated in Figure 3.5. On a related note, Şahin et al. [125]
propose a new formalism for affordances and discuss its implications for autonomous
robot control on three different tasks. Finally, Kim and Sukhatme [67] describe a
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Figure 3.6. Heatmap representing the affordability of the “push” action during a sequence
of robot manipulation steps in a grid world, from Kim and Sukhatme [67].

method to interactively build an affordance map for robotic tasks that is based on
2D occupancy grids and is used for interactive manipulations (see Figure 3.6).

Further work focuses on alternative applications of affordance theory. Kammer
et al. [63] introduce “situated affordances” – to consider the environmental context
in which an object is embedded. Pandey and Alami [104], instead, enrich the notion
of affordance by incorporating agent-agent action opportunities. They consider
agent affordances as an important aspect for day-to-day interaction and decision
making in effort based and shared cooperative planning. Unfortunately, despite
the interconnection between space and affordances in some of the previously cited
work [142, 67], none of them explicitly differentiate action opportunities based on
both spatial locations and current state of the world.

3.2.2. Spatial Affordances

Recently, the idea of action opportunities has been extended to describe environments
as a combination of spatial affordances, that are used for generating and supporting
adaptive agent behaviors. For instance, Kapadia et al. [64] use affordances to select
the best action for collision avoidance and to guide an agent’s steering decision
in a virtual scenario. Luber et al. [83] use affordances to improve tracking and
prediction of people destinations. They adopt a place-dependent motion model
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that is learned by a spatial Poisson process and whose predictions follow people’s
space-usage patterns. Similarly, but in a robotic domain, Tipaldi and Arras [140]
also use the idea of spatial affordance maps to encode human activities. This model
is then exploited to support robot movements, with the goal of covering inhabited
environments in a socially acceptable way. In particular, the affordance map is used
to represent the presence of people and to avoid crowded areas. Finally, Epstein
et al. [35] describe a cognitive architecture that builds a spatial model as a collage of
spatial affordances. Such model, combined with simple heuristics, supports effective
navigation without a map in near-optimal travel times.

Unfortunately, it must be mentioned that there is not a vast literature regarding
the notion of affordances to represent spatial knowledge. No prior work adopts
a general framework to model spatial affordances, and typical solutions are task
specialized and cannot be generalized to represent the semantics of different activities.

3.3. Approaches to Policy Learning
Machine learning methods have been increasingly used in robotics to deal with
uncertain and unstructured environments. In such scenarios, directly learning from
data a (sub-)optimal set of parameters to generate robot behaviors is often more
robust than hard coding them from prior knowledge. Consequently, due to its
practical relevance, policy learning has become a very active area of research. In
particular, approaches based on reinforcement learning [89, 143] and Monte Carlo
tree search [133], as well as imitation learning [123, 120] have been successfully
applied in several contexts and domains.

In this section we review policy learning methods and describe their applications in
robotic scenarios. In particular, while analyzing general differences and interrelations
between approaches, to correctly collocate our work we focus on their applicability
in robotics domains.

3.3.1. Imitation and Reinforcement Learning
Learning based methods for controlling robotic systems [71], or more generally
autonomous agents, have become increasingly popular in the recent years [139, 85,
7, 31, 72, 55]. In particular, many approaches have been proposed in the context
of learning by imitation – for easily and intuitively instructing robots to execute
complex tasks. Asfour et al. [4], for example, instruct a humanoid robot by using
continuous Hidden Markov Models (HMMs) that are trained with a set of key points.
Chernova and Veloso [24] use a probabilistic policy representation based on Gaussian
Mixture Models. In particular, they propose an approach which enables the agent
to request demonstrations for specific parts of the state space, achieving increasing
autonomy in the execution. Calinon et al. [18], instead, use HMMs for learning a
joint distribution of demonstrated positions and velocities, and reproduce the motion
through the use of Gaussian Mixture Regression.

In several research projects, traditional imitation learning has been associated
with methods for refining the learned policies, as in the case of Nicolescu and Mataric
[98]. In particular, additional work has been done to improve learned policies
by means of reinforcement learning. Guenter and Billard [50], for example, use
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reinforcement learning to relearn goal-oriented tasks with unexpected perturbations.
Kormushev et al. [74] encode movements with and extension of Dynamic Movement
Primitives [59] initialized from imitation. Kober and Peters [70], instead, use episodic
reinforcement learning in order to improve motor primitives learned by imitation for
a Ball-in-a-Cup task.

A major effort has been made for incrementally learning behaviors, based on
already acquired skills, both through symbolic and numerical [119] approaches.
Pardowitz et al. [107, 106], for example, use a hierarchical representation of complex
tasks, generated as a sequence of elementary operators (i.e., basic actions, primitives).
The method is applied on a robot servant, which has to learn an everyday household
task by combining reasoning and learning. A similar approach is used by Ekvall and
Kragic [34], who decompose tasks in sub-tasks, which are then used for generalization.
Friesen and Rao [40], instead, propose a solution for achieving hierarchical task
control by means of an extended Bellman equation. In particular, the authors
consider both temporally extended actions (called options) and primitives. Finally,
Neumann et al. [97] describe a method for generalizing and learning motor primitive,
as well as their selection and sequencing for the execution of complex tasks.

Recently, policy learning methods have been also used in games and video-games
to obtain human-level performances. Mnih et al. [89], for example, present a deep
agent (deep Q-network), that can use reinforcement learning to generate policies
directly from high-dimensional sensory inputs. The authors test their algorithm on
classic Atari 2600 games, achieving a level comparable to that of a professional human
player across a set of 49 games. Similarly, Silver et al. [133] use deep “value networks”
and “policy networks” to respectively evaluate board positions and select moves for
the challenging game of Go. These neural networks are trained by a combination of
supervised learning from human expert games, reinforcement learning and Monte
Carlo tree search. The resulting program showed to be able to beat human Go
champions and to achieve a performance beyond any previous expectation.

Dataset Aggregation Differently from previous work, Ross et al. [123, 120]
propose a meta-algorithm for imitation learning (DAgger), which learns a stationary
deterministic policy that is guaranteed to perform well under its induced distribution
of states. Their method is based on data aggregation and strictly relates to no-regret
online learning. Similarly, Ross and Bagnell [122] introduce AggreVate and NRPI.
The former leverages cost-to-go information – in addition to correct demonstrations –
and data aggregation; the latter extends the idea of no-regret learners to approximate
policy iteration for reinforcement learning. Based on their work, Chang et al. [22]
describe a new learning to search algorithm and provide a local-optimality guarantee.

3.4. Discussion

In this section, we analyze the relations between ideas and approaches previously
introduced. In addition, we indicate their connection with respect to the contributions
of this thesis.
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3.4.1. Relation Between Approaches
Despite adopting different perspectives and alternative goals, few similarities exist
between the approaches described in this chapter. For example, both semantic maps
and affordance models attempt to represent world semantics for influencing robot
behaviors. However, while semantic maps explicitly model information through
symbols and labels, affordances implicitly capture under which environmental cir-
cumstances an agent can execute an action. Information learned through these
representations is hence used for different purposes.

Noticeable, instead, is the relation between affordances and policy learning. In
fact, affordance models have been adopted in literature for learning policies [82, 65]
and, conversely, object affordances have been retrieved, given an initial policy [146].
For example, in Wang et al. [146] the authors use a simple policy to learn the
affordance of an object to be pushed. In Lopes et al. [82] and Katz et al. [65],
instead, affordances are exploited to respectively learn action primitives for human’s
imitation and for autonomous pile manipulation.

We leverage these conceptual and methodological relations between approaches,
and we further explore them by (1) interconnecting semantic maps and affordance
models, and (2) by further investigating how affordances can be learned and used
while generating robot behaviors.

3.4.2. Relation to Thesis Contributions
Semantic Mapping One of the main contributions of this thesis is a principled
approach for modeling and representing semantic maps. In fact, as we described
in Section 3.1, multiple representations have been proposed in the literature, with
alternative structures and few similarities. However, the lack of common formalisms,
and consequently the absence of standard evaluation metrics, impede comparative
studies and strongly affect the advancements in the field. For this reason, in
Chapter 4 we propose a novel basic model to represent semantic maps. By using
this model, evaluation metrics can be defined and incremental algorithms can be
defined (Chapter 6) to learn semantic knowledge and affect robot behaviors. Further
benchmarking solutions are explored, in this field, by describing a procedure for the
generation – for the first time – of a semantic mapping dataset (Chapter 4).

A further contribution of this work is represented by the connection that we
establish between semantic maps and affordance models. While the former are used
to support high-level behaviors, the latter are accessed through semantic maps and
implement situated action as structural element of complex plans.

Affordances and Policy Learning An important contribution of this thesis
consists in the development of a novel spatio-temporal affordance model. Differently
from prior work (Section 3.2), this model leverages spatial semantics (Chapter 5)
and accounts for the dynamics of the world. We use spatio-temporal affordances
in the context of a representation named “Spatio-Temporal Affordance Map”, that
explicitly allows the environment to be modeled by means of a semantic map.

Our contribution on affordance models further extends prior work on policy
learning (Section 3.3). In fact, by leveraging the literature on data aggregation, in
Chapter 7 we investigate how affordances can be used together with Monte Carlo
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tree search to generate effective behaviors in the context of situated action. To this
end, we extensively make use of simulations. For this reason, in Chapter 8 we also
study how learned dynamics models (i.e., transition functions) of the environment
can be effectively used for simulation in the context of robot control.
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Chapter 4

A Formalization of Semantic
Mapping

Or perhaps no one can understand anyone:
each blackbird believes that he has put into his
whistle a meaning fundamental for him, but
only he understands it; the other gives him a
reply that has no connection with what he
said; it is a dialogue between the deaf, a
conversation without head or tail.

— Italo Calvino

In this chapter, we motivate and present a formal model for semantic mapping [21].
This model builds upon previous definitions [102] and extends existing literature [149,
109, 51, 9, 52, 115] by introducing a structured approach to semantic mapping. Our
formal model includes a general but flexible framework for map representation, as
well as a precise description of the mapping process. Importantly, the absence of a
common formalism and, consequently, the lack of proper validation and evaluation
methods impose significant limits on the research field. Instead, our formalism
prescribes a methodology for obtaining standardized semantic maps, with basic
structure constraints and unambiguous error metrics. Of significance for the focus of
this thesis, such model provides a principled approach for representing and acquiring
semantic knowledge – that can define and influence robot behaviors.

This chapter is organized as follows. First, we introduce our formal model
(Section 4.1 and 4.2) of semantic mapping. Then, we discuss its main properties,
as well as its advantages for the definition of potential evaluation metrics. Finally,
we show an example of use of the proposed model for the generation of a semantic
mapping dataset (Section 4.4).

4.1. Knowledge Representation
As introduced in Section 2.1, a semantic map is a representation that enables
additional information to be inferred, whenever it is associated with an engine that
supports reasoning and behavior generation for an autonomous agent. Multiple
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Figure 4.1. Basic concept hierarchy for a semantic map, represented on the Protégé
software [95].

approaches have been proposed in the literature (Section 3.1), that cannot be
comparatively evaluated as they lack homogeneity and proper evaluation metrics.
For this reason, in this section we propose a formalization of a basic general structure
for the representation of a semantic map. This representation is proposed to play the
role of a common interface among all the semantic maps, and can be easily extended
or specialized as needed. More specifically, we adopt the word basic to emphasize
the relation between our formalization and prior work, as our model results from a
generalization and intersection effort with respect to the representations adopted in
the literature.

The remainder of this section is structured as follows. First we formalize the
basic structure of a semantic map (Section 4.1.1). Then, we analyze some of its
properties (Section 4.1.2) and we discuss the notion of structural bias (Section 4.1.3).

4.1.1. Formalization: Structure and Specifications
In our general formalization, a semantic map is a representation that is compliant
with the basic semantic map model. In order to define this model, however, we first
need to introduce the notion of basic concept hierarchies.

Definition 4.1. A basic concept hierarchy is a set of predicates P, included in
a knowledge base, that is consistent with the structure proposed in Figure 4.1. These
predicates are expressed in a certain representation language, specified by its designer.

In the concept hierarchy expressed in Figure 4.1, the predicate is-a represents the
subclass relation, meaning that if is-a(B, A) holds, the class B is a subclass of the class
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Figure 4.2. Graph of the basic concept hierarchy.

A and every instance of B is also an instance of A. The predicate instance-of, instead,
represents the membership relation, meaning that if instance-of (a, A) holds, the
individual a belongs to the class A. Additionally, some predicates have a function-like
behavior, meaning that they can occur only once for each individual. For example,
if dealing with the classes Person and IDNumber, the predicate hasId(X, Y) occurs
only once for each instance of Person and IDNumber.

Importantly for the purposes of this thesis, the concept hierarchy also presents
a predicate hasAffordance, that (as illustrated in Figure 4.2) relates the class
Physical_Thing with the class Affordance. This relation will be further detailed
in Chapter 5.

Given this definition, first we express a model of basic semantic maps by means
of basic concept hierarchies, and then we extend it to the general notion of semantic
maps.

Definition 4.2. A basic semantic map is a triple

SM = (R,M,P),

where:

• R is the global reference system, in which all the elements of the map are
expressed;

• M is a set of geometrical elements, obtained as raw sensor data. These elements
are expressed in the reference frame R and describe spatial information in a
mathematical form. Ms ⊆M is the subset of semantically relevant elements
available inM;

• P is a basic concept hierarchy. Ps ⊆ P, with |Ps| > 0, is the set of predicates
that provide an abstraction of the elements inMs.
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Definition 4.3. A semantic map is a representation that adheres to, and eventually
extends, the basic semantic map model.

In this representation, P models semantic information that is used to generate
robot behaviors. A portion of this knowledge is independent from the domain
(i.e., it is general and describes taxonomies useful for inference), while a subset
Ps specifically refers to elements of the environment. The world is geometrically
represented through raw sensor data, thus enabling the robot to (1) virtually navigate
the environment (through R andM), (2) refine its knowledge by re-evaluating sensor
information, and (3) observe relevant features of the world.

To better understand how to apply the proposed model to a general semantic
map, let us consider a robot that acts in a mall and interacts with people. In this
settings, we can build the desired representation by starting from a basic semantic
map and by choosingM to be a set of 3D points, as acquired from an RGB-D sensor.
Equivalently, we can adopt a more complex point cloud that models the map of the
mall, but is still composed of 3D points as provided from the sensors. Under these
circumstances,Ms is a subset ofM containing 3D points that represent features
of interest, such as shops or objects in the shop. These features can be identified
in multiple ways, such as manual labeling or automatic recognition. Then, we can
extend the basic concept hierarchy of Definition 4.1 by enriching the set P according
to the following instructions:

• define a class Person and add the predicate is-a(Person, Physical_Thing),
since a person is an element of interest of the environment;

• specialize the class Location for shops and corridors, by defining the classes
Shop, Corridor and adding the predicates is-a(Shop, Location), is-a(Corridor,
Location);

• specialize a Connecting_Architecture to always use the predicate connects
for an element of the class Shop and one of the class Corridor;

• define a class Advertisement, add the predicate is-a(Advertisement, Abstract
_Thing) and define a new predicate hasAdvertisement(X, Y), where X could be
an instance of Shop and Y an instance of Advertisement.

Finally, we can add to Ps a set of predicates that abstract elements in Ms (e.g.,
size and position of objects expressed in the knowledge base) and select a reference
frame R that corresponds to the global frame of the 3D map used inM, or the one
according to which all the points are expressed.

4.1.2. Properties
In this section, we briefly discuss and remark upon some of the properties of the
proposed semantic map model.

Remark 4.1. Definition 4.3 relies on the notion of basic representation. Hence, a
general semantic map implements and eventually extends, as best required by the
designer, the basic semantic map.
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Figure 4.3. Example of structural bias of a semantic map with fixed and adaptive grids.

Remark 4.2. The use of a unique reference frame R in Definition 4.2 enables the
association of the elements ofMs with those of Ps.

Remark 4.3. The use of a setM, composed of geometrical elements obtained as
raw sensor data, enables the possibility of retrieving original sensor data, given a
pose specified in R.

Remark 4.4. Following Remark 4.2 and 4.3, given two semantic maps of the same
environment, expressed in the same reference frame R, it is at least possible to
compare both the predicates and the geometrical elements of the basic parts of the
two representations.

Remark 4.5. A semantic map stores some parameters that, as described in Chap-
ter 5, describe affordances.

4.1.3. Representation and Structural Bias
Despite the availability of raw sensor data, the model introduced in Section 4.1.1 is
not exempt from approximation errors. These, in fact, can arise from the predicates
in Ps – chosen to symbolically representMs – and, consequently, from the structural
bias induced by the abstraction of geometrical elements.
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Definition 4.4. In a semantic map, the structural bias is the approximation error
that is induced by the predicates Ps – i.e., the error that depends on the abstraction
chosen for symbolically representing spatial information.

