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ABSTRACT

Object localization is fast becoming an important research topic because of its

wide applications. Often of the time, object localization is accomplished in two steps.

The first step exploits the characteristics of the received signals and extracts certain

localization information i.e. measurements. Some typical measurements include time-

of-arrival (TOA), time-difference-of-arrival (TDOA), received signal strength (RSS)

and angle-of-arrival (AOA). Together with the known receiver position information,

the object location is then estimated in the second step from the obtained measure-

ments. The localization of an object using a number of sensors is often challenged

due to the highly nonlinear relationship between the measurements and the object

location. This thesis focuses on the second step and considers designing novel and

efficient localization algorithms to solve such a problem.

This thesis first derives a new algebraic positioning solution using a minimum

number of measurements, and from which to develop an object location estimator.

Two measurements are sufficient in 2-D and three in 3-D to yield a solution if they

are consistent. The derived minimum measurement solution is exact and reduces the

computation to the roots of a quadratic equation. The solution derivation also leads

to simple criteria to ascertain if the line of positions from two measurements intersects.

By partitioning the overdetermined set of measurements first to obtain the individual

minimum measurement solutions, we propose a best linear unbiased estimator to

form the final location estimate. The analysis supports the proposed estimator in

reaching the Cramér-Rao Lower Bound (CRLB) accuracy under Gaussian noise. A

measurement partitioning scheme is developed to improve performance when the noise

level becomes large. We mainly use elliptic time delay measurements for presentation,

and the derived results apply to the hyperbolic time difference measurements as well.

Both the 2-D and 3-D scenarios are considered.
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A multistatic system uses a transmitter to illuminate the object of interest and

collects the reflected signal by several receivers to determine its location. In some

scenarios such as passive coherent localization or for gaining flexibility, the position

of the transmitter is not known. In this thesis, we investigate the use of the indirect

path measurements reflected off the object alone, or together with the direct path

measurements from the transmitter to receiver for locating the object in the absence

of the transmitter position. We show that joint estimation of the object and transmit-

ter positions from both the indirect and direct measurements can yield better object

location estimate than using the indirect measurements only by eliminating the de-

pendency of the transmitter position. An algebraic closed-form solution is developed

for the nonlinear problem of joint estimation and is shown analytically to achieve the

CRLB performance under Gaussian noise over the small error region. To complete the

study and gain insight, the optimum receiver placement in the absence of transmitter

position is derived, by minimizing the estimation confidence region or the estimation

variance for the object location. The performance lost due to unknown transmitter

position under the optimum geometries is quantified. Simulations confirm well with

the theoretical developments.

In practice, a more realistic localization scenario with the unknown transmitter

is that the transmitter works non-cooperatively. In this situation, no timestamp is

available in the transmitted signal so that the signal sent time is often not known.

This thesis next considers the extension of the localization scenario to such a case.

More generally, the motion potential of the unknown object and transmitter is con-

sidered in the analysis. When the transmitted signal has a well-defined pattern such

as some standard synchronization or pilot sequence, it would still be able to estimate

the indirect and direct time delays and Doppler frequency shifts but with unknown

constant time delay and frequency offset added. In this thesis, we would like to esti-

mate the object and transmitter positions and velocities, and the time and frequency
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offsets jointly. Both dynamic and partial dynamic localization scenarios based on the

motion status of the object and the transmitter are considered in this thesis. By

investigating the CRLB of the object location estimate, the improvement in position

and velocity estimate accuracy through joint estimation comparing with the differ-

encing approach using TDOA/FDOA measurements is evaluated. The degradation

due to time and frequency offsets is also analyzed. Algebraic closed-form solutions to

solve the highly nonlinear joint estimation problems are then proposed in this thesis,

followed by the analysis showing that the CRLB performance can be achieved under

Gaussian noise over the small error region.

When the transmitted signal is not time-stamped and does not have a well-defined

pattern such as some standard synchronization or pilot sequence, it is often impossible

to obtain the indirect and direct measurements separately. Instead, a self-calculated

TDOA between the indirect- and direct-path TOAs shall be considered which does

not require any synchronization between the transmitter and a receiver, or among

the receivers. A refinement method is developed to locate the object in the presence

of the unknown transmitter position, where a hypothesized solution is needed for ini-

tialization. Analysis shows that the refinement method is able to achieve the CRLB

performance under Gaussian noise. Three realizations of the hypothesized solution

applying multistage processing to simplify the nonlinear estimation problem are de-

rived. Simulations validate the effectiveness in initializing the refinement estimator.
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Chapter 1

