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Multilevel Linear Models, Gibbs Samplers and
Multigrid Decompositions (with Discussion)∗

Giacomo Zanella† and Gareth Roberts‡

Abstract. We study the convergence properties of the Gibbs Sampler in the
context of posterior distributions arising from Bayesian analysis of conditionally
Gaussian hierarchical models. We develop a multigrid approach to derive ana-
lytic expressions for the convergence rates of the algorithm for various widely
used model structures, including nested and crossed random effects. Our results
apply to multilevel models with an arbitrary number of layers in the hierarchy,
while most previous work was limited to the two-level nested case. The theoretical
results provide explicit and easy-to-implement guidelines to optimize practical im-
plementations of the Gibbs Sampler, such as indications on which parametrization
to choose (e.g. centred and non-centred), which constraint to impose to guarantee
statistical identifiability, and which parameters to monitor in the diagnostic pro-
cess. Simulations suggest that the results are informative also in the context of
non-Gaussian distributions and more general MCMC schemes, such as gradient-
based ones.

Keywords: Gibbs Sampler, convergence rates, hierarchical models, multigrid
decomposition, centred and non-centred parametrizations, statistical
identifiability.

1 Introduction

Markov chain Monte Carlo (MCMC) is established as the computational workhorse of
most Bayesian statistical analyses for complex models. For hierarchical models with
conditionally conjugate priors, the Gibbs sampler (Gelfand and Smith, 1990; Smith
and Roberts, 1993) remains one of the most natural algorithm of choice, thanks to its
simplicity of implementation and low computational cost per iteration (thanks to conju-
gacy and conditional independence). Nonetheless, speed of convergence of the resulting
Markov chain can be a major issue and can be highly sensitive to the model structure
and the implementation details, such choice of parametrization (Hills and Smith, 1992;
Gelfand et al., 1995) or identifiability constraints (Vines et al., 1996; Gelfand and Sahu,
1999; Xie and Carlin, 2006). This work provides a contribution towards gaining a quan-
titative understanding of the interaction between Bayesian hierarchical structures and
the behaviour of MCMC algorithms, which lies at the heart of the practical success of
Bayesian statistics.

While there is some previous work in the area (Roberts and Sahu, 1997;
Meng and Van Dyk, 1997; Papaspiliopoulos et al., 2003; Jones and Hobert, 2004;
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Papaspiliopoulos et al. 2007; Yu and Meng, 2011), current theoretical understanding
of the interaction between Bayesian hierarchical models and MCMC convergence is still
very limited, and almost nothing is known for models of hierarchical depth greater than
two. The present paper offers a contribution towards such an understanding, focusing on
theory for Gaussian hierarchical models and seeking quantitative results. In particular,
we derive analytic expressions for the convergence rates of the Gibbs Sampler for various
multilevel linear models and explore the dependence of these rates on the model struc-
ture, the choice of parametrization and the introduction of identifiability constraints.
The theoretical results given in this paper extend and improve substantially on existing
literature (Roberts and Sahu, 1997; Yu and Meng, 2011; Bass and Sahu, 2017; Gao and
Owen, 2017) both in terms of generality of hierarchical structure and the availability
of explicit rates. We also show by simulations that the understanding gained from the
Gaussian case can be extrapolated to more general settings.

In general, the Gibbs sampler can be elegantly described in terms of orthogonal
projections (Amit, 1991, 1996; Diaconis et al., 2010). While in principle this theory pro-
vides the tools to extract practical convergence information for Gibbs samplers in the
context of multivariate Gaussian distributions, in order to apply it to practically used
Bayesian multilevel models one needs detailed knowledge of the spectrum of non-trivial
high-dimensional matrices, which has drastically limited its applicability to derive an-
alytic results. In this paper we combine this general framework with a novel multigrid
decomposition approach that allows us to focus on low-dimensional Markov chains and
derive explicit analytic results concerning Gibbs sampler rates of convergence for multi-
level linear models, such as nested and crossed random effect models with an arbitrary
number of layers and/or factors.

Our results have various practical implications. First they can be readily used in the
popular context of conditionally Gaussian models, where there exist unknown variances
at various levels of the hierarchy (Gelman and Hill, 2006). In that case our results de-
scribe, for example, the optimal updating strategies for the hierarchical mean structure
conditional on the variances, allowing to optimize the mean parametrization on the fly
(Section 3.2), or the computationally optimal way of imposing statistically identifiabil-
ity (Sections 4.2), and provide theoretically grounded indication of which parameters
to monitor in the convergence diagnostic process (Section 2.1). Also, our results can be
used as a building block to derive computational complexity statements about the Gibbs
Sampler in the context of multilevel linear model (see e.g. Papaspiliopoulos et al., 2019
for work in that direction). Note that in the context of conditionally Gaussian models
the entire Gaussian mean component could be updated in a single block, thus avoiding
convergence issues related to single-site updates. However these block updates can in
principle be computationally expensive (up to O(n3) cost in the dimension (n) of the
Gaussian to be updated), while single-site updating schemes with provably bounded
convergence rate can offer a more scalable alternative. For some class of models, sparse
linear algebra methods can reduce the cost of the block update by exploiting sparsity
in the posterior precision matrix, but the resulting computational cost depends on the
model structure and can still be super-linear (see e.g. Section 4 for models leading to
dense precision matrices and Papaspiliopoulos et al., 2019 for more discussion).
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While impressive results are being obtained with black-box software implementation
of Hamiltonian Monte Carlo (HMC) such as STAN (Carpenter et al., 2017), our results
suggest that Gibbs Sampling schemes built on our methodological guidance can be
substantially cheaper than gradient-based ones in the context of hierarchical models,
leading to improved performances (Section 5). Moreover, our simulations show that the
methodological results we develop in this paper are also helpful when fitting multilevel
models with gradient-based schemes (Section 5.1) and lead to drastic improvements in
efficiency also when using generic software, such as STAN.

Throughout the paper, we shall couch all our results in terms of L2 rates of conver-
gence. Specifically, let (β(s))s=1,2,... be a Markov chain with stationary distribution π
and transition operator defined by P sf(β(0)) = E[f(β(s))|β(0)]. The rate of conver-
gence ρ(β(s)) associated to (β(s))s=1,2,... is defined as the smallest number ρ such that
for all r > ρ

lim
s→∞

‖P sf − Eπ[f ]‖L2(π)

rs
= 0 ∀f ∈ L2(π) , (1.1)

where L2(π) denotes the space of square π-integrable functions, ‖·‖L2(π) is its associated
L2-norm and Eπ[f ] =

∫
f dπ is the expectation of f with respect to π. The rate of

convergence ρ(β(s)) characterizes the speed at which (β(s))s=1,2,... converges to its
stationary distribution π, with a simple argument giving that if

T = min{s; ‖P sf − Eπ[f ]‖L2(π) ≤ ε},

then T = O
(

1
− log(ρ)

)
.

1.1 Paper overview and structure

Section 2 carefully introduces the 3-level hierarchical models we shall consider, and pro-
vides motivating simulations. Then in Section 3 we shall give a complete analysis for
3-level symmetric models (i.e. homogeneous variances and symmetric data structure).
At the heart of the analysis is a multigrid decomposition of the Gibbs sampler into
completely independent Markov chains describing different levels of hierarchical granu-
larity, Theorem 1. Such multigrid decomposition simultaneously applies to every Gibbs
sampler induced by all centred/non-centred parametrizations and is fundamentally a
statistical property of the hierarchical models under consideration. Although multigrid
ideas have already been used in methodological contexts to design improved MCMC
schemes (Goodman and Sokal, 1989; Liu and Sabatti, 2000), to our knowledge they had
never been used in theoretical contexts to study convergence rates. We demonstrate that
the slowest of these independent chains is always that corresponding to the coarsest level,
regardless of the value of the variance components and on the number of branches in
the hierarchy, and thus derive explicit expressions for the rates of convergence.

In Section 4 we focus on crossed effect models, using again a multigrid decomposition
approach to derive explicit convergence rates. The results show that in the context of
crossed models, centred/non-centred reparametrizations are not sufficient to guarantee
fast convergence of the resulting Gibbs Sampler. On the other hand, we show that the
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latter can be achieved by imposing stronger statistical identifiability through additional
linear constraints and our theory provides indications on which constraints lead to faster
convergence. Finally, a simulation study reported in Section 5 suggests that the analysis
of the Gaussian case leads to useful guidance also in the case of non-Gaussian models for
both the Gibbs Sampler and Hamiltonian Monte Carlo algorithms (Neal et al., 2011).

Section 6 considers 3-level non-symmetric hierarchical models, providing bounds
on convergence rates based on comparisons with related symmetric models and dis-
cussing the use of bespoke parametrizations, where the choice of centred or non-centred
parametrization in each branch of the hierarchy depends on branch-specific parameters.

Section 7 considers hierarchical models with arbitrary depth (≥ 4). Using an appro-
priate auxiliary random walk, whose evolution through the hierarchical tree is governed
by the parameters’ squared partial correlations, we are able to extend the multigrid
analysis to general tree structures and some non-symmetric cases. We again demon-
strate a fundamental multigrid decomposition in Theorem 9, where the coarsest level
chain converges the slowest, and give explicit formulae for convergence rates.

2 Three level hierarchical linear models

The theoretical innovation in this paper is centred around an important case in which
we can obtain explicit Gibbs sampler rates of convergence, and as a result study explic-
itly the effects of particular models, parametrization schemes and blocking strategies.
We begin with a detailed study of the following three-level Gaussian linear model, pro-
viding a fairly complete understanding of the interaction between model structure and
parametrization and the Gibbs Sampler convergence behaviour.

Model S3 (Symmetric 3-levels hierarchical model). Suppose

yijk = μ+ ai + bij + εijk, (2.1)

where i, j and k run from 1 to I, J and K respectively and εijk are iid normal ran-
dom variables with mean 0 and variance σ2

e . We employ the standard Bayesian model
specification assuming ai ∼ N(0, σ2

a), bij ∼ N(0, σ2
b ) and a flat prior on μ.

For the theoretical analysis, we will consider the variance terms σ2
a, σ

2
b and σ2

e to
be known (in contrast with the simulations where we generalize to the case of unknown
variances). Defining a = (ai)i, b = (bij)i,j and y = (yijk)i,j,k, the Gibbs Sampler
explores the posterior distribution (μ,a,b)|y by iteratively sampling from the full con-
ditional distributions of μ, a and b as follows (see below for motivation of denoting such
sampler as GS(1, 1)).

Sampler GS(1, 1). Initialize μ(0), a(0) and b(0) and then iterate

1. Sample μ(s+ 1) from p(μ|a(s),b(s),y);
2. Sample ai(s+ 1) from p(ai|μ(s+ 1),b(s),y) for all i;
3. Sample bij(s+ 1) from p(bij |μ(s+ 1),a(s+ 1),y) for all i and j,

where p(μ|a,b,y), p(ai|μ,b,y) and p(bij |μ,a,y) are the full conditionals of Model S3
(see Zanella and Roberts (2021) for explicit expressions).
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Given the conditional independence structure of the model, Sampler GS(1, 1) is
equivalent to a blocked Gibbs sampler with components μ, a and b, i.e. a scheme
performing consecutive updates of μ|a,b, a|μ,b and b|μ,a at each iteration.

The parametrization (μ,a,b) induced by (2.1) is often referred to as non-centred
parametrization (NCP) and it is contrasted with the centred parametrization (CP) ob-
tained by replacing ai and bij with γi = μ + ai and ηij = γi + bij respectively. Under
the centred parametrization (μ,γ,η) the model formulation becomes

yijk ∼ N(ηij , σ
2
e), ηij ∼ N(γi, σ

2
b ), γi ∼ N(μ, σ2

a), p(μ) ∝ 1 . (2.2)

Figures 1b and 1a provide a graphical representation of the two parametrizations. In
the (μ,a,b) case (1, 1) refers to the fact that both levels 1 and 2 use a non-centred
parametrization, while in the (μ,γ,η) case (0, 0) indicates that both levels use a centred
parametrization. The resulting Gibbs sampler for the centred parametrization is as
follows.

Sampler GS(0, 0). Initialize μ(0), γ(0) and η(0) and then iterate

1. Sample μ(s+ 1) from p(μ|γ(s),η(s),y);
2. Sample γi(s+ 1) from p(γi|μ(s+ 1),η(s),y) for all i;
3. Sample ηij(s+ 1) from p(ηij |μ(s+ 1),γ(s+ 1),y) for all i and j,

where p(μ|γ,η,y), p(γi|μ,η,y) and p(ηij |μ,γ,y) are the full conditionals induced by
(2.2) (see supplementary material for explicit expressions).

Together with the fully non-centred parametrization (μ,a,b) and the fully cen-
tred parametrization (μ,γ,η), one can also consider the mixed parametrizations given
by (μ,γ,b) and (μ,a,η) and the corresponding Gibbs Sampler schemes GS(0, 1) and
GS(1, 0). See Figures 1c and 1d for graphical representations.

2.1 Illustrative example

As an illustrative example, we simulated data from Model S3 with I = J = 100, K = 5,
μ = 0, σa = σe = 10 and σb = 10−0.5. This corresponds to a scenario of high level of
noise in the measurements. We fit model S3 assuming the standard deviations (σa, σb, σe)
to be unknown and placing weakly informative priors, namely 1

σ2
a
, 1

σ2
b
and 1

σ2
e
a priori

distributed according to an Inverse Gamma distribution with shape and rate parameters
equal to 0.01. We compare the efficiency of the Gibbs sampling schemes corresponding to
the four different parametrizations, denoting them by GS(1, 1), GS(0, 0), GS(0, 1) and
GS(1, 0), initializing the chains at true values of the parameters (μ,a,b) and (σa, σb, σe).
The more realistic case of starting the chains from randomly chosen states led to the
same conclusions.

Rows 1-2 of Figure 2 plot the global mean μ and displays the potentially dramatic
difference among mixing properties of the Gibbs Sampler under different parametriza-
tions. Based on those, one would certainly exclude using GS(1, 1) and GS(1, 0) to fit
this model, leaving GS(0, 0) and GS(0, 1) as possibly feasible algorithms. However, as
an additional check, a cautious practitioner may also explore the mixing of the parame-
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Figure 1: Graphical representations of 3-levels hierarchical linear models under different
parametrizations.

ters at the first level, namely a and γ. Rows 3-4 of Figure 2 display the behaviour of the

global averages of such parameters, namely a· =
∑

i ai

I and γ· =
∑

i γi

I , in the first 1000
iterations. Again, we see a dramatic difference induced by different parametrizations
and, somehow surprisingly, despite having good mixing behaviour at level 0 (i.e. μ),
GS(0, 0) displays very poor mixing behaviour at level 1 (i.e. γ). It is then natural to
explores also the mixing behaviour at level 2 and rows 5-6 of Figure 2 do so again by

plotting the global averages b·· =
∑

ij βij

IJ and η·· =
∑

ij ηij

IJ . In this case GS(1, 1) and
GS(0, 1) are the only chains mixing well. Based on Figure 2 it is natural to choose to
fit the model using the sampler GS(0, 1) corresponding to the mixed parametrization
(μ,γ,b), as it is the only one mixing well at each of the three levels.
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Figure 2: Mixing behaviour at level 0 (μ; rows 1-2), level 1 (a· and γ·; rows 3-4) and
level 2 (b·· and η··; rows 5-6); under four different parametrizations. For each level, the
ranges of the y-axes are constant across parametrizations sharing the same parameters.
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This simple example shows many typical issues arising when fitting Bayesian multi-
level models and raises many questions. For example, one would like to know what are
good parameters to use to diagnose convergence, in order to avoid misleading conclusions
like the one suggested by rows 1-2 of Figure 2. In fact, while in two level model good
mixing of the global hyperparameters such as μ typically indicates good global mixing,
this is not true in other multi-level models. Indeed, it is legitimate to wonder whether
diagnoses based only on the global means, as in Figure 2, are enough to deduce good
mixing of the whole Markov chain, which in our example has more than 104 dimensions
(1 + I + IJ mean components and 3 precision components). Below we will show that
for Model S3, mixing of the global means ensures mixing of the whole (1 + I + IJ)-
dimensional mean components of the chain given the variances (see e.g. Corollary 1).
Therefore it is enough to monitor the three global means and the three variances to
ensure a reliable check of the chain mixing properties.

Even more crucially, it is desirable to have simple and theoretically grounded guid-
ance in choosing a computationally efficient parametrization, given the huge impact it
can have on computational performances. The theoretical analysis developed in the next
section will provide useful guidance in this respect.

3 Multigrid decomposition for the three level
hierarchical model

The basic ingredient of our analysis is the following multigrid decomposition. Con-
sider the four possible parametrization of Model S3: (μ,a,b), (μ,γ,η) and the mixed
parametrizations (μ,γ,b) and (μ,a,η). In order to provide a unified treatment, regard-

less of the chosen parametrization, we denote the parameters used by (β(0),β(1),β(2))

and the resulting Gibbs Sampler by GS(β). For example, in the NCP case β(0) = μ,

β(1) = a, β(2) = b and GS(β) coincides with GS(1, 1). First consider the map δ sending

β = (β(0),β(1),β(2)) to

δ(β) =

⎛⎝ δ(0)β
δ(1)β
δ(2)β

⎞⎠ =

⎛⎜⎝ δ(0)β(0) , δ(0)β(1) , δ(0)β(2)

δ(1)β(1) , δ(1)β(2)

δ(2)β(2)

⎞⎟⎠ , (3.1)

where, loosely speaking, δ(i)β represent the increments of β at the i-th coarseness level.
More precisely

δ(0)β(0) = β(0) , δ(0)β(1) = β
(1)
· , δ(0)β(2) = β

(2)
·· ,

δ(1)β(1) =
(
β
(1)
1 − β

(1)
· , . . . , β

(1)
I − β

(1)
·
)
, δ(1)β(2) =

(
β
(2)
1· − β

(2)
·· , . . . , β

(2)
I· − β

(2)
··
)
,

δ(2)β(2) =
(
β
(2)
11 − β

(2)
1· , β

(2)
12 − β

(2)
1· , . . . , β

(2)
I(J−1) − β

(2)
I· , β

(2)
IJ − β

(2)
I·

)
,

where

β
(1)
· =

∑
i β

(1)
i

I
, β

(2)
·· =

∑
i,j β

(2)
ij

IJ
, β

(2)
i· =

∑
j β

(2)
ij

J
.
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Figure 3: Illustration of Theorem 1. Left: the transition from β(s) to β(s+1) in Sampler
GS(β) follows the structure of a Gibbs Sampler with 3 components. Right: the transition
from δβ(s) to δβ(s + 1) in Sampler GS(β) follows the structure of three independent
Markov chains.

It is easy to see that the map δ is a bijection between Rd and R3 × (RI)∗ × (RI)∗ ×I
i=1

(RJ)∗, where (Rp)∗ = {(v1, . . . , vp) ∈ Rp :
∑p

i=1 vi = 0}. The dimensionality of δβ
equals that of β, which is 1+ I + IJ , because δβ has 3+ 2I + IJ parameters and 2+ I
constraints. The following theorem shows that the Markov chain induced by GS(β)
factorizes under the transformation δ, as illustrated in Figure 3.

Theorem 1 (Multigrid decomposition). Let (β(s))∞s=1 be a Markov chain on Rd

evolving according to GS(β). Then the functionals (δ(0)β(s))∞s=1, (δ(1)β(s))∞s=1 and
(δ(2)β(s))∞s=1 evolve as three independent Markov chains.

While the posterior independence of δ(0)β, δ(1)β and δ(2)β is well-known, Theo-
rem 1 shows the much stronger statement that the Markov chains induced by the Gibbs
Sampler are independent.

Remark 1. The three subspaces of Rd spanned by the vectors δ(0)β, δ(1)β and δ(2)β,
respectively, do not depend on the choice of parametrization β. For example, the four
instances of δ(0)β – i.e. (μ, a·, b··), (μ, a·, η··), (μ, γ·, b··) and (μ, γ·, η··) – span the same
subset of the parametric space of Model S3. In this sense, the multigrid decomposition
of Theorem 1 factorizes the Gibbs Sampler into three independent chains operating on
subspaces that depend only on the model under consideration and not on the particu-
lar parametrization being considered. Thus in a sense, the multigrid decomposition is
intrinsic to the model, and not specific to the chosen parametrization.

Theorem 1 provides a useful tool to analyse the Markov chain of interest, β(s). In fact
the factorization into independent Markov chains implies that the rate of convergence
of β(s) is simply given by the slowest rate of convergence among δ(0)β(s), δ(1)β(s) and
δ(2)β(s). Interestingly, the slowest chain is always the chain at the highest level δ(0)β(s),
regardless of the choice of parametrization and the values of (I, J,K, σa, σb, σe).

Theorem 2 (Hierarchical ordering of convergence rates). Let δ(0)β(s), δ(1)β(s) and
δ(2)β(s) be the Markov chains defined in Theorem 1. Then the associated convergence
rates satisfy

ρ(δ(0)β(s)) ≥ ρ(δ(1)β(s)) ≥ ρ(δ(2)β(s)) = 0 .
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Theorems 1 and 2 imply that the rate of convergence of the global chain β(s) coin-

cides with the one of the sub-chain δ(0)β(s) sampling the global means (β(0), β
(1)
· , β

(2)
·· ).

Corollary 1 (Rate of convergence of GS(β)). Given the notation of Theorem 1,

ρ(β(s)) = ρ(δ(0)β(s)) .

3.1 Explicit rates of convergence under different parametrizations

The multigrid decomposition developed in Section 3 permits a direct analysis on the
convergence properties of β(s). Since this is a Gibbs Sampler targeting a multivari-
ate Gaussian distributions, in principle it could be analysed using the tools developed
in Amit (1996); Roberts and Sahu (1997); Khare et al. (2009). Applying these results
requires a spectral decomposition of a matrix derived from Σ. However, given the high-
dimensionality of β(s), which has 1+I+IJ parameters, it is hard to apply directly such
results and in fact the convergence properties of β(s) have been studied heuristically
or numerically in the literature (see e.g. Gelfand et al., 1995, Section 4 and Roberts
and Sahu, 1997, Section 4.2). Circumventing these theoretical difficulties, Corollary 1
implies that it suffices to study the skeleton chain δ(0)β(s), which is a low-dimensional
chain (namely 3-dimensional) amenable to direct analysis. Therefore we can derive an-
alytic expressions for the rates of convergence for the Gibbs Sampler under different
parametrizations.