The abstraction represented by Ps, in fact, may consist of (but is not limited
to) fixed-size grids, adaptive grids, bounding boxes, etc. Hence, as illustrated in
Figure 4.3, the use of different representations introduces different approximation
errors on the same spatial information. Intuitively, in a semantic map, the lower the
structural bias, the better the quality of the representation.

4.2. The Process of Semantic Mapping
In our model, semantic mapping is the process of gathering information about the
environment and generating a representation SM, similar to the one introduced in
the previous section. As outlined in Section 3.1, however, an autonomous agent can
perform this activity either autonomously, or in collaboration with an user. Still,
this process can be formally modeled and uniquely determined in terms of the chosen
representation and a sequence of events. We provide such formalization in this
section, we extend it to the notion of incremental semantic mapping (Section 4.2.1),
and we describe some of its properties.

Definition 4.5. The process of semantic mapping is the implementation of a
function

φSM :M×E → SM

where:

• M is a set of geometrical elements, obtained as raw sensor data;

• E is the set of events {ei} that occur in the environment, while the agent is
exploring it;

• SM is a semantic map generated according to Definition 4.3.

Under this perspective, automatic semantic mapping can be seen as a process
φSM whose events {ei} originate from an agent’s autonomous recognition of objects
and locations within the environment. Similarly, when the agent collaborates with
an user, events {ei} are generated from different interactions between the robot and
the user itself, independently of the interface.

4.2.1. Incremental Semantic Mapping
Independently from the chosen approach, systems proposed in literature are often
designed to learn every possible aspect of the environment, through a separate and
independent process carried out before task execution. Limits to this perspective,
however, immediately arise from the disconnection between robot capabilities and
knowledge acquisition. In fact, in this thesis we argue that, in order to be beneficial
to the robot, semantic information must be oriented towards autonomous behavior
generation. However, all the information in the environment does not necessarily
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Figure 4.4. Schema of the incremental semantic mapping process.

support robot behavior, and acquiring information before task execution might not
be informative for the agent itself. Hence, we consider a robot that does not collect
complete information about the world, but incrementally gathers new information,
that is integrated within the semantic map.

Definition 4.6. The process of incremental semantic mapping is the imple-
mentation of a function

φISM :Mt × Et × SMt−1 → SMt

where:

• Mt is a set of geometrical elements, obtained as raw sensor data observed at
time t;

• Et is the set of events {et,i} that occur at time t;

• SMt−1 is a semantic map that is generated at time t− 1 according to Defini-
tion 4.3.

• SMt is a semantic map that is generated at time t by means of φISM .

While this process is illustrated in Figure 4.4, under a slightly different perspective
the function φISM can be viewed as a simpler process. This process, at each time
t, generates a semantic map SMt by means of φSM and then aggregates it as
SM = SM∪ SMt. This aggregation process takes care of the consistency of the
semantic map – that is, it needs to make sure that no contradictory information is
present in the map, at any level.

Remark 4.6. A semantic map generated through φISM is a dynamic entity that
evolves over time, as a consequence of the actions of the agent. Hence, the agent
itself partially affects the events {et,i}.

Remark 4.7. Following Remark 4.6, a semantic map generated through φISM is
coherent with the paradigm of ecological robotics (see Section 2.2), in the sense that
it connects the dynamics of the environment to the collected information about it.
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4.3. Metrics and Benchmarks
Once we are given a basic common structure between two different semantic maps,
it is possible hypothesize and define evaluation metrics to be used for comparative
evaluations and benchmarking activities. In this section, we briefly investigate this
problem by relying on our formal model, and we discuss a solution that is based on
two assumptions. First, we assume that a ground truth, given a certain semantic
map representation, exists. This implies that one semantic map can be “better” than
another, and that the notion of “better” can be quantitatively evaluated. Second, we
assume the accessibility of an oracle, that is a perfect correspondence finder between
points, lines, and planes that belong to different metric representations of the world,
expressed in the same reference frame.

Let us assume to have access to two different semantic maps of the same en-
vironment, SM1 and SMGT , where GT stands for ground truth. Then, given
their representations SM1 = (RGT ,M1,P1) and SMGT = (RGT ,MGT ,PGT ), an
evaluation metric can be defined as

δ(SM1,SMGT ) = f(|M1 	MGT |, |P1 � PGT |). (4.1)

Importantly, in this definition, the reference frames RGT of SM1 and SMGT coincide.
This can be easily obtained by applying the transformation offset between the original
frame R1 of SM1 and RGT of SMGT .

The definition of the operators 	 and � determines the metric itself, that finally
results in a linear combination of the geometric and predicate errors. In particular,
the operator 	 can be implemented as a distance d between geometrical elements in
SM1 and SMGT (see Table 4.1). This, however, is realizable only by means of the
oracle. The operator �, instead, can be realized to return two sets of predicates, ∆
and Γ, such that:

{P1 \ Γ} ∪∆ |= PGT . (4.2)

Here, the lower the cardinality of ∆ and Γ, the better the semantic representation.
Still, a similar metric does not consider the subset Ps as containing references to
spatial information (which can be measured through metric criteria). A solution to
this problem can be found in the redefinition of the � operator to return two sets of
predicates, ∆ and Γ, as well as a distance d such that:

{(P1 \ P1s) \ Γ} ∪∆ |= {PGT \ PGTs}, d(P1s ,PGTs). (4.3)

Table 4.1. Example definition of the 	 operator for implementing an error metric for
semantic maps. The index i indicates the i-th corresponding geometric element inM1
andM2, while p, l and π represent respectively a point, a line and a plane.
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For example, let us consider a semantic map SMGT (that is a ground truth),
containing a table and a chair, that are correctly positioned in the representation
SMGT = (RGT ,MGT ,PGT ). Given a different semantic map SM1, and in the case
in which the table is missing in the set P1 of SM1, according to our metric in Eq. 4.2
we obtain |∆| = 1. Indeed, in this case, a robot endowed with the semantic map
SM1 cannot execute the command “go to the table”. Conversely, if the table-related
information belongs to Ps, then we have |∆| = 0 and the robot can use SM1 to
execute the requested task. Similarly, if the object is not well positioned in M1
any distance from Table 4.1 would be much bigger than zero, and the robot would
execute the command by reaching an incorrect location. Additional metrics could
be defined on different criteria like the processing time, the distance traveled by the
robot, the number of sensor readings processed, etc.

While the metrics (and the model) presented in this thesis do not explicitly
address the problem of synonyms in the set P , these should not be penalized as long
as each predicate is consistently modeled. Although considering different synonyms
among multiple semantic maps increases the complexity of the process, the resulting
evaluation is then unbiased on the chosen terminology. Alternatively, a vocabulary
should be agreed or generated before the evaluation process itself.

As for synonyms, the model does not explicitly account for uncertainty in the
representation. Still, uncertainty can be modeled as part of property predicates in
the knowledge base P, for each instantiated element. In this way, every evaluated
predicate can be weighted by the corresponding probability measure to contribute
in determining a final error metric.

4.4. Using the Model: Semantic Mapping Dataset
Once we are given a formal model for semantic mapping, and a principled approach
for knowledge acquisition (see also Chapter 6), our intent consists in (1) carrying
out this activity in an environment, and (2) comparing the obtained semantic map
against a ground truth, according to some metrics. Unfortunately, while some
Robotics Innovation Facilities exist1 for this purpose, it is still not easy to find
locations and environments to perform comparative evaluations. This is due to
logistic, physical and economic constraints. For these reasons, in this section we
present a first application of our model, and we discuss the development of a dataset
of semantic maps, that accounts for the schema introduced in this chapter.

This section is structured as follows. First, we describe the motivations for using
our model to generate a semantic mapping dataset (Section 4.4.1, and how this can
be accomplished (Section 4.4.2). Finally, we show an example of dataset acquired
through the process described in this section 4.4.3.

4.4.1. Model and Dataset

In this section we describe the motivations for the generation of a dataset for semantic
maps, given a representation SM, and how this activity can be carried out in a
methodological way.

1http://echord.eu/rif/

http://echord.eu/rif/
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Let us consider the three elements of the representation SM = (R,M,P).
From previous sections in this chapter, we already know thatM describes a set of
geometrical elements expressed in R, generated as a collection of raw sensor data.
This property of the representation is, in practice, a strong motivation for its use in
the construction of a dataset. In fact, since we need to account for the impossibility
of moving a robot to a certain location, we are interested in the opportunity of
simulating both its navigation and sensor acquisition directly through the dataset.
The availability of raw sensor data within the representation, then, makes this
activity simple to implement. This can be done by defining a projection function
that transforms the elements ofM into the associated sensor domain. For example,
in the case of a RGB-D camera the geometrical elements can be projected in a
depth and RGB image, while in the case of a laser they can projected into a vector
of range values. Nevertheless, from the definition of semantic map, we also know
that the predicates P of its representation implement, at least, a basic concept
hierarchy that is common to all semantic maps. Although this is not intended to
represent full information about the environment, a basic representation enables a
direct comparison among methods, that is one of the goals of having a ground truth.

Given these motivations, in the next section we proceed in describing how a
dataset can be constructed according to the structure of our representation.

4.4.2. Dataset Generation

In this section, we illustrate our2 method for the generation of a ground truth, in
which the set M consists of a 3D point cloud, P implements the basic concept
hierarchy and Ps contains abstractions of bounding boxes.

To collect geometric information, we consider a set of low-cost3 and common
sensors (i.e., RGB-D cameras). Then, to generate the point cloud through our
software45, we leverage a semi-automated process that, on some occasions, requires
the intervention of a human expert.

As shown in Figure 4.5, this process is composed of several steps, which can be
articulated in terms of metric and semantic phases. First, we acquire data in order to
generate a 3D map and we perform a preliminary manual annotation of the objects
inside the environment. Then, by associating semantic information and volumes in
the 3D map, in the form of bounding boxes, we obtain the desired semantic map.
These steps are detailed in the remainder of this section.

Data Acquisition As previously introduced, the activity of acquiring data can
be separated in two different phases, one related to the 3D map, the other to the
semantic annotations of the elements of interest. While manually collecting semantic
annotations is relatively easy, although tedious, 3D data acquisition results more
challenging due to the limitations of low-cost sensors.

2Although we are proposing a practical methodology (and an example) for the construction of a
dataset, alternative approaches may be used if compliant with the model of semantic map.

3Note that building a 3D map with this kind of sensors, leads to multiple open issues.
4http://www.dis.uniroma1.it/~labrococo/nicp
5http://www.dis.uniroma1.it/~labrococo/sem_map_dataset

http://www.dis.uniroma1.it/~labrococo/nicp
http://www.dis.uniroma1.it/~labrococo/sem_map_dataset
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Figure 4.5. Steps for the construction of a semantic mapping dataset.

The generation of a 3D map, in fact, requires the acquisition of a log containing
data from the sensors of a robot, while moving around the environment. In particular,
the log should contain the robot odometry (or laser data) and the camera stream
(both for depth and RGB information). Additionally, if using our software for
mapping the environment, while taking the log one should pay attention to steer
the robot in such a way that at least one camera does not see only a flat surface.
Indeed, structures like a floor, a wall or two parallel planes do not help the mapping
system, due to their poor geometrical information.

Sensor Calibration The calibration of a sensor consists in correctly computing
its internal parameters, as well as its pose with respect to the robot reference frame.
Extracting the right internal parameters improves the data generated by the sensor
and reduces its intrinsic error. For example, in the case of a depth camera, this
corresponds to determining its camera matrix and distortion parameters. Computing
the correct pose of a sensor allows to accurately express data measurements with
respect to a different reference frame.

In order to perform sensor calibration, and supposing n RGB-D cameras on the
robot, n + 2 logs6 are required. In particular, choosing one of the cameras as a
reference, we have:

6A log is obtained by acquiring and recording the required sensor data.
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1. n intrinsic calibration logs, containing the stream of the i-th RGB-D sensor, for
the calibration of the internal parameters of its depth camera (refer to Cicco
et al. [25] for more details on how to acquire data);

2. 1 sensor-base calibration log, containing the robot odometry (or laser data) and
the camera stream, for calculating the pose between the robot and reference
RGB-D sensor (the robot should slowly translate and rotate while the reference
sensor sees at least 3 planes, each of them being non parallel with all the
others);

3. 1 sensor-sensor calibration log (at least), containing the stream of the n
cameras, for computing the pose of n− 1 RGB-D sensors with respect to the
reference one (all the cameras should see, at least once, the same part of the
environment while always respecting the condition described in point 2).

Common RGB-D cameras are affected by a substantial distortion in the depth
channel. Not considering this distortion leads to systematic drifts in the estimate
of the robot pose while mapping. This calibration is performed by following the
procedure explained by Di Cicco et al. [25] on the intrinsic calibration logs. At the
end of this procedure, it is possible to reduce the intrinsic error which normally
affects the sensors data (i.e., walls that should be flat, look curved on the edges).

Another goal of the calibration procedure is to find (1) the pose of one of the
cameras (reference) with respect to the robot frame, and (2) the relative offsets
(translation and rotation) between all the other cameras and the reference. The
software we developed provides two different tools to compute these offsets. The
first one computes the transform T∗ between the robot frame and the reference
depth camera. By using the sensor-base calibration log we estimate the motion of
the camera in a small region. Taking as reference the odometry of the robot, this
tool casts a least square problem that minimizes a cost function which depends
on the sensor transform T and returns T∗. The second tool, instead, allows the
computation of the offset between pairs of depth cameras. The main idea is to use
the sensor-sensor calibration log to generate, for each camera, an independent point
cloud. In this way, each sensor produces a cloud starting from its own reference
frame. Once this is done, our registration algorithm can be run between pairs of
point clouds. The output of the alignment determines the relative translation and
rotation between the origins of the point clouds and thus between the sensors. At the
end of the calibration we are able to construct a tree of sensor pose transformations
(Figure 4.6). From this tree, it is possible to compute the transformation between
any two nodes, by a simple offset concatenation.

Mapping and Data Processing Once all the data is acquired, the 3D map can
be built. To this end, the point clouds recorded in the log are aligned generating a set
of local maps. A local map (Figure 4.7) is a point cloud constructed by aligning and
integrating, in the same reference frame R, a sequence of sensor data acquired while
the robot moves in the environment. This is obtained through the use of a point
cloud registration algorithm based on the work by Serafin and Grisetti [130, 131]. A
new local map is started whenever one of the two following statements holds:
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Figure 4.6. Sensor transformation tree generated at the end of the calibration procedure
for a robot equipped with 3 depth cameras.

• the estimate of the robot (or equivalently the camera) movement is greater
than a certain amount. This allows to limit the growth of the local map in
terms of dimension;

• the point cloud registration algorithm detects that the last alignment is not
good (with possibility of inconsistency). This is necessary in order to avoid to
introduce errors inside the local map.

The local map generator uses the robot odometry as an initial guess for the point
cloud alignment. However, a good odometry estimation is not always available. In
this case (but this is useful in general), if the robot comes with a 2D laser, it is
possible to “correct” the odometry, and use as an initial guess the transformation
provided by the scan matcher7 developed as part of our software.

The 3D map is represented as a pose graph [49], where each local map is connected
to the previous and following one by means of a transformation. In more detail,
nodes of the pose graph represent local maps, with their position and orientation in
a global frame R. Edges are relative transforms between local maps. The benefits of
this metric representation are that it allows to add/remove anytime information and
update an existing map. In this way, inconsistencies in the map can be manually
fixed.

Combining Geometric and Semantic Data Once both the 3D map and the
semantic annotations are available, it is possible to combine them by means of a
geometric abstraction like a volume in the map. For our dataset, we define such a
volume to be a bounding box containing all the geometric elements to which we want
to attach the same semantic information. After all the bounding boxes are assigned,
we formalize the predicates P (compliant with the basic conceptual hierarchy) in
OWL-DL, using Protégé8 [95]. Bounding boxes, in particular, belong to the subset
Ps and are formalized by means of classes like Size, Position and Shape.

7https://github.com/webrot9/thin_scan_matcher
8http://protege.stanford.edu/

https://github.com/webrot9/thin_scan_matcher
http://protege.stanford.edu/
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Figure 4.7. Example of a local map and its internal trajectory.

4.4.3. Semantic Mapping Dataset and Scenarios
In this section, we briefly discuss the contexts in which these tools and ideas have
been developed, and we additionally showcase some portions of the dataset that we
collected.

ECHORD++ Robot Innovation Facility of Peccioli We performed the pro-
cedure described so far on a set of data specifically acquired during the RoCKIn
Camp9 held in the ECHORD++ Robotic Innovation Facility of Peccioli10, in Italy.
This is a domestic environment with several rooms and everyday objects built to
foster benchmarking of robotic applications, test their robustness, and support
standardization efforts. While Figure 4.8 and 4.9 illustrate details of the labeled
3D map of the environment, the whole dataset is hosted online (http://www.dis.
uniroma1.it/~labrococo/sem_map_dataset) and contains ground truth data that
is compliant with the structure of our model of semantic map. Namely, a 3D point
cloud with an associated reference frame and the corresponding OWL-DL ontology
compose the first example of a dataset for semantic maps. The ontology contains
multiple labeled objects (among which fixtures, devices and furniture), 30 classes
(Figure 4.10), 16 object properties and, all in all, ∼ 200 instances.

