36 research outputs found

    Multilevel linear models, Gibbs samplers and multigrid decompositions (with Discussion)

    Get PDF
    We study the convergence properties of the Gibbs Sampler in the context of posterior distributions arising from Bayesian analysis of conditionally Gaussian hierarchical models. We develop a multigrid approach to derive analytic expressions for the convergence rates of the algorithm for various widely used model structures, including nested and crossed random effects. Our results apply to multilevel models with an arbitrary number of layers in the hierarchy, while most previous work was limited to the two-level nested case. The theoretical results provide explicit and easy-to-implement guidelines to optimize practical implementations of the Gibbs Sampler, such as indications on which parametrization to choose (e.g. centred and non-centred), which constraint to impose to guarantee statistical identifiability, and which parameters to monitor in the diagnostic process. Simulations suggest that the results are informative also in the context of non-Gaussian distributions and more general MCMC schemes, such as gradient-based ones

    Multilevel linear models, Gibbs Samplers and multigrid decompositions (with discussion)

    Get PDF
    We study the convergence properties of the Gibbs Sampler in the context of posterior distributions arising from Bayesian analysis of conditionally Gaussian hierarchical models. We develop a multigrid approach to derive analytic expressions for the convergence rates of the algorithm for various widely used model structures, including nested and crossed random effects. Our results apply to multilevel models with an arbitrary number of layers in the hierarchy, while most previous work was limited to the two-level nested case. The theoretical results provide explicit and easy-to-implement guidelines to optimize practical implementations of the Gibbs Sampler, such as indications on which parametrization to choose (e.g. centred and non-centred), which constraint to impose to guarantee statistical identifiability, and which parameters to monitor in the diagnostic process. Simulations suggest that the results are informative also in the context of non-Gaussian distributions and more general MCMC schemes, such as gradient-based ones

    A probabilistic atlas of finger dominance in the primary somatosensory cortex

    Get PDF
    With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies

    Multimodal Integration: fMRI, MRI, EEG, MEG

    Get PDF
    This chapter provides a comprehensive survey of the motivations, assumptions and pitfalls associated with combining signals such as fMRI with EEG or MEG. Our initial focus in the chapter concerns mathematical approaches for solving the localization problem in EEG and MEG. Next we document the most recent and promising ways in which these signals can be combined with fMRI. Specically, we look at correlative analysis, decomposition techniques, equivalent dipole tting, distributed sources modeling, beamforming, and Bayesian methods. Due to difculties in assessing ground truth of a combined signal in any realistic experiment difculty further confounded by lack of accurate biophysical models of BOLD signal we are cautious to be optimistic about multimodal integration. Nonetheless, as we highlight and explore the technical and methodological difculties of fusing heterogeneous signals, it seems likely that correct fusion of multimodal data will allow previously inaccessible spatiotemporal structures to be visualized and formalized and thus eventually become a useful tool in brain imaging research

    Diffusion-based spatial priors for imaging.

    Get PDF
    We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimised. The standard practice using the software statistical parametric mapping (SPM) is to smooth imaging data using a fixed Gaussian kernel as a pre-processing step before applying a mass-univariate statistical model (e.g., a general linear model) to provide images of parameter estimates (Friston et al., 2006). This entails the strong assumption that data are generated smoothly throughout the brain. An alternative is to include smoothness in a multivariate statistical model (Penny et al., 2005). The advantage of the latter is that each parameter field is smoothed automatically, according to a measure of uncertainty, given the data. Explicit spatial priors enable formal model comparison of different prior assumptions, e.g. that data are generated from a stationary (i.e. fixed throughout the brain) or non-stationary spatial process. We describe the motivation, background material and theory used to formulate diffusion-based spatial priors for fMRI data and apply it to three different datasets, which include standard and high-resolution data. We compare mass-univariate ordinary least squares estimates of smoothed data and three Bayesian models spatially independent, stationary and non-stationary spatial models of non-smoothed data. The latter of which can be used to preserve boundaries between functionally selective regional responses of the brain, thereby increasing the spatial detail of inferences about cortical responses to experimental input