Theorem 3. Given an instance of Model S3, the rate of convergence of the four Gibbs
Sampler schemes GS(0, 0), GS(1, 1), GS(0, 1) and GS(1, 0) are given by

ρ00 = 1− σ̃2
a

σ̃2
a + σ̃2

b

σ̃2
b

σ̃2
b + σ̃2

e

, ρ10 = max

{
σ̃2
a

σ̃2
a + σ̃2

b

,
σ̃2
e

σ̃2
b + σ̃2

e

}
,

ρ01 = 1− σ̃2
a

σ̃2
a + σ̃2

e

σ̃2
e

σ̃2
b + σ̃2

e

, ρ11 = max

{
σ̃2
a

σ̃2
a + σ̃2

e

,
σ̃2
b

σ̃2
b + σ̃2

e

}
,

where σ̃2
a =

σ2
a

I , σ̃2
b =

σ2
b

IJ and σ̃2
e =

σ2
e

IJK .

Theorem 3 provides explicit and informative formulas regarding the interaction
between choice of parametrization and resulting efficiency of the Gibbs Sampler for
Model S3. Figure 4 summarizes graphically the dependence of the converge rates of
different parametrizations from the values of the variances of various levels. Roughly
speaking, the figure suggests that there is a partition of the hyperparameter space (cor-
responding to the white regions in each plot) such that in each region exactly one of
the four parametrizations performs well.

Consider for example the illustrative example of Section 2.1. Applying Theorem 3
to such context we obtain that the L2 rates of convergence (up to the third decimal
digit) of the various Gibbs Samplers under consideration given (I, J,K, σa, σb, σe) =
(100, 100, 5, 10, 10−0.5, 10) are

(ρ00, ρ11, ρ01, ρ10) = (0.995, 0.998, 0.007, 0.999) .
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Figure 4: Plot of rates of convergence for three-levels Gaussian hierarchical models under
different parametrizations. Color levels correspond to values of log(1 − ρ), where ρ is
the rate of convergence, as a function of log(σ̃2

a) and log(σ̃2
b ) for fixed log(σ̃2

e) = 0.

Recall that values of ρ close to 1 mean slow convergence, see (1.1) and discussion
thereof. These numbers provide a quantitative and theoretically grounded description
of the behaviour heuristically observed in Section 2.1 and can be easily used to optimize
performance (see e.g. Section 3.2 below).

3.2 Conditionally optimal parametrization

We now consider the optimal parametrization (among the four possible choices (μ,a,b),
(μ,γ,b), (μ,a,η) and (μ,γ,η)) as a function of the normalized variance components
(σ̃2

a, σ̃
2
b , σ̃

2
e). Using the formulae of Theorem 3 we obtain the following explicit answers.

Corollary 2 (Optimal parametrization for Model S3). The rate of convergence of the
Gibbs Sampler targeting Model S3 is minimized by the following parametrization choice:

• use a centred parametrization η at the lowest level if and only if σ̃2
b ≥ σ̃2

e ,
• use a centred parametrization γ at the middle level if and only if σ̃2

a ≥ σ̃2
b + σ̃2

e .

The resulting Gibbs Sampler has a rate of convergence ρ bounded above by 2
3 , with the

equality ρ = 2
3 holding if and only if σ̃2

a = σ̃2
b + σ̃2

e and σ̃2
b = σ̃2

e (in which case all
parametrizations are equivalent).

Table 1 provides a graphical representation of the decision process. This simple rule
guarantees that the resulting Gibbs Sampler has a rate of converges smaller than 2

3 , thus
ensuring high sampling efficiency for fixed variances. Table 1 implies that the choice
of parametrization of a given level (i.e. whether it is computationally most efficient

σ̃2
a ≥ σ̃2

b + σ̃2
e σ̃2

a < σ̃2
b + σ̃2

e

σ̃2
b ≥ σ̃2

e (μ,γ,η) (μ,a,η)
σ̃2
b < σ̃2

e (μ,γ,b) (μ,a,b)

Table 1: Optimal parametrization as a function of the normalized variance components.
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Figure 5: Autocorrelation functions for the global means (β(0), β
(1)
· , β

(2)
·· ) and the stan-

dard deviations (σa, σb, σe), under the three updating schemes (Centred, Optimal and
Blocked) described in Section 3.2. The combination with the parameter expansion
methodology is denoted as “+PX”.

to use a centred or non-centred parametrization) depends on the ratio between the
normalized variance at the level under consideration and the sum of the normalized
variances of the levels below. These results extend previous intuition for the two-level
case (Papaspiliopoulos et al., 2003) to hierarchical models with three levels.

Corollary 2 allows for simple and effective strategies to guarantee high sampling
efficiency in practical implementations of Gibbs Sampling for Model S3 in the case
of unknown variances. Common implementations choose a fixed parametrization β of
the Gaussian component, such as the fully centred parametrization β = (μ,γ,η), and
alternate updating β|(σa, σb, σe) with GS(β) and (σa, σb, σe)|β with direct sampling
(which is straightforward using the conditional independence of σa, σb and σe given β).
Given Corollary 2, instead, one can at each iteration choose the optimal parametrization
β given (σa, σb, σe) according to Table 1, with basically no additional computational cost
compared to the cost of a Gibbs Sampling iteration. This ensures that the sampling step
β|(σa, σb, σe) will have a high efficiency, regardless of the values of (I, J,K, σa, σb, σe).

We implement and illustrate this strategy in Figure 5, where we compare MCMC
autocorrelation functions in the context of the illustrative example of Section 2.1, with
unknown variances (σa, σb, σe). We compare the following three schemes: the sampler
updating (μ,γ,η)|(σa, σb, σe) with GS(0, 0) and (σa, σb, σe)|(μ,γ,η) exactly; the sam-
pler choosing the optimal parametrization β according to Table 1 and then updat-
ing β|(σa, σb, σe) with GS(β) and (σa, σb, σe)|β exactly; the sampler updating both
β|(σa, σb, σe) and (σa, σb, σe)|β exactly (which can be implemented because the distri-
bution of β|(σa, σb, σe) is multivariate Gaussian). We call the three samplers “Centred”,
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“Optimal” and “Blocked”, respectively. The results are displayed in the first three rows
of Figure 5 and show that the Optimal sampler reduces significantly the autocorrela-
tion compared to Centred one, and achieves a mixing that is basically equivalent to the
one of the Blocked sampler. The potential benefit of the Optimal sampler compared
to the Blocked one is that the Gibbs update of β|(σa, σb, σe) in the Optimal sampler
only requires univariate updates and has a potentially lower computational cost com-
pared to a full multivariate block update of β|(σa, σb, σe), which requires large matrix
operations. While these matrix operations can be performed efficiently in the context of
nested linear models (see e.g. Papaspiliopoulos and Zanella, 2017), their cost becomes
significantly larger for example in the context of crossed random effect models (see Sec-
tion 4 below and Papaspiliopoulos et al., 2019). Note that the similarity of performances
between the Optimal and Blocked sampler is not surprising given our theoretical results
above. In fact Corollary 2 guarantees that the sampler GS(β) used in the Gibbs update
have a rate of convergence upper bounded by 2/3, which is well separated from 1. When
such updates are nested within a larger sampler (e.g. the one updating β|(σa, σb, σe)
and (σa, σb, σe)|β) the difference between and exact update of β and a Gibbs one with
good rate of convergence can easily become negligible.

We then combined the three schemes described above with the parameter expansion
(PX) methodology of Meng and Van Dyk (1999); Liu and Wu (1999), and denote the
resulting schemes as Centred+PX, Optimal+PX and Blocked+PX. The PX method-
ology aims to avoid potential slow mixing due to strong dependencies between β and
(σa, σb, σe), and in this case it is successful in doing so for the slowly mixing parameter
σb (see Figure 5, rows 4-6). The results suggest that the optimal choice of parametriza-
tion for β can be conveniently combined with the PX methodology, and that the two
have complementary roles in speeding up the convergence of the Gibbs Sampler.

4 Multigrid decomposition for crossed effect models

The multigrid decomposition can be used to analyse non-nested models. In this section
we focus on the following crossed effect model.

Model Ck (k-factors crossed-effects model).

yi1...ik =μ+ a
(1)
i1

+ · · ·+ a
(k)
ik

+ εi1...ik is = 1, . . . , ns, s = 1, . . . , k , (4.1)

with a
(s)
is

iid∼ N(0, 1/τs) for s ∈ {1, . . . , k}, εi1...ik
iid∼ N(0, 1/τe) and p(μ) ∝ 1. We denote

the number of observed datapoints by N =
∏k

s=1 ns.

Similarly to Sections 2 and 3, we use bold letters to denote the following vectors:

y = (yi1...ik)i1,...,ik , a
(s) = (a

(s)
is

)is , a = (a(1), . . . ,a(k)) and a(−s) = (a(1), . . . ,a(s−1),

a(s+1), . . . ,a(k)). The standard Gibbs Sampler to sample from the posterior distribution
L(μ,a|y) of Model Ck is defined as follows.

Sampler GS-crossed. At each iteration

1. sample μ from L(μ|a,y),
2. sample a(s) from L

(
a(s)|μ,a(−s),y

)
with s going from 1 to k.
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Model Ck and Sampler GS-crossed have recently been analysed in Papaspiliopoulos
et al. (2019) using the multigrid decomposition approach developed in Section 3 of
this paper to derive expressions for the convergence rate of Sampler GS-crossed. In
particular, Papaspiliopoulos et al. (2019) considered the following linear functions of a

ā(s) =
1

ns

ns∑
i=1

a
(s)
i and δa(s) = (a(s) − ā(s)) , (4.2)

for each s ∈ {1, . . . , k} and proved the following result.

Theorem 4 (Papaspiliopoulos et al. (2019)). Let

((μ,a)(t))
∞
t=1 =

(
μ(t),a(1)(t), . . . ,a(k)(t)

)∞
t=1

be the Markov chain generated by Sampler GS-crossed. Then the time-wise transforma-
tions

(
(μ, ā(1), . . . , ā(k))(t)

)∞
t=1

and
(
δa(1)(t)

)∞
t=1

, . . . ,
(
δa(k)(t)

)∞
t=1

are (k+1) indepen-

dent Markov chains. Moreover, the rate of convergence of ((μ,a)(t))
∞
t=1 is

ρ = max
s∈{1,...,k}

Nτe
Nτe + nsτs

. (4.3)

Theorem 4 implies that the convergence properties of Sampler GS-crossed deterio-
rate as N increases because maxs∈{1,...,k}(Nτe)

−1(Nτe + nsτs) goes to 1 as N → ∞.
Motivated by this consideration, Papaspiliopoulos et al. (2019) propose a collapsed
Gibbs Sampler that avoids such slowdown for increasing data size while preserving the
same computational cost per iteration of Sampler GS-crossed. In the following two sec-
tions we extend the analysis of Model Ck performed in Papaspiliopoulos et al. (2019),
focusing on the role of, respectively, reparametrizations and statistical identifiability.

4.1 Reparametrizations and crossed effects models

In the context of nested models, reparametrization techniques based on hierarchical
centering offer a way to make the Gibbs Sampler robust to large datasets (see e.g.
Corollary 2). We now show that this is not the case in the crossed effects context of
Model Ck. In this section we focus on the case k = 2, which is a case often studied theo-
retically in the literature (see e.g. Gao and Owen (2017); Brown et al. (2018) for recent
examples). In this case, hierarchical centering leads to four possible parametrizations
defined as

(μ,β(1),β(2)) = (μ,a(1) + (1− λ1)μ,a
(2) + (1− λ2)μ) , for (λ1, λ2) ∈ {0, 1}2 . (4.4)

Each parametrization corresponds to a different Gibbs Sampler, which at each iter-
ation updates μ from L(μ|β(1),β(2),y), β(1) from L

(
β(1)|μ,β(2),y

)
, and β(2) from

L
(
β(2)|μ,β(1),y

)
. The following result characterizes the rate of convergence ρλ1λ2 of

such Gibbs Samplers for all combinations (λ1, λ2) ∈ {0, 1}2.
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Figure 6: Plot of the rates of convergence in (4.5). Color levels correspond to values of
log(1− ρ), where ρ is the rate of convergence (or its lower bound for ρ11), as a function
of log(r1/(1− r1)) and log(r2/(1− r2)).

Theorem 5. Let r1 = Nτe
Nτe+n1τ1

and r2 = Nτe
Nτe+n2τ2

. Then we have

ρ11 = max{r1, r2} , ρ10 = 1− r2(1− r1) ,

ρ01 = 1− r1(1− r2) , ρ00 ≥ 1 + r1r2 −min{r1, r2} .
(4.5)

Figure 6 summarizes graphically the results of Theorem 5, showing the dependence
of the converge rates on the choice of parametrization. The rate displayed in Figure 6
for the fully centred parametrization is the lower bound given in (4.5).

Theorem 5 implies that centering both factors (i.e. setting λ1 = λ2 = 0) is al-
ways computationally worse than any of the other parametrizations because ρ00 ≥
max{ρ11, ρ01, ρ10}. On the other hand, the optimal choice of (λ1, λ2) among (1, 1), (0, 1)
and (1, 0) depends on the specific values of r1 and r2. More precisely, the expressions
in (4.5) imply that the convergence rate is minimized by centering the first factor (i.e.
setting λ1 = 0) if and only if r1 ≥ (2−r2)

−1 and centering the second factor (i.e. setting
λ2 = 0) if and only if r2 ≥ (2− r1)

−1. These results are in agreement with, for example,
the empirical results obtained in Gelfand et al. (1996, Section 6) and Browne (2004).

Theorem 5 also implies that min{ρ00, ρ01, ρ10, ρ11} → 1 as n1, n2 → ∞. Therefore,
regardless of the parametrizations chosen, the convergence of Gibbs Samplers targeting
Model Ck deteriorates as the number of factors n1 and n2 increases. This is in contrast
with the nested case analysed in Section 3, where reparametrization techniques are
successful in providing samplers with good convergence properties for all choices of
hyperparameter values. In the next section we show that a more effective way to achieve
good convergence properties is to impose stronger identifiability constraints.

4.2 Connections to statistical identifiability

The parameters (μ,a(1), . . . ,a(k)) in Model Ck are not identifiable, in the sense that
the mapping (μ,a(1), . . . ,a(k)) → L(y|μ,a(1), . . . ,a(k)) is not injective. While this is
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not strictly speaking an issue for Bayesian inferences, one may wonder whether impos-
ing identifiability on model parameters results in avoiding the degradation of mixing
described in previous sections (see e.g. Vines et al., 1996; Gelfand and Sahu, 1999; Xie
and Carlin, 2006; Kaufman et al., 2010; Vallejos et al., 2015 for related discussion and
some examples in applications). We consider imposing identifiability by conditioning

on some linear constraints, such as the commonly used choices of a
(s)
1 = 0 or ā(s) = 0.

More generally, one can obtain identifiability for Model Ck by imposing a linear con-

straint cs = 0 for each s from 1 to k, where cs =
∑ns

j=1 w
(s)
j a

(s)
j is a linear combina-

tion of (a
(s)
1 , . . . , a

(s)
ns ) weighted by some non-negative terms (w

(s)
1 , . . . , w

(s)
ns ) satisfying∑ns

j=1 w
(s)
j > 0. Interestingly, one can exploit the multigrid decomposition (with minor

modifications to adapt to the linear constraints, see Lemma 5.1 in the supplement for
details) to derive the convergence rates of the resulting Gibbs Samplers for all choices

of weights (w
(s)
1 , . . . , w

(s)
ns ).

Theorem 6. Consider Sampler GS-crossed conditioned on cs = 0 for s = 1, . . . , k,
meaning that μ gets updated from L(μ|a,y, c1 = · · · = ck = 0) rather than L(μ|a,y),
and a(s) from L

(
a(s)|μ,a(−s),y, c1 = · · · = ck = 0

)
rather than L

(
a(s)|μ,a(−s),y

)
. The

rate of convergence of the resulting chain is

ρ = max
s∈{1,...,k}

(
Nτe(1− qs)

Nτe + nsτs

)
, (4.6)

where qs = (
∑ns

j=1 w
(s)
j )2/(ns

∑ns

j=1(w
(s)
j )2).

Comparing (4.6) with (4.3) we can see that, since (1 − qs) ∈ [0, 1), the rate of
convergence always decreases after imposing the identifiability constraints cs = 0 for
s = 1, . . . , k. Thus, Theorem 6 implies that, in this context, imposing identifiability
always improves the convergence properties of the Gibbs Sampler. To our knowledge,
this is the first rigorous result of this kind in the Bayesian computation literature.
On the other hand, the result also shows that imposing identifiability per se does not
guarantee fast convergence. For example, Theorem 6 implies that the rate of convergence

of Sampler GS-crossed conditioned on a
(s)
1 = 0 for each s ∈ {1, . . . , k} is given by

ρ = max
s∈{1,...,k}

(
Nτe

Nτe + nsτs

ns − 1

ns

)
,

while the rate of convergence of Sampler GS-crossed conditioned on ā(s) = 0 for each s ∈
{1, . . . , k} equals 0, i.e. the sampler produces i.i.d. draws from the posterior distribution
L(μ,a|y, ā(1) = · · · = ā(k) = 0). While in both cases we observe an improvement over the
original Gibbs Sampler in terms of convergence rates, the result shows that conditioning

on a
(s)
1 = 0 for each s ∈ {1, . . . , k} leads to a convergence rate that can still go to 1 as the

datasize increase. Interestingly (4.6) implies that the rate of convergence is minimized
when qs is maximized, which happens when the weights in the linear constraints are

constant, for example w
(s)
j = n−1

s for all s = 1, . . . , k and j = 1, . . . , ns.
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5 Beyond the Gaussian case: a Poisson example

The results of Section 4.2 provide guidance on the choice of which linear constraint to
use to impose identifiability for models also beyond the Gaussian case. As an example,
we consider the following crossed random effect model with Poisson likelihood, which is
the simplest analogue of Model Ck in the context of count data.

Model CkP (Poisson crossed-effects model).

yi1...ik ∼Poisson(μa
(1)
i1

· · · a(k)ik
) is = 1, . . . , ns for s ∈ {1, . . . , k}, (5.1)

with a
(s)
is

iid∼ Gamma(αs, βs) for s = 1, . . . , k and μ ∼ Gamma(αμ, βμ).

Consider sampling from the posterior distribution L(μ,a|y) of Model CkP using
the standard Gibbs Sampler that, similarly to Sampler GS-crossed, at each iteration
updates μ from L(μ|a,y) and then a(s) from L

(
a(s)|μ,a(−s),y

)
for s = 1, . . . , k. Here

y, a and a(−s) are defined as in the beginning of Section 4.

We explore the extent to which the conclusions drawn from Theorem 6 apply also
to Model CkP by means of simulations. We consider the case k = 2 with three different
combinations of values of n1 and n2. The data (yi1i2) are generated from the model with

(a
(1)
i1

) and (a
(2)
i2

) sampled from their prior distributions and μ set to 1. For the prior
hyperparameters we use α1 = α2 = αμ = 2 and β1 = β2 = βμ = 0.1. We compare the
standard Gibbs Sampler with no constraints, with the versions obtained by imposing

the linear constraints a
(1)
1 = a

(2)
1 = 1 and ā(1) = ā(2) = 1, respectively, where ā(1) and

ā(2) are defined as in (4.2). Table 2 reports the resulting effective same sizes (minimum
and median across parameters). The results are consistent with the theoretical guidance
offered by Theorem 6 since: (a) imposing identifiability always improves mixing of the
samplers; (b) imposing constraints on ā(1) and ā(2) leads to faster convergence compared

to imposing constraints on a
(1)
1 and a

(2)
1 ; (c) the difference in resulting efficiency between

the two set of linear constraints increases with n1 and n2.

ESS (min, median) ESS (min, median) ESS (min, median)
n1 = 5, n2 = 5 n1 = 5, n2 = 100 n1 = 100, n2 = 100

Unconstrained (16.4, 27.0) (3.8, 32.8) (3.0, 5.1)

a
(1)
1 = a

(2)
1 = 1 (2798, 5716) (341, 991) (27.6, 126)

ā(1) = ā(2) = 1 (49003, 50000) (46597, 50000) (46982, 50000)

Table 2: Effective sample sizes (ESS) for the standard unconstrained Gibbs Sampler for
Model CkP, and for the two version where identifiability is obtained by imposing the

constraints a
(1)
1 = a

(2)
1 = 1 and ā(1) = ā(2) = 1, respectively. ESS values correspond to

105 iterations of each algorithm, with the first half of the samples discarded as burn-in.

5.1 Comparison with Hamiltonian Monte Carlo

Finally, we also explore whether the results in Theorem 6 can be useful to guide the im-
plementation of other MCMC schemes targeting Model CkP, such as Hamiltonian Monte
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Carlo (HMC) (Neal et al., 2011) and the No-U-Turn Sampler (NUTS) (Hoffman and
Gelman, 2014) implemented in the widely used software STAN (Carpenter et al., 2017).
We consider the same setting of the rightmost column of Table 2 where n1 = n2 = 100,
comparing the Gibbs Sampler with HMC and NUTS (used their STAN implementation
with default setting). Table 3 reports effective sample sizes (ESS), runtimes, number of
leapfrog steps per iteration and ESS per leapfrog iteration for HMC/NUTS, ESS per
sweep (update of μ, a(1) and a(2)) for Gibbs Sampling and ESS per unit of computa-
tion time for all schemes. Traceplots and autocorrelation functions are provided in the
supplement. All simulations reported in Tables 2 and 3 were performed on the same
desktop computer with 16 GB of RAM and an Intel core i7-7700 @ 3.60 GHz processor,
using R (R Core Team, 2018). Effective sample sizes are estimated using the coda R
package. The supplementary material provides the R code used to implement the Gibbs
Samplers and the Stan code used to specify the models with linear constraints.