Benchmarking competitions The idea of developing a dataset for evaluating
semantic maps was generated from the participation to the RoCKIn robot challenge,
in the context of the FP7-ICT-601012 EU project. In this scenario, multiple teams
were required to develop a semantic mapping algorithm for the participation to the
challenges of the competition. While the evaluation of teams’ scores depended on

9http://rockinrobotchallenge.eu/
10http://echord.eu/the-peccioli-rif

http://www.dis.uniroma1.it/~labrococo/sem_map_dataset
http://www.dis.uniroma1.it/~labrococo/sem_map_dataset
http://rockinrobotchallenge.eu/
http://echord.eu/the-peccioli-rif
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Figure 4.8. Double view of the example dataset acquired in the Robot Innovation Facility
of Peccioli, in Italy. Part of the sitting room and the kitchen are shown, together with
some bounding boxes identifying a chair, a deckchair and two robots.

the robot capabilities in task execution, the observation of this activity led to the
formalization of the semantic mapping model.

4.5. Contributions
In this chapter, we motivated and presented a formal model for semantic mapping,
that we also leverage in Chapter 6. In particular, we designed a formalization for
representing semantic maps (Definition 4.3 and 4.2), which includes both spatial and
semantic knowledge (Definition 4.1), and we analyzed some of its properties together
with the issue of the structural bias (Definition 4.4). Additionally, we presented
a formal description of the semantic mapping process, and made it incremental
(Definition 4.6) for the purposes of robot’s behavior generation. On top of this, we
discussed some hypotheses for metrics and evaluation criteria, based on the idea that
a ground truth for semantic maps exists or can be modeled. Finally, we adopted
our model for semantic mapping to build a dataset from real sensor data. This
dataset allows to simulate robot navigation inside the environment, thus breaking
down logistic, physical, and economic barriers for a fair comparison between different
semantic mapping methods.

Our main contributions, in this chapter, are represented by (1) a novel formal
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Figure 4.9. Detail of the example dataset acquired in the RIF of Peccioli. The image
shows a table and chairs with their associated bounding boxes. RGB information is
intentionally omitted and resolution is reduced for a better visualization of the bounding
boxes.

Figure 4.10. Graph representing the classes implemented in the dataset acquired in the
RIF of Peccioli. The graph is visualized from Protégé.
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representation that explicitly models the environment through the notion of semantic
maps; (2) the formalization of a process that adopts this representation and allows
its update; (3) the first (to the best of our knowledge) description of procedures and
tools for evaluating and benchmarking semantic maps. The work in this chapter
further extends our previous publication [21] by discussing in detail properties and
characteristics of the model, and by connecting it to the notion of affordances.
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Chapter 5

A Model for Spatio-Temporal
Affordance Maps

It’s the action, not the fruit of the action,
that’s important. You have to do the right
thing. It may not be in your power, may not
be in your time, that there’ll be any fruit. But
that doesn’t mean you stop doing the right
thing. You may never know what results come
from your action. But if you do nothing, there
will be no result.

— Mahatma Gandhi

In this chapter, we formalize a model of Spatio-Temporal Affordance Maps
(STAM). This model builds on ecological theories [46], as well as on the multiple
application of affordances in robotics [94, 28, 142, 91, 67, 35]. In particular, we
propose an extension of previous approaches that directly establishes a connection
between the environment, its spatial semantics, and their evolution. Differently from
previous work, our model can combine multiple affordances to supports manifold
tasks. Importantly for the focus of this thesis, Spatio-Temporal Affordance Maps
encode the semantics of each action and can be directly used to affect the decision
making process of an autonomous agent.

This chapter is organized as follows. First, we introduce the notion of Spatio-
Temporal Affordances (Section 5.1.1), and we discuss their modeling, main properties
and relation to other approaches. Then, we use this definition to characterize
Spatio-Temporal Affordance Maps (Section 5.2) and to provide the reader with an
explanatory example (Section 5.3).

5.1. Spatio-Temporal Affordances

As detailed in Section 2.2, affordances have been originally introduced by Gibson [46]
as action opportunities that objects offer, and further explored by Chemero [23] in a
more recent work. This notion has been accordingly adopted in robotics (Section 3.2)
to represent objects and their related actions. Here, we extend the spatial affordance
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theory, where the considered “object” is the environment itself, by using the idea
of spatial semantics as directly connected to the environment, its dynamics and
its operational functionalities. Let us consider, for example, a museum endowed
with multiple rotating cameras and a surveillance task. At every moment, areas of
the museum that are not entirely covered by the sensors present a different “risk
semantics”. Since the cameras rotate, and they belong to the environment, our
risk changes over time as a function of the environment itself. In addition, there
might areas of the museum that are hidden and present a (high) static risk. To
model this type of spatial semantics, in this section we introduce the concept of
Spatio-Temporal Affordances.

As further discussed in this chapter, spatio-temporal affordances can be directly
connected with semantic maps. The goal, in this sense, is to adopt a representation
that supports deliberation (semantic maps) to also provide a bridge between symbolic
and procedural knowledge. At the level of situated action, reflection occurs implicitly
both through spatio-temporal affordances and the intervention of the semantic maps.
The former, in fact, express the desirability of an action given its long term value in
a certain state (i.e., they enable planning), while the latter provides semantically
relevant state information that modify the desirability of an action as a function of
the environment.

The remainder of this section is organized as follows. First, we define a Spatio-
Temporal Affordance (Section 5.1.1) and, then, we describe the idea of “affordance
signature”, and its relation to learning or optimization procedures (Section 5.1.2).
Finally, we briefly discuss how prior knowledge can be enforced in spatio-temporal
affordances (Section 5.1.3), some properties of the proposed model (Section 5.1.4),
as well as its relation with other approaches (Section 5.1.5).

5.1.1. Definition of Spatio-Temporal Affordance
A Spatio-Temporal Affordance (STA) is a function that defines areas of the oper-
ational environment that afford an action, given a particular state of the world.
We recall that, according to Definition 2.11, an affordance is a value function that
represents the desirability of an action over a full environment. More formally:

Definition 5.1. A spatio-temporal affordance is a function

fE,T : S ×Θ→ AE (5.1)

where:

• E is the environment;

• T is the set of tasks that are defined for the environment;

• S is the state space of the domain;

• Θ is a space of parameters that characterize the affordance function;

• AE is a map over the space of E that evaluates the affordance (i.e., the value)
of {τj} ∈ T in state sE(t) ∈ S at time t.
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Figure 5.1. Decomposition and detailed overview of a spatio-temporal affordance.

The function fE,T (sE(t),θ(t)) characterizes spatial semantics by evaluating areas
of E with respect to tasks T , and by generating, at each time t, the spatial distribution
of affordances as a map AE . To do so, the spatio-temporal affordance takes as input
the state of the environment sE(t) (or, for simplicity of notation, st) and a vector of
parameters θ(t) ∈ Θ (or θt) that, as explained later in Section 5.1.2, change over
time and represent the affordance signature. Intuitively, these parameters enable our
model to consider the state of the environment and to model affordances accordingly,
as in our example in the museum. Back to that scenario, in fact, the museum
represents the environment E, while the surveillance task is the only element of
T . Given our model, a state st represented by the rotation angle of each camera,
and some parameters θt, the STA function emits a map that represents the risk
semantics of the environment - i.e., the value of focusing the attention of the cameras
on each area of E. This value map can be directly adopted by the agent to support
decision making and action planning.

In the case of multiple tasks, a spatio-temporal affordance can be decomposed,
as in Figure 5.1, in multiple functions fE,τj (st,θt,j), with j = 0 . . . α− 1 and where
α is the number of affordances. In particular, each function fE,τj models the spatial
distribution Aj

E representing the affordance map of a task τj ∈ T defined in E.
These spatial distributions are then evaluated by an additional function φ, that takes
as input all the Aj

E and outputs the affordance map AE of T . In our example, let
us assume our autonomous agents – i.e., the cameras in the museum – are assigned
both a surveillance and a tracking task. The former, as before, requires the cameras
to observe the environment, without leaving portions of it uncovered for a long time.
The latter, instead, consists of recording and tracking the visit of a prime minister in
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the museum. By using our model, the spatial distributions Aj
E of affording each task

are independently encoded by two STA functions. Then, to perform the assigned
tasks, these are combined by means of φ in a unique map AE , that enables each
camera to choose its best orientation depending on the position of the prime minister
and the angles of the other agents. Hence, in this example, φ simply consists in the
combination of the two affordance distributions.

5.1.2. Affordance Signature and Function Optimization
As introduced in the previous section, the affordance signature is represented by a
vector of parameters θt ∈ Θ, that are dynamically generated at each time instant t.
More formally:

Definition 5.2. The affordance signature is the output θt ∈ Θ of an affordance
description function

δE : S ×N × Λ→ Θ (5.2)

where:

• S is the state space of the domain;

• N is the set of time-steps t = 0 . . . T ;

• λ ∈ Λ is a vector of parameters that we call affordance descriptors;

• Θ is the space of affordance signatures.

The function δE(st, t,λ) is a mapping from states to affordance signatures, that
associates the state of the environment to the evolution of θt at a given time-step,
by means of a parametrization λ. In this way, the signature θt evolves together with
the states of the world and the time, to properly contribute in generating affordance
distributions. This is beneficial in complex domains to facilitate affordance learning
(as a two-step prediction) and address the difficulty of estimating a unique signature
for highly dynamic environments. On the other hand, δE generates θt as a function of
some parameters λ, that can be designed by an expert (and eventually be optimized)
or directly learned by the agent.

The composition of fE,T and δE enables a rich and flexible representation, but
also increases the difficulty of designing or learning the values of λ. In fact, designing
appropriate affordance descriptors requires an accurate understanding of both the
functions δE and fE,T . To tackle these difficulties, we propose a two-step learning
procedure that first learns a sequence of θt, for t = 0 . . . T , and then generates the
parameters λ using this sequence. In particular, the signatures θt can be learned by
means of expert demonstrations or a general reinforcement learning paradigm, with
the goal of collecting, for each t, multiple observations of state-task pairs in a dataset
Dt = {(st, τj)}. At time t, by using Dt and for all tasks τj ∈ T , the affordance
signature θt,j is chosen to maximize the summed likelihoods to afford τj , in all the
states where τj is observed in Dt. More formally:

θt,j = arg max
θt,j

∑
{st:(st,τj)∈Dt}

log fE,τj (st,θt,j), (5.3)
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where j = 1 . . . |T |. This optimization consists of finding our parameters θt,j by
maximizing the likelihood of the portion of the dataset labeled with the considered
task τj . Intuitively, the higher the likelihood to afford the tasks in Dt, the better the
function signature encodes the spatial semantics of τj in E at time t. Once a dataset
of {θt} is collected, it can be used for learning the parameters λ of a regression
function that maps each state st to the corresponding θt.

5.1.3. Prior Knowledge and Spatio-Temporal Affordances

We already argued that the flexibility of spatio-temporal affordances comes at the cost
of loosing the possibility to manually design appropriate descriptors, and consequently
affordance signatures. In fact, this is a difficult, tedious, and unpractical task. For
this reason, in this section we briefly discuss whether and how prior knowledge can
be enforced in an STA. In particular, although this process is possible, it is not
straightforward and unfortunately requires the user to collect or generate a dataset
of appropriate state-task pairs.

In our experience with spatio-temporal affordances (Chapter 7), in fact, we have
been able to enforce prior information in our models by initializing the descriptors λ
by means of a dataset DI1 . Such a dataset is supposed to represent the desired action
semantics through few, relevant1 state-task pairs, that can be manually collected
(e.g., by means of demonstrations) or artificially generated. Then, the dataset DI1

can be used to learn a signature θI and, in turn, to initialize λ. This last step, in
fact, can be realized by generating an additional dataset DI2 composed of all the
states previously collected in DI1 , but labeled with the signature θI .

More simply, prior knowledge can be enforced at learning time, by aggregating
the dataset DI1 to each Dt, such that Dt = Dt ∪ DI1 is used for generating the
parameters θt.

5.1.4. Properties of Spatio-Temporal Affordances

In this section, we briefly discuss and remark some of the properties of the proposed
STA model.

Remark 5.1. Spatio-temporal maps encode spatial semantics in the probability map
AE, depending on the considered tasks T .

Remark 5.2. In dynamic environments, the affordance signature θt is a time-
variant system that explicitly depends upon time.

Remark 5.3. The mapping δE enables the probability map AE to evolve according
to the dynamics of the system – i.e. the environment and its states.

Remark 5.4. Eq. 5.3 is de facto a procedure for finding a maximum likelihood
estimate of the parameters θt,j. By assuming unobserved data-points, and depending
on the chosen implementation of the function fE,τj , the desired parameters can be
obtained by using an Expectation-Maximization procedure.

1Although the selection of relevant state-task pairs might be a difficult activity, since we are
attempting to enforce prior knowledge we assume the availability of a domain expert.
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Remark 5.5. In static environments the affordance distribution does not change
over time and, consequently, the affordance signature is time-invariant: θt = θt+δ.

Remark 5.6. Following Remark 5.5, when the affordance signature is time-invariant,
the learning process can be reduced to a single step – in which a single vector of
parameters θ is estimated over a unique dataset D as

θj = arg max
θj

∑
{st:(st,τj)∈D}

log fE,τj (st,θj). (5.4)

5.1.5. Relation to Other Approaches
The model of spatio-temporal affordances can be related to methods that leverage the
theory of Inverse Reinforcement Learning. Both approaches, in fact, are ultimately
adopted to optimize the behavior of an agent, with respect to some semantics that
are indirectly captured from the environment. At a closer look, however, some
differences emerge that make the two approaches substantially different. Methods
based on inverse reinforcement learning, in fact, typically rely on the notion of reward,
that is obtained as a linear or non-linear combination of some features [152, 151]
provided by the world. The goal of these approaches, then, is to optimize the
expectation of such features, given some state-action trajectories demonstrated
by a human, or a generic agent. Conversely, spatio-temporal affordances directly
optimize the value (the desirability) of a certain action, given a state of the world
belonging to a trajectory. This can be done not only by using a set of demonstrations,
but also through autonomous agent exploration (as shown in Chapter 7). Hence,
the goal of STA concerns more the evaluation of actions’ “quality”, according to
their effects (see also Section 5.2.2), rather than the notion of reward. Therefore,
under this perspective, spatio-temporal affordances are more similar to the notion
of “forecast values” [127], although their use is different and their representation is
non-hierarchical.

5.2. Spatio-Temporal Affordance Maps
Once a proper parametrization is chosen for the STA and the affordance description,
these functions must be instantiated to a representation of the environment over
which the affordance distribution can be generated. In this section we introduce the
Spatio-Temporal Affordance Map, that is a representation in which the descriptors
λ (or the signature θ) can be learned, updated and used by an autonomous agent
to generate its behavior. In particular, in Section 5.2.1 we specify the structure of
such representation and we connect it to the notion of spatio-temporal affordance.
In Section 5.2.2, instead, we describe how the Spatio-Temporal Affordance Map is a
task-directed representation.

5.2.1. Structure and Specifications
A STA can be learned, updated and used by an autonomous agent, through a
Spatio-Temporal Affordance Map (STAM). STAM is a modular representation (see
Figure 5.2 and Figure 5.3), whose core elements are the spatio-temporal affordance
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Figure 5.2. Schema of a Spatio-Temporal Affordance Map.

fE,T and the affordance description function δE . These functions are interconnected
with the world by means of the “environment module”, which stores the affordance
descriptors λ, the current state of the world st and the set of tasks T that are
defined in the environment.

Definition 5.3. A spatio-temporal affordance map is a pair

〈am, em〉,

where:

• am is an affordance module, in which the spatio-temporal affordance fE,T and
the affordance description function δE are applied;

• em is an environment module, that stores, at each time t the state st of the
environment, the descriptors λ and the tasks {τj} defined in E.

The spatio-temporal affordance map is the interconnection between the real
environment and the STA, which instantiates fE,T and δE to a specific representation
of the environment E. Throughout this thesis, we assume a semantic map, as
described in Chapter 4, to be part of the environment module of a STAM and to
provide the (semantically relevant) state of the world to the STA function. The
relation between semantic maps and STAM also supports the revision of knowledge
for decision making, expressed in the form of spatio-temporal affordances. In
particular, this is possible thanks to the structure of the basic concept hierarchy
(Definition 4.1) that introduces a predicate hasAffordance and a class Affordance,
directly mapped in the environment. The class Affordance is instantiated in the
form of STA signatures, that can be modified or used when some conditions occur,
or as a function of the knowledge that is stored in the semantic map.
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Figure 5.3. Decomposition and detailed overview of a Spatio-Temporal Affordance Map.