    Connecting mathematical models for image processing and neural networks

    Get PDF
    This thesis deals with the connections between mathematical models for image processing and deep learning. While data-driven deep learning models such as neural networks are flexible and well performing, they are often used as a black box. This makes it hard to provide theoretical model guarantees and scientific insights. On the other hand, more traditional, model-driven approaches such as diffusion, wavelet shrinkage, and variational models offer a rich set of mathematical foundations. Our goal is to transfer these foundations to neural networks. To this end, we pursue three strategies. First, we design trainable variants of traditional models and reduce their parameter set after training to obtain transparent and adaptive models. Moreover, we investigate the architectural design of numerical solvers for partial differential equations and translate them into building blocks of popular neural network architectures. This yields criteria for stable networks and inspires novel design concepts. Lastly, we present novel hybrid models for inpainting that rely on our theoretical findings. These strategies provide three ways for combining the best of the two worlds of model- and data-driven approaches. Our work contributes to the overarching goal of closing the gap between these worlds that still exists in performance and understanding.Gegenstand dieser Arbeit sind die Zusammenhänge zwischen mathematischen Modellen zur Bildverarbeitung und Deep Learning. Während datengetriebene Modelle des Deep Learning wie z.B. neuronale Netze flexibel sind und gute Ergebnisse liefern, werden sie oft als Black Box eingesetzt. Das macht es schwierig, theoretische Modellgarantien zu liefern und wissenschaftliche Erkenntnisse zu gewinnen. Im Gegensatz dazu bieten traditionellere, modellgetriebene Ansätze wie Diffusion, Wavelet Shrinkage und Variationsansätze eine Fülle von mathematischen Grundlagen. Unser Ziel ist es, diese auf neuronale Netze zu übertragen. Zu diesem Zweck verfolgen wir drei Strategien. Zunächst entwerfen wir trainierbare Varianten von traditionellen Modellen und reduzieren ihren Parametersatz, um transparente und adaptive Modelle zu erhalten. Außerdem untersuchen wir die Architekturen von numerischen Lösern für partielle Differentialgleichungen und übersetzen sie in Bausteine von populären neuronalen Netzwerken. Daraus ergeben sich Kriterien für stabile Netzwerke und neue Designkonzepte. Schließlich präsentieren wir neuartige hybride Modelle für Inpainting, die auf unseren theoretischen Erkenntnissen beruhen. Diese Strategien bieten drei Möglichkeiten, das Beste aus den beiden Welten der modell- und datengetriebenen Ansätzen zu vereinen. Diese Arbeit liefert einen Beitrag zum übergeordneten Ziel, die Lücke zwischen den zwei Welten zu schließen, die noch in Bezug auf Leistung und Modellverständnis besteht.ERC Advanced Grant INCOVI

    Variational Methods in Shape Space

    Get PDF
    This dissertation deals with the application of variational methods in spaces of geometric shapes. In particular, the treated topics include shape averaging, principal component analysis in shape space, computation of geodesic paths in shape space, as well as shape optimisation. Chapter 1 provides a brief overview over the employed models of shape space. Geometric shapes are identified with two- or three-dimensional, deformable objects. Deformations will be described via physical models; in particular, the objects will be interpreted as consisting of either a hyperelastic solid or a viscous liquid material. Furthermore, the description of shapes via phase fields or level sets is briefly introduced. Chapter 2 reviews different and related approaches to shape space modelling. References to related topics in image segmentation and registration are also provided. Finally, the relevant shape optimisation literature is introduced. Chapter 3 recapitulates the employed concepts from continuum mechanics and phase field modelling and states basic theoretical results needed for the later analysis. Chapter 4 addresses the computation of shape averages, based on a hyperelastic notion of shape dissimilarity: The dissimilarity between two shapes is measured as the minimum deformation energy required to deform the first into the second shape. A corresponding phase-field model is introduced, analysed, and finally implemented numerically via finite elements. A principal component analysis of shapes, which is consistent with the previously introduced average, is considered in Chapter 5. Elastic boundary stresses on the average shape are used as representatives of the input shapes in a linear vector space. On these linear representatives, a standard principal component analysis can be performed, where the employed covariance metric should be properly chosen to depend on the input shapes. Chapter 6 interprets shapes as belonging to objects made of a viscous liquid and correspondingly defines geodesic paths between shapes. The energy of a path is given as the total physical dissipation during the deformation of an object along the path. A rigid body motion invariant time discretisation is achieved by approximating the dissipation along a path segment by the deformation energy of a small solid deformation. The numerical implementation is based on level sets. Chapter 7 is concerned with the optimisation of the geometry and topology of solid structures that are subject to a mechanical load. Given the load configuration, the structure rigidity, its volume, and its surface area shall be optimally balanced. A phase field model is devised and analysed for this purpose. In this context, the use of nonlinear elasticity allows to detect buckling phenomena which would be ignored in linearised elasticity