ESS Runtime Leapfrog min(ESS)/ min(ESS)/ min(ESS)/
(min, median) [s] per iter. n.leap n.sweep time [1/s]

HMC-v1 (1267, 2433) 13092 1412 9.0e-05 - 0.10
HMC-v2 (44.7, 2036) 1777 284 1.6e-05 - 0.03
HMC-v3 (1291, 6231) 1247 212 6.1e-04 - 1.04
NUTS-v1 (3.7, 39.7) 1901 325 1.1e-06 - 0.0019
NUTS-v2 (113, 355) 314 51 2.2e-04 - 0.36
NUTS-v3 (4977, 13341) 127 20 2.5e-02 - 39.1
Gibbs-v1 (4.6, 11.4) 0.74 - - 4.5e-04 6.20
Gibbs-v2 (14.4, 130) 0.73 - - 1.4e-03 19.7
Gibbs-v3 (4903, 5020) 0.82 - - 4.9e-01 6016

Table 3: Comparison of HMC, NUTS and the Gibbs Sampler for Model CkP without

linear constraints (v1) and with the linear constraints a
(1)
1 = a

(2)
1 = 1 (v2) or ā(1) =

ā(2) = 1 (v3). ESS and runtimes of each algorithm refer to 104 iterations, with the first
half of the samples discarded as burn-in. All numbers are averaged over 10 replicates.

First, Table 3 suggests that imposing identifiability through linear constraints helps
significantly also gradient-based samplers such as HMC and NUTS, with a pattern in
accordance with Theorem 6. The improvement involves both speeding up convergence
(higher ESS per iteration) and reducing runtime, which is reduced because the number of
required leapfrog steps per iteration (which is automatically tuned in STAN) gets lower
for better identified and less correlated targets, as the one with the linear constraints.
The only exception to this pattern is the fact that HMC-v1 (no constraints) is more

efficient than HMC-v2 (constraint a
(1)
1 = a

(2)
1 = 1). This is mainly due to the very

high number of leapfrog steps per iteration employed by HMC-v1 compared to HMC-
v2, which ends up being beneficial in terms of efficiency despite the major increase in
runtime. This phenomenon is related to the specific tuning procedures implemented in
STAN and arguably does not contradict the general fact that improving identifiability
by imposing linear constraints is beneficial for HMC and NUTS.

Second, Table 3 suggests that the Gibbs Sampler can be substantially more efficient
than HMC and NUTS for random effect models such as Model CkP, thanks to a lower
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runtime and, arguably, a more direct use of conditional independence among random
effects. We note that empirical runtimes can be highly dependent on software implemen-
tations and this could be unfavourable to a generic software implementation such as the
STAN. In order to obtain an implementation-independent comparison of efficiency one
should combine the ESS per leapfrog iteration and ESS per sweep values reported in
Table 3 with theoretical considerations on the computational costs of such operations,
which however are non-trivial and highly model-dependent. We leave a more detailed
investigation of these aspects, both theoretical and computational, to future work.

Remark 2. Interestingly, the multigrid decomposition can be applied also to Model CkP,
with the appropriate modifications. In this case the Markov chain ((μ,a)(t))

∞
t=1 in-

duced by the Gibbs Sampler can be decomposed into (k+1) independent Markov chains(
(μ, ã(1), . . . , ã(k))(t)

)∞
t=1

and
(
δ̃a(1)(t)

)∞
t=1

, . . . ,
(
δ̃a(k)(t)

)∞
t=1

, where ã(s) =
∑

is
a
(s)
is

and

δ̃a
(s)
is

= a
(s)
is

/ã(s). In this case the rate of convergence of the original chain coincides with

the one of
(
(μ, ã(1), . . . , ã(k))(t)

)∞
t=1

, which evolves according to a (k + 1)-dimensional
Gibbs Sampler with full conditionals given by:

μ|y, ã ∼ Gamma(αμ + y·, βμ +

k∏
s=1

ã(s)) ,

ã(s)|y, μ, ã(−s) ∼ Gamma(Iαs + y·, βs + μ

k∏

�=s

ã(
)) for s ∈ {1, . . . , k} ,
(5.2)

where y· =
∑

i1,...,ik
yi1...ik . We expect such a (k + 1)-dimensional Gibbs Sampler to

be potentially amenable to analysis using the framework of iterated random functions
(Diaconis and Freedman, 1999), in order to obtain an upper bound on convergence rates
(see e.g. Alsmeyer and Fuh, 2001, Theorem 2.1.(b)). We leave these extensions to future
works and mention it in Section 8 as a possible avenue for future research directions.

6 Non-symmetric hierarchical models

Section 3 describes how to optimize parametrization as a function of (I, J,K, σa, σb, σe)
for Model S3. In general, both the variance terms σ2

b and σ2
e , and the number of branches

J andK could depend on i and j. In this section we consider non-symmetric cases for two
and three level hierarchical models. In these non-symmetric cases the computationally
optimal strategy will involve centering some branches of the hierarchy and non-centering
others: we will call these strategies bespoke parametrizations.

Consider the following non-symmetric 2-levels model (which we describe in terms of
precisions rather than variances for notational convenience).

Model NS2 (Non-symmetric 2-levels hierarchical model). Consider the following 2-
levels model with centred parametrization

p(μ) ∝ 1 , γi ∼ N(μ, τ−1
a ) , yij ∼ N(γi, τ

−1
e,i ) , i = 1, . . . , I; j = 1, . . . , Ji ,

where the precision components (τa, (τe,i)i) are assumed to be known.
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Papaspiliopoulos et al. (2003) studied the symmetric version of Model NS2, where
Ji = J and τe,i = τe for all i and some fixed J and τe. They showed that the convergence
rates induced by the centred and non-centred parametrizations respectively are

ρCP =
τa

τa + τ̃e
and ρNCP =

τ̃e
τa + τ̃e

, (6.1)

where τ̃e = Jτe. The following Theorem provides an extension to the general non-
symmetric case. We consider Model NS2 with a bespoke parametrization (μ, β1, . . . , βI)
defined by I indicators (λ1, . . . , λI) ∈ {0, 1}I as βi = γi − λiμ, meaning that λi equals
0 if component i is centred and 1 if it is non-centred.

Theorem 7. The rate of convergence of the Gibbs Sampler targeting Model NS2 with
bespoke parametrization given by (λ1, . . . , λI) ∈ {0, 1}I is

ρλ1...λI
=

∑
i :λi=1 τ̃i

τ̃i
τ̃i+τa

+
∑

i :λi=0 τa
τa

τ̃i+τa∑
i :λi=1 τ̃i +

∑
i :λi=0 τa

, (6.2)

where τ̃i = Jiτe,i.

Equation (6.2) shows that in the non-symmetric case, the GS rate of convergence
is given by a weighted average of the precision ratios τa

τ̃i+τa
and τ̃i

τ̃i+τa
depending on

whether each component is centred or not. This has clear analogies with the symmetric
case in (6.1). The weights in the average of (6.2) are themselves functions of (λ1, . . . , λI),
thus introducing dependence across components in terms of centering and the overall
convergence rate. Nonetheless, the following corollary shows that even in the context of
Model NS2, optimizing parametrization in each branch of the tree can be carried out
independently following the same intuition of the symmetric case: for each i in {1, . . . , I}
use centred parametrization γi if and only if τa ≤ Jiτe,i, otherwise use a non-centred
parametrization ai = γi − μ.

Corollary 3. Let λ̄i = 1(τa > τ̃i) for all i from 1 to I. Then

ρλ̄1...λ̄I
≤ ρλ1...λI

for any (λ1 . . . λI) ∈ {0, 1}I .

By (6.2), the strategy described in Corollary 3 ensures that ρλ̄1...λ̄I
≤ 1/2. This is the

same upper bound one can obtain in the symmetric case (see (6.1) and Papaspiliopoulos
et al. (2003)), meaning that in this case bespoke parametrizations are successful in
dealing with the lack of symmetry.

Consider now the three-level non-symmetric case.

Model NS3 (Non-symmetric 3-levels hierarchical model). Consider a more general
3-levels model with centred parametrization

p(μ) ∝ 1

γi ∼ N(μ, σ2
a) i = 1, . . . , I,

ηij ∼ N(γi, σ
2
b,i) j = 1, . . . , Ji,

yijk ∼ N(ηij , σ
2
e,ij) k = 1, . . . ,Ki,j ,

where variance components are assumed to be known.
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In this case the multigrid factorization of Theorem 1 does not apply directly to
Model NS3, but nonetheless it can still be used to obtain upper bounds on the rates
of convergence combining it with monotonicity properties of the spectral radius of non-
negative matrices (see the supplement and Roberts and Sahu, 1997, Theorem 7 for
details).

Theorem 8. Given an instance of Model NS3 we define

r
(i)
a,b =

σ2
a

σ2
a + J−1

i σ2
b

, and r
(i)
e,b =

1

Ji

Ji∑
j=1

K−1
ij σ2

e,ij

σ2
b,i +K−1

ij σ2
e,ij

.

If r
(i)
a,b ≥ r

(i′)
a,b r

(i′)
e,b for every i, i′ ∈ {1, . . . , I}, then the rate of convergence of the Gibbs

Sampler with centred parametrization (μ,γ,η) satisfies

ρ ≤ 1− 1

I

I∑
i=1

r
(i)
a,b + max

i=1,...,I
r
(i)
a,br

(i)
e,b .

The results of Theorem 8 suggest that as the number of data points increase the
efficiency of the Gibbs sampler with centred parametrization increases. In fact, as Kij

increases the assumptions of Theorem 8 are eventually satisfied and the bound on the
convergence rate goes to 0 as Ji and Kij increase. Theorem 8 provides rigorous theoreti-
cal support and characterization of the well known fact that the centred parametrization
is to be preferred in contexts of large and informative datasets (Gelfand et al., 1995;
Papaspiliopoulos et al., 2003). We note that the convergence rate for the Gibbs Sampler
targeting Model NS3 is not easily tractable, and that deriving analytic expressions for
the optimal bespoke parametrization in this context is still an open problem.

7 Hierarchical linear models with arbitrary number of
levels

Here we consider Gaussian hierarchical models with k levels for arbitrary k. We refer
to the highest level of the hierarchy (i.e. the one furthest away from the data) as level
0, down to level k − 1 the lowest level (i.e. closest to the data). The 3 level model of
Section 3 is a special case of the theory developed here where k = 3.

7.1 Model formulation

In order to allow for more generality and keep the notation concise, in this section we
will use a graphical models notation. In particular T will denote a finite tree with k
levels and root t0 ∈ T . For each node t ∈ T we will denote by pa(t) the unique parent
of t and by ch(t) the collection of children of t. Moreover we write s � t and s  t if s is
respectively an ancestor or a descendant of t (with s and t possibly being equal) while
s ≺ t and s � t denote the same notions with the additional condition of s �= t. For
each node t ∈ T we denote by (t) the level of node t (i.e. its distance from t0). For each
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d ∈ {0, . . . , k − 1} we denote by Td = {t ∈ T : (t) = d} the collection of nodes at level
d. For example we have T0 = {t0} and T = ∪k−1

d=0Td. Noisy observations will occur only
at leaf nodes. The collection of leaf nodes is denoted as TL = {t ∈ T : ch(t) = ∅}. For
simplicity we assume that all leaf nodes are at level k− 1, i.e. TL = Tk−1, although this
assumption could be easily relaxed allowing some branches to be longer than others.

Model NSk (k-levels hierarchical model). Suppose that we have a hierarchy described
by a tree T with observations occurring at leaf nodes TL. We assume the following
hierarchical model

y
(i)
t ∼ N(γt, 1/τ

(e)
t ) t ∈ TL , (7.1)

γt ∼ N(γpa(t), 1/τt) t ∈ T\t0, (7.2)

where i ∈ {1, . . . , nt} with nt being the number of observed data at leaf node t, (τt)t∈T\t0
and (τ

(e)
t )t∈TL

are known precision components and all normal random variables are
sampled independently. Following the standard Bayesian model specification we assume
a flat prior on γt0 .

We are interested in sampling from the posterior distribution of γT = (γt)t∈T given
some observations y = (yt)t∈TL

. The centred parametrization γT of Model NSk leads
to the following Gibbs Sampler.

Sampler GS(γT ). Initialize γT (0) and then iterate the following kernel:

For d = 0, . . . , k − 1, sample γt(s + 1) from p(γt|γTd−1
(s + 1),γTd+1

(s),y) for all
t ∈ Td, where p(γt|γTd−1

,γTd+1
,y) = p(γt|γT\t,y) is the full conditional distribution of

γt given by Model NSk. When d equals 0 or k− 1 the levels γTd−1
and γTd+1

have to be
replaced by empty sets in the conditioning.

7.2 Non-centering and hierarchical reparametrizations

Model NSk expresses Gaussian hierarchical models using a centred parametrization.
The corresponding non-centred version is given by the following example.

Example 1 (Fully non-centred parametrization). Under the same setting as Model NSk,
define

y
(i)
t ∼ N

(∑
r�t

αr, 1/τ
(e)
t

)
t ∈ TL,

αt ∼ N(0, 1/τt) t ∈ T\t0,

and assume a flat prior on αt0 .

The non-centred parametrization αT can be obtained as a linear transformation
of the centred version γT of Model NSk. More generally, we will consider the class of
parametrizations that can be obtained by reparametrizing γT as follows.
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Definition 1 (Hierarchical reparametrizations). Let γT = (γt)t∈T be a random vector
with elements indexed by a tree T . We say that βT = (βt)t∈T is a hierarchical (linear)
reparametrization of γT if

βt =
∑
r�t

λtrγr t ∈ T, (7.3)

for some real-valued coefficients Λ = (λtr)r�t,t∈T satisfying λtt �= 0 for all t ∈ T . We
denote (7.3) by βT = ΛγT .

Using terminology from Papaspiliopoulos et al. (2003), we refer to the family of hi-
erarchical reparametrizations of γT = (γt)t∈T as partially non-centred parametrizations
(PNCP) of Model NSk. Note that (7.3) does not span the space of all linear transforma-
tions of γT . In fact Λ = (λtr)r�t,t∈T can be thought as a |T |× |T | matrix Λ = (λtr)r,t∈T

inducing a linear transformation of γT with the additional sparsity constraint of being
zero on all elements λtr such that r � t. The following Lemma shows that the definition
of the class of PNCP does not depend on the starting parametrization used to formulate
Model NSk. For example, one could equivalently define the class of PNCP of Model NSk
as the collection of hierarchical reparametrization of the non-centred parametrization
αT of Example 1.

Lemma 1. If βT is a hierarchical reparametrization of γT , then also γT is a hierar-
chical reparametrization of βT .

As for the 3-levels case we are interested in assessing the computational efficiency of
the different Gibbs Sampling schemes arising from different PNCP’s. For each PNCP
βT the corresponding Gibbs Sampler scheme GS(βT ) is defined analogously to GS(γT ).

Sampler GS(βT ). Initialize βT (0) and then iterate the following kernel:

For d=0, . . . , k−1, sample βt(s+1) from p(βt|(βTp
(s+1))0≤p<d, (βTp

(s))d<p≤k−1,y)
for all t ∈ Td, where p(βt|(βTp

)0≤p<d, (βTp
)d<p≤k−1,y) = p(βt|βT\t,y) is the full con-

ditional distribution of βt given by Model NSk.

Sampler GS(βT ) is easy to implement because the family of PNCP preserves the
hierarchical structure of Model NSk. In fact, any PNCP of Model NSk exhibits the
following conditional independence structure:

βr⊥βt|βT\{r,t} unless r � t or t � r . (H)

Note that this is a weaker condition than the one holding for the centred parametrization
γT . In the latter case, the conditional independence graph corresponds exactly to the
tree T , meaning that if r �= t

γr⊥γt|γT\{r,t} unless r = pa(t) or t = pa(r) . (T)

Despite being weaker than (T), condition (H) still guarantees that all parameters at the
same level are conditionally independent (thus simplifying the update of βTd

|βT\Td
)

and that the full conditional distribution of each βt depends only on the descendants or
ancestors of t. The following Lemma and Corollary provide a simple way to check that
any PNCP of Model NSk satisfies (H).
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Lemma 2. Property (H) is closed under hierarchical re-parametrizations, meaning that
if βT satisfies (H) then any hierarchical re-parametrization of βT satisfies (H) too.

Corollary 4. Any PNCP βT of Model NSk satisfies (H).

7.3 Symmetry assumption

To provide a full analysis of the convergence properties of Sampler GS(βT ) we need
a symmetry assumption that we now define. Let ρtr denote the partial correlation

Corr
(
βt, βr

∣∣∣βT\{t,r}

)
, namely

ρtr = − Qtr√
QttQrr

t �= r ,

and ρtt = 1 for all t. Here Q is the precision matrix of βT . Let X = (X
)
k−1

=0 be a

random walk going through T from root to leaves as follows: X0 = t0 almost surely and
then, for  ∈ {0, . . . , k − 2}

P (X
+1 = t |X
 = r) =
ρ2tr∑

t′∈ch(r) ρ
2
t′r

1(t ∈ ch(r)) . (7.4)

Equation (7.4) implies that at each step X jumps from the current state r to one of its
children t ∈ ch(r) choosing t proportionally to the squared partial correlation between
βr and βt. Since (Xd) = d almost surely for all d ∈ {0, . . . , k − 1} we can use the
following simplified notation: for any t and r in T we use P (t), P (t|r) and P (t ∩ r) to
denote respectively P (X
(t) = t), P (X
(t) = t |X
(r) = r) and P (X
(t) = t ∩ X
(r) = r).

Given the above definitions, we define the following symmetry condition: there exist
a k × k symmetric matrix C = (cdp)

k−1
d,p=0 such that

ρtr =c
(r)
(t)
√
P (t|r) r � t , (S)

and ρtr = 0 if r � t and t � r. Note that ρtr is invariant to coordinate-wise rescaling
of βT and therefore both property (S) and the transition kernel of X are invariant to
rescalings. Therefore we can consider, without loss of generality, the following rescaled
version of βT defined by

β̃t = βt

√
Qtt

P (t)
t ∈ T . (7.5)

Condition (S) can then be written in terms of the precision matrix of β̃T = (β̃t)t∈T as

Q̃tt = P (t) and − Q̃tr =c
(t)
(r)P (t ∩ r) for t �= r . (S̃)

The rescaled version β̃T will be helpful to design an appropriate multigrid decomposition

of βT . Also, property (S̃) is closed under symmetric hierarchical parametrizations.
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Definition 2 (Symmetric hierarchical reparametrizations). We say that βT = ΛαT is
a symmetric hierarchical reparametrization of αT if the coefficients of Λ = (λtr)r�t,t∈T

depend only on the levels of r and t in the hierarchy T .

Lemma 3. Property (S̃) is closed under symmetric hierarchical reparametrizations,

meaning that if β̃T satisfies (S̃) then any symmetric hierarchical reparametrization of

β̃T satisfies (S̃) too.

Various special cases of Model NSk satisfy assumption (S). For example, we now
consider three cases: a fully symmetric case (both the tree T and the variances (τt)t∈T

are symmetric), a weakly symmetric case (non-symmetric tree and symmetric variances)
and a non-symmetric case (both tree and variances non-symmetric).

Model Sk (Symmetric k-levels hierarchical model). Consider the k-level Gaussian
Hierarchical model where the observed data are generated from

yi1,...,ik−1,j ∼ N(γ
(k−1)
i1,...,ik−1

, 1/τe) (i1, . . . , ik−1, j) ∈ [I1]× · · · × [Ik−1]× [J ] ,

where [N ] = {1, . . . , N} for any positive integer N . The parameters have the following
hierarchical structure: for each level d from 1 to k − 1

γ
(d)
i1,...,id

∼ N(γ
(d−1)
i1,...,id−1

, 1/τd) (i1, . . . , id) ∈ [I1]× · · · × [Id] .

Here (τ1, . . . , τk−1, τe) are known precisions and the root parameter γ(0) is given a flat
prior p(γ(0)) ∝ 1. For each d ∈ {1, . . . , k − 1} the positive integer Id represents the
number of branches from level d− 1 to level d.

It is easy to see that the posterior distribution of Model Sk, conditioned on the
observed data y = (yi1,...,ik−1,j)i1,...,ik−1,j , satisfies (S). In this case the random walk X
defined by (7.4) coincides with the natural random walk going through T .

Example 2 (Weakly symmetric case). Another special case of Model NSk satisfying (S)
is given by the case of a general tree T and precision terms defined as τt =

τ�(t)∏
s≺t |ch(s)|

for all t ∈ T and τ
(e)
t = τe

nt

∏
s≺t |ch(s)|

, where (τ1, . . . , τk, τe) ∈ Rk+1
+ are level-specific

precision terms. This is an extension of Model Sk where the lack of symmetry of T is
compensated by appropriate variance terms. Condition (S) can be checked by evaluating
the partial correlations (ρtr)t,r∈T of the resulting vector γT .

Example 3 (Non-symmetric cases). In both Model Sk and Example 2 the auxiliary
Markov chain X defined in (7.4) follows a natural random walk, in the sense that at
each time the chain chooses the next state uniformly at random among children nodes.
However, condition (S) is also satisfied by non-symmetric cases where X is not a natural
random walk. In particular any instance of Model NSk such that∑

r∈ch(t)

ρ2tr = c
(t) for all t ∈ T\TL , (S*)

for some (k − 1)-dimensional vector (c0, . . . , ck−2) induces a posterior distribution sat-
isfying (S). In fact, in the context of Model NSk conditions (S*) and (S) are equivalent
(this can be derived from (T) and (7.4)).
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The cases previously considered are expressed in terms of centred parametrization,
meaning that as all the instances of Model NSk they satisfy (T). Nevertheless Lemma 3

shows that any symmetric hierarchical reparametrization of a vector satisfying (S̃) still

satisfies (S̃). This implies, for example, that the fully non-centred version of Model Sk
and any mixed strategy where some level is centred and some is not centred, still satis-
fies (S̃) (after rescaling). Moreover, note that the exact analysis we will now provide for

the Gibbs sampler on models satisfying (S̃) can be used to provide bound on general

cases that do not satisfy (S̃) (see for example Theorem 8).