Remark 5.7. A semantic map, as introduced in Definition 4.3, can store the
parameters λ of a spatio temporal affordance and can be used as a part of the
environment module of STAM.

5.2.2. Action Semantics and Task-Directed Representations

Spatio-temporal affordances are intended to directly influence the behavior of an
autonomous agent, and to affect both situated action and decision making. At each
time, while determining its own behavior, an agent needs to consider the effects of
its possible actions and to choose the most promising one.

Definition 5.4. In the context of decision making, the term action semantics
refers to the implicit or explicit evaluation of effects of an action.

Definition 5.5. A task-directed representation is defined as a representation
that characterizes an environment E in terms of its action semantics.

Intuitively, a spatio-temporal affordance encodes the semantics of an action α
by expressing its “goodness”, given the current state of the environment. To do
so, it implicitly evaluates the effects of α to predict how beneficial its execution is
to the purposes of the agent. For this reason, a spatio-temporal affordance map is
generated as a task-directed representation, that models the environment through
its action semantics, which is implicitly encoded by means of affordances.
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Figure 5.4. Spatio-temporal affordance of a following task, at a given time t, learned with
increasing number of expert demonstrations. Here, the target is located at the origin
and the plots represent the probability density function of a pose to afford the task.
The plots, whose coordinates are expressed in meters, show that the model is able to
represent both minimum and maximum distances from the target, in accordance with
the data provided as demonstrations.

5.3. Explanatory Use Case

In order to illustrate our model, in this section we introduce an explanatory use
case, where a robot R is assigned the task of following a person P and we want to
learn the corresponding spatio-temporal affordance function.

In this situation, the areas of the environment E that afford the task depend
on manifold factors, such as general rules (e.g., forbidden areas), user preferences
(that can be encoded in the set of parameters θt) and the position of the followed
person (encoded in the state of the environment st). According to Definition 5.1,
however, we can use a spatio-temporal affordance function for generating a map AE ,
that identifies the poses of R which afford the assigned task, given a state of the
environment st. Such state is encoded, at each time t, by the positions x, y and the
orientation α

〈xt,P , yt,P , αt,P , xt,R, yt,R, αt,R〉

of the target P and the robot R.
At learning time, we use a Gaussian Mixture Model (GMM) and Expectation

Maximization (initialized with the k-means algorithm) for optimizing Eq. (5.3). The
signatures θt of the STA function are then defined as a tuple

θt = 〈πt,1, µt,1,Σt,1, . . . , πt,N , µt,N ,Σt,N 〉,
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where πt,i is the prior, µt,i the mean vector and Σt,i the covariance matrix of a
mixture of N Gaussians, at each time t. In this simple experiment, we set N = 2
and the affordance signatures θt are learned from datasets Dt collected through
multiple demonstrations of different experts. The affordance descriptors, instead,
are learned by means of a simple Ridge Regression.

To collect expert data, we setup two robots in a simulated environment – one
randomly roaming through the environment and simulating P , the other being
controlled by an expert through a joystick and following the target P . During these
sessions, the state st, as defined above, is recorded at each time instant. The learned
model is finally used by the robot R to determine a probability map (illustrated
in Figure 5.4) of the best follower pose, given the pose of P . In this example, no
specific constraint is imposed on the robot for the selection of its path. Hence, the
agent can select the pose that greedily maximizes its utility over the probability
map and reach it by following the shortest path.

5.4. Contributions
In this chapter, we discussed our model of Spatio-Temporal Affordance Maps
(Def 5.3), that is based on the notion of spatio-temporal affordances (Definition 5.1).
This concept, builds on ecological theories and extends previous approaches by
directly connecting the environment, its spatial semantics, and their evolution. Prac-
tically, this connection can be realized by means of our model of semantic map, and
is useful to the purposes of behavior generation. In fact, in Chapter 7, we directly
use spatio-temporal affordances to generate effective robot policies.

The main contributions introduced in this chapter consist in (1) the formalization
of a novel model that is both time-invariant and time-dependent, and that directly
represents action semantics in relation to the space of the environment, by encoding
the desirability or value of the actions; (2) the definition of a procedure for learning
such representation, given example data; (3) the description of a representation that,
for the first time, directly connects the notion of spatio-temporal affordances with
the concept of semantic maps. In particular, this chapter reports and extends our
prior work [116] by enhancing STAM to the time-dependent setting, by establishing
the properties of the model and the procedure for its optimization, and associating
the model to the semantic map representation.



71

Part III

Algorithms
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Chapter 6

Online Semantic Mapping

The best educated people are those who are
always learning, always absorbing knowledge
from every possible source and at every
opportunity.

— Orison Swett Marden

We begin the exploration of algorithms for the generation of semantic-driven
robot behaviors by focusing our attention on deliberative systems, which are directly
interconnected with a semantic map adhering to the formalization in Chapter 4.
In particular, in this chapter, we introduce our approach for gathering semantic
information and generating high-level adaptive behaviors at run-time, given the
current state of the environment. While collecting information about the world, we
enable our robots to interact both with the environment and with humans, and to
proactively infer novel information from such interaction. Then, the robot uses the
newly collected information to improve its own behavior and degree of autonomy. In
accordance with the statement of this thesis, and the model developed in Chapter 4,
we directly leverage traditional reasoning and inference mechanisms for generating
high-level behaviors by means of semantic maps.

The chapter is organized as follows. First, we describe our algorithm for gathering
semantic information online (Section 6.1), as well as for exploiting interactions with
humans and with the world (Section 6.1.1). Then, in Section 6.2, we illustrate
how this is used both for inference (Section 6.2.1) and for online generation of
robot behaviors (Section 6.2.2). Finally, in Section 6.3 we discuss the experimental
evaluation of the approach.

6.1. Online Information Acquisition
We now consider an incremental procedure for knowledge acquisition under the
formalization of Chapter 4. As established in Definition 4.6, an incremental semantic
mapping process is a function that, at each time-step t, takes as input the semantic
map at t− 1 and some data from the world (e.g., sensor data, events), and emits
a SM representation that includes the newly recorded information. Under this
perspective, in this section we develop an algorithm – online semantic mapping –
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Input: SMI : initial semantic map.
Output: SMF : final semantic map.
Data: M: set of perceptions; E : set of recorded events; C: set of commands.
begin

Initialize SMF ← SMI .
while executing() do
SMt−1 ← SMF

// Use sensors and perceive the world
Mt ← sense()
// Parse sensor data by using SM to generate events
Et ← parse(Mt, SMt−1)
Ct ← getCommands(Et)
// Store events after extracting commands
Et ← Et \ Ct

if |Et| > 0 then
/* Generate a new semantic map according to: the previous

map, the perceptions and the events */
SMt ← φISM (Mt, Et,SMt−1)

end
// Act according to new semantic map and commands
act(SMt,Ct)
SMF ← SMt

end
return SMF

end
Algorithm 1: Pseudo-code for Online Semantic Mapping.

that performs incremental semantic mapping at run-time, through the interaction
of the robot with the environment and the humans in it. In its general form, the
pseudo-code of this algorithm is very simple, and it is illustrated in Algorithm 1.
During execution, in fact, the robot first uses its sensors to perceive the surrounding
world and, then, it parses incoming data together with previous knowledge in SM
to generate a set of events E . Hence, after discerning between commands and simple
events, the agent uses E to update the semantic map SM. Finally, it acts according
to the updated semantic map and to the received commands, if any.

In the remainder of this section, we first make explicit the function that we use
for parsing perceived data (Section 6.1.1) and, then, we detail our implementation of
φISM (Section 6.1.2). The process for semantic-driven behavior generation, instead,
is illustrated in the next section (Section 6.2).

6.1.1. Sensor Data Parsing
As illustrated in Algorithm 1, our semantic mapping procedure relies on a set of
events E that are generated after parsing sensor dataM. Importantly, at each time t,
these events not only depend on sensory information, but also on previous knowledge
stored in the semantic map at t− 1. This means, for example, that until an object
has not been learned and memorized in SM, the robot is neither able to categorize
it, nor to generate an event corresponding to its recognition. Intuitively, this enables
the robot to primarily memorize information that is useful for its purposes, or for
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Figure 6.1. Event (label and subset of sensor data) generated through human-robot
interaction.

Input: V : human voice; I: camera image; SM: available semantic map.
Output: e: event.
Data: P: set of predicates stored in SM;M: set of raw sensor data stored in SM.
begin

(_,M,P)← SM
L← speechRecognition(V , P)
Ms ← visualProcessing(I,M)
e← (L,Ms)
return e

end
Algorithm 2: Pseudo-code for event generation in the case of human-robot
interaction.

Input: I: camera image; SM: available semantic map.
Output: e: event.
Data: P: set of predicates stored in SM;M: set of raw sensor data stored in SM.
begin

(_,M,P)← SM
Ms ← visualProcessing(I,M)
L← objectRecognition(Ms, P)
e← (L,Ms)
return e

end
Algorithm 3: Pseudo-code for event generation in the case of automated object
recognition.

the purposes of its user.
In our algorithm, the set E can be obtained from different sensor sources, that

during execution are employed by the robot both for human-robot interaction, and
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Figure 6.2. Event (label and subset of sensor data) generated through autonomous object
recognition.

for autonomous object recognition. Concretely, after parsing sensory information,
these events consist of either labels associated to a set Ms ⊆ M of semantically
relevant sensor data, or commands that are represented as strings.

Remark 6.1. An event consists of labels associated to a setMs ⊆M of semantically
relevant sensor data.

Following Remark 6.1, and without considering received commands, in the case
of human-robot interaction (Figure 6.1) a single event e is generated as illustrated
in the pseudo-code of Algorithm 2. In particular, we assume a human supports
the robot in knowledge acquisition by pointing to an object while vocally labeling
it [43]. In the case of automated object recognition (Figure 6.2), instead, an event
is generated as in the pseudo-code of Algorithm 3. Importantly, each function for
visual processing, speech recognition and object recognition – whose implementation
may vary depending on the application and domain – considers semantic knowledge
coming from a semantic map SM and represented according to Def 4.3. Thanks
to this, the robot can either understand when new knowledge is provided, in the
case of human-robot interaction, or guide the search of already known objects in a
perceived scene. For instance, let us assume an environment E with three platforms,
all of them represented in a semantic map SM, without further details. If a human
labels one of the platforms as the “yellow platform”, then the speech recognition
can generate a new event according to the fact that “yellow” was not stored in SM.

Once events are created, as described above, they need to be processed by means
of φISM to be stored in a semantic map representation. This activity is described in
the next section.
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Input: Mt: set of perceptions; Et: set of events; SMt−1: initial semantic map.
Output: SMt: updated semantic map.
begin

// Get the elements of the semantic map at t− 1
(R,Mt−1,Pt−1)← SMt−1

// Align new sensor data to the reference frame of the map
Mt ← align(R,Mt,Mt−1)
// Merge the aligned sensor data
Mt ←Mt ∪Mt−1

// Get elements of the event
{(L,Ms)i}t ← Et

// Generate a predicate depending on labels and prior knowledge
Pt ← generatePredicate(Lt,Pt−1)
// Check if new predicates are consistent with old ones
PT MP ← Pt ∪ Pt−1
if not consistent(PT MP ) then

/* adopt recovery behavior, if desired, by asking the help of
the user to manage consistency */

return
end
// If predicates are consistent, add them
Pt ← PT MP

// Approximate spatial information in predicates
Ps,t ← approximate(Ms,t)
// Add spatial predicates
Pt ← Pt ∪ Ps,t

// Update the semantic map
SMt ← (R,Mt,Pt)
return SMt

end
Algorithm 4: Pseudo-code for the incremental semantic mapping function φISM .

6.1.2. Semantic Map Generation
In this section, we discuss the implementation of φISM (Algorithm 4) and we connect
it to the structural bias problem by means of an example. In particular, given a
semantic map SMt−1, perceptionsMt and events Et, at time t, we aim at generating
a SMt = (R,Mt,Pt) where:

• Mt is expressed in the reference frame R ∈ SMt−1 and is integrated with the
raw sensor dataMt−1 ∈ SMt−1 asMt =Mt ∪Mt−1;

• predicates Pt are obtained from the events {ei}t = {(L,Ms)i}t, and their
consistency is verified against the predicates Pt−1 ∈ SMt−1;

• predicates Ps,t ∈ Pt are generated to represent semantically relevant sensor
dataMs,t ∈Mt.

The expression ofMt in the frame R, and its mergingMt =Mt ∪Mt−1, can
considered as general registration (or alignment) problem, on which a vast literature
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Figure 6.3. Steps of the construction of the A-Grid [20], given a metric map.

exists – and that can by solved, for example, through reliable approaches such as
the Iterative Closest Point algorithm [11] and its derived methods [129, 61, 131].

The generation of meaningful predicates can be obtained via a parser or, more
simply, through string matching between the labels Lt of Ms,t, and the classes
expressed in the concept hierarchy of the semantic map. For example, whenMs,t

is labeled as “object” (or any specialization of it), this can be easily matched with
the class Object belonging to SM. When no match is found, either additional
interactions with a human can be triggered, or the information can be discarded.
The consistency of the newly obtained predicates can be simply verified by using
a temporary set PTMP = Pt ∪ Pt−1, together with a reasoner for the language
representing the concept hierarchy. In the case in which PTMP is consistent, we
can set Pt = PTMP . Otherwise, as before, an interaction can be triggered, or the
information can be discarded.

Finally, to expressMs,t by means of predicates Ps,t, an approximation function
can be used. This function is supposed to introduce a discretization of raw sensor
data in SM, with the goal of representing them by means of logical predicates –
but without loss of spatial reference. Although there are several viable alternatives,
such as bounding boxes, KD-trees or quadtrees, in the next paragraph we provide
an example of such function for 2D points represented in a metric map.1

Example of Approximation Function for 2D Metric Maps We introduce
an approximation of spatial information named A-Grid [20], that can be used for
discretizing 2D metric maps. While details regarding its construction are out of the
scope of this chapter, and can be found in Capobianco et al. [20], here we shortly
discuss some of the consequences that derive from its use. In particular, the A-Grid
is a non-uniform grid whose cells vary as a function of the occupied areas of the
map (Figure 6.3), and whose compression rate with respect to the original metric
map is ∼ 98.5% [43]. As such, this approximation can be easily and efficiently
accessed as a matrix, by means of its indices. Consequently, it can be represented
through predicates Ps that store its indexing. The A-Grid introduces an average
structural bias that is estimated as 57% ± 18.5 [43] with respect to the real size
of the represented spatial element. This value can be simply computed by: (1)
manually inserting ground truth information in SM, to discard sensor errors and

1Note that a metric map satisfies the requirement for M in Definition 4.2 of preserving raw
sensor data, since range information can be reconstructed from it, and it is represented in a specific
reference frame R.
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obtain predicates Ps; (2) back-projecting spatial information from the predicates
Ps ∈ SM to the metric space; (3) comparing the obtained spatial properties (e.g.,
the size) against the physical ground truth. Hence, an object memorized in SM
through the A-Grid is represented, on average, almost 1.5 times bigger than its real
size.

The measure of the structural bias of a semantic mapping approximation function,
is a key step towards the design of a robotic system. In fact, depending on the
domain of application, a certain approximation may or may not be suitable for a
robot. In the prototype applications of this thesis (Section 6.3.2), for example, we
adopt the A-Grid because of its trade-off between efficiency and structural bias.
In fact, despite approximation errors at deliberation levels, for situated action we
leverage affordance-guided behaviors, that are not influenced by the predicates Ps.

6.2. Inference and Robot Behaviors
In previous sections, we introduced an approach that enables a robot to store
knowledge in a semantic map at run-time. Here, we discuss how this information
can be used for inference, reasoning, and to generate high-level robot behaviors.
In particular, we explain how tasks can be executed by a robot in accordance to
both specified commands and semantic knowledge in SM. Under these settings, in
fact, inference and spatial reasoning can be used, at each time t, to understand and
ground users’ commands with respect to the modeled semantic map SMt.

In this section, we first describe how SMt can be used to interpret commands
through inference and spatial reasoning (Section 6.2.1) and, then, we use these
concepts to evaluate their effects on autonomous agent’s behavior (Section 6.2.2).

6.2.1. Command Disambiguation, Inference and Spatial
Reasoning

According to Merriam-Webster, disambiguation is the process of establishing a single
semantic or grammatical interpretation for a given word or sentence. In our context,
users’ commands are directly grounded to known concepts and scenarios – i.e., the
semantic map. In fact, disambiguation in a robotic system is essential to address
the typical uncertainty of natural language, as well as to achieve effective behaviors
given ambiguous commands. Usually, ambiguity arises when multiple concepts or
objects are available in the environment, with equal names and functionalities (e.g., a
platform), but different properties (e.g., the color of the platform) or specializations
(e.g., platform holding slotted screwdrivers). Under these circumstances, humans
flawlessly distinguish objects and situations through properties, specializations
and spatial relations. In this section, we explain how these mechanism can be
implemented in a robot by means of a semantic map, as well as how they can be
used to accumulate additional knowledge at run-time.