Introduction

1.1 Research Background and Motivation

Determining the location of an object using the measurements from a number of

spatially distributed receivers (sensors) has been a subject for research over the years

with numerous applications in wireless sensor networks (WSN) [1, 3, 4], and network

localization and navigation (NLN) [5, 6, 7], communications [8, 9], radar and sonar

[10, 11, 12, 13], and many others. When a signal is radiated from or reflected by an

unknown object and captured by the receivers at known positions, certain localization

information, often called measurements, can be acquired by exploiting the received

signals and the unknown object can then be located. The most commonly used

measurements can be time based such as time-of-arrival (TOA) [14, 15] or time-

difference-of-arrival (TDOA) [2, 16], or others including received signal strength (RSS)

[17] or angle-of-arrival (AOA) [18], or a combination of them [19, 20, 21]. The focus

of the researches in this thesis is mainly on time-based measurements. The research

interest is in part due to the fundamental nature of the problem that has a wide

range of applications, as well as the non-linear nature of the problem that makes it
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interesting to tackle.

Although the measurement equations are nonlinear, an exact algebraic position-

ing solution exists in the specific case of critically determined scenario in which the

number of measurements is equal to the number of unknowns. In such a case, the

pioneer work [22] illustrated the location fix is a focus of a conic formed by the mea-

surements. Fang [27] later showed that navigation fix of an object on earth by TDOA

can be reduced to the solution of a quadratic equation by using the station baseline

plane as a reference, but location fix in the 3-D space requires solving a quartic equa-

tion. Using an intermediate variable, the study in [28] developed a solution based

on Spherical-Intersection that requires the root of a quadratic equation only. Nev-

ertheless, the method is not robust and fails to produce a reasonable solution for

some sensor arrangements, due to the need to invert a matrix formed directly by

the sensor positions. More recently, the papers [23, 24] examine the location fix and

provide a solution from a statistical point of view. In practice, more measurements

than unknowns are used to mitigate the noise effect and increase the positioning ac-

curacy. Some exact solutions for the overdetermined case can be found in [25, 26, 29],

which formulate the optimization problem as a polynomial system that is solved by

numerical computer algebra methods or polynomial continuation techniques. This

thesis seeks the possibilities of developing 1) a simpler and more computationally effi-

cient exact algebraic solution for such critically determined situation, which does not

introduce extraneous solutions and suffer robustness issues, and 2) a more accurate

estimator that partitions these exact solutions when more measurements than the

knowns are present in the scenario. Another motivation of this thesis is to develop a

closed-form solution that does not approximate the measurement equations as most

do.

In most cases, this thesis shall consider the object to be located is non-cooperative,

meaning that it will not actively send out a signal to the sensors to locate itself.
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Rather, a transmitter capable of stamping the sent time emits a probing signal and

several synchronous receivers collect the echo reflected off the object to identify the

location. Such a multistatic [30] approach for localization offers more flexibility and

better performance than the monostatic [12] counterpart. It has been widely used

in sensor networks, radar, sonar, as well as MIMO radar [31, 10, 32, 33, 34, 35].

A multistatic system having multiple transmitters can yield excellent localization

precision, superior observability and broad object range coverage [36].

A multistatic setting can produce two possible time-based measurements between

a transmit-receive pair [33, 37]. One is the indirect path time measurement resulted

from signal propagation from the transmitter reflected by the object to the receiver.

The other is the direct path time measurement from the line-of-sight propagation

between the transmitter and receiver. Only the indirect measurement relates to the

object location of interest. It defines an ellipsoidal curve (2-D) or surface (3-D) that

the object lies with the transmitter and receiver positions as the foci [37]. The ellip-

soids from a number of transmit-receive pairs intersect and yield an object location

estimate. The multistatic approach for localization is sometimes termed elliptic po-

sitioning [37].

Elliptic positioning has been active research and many results are available from

the literature. Recently, [37] performed a thorough investigation of the achievable

accuracy for elliptic localization. It also derived the optimum receiver placement

when the number of receivers is even. [38] extended the optimal geometry analysis

to a more general case for an even or odd number of receivers, by minimizing the

area of estimation confidence region. Regarding the estimation of the object location

from elliptic measurements, [28] examined the spherical-intersection and spherical-

interpolation methods and their positioning performance is only suboptimum. [39]

proposed a BLUE estimator through linearizing the measurement equations by the

Taylor series expansion and the estimator requires an accurate initial guess. [40] intro-
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duced a two-step estimator that is in closed-form when there is only one transmitter.

[41] developed a similar closed-form solution under the in-door localization scenario.

