206 research outputs found

    Source localization and denoising: a perspective from the TDOA space

    Full text link
    In this manuscript, we formulate the problem of denoising Time Differences of Arrival (TDOAs) in the TDOA space, i.e. the Euclidean space spanned by TDOA measurements. The method consists of pre-processing the TDOAs with the purpose of reducing the measurement noise. The complete set of TDOAs (i.e., TDOAs computed at all microphone pairs) is known to form a redundant set, which lies on a linear subspace in the TDOA space. Noise, however, prevents TDOAs from lying exactly on this subspace. We therefore show that TDOA denoising can be seen as a projection operation that suppresses the component of the noise that is orthogonal to that linear subspace. We then generalize the projection operator also to the cases where the set of TDOAs is incomplete. We analytically show that this operator improves the localization accuracy, and we further confirm that via simulation.Comment: 25 pages, 9 figure

    RSSI-Based Self-Localization with Perturbed Anchor Positions

    Full text link
    We consider the problem of self-localization by a resource-constrained mobile node given perturbed anchor position information and distance estimates from the anchor nodes. We consider normally-distributed noise in anchor position information. The distance estimates are based on the log-normal shadowing path-loss model for the RSSI measurements. The available solutions to this problem are based on complex and iterative optimization techniques such as semidefinite programming or second-order cone programming, which are not suitable for resource-constrained environments. In this paper, we propose a closed-form weighted least-squares solution. We calculate the weights by taking into account the statistical properties of the perturbations in both RSSI and anchor position information. We also estimate the bias of the proposed solution and subtract it from the proposed solution. We evaluate the performance of the proposed algorithm considering a set of arbitrary network topologies in comparison to an existing algorithm that is based on a similar approach but only accounts for perturbations in the RSSI measurements. We also compare the results with the corresponding Cramer-Rao lower bound. Our experimental evaluation shows that the proposed algorithm can substantially improve the localization performance in terms of both root mean square error and bias.Comment: Accepted for publication in 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017

    Geolocation of a Known Altitude Target Using TDOA and GROA in the Presence of Receiver Location Uncertainty

    Get PDF
    This paper considers the problem of geolocating a target on the Earth surface using the target signal time difference of arrival (TDOA) and gain ratio of arrival (GROA) measurements when the receiver positions are subject to random errors. The geolocation Cramer-Rao lower bound (CRLB) is derived and the performance improvement due to the use of target altitude information is quantified. An algebraic geolocation solution is developed and its approximate efficiency under small Gaussian noise is established analytically. Its sensitivity to the target altitude error is also studied. Simulations justify the validity of the theoretical developments and illustrate the good performance of the proposed geolocation method

    Dual-Satellite Source Geolocation with Time and Frequency Offsets and Satellite Location Errors

    Get PDF
    This paper considers locating a static source on Earth using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained by a dual-satellite geolocation system. The TDOA and FDOA from the source are subject to unknown time and frequency offsets because the two satellites are imperfectly time-synchronized or frequency-locked. The satellite locations are not known accurately as well. To make the source position identifiable and mitigate the effect of satellite location errors, calibration stations at known positions are used. Achieving the maximum likelihood (ML) geolocation performance usually requires jointly estimating the source position and extra variables (i.e., time and frequency offsets as well as satellite locations), which is computationally intensive. In this paper, a novel closed-form geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements from the source and calibration stations to produce a single pair of TDOA and FDOA for source geolocation. This measurement fusion step eliminates the time and frequency offsets while taking into account the presence of satellite location errors. The source position is then found via standard TDOA-FDOA geolocation. The developed algorithm has low complexity and performance analysis shows that it attains the Cramér-Rao lower bound (CRLB) under Gaussian noises and mild conditions. Simulations using a challenging scenario with a short-baseline dual-satellite system verify the theoretical developments and demonstrate the good performance of the proposed algorithm