Inference Let us consider an environment E that, exactly as Sandy’s world
(Section 1.1), is composed by three platforms, each of them storing different objects.
Moreover, let us assume an initial setting in which a semantic map SME is available
to the robot. In this map, the notions of Platform, Box and Slotted_Screwdriver
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Input: SMt: current semantic map; Ct: received commands.
Output: π: planned actions.
Data: PG: set of grounded predicates; PNG: set of non-grounded predicates.
begin

// Get the elements of the semantic map at time t
(R,Mt,Pt)← SMt

// Extract predicates corresponding to commands
Pc ← parseCommands(Ct)
// Evaluate predicates that can or cannot be grounded (e.g.,

through a reasoner and QSR)
(PG,PNG)← ground(Pc,Pt)
// Check whether some commands have not been grounded
if |PNG| > 0 then

// Check whether (1) non-grounded predicates add knowledge and
(2) are consistent with available knowledge

PT MP ← PNG ∪ Pt

if not consistent(PT MP ) then
/* adopt recovery behavior, if desired, by asking the help of

the user to manage consistency */
else

// If non-grounded predicates add knowledge and are
consistent, integrate them in the semantic map

Pt ← PT MP

SMt ← (R,Mt,Pt)
end

end
// Request a plan from the reasoner, according to the commands and

the available semantic map
π ← plan(Ct,SMt)
// if SMt does not contain enough information, the reasoner cannot

infer a plan
if π = ∅ then return;
return π

end
Algorithm 5: Pseudo-code for online inference, given the specification of a com-
mand.

are represented, but no further instantiation is provided, besides the presence in E
of (1) three platforms (A, B and C) and (2) a box on platform C. At time tc1 , the
robot receives a command to “take a slotted screwdriver from the box on platform
A”. This command is well detailed, with no ambiguity and multiple specifications
that clarify the request and specialize the robot’s knowledge. In this case, the robot
can “easily” ground and understand the request of the human. Moreover, it can also
store in SME additional information in the command – i.e., the presence of a box
on platform A, that stores slotted screwdrivers. This is accomplished by means of
new predicates PNEW . Hence, at any time t > tc1 , the semantic map SME contains
a set of predicates P = PNEW ∪ Ptc1

that represent the robot’s knowledge of the
environment. When at time tc2 > tc1 the robot is requested to “put the slotted
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screwdriver in the box”, the command, in order to be executed, requires the inference
of additional knowledge from the semantic map. In fact, since multiple boxes are
located in the environment, the request is ambiguous and cannot be immediately
satisfied. However, by using the information learned at tc1 and a reasoning engine,
the robot is able to execute the task.

We illustrate the process discussed in our example in Algorithm 5. For this
algorithm, we assume the availability of a command parser that is able to generate
a set of meaningful predicates Pc, given a command c ∈ C.

Qualitative Spatial Reasoning To correctly interpret commands, and tackle
the ambiguity of multiple instances of a class, spatial relations can be used, given a
semantic map. Let us consider, for example, the same scenario as before. In this
case, however, in addition to platforms and boxes, the semantic map also contains
the concept of Wall, together with its corresponding instances for the environment
E. Additionally, although not explicated by predicates in SME , A is the only
platform situated in the vicinity of a wall. Under these settings, at a certain time
t, the robot is given the command “go to the yellow platform next to the wall”.
Since the exact label of the platform is not given, the command is ambiguous and
its execution is not straightforward. In particular, to satisfy its request, the agent
must evaluate spatial relations between elements in SME – and infer the goal of the
task (A) through its vicinity to a wall. To do so, the robot can use the predicates
Ps, and apply a reasoner as the one based on the model in Figure 6.4. As in the
previous example, the robot can store new knowledge in the map – i.e., the color
of the platform – thanks to the grounded information – i.e., the goal platform A.
Although this process is not explicated in Algorithm 5, qualitative spatial reasoning
can be used as a part of the grounding function.

6.2.2. Online Use of Semantic Knowledge in Robot Behavior

Once a semantic map SM = (R,M,P) is available, and situated behaviors are
accessible through descriptors λ in the Affordance class of P, these can be used
by a robot for planning and deliberative behavior generation. In this setting, we
define “complex tasks”, a set of situated behaviors that is combined through specific
operators. A complex plan can be generated by means of a generic planner, whose
domain knowledge includes instances and classes belonging to P ∈ SM.

After a plan is given, deliberated behaviors can be finally executed. To this
purpose, although alternative formalisms might be equivalently valid, we leverage
Petri Net Plans. As introduced in Section 2.3, a PNP can express non-instantaneous
actions and conditions that are verified at run-time. This effectively meets our needs
of deliberated action control, given situated behaviors that are implemented through
affordance based decision making. A Petri Net Plan, generated for the screwdriver
pick-up task of previous examples, is given in Figure 6.5. Here, the robot executes
two parallel activities. The former consists in visiting all the instances of the class
Platform – A, B and C. This enables the robot to look for the desired screwdriver
and execute the pick-up action through appropriate affordance descriptors. The
latter, instead, consists in using sensory data to determine whether the screwdriver
can be picked-up.
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Figure 6.4. Example of qualitative spatial relations. Here, relative directions are computed
against the intrinsic normal vector of an object, while distances are highlighted with
circles of different colors.

Figure 6.5. Example of PNP for visiting platforms and picking-up a screwdriver.

6.3. Evaluation Challenges and Experiments

The experimental evaluation of the online semantic mapping algorithm, as proposed in
this chapter, necessarily needs to be performed on specific instances of the perception,
parsing, approximation and planning functions. These, however, introduce errors that
can be measured, but whose effects exponentially concatenate within the full semantic
mapping system. Due to them, this type of evaluation does not allow to effectively
measure the method itself, in terms of generated behaviors. While we evaluate an
instance of the online semantic mapping algorithm in Section 6.3.2, we first propose
a thought experiment2 that attempts to address this issue (Section 6.3.1).

2A thought experiment is a test in which one imagines the practical outcome of a hypothesis,
action or condition.
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Figure 6.6. Number of grounded commands, given a certain number of concept’s instances
in SM.

6.3.1. Thought Experiment

Our thought experiment articulates as follows and relies on six assumptions:

1. the use of an initial empty semantic map SMI , that is coherent with our
model (Definition 4.3) and implements a basic concept hierarchy;

2. the accessibility to an oracle that, at each time instant t = 0 . . . 233, chooses
among 25 different instances belonging to one of the classes Location, Object,
Connecting_Architecture and generates an artificial event ei;

3. the availability of 50 different (95% ambiguous and 5% non ambiguous) com-
mands, that at each time are provided to the robot;

4. the accessibility to a perfect generator for predicates, given events and com-
mands ei;

5. the accessibility to a qualitative spatial reasoner, that acts as illustrated above
and follows the model in Figure 6.4;

6. the correct grounding of a command implies that there is no error in the
generation of a valid plan for the robot.

3Note that, since t = 0 . . . 23, two random instances are left out of this procedure to generate a
less biased estimate.
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In particular, assumptions 2, 3 and 4 guarantee an unbiased evaluation of our
method, that does not rely on error prone functions. Similarly, assumption 6 ensures
our experiment to be independent from eventual planning faults. Given these
premises, the thought experiment proceeds by using the oracle to repeatedly fill the
semantic map SMt, at each time instant t, through a function φISM that makes
use of the perfect predicate generator. Then, SMt is used through Algorithm 5 (1)
to process each of the 50 commands both with and without the use of the available
qualitative spatial reasoner, and (2) to measure the number of correctly grounded
commands – i.e., successful task executions, according to assumption 6.

We manually performed this activity repeatedly, starting from scratch five times
and generating the graph illustrated in Figure 6.6. From the graph, both the impact
and the variance of the integrated qualitative spatial reasoner emerge. The latter
depends on the random order of knowledge insertion, as well on the 2 random
instances that are left out of the map (assumption 2) at each re-iteration of the
procedure. As expected, instead, the mean and variance of the non-QSR approach
account for about the 5%± 1 of successful grounded commands – i.e., the number of
non ambiguous commands.

The thought experiment confirms our insights about the necessity of semantic
reasoning capabilities for successful deliberation in robot behaviors. Additionally,
the experiment illustrates how a robot, endowed with an online semantic mapping
procedure, can increase its autonomy and adaptation capabilities almost linearly
with respect to the amount of knowledge it has learned. Importantly, these insights
are substantially confirmed by our experiments on prototype applications (discussed
in Section 6.3.2), meaning that effective behavior can be practically obtained through
our approach.

6.3.2. Semantic-Driven Service Robots
In this section, we discuss our applications with respect to the functionalities
introduced in this chapter. In particular, we describe the robots on which we
implemented an online semantic mapping mechanism, their equipment and tasks.
We evaluate our system by first analyzing the errors introduced by each of its
components, and then by measuring the overall performance of the robot. In our
thought experiment (Section 6.3.1) we considered a semantic mapping system that
was not influenced by “external” factors. Conversely, we are now interested in
understanding how much a semantic-driven system is affected by very simple, non-
sophisticated components – low-cost solutions – in terms of behavior execution and
task efficacy. In particular, we set up a quasi-worst-case experiment, in which we
explicitly evaluate the behavior of the robot in a difficult scenario.

Platforms, Sensors and Functionalities For implementing our prototype sys-
tem, we considered multiple mobile robots and we developed our code in a platform
independent way, by means of ROS4, C++, Python and Prolog. In particular, we
implemented all our algorithms for learning and executing situated behaviors in
C++, while using Python for the deliberative part of our system. This part directly
interfaces with a planner and a knowledge base implemented in Prolog. Our code

4Robot Operating System, http://www.ros.org

http://www.ros.org
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(a) DIAGO, a mobile robot de-
rived from a Segway plat-
form.

(b) Turtlebot interacting with human during online se-
mantic mapping.

Figure 6.7. Examples of deployment platforms for our prototype system of service robot.

was deployed on DIAGO – a modified version of a Segway platform (Figure 6.7a),
as well as on Videre Erratic, a Turtlebot (Figure 6.7b), a student-built robot named
MARRtino and, more recently, on a YouBot. Each robot was endowed with an
RGB-D camera, a laser rangefinder, a microphone and one or more speakers. In ad-
dition to the sensory arrangement, each robot was equipped with a navigation stack
(from ROS), a natural language processing chain based on frames (for interpreting
commands), as well as a vision system. This system is capable of (1) recognizing the
light of a laser pointer in the environment, (2) segmenting objects, (3) recognizing
objects through the use of SURF features. The light from the laser pointer can
be used by a human, together with the speech recognition, to generate an event
for the online semantic mapping algorithm, as in Figure 6.7b. To approximate
spatial information and generate predicates Ps when new information is stored in
the semantic map, we use the A-Grid [20]. Despite the structural bias introduced by
such approximation (see Section 6.1.2), we are interested in evaluating the behaviors
of the robots according to the learned knowledge, rather than their actual precision
in terms of centimeters.

Scenarios and Tasks We deploy our robots in two different domestic and office
scenarios, with the goal of interacting with people to acquire knowledge about the
environment. Our robots typically start with an empty knowledge base, or from
the state in which their execution was interrupted at previous times. Then, the
knowledge base is filled to learn semantic information and improve the execution of
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complex and interactive behaviors. To this end, our robots all implement the same
online semantic mapping algorithm, and continually acquire semantic information
through it. Occasionally, they also observe demonstrations of specific tasks (by
means of tele-operation). These tasks may include following/approaching a person,
approaching an object, etc. Demonstrations are collected in a dataset that is used
by the robot to learn affordance models that are greedily maximized to generate an
affordance driven situated policy. Users can instruct robots to bring objects in some
places, search for something, and more complex tasks that are just sequencing of
simple behaviors for a mobile robot.

Component Evaluation: Situated Behaviors For the purposes of our ex-
periment, we consider a library composed by one single situated behavior – i.e.,
approaching a generic object given the current state. In fact, while we show a more
effective use of spatio-temporal affordances in Chapter 7, in this section we aim
at evaluating the effects of bad underlying functionalities on high-level behaviors
generated through the mechanism of online semantic mapping. For this reason, we
train an affordance model, for this task, by means of only 3 demonstrations provided
by a non-expert user. The affordance is greedily used for generating a policy that
reproduces demonstrated behaviors with an (as expected high) average error of 9
cm for the distance and 22 degrees for the angle.

Component Evaluation: A-Grid As already discussed above in this chapter,
the A-Grid is an efficient structure for storing spatial information, and for discretizing
2D metric maps. It consists of a non-uniform grid whose cells vary as a function
of the occupied areas of the map, and whose compression rate with respect to the
original metric map is ∼ 98.5% [43]. However, its average structural bias is estimated
as 57%± 18.5 with respect to the real size of the represented spatial element. Due
to this, an object memorized in SM through the A-Grid is represented, on average,
almost 1.5 times bigger than its real size.

Component Evaluation: Vision System For our robots, we consider a very
simple and low-cost vision system that performs depth and color based segmentation.
The approach, in particular, presents an average Detection Rate of ∼ 0.8, and an
average False Alarm Rate of ∼ 0.13. In addition, the size of the objects extracted
by means of our segmentation algorithm typically presents a mean percentage error
of ∼ 0.25.

Component Evaluation: Speech Recognition The effectiveness of the speech
component is measured with respect to the quality of both the transcriptions of the
user utterances, and the command interpretation. The former are evaluated in terms
of Word Error Rate, scoring a value of ∼ 0.26. The second, instead, is measured in
terms of precision, recall and F1-measure. In particular, commands are recognized
with a precision of ∼ 75.5, a recall of ∼ 68.0 and an F1 of ∼ 71.5.

Integrated System Evaluation Given these high-error, simple components, our
goal is to evaluate how the whole system is affected during a typical task executed
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in a real environment. For this reason, we deployed our application by implementing
the online semantic mapping algorithm both in an office and domestic scenario. We
asked 6 expert and 10 non-expert users to drive the robot around the environment,
by means of the vocal interface, and provide commands to the agent. We also
asked them to generate events for the robot, through a laser pointer and the vocal
interface. In this application, such events are used to insert and update an object in
the semantic map. As explained before, events are triggered by two components: a
laser pointer – used to highlight the object – and a spoken dialogue – used to retrieve
the semantic label of the object. The robot started with no knowledge about the
environment and, initially, no command was properly executed, if related to objects
or locations in the environment. After having memorized different objects, locations
and properties in the robot knowledge base, the users were asked to

1. order the robot to move in front an object (5 times for each object);

2. count the number of times the robot was successful in executing its task.

Although almost 50% of the objects were placed with an error greater than 30cm,
only 7% of the times the users considered the task as failed at execution time. Hence,
despite the approximations that have been introduced in the representation, the
robot is still able to execute the task in a satisfactory way for the human. This
confirms our intuitions from the thought experiment – i.e., that the performance of
the robot increases when more knowledge is available to it.

6.4. Contributions
In this chapter, we discussed the generation of robot behaviors in the context of
deliberative systems that make use of semantic maps. In particular, we introduced
a novel approach for gathering semantic information (Section 6.1) and generating
adaptive behaviors while collecting new knowledge about the world (Section 6.2). To
evaluate our method without the error chaining induced by perception and planning
functionalities, we presented a thought experiment. Such experiment confirmed our
insights about the importance of semantic reasoning for increased autonomy and
adaptation capabilities. Then, we described our implementation, and we extended
our thought experiment to a sort of worst-case scenario. In this way, we have been
able to study the applicability of our solution in difficult domains, where perception
and actuation routines might fail due to external reasons.

The main contributions of this chapter are represented by (1) the definition of
a principled methodology for collecting semantic information by using our model
of semantic maps; (2) the definition, and task-oriented evaluation, of a procedure
for using the acquired knowledge to generate behaviors via reasoning and inference.
In particular, this chapter extends our prior work [9, 43] by extending the online
semantic mapping algorithm to the general case of a representation that is coherent
with the model of Chapter 4.
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Chapter 7

Policy Learning With
Spatio-Temporal Affordances

In the behavior of all men, and particularly of
rulers, against whom there is no recourse at
law, people judge by the outcome.

— Niccolò Machiavelli

In this Chapter, we move our focus from deliberation to situated action, where
we adopt Markov decision processes to generate robot policies and simultaneously
learn spatio-temporal affordances, as defined in Chapter 5. In particular, in this
chapter, we introduce our approach for learning action policies through Monte Carlo
tree search and data aggregation. While collecting cost-to-go information relative to
the task, in each visited state we enable our robots to concurrently acquire a model
of affordances. Then, at every time t, spatio-temporal affordances are adopted to
guide the Monte Carlo exploration and reduce the search space. Coherently with
our statement for this thesis, we adopt the tools of policy learning through the
MDP setting to generate situated behaviors, that are driven by the action semantics
implicitly encoded within spatio-temporal affordances.