[42] and [43] extended the two-step estimator to multiple transmitters, where the for-

mer used the multidimensional scaling framework (MDS) and the latter applied the

weighted least-squares (WLS) optimization from [2]. [11] derived an algebraic solution

for sonar application where uncertainty appears in the signal propagation speed. The

transmitter position is often considered available in the elliptic localization literature,

although it may have some errors.

This thesis addresses the scenario for elliptic positioning where the transmitter

position is completely unavailable. Such motivation appears due to the fact that

there are situations that acquiring a reliable transmitter position is not possible. For

example, when the transmitter is in some special inaccessible place. It also happens

for the passive coherent location system in which the illumination signal is from some

unknown radio source [44, 45]. Another situation is the position of the transmitter

varies in time and its reported/estimated position is unreliable. This is especially

the case in sonar where the transmitter can be floating and drifting with the cur-

rents, making the previously estimated transmitter position not applicable. Indeed,

the position of the transmitter can even be intentionally left unknown. Under such

a setting, the transmitter operates as an illumination source only and its structure

can be simplified, resulting in significantly lower hardware and implementation costs.

For example, it allows an underwater WSN [46] to release a surface buoy of deter-

mining and sending its own position. An intuitive tactic of solving such a localization

problem without the transmitter position is to perform the difference of two indirect

measurements [47, 48, 49], resulting in a time difference of arrival (TDOA) like mea-

surement equation that is independent of the transmitter position, as the propagation

time between the transmitter and the object is common among all the indirect path

measurements. The resulting measurement value defines a hyperboloid instead of an
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ellipsoid for localization.

In this thesis, we would like to take a different approach for such a localization

scenario by jointly estimating the object location and the transmitter position, al-

though the transmitter position may not be of interest. Making use of both indirect

and direct path measurements for joint estimation enables us to investigate the ad-

vantage of using joint estimation and the improvement in the positioning accuracy

compared to using the differencing approach through the study via the CRLB. This

thesis develops an algebraic closed-form solution to solve the highly nonlinear joint

estimation problem and shows analytically in achieving the CRLB performance under

Gaussian noise in the small error region. This thesis also considers the extension of

the solution to the scenarios when sensor positions have random errors [34] and when

multiple transmitters at unknown positions are present. Lastly, we derive the opti-

mum receiver placement for elliptic localization when the transmitter position is not

known. Both the optimization criteria of the estimation confidence region and the

localization variance for the object location are considered. The optimum placements

enable us to characterize the loss in the best possible performance resulted from the

transmitter position that is not known.

We also consider in this thesis the extension of the localization scenario in which

the transmitter is assumed non-cooperative. In this situation, no timestamp is avail-

able in the transmitted signal so that the signal sent time is often not known. However,

if the transmitted signal has a well-defined pattern such as some standard synchro-

nization or pilot sequence, it would still be able to estimate the indirect and direct

path ranges but with an unknown constant offset added. This thesis will next inves-

tigate such a localization situation where the indirect and direct range measurements

are estimated with unknown offset. Also, the motion potential of the unknown object

and transmitter is considered in the analysis. When the object or the transmitter is

moving, Doppler frequency shift measurements are able to be estimated along with
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the range measurements. Also, an unknown frequency offset shall be included in

the investigation since the transmitter is non-cooperative. In this research, we first

show by the analysis using the CRLB that the use of direct-path time delay and

frequency measurements is able to improve the localization accuracy compared to

using the indirect-path observations only albeit the presence of unknown transmitter

position and velocity as well as time and frequency offsets, where using TDOAs and

frequency differences of arrival (FDOAs) [62] from the indirect-path measurements

appear to be favorable in avoiding these unknowns. Second, we characterize the effect

of unknown offsets, devise the condition, and provide some configurations where the

performance degradation due to the unknown offsets can be eliminated under IID

Gaussian noise. Third, an algebraic closed-form solution for localizing the object in

position and velocity is derived by using both the indirect- and direct-path time delay

and frequency measurements. Analysis validates the proposed solution in achieving

the CRLB accuracy over the small error region under Gaussian noise. Fourth, the

special case of time measurements only is investigated in the presence of unknown

time offset, where the optimal geometric configuration is derived for the 2-D scenario

with an even number of receivers, by minimizing the estimation confidence region or

the localization variance. We show that under the optimal geometry the performance

loss from unknown time offset is negligible when the number of receivers is large.

It happens often in practice that either the object or the transmitter is moving.