7.4 Multigrid decomposition

We now show how to use the multigrid decomposition to analyse the Gibbs Sampler for
random vectors βT satisfying (H) and (S). Our aim is to provide a transformation of βT

that factorizes the Gibbs Sampler Markov Chain into independent and more tractable
sub-chains. Similarly to Section 3 in the following we will often denote βTd

= (βt)t∈Td

by β(d). We proceed in two steps, first introducing the averaging operators φ(p) and
then the residual operators δ(p). For any p ≤ d the averaging operator φ(p) : RTd → RTp

is defined as

φ(p)
r β(d) =E[βXd

|βT , Xp = r] =
∑
t∈Td

βtP (t|r) r ∈ Tp , (7.6)

where X = (X
)
k−1

=0 is the Markov chain defined by (7.4). Loosely speaking φ(p)β(d) =

E[βXd
|βT , Xp] can be interpreted as the averages of β(d) at the coarseness corresponding

to the p-th level of the hierarchy. In particular φ(d)β(d) = β(d) and φ
(0)
t0 β(d) = E[βXd

|βT ].

Example 4 (Averaging operators in the symmetric case). Let βT = γT be given by
Model Sk. Then

φ(p)
r β(d) =

1∏d

=p+1 I


⎛⎝ ∑
t∈Td : t
r

βt

⎞⎠ r ∈ Tp .

Given φ, we define the residual operators δ(p) : RTd → RTp as δ(p) = (δ
(p)
r )r∈Tp with

δ
(p)
r : RTd → R defined as

δ(p)r β(d) =φ(p)
r β(d) − φ

(p−1)
pa(r) β

(d) r ∈ Tp , (7.7)

for 1 ≤ p ≤ d ≤ k − 1 and δ(0)β(d) = φ(0)β(d) for 0 = p ≤ d ≤ k − 1. Analogously
to the 3-level case of Section 3, under suitable assumptions the residual operators δ(p)

decompose the Markov chain generated by the Gibbs Sampler into independent sub-
chains. To prove the result we first need the following lemma.

Lemma 4 (p-residuals interact only with p-residuals). Let βT be a Gaussian random

vector satisfying (H) and (S̃). Then for any p and d with 0 ≤ p ≤ d ≤ k − 1, for all
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r ∈ Tp we have the identity

E[δ(p)r β(d)|β\β(d)]− E[δ(p)r β(d)] =
∑


∈{p,...,k−1}\d
cd


(
δ(p)r β(
) − E[δ(p)r β(
)]

)
.

Theorem 9 (Multigrid decomposition for k levels). Let (β(s))s∈N be a Markov chain

evolving according to GS(βT ) with βT satisfying (H) and (S̃). Then the functionals
(δ(0)β(s))s, . . . , (δ

(k−1)β(s))s are k independent Markov chains. Moreover, each chain

δ(p)β(s) = (δ(p)β(d)(s))k−1
d=p evolves according to the following blocked Gibbs sampler

scheme with (k − p) components: for d going from p to k − 1 sample

δ(p)β(d)(s+ 1) ∼ L
(
δ(p)β(d)|(δ(p)β(
)(s+ 1))p≤
<d, (δ

(p)β(
)(s))d<
≤k−1

)
, (7.8)

where L(X|Y ) denotes the conditional distribution of X given Y .

Theorem 9 implies that running a Gibbs sampler (β(s))s targeting distributions
satisfying (H) is equivalent to running k independent blocked Gibbs Samplers, one for
each level of coarseness, from δ(0)β(s) to δ(k−1)β(s).

Corollary 5. Let βT satisfy (H) and (S̃). Then the rate of convergence of GS(βT ) is
given by max{ρ0, . . . , ρk−1} where for each p ∈ {0, . . . , k − 1}, ρp is the rate of conver-
gence of (δ(p)β(s))s.

7.5 Hierarchical ordering of rates

Combining the results in Roberts and Sahu (1997, Section 2.2) with the multigrid de-
composition, we can characterize the rates of convergence of the k independent Markov
chains described above as follows.

Theorem 10. The rate of convergence of (δ(p)β(s))s is given by the largest modulus
eigenvalue of (Ik−p − L)−1U . Here Ik−p is the (k − p) dimensional identity matrix,
while L and U are, respectively, the strictly lower and strictly upper triangular part of
(cd
)

k−1
d,
=p, with cd
 given by (S̃).

Theorem 10 implies that the convergence properties of the k independent Markov
chains are closely related. In particular, from the rates of convergence point of view,
the k Markov chains updating δ(p)β for p = 0, . . . , k − 1 behave as Gibbs samplers tar-
geting a decreasing number of dimensions (from k down to 1) of a single k-dimensional
Gaussian distribution with precision matrix given by −C, where C = (cd
)

k−1
d,
=p is given

by (S̃). This suggests that the convergence properties of the sub-chains will typically
improve from that of (δ(0)β(s))s to that (δ(k−1)β(s))s and that the rate of convergence
of (δ(0)β(s))s will typically determine the rate of the whole sampler GS(βT ). In partic-
ular, in the centred parametrization case we can use the well-known Cauchy interlacing
theorem (see e.g. Bhatia, 2013) to show that the rate of convergence is monotonically
non-increasing from (δ(0)β(s))s to (δ(k−1)β(s))s.



1336 Gibbs Sampler and Multigrid Decompositions

Theorem 11 (Ordering of rates for centred parametrization). Let γ be a Gaussian

vector satisfying (T) and (S̃) and let (γ(s))s∈N be the corresponding Markov chain
evolving according to GS(γT ). Then the convergence rates of the k independent Markov
chains (δ(0)γ(s))s, . . . , (δ

(k−1)γ(s))s satisfy

ρ(δ(0)γ(s)) ≥ ρ(δ(1)γ(s)) ≥ · · · ≥ ρ(δ(k−1)γ(s)) = 0 . (7.9)

In Theorem 11 we needed the additional assumption (T) to prove (7.9). The reason
is that, while in most cases the convergence rates of a deterministic-scan Gibbs Sampler
targeting a n-th dimensional Gaussian distribution improves if one of the coordinates
is conditioned to a fixed value and the sampler targets only the remaining (n − 1)
coordinates, this is not true in general. Example 2 of Roberts and Sahu (1997) provides
a counter-example (see also Whittaker, 1990, page 319). In Roberts and Sahu (1997),
this example was used a counter-example regarding blocking strategies, it also works
in the present context. We note that, if one were to consider a random scan version of
the Gibbs Sampler, the reversibility of the induced Markov chains would allow us to
prove the ordering result in Theorem 11 with no need to assume (T). We leave this as
a direction of future research and briefly mention it in Section 8.

Theorem 11 implies the following corollary.

Corollary 6. Let γ be a Gaussian vector satisfying (T) and (S̃). Then the rate of
convergence of GS(γT ) is given by the largest squared eigenvalue of the k-dimensional

matrix C−Ik, where C = (cd
)
k−1
d,
=0 is defined by (S̃) and Ik is the k-dimensional matrix.

In the special case of Model Sk it is easy to deduce the following result.

Corollary 7. The rate of convergence of GS(γT ) targeting Model Sk is given by the
largest squared eigenvalue of the k-dimensional matrix⎛⎜⎜⎜⎜⎝

0 r1
(1− r2) 0 r2

. . . . . . . . .
(1− rk−2) 0 rk−2

(1− rk−1) 0

⎞⎟⎟⎟⎟⎠ ,

where r
 = I�τ�
τ�−1+I�τ�

with (τ1, . . . , τk−1) and (I1, . . . , Ik−1) given by Model Sk, τ0 = 0,

τk = τe and Ik = J .

7.6 Example: rates of convergence for 4-level models

The results developed in Sections 7.4 and 7.5 allow the analysis of hierarchical models
with an arbitrary number of levels. For example we could consider 4-level extensions of
Model S3.

Model S4 (Symmetric 4-levels hierarchical model). Suppose

yijk
 = μ+ ai + bij + cijk + εijk
, (7.10)
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where i, j, k and  run from 1 to I, J , K and L respectively and εijk
 are iid normal
random variables with mean 0 and variance σ2

e . We employ a standard Bayesian model
specification with ai ∼ N(0, σ2

a), bij ∼ N(0, σ2
b ), cijk ∼ N(0, σ2

c ) and a flat prior on μ.

In order to fit Model S4 with a Gibbs Sampler like GS(βT ), one could consider center-
ing or non-centering each of the three levels (ai)i, (bij)ij and (cijk)ijk. Let (λ1, λ2, λ3) ∈
{0, 1}3 be the non-centering indicators associated to the resulting in 8 = 23 combina-
tions. Here λd = 1 indicates that the d-th level is non-centred while λd = 0 indicates that
it is centred. The corresponding rates of convergence ρ(λ1,λ2,λ3) can then be expressed
in terms of the following normalized variance ratios

ri,j =
σ̃2
i

σ̃2
i + σ̃2

j

i, j ∈ {1, 2, 3, 4} ,

where σ̃2
1 =

σ2
a

I , σ̃2
2 =

σ2
b

IJ , σ̃
2
3 =

σ2
c

IJK and σ̃2
4 =

σ2
e

IJKL . If λ1 = 1 (i.e. using the non-centred
parametrization (ai)i at level 1) the rates are

ρ111 = max{r1,4, r2,4, r3,4} , ρ110 = max{r1,3, r2,3, r4,3} ,
ρ100 = max{r1,2, 1− r2,3r3,4} , ρ101 = max{r1,2, 1− r2,4r4,3} .

When λ1 = 0 the expressions for the convergence rates are still explicit, but slightly
more involved and are reported in Section 3.1 of the supplementary material. These
rates can be derived from Corollary 5 and Theorem 10. It is worth noting that also
in this 4-level case the skeleton chain δ(0)β is always the slowest chain for all centred
and non-centred parametrizations (which can be checked by computing the rates of
convergence of δ(1)β, δ(2)β and δ(3)β using Theorem 10 and comparing those to the
ones of δ(0)β), even if for the general k-level case we were able to prove this fact only for
the fully-centred parametrization (Theorem 11). The expressions given here can be easily
used to derive conditionally optimal parametrizations for Model S4 given the rescaled
variance components (σ̃2

i )
4
i=1. For example, choosing whether to center or not each level

by comparing the level-specific rescaled variances with the sum of the rescaled variances
of the lower levels like in Section 3.2 leads to rates of convergence upper bounded by 3

4 .

8 Conclusions and future work

In this work we studied the convergence properties of the Gibbs Sampler algorithm in
the context of Gaussian multilevel models. To do so we developed a novel analytic ap-
proach based on multigrid decompositions that allows the factorization of the Markov
chain of interest into independent and easier to analyse sub-chains. This decomposition
enables us to evaluate explicitly the L2-rate of convergence in various models of inter-
est. The results offer a detailed insight into the interaction between multilevel structures
(e.g. nested and crossed) and the Gibbs Sampler and provide guidance on the choice
of the computationally optimal parametrizations or linear constraints, which can po-
tentially be relevant also beyond the Gaussian case (see e.g. Section 5), and indication
of which parameters to monitor in the convergence diagnostic process (see Theorem 2
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and discussion at the end of Section 2.1). Since the first preprint version of this paper,
the multigrid decomposition developed in this paper has already found other practical
applications. In particular Papaspiliopoulos et al. (2019) have successfully exploited it
to analyse the computational complexity of the Gibbs Sampler in the context of crossed
random effect models (see also Gao and Owen, 2017) and to design an algorithmic
modification with linear computational complexity.

Together with explicit formulas for L2-rates of convergences, the multigrid decompo-
sition we developed in this paper provides a simple and intuitive theoretical character-
izations of practical behaviors commonly observed in practice when fitting hierarchical
models with MCMC, such as slower mixing for hyper-parameters at higher levels (see
Theorems 2 and 11), algorithmic scalability with width of the hierarchy but not with
height (e.g. Theorem 3 and Corollary 7) and good performances of centred parametriza-
tion in data-rich contexts (Theorem 8). The results presented in this paper provide a
first step towards providing quantitative understanding of the behavior of MCMC algo-
rithms (even beyond the Gibbs Sampler) in the extremely popular context of Bayesian
hierarchical and multilevel models.

The present work could be extended in many directions. For example, it would be
interesting to extend the results for non-symmetric cases, either by generalizing the
bounds of Theorem 8 or by weakening the symmetry assumption in (S). In terms of
classes of models considered, a natural and important extension would be to consider
the multivariate case (where each parameter γt is a multivariate random vector) and
the regression case. We expect many results developed in this work to extend to the
multivariate and regression case, even if in that context the role played by non-symmetric
cases will be more crucial. Another important class of models that would be worth
approaching with methodologies analogous to the ones developed here are models based
on Gaussian processes commonly used, for example, in spatial statistics (see e.g. Bass
and Sahu, 2019).

An important and ambitious aim would be to extend the results to other tractable
distributions within the exponential family beyond the Gaussian case. A starting point
for this could be to analyse Model CkP as mentioned in Remark 2. Also, many non-
Gaussian hierarchical models can be well-approximated by Gaussian ones for sufficiently
large data sets, so that it is reasonable to conjecture that the qualitative conclusions
(at least) of our study might remain valid when extrapolated to non-Gaussian models,
rather like the analysis given in Sahu and Roberts (1999). A detailed study of this
question is left for future work.

We have concentrated in this paper on deterministic samplers. However, explicit
rates of convergence of random scan samplers are also available in the Gaussian case as
described in Amit (1996) and extended in Roberts and Sahu (1997). Deterministic and
random scan samplers can sometimes differ substantially in their convergence properties,
see for example Roberts and Rosenthal (2015), although no general theory for this
phenomenon is well-understood, so that the insights of this work could be particularly
useful in this direction. Also, in the random scan case the reversibility of the induced
Markov chains would allow us to apply the Cauchy interlacing theorem under weaker
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assumptions than Theorem 11 and thus prove orderings results for general hierarchical
parametrizations βT = (βt)t∈T .

While this work is focused on L2-rates of convergence, the same approach could be
used to derive bounds on the distance (e.g. total variation or Wasserstein) between the
distribution of the Markov chain at a given iteration and the target distribution (see
e.g. Amit, 1996, Roberts and Sahu, 1997, (15) and Khare et al., 2009, Section 4.4). Such
a formulation would be interesting to extend the recent growth in literature on provid-
ing rigorous characterizations of the computational complexity of Bayesian hierarchical
linear models, see for example Rajaratnam and Sparks (2015); Roberts and Rosenthal
(2016); Johndrow et al. (2015). In order to provide full characterizations, however, the
case of unknown variances should be considered (see e.g. Jones and Hobert, 2004 for
the two level case).

Supplementary Material

Proofs and additional material on the simulations (DOI: 10.1214/20-BA1242SUPP;
.pdf). The supplementary material contains the proofs of the theoretical results pre-
sented in the paper, as well as additional formulas and material related to the simula-
tions.
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Invited Discussion

Quan Zhou∗ and Shuang Zhou†

We congratulate Zanella and Roberts (2021) on their seminal work on the convergence
properties of blocked Gibbs samplers for Gaussian hierarchical models. The article de-
velops an ingenious multigrid decomposition technique which can decompose the Gibbs
sampler for any symmetric k-level hierarchical model into k independent Markov chains,
providing profound insights and theoretical guidance on how to choose the parameteri-
zation and updating strategy in Gibbs sampling. Further, when the variance parameters
are known, this method can be used to quickly find the closed-form expression for the
sampler’s convergence rate. In this note, we focus on the multigrid decomposition the-
ory for nested hierarchical models and refer readers to Papaspiliopoulos et al. (2020,
2021) for more results on the multigrid decomposition for crossed effect models. We first
consider the theory developed in Section 7 of Zanella and Roberts (2021) from a linear
algebraic perspective, which offers an alternative and potentially more general approach
to proving a key result in their paper (see Remark 2). Next, we perform a numerical
experiment which shows that the insights obtained in Zanella and Roberts (2021) may
also be applied to hierarchical linear mixed models.

1 Multigrid decomposition and block diagonalization of
B-matrices

1.1 Preliminaries

We start by reviewing Theorem 1 of Roberts and Sahu (1997), which characterizes the
convergence rate of a blocked Gibbs sampler targeting a multivariate normal distribu-
tion. Consider a parameter vector βββ = (βββ0, . . . ,βββk−1) ∈ Rm, where m =

∑k−1
d=0 md

and βββd ∈ Rmd denotes the d-th component block of βββ. Suppose βββ follows a non-
degenerate normal distribution N(u,Σ), and let Q = Σ−1. We partition u and Q by
u = (u0, . . . ,uk−1) andQ = (Qd,d′)0≤d,d′≤k−1, where ud ∈ Rmd andQd,d′ ∈ Rmd×md′ .1

The full conditional distribution of βββd is

βββd | βββ−d ∼ N
(
(Aβββ)d + ((Im −A)u)d, Q

−1
d,d

)
, (1)

where the “A-matrix” is given by A = Im − diag(Q−1
0,0, . . . , Q

−1
k−1,k−1)Q. Note that

all diagonal blocks of A are zero matrices. Write A = L(A) + U(A), where L(A)
(resp. U(A)) contains the block lower (resp. upper) triangular part of A. Define the
“B-matrix” by

B = (Im − L(A))−1U(A). (2)

∗Department of Statistics, Texas A&M University, quan@stat.tamu.edu
†School of Mathematical and Statistical Sciences, Arizona State University, szhou98@asu.edu
1We always use βββd (or ud) to denote a subvector and Qd,d′ to denote a submatrix. An entry of βββ is

denoted by βt, where β is not in bold. Note our βββd denotes the same quantity as βββ(d) in Zanella and
Roberts (2021, Section 7).

mailto:quan@stat.tamu.edu
mailto:szhou98@asu.edu
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For the deterministic sweep Gibbs sampler (called DUGS in Roberts and Sahu (1997))
which updates βββ0, . . . ,βββk−1 successively in each iteration, its dynamics can be described
by

βββ(s+ 1) ∼ N(Bβββ(s) + (Im −B)u, Σ−BΣBT), (3)

where βββ(s) denotes the s-th sample of the vector βββ. Roberts and Sahu (1997) proved
that the rate of convergence (as defined in Equation (1) of Zanella and Roberts (2021))
of DUGS is given by ρ(B), the spectral radius of B. The following observation is almost
immediate.

Lemma 1. Consider the DUGS sampler given in (3). Let Δ be an n×m matrix with
rank m, and Δ− be its left inverse such that Δ−Δ = Im. Then, the induced Markov
chain ((Δβββ)(s))s≥1 has the same rate of convergence as (βββ(s))s≥1.

Proof. Observe that the B-matrix for ((Δβββ)(s))s≥1 is given by ΔBΔ−, which has the
same spectral radius as Δ−ΔB = B.

1.2 Multigrid decomposition

Consider a collection of matrices {Δ(p,d)}0≤p,d≤k−1, where Δ
(p,d) ∈ Rmp×md , such that

βββd �→ ((Δ(0,d)βββd)
T, . . . , (Δ(k−1,d)βββd)

T)T is an injective linear transformation from Rmd

to Rm. Then, let Δ be the km×m matrix defined by

Δ =

⎡⎢⎣ Δ(0)

...
Δ(k−1)

⎤⎥⎦ , where Δ(p) = diag(Δ(p,0), . . . ,Δ(p,k−1)) ∈ Rkmp×m. (4)

Remark 1. The multigrid decomposition for hierarchical models given in Zanella and
Roberts (2021, Section 7) corresponds to defining Δ(p,d) such that δ(p)βββd = Δ(p,d)βββd

where δ(p) is the residual operator defined in Section 7.4 therein (by their Equations (7.6)
and (7.7), one can see that entries ofΔ(p,d) are determined by the transition probabilities
of the auxiliary random walk introduced in Section 7.3). In this construction, Δ(p,d) = 0
if p > d. Lemma 4 of Zanella and Roberts (2021) proves that, under certain conditions
on the precision matrix Q, Δ(p,d)(Aβββ)d only depends on Δ(p)βββ, which implies that
ΔAΔ− is block diagonal. We prove below that this further implies ΔBΔ− is also
block diagonal.

Lemma 2. Let Δ be as defined by (4), and B be as given in (2). Suppose that ΔAΔ− =
diag(Ã(0), . . . , Ã(k−1)), where Ã(d) has dimension kmd × kmd. Then, ΔBΔ− is also
block diagonal, and the d-th diagonal block is (Ikmd

− L(Ã(d)))−1U(Ã(d)).

Proof. We first set some notation to describe the block structure of Δ. We treat each
Δ(p) as a block matrix with k × k components, and Δ as a block matrix with k2 × k
components. For each i ∈ {0, 1, . . . , k2−1}, define v(i) = �i/k� and z(i) = i−kv(i). The
component block Δi,j has dimension mv(i) ×mj , and by construction Δi,j = 0 unless

j = z(i) (in which case Δi,j = Δ(v(i),z(i))). The left inverse Δ− has the same “block
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structure” as ΔT, and thus we can use an analogous notation to denote its component
blocks. Treating ΔAΔ− as a block matrix with k2 × k2 components, we find that

(ΔAΔ−)i,j =
∑

0≤d,p≤k−1

Δi,dAd,pΔ
−
p,j = Δi,z(i)Az(i),z(j)Δ

−
z(j),j .

The assumption on ΔAΔ− means that (ΔAΔ−)i,j = 0 whenever v(i) �= v(j). Hence,
by the definition of the function z, if (ΔAΔ−)i,j is nonzero and i < j, then z(i) < z(j).
In other words, the upper triangular blocks of A are only involved in the calculation of
the upper triangular blocks of ΔAΔ−, which leads to

L(ΔAΔ−) = ΔL(A)Δ− = diag(L(Ã(0)), . . . ,L(Ã(k−1))).

By writing ΔL(A)2Δ− = (ΔL(A)Δ−)2, we see that analogous identities hold for
U(A)n and L(A)n for any integer n ≥ 0. Apply Neumann series to get B = (I −
L(A))−1U(A) =

∑∞
n=0 L(A)nU(A). It then follows that

ΔBΔ− =
∞∑

n=0

(ΔL(A)nΔ−)(ΔU(A)Δ−)

=
∞∑

n=0

diag
{
L(Ã(0))nU(Ã(0)), . . . ,L(Ã(k−1))nU(Ã(k−1))

}
.

Apply Neumann series again to conclude the proof.

Remark 2. In our proof of Lemma 2, the exact definition of {Δ(p,d)}p,d is irrelevant. If
Δ is indeed constructed by the multigrid decomposition scheme described in Remark 1,
the conclusion of Theorem 9 of Zanella and Roberts (2021) implies that ΔBΔ− must
be block diagonal since ((Δ(0)βββ)(s))s≥1, . . . , ((Δ

(k−1)βββ)(s))s≥1 are independent Markov
chains. But by Lemma 1, the independence among these chains is unnecessary for the
purpose of evaluating ρ(B): all we need is some Δ such that the eigenvalues of ΔBΔ−

are easy to evaluate. This observation motivates us to prove Lemma 2 by only assuming
the block diagonal structure of ΔAΔ−.