    Finger somatotopy is preserved after tetraplegia but deteriorates over time

    Get PDF
    Previous studies showed reorganised and/or altered activity in the primary sensorimotor cortex after a spinal cord injury (SCI), suggested to reflect abnormal processing. However, little is known about whether somatotopically specific representations can be activated despite reduced or absent afferent hand inputs. In this observational study, we used functional MRI and a (attempted) finger movement task in tetraplegic patients to characterise the somatotopic hand layout in primary somatosensory cortex. We further used structural MRI to assess spared spinal tissue bridges. We found that somatotopic hand representations can be activated through attempted finger movements in the absence of sensory and motor hand functioning, and no spared spinal tissue bridges. Such preserved hand somatotopy could be exploited by rehabilitation approaches that aim to establish new hand-brain functional connections after SCI (e.g. neuroprosthetics). However, over years since SCI the hand representation somatotopy deteriorated, suggesting that somatotopic hand representations are more easily targeted within the first years after SCI

    Bayesian inversion in biomedical imaging

    Full text link
    Biomedizinische Bildgebung ist zu einer Schlüsseltechnik geworden, Struktur oder Funktion lebender Organismen nicht-invasiv zu untersuchen. Relevante Informationen aus den gemessenen Daten zu rekonstruieren erfordert neben mathematischer Modellierung und numerischer Simulation das verlässliche Lösen schlecht gestellter inverser Probleme. Um dies zu erreichen müssen zusätzliche a-priori Informationen über die zu rekonstruierende Größe formuliert und in die algorithmischen Lösungsverfahren einbezogen werden. Bayesianische Invertierung ist eine spezielle mathematische Methodik dies zu tun. Die vorliegende Arbeit entwickelt eine aktuelle Übersicht Bayesianischer Invertierung und demonstriert die vorgestellten Konzepte und Algorithmen in verschiedenen numerischen Studien, darunter anspruchsvolle Anwendungen aus der biomedizinischen Bildgebung mit experimentellen Daten. Ein Schwerpunkt liegt dabei auf der Verwendung von Dünnbesetztheit/Sparsity als a-priori Information.Biomedical imaging techniques became a key technology to assess the structure or function of living organisms in a non-invasive way. Besides innovations in the instrumentation, the development of new and improved methods for processing and analysis of the measured data has become a vital field of research. Building on traditional signal processing, this area nowadays also comprises mathematical modeling, numerical simulation and inverse problems. The latter describes the reconstruction of quantities of interest from measured data and a given generative model. Unfortunately, most inverse problems are ill-posed, which means that a robust and reliable reconstruction is not possible unless additional a-priori information on the quantity of interest is incorporated into the solution method. Bayesian inversion is a mathematical methodology to formulate and employ a-priori information in computational schemes to solve the inverse problem. This thesis develops a recent overview on Bayesian inversion and exemplifies the presented concepts and algorithms in various numerical studies including challenging biomedical imaging applications with experimental data. A particular focus is on using sparsity as a-priori information within the Bayesian framework. <br
    corecore