For instance, the transmitter may be a transmission station at an unknown fixed lo-

cation but the object of interest is moving. Another example is that the transmitter is

an unmanned aerial vehicle (UAV) or an autonomous underwater vehicle (AUV) that

is moving and the object is static on the ground. When only either one is moving, we

cannot draw a conclusion from the existing works that the DP measurements can lead

to performance improvement. Even so, the corresponding algorithms are not avail-

able. We then complete the study by investigating if the DP measurements remain
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to be beneficial for improving performance when either the object or transmitter is

moving and providing the estimation algorithm if they do.

When no synchronizations exist between the transmitter and the receiver, or

among the receivers, the indirect and direct path measurements are not available to

be acquired separately. Instead, a set of combined measurements from the subtraction

between the indirect and direct path can be easily obtained by auto-correlating the

signal at a receiver, or by estimating the indirect and direct arrival times with respect

to a local receiver clock and subtracting them. Such an asynchronous localization is

much flexible in the sense that no synchronization is required. It has been widely used

in sonar and UWB localization with numerous successes. Since the transmitter posi-

tion can be completely unavailable, an efficient estimator that can locate the object

in the absence of transmitter position using the combined measurements is needed.

This thesis develops a refinement method [84] that can jointly locate the object and

the transmitter using the combined measurements only. The algorithm starts with

a hypothesized solution to formulate linear equations. The refinement method is an

iterative solution that requires a hypothesized solution for initialization. Compared

to the iterative Maximum Likelihood (ML) method, it does not require the hypoth-

esized locations very near to the true locations and too many iterations [84]. Three

different hypothesized solutions that can effectively initialize the refinement estimator

are derived based on the multistage processing technique.

1.2 Object Localization Basics

A general overview of the localization basics including the localization schemes, most

commonly used localization measurements, and techniques shall be presented in this

section. The basic idea of localization is to exploit the characteristics of the received

signals from the receivers to locate the position of the object that emits or reflects
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such signals.

Location 
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Figure 1.1: Direct localization scheme and two-step localization scheme

1.2.1 Localization Schemes

Typically, the object localization can be accomplished from two different approaches:

direct positioning and two-step positioning, as shown in Fig. 1.1. In direct posi-

tioning, no localization information is extracted and the received signals are directly

used to locate the object. On the other hand, in the two-step positioning scheme, the

localization information is first extracted from the received signals and the location

of the object is then determined by applying a kind of localization technique. Here,

the research of this thesis is on the latter one exclusively as it has much lower com-

putational complexity and provides adequate localization accuracy when the received

signals have sufficient bandwidth and a fine signal-to-noise ratio.

Generally, the localization mechanisms can be divided into active localization and

passive localization. Active localization means that the system sends the signal to

locate the object. While in the passive localization scenario, the signals are normally

emitted by the object and the localization system detects these signals to deduce the

location of the object from the observations. The active localization scheme usually
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tends to work better than the passive one since the signal can be well characterized

and engineered to improve the quality of the measurements. In particular, from the

viewpoint of the object, the active localization mechanism can be further classified

into active non-cooperative localization and active cooperative localization. In the

active non-cooperative system, the object reflects the emitted signal from a transmit-

ter, and a receiver captures the reflected signal to deduce the object location. This

localization mechanism, often called multistatic system, has been widely used in sen-

sor networks, radar, sonar, as well as MIMO radar. While in the active cooperative

system, either the object actively sends out a signal to the receivers to locate itself,

or the object is coded and capable of reading the signal emitted from the system to

locate itself, like in the global navigation satellite system (GNSS).

1.2.2 Localization Measurements

Depending on the hardware used in the receivers and the characteristics of the signal,

different measurements can be extracted from the received signals. Some most com-

monly used measurements in object localization including time-based measurements,

received signal strength (RSS), or angle-of-arrival (AOA). Among which time-based

measurements often give high estimation accuracy and thus are preferred both in the

research and application. Generally, time-based localization measurements can be

further classified into time-of-arrival (TOA), time-difference-of-arrival (TDOA), and

elliptic positioning measurements.

Time of Arrival (TOA)

The TOA measurement is obtained by measuring the signal propagation time from the

object to the receiver. The signal travel distance between the object and the receiver

can then be determined by multiplying the TOA with the propagation speed of the

signal in the media. This propagation distance that the signal takes to travel from the

object to the receiver is sometimes termed as the object-receiver range. When multiple
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Figure 1.2: Object localization using TOA measurements

receivers are used in a two-dimensional (2-D) scenario, each object-receiver range

defines a circle on which the object lies with the receiver as the center. The circles

from a number of object-receiver pairs intersect and yield the object location estimate

as described in Fig. 1.2. The most widely used estimation method in obtaining TOA

measurements is the generalized cross-correlation method. The maximum of the cross-

correlation function between the received signal and the transmitted signal indicates

the time delay among them. To acquire the TOA measurements, it usually requires an

accurate synchronization between the object and the receiver. Such synchronization

can be done by using a highly accurate clock for the object and the receiver or through

a sophisticated synchronization algorithm. An exclusion of synchronization exists in

the roundtrip TOA measurements, where the same local clock is used in computing

the propagation time.