The proof of Theorem 10 of Zanella and Roberts (2021) reveals that, under their
assumptions, the spectrum of the matrix Ã(p) in Lemma 2 is determined by some
matrix C(p) with dimension (k − p) × (k − p). For symmetric hierarchical models, the
entries of C(p) can be easily determined from the data likelihood, and one can find
ρ(B) by evaluating the eigenvalues of (I − L(C(p)))−1U(C(p)) for each p. Further, by
Theorem 11 of Zanella and Roberts (2021), if the centred parameterization is used, we
have ρ(B) = ρ{(I − L(C(0)))−1U(C(0))}, which means that we only need to find the
eigenvalues of one k × k matrix.

1.3 Extensions

The above analysis implies that the multigrid decomposition can also be used to study
the rate of convergence of other blocked Gibbs samplers considered in Roberts and Sahu
(1997), e.g. REGS (reversible version of DUGS) and RSGS (random sweep Gibbs sam-
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pler). By Theorem 2 of Roberts and Sahu (1997), the convergence rate of RSGS depends
on the largest eigenvalue of A, denoted by λ(A), which can be found by calculating the
eigenvalues of C(p). For example, for Model S3 with centered parameterization, it can be
shown that λ(A)2 = ρ(B); see also Theorem 5 of Roberts and Sahu (1997). For REGS,
the rate of convergence is given by ρ((I−L(A))−1U(A)(I−U(A))−1L(A)), which again
can be found by replacing A with C(p). For Model S3 with centered parameterization,
a closed-form formula for the convergence rate of REGS can be obtained (e.g. by using
Mathematica), but we find the expression too unwieldy to be included here.

Another potential direction for future research is to study how to construct the ma-
trix Δ under more general settings. Zanella and Roberts (2021) essentially impose two
conditions on the precision matrix Q, both being very natural for Bayesian hierarchical
models. First, the conditional independence of all coordinates of βββ can be described
by a tree (see Section 7.1). Second, Q satisfies a “symmetric” condition, which makes
the evaluation of the matrix C(p) convenient (see Section 7.3). It might be interest-
ing to consider whether the first one can be replaced by assuming Q factorizes over a
decomposable graph (and then the second condition needs to be modified accordingly).

2 A numerical study on linear mixed models

In Section 3 of Zanella and Roberts (2021), the authors apply their general theory to
a three-level nested model and derive the exact convergence rate of the Gibbs sampler
under four different parameterizations, which can be seen as a theoretical justification
of the rules commonly used in the parameterization of hierarchical models. Consider
their Corollary 2. Borrowing the terminology of Bernardo et al. (2003, Section 2.1), we
may think of (σ̃2

b + σ̃2
e)

−1 as the observed information and 1/σ̃2
b as the augmented infor-

mation for each γi (in a two-level model with global mean γi). Similarly, at the middle
level, (σ̃2

a + σ̃2
b + σ̃2

e)
−1 is the observed information for μ and 1/σ̃2

a is the augmented.
Hence, Corollary 2 of Zanella and Roberts (2021) generalizes the existing results for
two-level models: whether to choose a centered parameterization (CP) at a lower level
depends on the ratio of observed and augmented information for the parameter. CP
works well when the data are very informative about the parameter regardless of the
dependence between the parameter and latent variables, while non-centered parameter-
ization is preferred when the latent variables are poorly identified, in which case the
strong correlation between the parameter and latent layer may cause slow convergence
of Gibbs samplers (Papaspiliopoulos et al., 2007). To investigate whether such principles
can be applied to more complex models, below we numerically study how the mixing
behavior of the Gibbs sampler depends on parameterization in hierarchical linear mixed
models.

For simplicity, we work with a two-level linear mixed model; more extensions can be
found in Sahu (1994); Gelfand et al. (1995). Suppose we have

Yij = μ+ xT

i ααα+ βi + εij , j = 1, . . . , J, i = 1, . . . , I,

where μ denotes the global effect, ααα is a r × 1 coefficient vector, and {βi : i = 1, . . . , I}
denotes the random effects at the lower level. Assume additive Gaussian errors εij

i.i.d.∼
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σ2
a σ2

b σ2
e CP PNCP NCP

Case I 0.1 0.1 10 0.909 0.923 0.157
Case II 10 0.1 0.1 0.763 0.977 0.976
Case III 0.1 10 0.1 0.019 0.969 0.999

Table 1: Rates of convergences of three Gibbs Sampler schemes for cases I, II, III.

N(0, σ2
e) for i = 1, . . . , I and j = 1, . . . , J . Now define ρi = μ+xT

i ααα+βi and ηi = μ+βi.
We consider three parameterizations.

• (CP) Centered parameterization with (μ,ααα, ρ):

Yij | ρi ∼ N(ρi, σ
2
e), i = 1, . . . , I, j = 1, . . . , J,

ρi | μ,ααα i.i.d.∼ N(μ+ xT

i ααα, σ
2
b ), ααα ∼ N(0r,Σa), p(μ) ∝ 1.

• (PNCP) Partially non-centered parameterization with (μ,ααα, η):

Yij = ηi + xT

i ααα+ εij , i = 1, . . . , I, j = 1, . . . , J,

ηi | μ i.i.d.∼ N(μ, σ2
b ), ααα ∼ N(0r,Σa), p(μ) ∝ 1.

• (NCP) Non-centered parameterization with (μ,ααα, β):

Yij = μ+ xT

i ααα+ βi + εij , i = 1, . . . , I, j = 1, . . . , J,

βi
i.i.d.∼ N(0, σ2

b ), ααα ∼ N(0r,Σa), p(μ) ∝ 1.

We denote Σa = diag(σ2
a, . . . , σ

2
a) and let X be a design matrix with i-th row being xT

i .
For simplicity of exposition, we assume variance parameters σ2

a, σ
2
b , σ

2
e are known. In

numerical studies, we let r = 2, I = 5 and J = 10. Set xT
i = (xi, x

2
i )

T with xi = (i−1)/4,
and the true parameters by μ∗ = 0, ααα∗ = (−0.5, 1)T, and βββ∗ = (0.2,−0.2, 0.1,−0.1, 0)T.
We consider three settings of the variance parameters and numerically calculate ρ(B)
for the corresponding B-matrices; see Table 1. For each case we run 10, 000 iterations of
Gibbs samplers, discarding the first 5, 000 as burn-in. To gauge the mixing behavior of
Gibbs samplers under considered updating schemes, denote the globally averaged pa-
rameters with different parameterizations by xTααα = (1/I)

∑I
i=1 x

T
i ααα, ρ̄ = (1/I)

∑I
i=1 ρi,

η̄ = (1/I)
∑I

i=1 ηi and β̄ = (1/I)
∑I

i=1 βi. The autocorrelation functions for the globally
averaged parameters are displayed in Figures 1, 2, 3. The numerical results are consis-
tent with the theoretical insights obtained in Theorem 3 and Corollary 2 of Zanella
and Roberts (2021). Clearly, NCP yields the fastest rate of convergence in case I where
σ2
a/I, σ

2
b/I are much smaller than σ2

e/(IJ), similarly to the findings in Theorem 3 of
Zanella and Roberts (2021). On the contrary, CP provides the best mixing of Gibbs
samplers when the data are more informative about the parameters; see case II and
case III. In this numerical study, PNCP yields somewhat mediocre results for all cases,
suggesting that this parameterization may not be an effective complement to CP and
NCP. But a more delicate parameterization may be constructed such that it adapts to
the amount of information carried with the data; see Papaspiliopoulos et al. (2007).
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Figure 1: Autocorrelation functions for globally averaged parameters μ,xTααα, ρ̄, η̄, β̄ for
case I.

Figure 2: Autocorrelation functions for globally averaged parameters for case II.
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Figure 3: Autocorrelation functions for globally averaged parameters for case III.
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Invited Discussion

James M. Flegal∗

A key requirement in a successful Markov chain Monte Carlo (MCMC) simulation is
finding a sampler that mixes well. Finding such a sampler is likely to be the most
challenging part of the process. To this end, I congratulate Drs. Zanella and Roberts for
developing a theoretically framework to analyze Gibbs samplers for a variety of widely
used model structures, including nested and crossed random effects. Moreover, they
provide explicit recommendations for improving practical implementations, which are
theoretically justified and practically useful as illustrated via simulation.

1 Primary contribution

The practical success of a Bayesian analysis requires a Markov chain that converges
quickly to obtain effective MCMC simulation results in a finite amount of time. This
paper provides important theoretical and practical contributions for Gibbs samplers for
various multilevel linear models.

Consider the symmetric three-level Gaussian linear model, denoted Model S3, de-
fined as

yijk = μ+ ai + bij + εijk, (1)

where i, j, and k run from 1 to I, J, and K, respectively and εijk are iid Normal
random variables with mean 0 and variance σ2

e . The standard Bayesian model specifi-
cation is assumed with ai ∼ N(0, σ2

a), bij ∼ N(0, σ2
b ), and a flat prior on μ. Drs. Zanella

and Roberts investigate convergence rates of different Gibbs samplers for Model S3.
First they consider a fully non-centered parametrization using (μ, a, b), which is denoted
GS(1, 1). Alternatively, a fully centered parametrization denoted GS(0, 0) is obtained
by replacing ai and bij with γi = μ+ ai and ηij = γi + bij , respectively. Two mixed pa-
rameterizations using (μ, γ, b) and (μ, a, η) are also considered. Theorem 3 gives explicit
formulas for the efficiency of the Gibbs samplers, which are functions of (σ2

a, σ
2
b , σ

2
e).

Recommended parameterizations guarantee the L2 rate of convergence is less than 2/3
and hence a quickly mixing chain is available for any values of (I, J,K, σ2

a, σ
2
b , σ

2
e)!

When the variances (σ2
a, σ

2
b , σ

2
e) are unknown, these results can be used to guide

a simple and effective strategy ensuring high sampling efficiency. In short, an optimal
parametrization can be utilized at each iteration based on the current variances. For
example, if the value of (σ2

a, σ
2
b , σ

2
e) indicates the fully non-centered parametrization

using (μ, a, b) is optimal, then the Gibbs sampler would update using the full condi-
tionals (μ, a, b)|(σ2

a, σ
2
b , σ

2
e). Such a strategy can be implemented in conjunction with

parameter expansion methodology creating a bespoke sampling algorithm that speeds
up the convergence even further.

∗Department of Statistics, University of California, Riverside, jflegal@ucr.edu

mailto:jflegal@ucr.edu
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2 Extensions and limitations

The rigorous theory developed applies more generally than Model S3 at (1). Specif-
ically, the paper provides a multigrid decomposition of a k-level Gibbs sampler into
k independent sub-chains, which describe the different levels of the hierarchy. Then
the overall rate of convergence can be obtained by an analysis on the sub-chains. In
many cases, the slowest sub-chain corresponds to the coarsest level of the hierarchy
and dictates the overall rate of convergence. An interesting observation is that such a
multigrid decomposition stems from the model under consideration, and not the chosen
parameterization.

The multigrid decomposition can also be used to analyze a crossed effect model
where they obtain convergence properties for the four possible parameterizations (when
k = 2). Unlike the symmetric three-level Gaussian linear model, the convergence rate
of the Gibbs sampler can go to 1 as the number of factors increases and hence the repa-
rameterization techniques alone are not enough to ensure good convergence properties.
Imposing identifiability improves convergence for this model, but the convergence rate
can still deteriorate as the amount of data increases. Drs. Zanella and Roberts illustrate,
via simulation, that insights gained from the Gaussian case can be applied successfully
in more general settings.

Potential extensions include considering non-symmetric cases or multivariate cases,
models with a linear mean part or based on Gaussian processes, and other tractable
distributions beyond the Gaussian case. Another interesting direction is to consider
convergence rates for random scan, as opposed to deterministic, Gibbs samplers. Any of
these would be excellent future contributions to the literature on MCMC convergence
rates. Unfortunately, multigrid decomposition techniques may not be appropriate in
some of these problems since they factorize the Gibbs sampler into independent sub-
chains implying a reparameterization with some level of posterior independence.

Finding optimal parameterizations in practice may be challenging and somewhat
unrealistic as model complexity or data size increases. It may be preferable to ex-
plore reparameterizations via a random scan Gibbs sampler instead. Convergence rate
problems also become more complicated when sampling from modern high-dimensional
posteriors (Rajaratnam and Sparks, 2015; Qin and Hobert, 2019; Duan et al., 2018).

3 MCMC output analysis

Consider simulated data from Model S3 at (1) with I = J = 100, K = 5, μ = 0, σa = 2,
σb = 1/2, and σe = 1. The standard Bayesian model specification described previously
is assumed. Under these settings, Theorem 3 shows the L2 rates of convergence of the
various Gibbs samplers are

(ρ00, ρ11, ρ01, ρ10) = (0.4448, 0.9995, 0.5558, 0.9994).

Hence the fully centered parametrization and fully non-centered parametrization repre-
sent the best and worst options, respectively. Based on 5000 iterations, Figure 1 shows



1354 Invited Discussion

Figure 1: Trace plots of global averages based on 5000 iterations.

trace plots of the global averages (μ, a·, b··) and (μ, γ·, η··) for GS(1, 1) and GS(0, 0), re-
spectively. Levels 0 and 1 are mixing quite poorly for the fully non-centered parametriza-
tion GS(1, 1), while the mixing is excellent for all three levels of the fully centered
parametrization GS(0, 0).

Having identified GS(0, 0) as the optimal sampler, the rest of my discussion identifies
some additional practical issues. A primary challenge is the fact that there are 1 + I +
IJ = 10101 parameters. It is impossible to examine trace plots, as in Figure 1, for
all parameters and unclear that looking only at the global means is sufficient. (Drs.
Zanella and Roberts raise this issue as well.) In short, we want to determine a subset
of parameters, from our initial 5000 iterations, that can be used to monitor behaviour
of the chain.

One potential solution is to estimate the effective sample size (ESS) for each param-
eter, which can be calculated in a couple seconds using the mcmcse R package (Flegal
et al., 2021). Figure 2 plots histograms of the ESS for the 100 level 1 parameters ai and
γi (top row) and the 10000 level 2 parameters bij and ηij (bottom row). Red vertical
lines in each histogram show the location of an ESS for the corresponding global mean.
For ai, bij , and ηij , there is significant (anecdotal) evidence that monitoring the global
means is sufficient since the ESSs are substantially smaller. For γi, the global mean ESS
lies in the middle of the histogram and hence it is unclear if a practitioner can rely
on only monitoring the global mean. Plots of this type could be more valuable in the
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Figure 2: Histograms of estimated ESSs based on 5000 iterations.

pressense of correlation between parameters within the Gibbs sampler blocks. It is also
worth noting that reparameterizations will likely change ESSs.

Another common challenge for high-dimensional Markov chain simulations can be
memory allocation. Roughly speaking a r × c double-precision matrix requires rc8/109

gigabytes of memory, so storing the initial 5000 iterations requires about 0.4 gigabytes of
memory. Then using a long run to calculate standard errors to ensure reliable inference
or terminating the simulation via sequential stopping rules (Vats et al., 2019) requires
some creativity with regard to memory. As opposed to storing the entire chain, one
option is to only store parameters of scientific interest and parameters necessary to
monitor chain behaviour. Storage constraints can also be overcome by estimating the
limiting covariance of the Monte Carlo estimators via recursive or low-cost batch means
estimators (Chan and Yau, 2017; Zhu et al., 2021; Gong and Flegal, 2016).

I close by reiterating my congratulations to Drs. Zanella and Roberts for their inter-
esting and notable paper, that hopefully will motivate future contributions in this area.
I also want to thank Dr. Guindani for the opportunity to participate in this discussion.
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Xiaodong Yang∗ and Jun S. Liu†

1 Introduction

We congratulate Professors Giacomo Zanella and Gareth Roberts for their path-breaking
work in analyzing Gibbs sampling algorithms for a class of highly practical Bayesian
hierarchical models. Together with their previous work, Papaspiliopoulos and Roberts
(2003) and Papaspiliopoulos et al. (2020), their multigrid decomposition strategy el-
egantly reduces a high-dimensional Gibbs sampling algorithm to independent low-
dimensional components so that the convergence rate of the Gibbs sampler can be deter-
mined analytically. These are extremely interesting and encouraging results. Throughout
of the article, we will refer to this work of Zanella and Roberts (2021) as “Z&R” for
simplicity.

The multigrid decomposition serves a central role in the whole theory established
in the aforementioned series of papers. An intuition behind this decomposition is that
lower-level mean statistics are sufficient for posterior inference on upper-level parame-
ters, with lower-level parameters practically marginalized out. For example, Papaspilio-
poulos and Roberts (2003) show that, for model (1.1) below, the posterior distribution
of (μ, ā) is independent of that of (a1 − ā, · · · , aI − ā).

At the first glance, we cannot help notice that the intuition behind Z&R’s multigrid
decomposition is quite different from that of either the classical deterministic multi-
grid methods (McCormick, 1987) or multigrid Monte Carlo methods (Goodman and
Sokal, 1989; Liu and Sabatti, 2000). These latter multigrid strategies, as originally mo-
tivated by the design of efficient numerical partial differential equation (PDE) solvers,
are typically constructed artificially to accelerate the convergence of the algorithms by
iterating between finer-grid and coarser-grid updates. In contrast, Z&R’s multigrid de-
composition is a decomposition of the given parameter space implied by the algorithm
itself (under a specific parametrization). Furthermore, Z&R show that Gibbs sampling
for the upper level of their multigrid decomposition converges slower than that for the
lower level (Theorem 11), whereas in classical multigrid methods the upper levels are
so constructed that their associated MCMC samplers converge faster than those of the
lower levels (Goodman and Sokal, 1989; Liu and Sabatti, 2000).

Despite these fundamental differences between the multigrid decomposition and
multigrid Monte Carlo, we are very much inspired by Z&R’s insightful formulation
and will discuss some potential extensions of their work in the rest of the article. To
illustrate our main ideas, we start by focusing on the simplest model:

yij = μ+ ai + εij , i ∈ [1 : I], j ∈ [1 : J ], (1.1)

∗School of Gifted Young, University of Science and Technology of China, Hefei, China,
yangxiaodong0912@gmail.com

†Department of Statistics, Harvard University, Cambridge, US, jliu@stat.harvard.edu
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which can be seen as either a two-level hierarchical model or a one-factor crossed-effects
model. In the rest of the article, we use notation �a to represent a vector. For example,
�ai used in Section 2 is an -dimensional vector. Boldface letters are used to represent
collections of effects. For example, we write aaa = (a1, · · · , aI), and ā for its mean. We
also denote 1k = (1, · · · , 1)� ∈ Rk×1 and Ik for k × k identity matrix. For a matrix M ,
‖M‖2 =

√
σmax(M�M) denotes its spectral norm.

2 Vector hierarchical models

Our main goal here is to extend the framework of (1.1) to consider the vector-version of
the model, as shown in (2.1). This type of models is not uncommon in practice and is a
prototype of more complex realistic models. For example, the observed vector �yij may
represent several types of medical measurements (e.g., blood pressure, cholesterol level,
weight, height, etc) of individual j in group i, and these measurements are certainly
correlated within each individual. After presenting results for (2.1), we will comment
on its potential extensions.

2.1 Non-centering model and convergence rate

Let us begin with an extension of model (1.1) by replacing the scalars with vectors to
arrive at the following model.

Model S2m (Symmetric two-level model with non-centering parametrization). Sup-
pose

�yij = �μ+ �ai + �εij , i ∈ [1 : I], j ∈ [1 : J ], (2.1)

where �yij , �μ,�ai,�εij ∈ R
, and �εij
i.i.d.∼ N (0,Σe) (i.e., i.i.d. multivariate Gaussian). We

impose a flat prior on �μ and another multivariate Gaussian N (0,Σa) on each �a. Here
Σe and Σa are two positive definite ×  matrices.

For this model, we can write down the joint posterior distribution as

p(�μ,�aaa | �y) ∝ exp

⎡⎣−1

2

∑
i,j

(�yij − �μ− �ai)
�Σ−1

e (�yij − �μ− �ai)−
1

2

∑
i

�a�i Σ
−1
a �ai

⎤⎦ . (2.2)

A standard Gibbs Sampler to sample from the posterior distribution p(�μ,�aaa | �yyy) is defined
as follows.

Sampler GS(0). Initialize �μ(0) and �aaa(0) and then iterate

1. Sample �μ(s+ 1) from p(�μ | �aaa(s),�yyy);

2. Sample �ai(s+ 1) from p(�ai | �μ(s+ 1),�yyy) for i = 1, . . . , I, independently.

Using the same notations as in Z&R, we define �̄a =
∑

i �ai/I to be mean and

δ�ai = �ai − �̄a, δ�aaa = (δ�a1, · · · , δ�aI)
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as the residual. Given this notation, we derive the following factorization

p(�μ,�aaa | �yyy) = p(�μ, �̄a | �yyy)× p(δ�aaa | �yyy). (2.3)

This factorization paves the way for the following multigrid decomposition.

Before stating and proving our result, we introduce a lemma without proof to com-
pute the L2 convergence rate of some two-component Gaussian Gibbs sampler.

Lemma 2.1. Let the target distribution π(q1, q2), where q1, q2 ∈ R
, be a 2-dimensional
Gaussian distribution with var(q1) = Σ11, var(q2) = Σ22, and cov(q1, q2) = Σ12. The
convergence rate of the Gibbs sampler that iterates between conditional sampling [q1 | q2]
and [q2 | q1] is equal to the squared spectral norm ‖Σ−1/2

11 Σ12Σ
−1/2
22 ‖22.

Remark. This lemma is an easy consequence of Theorem 1 in Roberts and Sahu (1997),
in which the generated Markov chain is recognized as a multivariate AR(1) process. See
also Section 5.1, Liu et al. (1994), for an elementary proof based onmaximal correlations,
as this quantity can also be interpreted as the maximal correlation between q1 and q2.