    The Complete Analytical Solution of the TDOA Localization Method

    Get PDF
    This article is focused on the analytical solution of a TDOA (Time Difference of Arrival) localization method, including analysis of accuracy and unambiguity of a target position estimation in 2D space. The method is processed under two conditions - sufficiently determined localization system and an overdetermined localization system. It is assumed that the TDOA localization system operates in a LOS (Line of Sight) situation and several time-synchronized sensors are placed arbitrarily across the area. The main contribution of the article is the complete description of the TDOA localization method in analytical form only. It means, this paper shows a geometric representation and an analytical solution of the TDOA localization technique model. In addition, analyses of unambiguity and solvability of the method algorithm are presented, together with accuracy analysis of this TDOA technique in analytical form. Finally, the description of this TDOA method is extended to an overdetermined TDOA system. This makes it possible to determine and subsequently optimize its computational complexity, for example increase its computational speed. It seems that such a description of the TDOA localization technique creates a simple and effective tool for technological implementation of this method into military localization systems

    Efficient closed-form estimators in multistatic target localization and motion analysis

    Get PDF
    Object localization is fast becoming an important research topic because of its wide applications. Often of the time, object localization is accomplished in two steps. The first step exploits the characteristics of the received signals and extracts certain localization information i.e. measurements. Some typical measurements include timeof-arrival (TOA), time-difference-of-arrival (TDOA), received signal strength (RSS) and angle-of-arrival (AOA). Together with the known receiver position information, the object location is then estimated in the second step from the obtained measurements. The localization of an object using a number of sensors is often challenged due to the highly nonlinear relationship between the measurements and the object location. This thesis focuses on the second step and considers designing novel and efficient localization algorithms to solve such a problem. This thesis first derives a new algebraic positioning solution using a minimum number of measurements, and from which to develop an object location estimator. Two measurements are sufficient in 2-D and three in 3-D to yield a solution if they are consistent. The derived minimum measurement solution is exact and reduces the computation to the roots of a quadratic equation. The solution derivation also leads to simple criteria to ascertain if the line of positions from two measurements intersects. By partitioning the overdetermined set of measurements first to obtain the individual minimum measurement solutions, we propose a best linear unbiased estimator to form the final location estimate. The analysis supports the proposed estimator in reaching the Cramer-Rao Lower Bound (CRLB) accuracy under Gaussian noise. A measurement partitioning scheme is developed to improve performance when the noise level becomes large. We mainly use elliptic time delay measurements for presentation, and the derived results apply to the hyperbolic time difference measurements as well. Both the 2-D and 3-D scenarios are considered. A multistatic system uses a transmitter to illuminate the object of interest and collects the reflected signal by several receivers to determine its location. In some scenarios such as passive coherent localization or for gaining flexibility, the position of the transmitter is not known. In this thesis, we investigate the use of the indirect path measurements reflected off the object alone, or together with the direct path measurements from the transmitter to receiver for locating the object in the absence of the transmitter position. We show that joint estimation of the object and transmitter positions from both the indirect and direct measurements can yield better object location estimate than using the indirect measurements only by eliminating the dependency of the transmitter position. An algebraic closed-form solution is developed for the nonlinear problem of joint estimation and is shown analytically to achieve the CRLB performance under Gaussian noise over the small error region. To complete the study and gain insight, the optimum receiver placement in the absence of transmitter position is derived, by minimizing the estimation confidence region or the estimation variance for the object location. The performance lost due to unknown transmitter position under the optimum geometries is quantified. Simulations confirm well with the theoretical developments. In practice, a more realistic localization scenario with the unknown transmitter is that the transmitter works non-cooperatively. In this situation, no timestamp is available in the transmitted signal so that the signal sent time is often not known. This thesis next considers the extension of the localization scenario to such a case. More generally, the motion potential of the unknown object and transmitter is considered in the analysis. When the transmitted signal has a well-defined pattern such as some standard synchronization or pilot sequence, it would still be able to estimate the indirect and direct time delays and Doppler frequency shifts but with unknown constant time delay and frequency offset added. In this thesis, we would like to estimate the object and transmitter positions and velocities, and the time and frequency offsets jointly. Both dynamic and partial dynamic localization scenarios based on the motion status of the object and the transmitter are considered in this thesis. By investigating the CRLB of the object location estimate, the improvement in position and velocity estimate accuracy through joint estimation comparing with the differencing approach using TDOA/FDOA measurements is evaluated. The degradation due to time and frequency offsets is also analyzed. Algebraic closed-form solutions to solve the highly nonlinear joint estimation problems are then proposed in this thesis, followed by the analysis showing that the CRLB performance can be achieved under Gaussian noise over the small error region. When the transmitted signal is not time-stamped and does not have a well-defined pattern such as some standard synchronization or pilot sequence, it is often impossible to obtain the indirect and direct measurements separately. Instead, a self-calculated TDOA between the indirect- and direct-path TOAs shall be considered which does not require any synchronization between the transmitter and a receiver, or among the receivers. A refinement method is developed to locate the object in the presence of the unknown transmitter position, where a hypothesized solution is needed for initialization. Analysis shows that the refinement method is able to achieve the CRLB performance under Gaussian noise. Three realizations of the hypothesized solution applying multistage processing to simplify the nonlinear estimation problem are derived. Simulations validate the effectiveness in initializing the refinement estimator