This chapter is organized as follows. First, we introduce our assumptions and
problem formulation, as well as a general procedure for learning action policies
through Monte Carlo tree search and data aggregation (Section 7.1). Then, we
present our algorithm for learning situated robot policies through the use of spatio-
temporal affordance maps (Section 7.2). The approach is experimentally validated
in Section 7.3. Finally, we further discuss our work in terms of future directions and
extensions to the approach (Section 7.4).

Assumptions and Problem Formulation

In this chapter, we formalize our learning problem by adopting the Markov Decision
Process notation, as introduced in Section 2.14. In particular, we consider a category
of problems in which S represents the state space of the environment, A consists
of a discrete set of actions and T : S ×A× S → [0, 1] is the transition function (or
system dynamics). Throughout this chapter we also assume to access the dynamics
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of the environment only through samples obtained by executing a policy in the real
world or in a simulator. In our learning setting, we observe an immediate reward
R(s) in state s ∈ S, bounded in [0, 1]. In addition to this, in some occasions we
also observe demonstrations of a sub-optimal policy by means of state-action pairs
collected in a dataset D0.

7.1. Monte Carlo Search With Data Aggregation

In this section, we introduce a method for policy improvement with data aggrega-
tion [123, 122, 22] and Monte Carlo tree search, that we leverage in the next section
to learn semantic-driven situated behaviors through spatio-temporal affordances.
This method – Monte Carlo Search with Data Aggregation (MCSDA) – is an itera-
tive algorithm that, at each iteration i ∈ {0, ..., N}, generates a new policy πi that
improves πi−1 through short Monte Carlo roll-outs. In particular, such improvements
are obtained by directly executing πi−1 and aggregating the rewards measured over
several Monte Carlo simulations to the rewards at earlier iterations. As previous
work [123, 122, 22], MCSDA leverages a supervised learning approach to learn a
policy by means of a classifier.1

In its simplest form the algorithm takes as input a set D0 of state-action pairs
(e.g., obtained from expert demonstrations) and proceeds as follows. First, MCSDA
learns a classifier π0 by using D0. Then, during each iteration i, the algorithm
extends its dataset D by:

1. executing the previous policy πi−1 and generating a state st at each time-step
t;

2. selecting for each st an action at that maximizes the expected value Q(st, a)
(Eq. (2.3)) of performing action the a in st. Q(st, a) is estimated through
Monte Carlo tree search;

3. aggregating the new state-action pairs – at each time-step t – to the previous
dataset D.

Finally, the aggregated dataset is used to train a new classifier πi that substitutes
the policy used at the previous iteration. The details of MCSDA are provided in
Algorithm 6.

By relying on data aggregation, MCSDA generates a sequence π1, π2, . . . πN of
policies and preserves the main characteristics of algorithms like AggreVate [122] –
i.e., (1) it builds its dataset by exploring the states that the policy will probably
encounter during its execution, (2) it can be interpreted as a Follow-The-Leader
algorithm that learns a good classifier over all previous data and (3) can be easily
transformed to use an online learner by simply using the dataset in sequence.
However, the implementation of MCSDA is more practical due to the reduced
amounts of roll-outs generated from the Monte Carlo simulation.

1Note that, since the chosen actions influence the distribution of states, our supervised learning
problem is characterized by a non-i.i.d. dataset
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Input: D0: dataset of initial state action pairs {s, a}
Output: πN : policy learned after N iterations of the algorithm.
Data: A: discrete set of actions; N : number of iterations of the algorithm; ∆: initial

state distribution; K: number of Monte Carlo simulations; H: simulation
steps.

begin
// Learn initial policy
Train classifier π0 on D0.
Initialize D ← D0.
// Iterate the algorithm
for i = 1 to N do

// Sample state from initial distribution
s0 ← random state from ∆.
// Iterate over the time-steps
for t = 1 to T do

// Execute the policy in the state at time t− 1 and generate
a new state

Get state st by executing πi−1(st−1).
A ← select or sub-sample (if needed) feasible actions in st.
// Iterate over actions
foreach a ∈ A do

// Estimate the value of executing a in state st

Run K Monte Carlo simulations of length H to estimate Q(st, a).
end
// Choose the action that maximizes the estimated value
at ← arg maxa Q(st, a)
// Insert in the dataset the obtained state st and the best

action
D ← D ∪ {st, at}

end
// Learn a new policy
Train classifier πi on D.

end
return π̃N

end
Algorithm 6: Monte Carlo Search with Data Aggregation.

7.2. Policy Improvement with Spatio-Temporal
Affordances

In this section, we present Policy Improvement with Spatio-Temporal Affordance
Maps (π-STAM), an iterative method for learning spatial affordances and generating
robot behaviors. In particular, π-STAM is a model-based reinforcement learning
algorithm that builds on MCSDA and, additionally, uses aggregated datasets to
improve spatio-temporal affordance models. Our goal consists in generating a policy
that is composed of a discrete set of actions and adapts to the unknown action
semantics of the environment. As in the schema proposed in Section 7.1, π-STAM
uses a classifier to generate a policy which is continuously refined through the
aggregation [123] of an initial dataset with roll-outs collected through Monte Carlo
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Figure 7.1. π-STAM with time-invariant affordance signatures.

tree search [15]. While generating action policies, the same process is also used
to improve spatio-temporal affordance models. These are then used to evaluate
promising actions, and to reduce the search space of the Monte Carlo exploration.
Using this mechanism, situated behaviors are constructed according to the semantic
information implicitly modeled by the affordances.

More specifically, the goal of π-STAM is to generate, at each iteration i ∈
{1, ..., N}, a new policy πi that improves πi−1, given an initial π0. To illustrate
π-STAM, in Section 7.2.1 we first consider time-invariant (Remark 5.5) affordance
signatures and, then, we extend the algorithm to the general, time-dependent
case (Section 7.2.2). Additionally, we adapt the notation of the STA function
(Definition 5.1) from fE,T to fE,A, thus explicating our intention to model the
affordance function fE,ai of each action a ∈ A.

7.2.1. Time-invariant Affordance Signatures
In the case of time-invariant affordances, π-STAM evolves as described in Algorithm 7.
The algorithm takes as input a dataset D0 of state-action pairs to generate both
an initial policy π0 and the affordance signature2 θ0. As in Section 7.1, a policy
π is generated through a dataset D by using a supervised learning approach – a
generic classifier. Then, during each iteration, the algorithm proceeds as follows
(Figure 7.1):

2For Algorithm 7 we refer to affordance signatures as θi, where i is the iteration of the algorithm.
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1. it executes the previous policy πi−1 for T time-steps and generates a set of T
states {st | t = 1 . . . T};

2. it runs, for each st, the Upper Confidence Bound for Trees (UCT) algorithm [15].
As introduced in Section 7.1, UCT is an iterative algorithm that, at each
iteration h = 1 . . . H, simulates the execution of each legal action in st+(h−1)
and selects the best action a∗h as

e = C ·

√√√√ log(
∑
a n(st+(h−1), a))

n(st+(h−1), a) (7.1)

a∗h = arg max
a

Qi(st+(h−1), a) + e, (7.2)

where Qi(st+(h−1), a) is the action-value function (Eq. (2.3)) of action a in
state st+(h−1), C is a constant that multiplies and controls the exploration
term e, and n(st+(h−1), a) is the number of occurrences of a in st+(h−1). The
value function Qi(s, a) is obtained by back-propagating the final reward of
each simulation to all the traversed states s, according to the chosen action
a. After selecting the best action a∗h, a new state st+h is generated by the
transition function T of the MDP, and all the obtained state-action pairs
{(st+(h−1), a

∗
h) | h = 1 . . . H} are collected in a dataset Dnew. Legal actions in

st+(h−1) are selected from A according to the STA function fE,A(st+(h−1),θi−1).
In particular, actions are considered to be legal if their likelihood to be afforded
in st+(h−1) is higher than a threshold ρ that is adaptively determined according
to

ρ = 1
2fmax = 1

2 max
a∈A

fE,a(st+(h−1),θi−1), (7.3)

where fmax is the maximum affordance value with respect to the actions a ∈ A.
Additionally, actions whose likelihood is lower than ρ can be randomly selected
to be legal with ε probability. This is generally useful to avoid over-fitting to
wrong affordance models, especially during the first iterations of the algorithm.

3. it aggregates the new state-action pairs contained in Dnew to the previous
dataset D. Note that: (1) the dataset D is non-i.i.d., since chosen actions
influence the distribution of states; (2) while aggregating new state-action
pairs, previously seen states are removed from the original dataset to avoid
duplicates with different action labels and to allow information revision in the
algorithm;

4. it uses the aggregated dataset D to train a new classifier πi that substitutes
the policy used at the previous iteration, as well as the new signature θi of the
STA function. Such signature is chosen to maximize Eq. (5.4) – here reported
for clarity:

θj = arg max
θj

∑
{s:(s,aj)∈D}

log fE,aj (s,θj), (7.4)
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Input: D0: dataset of initial state action pairs {s, a}
Output: πN : policy learned after N iterations of the algorithm; θN : signature of the

time-invariant STA function, learned after N iterations of π-STAM.
Data: A: discrete set of actions; N : number of iterations of the algorithm; ∆: initial

state distribution; H: UCT horizon; T : policy execution time-steps; D:
aggregated dataset.

begin
// Learn initial policy
Train classifier π0 on D0.
// Initialize affordance signature for each action
for j = 1 . . . |A| do

Initialize θj,0 = arg maxθj

∑
{s:(s,aj)∈D0} log fE,aj (s,θj)

end
Initialize D ← D0.
// Iterate the algorithm
for i = 1 to N do

// Sample state from initial distribution
s0 ← random state from ∆.
// Iterate over time-steps
for t = 1 to T do

// Execute the policy in the state at time t− 1 and generate
a new state

1) Get state st by executing πi−1(st−1).
// Generate good state-action pairs according to their value

estimated by UCT with spatio-temporal affordances
2) Dnew ← UCT(A, st).

// Aggregate the dataset
3) D ← D ∪Dnew.

end
// Learn a new policy

4) Train classifier πi on D.
// Generate a new affordance signature
for j = 1 . . . |A| do

θj,i = arg maxθj

∑
{s:(s,aj)∈D} log fE,aj

(s,θj).
end

end
return πN , θN

end
Algorithm 7: π-STAM with time-invariant affordance signatures.

where j = 1 . . . |A|. As discussed in Chapter 5, this optimization consists of
finding parameters θj,i, at iteration i, by maximizing the likelihood of the
portion of the dataset labeled with the considered action aj .

The intuition behind this algorithm is the following. On the one side, given a
good STA model and a state s, the (legal) actions that UCT needs to explore in
s can be directly chosen according to their affordability. On the other side, if an
action a in state s is estimated to be of high value for the policy π, the affordance
value of a should be increased. To increase the affordance value of a in s, the pair
(s, a) should be included in the dataset over which the signatures are learned.
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Figure 7.2. π-STAM with time-dependent affordance signatures.

In the next section, we illustrate a similar mechanism for the case of time-
dependent affordance signatures.

7.2.2. Time-dependent Affordance Signatures

In this section, we refer to affordance signatures as θt,i and to affordance descriptors
as λi, where t is the considered time-step, and i is the iteration of the algorithm. In
the case of time-dependent affordance signatures, π-STAM takes as input a dataset
D0 of state-action pairs, generates an initial policy π0, and evolves as described
in Algorithm 8. In particular, at each iteration, the algorithm proceeds as follows
(Figure 7.2):

1. it executes the previous policy πi−1 for T time-steps and, at each time-step t:

(a) it generates a state st by means of the policy;

(b) it executes, starting from st, the UCT algorithm for h = 1 . . . H iterations
and it generates a dataset of state-action pairs Dnew = {(st+(h−1), a

∗
h) |

h = 1 . . . H}. Legal actions in state st+(h−1) are selected from A according
to the STA function fE,A(st+(h−1),θt+(h−1),i−1). In particular, actions
are considered to be legal if their likelihood to be afforded in st+(h−1) is
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Input: D0: dataset of initial state action pairs {s, a}
Output: πN : policy learned after N iterations of the algorithm; λN : descriptors of

the time-dependent STA function, learned after N iterations of π-STAM.
Data: A: discrete set of actions; N : number of iterations of the algorithm; ∆: initial

state distribution; H: UCT horizon; T : policy execution time-steps D:
aggregated dataset; Dθ: dataset of parameters θ.

begin
// Learn initial policy
Train classifier π0 on D0.
// Initialize affordance signature randomly for each action
for t = 1 to T do

Initialize θj,t,0 as random.
end
Initialize D ← D0.
for i = 1 to N do

// Sample from initial distribution
s0 ← random state from ∆.
// Initialize dataset for learning descriptors from signatures
Dθ ← ∅.
for t = 1 to T do

// Execute policy in state at t− 1 and generate new state
Get state st by executing πi−1(st−1).
// Generate good state-action pairs according to their value

estimated by UCT with spatio-temporal affordances
Dnew ← UCT(A, st)
for h = 1 . . . H do

// Extract state-action pairs for time-step t+ (h− 1)
{(st+(h−1), a

∗
h)} ← extract(Dnew,h)

// Aggregate extracted data to the corresponding dataset
Dt+(h−1) ← Dt+(h−1) ∪ (st+(h−1), a

∗
h)

end
// Generate signature of time t by using dataset Dt

for j = 1 . . . |A| do
θj,t,i = arg maxθj

∑
{s:(s,aj)∈Dt} log fE,aj

(s,θj).
end
// Extract states in Dt

SDt ← getStates(Dt)
// Store extracted states with the signature of time t
Dθ ← Dθ∪ labelData(SDt

,θt,i)
// Aggregate dataset
D ← D ∪Dnew

end
Train classifier πi on D.
λi ← Parameters from regressor trained on Dθ

end
return πN , λN

end
Algorithm 8: π-STAM with time-dependent affordance signatures.
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higher than a threshold ρ, that is adaptively determined according to

ρ = 1
2 max
a∈A

fE,a(st+(h−1),θt+(h−1),i−1). (7.5)

As in Algorithm 7, actions whose likelihood is lower than ρ can be
randomly selected to be legal with ε probability;

(c) it aggregates each element of the new set {(st+(h−1), a
∗
h)} to the appro-

priate3 dataset Dt+(h−1);
(d) it aggregates the Dnew to the dataset D;
(e) it uses Dt to train a signature θt,i as in Eq. (5.3) – here reported for

clarity:

θt,j = arg max
θt,j

∑
{st:(st,τj)∈Dt}

log fE,τj (st,θt,j). (7.6)

θt,i is then stored in a dataset Dθ;

2. it uses the aggregated dataset D to train a new classifier πi that substitutes
the policy used at the previous iteration;

3. it uses Dθ to learn the descriptors λi as the parameters of a regression function.

Differently from its simpler version, π-STAM with time-dependent affordance
signatures aggregates multiple datasets. In fact, in addition to D – that is used to
generate the policy π, the algorithm stores, for each t = 1 . . . T , an aggregated dataset
Dt that is used to train the signature θt. All the signatures are then collected in Dθ,
that is used for learning a regression function whose parameters are the affordance
descriptors λ.

7.2.3. Semantic-driven Situated Behaviors
π-STAM is a method that leverages Monte Carlo tree search to generate robot policies
by means of spatio-temporal affordance maps. In Chapter 5, we characterized spatio-
temporal affordance maps as task-directed representations, that describe a given
environment in terms of its action semantics. Additionally, we explained that spatio-
temporal affordances implicitly encode the semantics of an action by expressing
its “goodness”, given a state of the world. Following these observations, in this
section we argue that policies generated through our algorithm are semantic-driven
situated behaviors. In fact, during each iteration of π-STAM, the search space of
the Monte Carlo search is restricted by the affordance model that is continuously
refined. Hence, policy improvement is restricted to the action space induced by the
affordance model. Since affordances encode action semantics, a policy obtained in
the search space induced by a STA is a semantic-driven policy.

Remark 7.1. A policy obtained through π-STAM is a semantic-driven situated
behavior, since it is generated through affordances that encode action semantics.

3Note that, in Algorithm 8, the aggregation can be carried out directly at time t, since iterations
of UCT starting at t + 1 affect only datasets of future times.
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Figure 7.3. RoboCup scenario for the evaluation of MCSDA.

7.3. Experimental Validation
In this section, we validate our approach both on a real NAO platform (V4) and
on simulations running on a single Intel Core i7-5700HQ core, with CPU@2.70GHz
and 16GB of RAM. In particular, we first measure the effectiveness of MCSDA in
learning a robot policy (Section 7.3.1). Then, we evaluate the impact of affordances
both by comparing π-STAM against MCSDA (Section 7.3.2) and by qualitatively
evaluating learned affordance models according to the state of the world.