Time Difference of Arrival (TDOA)

The TDOA measurement is obtained by measuring the difference between the arrival

times of the transmitted signal at two different receivers. Similar to the TOA case,

the difference of the signal travel distance can then be determined by multiplying the

TDOA with the propagation speed of the signal. The difference of the propagation

distance between the object and the two receivers is called range difference of arrival
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Figure 1.3: Object localization using TDOA measurements

(RDOA). It defines a hyperbolic curve (2-D) or surface (3-D) that the object lies

with the two receiver positions as the foci. The hyperbolas from a number of receiver

pairs intersect and yield an object location estimate as shown in Fig. 1.3. In order

to obtain the TDOA measurements, one direct method is to first estimate the TOAs

at two receivers and then subtract one from the other. Such a method as described

above requires an accurate synchronization between the object and the receivers.

In practice, the most commonly used approach is to apply the generalized cross-

correlation between the received signals at different receivers. The peak of the cross-

correlation function gives desired TDOA estimate between them. Thus, it requires

synchronization among the receivers only.

Elliptic Positioning Measurements

Elliptic positioning measurements are commonly used in the multistatic localization

system as shown in Fig. 1.4. It produces two measurements between a transmit-

receive pair. Generally, elliptic positioning measurements can be either comes from

TOA or TDOA depending on whether the transmitter and the receiver are synchro-

nized. In the synchronous elliptic (SE) positioning, the object location is estimated

by measuring the TOA from the transmitter through the target to the receiver. This

TOA is denoted as the bistatic range in the multistatic localization problem. Each

time measurement defines an ellipse in 2-D, or an ellipsoid in 3-D and the intersec-
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Figure 1.4: Object localization using elliptic positioning measurements

tion of the ellipses (ellipsoids) yields the target estimate. In the asynchronous elliptic

(AE) positioning, the range measurement is the TDOA between the bistatic range

and the direct range from the transmitter to the receiver. This self-calculated TDOA

measurement requires no synchronization between the transmitter and the receiver,

or among the receivers, which offers more flexibility in the target localization. No-

tably, the set of direct TOA measurements from the transmitter to the receiver is also

available in the SE positioning. Though irrelevant to the target position, this extra

measurement has shown beneficial to the target localization when the transmitter

and receiver positions have errors.

The accuracy of time measurements is often affected by noise, signal bandwidth,

non-line-of-sight (NLOS), and multipath. Recently, a high-precision timing measure-

ment technique called ultra-wideband (UWB) signaling has started to be used as an

ideal candidate for object localization. The large bandwidth and extremely short

duration of pulse help in improving the time resolution and reducing the effect of

multipath interference, making UWB a promising technology in object localization.

Received Signal Strength (RSS)

The use of RSS, or energy measurements lies in the fact that the signal strength
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received by a receiver from the object is a monotonically decreasing function of the

distance between them. The basic idea of object localization using RSS measurements

is to first obtain the signal energy attenuation and then estimate the object-receiver

range through the relationship between the transmit-receive signal attenuation and

the distance between them. In other words, the RSS measurements provide the same

localization information on the object localization as the TOA measurements ( see

Fig. 1.2). The localization using RSS measurements generally gives less accurate

object location compared to the time-based measurements, it remains attractive as

requiring no costly hardware, less processing and communication.

Angle of Arrival (AOA)

The AOA measurements, or the bearing measurements use the angle information that

a signal takes to travel from the object to the receiver to estimate the object location.

Each AOA measurement gives the coming direction of the signal from the object to

the receiver and the intersection of a number of AOA measurements yields the ob-

ject location. This is illustrated in Fig. 1.5. The most commonly used techniques

in obtaining the AOA measurements can be classified into two categories: receiver

antennas amplitude response and receiver antennas phase response. AOA measure-

ments estimation has been an active research area for decades. The main challenge

in obtaining accurate AOA is the limitation of the measurement environments that
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are corrupted by the shadowing and multipath interference. Recently, many AOA

estimation algorithms based on the MUSIC (multiple signal classification) and ES-

PRIT (estimation of signal parameters by rotational invariance techniques) have been

developed for the multi-antenna array system.