Theorem 2.1. Let {�μ(t),�aaa(t)} be the Markov chain generated by either the standard
Gibbs sampler. Then the functionals {δ�aaa(t)} and {�μ(t), �̄a(t)} evolve as two independent
Markov chains. Furthermore, the L2-convergence rate of the sampler is

ρ0 =
∥∥∥(JΣ−1

e

)1/2 (
Σ−1

a + JΣ−1
e

)−1/2
∥∥∥2
2
. (2.4)

Proof. The decomposition directly follows from the following two identities

p [�μ(s+ 1) | �aaa(s),�yyy] = p
[
�μ(s+ 1)|�̄a(s),�yyy

]
, (2.5)

p
[
�̄a(s+ 1), δ�aaa(s+ 1) | �μ(s+ 1),�yyy

]
= p

[
�̄a(s+ 1)|�μ(s),�yyy

]
× p [δ�aaa(s+ 1) | �y] . (2.6)

Moreover, the latter identity further implies that {δ�aaa(t)} carries out exact sampling. So
the convergence rate of {�μ(t),�aaa(t)} is actually determined by the rate of {�μ(t), �̄a(t)}.
The latter chain converges to the following joint-normal stationary distribution

p(�μ, �̄a | �y) ∝ exp

[
−IJ

2
�μ�Σ−1

e �μ− 1

2
�̄a�

(
IΣ−1

a + IJΣ−1
e

)
�̄a

]
× exp

[
−IJ�μ�Σ−1

e �̄a+ IJ�̄y�Σ−1
e (�μ+ �̄a)

]
,

where we write �̄y �
∑

i,j �yij/IJ . This is a Markov chain in a 2-dimensional space
induced by the block-wise two-component Gibbs sampler. In contrast, the original chain
is of dimension (I + 1). The final result then follows from Lemma 2.1.

Remark. If we choose dimension  = 1 and replace Σe and Σa with σ2
e and σ2

a, respec-
tively, the convergence rate becomes

ρ0 =
Jσ−2

e

σ−2
a + Jσ−2

e

,

which coincides with Proposition 3 in Papaspiliopoulos et al. (2020).
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2.2 Convergence rate for centering model

Inspired by Z&R, we seek to give a theoretical guidance towards centering (2.1) or
non-centering (2.7) parametrizations.

Model S2m (Symmetric two-level model with centering parametrization). Suppose

�yij ∼ N (�αi,Σe), �αi ∼ N (�μ,Σa), i ∈ [1 : I], j ∈ [1 : J ], (2.7)

where �yij , �μ, �αi ∈ R
. Same as before, a flat prior is imposed on �μ. Here Σe and Σa are
two positive definite ×  matrices.

Sampler GS(1). Initialize �μ(0) and �ααα(0) and then iterate

1. Sample �μ(s+ 1) from p(�μ | �ααα(s),�yyy);

2. Sample �αi(s+ 1) from p(�αi | �μ(s+ 1),�yyy) for i = 1, . . . , I independently.

Almost in the same manner, we offer the following theorem.

Theorem 2.2. Let {�μ(t), �ααα(t)} be the Markov chain generated by the sampler GS(1).
Then the functionals {δ�ααα(t)} and {�μ(t), �̄α(t)} evolve as two independent Markov chains.
Furthermore, the L2-convergence rate of {�μ(t), �ααα(t)} is

ρ1 =
∥∥∥(Σ−1

a

)1/2 (
Σ−1

a + JΣ−1
e

)−1/2
∥∥∥2
2
. (2.8)

Optimal Parameterization Strategy: If ρ0 ≤ ρ1, then choose the non-centering
parameterization (2.1); otherwise, choose the centering parameterization (2.7).

When dimension  = 1, (2.8) becomes ρ1 = σ−2
a /(σ−2

a + Jσ−2
e ). This strategy can

be adaptively used when the variances are unknown. Specifically, in one iteration, after
sampling σ̂2

a, σ̂
2
e , we compare Jσ̂−2

e /(σ̂−2
a + Jσ̂−2

e ) and σ̂−2
a /(σ̂−2

a + Jσ̂−2
e ), and choose

the optimal parameterization accordingly. Back to the case of known variances, a direct
benefit is that we can always achieve a convergence rate bounded by 1/2 since ρ0+ρ1 = 1,
regardless of what values σ2

a, σ
2
e are (Papaspiliopoulos and Roberts, 2003). Corollary 2

in Z&R proposes an optimal parametrization strategy for 3-level models and gives a
constant rate upper bound 2/3 therein.

However, in a multi-dimensional case with  > 1, the rates found in Theorem 2.1
and Theorem 2.2 do not necessarily sum up to 1. Though the parameterization strategy
still applies, it does not necessarily give a constant rate upper bound. If both covariance
matrices are diagonal, i.e., Σa = diag(1/τa1 , · · · , 1/τa
 ) and Σe = diag(1/τ e1 , · · · , 1/τ e
 ),
then we have

ρ0 = max
1≤i≤


[
Jτ ei

τai + Jτ ei

]
, ρ1 = max

1≤i≤


[
τai

τai + Jτ ei

]
.

Applying the optimal parametrization strategy component-wise is of interest in this
non-correlated case. That is, we may introduce a “centering” indicator variable C of
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dimension , indicating which of the  components use centering and which use non-
centering parameterization. In this way, we may still be able to obtain the rate bound
1/2.

When Σa and Σe become general non-diagonal covariance matrices, the picture
becomes more complicated. It will be of great interest to develop some methodological
guidance on how to approach this problem. The constant rate bound 1/2 as discussed
above is no longer guaranteed, and it is entirely possible that both rates are close to 1.
We speculate that one may extend the “centering” indicator C to be a continuous vector
to allow “partial-centering” (more about this issue in Section 4).

It is also not too difficult to extend these results to more complex structures such
as three-level vector hierarchical models and vector crossed-effects models, although the
formulae would grow more complicated and the design of the optimal parameterization
may no longer be possible. The authors’ insights and suggestions along this direction
would be very much welcome.

3 Incorporating regression covariates

Zanella and Roberts mainly focus on hierarchical models with certain symmetry condi-
tions for data without individual-level covariates. Mixed-effects models, which accom-
modate individual-level variability and are very commonly used in practice, seem to
have not been directly covered by Z&R. Our goal here is to consider possible ways to
extend the authors’ multigrid decomposition technique to this more complex class of
models.

3.1 Linear mixed effects models

To extend and see the limits of multigrid decomposition, we consider the following
simple extension, which just replaces the intercept term μ with a linear combination of
p covariates with a fixed coefficient vector. Previously, Gao and Owen (2019) attempted
to tackle the computational efficiency of this model (3.1). But their results give loose
bounds while requiring mild conditions.

Model SR (Symmetric two-level mixed-effect model). Suppose

yij = X�
ijβ + ai + εij , i ∈ [1 : I], j ∈ [1 : J ], (3.1)

where εij is i.i.d. normal random variables with mean 0 and variance σ2
e . Moreover,

Xij , β ∈ Rp (column vectors) are known covariates and unknown coefficients respec-
tively. We then impose a standard Bayesian model specification assuming ai ∼ N (0, σ2

a)
and β ∼ N (0,Σ0).

Essential full-rank conditions should be imposed on the design matrix. Requiring
p < I, we denote the I × p matrix as

X̄ � (X̄1, . . . , X̄I)
�,
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where X̄i = J−1
∑

j Xij ∈ Rp. A further natural requirement is that X̄ is of rank p.

Then, we can define a p × I matrix P = (X̄�X̄)−1/2X̄�. We also introduce another
(I − p)× I matrix L such that L�L+P�P = II (i.e., the identity matrix of dimension
I). Note that P�P = X̄(X̄�X̄)−1X̄� and PP� = Ip. Let XXX = {Xij}.
Sampler GS (Regression). Initialize β(0) and aaa(0) and then iterate

1. Sample β(s+ 1) from p(β | aaa(s),XXX,yyy);

2. Sample ai(s+ 1) from p(ai | aaa(s+ 1),XXX,yyy) for all i.

Theorem 3.1. Let {β(t), aaa(t)} be the Markov chain generated by the standard Gibbs
sampler. Then the two functionals {Laaa(t)} and {β(t), X̄�aaa(t)} evolve as two indepen-
dent Markov chains. Furthermore, the L2-convergence rate of {β(t), aaa(t)} is

ρ =
J2σ−4

e

σ−2
a + Jσ−2

e

∥∥∥∥∥∥∥
(
X̄�X̄

)1/2⎛⎝Σ−1
0 +

∑
i,j

XijX
�
ijσ

−2
e

⎞⎠−1/2
∥∥∥∥∥∥∥
2

2

. (3.2)

Proof. It is easy to write down the likelihood function and prior:

p(yyy |XXX,β,aaa) ∝
I∏

i=1

J∏
j=1

exp

[
− 1

2σ2
e

(yij −X�
ijβ − ai)

2

]
,

p(β,aaa) ∝ exp

[
−1

2
β�Σ−1

0 β − 1

2σ2
a

I∑
i=1

a2i

]
.

The posterior distribution is

p(β,aaa | yyy,XXX) ∝ exp

⎡⎣−1

2
β�Σ−1

0 β − 1

2σ2
a

∑
i

a2i −
1

2σ2
e

∑
i,j

(yij −X�
ijβ − ai)

2

⎤⎦
∝ exp

⎡⎣−1

2
β�

⎛⎝Σ−1
0 +

∑
i,j

XijX
�
ijσ

−2
e

⎞⎠β − 1

2

(
1

σ2
a

+
J

σ2
e

)∑
i

a2i

⎤⎦
× exp

⎡⎣− 1

σ2
e

∑
i,j

aiX
�
ijβ

J

σ2
e

∑
i

aiȳi +
1

σ2
e

∑
ij

yijX
�
ijβ

⎤⎦ .

We should especially focus on the cross term∑
ij

aiX
�
ijβ =

∑
i=1

ai(JX̄
�
i )β = Jaaa�X̄β.

Furthermore, we also find that∑
i

a2i = aaa�aaa = ‖Paaa‖2 + ‖Laaa‖2 = aaa�X̄
(
X̄�X̄

)−1
X̄�aaa+ ‖Laaa‖2.
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The distribution of aaa is actually equivalent to the joint distribution of (X̄�aaa, Laaa), since
(X̄, L�) is an invertible I × I matrix. Hence, we derive the following factorization

p(β,aaa | yyy,XXX) = p(β, X̄�aaa | yyy,XXX)× p(Laaa | yyy,XXX). (3.3)

We shall also deduce the following identities

p [β(s+ 1) | aaa(s), yyy,XXX] =p
[
β(s+ 1) | X̄�aaa(s), yyy,XXX

]
, (3.4)

p
[
X̄�aaa(s+ 1), Laaa(s) | β(s), yyy,XXX

]
=p

[
X̄�aaa(s+ 1) | β(s), yyy,XXX

]
p [Laaa(s) | yyy,XXX] , (3.5)

which imply the multigrid decomposition. Again, convergence rate ρ is controlled by
the convergence rate of {β(t), X̄�aaa(t)}. The joint target distribution of {β, X̄�aaa} is

p(β, X̄�aaa | yyy,XXX) ∝ exp

⎡⎣−1

2
β�

⎛⎝Σ−1
0 +

∑
i,j

X�
ijXijσ

−2
e

⎞⎠β − J

σ2
e

aaa�X̄β

⎤⎦
exp

[
−1

2

(
1

σ2
a

+
J

σ2
e

)
aaa�X̄

(
X̄�X̄

)−1
X̄�aaa

]
By Lemma 2.1, the L2 convergence rate is equal to the squared maximal correlation
between β and X̄�aaa.

Remark 1. If we set p = 1, Xij ≡ 1, then X̄i = 1, X̄�X̄ = I and
∑

ij X
�
ijXij = IJ . By

placing a flat prior on μ, we just replace Σ−1
0 with 0 in (3.2). Henceforth, Theorem 3.1

reduces to ρ = Jσ−2
e /(σ−2

a + Jσ−2
e ), in this case.

Remark 2. Theorem 3.1 implies that p summary statistics X̄�aaa of the lower level param-
eters are sufficient for the inference of upper level parameters β, with Laaa marginalized
out.

Remark 3. Further note that (3.2) is invariant if the variance terms are scaled simulta-
neously. Specifically, (3.2) remains the same if we replace

(
Σ0, σ

2
a, σ

2
e

)
by
(
rΣ0, rσ

2
a, rσ

2
e

)
where r > 0. Moreover, another common rotation invariance in Bayesian linear regres-
sion applies to our result: (3.2) remains the same if the pair (Σ0, Xij) is replaced with(
R�Σ0R,RXij

)
, where R is a p× p orthogonal matrix.

We further note that the multigrid decomposition techniques do not naturally extend
to more complex structures. Roughly speaking, both nested structures (such as yijk =
X�

ijkβ + ai + bij + εijk) and crossed structures (such as yijk = X�
ijkβ + ai + bj + εijk)

would bring in a new cross term “aaa�bbb”, which is hard to handle. Can we still obtain an
elegant decomposition for these models?

Indeed, many researchers have studied the general linear mixed-effects model:

y = X�β + Z�u+ ε, (3.6)

where, in the first part, β is common to all individuals as in a typical linear regression
framework, and u represents random effects (e.g., Z can be dummy variables). For exam-
ple, if Z represents one categorical variable with I categories (using a dummy variable
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representation), this general form (3.6) reduces to the simple model (3.1) considered
before.

Model (3.6) with arbitrary Z, however, has an identical mathematical representation
as a standard linear regression model (i.e., one can simply treat (X,Z) as covariates)
although the prior distributions for β and u may differ substantially. Compared with
the models handled in Z&R, a key thing we have lost in the general model (3.6) seems
to be the strong symmetry that can be used to decompose the involved variables into
meaningful levels. A curious question is: how far we can push so that we can still have
certain meaningful decomposition?

3.2 Implications for general linear regression models

Linear model formulation of two-level hierarchical model

We can recast the multigrid decomposition of Z&R for both centering and non-centering
parameterizations of model (1.1) in the context of general Bayesian linear regression via
covariate orthogonalization.

Non-centering parametrization By setting β = (a1, · · · , aI)� and

y = (y11, y12, · · · , y1I , y21, · · · , yIJ )� ∈ RIJ×1, X = (II ⊗ 1J)
� (Kronecker product),

(3.7)

the simple linear model y = μ1IJ +X�β + ε is equivalent to model (1.1). The decom-
position can be seen as imposing a linear transformation by replacing β with Aβ, where
the first row of A is 1√

I
1�
I and A is I × I orthogonal. In the following, we omit the

terms involving y when dealing with the posterior, cause these terms do not affect the
covariance of unknown parameters. With flat prior on μ and independent N (0, 1/τa) on
each ai, the posterior is

p(β, μ | y,X) ∝ exp

(
−1

2
β�(τeXX� + τaI)β − τeμ1

�
IJX

�β − IJτe
2

μ2

)
=exp

(
−1

2
(Aβ)�(τeAXX�A� + τaI)(Aβ)− τeμ[Aβ]1 −

IJτe
2

μ2

)
.

Moreover, [AXX�A�]i1 = [AXX�A�]1i = 0 for any i ≥ 2, which means that the first
column of X�A� is orthogonal to the other columns. Thus, (μ, [Aβ]1) and [Aβ]2:I are
independent a posteriori. The first component corresponds to (μ, ā) and the latter one is
a representation of the residual δa. The multigrid decomposition is then built upon this
orthogonalization. To investigate the potential of this orthogonalization-based view, we
consider the following general linear regression model.

Centering parametrization Model (1.1) can also be written as

yij ∼ N (αi, 1/τe), αi ∼ N (μ, 1/τa), i ∈ [1 : I], j ∈ [1 : J ]. (3.8)
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Set y, X, and β exactly the same way as (3.7), we have an equivalent model:

y = X�β + ε, β ∼ N (μ1I , 1/τaII), ε ∼ N (0, 1/τeIIJ). (3.9)

Intuitively, we use a new prior on β with a latent variable μ. With flat prior on μ, the
posterior is

p(β, μ | y,X) ∝ exp

[
−1

2
β� (τeXX� + τaI

)
β + τaμ1

�
I β − Iτa

2
μ2

]
.

We can apply the same linear transformation A as before.

Extension to general linear models

Model LM. Suppose X1 ∈ Rp1×n, X2 ∈ Rp2×n are two sets of covariates and consider

y = X�
1 β1 +X�

2 β2 + ε, (3.10)

where βi ∈ Rpi , (i = 1, 2) are unknown coefficients. Error ε ∈ Rn is modeled as i.i.d.
N (0, 1/τe). Independent priors N (0, 1/τ1Ip1) and N (0, 1/τ2Ip2) are imposed on β1 and
β2 respectively.

Assume r = rank(X1X
�
2 ), we conduct SVD to find Bi ∈ Rr×pi , (i = 1, 2) with

orthonormal rows and diagonal Q = diag(λ1, · · · , λr) such that

X1X
�
2 = B�

1 QB2. (3.11)

By constructing orthogonal matrices Ai ∈ Rpi×pi , i = 1, 2, as completions of B1 and
B2, respectively, i.e., Ai and Bi share the same r first rows, we have the following result.

Theorem 3.2. Consider a Markov chain {β1(s), β2(s)} generated by a systematic Gibbs
sampler alternating between conditional sampling [β1 | β2] and [β2 | β1]. Define θi =(
θ
(1)
i , · · · , θ(pi)

i

)�
= A1βi. Then, the evolution of {θ1(s), θ2(s)} is equivalent to that of

{β1(s), β2(s)}. If the first r columns of X�
i A�

i are orthogonal to the rest pi− r columns

[X�
i A�

i ]1:n,k1 ⊥ [X�
i A�

i ]1:n,k2 , ∀k1 ≤ r < k2, (3.12)

the evolutions of {θ(1:r)1 (s), θ
(1:r)
2 (s)}, {θ((r+1):p1)

1 (s)} and {θ((r+1):p2)
2 (s)} are indepen-

dent.

Proof. We start by writing out the joint posterior

p(β | y,X) ∝ exp

[
−τeβ

�
1 X1X

�
2 β2 −

1

2

2∑
i=1

β�
i

(
τeXiX

�
i + τiIpi

)
βi

]
(3.13)

= exp

[
−τe

(
θ
(1:r)
1

)�
Qθ

(1:r)
2 − 1

2

2∑
i=1

θ�i
(
τeA

�
i XiX

�
i Ai + τiIpi

)
θi

]
(3.14)
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= p
(
θ
(1:r)
1 , θ

(1:r)
2 | y,X

) 2∏
i=1

p
(
θ
((r+1):pi)
i | y,X

)
, (3.15)

where the last equality follows from the condition (3.12). Based on these identities,

p
(
θ
((r+1):p1)
1 (s+ 1) | y,X, θ2(s)

)
= p

(
θ
((r+1):p1)
1 (s+ 1) | y,X

)
,

p
(
θ
((r+1):p2)
2 (s+ 1) | y,X, θ1(s+ 1)

)
= p

(
θ
((r+1):p2)
2 (s+ 1) | y,X

)
,

p
(
θ
(1:r)
1 (s+ 1) | y,X, θ2(s)

)
= p

(
θ
(1:r)
1 (s+ 1) | y,X, θ

(1:r)
2 (s)

)
,

p
(
θ
(1:r)
2 (s+ 1) | y,X, θ1(s+ 1)

)
= p

(
θ
(1:r)
2 (s+ 1) | y,X, θ

(1:r)
1 (s+ 1)

)
,

the conclusion of the theorem is thus proved.

One implication of the result is that the multigrid decomposition developed for (1.1)
is non-trivial in the sense that condition (3.12) must be imposed on the covariate matrix.
Recall that we have written out the dummy variables X explicitly for (1.1), and thus
verified this condition implicitly for the linear model form of (1.1).

Centering for linear models Model (3.10) with its priors can be rewritten as

y = X�
2 β2 + ε, β2 ∼ N (Mβ1, 1/τ2Ip2), β1 ∼ N (0, 1/τ1Ip1), ε ∼ N (0, 1/τeIn),

(3.16)

to mimic the centering parametrization, where M ∈ Rp2×p1 such that X�
1 = X�

2 M ,1

assuming that M exists.

Now the posterior distribution is

p(β | y,X) ∝ exp

[
τ2β

�
1 M�β2 −

1

2
β�
2

(
τeX2X

�
2 + τ2Ip2

)
β2

]
(3.17)

× exp

[
−1

2
β�
1

(
τ2M

�M + τ1Ip1

)
β1

]
. (3.18)

Let the SVD of M be
M = B�

1 QB2, (3.19)

where Q ∈ Rr, r = rank(M). Again we denote the complement of Bi as Ai. Then we
require the following condition

[X�
2 A�

2 ]1:n,k1 ⊥ [X�
2 A�

2 ]1:n,k2 , ∀k1 ≤ r < k2. (3.20)

to validate a similar multigrid decomposition. Again, this condition automatically holds
for the two-level hierarchical model, but do not hold in general.

1For the simplest model (1.1), we actually use M = 1I .
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3.3 Thoughts and speculations

In both the non-centering and centering formulations, conditions (3.12) and (3.20) most
likely do not hold for an arbitrary design matrix X. Thus, a multigrid decomposition
similar to that of Z&R seems difficult to come by. Some natural questions arise: Does
a useful multigrid decomposition exist for a general linear regression model in some
other ways? If so, what would be a correct construction? If not, how can we gain more
insights on the Gibbs sampler for a general Bayesian regression model (3.10)? Can we
find a good matrix M so that the convergence rate of the Gibbs sampler corresponding
to (3.17) is faster than that based on (3.13)? What if the Gibbs sampler has more than
two components?

Besides the Gaussian prior we have studied here, many other prior distributions
have been proposed to accommodate both sparsity and biases in coefficient estimations,
including spike-and-slab priors (Mitchell and Beauchamp, 1988), horseshoe priors (Car-
valho et al., 2010), neuronized priors (Shin and Liu, 2021), and so on. Can one extend
Z&R’s and our results to accommodate other priors that are more appropriate for high-
dimensional problems? The Gaussian spike-and-slab prior may be a most likely solvable
case?

4 Partial centering for improving convergence

4.1 Partial-centering for two-level models

Partial centering provides a continuous trade-off between centering and non-centering.
With these parametrizations (e.g., centering, non-centering, partial centering) sharing
almost the same mathematical formulation, can we derive the most efficient algorithm
by optimizing over various parametrizations including not only parametrizations covered
by Z&R, but also those dictating partial centering?