7.3.1. Monte Carlo Search with Data Aggregation
In this section, we consider the setup proposed by the RoboCup Standard Platform
League (SPL), where NAO robots compete in a 5-vs-5 soccer game (Figure 7.3).
Our goal consists in generating a robot defender policy that adapts to the strategy
of the opponent team. Such strategy is not known and, hence, the world dynamics
is partially observable and difficult to model. In fact, RoboCup is a dynamic
adversarial environment where robots must adapt to the surrounding world quickly
and efficiently. For this reason, we evaluate our learning approach in the short range
after few number of simulation steps.

MCSDA with NAO and RoboCup To apply MCSDA to the RoboCup context,
we represent the state of our problem as a tuple (pr, pb, vb), where pr = (xr, yr)
is the position of the robot, pb = (xb, yb) the position of the ball in the field,
and vb = (vxb, vyb) its velocity. Additionally, we consider a discrete set of actions
composed by: stand (the robot does not move), move_up (the robot moves forwards),
move_down (the robot moves backwards), move_left, move_right. The reward
function is

R(s) = MAX_FIELD_DISTANCE− |pr − pb|
MAX_FIELD_DISTANCE

, (7.7)

where MAX_FIELD_DISTANCE corresponds to the game-field diagonal. Given this
reduced domain representation, we use MCSDA with expert demonstrations collected
from the opponent team. We run Monte Carlo simulations both on a simplified
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(a) Normalized average reward of the learner
and baseline after different MCSDA itera-
tions.

(b) Sum of intercepted ball over five matches
after different MCSDA iterations.

Figure 7.4. Evaluation of MCSDA after different iterations.

simulator and the C++ B-Human simulator4, and we set the roll-out horizon H = 3.
This value has been found to be a good trade-off between in-game performance
improvement and usability of the approach. Extending the horizon, in fact, improves
the player performance at the cost of more computational resources.

Results The goals of our learner consist in (1) improving defender’s performance
while playing against opponent robots and (2) decreasing the number of opponent
scores while intercepting as many balls as possible. Here, we analyze the average
reward (Figure 7.4a) of our agent as well as the number of summed ball interceptions
(Figure 7.4b) and the final score (Table 7.1) obtained during five regular games,
after 100, 200, 300, 400, 500 iterations of the algorithm. To quantify the improvement
of the learned behavior, we compare MCSDA against the fixed defender policy
used for initializing the algorithm. In particular, for our evaluation we use two
teams, one featuring a learning defender, the other with the fixed policy defender.
Figure 7.4a shows that MCSDA always learns a better policy with respect to the
baseline, with a drop in performance between game 3 and 4 that is probably due
to game factors, such as player penalization and ball positioning rules. Such drop
only has a marginal impact with respect to previous improvements. Figure 7.4b,
instead, shows the sum of intercepted balls of the two teams on the same set of
games as before. The increased number of interceptions is confirmed by the final

4https://www.b-human.de/

Table 7.1. Final scores of five matches after different MCSDA iterations.

MCSDA iterations
Teams 100 200 300 400 500
Learning 2 3 0 1 1

Non-learning 3 2 1 1 1

https://www.b-human.de/
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Figure 7.5. Human-robot handover with π-STAM both in real world and simulation.

scores reported in Table 7.1, where the score of the opponent team decreases as the
learner refines its policy. Since we learn the policy of a defender, we use as a metric
the number of received goals rather than the number of scored goals.

7.3.2. Policy Improvement with Spatio-Temporal Affordance
Maps

Human-robot handovers are difficult tasks, where the large state space of the problem
greatly affects the usability of policy learning methods. Since the goal of π-STAM
is to refine an affordance model that reduces the search space of the policy, in this
section we evaluate our algorithm on this problem – after a small number iterations.
In particular, we test the effectiveness of π-STAM to obtain a good handover policy
and yet to reduce (1) the number of simulated action executions in UCT and (2)
the duration of an iteration of the algorithm. To this end, we compare against a
baseline implemented through MCSDA. We evaluate the learned policies both on a
V-REP simulated and real NAO robot by using the average reward obtained over 10
different trials. Additionally, we qualitatively evaluate the learned affordance models
by observing their evolution as a function of the state of the world. Finally, we show
an example of prior knowledge introduced in the affordance model. In particular, we
embed in the model the “eye-contact” social rule, according to which no handover
can be performed when the partner is not paying attention.

Human-robot Handovers with π-STAM In our experimental setup, the task
of the humanoid robot is to take an object – a red ball – from the hands of a human
operator. During the learning phase of the algorithm (1) the horizon is selected to be
H = 4 to guarantee a good trade-off between performance improvement and usability
of the approach, (2) the probability to randomly expand a non-legal action in UCT is
set to ε = 0.3, (3) the affordance function is implemented through Gaussian Mixture
Models (GMMs) and (4) the policy is learned through GMM classification. Since
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(a) Average reward obtained by π-STAM and
the baseline in simulated experiments.
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(b) Average reward obtained by π-STAM and
the baseline in real world experiments.

Figure 7.6. Normalized average reward obtained by π-STAM and the baseline algorithm
over 10 handovers, both in simulation and real world.

the GMMs are used for implementing the affordance function, the signature θ of
the STA is composed as a tuple θ = 〈π1, µ1,Σ1, . . . , πN , µN ,ΣN 〉, where πi is the
prior, µi the mean vector and Σi the covariance matrix of a mixture of N Gaussians.
The state of the problem is composed of the Cartesian pose (position and angles) of
the robot kinematic chains corresponding to the head and the two arms, together
with the state of the hands (opened/closed). Additionally, the state includes the
relative distance between the robot and object poses, the position of the target
in the image frame of the cameras as well as an “attention bit” indicating if the
human is looking towards the NAO. The robot is allowed to execute the following
27 actions: (1) rotate the head to the left, right, up and down; (2) move the body
forward, backward, left, right and rotate it on the left and right; (3) move one of the
two arms forward, backward, left, right, up and down; (4) close and open the hands;
(5) execute the “null” action to stay still. The reward function R(s), instead, is
modeled to penalize the distance of the robot from the target, as well as orientations
of the head where the object is not centered in one of the two cameras. Additionally,
the reward penalizes the robot whenever its hands are closed before the object is
reached.

Results The goal of our robot is to perform handovers and maximize the obtained
reward. In our experiments, we analyze the average reward obtained by the agent,
as well as its standard deviation, both in simulation and real world. Figure 7.6
shows the normalized average reward obtained by a NAO during 10 handovers,
both in simulation (Figure 7.6a) and in real world (Figure 7.6b). In the figure, we
compare the reward obtained by π-STAM and the baseline algorithm (MCSDA) over
3 iterations of the algorithms. Notice that, as shown in Figure 7.7, while the baseline
fully explores all the actions during the execution of UCT, π-STAM only expands
legal actions. Still, the difference in the obtained average reward only slightly favors
the baseline algorithm and the generated policies perform similarly. Conversely, the
computational load (Figure 7.7) and time consumption (Figure 7.8) of π-STAM are
significantly reduced with respect to the baseline. In particular, the number of states
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Figure 7.7. Comparison between the mean number of states expanded by UTC in π-STAM
and in the baseline algorithm. As shown in the top figure, in the former algorithm
states are expanded as legal actions because of affordances or because they are randomly
selected. In the latter case, instead, the reported value is constant because all actions
are always evaluated.
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Figure 7.8. Comparison between the time consumption (in seconds) of 3 iterations of
π-STAM and the baseline algorithm.

that π-STAM expands due to affordances (Figure 7.7a) is small. This demonstrates
that π-STAM is able to efficiently capture the semantics of actions and, thanks to
this, the search algorithm only spends time in “good” portions of the state space –
those with higher expected reward. Notice that, as shown in Figure 7.7a, a significant
part of the states expanded during the execution of π-STAM is randomly selected
and depends on the chosen ε value. While this represents a lower-bound to the
number of expanded states, it is essential to guarantee exploration in the affordance
model and avoid overfitting to wrong state spaces during the first iterations of
the algorithm. Although not discussed here in detail, it is possible to improve the
efficiency of the algorithm by reducing the ε value when the number of iterations of
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(a) Body forward (b) Head right (c) Head up

Figure 7.9. Heat-map of the spatial affordance distribution generated by π-STAM (after 3
iterations) for the body forward, head right and head up actions. The initial distribution
was composed of states located at a distance between 45cm and 60cm in front of the
target. Each cell of the grid has a size of approximately 5cm. Red colors represent high
affordance values in the cell, while blue colors represent low values.

π-STAM increases. Intuitively, this enables the algorithm to first explore the state
space and then to follow the learned affordance model proportionally to a confidence
that increases over the number of iterations.

In addition to the learned policy, we qualitatively evaluate the obtained affordance
model. Figure 7.9, for example, shows the heat-map – with a 5cm granularity –
corresponding to the spatial affordance distribution of three actions: body forward
(Figure 7.9a), head right (Figure 7.9b) and head left (Figure 7.9c). These have
been generated from the model learned after 3 iterations of π-STAM with a small
initial distribution composed of states located at a distance between 45cm and 60cm
in front of a fixed target. From the figures, it can be observed that the learned
affordances accurately model the need of the robot to (1) go forward when it is
far from the target and stop at a distance of ∼20-25cm (from which the target is
reachable with the arms), (2) turn the head right when it reaches positions on the
left of the target, (3) increase the head pitch when it is close to the target (located
at a position higher than the robot). Finally, Figure 7.10 shows the affordances
of each action when implementing an “eye contact” social rule. Such rule states
that the robot should wait for eye contact with the human partner to start the
handover. In this test, we simply assume to have eye contact when the (Aldebaran)
tracker of the NAO detects a face that is oriented towards the robot. As shown
by results in Figure 7.10a, when the human is not paying attention, the highest
affordance value (in green) corresponds to the “null” action. Additionally, head
movements are allowed to search for eye contact. Conversely, when the partner
looks at the NAO, the “right arm forward” action has the highest affordance value
(see Figure 7.10b), and other arm-related actions are enabled. To provide this prior
knowledge to the system, we initialize the signature θ0 of the STA function with
parameters of the GMM learned from a dataset where (1) all the actions are enabled
when the “attention bit” is on and (2) only the head rotations and “null” actions
are allowed when the “attention bit” is off.
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(a) Learned affordance values for human-robot handovers in case of no eye-contact.

(b) Learned affordance values for human-robot handovers in case of eye-contact.

Figure 7.10. Affordance values for all the actions when the “eye contact” social rule is not
respected and vice versa. The green bar corresponds to the maximum affordance action.
Each action is named with the first letter corresponding to the considered kinematic
chain (e.g. RA: right arm), while the second letter corresponds to the movement direction
(e.g., B: backward, U: up, etc.). B-N, instead, corresponds to the “null” action.

7.4. Contributions

In this chapter we discussed the generation of situated robot policies by means of
spatio-temporal affordances. In particular, we first introduced a general method
for policy improvement based on Monte Carlo tree search (Section 7.1). Then,
we extended this algorithm to use an affordance-driven Monte Carlo exploration
and concurrently learn spatio-temporal affordances. In particular, we discussed π-
STAM (Section 7.2) – Policy Improvement with Spatio-Temporal Affordance Maps,
a novel practical algorithm that generates semantic-driven policies for autonomous
agents through the combination of UCT and affordances. Even though the proposed
approach can suitably learn action semantics, our algorithm still presents some
limitations, such as (1) the use of expensive calls to a simulator and (2) the limited
applicability to the large state-spaces of multi-agent systems, especially in the case
of limited computational resources. While we attempt to relieve the first issue in the
next chapter (Chapter 8), by learning dynamics models for robot control, we plan
to extend this approach by using hierarchical affordance maps to further reduce the
search space.
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The main contributions of this chapter are represented by (1) the presentation and
(2) extension of the MCSDA algorithm to learn a policy by means of spatio-temporal
affordances; (2) the definition and evaluation of a novel procedure for learning both
time-invariant and (3) time-dependent spatio-affordances in the context of MDPs.
With respect to our prior work [117], this chapter extends π-STAM to the notion of
time-dependent affordances introduced in Chapter 5, thus defining a full procedure
for optimizing affordances and learning situated policies.





107

Chapter 8

Learning System Dynamics

On course doesn’t mean perfect. On course
means that even when things don’t go
perfectly, you are in the right direction.

— Charles Garfield

In Chapter 7 we extensively leverage simulations to access world dynamics
and learn affordance-based situated behaviors. Unfortunately, simulator calls are
generally costly and require high computational resources. For this reason, in this
chapter we move our attention to approaches for learning accurate dynamics models,
with limited access to physical system. This scenario is typical in robotics domains,
where learning policies directly on robots is dangerous and non-trivial. To avoid
this, in our work we develop a method for improving the multi-step prediction
capabilities of the learned dynamics models. Of importance for this thesis, by using
these improved models we can forward-simulate the dynamics of a system. Hence,
we can directly use the learned models for generating situated behaviors within
algorithms like MCSDA and π-STAM.

This chapter is organized as follows. First, we introduce the problem, the notation
and the mathematical formulation (Section 8.1). Then, in Section 8.2, we describe
our method and we experimentally validate it in Section 8.3.

8.1. Motivation and Problem Formulation
As introduced in Section 3.3, learning based approaches for controlling robots and
autonomous agents are typically categorized into model-based [7, 55] and model-
free [139, 85, 31, 72] methods. In this chapter, as in Chapter 7, we focus our attention
on problems belonging to the former category, where a transition function – i.e.,
a dynamics model – is used for the creation of a control policy. In fact, as in the
case of MCSDA and π-STAM, the generation of robot behaviors often requires the
use of dynamics models that accurately capture the evolution of the environment.
However, with the increasing complexity of both robotic technologies and application
domains, analytically characterizing system dynamics is either difficult and error
prone, or computationally expensive (as in the case of simulators). To tackle this
problem, both physics-based methods [69] and black-box learning [6] have been
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DaD improves the multi-step prediction performance of learned dynamics models.

successfully proposed in literature. Unfortunately, despite the flexibility of these
solutions, the accuracy of data-driven approaches typically depends on the amount
of data collected. However, data collection is often expensive or labor intensive in the
case of robotics problems, where it is often desirable to observe only few examples
on the physical system.

In this chapter, we address the problem of learning improved dynamics mod-
els, that can be used for policy learning, with small amount of data. To this
end, throughout this chapter we use the Markov Decision Process notation (Def-
inition 2.14), by considering a category of problems in which (1) the transition
function T : S × A × S → [0, 1], or more simply T : S × A → S, is unknown and
(2) a reward R(s, a) or, equivalently, a cost C(s, a) is observed. As introduced in
Chapter I, solving an MDP consists of finding a policy π that maximizes the expected
cumulative reward, or equivalently, minimizes the expected cumulative cost. In
the case of unknown dynamics, approaches based on model-based reinforcement
learning (MBRL) typically associate the search for a policy π with the derivation of
an estimator T̂ of the unknown transition function. This, in fact, is generally known
as a system identification problem, that we further discuss in detail to clarify our
contribution.

8.1.1. System Identification
System identification has been studied both in the traditional control literature [103]
and in the machine learning community [45, 132]. Some of these approaches [132]
provide performance guarantees in the case of infinite-data and underlying linear
model, while others [45, 69] optimize the the single-step predictive criterion

T̂ = arg min
T−1∑
t=1
‖st − T̂ (st−1, at−1)‖22 (8.1)

from a dataset of trajectories {(s0, a0) . . . , (sT−1, aT−1)} of state-action pairs col-
lected from the system. Unfortunately, using dynamics models learned through
Eq. 8.1 typically leads to exponential cascading errors [144]) that make the learned
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T̂ only partially usable. In particular, simply collecting system trajectories, learning
the dynamics, and optimizing the control policy results in inaccurate or unstable
dynamics models and poorly performing control policies.

To tackle this problem, an iterative process has been formalized [1, 30], that
alternates between fitting the dynamics model and collecting new data under the
distribution induced by the policy. Intuitively, on the one hand this mechanism
enables the model to improve its estimate of the dynamics over important regions
of the state-space (i.e., those visited by the policy); on the other hand, the control
policy, that is derived from the dynamics, improves or exploits inaccuracies in the
dynamics model. Thus, at each iteration of the algorithm, either a good policy
is found, or new data is collected for improvement in the subsequent iteration. A
slightly different version of this procedure is represented by the DAgger system
identification framework [121] (Figure 8.1). DAgger typically takes as input an
empty dataset and an exploration policy πexplore(st), that can be initialized to be
random or by means of expert demonstrations. Then, the algorithm (1) executes
the policy to collect a set of state-action pair trajectories {ξi}, where ξi = {(st, at)}i;
(2) aggregates {ξi} into the training dataset; (3) learns from the dataset a dynamics
model T̂ (st, at)→ st+1; (4) optimizes a new control π that minimizes c(st, at) over
the time horizon T of the control problem; (5) tracks the best policy from all those
generated. This iterative procedure refines the dynamics model by aggregating data
generated from states induced by running the system with π1, . . . , πN .