The use of hybrid localization measurements that fuse multiple measurements of

the signal has recently attracted great attention in the literature. Localization system

with hybrid measurements has lots of advantages, such as reducing the number of

receivers required for achieving a certain level of estimation accuracy and eliminating

the ghost object that comes from using a single type of measurement. These benefits

come from the fact that in the hybrid system, more information is exploited and

better localization accuracy can be achieved.

1.2.3 Localization Techniques

A brief overview of the most commonly used localization techniques will be presented

in this subsection. Different localization algorithms have been proposed in the litera-

ture to handle different localization problems and scenarios. Generally, these widely

used localization techniques can be classified into two categories: mapping approach

and range-based localization.

The mapping approach or known as fingerprinting is based on multiple hypothesis

testing decision techniques. To obtain the best hypothesis, it usually includes two

phases: the training phase and the location estimation phase. The training phase

first obtains certain observations by placing a radiating source at different known

positions in the field. It aims to form the fingerprints or database that relates the

recorded observations with the source positions during the process. In the location

estimation phase, an obtained time measurement is compared with the fingerprints

previously stored in the database. The object location is then estimated as the best

fit sample location in the database. The main advantage of the mapping approach is
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its flexibility that can deal with any kind of radio interface. While it is very sensitive

to the environment and could be costly which requires a substantially large and up-

to-date database for the training phase.

Roughly speaking, range-based localization can be further classified based on two

different localization scenarios: critically determined case and overdetermined case. In

the critically determined scenario, the number of measurements is equal to the number

of unknowns. The object location is usually obtained with some geometric-based

techniques such as triangulation, trilateration, and multilateration. These algorithms

are the most basic ones and try to find the location estimate by computing the

intersection point between the lines, circles, and hyperbolic or elliptic curves as shown

in Figs. 1.2-1.5 in the 2-D space.

In practice, overdetermined localization scenarios where more measurements than

unknowns are used to mitigate the noise effect and increase the positioning accu-

racy. The geometric-based techniques that generate more than enough lines, circles

or curves will not intersect at a single point. Choosing any intersect point as a loca-

tion estimate is not straightforward and the localization accuracy is not preferred due

to less localization information is exploited. Statistical optimization-based algorithms

are the most commonly used techniques for overdetermined cases. In statistical tech-

niques, the object location is estimated by defining and optimizing some cost functions

depending on the statistical model of the measurements.

The maximum likelihood (ML) estimator is one of such statistical optimization-

based algorithms that is widely used in the literature. The ML estimator is directly

derived from the likelihood function of the problem. It is asymptotically efficient

in obtaining the CRLB. Usually, it is impossible to obtain a closed-form ML func-

tion due to the non-linear nature of the problem so that the ML estimator is often

implemented recursively. These iterative algorithms often require a sufficiently ac-

curate initialization to avoid the divergence and converging to the local optimum.
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Grid search may be used to overcome this issue. However, it is very computationally

intensive, and the accuracy and availability are substantially affected by the feasible

region of the unknowns. Recently, convex relaxation techniques are proposed to over-

come the local convergence problem. Convex relaxation approximates the original

non-convex and non-linear problem into a convex one. Though global optimum is

guaranteed, the solution of the transformed convex problem may deviate from the

solution of the original ML problem due to the relaxation procedure. Another class

of statistical optimization-based algorithms is the closed-form solutions. The closed-

form solutions are more attractive since they are computationally efficient and avoid

the local convergence and divergence problems in iterative solutions. Usually, the

closed-form solutions, such as the multistage processing techniques introduced in [2]

are derived from approximating and linearizing the measurement equations. The

closed-form solutions may not have the best estimation accuracy especially when the

noise is large but most of them can be shown analytically achieving the CRLB over

a small noise region.

1.3 Contribution of the Research

Determining the location of an object is often challenged due to the highly nonlinear

relationship between the measurements and the object location. In this research,

we first derive an algebraic positioning fix for the critically determined situation

where the number of measurements is equal to the number of unknowns using elliptic

measurements [37] and hyperbolic TDOA measurements. Comparing to the solutions

in [27, 24], we reduce complexity by applying the roots of a quadratic polynomial only

rather than quartic, do not introduce extraneous solutions, and provide a direct and

simpler derivation with geometric interpretation. In addition, the solution is exact,

more general, and without the use of the station baseline plane as a reference. Unlike
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the previous work [28], the proposed solution works for arbitrary sensor arrangements

without having robustness issue (except linear arrangement in the 3-D scenario in

which position fix is impossible). Most important, the new proposed solution enables

us to deduce the conditions for the intersection of line of positions (LOPs) defined by

the measurements in 2-D and 3-D for both elliptic and hyperbolic localizations, which

have not appeared before in the literature. The paper [23] did a thorough analysis

and provided the compatibility conditions of two TDOAs in 2-D and their results are

consistent with ours.