Inspired by an example in Liu and Wu (1999) to demonstrate the power of parameter
expansion, Papaspiliopoulos and Roberts (2003) proposed the following partial centering
parametrization in by introducing a constant 0 ≤ A ≤ 1:

Model S2 (Symmetric two-level model with partial centering parametrization). Sup-
pose

yij ∼ N ((1−A)μ+ ai, σ
2
e), ai ∼ N (Aμ, σ2

a), i ∈ [1 : I], j ∈ [1 : J ], (4.1)

where yij , μ, aiinR. Same as before, a flat prior is imposed on μ.

A similar standard Gibbs sampler as GS(0) and GS(1) can be easily implemented.
With A = 0, (4.1) reduces to non-centering parametrization; whereas with A = 1, (4.1)
reduces to centering parametrization. For a general A, Papaspiliopoulos and Roberts
(2003) also offered the convergence rate of the standard Gibbs sampler as

ρA =

(
Aσ−2

a − (1−A)Jσ−2
e

)2(
σ−2
a + Jσ−2

e

) (
A2σ−2

a + (1−A)2σ−2
e

) . (4.2)
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One surprising fact is that ρA∗ = 0 for A∗ = Jσ−2
e /(σ−2

a + Jσ−2
e ), implying that we

achieve exact sampling in one step via this optimal partial centering parameterization.
Note that this A∗ also results in the fact that μ and ā are independent a posteriori.

4.2 Partial-centering for three-level models

It is of great interest to extend this flexible parametrization scheme to other models.
We here provide an illustration via a slightly more complex model.

Model S3 (Symmetric three-level model with partial centering parametrization).
With constants A,B,C ∈ R, suppose

yijk ∼ N ((1−A− C)μ+ (1−B)ai + bij , σ
2
e),

bij ∼ N (Bai + Cμ, σ2
b ), ai ∼ N (Aμ, σ2

a), (4.3)

where yij , μ, ai, εij ∈ R and i, j, k range from 1 to I, J,K respectively. Same as before,
a flat prior is imposed on μ.

Sampler GS (A,B,C). Initialize μ(0), aaa(0), bbb(0) and then iterate

1. Sample μ(s+ 1) from p(μ | aaa(s), bbb(s), yyy);

2. Sample ai(s+ 1) from p(ai | μ(s+ 1), bbb(s), yyy) for all i;

3. Sample bij(s+ 1) from p(bij | μ(s+ 1), aaa(s+ 1), yyy) for all i, j.

If we select (A,B,C) from {0, 1}2 × {0}, (4.3) reduces to the four parametrizations
considered in Sections 2 and 3 of Z&R, respectively. Defining hierarchical models as
trees, Section 7 of Z&R develop an abstract theory to deal with various parametriza-
tions including the partial ones here, but they do not provide more insights for cases
(A,B,C) /∈ {0, 1}2 × {0}. Let τa = Iσ−2

a , τb = IJσ−2
b , τe = IJKσ−2

e be the rescaled
precisions. We have the following result.

Theorem 4.1. If (τb + τe)
2τa + τbτe(τb − τe) �= 0, the prescribed Gibbs sampler can

achieve exact sampling in one step via suitable scalings of A,B,C.

Proof. First, we define δβββ =
(
δ(0)βββ, δ(1)βββ, δ(2)βββ

)
exactly the same as equation (3.1) in

Z&R, where δ(0)βββ =
(
μ, ā, b̄

)
, ā =

∑
i ai/I, b̄ =

∑
ij bij/IJ . Apply Theorem 9 in Z&R

to conclude that {δ(0)βββ}, {δ(1)βββ}, {δ(2)βββ} evolve independently for the prescribed Gibbs
sampler.

Then, applying Theorem 11 of Z&R, we derive the following ordering

ρ(A,B,C) = ρ
(
δ(0)βββ

)
≥ ρ

(
δ(1)βββ

)
≥ ρ

(
δ(2)βββ

)
= 0.

At last, we have to deal with the posterior distribution of δ(0)βββ, which is a 3-dim
Gaussian. The evolution of {δ(0)βββ(t)} is simply characterized by a systematic scan Gibbs
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sampler, scanning according to μ → ā → b̄ → μ. By Liu et al. (1995), to obtain the
convergence rate of a systematic scan Gibbs sampler, it suffices to know about pairwise
correlations

r1 = corr(μ, ā) =
BCτb +Aτa − (1−A− C)(1−B)τe√

C2τb +A2τa + (1−A− C)2τe
√
B2τb + τa + (1−B)2τe

,

r2 = corr(μ, b̄) =
Cτb − (1−A− C)τe√

C2τb +A2τa + (1−A− C)2τe
√
τb + τe

,

r3 = corr(ā, b̄) =
Bτb − (1−B)τe√

τb + τe
√
B2τb + τa + (1−B)2τe

.

By Liu et al. (1995) and Roberts and Sahu (1997), we find that ρ(A∗,B∗,C∗) = 0 for

A∗ =
τbτe(τb − τe)

(τb + τe)2τa + τbτe(τb − τe)
, B∗ =

τe
τb + τe

, C∗ =
τaτe(τb + τe)

(τb + τe)2τa + τbτe(τb − τe)
,

due to vanishing correlations r1 = r2 = r3 = 0.

An analytical formula is available for the convergence rate of the standard Gibbs
sampler GS(A,B,C) even for general A,B,C. But this general formula is a little com-
plicated and out of the scope of this article. We believe that this formula may help us
understand the experimental phase transitions depicted in Figure 4 of Z&R, and fur-
ther enhance our understanding towards different parametrizations. A direct question is
whether exact sampling in one step is possible for less symmetric 2, 3-level hierarchical
models.

We end this section by raising more questions. Does the partial centering trick gener-
alize to more complex structures with more confounding factors and deeper hierarchies?
How do we develop partial centering for vector hierarchical models discussed in Section 2
to design a better Gibbs sampler? Can we go beyond Gaussian priors to perform it in
other cases, like the Poisson example in Section 5 of Z&R?

5 Concluding remarks

Although Z&R’s multigrid decomposition has little to do with the classical multigrid
idea for both numerical PDEs and Monte Carlo simulations, their decomposition pro-
vides a key insight to the understanding of the convergence of Gibbs sampling for
Bayesian hierarchical models. This insight naturally leads to a constructive strategy
for designing better Gibbs sampling algorithms via reparametrization for such models.
Our article centers on the possibilities of extending this decomposition strategy to more
complex, yet structured, Bayesian models, and to include more options (e.g., parameter
expansion) for algorithmic optimization. We specifically analyzed a few concrete exam-
ples, one in each direction. Our results are both encouraging and challenge-revealing.
On one hand, we have obtained some analytical expressions of the convergence rates
of various Gibbs samplers, from which we may derive an optimal parameterization; on
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the other hand, we find that situations become much more complex and the optimal
parameterization may not exist or computable in high-dimensional cases, such as vector
hierarchical models and mixed effects models. In summary, we find that the decomposi-
tion framework established by Z&R is both elegant and practical, and that much future
endeavor is warranted for exploring and exploiting their framework.
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Contributed Discussion

Arnab Hazra∗ and Raphaël Huser†

It was our pleasure to read this paper and to get the opportunity to discuss it. Studying
the convergence and mixing of Markov chain Monte Carlo (MCMC) chains is often
neglected. Here, the authors raise this point and obtain some theoretical results about
the convergence of the Gibbs sampler for multilevel conditionally hierarchical Gaussian
models using multigrid decomposition. The authors also go beyond the Gaussian case
and describe an example of a Poisson crossed-effects model. Importantly, the authors
also discuss two different types of parametrizations for the same models, the so-called
non-centered and centered parametrizations (NCP and CP, respectively).

Here, we focus on studying the convergence properties of the Gibbs sampler under
different parametrizations used in some recent papers on spatial geostatistics and spatial
extreme-value analysis using hierarchical Gaussian processes (GP), where independent
(temporal) replications are available. Instead of focusing on analytic expressions, we
focus on simulations. In a purely spatial setting, Bass and Sahu (2017) studied the
convergence rates under different choices of the spatial correlation structures for a GP.

First, we consider a simple spatial Gaussian process model (Banerjee et al., 2003,
Chapter 5) defined as

Yt(s) = μ+ εt(s) + ηt(s), s ∈ D ⊂ R2, t = 1, . . . , T, (1)

where μ denotes the global mean, εt(·) are independent and identically distributed (IID)
zero-mean GPs with spatial covariance Cov{εt(s1), εt(s2)} = r exp{−d(s1, s2)/φ},
r, φ > 0, with d(s1, s2) denoting the Euclidean distance between s1 and s2, and

ηt(s)
IID∼ Normal(0, 1 − r). We simulate T = 100 replications at N = 121 uniform

spatial grid locations {(i, j) : i, j = 0, 0.1, . . . , 1}. True parameter choices are μ = 5,
φ = 0.2 and r = 0.9. Here, conjugate priors for φ and r are not known and hence,
to stick to Gibbs sampling, we prefer to treat these parameters as known and choose
a weakly informative prior μ ∼ Normal(0, 1002). Let Xt = [Xt(s1), . . . , Xt(sN )]′ be
the generic notation for the spatial vectors and Σφ be the correlation matrix obtained
from Cov{εt(si), εt(sj)}, i, j = 1, . . . , N . We fit (1) under NCP and CP. In NCP, we

treat the levels as Yt
Indep∼ Normal(μ1 + εt, (1 − r)IN ), εt

IID∼ Normal(0, rΣφ), and

μ ∼ Normal(0, 1002). In CP, the levels are modified as Yt
Indep∼ Normal(ε̃t, (1 − r)IN ),

ε̃t
IID∼ Normal(μ1, rΣφ), and μ ∼ Normal(0, 1002). We study the trace plots and the au-

tocorrelation function (ACF) plots of μ and ε̄ = (NT )−1
∑N

i=1

∑T
t=1 εt(si) under NCP,
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and of μ and ¯̃ε = (NT )−1
∑N

i=1

∑T
t=1 ε̃t(si) under CP, and observe good mixing for CP

while the mixing is poor for NCP. This corroborates the results for the two-layer models
mentioned in the paper. The corresponding effective sample sizes (ESS) are presented
in Table 1. Theoretical results follow from Bass and Sahu (2017).

GPs have been criticized for modeling spatial extremes, due to their light tails and
inability to capture strong tail dependence. To extend this class, while retaining the com-
putational attractiveness of GPs, several authors have proposed some location and/or
scale mixture models (e.g., Huser et al., 2017; Morris et al., 2017; Krupskii et al., 2018;
Hazra et al., 2020) and Huser and Wadsworth (2020) reviewed some of them. Here, we
focus on some models which allow Gibbs sampling for the higher level random effects.

We next consider a simple location-mixture model (Krupskii et al., 2018), which can
be shown to possess upper tail dependence,

Yt(s) = Et + εt(s) + ηt(s), s ∈ D ⊂ R2, t = 1, . . . , T, (2)

where Et
IID∼ Exponential(λ) and the specifications for εt(·) and ηt(·) are the same

as in (1); here, λ > 0 is the rate parameter. We choose a weakly informative prior
λ ∼ Gamma(0.01, 0.01). The model has three layers and allows Gibbs sampling for
the unknown parameters and the latent variables. The simulation design is the same
as before and we choose the true value λ = 1. We fit (2) under NCP and CP. In

NCP, we treat the levels as Yt
Indep∼ Normal(Et1+εt, (1−r)IN ), εt

IID∼ Normal(0, rΣφ),

Et
IID∼ Exponential(λ), and λ ∼ Gamma(0.01, 0.01). In CP, we replace the first two levels

of NCP by Yt
Indep∼ Normal(ε̃t, (1 − r)IN ) and ε̃t

IID∼ Normal(Et1, rΣφ), respectively.
The trace plots and ACF plots of ε̄ and ¯̃ε show a similar pattern as that for (1). The

trace plots and ACF plots of Ē = T−1
∑T

t=1 Et and λ show good mixing under CP
while it is poor for Ē under NCP. The corresponding ESS are presented in Table 1.

Finally, we consider a scale-mixture model (Morris et al., 2017; Hazra et al., 2020)

Yt(s) =
√

bτt{εt(s) + ηt(s)}, s ∈ D ⊂ R2, t = 1, . . . , T, (3)

where τt
IID∼ Inverse-gamma(a/2, a/2) and the other terms are as before. We choose the

prior a ∼ Discrete-uniform(0.1, 0.2, . . . , 50) similar to Hazra et al. (2020) and Hazra
and Huser (2021), and a flat prior for b over R+. While different representations of
the same model are possible, not all of them allow Gibbs sampling for τt, and thus,
we skip them here. The model (3) has three layers and allows Gibbs sampling for the
unknown parameters (probability proportional to size sampling for a) and the latent
variables. The simulation design is the same as before and we choose the true values
a = 5 and b = 1. We fit (3) under non-scaled and scaled parametrizations (NSP and

SP, respectively). In NSP, we treat the levels as Yt
Indep∼ Normal(ε̃t, b(1 − r)τtIN ),

ε̃t
Indep∼ Normal(0, brτtΣφ), τt

IID∼ Inverse-gamma(a/2, a/2), and the priors for a and

b. In SP, we replace the first three levels of NSP by Yt
Indep∼ Normal(ε̃∗t , (1 − r)τ̃tIN ),

ε̃∗t
Indep∼ Normal(0, rτ̃tΣφ), and τ̃t

IID∼ Inverse-gamma(a/2, ab/2), respectively. The trace
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Parametrization GP (μ, ε̄/¯̃ε) Location-mixture
(ε̄/¯̃ε, Ē, λ)

Scale-mixture
(¯̃ε/¯̃ε∗, τ̄ /¯̃τ, a, b)

NCP/NSP (48,47) (55, 53, 902) (104, 95, 6940, 94)
CP/SP (104, 104) (104, 8531, 8896) (104, 3256, 7292, 8146)

Table 1: Effective sample sizes (ESS) for the Gibbs samplers for models (1), (2), and
(3), under different parametrizations. ESS values correspond to 104 iterations, starting
from true parameter choices.

plots and ACF plots of ¯̃ε and ¯̃ε∗ (notation as before) and a show good mixing under both

NSP and SP. The trace plots and ACF plots of τ̄ = T−1
∑T

t=1 τt,
¯̃τ = T−1

∑T
t=1 τ̃t, and

b show a good mixing behavior under SP (after thinning by keeping one per four/five
samples, for ¯̃τ) but not under NSP. The corresponding ESS are presented in Table 1.
Specifying τt ∼ Inverse-gamma(a/2, b/2) as in Morris et al. (2017) show long-range
dependence in the ACF plots and using τt ∼ Inverse-gamma(a/2, ab/2), as in Hazra
et al. (2020), is recommended.

Overall, through simulation studies, we have illustrated the mixing of a Gibbs sam-
pler under different parametrizations for some popular models for spatial geostatistics
and spatial extremes in the light of multigrid decomposition proposed in this paper,
which would help practitioners to design MCMC algorithms effectively. Theoretical
derivations of the convergence rates in these spatial settings is a possible future en-
deavor.
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Contributed Discussion∗

Christian P. Robert†

Congratulations to the authors, for this paper that examines in great details the fine
convergence properties of several Gibbs versions of the same hierarchical posterior for
an analysis of variance (ANOVA) type linear model. Although this may sound like an
old-timer opinion, I find it most enjoyable to have Gibbs sampling back on track as a
Markov chain Monte Carlo (MCMC) technique whose convergence properties can be
properly assessed (Hobert and Geyer, 1998; Meng and van Dyk, 1999; Hobert, 2000;
Hobert and Marchev, 2008). Also, even after all these years, it is always a surprise for
me to realise that different versions of Gibbs samplings may hugely differ in convergence
properties (Roberts and Sahu, 1997; Meng and van Dyk, 1999).

At first, intuitively, I thought the options (1,0) and (0,1) in the parameterisations of
the hierarchical linear model should have been similarly performing. But I then realised
the symmetry was missing, as one is “more” hierarchical than the other. While the
results in the paper exhibiting a theoretical ordering of these choices are truly impressive
in their precision and generality, I would suggest pursuing first an random exploration
of the various parameterisations in order to handle cases where an analytical ordering
proves impossible. It would most likely produce a superior performance, as hinted at by
Figure 4. (This alternative happens to be briefly mentioned in the Conclusion section.)
The notion of choosing the optimal parameterisation at each step is indeed somewhat
unrealistic in that the optimality zones exhibited in Figure 4 are most likely unreachable
in a more general model than the Gaussian ANOVA model. This is the more likely
with a high number of parameters, parameterisations, and recombinations in the model
(Section 7).

An idle and related question is whether or not an extension can be considered,
namely to a more general hierarchical model where recentring is not feasible because of
the non-linear nature of the parameters.

As noted above, Theorem 1 is both quite impressive and wide ranging. It also reminds
me of the interweaving properties (Liu et al., 1994; Yu and Meng, 2011) and data
augmentation versions of the early-day Gibbs. More to the point and to the current era,
it offers more possibilities for coupling, parallelism, and increasing convergence, as well
as for fighting against dimension curses.

“in this context, imposing identifiability always improves the convergence properties of
the Gibbs Sampler.”

Another idle thought of mine is to wonder whether or not there is a limited number
of reparameterisations to be exploited for building Gibbs samplers. I would imagine that

∗This work was partly supported by a PaRis AI Research InstitutE (prAIrie) from the Agence
Nationale de la Recherche (ANR-19-P3IA-0001).

†CEREMADE, Université Paris Dauphine PSL, University of Warwick, and CREST,
xian@ceremade.dauphine.fr
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by creating unidentifiable decompositions of (some) parameters, e.g., μ = μ1+μ2+ · · · ,
one could unrestrictedly multiply the number of parameterisations. In contrast with
imposing hard identifiability constraints as in Section 4.2, my intuition was that this
“desidentification” would increase the mixing behaviour of the extended chain, but this
somewhat clashes with the above (rigorous) statement from the authors.

The paper also opens the prospect of different possible implementations of Hamil-
tonian Monte Carlo (HMC) depending on different parameterisations (and different
Hamiltonian functions, see, e.g., Thin et al. 2021; Mongwe et al. 2021) and whether or
not the impact of these choices has been studied for HMC (which may be linked with
Remark 2 in the paper).
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Contributed Discussion

Kaoru Irie∗ and Shonosuke Sugasawa†

The authors addressed the well-known yet challenging problem about (non)centering
of parameters and its effect on the posterior computation and derived the convergence
rates of the Gibbs sampler explicitly under the Gaussian hierarchical location models.
We are delighted to see the theoretical results provided in the article, expecting them to
be utilized by many Bayesian practitioners. We hope the series of studies will follow to
cover the more structured models for which the effects of centering have been discussed
(e.g., Kastner and Frühwirth-Schnatter 2014).

The convergence rates (Theorem 3 for Model S3), or the inequality conditions for the
optimal parametrization (Corollary 2), is a promising result to offer guidance for prac-
titioners in choosing the best parametrization. A gap to be filled is that the convergence
rates provided in the article are conditional on the variances of the data generating pro-
cess, (σa, σb, σe), which are, of course, unknown to statisticians. Thus, our question is;
how can we utilize these results in finding the best parametrization in practice? Below
are our thoughts with the focus on Model S3.

One approach to the choice of parametrization is to plug in the point estimates of the
variance parameters, (σ̂a, σ̂b, σ̂e), in the convergence rates or the inequality conditions
before running a Gibbs sampler. The moment estimator is an example that can be
computed fast even with large I and J . This naive approach is expected to be successful
if the posteriors of the variance parameters are highly concentrated, as in the examples
considered in the article. In practice, however, it is also possible that the variance
posteriors are diffused and two or more parametrizations are nearly tied.

Another approach is to switch from one parametrization to another at each itera-
tion of a Gibbs sampler based on the sampled variance parameters. In doing so, after
sampling (σa, σb, σe) at each iteration, we check the inequalities of Corollary 2 with
the latest samples plugged-in, decide the best parametrization, reparametrize the sam-
pled location parameters accordingly if necessary, and move on to the next sampling
step. This heuristic approach makes the parametrization adaptive, but the resulting
stationary distribution might be different from the original posterior distribution.

A formal approach to the use of multiple parametrizations in a Gibbs sampler is
known as the ancillary-sufficiency interweaving strategy (ASIS). Specifically, for Model
S3, the component-wise interweaving strategy can be applied to the sampling steps
of γ and μ (Yu and Meng 2011, Section 2.5). For example, when sampling γi at an
iteration of the Gibbs sampler, we first sample it under the GS(1, 1) parametrization, set
bij = ηij − γi, re-sample γi under the GS(1, 0) parametrization, and then rebuild ηij as
γi+bij . A similar step is added to the sampling of μ, using the GS(0, 0) parametrization.
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We examine the ideas listed above in a simulation study. We follow the same setting

in Section 2.1, except that we use smaller sample size: I = J = 20 and K = 5. We

also consider different values of σb and σe in some scenarios, as summarized in Table 1

with the convergence rates that are computed using Theorem 3. When σb is modified to

10/
√
K + 0.2, there are two promising parametrizations that have similar convergence

rates.

In this setting, we employ the posterior sampling by four ways of choosing parametri-

zation: using the parametrization with the best convergence rate (BEST), utilizing the

inequality conditions based on the moment estimators of variances (MM), changing

parametrizations adaptively during the iterative sampling based on the latest variance

parameters sampled (ADPT), and using multiple parametrizations at every iteration

(ASIS). For each sampler, we generate 1000 posterior samples after the 1000 burn-in

samples, and computed the effective sample sizes (ESS) of μ, a. (γ.), and b.. (η..).

This procedure is replicated 500 times. The averaged values of ESS are reported in

Table 2. When σb = 10−0.5 and the posteriors of the variances are relatively concen-

trated, the MM method can choose the optimal parametrization in most cases, showing

the same efficiency as in the optimal BEST method. In contrast, when σb = 10/
√
K+0.2,

it becomes more challenging to find the optimal parametrization prior to the main anal-

ysis, as seen in the disproved ESS of the MM method. This observation could explain

the reason that the ADPT method can outperform the analysis based on the optimal

choice of a single parametrization, as it implicitly quantifies the uncertainty about the

variance parameters and switches between the two parametrizations. Similarly, the ASIS

method provides the better ESS in most scenarios, except for μ when σb = σe = 10−0.5.