Still, despite the use of iterative procedures, MBRL methods generally suffer
from compounding errors during policy optimization, that are due to sequential
predictions performed with the learned model. In fact, by performing sequential
predictions, the model is recursively applied and its previous output is fed as its new
input (Eq. 8.2), thus resulting in a significant deviation from the true system.

ŝt+1 = T̂ (ŝt, at). (8.2)

To address this problem, in the next section we describe a model-based reinforce-
ment learning framework that reuses collected data to improve the learned dynamics
model.

8.2. Multi-Step Predictive Performance Improvement
In this section we describe Data as Demonstrator for Control, to tackle the dynamics
learning problem. For achieving good multi-step predictive performance while using
supervised learning methods, Venkatraman et al. [144] recently introduced Data As
Demonstrator (DaD). DaD is a meta-algorithm that augments the traditional
dynamics learning method with an additional iterative procedure. In particular,
to minimize the cascading error, DaD specifically targets the distribution induced
from sequential application of the model. To this end, the algorithm performs
“rollouts” with the learned model using trajectories from the training data. Then,
the algorithm generates synthetic data by creating new input-target pairs that point
each prediction to the correct time-indexed state along the training trajectory.1

1Trajectories can be sub-sampled shorter than the control problem’s time horizon.
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Input: N : number of iterations N ; {ξk}: K trajectories of lengths {Tk}.
Output: T̂n: dynamics model with the lowest error on validation dataset.
Initialize dataset D ← {([st, at], st+1)} from example trajectories ξk

// Iterate the algorithm
for n = 1 . . . N do

// Learn a dynamics model from the available dataset
T̂n ← learn(D)
// Iterate over the example trajectories
for k = 1 . . .K do

// Extract the initial state from the trajectory
s0 ← ξk(0)
// Extract the full sequence of actions executed in the

trajectory
{at} ← ξk

// Apply the original sequence of actions to the learned model,
to obtain new states

(ŝ1 . . . ŝT )← rollout(T̂n, s0, {at})
// Use the generated states, the actions, and the true states to

create a new dataset
Dnew ← {([ŝ1, a1], s2) . . . ([ŝTk−1, aTk−1], sTk

)} where st ← ξk(t)
// Aggregate the dataset
D ← D ∪Dnew

end
end

return T̂n with lowest error on validation trajectories
Algorithm 9: Data As Demonstrator (DaD) for Control.

While we refer the reader to Venkatraman et al. [144] for theoretical details,
DaD (as presented in Venkatraman et al. [144]) only handles uncontrolled dynamics.
Here we introduce an extension to this algorithm that enables it to handle controlled
systems and to be used in the MBRL setting, as shown on the right side of Figure 8.1.

8.2.1. Data as Demonstrator for Control
Data as Demonstrator for Control is an iterative algorithm that builds on DaD and
extends it to controlled dynamics setting. Our method, as detailed in Algorithm 9,
relies on data aggregation and, at each iteration, it proceeds as follows:

1. learns a forward dynamics by optimizing a supervised learning loss to predict
targets st+1 from “features” [st, at];

2. executes a rollout of the model to obtain states ŝi. In particular, it starts from
a state s0 taken from the of the trajectory ξk and performs forward simulations
by means of recursive updates (Eq. 8.2) with (1) the learned model T̂n and (2)
the true sequence of controls {at} from ξk;

3. augments the datasetD by creating input-target pairs ([ŝt, at], st+1). Differently
from Venkatraman et al. [144], we do not separate the state transition dynamics
from the controls but we jointly optimize the model.
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Intuitively, this procedure provides synthetic recovery examples to the learner,
which are then used to compensate for the compounding error resulting from recursive
updates.

8.3. Experimental Evaluation

In this section, we evaluate our algorithm (‘DAgger +DaD’) both on simulated
dynamical systems2 and real robotic platforms. In particular, we consider two
simulated scenarios: the classic cartpole swing-up problem and the challenging
helicopter hovering problem. Additionally, we show the applicability of our approach
on real systems such as the Videre Erratic mobile base and the Baxter robot. In
each described experiment, we learn dynamical models of the form:

∆t ← T (st, at), where ∆t = st+1 − st. (8.3)

This parametrization is similar to [30], where the previous state is used as the mean
prior for predicting the next state. Due to the difficulty of optimizing the expected
cumulative cost under arbitrary dynamics and cost models, for simplicity, we focus
on minimizing a sum-of-quadratics cost-to-go function:∑

t

c(st, at) =
∑
t

sTt Qtst + aTt Rtat. (8.4)

By using this form of cost function, along with a linearization of the learned dynamics
model, we can formulate the policy synthesis problem as that of a Linear Quadratic
Regulator (as introduced in Section 2.4.3), which allows the policy to be computed
in closed-form. In each experiment, we compare ‘DaD +DAgger’ to ‘DAgger Only’.
For the Cartpole, Erratic, and Baxter experiments, the dataset was initialized with
a random exploratory policy, while the helicopter problem received both a random
and an expert policy (generated form LQR on the true dynamics). In addition,
the simulated cartpole and helicopter experiments collected additional exploratory
rollouts on every iteration of DAgger with the random and expert policies respectively.
For the Baxter robot, we achieved exploration through an ε-random controller that
added random perturbation to the commanded control with ε probability. For each
method, we report the average cumulative cost averaged over ran trials. In particular,
we ran three trials on the Erratic and five trials for other benchmarks.

8.3.1. Simulation Experiments
Cartpole swing-up : The cartpole swing-up is a classic controls and MBRL
benchmark, where the goal is to swing-up a pendulum by only applying a linear
force on the translatable base. We learn a linear dynamics model in the form of
Eq. 8.3 using Ridge Regression (regularized linear regression). We then use an
iterative Linear Quadratic Regulator [81] (iLQR) controller about a nominal swing-
up trajectory in state-space with an initial control trajectory of zeros. The iLQR
optimization procedure finds a sequence of states and controls feasible under the

2Simulators, except the helicopter, available at https://github.com/webrot9/control_
simulators with C++ and Python APIs.

https://github.com/webrot9/control_simulators
https://github.com/webrot9/control_simulators
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(a) Cartpole swing-up.
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(b) Cartpole swing-up with control noise.

Figure 8.2. Results on simulated cartpole controlled for swing-up behavior through iLQR
about nominal trajectory.
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(a) Helicopter hover.

N=1 N=2 N=3 N=4 N=5 N=6

DAgger Iteration N

10-5

10-4

10-3

10-2

10-1

100
C

u
m

u
la

ti
v
e
 c

o
st

 (
lo

g
 s

ca
le

)
Cumulative cost from best policy ¼2 (¼1; : : : ¼N)

DAgger+DaD with RFF Learner

DAgger+DaD with Linear Learner

(b) Helicopter hover with different learning
algorithms.

Figure 8.3. Results on simulated helicopter controlled for hover behavior (the cost is
expressed in log-scale).

learned dynamics model to minimize the cost. The simulated system has system-
transition noise. In addition, we compare our algorithm’s performance both with,
and without control noise – to simulate the effects of noisy actuation on a real-robot.
We show results in Figure 8.2 of the evaluated trajectory costs, accumulated over
the problem’s time horizon.

Helicopter simulator : Helicopter hovering is a difficult problem due to the
instability of the dynamical system, especially under noise. We utilize the helicopter
simulator from [1] with additive white noise and follow a problem setup similar
to [121]. In addition, we make the problem more difficult by initializing the helicopter
at states up to 10 meters away from the nominal hover configuration. As the dynamics
are highly non-linear, we show the advantage of using Random Fourier Features
(RFF) regression [112] to learn a dynamics model in a 21-dimensional state space. We
find a steady-state linear quadratic regulator (LQR) policy to map the helicopter’s



8.3 Experimental Evaluation 113

Figure 8.4. Results for controlling a Videre Erratic differential-drive mobile robot in
open-loop.

Figure 8.5. Results on controlling a Baxter robot with a steady-state control policy. We
learn a dynamics model and compute a policy to move the robot manipulator from state
s0 to sT .

state to the 4-D control input. The results in Figure. 8.3 show that DaD dramatically
improves performance over only DAgger.

8.3.2. Real-Robot Experiments

Videre Erratic: In this experiment, we control the velocity of a Videre Erratic
mobile base. The goal is to drive the robot to a given position specified in the robot’s
reference frame. The 3-D state vector includes the robot position and orientation
while the 2-D control vector is the robot velocity. The dynamics model is learned
using Ridge Regression. Unlike other experiments, we use a trajectory-control policy
that finds a sequence of controls a1, . . . , aT to be applied in open-loop, at run-time,
on the robot. We compute the control sequence by simulating the learned dynamics
model T̂ with a simple proportional controller. Results are shown in Figure 8.4.

Baxter robot: We use the ’DAgger +DaD’ approach to control a 7-degree-of-
freedom manipulator to a target joint configuration. We command the robot arm
in torque control mode with suppression of the inbuilt gravity compensation. The
14-dimensional state vector consists of the joint angles and their velocities. We
learn the dynamics model using Ridge Regression and compute a steady-state LQR
control policy, obtaining the results in Fig. 8.5.
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Figure 8.6. Comparison of exploration policies. Cost values are not normalized across
plots.

8.3.3. Reflections on the Experiments

In our simulation experiments we compared the performance obtained by applying
‘DAgger +DaD’ on a cartpole with and without control noise. Results show that the
improvement of our method over ‘DAgger Only’ decreases in presence of actuation
noise. This can be explained by the fact that, over the same generated nominal
controls, the state trajectories obtained during each rollout are slightly different
and represent a limitation on the efficacy of the learner over the same number of
iterations – i.e. there is a higher baseline error in the dynamics model.

In the case of the helicopter, we additionally compared the results obtained
by using two different learning algorithms and by applying different exploration
policies. For the former, we compared the non-linear RFF [112] regression against
linear regression. As shown in Figure 8.3b, the non-linear learner obtains a better
result, thus capturing the heavy non-linearity of the helicopter dynamics. The
DAgger method [121] requires drawing state-transition samples at every iteration
from some exploration distribution. In Figure 8.6a, we compare using an expert
exploration policy (LQR controller using the true dynamics) versus a random-control
exploration policy. With ‘DAgger +DaD’, the learned dynamics and policy yield
a stable behavior for both types of exploration, with some improvement using the
expert policy. The ‘DAgger Only’ baseline often is unable to learn a stable policy
using the random exploration policy. Interestingly, ‘DAgger +DaD’ without the
exploration policy does not lead to a significant performance difference (Figure 8.6b)
compared to the baselines. This comparison, in particular, shows the difference
between Abbeel and Ng [1] (no exploration) and Ross and Bagnell [121] (constant
fraction exploration).

The real-robot evaluations show the applicability of our method on real systems
and complex platforms. In particular, the Erratic experiments show that by using
DaD, we are indeed able to get a better dynamics model for forward-prediction.
This model can be used for trajectory generation and optimization as described in
Section 8.3.2, where the sequence of obtained controls has been directly applied to
the Erratic in an open-loop as a control trajectory. While the application of ‘DAgger
+DaD’ on the Baxter robot results in a limited performance improvement, this
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confirms our hypothesis that, in robotic platforms characterized by high actuation
noise (e.g. Baxter’s chain of noisy actuators), only smaller improvements over
‘DAgger Only‘ can be achieved. In fact, this is consistent with the simulated
noisy-actuation result in Figure 8.2b.

8.4. Contributions
In this chapter, we discussed the issues related to model based reinforcement learning
in presence of complex or unknown system dynamics (Section 8.1). Of importance for
the goals of this thesis, we introduced an algorithm that extends previous work [144]
and enables more accurate forward-simulations of dynamics models (Section 8.2).
These models can be then used in the context of our algorithms for situated behavior
generation, such as MCSDA and, in particular, π-STAM. In fact, results illustrated
in Section 8.3 show the efficacy of our algorithm in developing LQR, iLQR, and
open-loop trajectory-based control strategies both on simulated benchmarks as well
as physical robot platforms.
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Part IV

Conclusions
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Chapter 9

Conclusions and Discussion

The end of a melody is not its goal: but
nonetheless, had the melody not reached its
end it would not have reached its goal either.
A parable.

— Friedrich Nietzsche

The main premise of our work has been that spatial semantics is necessary
to obtain accurate and intuitive world models, that enable both deliberation and
situated activity. In this chapter, we briefly discuss and summarize our main
theoretical and practical findings in support of that claim. Finally, we briefly discuss
some open research problems and possible directions for extending our work.

9.1. Summary of Contributions
In this section, we summarize the contributions and novelties introduced in this
thesis in relation to the specific purposes for which they have been adopted.

9.1.1. Models for Spatial Semantics

The role of spatial semantics has been investigated by first introducing two models
for describing environmental knowledge. In particular, we formalized a novel rep-
resentation that explicitly models the environment through the notion of semantic
maps. These maps intuitively formalize high-level knowledge and symbolic informa-
tion. Then, we formalized a new model of spatio-temporal affordances. This model
represents action semantics in relation to the environment and implicitly encodes the
effects of the actions. We leverage these models throughout this thesis to generate
our semantic-driven robot behaviors.

9.1.2. Action Semantics and Policy Generation

In the statement of our thesis, we argued that spatial semantics enable both delib-
eration and situated activity. To support this argument, we used our two models
of spatial semantics to generate both high-level behaviors, by using semantic maps,
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and situated policies, by means of the spatio-temporal affordance model. In par-
ticular, in the former case we directly leverage traditional reasoning and inference
mechanisms. In latter case, instead, we adopt novel tools for policy learning and
system identification through the MDP formalism.

9.1.3. Applications and Empirical Findings

By combining these models, together with our algorithms, we have been able to
effectively generate robot behaviors that leverage semantic information. In particular,
we obtained high-level and intuitive policies that enable natural communication with
human agents. These policies have been then used on multiple instances of “service
robots”. Moreover, we generated situated agent’s behaviors that explicitly account
for action semantics. We applied this principle in the context of decision making
with humanoids robots.

To summarize, we have shown novel results on the formalization of models that
account for semantic information. Additionally, we have shown that these models
can be effectively used to affect the generation and learning of robot behaviors at
different scales and multiple contexts.

9.2. Open Problems and Future Directions

In this section, we briefly discuss some open research problems and possible directions
for extending our work. These extensions, in our opinion, go primarily in two
directions. The former is related to understanding what is a “good” semantic-driven
system, and how that can be measured. The second accounts for the difficulties of
effectively explicating semantic knowledge during learning processes that generate
agent behaviors.

9.2.1. Benchmarking of Semantic-Driven Systems

Throughout this thesis we have repeatedly argued that comparing and evaluating
semantic maps is a difficult task. On the one side, there is a structural limit, which is
determined by the multiplicity of representations and algorithms that are proposed
in literature. On the other side, there is a substantial limit, that is represented
by the absence of benchmarking datasets and common testing environments. In
this thesis we attempted to address these issues, by proposing a basic formal model
for representing semantic maps and for acquiring knowledge in a principled way.
Additionally, we proposed the creation of a semantic mapping dataset and illustrated
how that can be generated in accordance to the proposed formal model. On this
side, however, multiple questions remain still open. For example:

• how can we fairly compare autonomous semantic mapping systems, against
those that leverage human intervention?

• should we evaluate semantic maps according to task oriented metrics, or
according to metrics that evaluate spatial properties (e.g, the distance with
respect to a ground-truth)?
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• can semantic maps, as explicit representations of knowledge, be compared
against implicit representations?

Unfortunately, similar underlying issues extend to alternative approaches that
attempt to model semantic information. This is particularly true, for example, in
the case of affordance models. Affordances, in fact, are based on the theories of
ecological psychology, and represent the semantics of actions as explored subjectively
by each agent during its “life” within the environment. In this sense, there is not
an absolute ground-truth, and quantitative evaluations are difficult and almost
restrictive. Establishing some evaluation criteria that account for these issues, then,
is an open problem of potentially increasing interest for the robotics community.

9.2.2. Semantic-Driven Learning in Robotics
In our work, we use spatio-temporal affordance maps to capture action semantics,
as explored by the agent, and simultaneously restrict the policy search space by
means of the learned model. While this is an effective solution for relatively simple
problems, this type of approach does not scale to complex and hierarchical tasks.
Multiple questions, in fact, are left open under this setting:

• how do affordances interact among themselves, when organized on multiple
levels?

• how can affordances be used for the realization of a continual learning algo-
rithm?

• is there space for important improvements, by using semantic-driven learning
at different scales?

In this thesis, we only investigated how affordances can be used for situated
actions, while semantic maps can be used for deliberation. Is it possible to use a
unique representation, to account for the semantics of the environment at both scales?
If yes, how can affordance models be used for learning more abstract information?
Multiple questions open in this direction, leaving the space for future research and
interesting considerations.
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