We next propose a new estimator for the common scenario of having more mea-

surements than unknowns. The proposed estimator partitions the measurements,

generates the individual critically determined solutions and combines them using the

Best Linear Unbiased Estimator (BLUE) to form the final. The estimator is algebraic

and in closed-form, does not approximate the measurement equation and performs

better than the existing closed-form solutions. Theoretical analysis supports the pro-

posed method in achieving the CRLB performance under Gaussian noise, before the

thresholding effect [50] sets in. A partitioning scheme is also developed to increase the

noise tolerance of the final solution, based on the volume of the η-confidence ellipsoid.

To summarize, the contributions of our first work include

• The minimum measurement solutions for elliptic and hyperbolic localizations

that are algebraic, closed-form, robust and require the roots of a quadratic

equation only;

• The intersection conditions for two LOPs in 2-D and in 3-D;

• An estimator based on BLUE to combine individual minimum measurement

solutions for the more common scenario of having more measurements than

unknowns (overdetermined situation);

• Performance analysis to show that the estimator by combining individual min-
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imum measurement solutions is able to reach the CRLB performance under

Gaussian noise;

• A scheme using the η-confidence ellipsoid to select the individual measurement

solutions to combine that provides higher noise tolerance.

Next, this research investigates a multistatic system to locate an object in which

the transmitter position is not available. Such a multistatic configuration with the

unknown transmitter position appears in the situation where the transmitter is in

a special place and its position is inaccessible, or the position of the transmitter

changes along time so that its reported/estimated position is unreliable. Also, the

position of the transmitter can be intentionally left unknown. In such cases, the

transmitter can be operated as an illuminator source only and its structure can be

simplified. Starting from the fundamental study via the CRLB, we illustrate the

performance improvement by using both the indirect and direct path measurements

for joint estimation of the object and the transmitter position, in contrast to using

the indirect measurement alone via the hyperbolic approach or by introducing a

new variable for the transmitter-object distance. An algebraic closed-form solution is

proposed to solve the nonlinear joint estimation problem, with the first-order analysis

in confirming the CRLB performance under Gaussian noise in the small error region.

The algorithm is extended to account for receiver position errors as well as the use of

multiple transmitters at unknown locations. We also derived the optimum receiver

placement for such a localization system in the 2-D scenario when the number of

receivers is even. The loss in the best achievable performance is characterized by two

optimum receiver placement criteria: the minimization of the estimation confidence

region and the minimization of the localization variance.

This thesis also extends the multistatic localization problem without known trans-

mitter position to a more practical application, where the transmitter is assumed

non-cooperative. The transmitted signal is not stamped and only has a well-defined
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pattern such as some standard synchronization or pilot sequence. The range mea-

surements obtained from the received signals are corrupted by an additive unknown

constant offset. Dynamic and partial dynamic localization scenarios depending on

the motion status of the object and the transmitter are thoroughly investigated from

the perspective of CRLB analysis. This thesis proved that though corrupted by the

unknown offsets, the joint estimation still outperforms the approach by forming the

traditional TDOA/FDOA measurements. The degradation due to the offset effect is

completely analyzed in this thesis and the performance loss is specified. This thesis

also derived the condition that the offset effect can be eliminated and the special

configuration between the relative positions among the object, transmitter and re-

ceivers are evaluated. In this thesis, we also proposed new estimators based on the

two-stage processing technique to jointly estimate the object location and velocity,

the transmitter position and velocity, and the time and frequency offsets. Analysis

showed that the new estimators can achieve the CRLB performance under Gaussian

noise in the small error region.

A refinement estimator was developed to tackle the multistatic localization when

neither the transmitted signal is time-stamped or has a training sequence to be ex-

plored. The refinement estimator is an iterative solution that can jointly estimate

the object and the transmitter positions, without any synchronization between the

transmitter and the receiver, or among the receivers. The localization parameter is a

set of combined measurements that uses the TDOA between the indirect and direct

signals. Three different hypothesized solutions that can effectively initialize the re-

finement method were developed. The hypothesized solutions can not only initialize

the refinement estimator appropriately but also applicable to any iterative solutions

such as the iterative maximum likelihood estimator (IMLE).
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1.4 Content Organization

The rest of the thesis is organized as follows. Chapter 2 first derives the new criti-

cally determined algebraic solutions and deduce the conditions for LOP intersection.