    Asymptotically efficient estimators for geometric shape fitting and source localization

    Get PDF
    Solving the nonlinear estimation problem is known to be a challenging task because of the implicit relationship between the measurement data and the unknown parameters to be estimated. Iterative methods such as the Taylor-series expansion based ML estimator are presented in this thesis to solve the nonlinear estimation problem. However, they might suffer from the initialization and convergence problems. Other than the iterative methods, this thesis aims to provide a computational effective, asymptotically efficient and closed-form solution to the nonlinear estimation problem. Two kinds of classic nonlinear estimation problems are considered: the geometric shape fitting problem and the source localization problem. For the geometric shape fitting, the research in this thesis focuses on the circle and the ellipse fittings. Three iterative methods for the fitting of a single circle: the ML method, the FLS method and the SDP method, are provided and their performances are analyzed. To overcome the limitations of the iterative methods, asymptotically efficient and closed-form solutions for both the circle and ellipse fittings are derived. The good performances of the proposed solutions are supported by simulations using synthetic data as well as experiments on real images. The localization of a source via a group of sensors is another important nonlinear estimation problem studied in this thesis. Based on the TOA measurements, the CRLB and MSE results of a source location when sensor position errors are present are derived and compared to show the estimation performance loss due to the sensor position errors. A closed-formed estimator that takes into account the sensor position errors is then proposed. To further improve the sensor position and the source location estimates, an algebraic solution that jointly estimates the source and sensor positions is provided, which provides better performance in sensor position estimates at higher noise level comparing to the sequential estimation-refinement technique. The TOA based CRLB and MSE studies are further extended to the TDOA and AOA cases. Through the analysis one interesting result has been found: there are situations exist where taking into account the sensor position errors when estimating the source location will not improve the estimation accuracy. In such cases a calibration emitter with known position is needed to limit the estimation damage caused by the sensor position uncertainties. Investigation has been implemented to find out where would be the optimum position to place the calibration emitter. When the optimum calibration source position may be of theoretical interest only, a practical suboptimum criterion is developed which yields a better calibration emitter position than the closest to the unknown source criterion

    The algebro-geometric study of range maps

    Get PDF
    Localizing a radiant source is a widespread problem to many scientific and technological research areas. E.g. localization based on range measurements stays at the core of technologies like radar, sonar and wireless sensors networks. In this manuscript we study in depth the model for source localization based on range measurements obtained from the source signal, from the point of view of algebraic geometry. In the case of three receivers, we find unexpected connections between this problem and the geometry of Kummer's and Cayley's surfaces. Our work gives new insights also on the localization based on range differences.Comment: 38 pages, 18 figure
    corecore