σa = 10, σe = 10 σa = 10, σe = 10−0.5

σb GS(1,1) GS(0,0) GS(1,0) GS(0,1) GS(1,1) GS(0,0) GS(1,0) GS(0,1)

10−0.5 0.990 0.995 1.000 0.015 0.091 0.995 0.995 0.910
10√
K

+ 0.2 0.990 0.484 0.989 0.527 0.522 0.956 0.478 0.957

Table 1: Theoretical convergence rate of each simulation scenario.

σa = 10, σe = 10 σa = 10, σe = 10−0.5

σb BEST MM ADPT ASIS BEST MM ADPT ASIS

μ 971 971 972 975 855 855 875 32
10−0.5 a. (γ.) 938 938 979 984 709 709 779 848

b.. (η..) 875 875 862 925 888 886 873 932
μ 954 919 825 976 333 347 366 382

10√
K

+ 0.2 a. (γ.) 317 116 991 981 817 660 700 859

b.. (η..) 316 115 749 976 382 367 716 979

Table 2: Effective sample sizes (ESS) of μ, a. (or γ.), and b.. (or η..) of 1000 posterior
samples generated by four methods, being averaged over 500 Monte Carlo replications.
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Contributed Discussion

Sam Power∗ and Andi Wang†

We would like to congratulate the authors on this impressive piece of work, which
provides mathematically elegant constructions and theoretical results which are of im-
mediate practical relevance to the MCMC research community and practitioners. The
authors do an admirable job of laying the groundwork for a linear-algebraic grammar
of hierarchical models, built upon an ingenious random walk construction on the un-
derlying graphical model. As such, our comments will focus primarily on this auxiliary
random walk and the signal decomposition which it accompanies.

One of the key innovations of this work is the auxiliary random walk X, which
is crucial to defining the averaging operators φ(p). The Markov chain X moves from
the root node of the tree t0, and up the tree one layer at a time, choosing among the
children of the current note at each step. It bears acknowledging at the outset that
the construction of this auxiliary random walk, as well as the conditions (S) and ˜(S),
are somewhat opaque, and so we humbly seek to press the authors for some additional
intuition. Why should these be the right transition probabilities? What does c represent?
Is there an abstract property which characterises (directed?) Gaussian graphical models
which possess this property? Is there some way of understanding the equivalence classes
which are induced by c?

The construction of the averaging maps φ and the differencing maps δ is intriguing
in that it provides a decomposition of the full signal β which is prescribed intrinsically
by the model and its corresponding graphical structure. Here, we briefly present some
observations and interpretations of this decomposition.

To begin with, we note that while φ(p) and δ(p) are defined rather abstractly through
the process X, they are ultimately linear mappings of the multivariate Gaussian vec-

tor βT , and thus are themselves also multivariate Gaussian vectors. The map φ
(p)
r β(d)

encodes a coarse summary of the coefficients of the signal at level d, as viewed from

the vantage point of node r at level p. Similarly, the map δ
(p)
r β(d) encodes the incre-

ment in this summary which is obtained by moving from pa(r) to r, furnishing the
decomposition with a multi-resolution character.

Additionally, for each d, one can summarise certain properties of the φ, δ maps by

noting that M
(d)
p = φ

(p)
Xp

β(d) admits a martingale-like structure under the evolution of
Xp according to the auxiliary random walk on the tree, where p indexes the steps of the

walk: for any p < p′ ≤ d, E[M (d)
p |βT , Xp′ ] = M

(d)
p′ . One wonders whether this perspective

may be useful in extending the scope of these results to more general settings.

Another curious aspect of the decomposition is precisely what information is con-
tained in each component. While one might interpret both of the indices (d, p) which
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parametrise δ as corresponding to levels within the tree, there is perhaps some utility in
drawing a slight distinction: d corresponds to a level within the tree, but p corresponds
to a pair of adjacent levels within the tree, or even the collection of edges which join
those two levels.

One can then view the collection Δ(p) := {δ(p)β(d) : d ∈ {p, · · · , k−1}} as containing
the increments in information which are obtained by stepping across the various edges
which pass from level (p − 1) to level p, and observing their subsequent impact at
levels d � p. By contrast, Δ(d) := {δ(p)β(d) : p ∈ {0, · · · , d}} holds the increments in
information about only level d, as generated by stepping across edges from the root
towards the pth level. The usual Gibbs sampler makes updates based on {Δ(d)}, but a
key insight from the present work is that the same Gibbs sampler also induces a rich
structure on {Δ(p)}, hinting at a fascinating duality structure.

We now pass brief comment on two of the key auxiliary lemmata, namely Lemma 4
and Lemma 3.1. Lemma 4 computes the conditional expectation

E[δ(p)β(d)|β\β(d)] =
∑



cd
δ
(p)β(
),

which will allow the authors to conclude, in the Proof of Theorem 9, the equality in law

L(δ(p)β(d)|β\β(d)) = L(δ(p)β(d)|(δ(p)β(
))
≥p,
�=d). (1)

This follows from the fact that for conditional Gaussian distributions, the condi-
tioned values can only affect the conditional mean and have no influence on the condi-
tional variance. This is crucial to establish that each δ(p)β in fact evolves as a Markov
chain for the specific scan order used in the paper. In fact, the proof of Lemma 4 actu-
ally shows that the same relation (1) holds with δ(p) replaced with φ(p). However, the
φ(p)’s will not be conditionally independent, unlike the δ(p)’s.

While Lemma 4 can be read as a statement about the dependence structure of Δ(p),
Lemma 3.1. concerns instead the dependence structure of Δ(d) under the same update.
We again wonder whether some notion of duality is at play in the relevance of these
two results.

Finally, in light of the richness of the random walk construction and the induced
signal decomposition, we cannot help but wonder as to whether these tools might be
fruitfully adapted to the case of undirected Gaussian graphical models.
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Contributed Discussion

Peng Zhao∗, Hou-Cheng Yang†, and Guanyu Hu‡

We would like to congratulate the authors on their excellent effort to this important
topic. The author develops a multigrid decomposition approach that allows to focus on
low-dimensional Markov chains and it derives analytic expressions for the convergence
rates of the Gibbs sampler for various multi-level linear models structures. This novel
approach is inherent to the model, rather than specific to the selected parameterization.
We think this paper contributes to the quantitative understanding of the interaction
between the Bayesian hierarchical structure and the behavior of the Markov chain Monte
Carlo (MCMC) algorithm, which is the core and important of the actual success of
Bayesian statistics.

1 Comments on Coordinate-Wise Scheme

In addition to Gibbs samplers, non-centered and centered parameterizations also ex-
hibit distinctive behaviors in variational inference, which is another popular stream of
Bayesian inference. Specifically, the coordinate ascent variational inference (CAVI) al-
gorithm uses similar coordinate-wise updating in the commonly used mean-field (MF)
framework: q(θi) ∝ exp[Eθ−i{logP (y, θ)}]. Unfortunately, the objective function associ-
ated with MF variational inference is usually non-convex, making it difficult to evaluate
CAVI’s convergence rate. It would be interesting to determine whether CAVI conver-
gence can be analyzed using the tool developed and used in the paper. Specifically, if the
variational distribution q(θ) under MF is Gaussian, then the trace of CAVI’s updating
would also be a Gaussian autoregressive process, similar to the settings of Theorem 1.1.
The tractability of such an autoregressive transition kernel needs to be determined.

2 Comments on Non-Gaussian Hierarchical Model

In addition to Gaussian response, several other types of data such count-valued data,
binary data and multiple response-types are also important for statistician. For the
non-Gaussian data, the conjugate priors (Chen et al., 2008; Bradley et al., 2018, 2020,
2021) are well established under generalized linear model. The conjugate priors also
lead Gibbs sampling algorithm without Metropolis-Hasting step. For the current dis-
cussion, it based on independent Normal case and has a symmetry assumption. How-
ever, we were concerning how this fantastic approaching and methodologies to apply
for spatial/spatio-temporal statistics or even says, hierarchical dependent model. Those
model might be non-stationary in time and space and asymmetric.
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3 Comments on Sparse, Dependent, and Mixture
Models

The data model discussed in the article is the independent Gaussian response model,
where the parameters have additive effects. Modern statistical applications may include
other kinds of hierarchical parameters as a result of sparsity, dependence, and het-
erogeneity. For example, in the sparsity regime, shrinkage priors are commonly used
in high-dimensional applications, where the hierarchical parameters play a multiplic-
ity role: for the famous horseshoe prior (Carvalho et al., 2010), θ ∼ N(0, λ2τ2), where
λ, τ ∼ Ca+(0, 1), where Ca+(0, 1) is the half-Cauchy distribution. The non-centered
parameterization for such prior would be multiplicative θ = βλτ with β ∼ N(0, 1) and
λ, τ ∼ Ca+(0, 1). A second challenge would be to analyze the convergence rate of the
MCMC sequence of horseshoe prior under centered and non-centered parameterization.

The Gaussian process (Gelfand and Schliep, 2016) has emerged as the most valu-
able tool in the toolkit for spatially dependent data. It is also important to consider
convergence rate of such dependent model with Gibbs samplers. The final important
model is the mixture model under nonparametric Bayesian framework. The nonpar-
metric Bayesian model offers a good choice to simultaneously estimate the number of
clusters and cluster configurations. Based on proper choice of base distribution in such
mixture model, a Gibbs sampler algorithm (Neal, 2000) can be used for such model.
Compared with tradition model, the multi-grid decomposition should be carefully im-
plemented under mixture models.
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Rejoinder

Giacomo Zanella∗ and Gareth Roberts†

1 Introduction

We thank all discussants for their interesting and stimulating contributions. Given the
tremendous breath covered by these contributions, we will not be able to answer all
points raised therein in a comprehensive way, but instead we select the ones we found
more stimulating and we felt we had more to comment on.

2 Extensions, limitations and applications

2.1 Model extensions

Various authors discuss and propose extensions to alternative or more general classes
of models. Hazra and Huser discuss applications to Gaussian Process regression models
for spatial statistics and extreme value theory. See also Bass and Sahu (2017, 2019) for
related work. Yang and Liu explore in great details extensions to vector hierarchical
models with non-diagonal covariance matrices and more general regression models with
covariates. In doing so they also highlight various challenges in deriving explicit results
and bounds for such more general models. Zhao, Yang, and Hu ask about extensions to
general exponential families. We agree that this would be an interesting line of research
and in our paper we only discuss extensions to Poisson regression models in Remark
2. However, as many discussant highlight, it is highly non-trivial to extend the very
explicit results we derive in this paper to non-Gaussian models. This would clearly be a
major breakthrough and advance in the Markov chain Monte Carlo (MCMC) literature
if feasible. Nonetheless, our current results are already directly relevant to optimize
samplers for models featuring conditionally Gaussian distributions (see e.g. discussion
on conditionally optimal parametrizations) and are also relevant in large data limits, as
for example discussed in (Roberts and Sahu, 2001).

2.2 Algorithmic extension

Both Flegal and Zhou and Zhou discuss about extensions of our results from deter-
ministic-scan Gibbs Samplers to random-scan ones. We expect the results to extend
as already partially outlined by Zhou and Zhou. Zhao, Yang, and Hu ask about ex-
tensions to Coordinate Ascent Variational Inference (CAVI) algorithms for mean-field
variational approximations. This is a good point and in fact the convergence rate of
Gibbs Sampling and CAVI are often related, and they coincide in the Gaussian case
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(Tan and Nott, 2014). Similarly, older work has already shown close connection to other
algorithms (e.g. conditional maximisation expectation maximization Sahu and Roberts,
1999). We are indeed working on extending the multigrid analysis approach to study
performances of CAVI for multilevel models, both in terms of convergence rates and
accuracy of mean-field approximations. See also the recent work in Tan (2021) on
reparametrization techniques in variational methods. Various authors also comment
about and explore the role of partial noncentering, which is only briefly considered in
the paper.

Finally, Robert discusses the potential relevance of the proposed multigrid analysis to
other MCMC algorithms, such as Hamiltonian Monte Carlo (HMC). We agree that this
would be a very interesting line of research. We also take this occasion to mention that
Bob Carpenter suggested to us in private communication some careful modifications to
the Stan code we used (which is publicly available in the supplementary material) to
optimize the implementation of the HMC and No-U-Turn sampler (NUTS) algorithms
that we run in Section 5.1. His modifications are able to reduce the runtime of NUTS by
a factor of two. This does not change the qualitative conclusions of Section 5.1, neither in
terms of relative comparison between NUTS-v1, v2 and v3 not in terms of comparison to
Gibbs-v1, v2 and v3, but it is important to mention. The optimized Stan code is available
at https://github.com/gzanella/multigrid. Note also that the HMC and NUTS runtimes
reported in Table 3 do not include the burn-in or warm-up time, but only the sampling
one. This may not have been clear from the experiment description in Section 5.1.

3 Conditionally optimal parametrizations

Both Robert as well as Irie and Sugasawa ask clarifications about the practical imple-
mentation of the “conditionally optimal parametrization” discussed in Section 3.2. As
Irie and Sugasawa explain, Corollary 2 characterizes the optimal parametrization for
β given the variance parameters (σa, σb, σe). In Section 3.2 we point out that, given
those results, “one can at each iteration choose the optimal parametrization β given
(σa, σb, σe) according to Table 1”. This scheme, which we refer to as Optimal in Figure
5, is exactly the approach described by Irie and Sugasawa in the fourth paragraph of
their discussion: to “switch from one parametrization to another at each iteration of a
Gibbs sampler” by checking “the inequalities of Corollary 2 with the latest samples [of
(σa, σb, σe)] plugged-in”. As mentioned in the paper, this approach does not add signif-
icant computational costs compared to usual Gibbs Sampling with a fixed parametriza-
tion, as it basically only requires to check the inequalities in Corollary 2 and then add
an if statement pointing to the part of the code implementing the desired sampler (i.e.
the one with the conditionally optimal parametrization). See e.g. https://github.com/
gzanella/multigrid for an R implementation. Irie and Sugasawa wonder whether such
adaptive strategy which changes parameterisation on the fly, depending on current vari-
ance components induce bias and whether the “resulting stationary distribution might
be different from the original posterior distribution.” This is not the case as shown by
the following proposition.

Proposition 1. Suppose π is a joint distribution for (σ,β) ∈ X ×Y, and {Pλ, λ ∈ Λ} is
a family of Markov kernels which all leave π invariant and do not change σ, i.e. which

https://github.com/gzanella/multigrid
https://github.com/gzanella/multigrid
https://github.com/gzanella/multigrid
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satisfy Pλ((σ,β), {σ} × Y) = 1 for any σ,β and λ. Define a kernel Q that selects λ
depending on the current value of σ, i.e. Q((σ,β), A) := Pλ(σ)((σ,β), A) for A ⊆ X ×Y,
where λ : X → Λ is an arbitrary function. Then Q is also invariant for π.

Proof. Since Pλ is π-invariant and does not change σ it follows that Pλ((σ, ·), {σ} × ·)
is a π(β|σ)-invariant kernel on Y . To see that, for every A ⊂ X × Y and σ ∈ X define
Aσ := {β : (β, σ) ∈ A} ⊆ Y and∫

Y
Pλ((σ,β), A)π(dβ|σ) =

∫
Y
Pλ((σ,β), {σ} ×Aσ)π(dβ|σ) =: g(σ,Aσ),

where the first equality holds since Pλ((σ,β), {σ} × Y) = 1 and thus g(σ,Aσ) depends
only on A through Aσ. By π-invariance

∫
g(σ,Aσ)π(dσ) = π(A) for every A ⊆ X × Y ,

meaning that g(σ,Aσ) equals (a version of) the conditional distribution π(β ∈ Aσ|σ) as
desired. Thus

∫
Y Pλ((σ,β), A)π(dβ|σ) = π(β ∈ Aσ|σ) π(σ)-almost surely for any λ and∫

X×Y
π(σ,β)Q((σ,β), A)dσdβ =

∫
X

∫
Y
π(σ,β)Pλ(σ)((σ,β), A)dβdσ

=

∫
X
π(β ∈ Aσ|σ)π(dσ) = π(A)

meaning that Q is π-invariant.

The above proposition applies to the on-the-fly parametrization discussed above. In
such case Pλ denote the Gibbs Samplers updating β with different parametrizations
and λ(σ) the optimal choice of parametrization described in Table 1. Recall that Gibbs
Samplers with different parametrizations, e.g. GS(0, 0), GS(1, 0), GS(0, 1) and GS(1, 1)
defined in Section 1, can be interpreted as different transition kernels for the same
variables β (under any arbitrarily chosen parametrization used as reference). We thank
Irie and Sugasawa for giving us the chance to clarify this important and subtle point.

4 Connections with auxiliary Markov chains

Sam Power and Andi Wang ask great questions about the interpretability of the results
in Section 7 of the paper, concerning k level hierarchical models. Firstly we address

their insightful observation that φ
(p)
Xp

β(p) admits a martingale-like structure. In fact this

is closely related to the independence of the {δ(i), i = 0, 1 . . . k − 1} projections. The
martingale property is precisely that of uncorrelated increments which, together with
Gaussianity of β gives the required independence. Of course something more general is
required though when moving away from the Gaussian context as being uncorrelated no
longer implies independence. So it is not clear (to us at least) how we can move beyond
the Gaussian case using these ideas.

Secondly, Sam and Andi ask (very reasonably) for more intuition into the construc-
tion and properties of the φ and δ and the c matrix. In more simplified settings (for
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instance just 2 level models) insight is provided in Papaspiliopoulos et al. (2003, 2007).
We just give some insights which illuminate Corollary 7 in the paper in particular and
hopefully clarify the role of the cs. Within model NSk (in fact in most of the models
in our paper) the full conditional for any component s depends only on its parent and
children. The dependence on the parent defines the local influence of the prior while the
dependence on its children encodes the influence of data. Intuition is clearest in the case
of Model Sk in the paper and we’ll restrict attention to that. We recall that the rate
of convergence of the Gibbs sampler for Model Sk can be characterised as the principal
(Perron-Frobenius) eigenvalue of the non-negative matrix:

Mk =

⎛⎜⎜⎜⎜⎝
0 r1

(1− r2) 0 r2
. . . . . . . . .

(1− rk−2) 0 rk−2

(1− rk−1) 0

⎞⎟⎟⎟⎟⎠ ,

where it turns out that we write explicitly the cs in terms of their weighted parameters
(the ris) which are normalised to have unit row sum (at least for 1 < i < k − 1). In
the Sk model, each child has equal influence, and the relative influences of parent and
children is constant across all other components t with (t) = (s). In fact we see that
the full conditional for s has mean given by

r
(s)c̄(s) + (1− r
(s))pa(s)

with c̄(s) denoting the mean of its children.

However we can gain much from a probabilistic interpretation of Mk. Indeed Mk

is a sub-stochastic Markov matrix describing a skip-free Markov chain with absorption
at −1 or k. The rate of convergence described by the result therefore corresponds to
the quasi-stationary decay rate (see for example Collet et al. (2012)), a measure of the
rate at which this Markov chain leaves 0, 1, . . . , k− 1. Many interesting conclusions can
be drawn from this analogy. For instance the flat prior case corresponds to τ0 = 0
and in this case there is no possibility of exit to −1 and thus this corresponds to a
Gibbs sampler which converges slower than under any proper prior. In fact the rate of
convergence is monotonically decreasing in τ0.

Moreover, if we restrict ourselves to this case (τ0 = 0), we can see how increas-
ing I
 has the effect of pushing the Markov chain towards higher values and thus exit
will be more rapid. Therefore the rate of convergence will be monotonically decreasing
as a function of I
 for each . (Such an argument can be properly formulated within
the framework of stochastic monotonicity Daley (1968). This Markov chain is not al-
ways stochastically monotone, but instead we can study a lazy version thereof which is
stochastically monotone.) Note that the dependence on I
 is far more subtle in the case
of τ0 �= 0 as absorption is now possible from 0 as well as k − 1. In general, it is clear
that the full implications of Corollary 7 still require further investigation.

Note that outside the Gaussian case, similar ideas to these can be used to characterise
qualitative convergence properties of Gibbs samplers on non-Gaussian hierarchical mod-
els, see Papaspiliopoulos and Roberts (2008). A characteristic feature of the Gaussian
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case is that the relative influences of parents and children are constant, i.e. the ele-
ments ri in Corollary 7 are independent of the actual values of pa(s) and c̄(s). Outside
the Gaussian case this is no longer the case, but we can still seek to study asymptotic
version of the tri-diagonal matrix in Corollary 7. Papaspiliopoulos and Roberts (2008)
actually discovers that the irreducibility properties of these asymptotic matrices are
closely linked to qualitative stability properties of the underlying Gibbs sampler (such
as geometric and uniform ergodicity).

5 Concluding comments

There are a number of interesting and substantial comments to which we have not
been able to address in this short rejoinder. Various contributions provide a broader
perspective on the multigrid approach developed in our paper. In particular, Yang and
Liu discuss the fundamental differences in the intuition behind our multigrid decompo-
sition and more classical multigrid methods. Furthermore, Zhou and Zhou introduce an
elegant matrix reformulation of our framework, which we very much hope will lead to
substantial generalisations of our work.

It is exciting to see the substantial interest in this topic. One of us remembers fondly
the days of the early 1990s sometimes referred to as the “MCMC revolution” in Bayesian
Statistics. It is no surprise that this happened at exactly the same time as the prolific
growth in the use of multilevel models (see for example Smith and Roberts (1993)). At
the time it was empirically observed that Gibbs samplers often converged very rapidly,
and scaled extremely well on models with hierarchical structure. Understanding this
phenomenon has been an important theoretical challenge, but we hope that our paper
makes some contribution towards this.

Our strategy has been to obtain results which strongly rely on the structural prop-
erties of nested and crossed models. In this way we have been able to obtain very
explicit results, albeit only in the Gaussian case. Nevertheless, it seems reasonable that
our methodology should provide useful practical guidance beyond the precise settings
where our theory sits, though of course with no absolute guarantees.

Finally we wish to finish be reiterating our thanks to all the participants of this
meeting for their insightful, substantial and encouraging comments. Also we’d like to
record thanks to Michele Guindani, Mark Steel and Tommaso Rigon for organising this
successful event.
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