Then the positioning estimator in the overdetermined situation from the minimum

measurement solutions is devised, followed by the analysis and a measurement parti-

tioning scheme to improve performance at high noise level. Chapter 3 first introduces

the localization scenario in the multistatic system where the transmitter position is

assumed unknown. Followed by the evaluation of the CRLB for the joint estimation,

performance analysis and comparison to the use of the differences between the indi-

rect measurements. A new algebraic closed-form solution is then proposed, and the

estimation performance is analyzed. It also extends the solution to the situation when

the receiver positions have errors and the use of multiple transmitters at unknown

positions. At last, the optimum receiver placement for localization is derived. In

Chapter 4, we first extend the localization scenario defined in Chapter 3 to a more

general situation where the transmitter is non-cooperative and the measurements

contain offsets. It considers a completely dynamic scenario where both the transmit-

ter and the object are moving. The CRLB of the joint estimation is investigated to

show that the use of direct-path time delay and frequency measurements is able to

improve the localization accuracy and the degradation due to offsets. It also derives

an algebraic closed-form solution to solve the more complex nonlinear joint estima-

tion problem. The performance of the proposed estimator is then analyzed. The

optimal geometric configuration is derived for the 2-D scenario with an even number

of receivers in the presence of the unknown time offset. Chapter 5 examines the two

different partial dynamic localization scenarios of static object moving transmitter

(SOMT) and moving object static transmitter (MOST), depending on the motion

status of the object and the transmitter. The performance improvement of SOMT

and MOST over the use of the general moving object moving transmitter (MOMT)
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formulation studied in Chapter 4 is investigated in detail. Followed by new compu-

tational efficient closed-form estimators for the two cases and the theoretical analysis

showing that the proposed estimators are able to reach the CRLB performance over

the small error region under Gaussian noise. Chapter 6 studies the asynchronous

elliptic localization using the combined measurements in the absence of transmitter

position. Comparisons between the asynchronous and synchronous localizations are

examined in detail with numerical results presented in the simulation. A refinement

estimator and some hypothesized solutions for initialization are developed. Analysis

shows the CRLB performance of the refinement estimator and simulations gives the

effectiveness of the hypothesized solutions.

We shall use bold lower case letter to denote a column vector and bold upper

case letter to represent a matrix. a(i : j) is a subvector containing the ith to the

jth elements of a. diag(a) is a diagonal matrix formed by the elements of a and

diag(A) is a block diagonal matrix with the diagonal blocks given by the rows of A.

I is the identity matrix, 1 is a vector of unity, and 0 stands for a zero matrix or

vector, with their sizes indicated by subscripts when needed. ‖a‖ is the Euclidean

norm and ρa is a/‖a‖. •o is the true value of the variable or measurement • and

∆• = •−•o is the difference. The notations for partial derivatives are ∂a• = ∂•o/∂aoT

and ∂Ta • = ∂•oT/∂ao, where • can be a scalar or a vector parameterized with ao. The

symbol � denotes positive semi-definite (PSD) and A � B means A−B � 0. The

symbols � and ⊗ represent the Hadamard and Kronecker products.

21



Chapter 2

Elliptic and Hyperbolic
Localizations Using Minimum
Measurement Solutions

Although the measurement equations are nonlinear, an exact algebraic positioning so-

lution exists in the specific case of critically determined scenario in which the number

of measurements is equal to the number of unknowns. In this chapter, we shall first

derive an algebraic positioning fix for the critically determined situation using elliptic

measurements. We next propose a new estimator for the common scenario of having

more measurements than unknowns. The proposed estimator partitions the measure-

ments, generates the individual critically determined solutions and combines them

using the Best Linear Unbiased Estimator (BLUE) to form the final. The estimator

is algebraic and in closed-form, does not approximate the measurement equation and

performs better than the existing closed-form solutions.

The proposed estimator shares some similarity with the divide and conquer frame-

work by Abel [63]. The theory from [63] requires all measurements be independent

and the total of them be an integer multiple of the minimum number of measurements

in order to achieve the optimum performance. The proposed estimator does not have
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these limitations and reaches the CRLB performance for Gaussian noise as supported

by analysis and simulations. Furthermore, we develop a measurement partitioning

scheme to improve performance in the high noise region, which is new and has not

been considered before in the literature.

We first introduce the localization scenario in Section 2.1, and derive the new crit-

ically determined algebraic solutions and deduce the conditions for LOP intersection

in Section 2.2. Section 2.3 devises the positioning estimator in the overdetermined

situation from the minimum measurement solutions, conducts analysis and proposes

a measurement partitioning scheme to improve performance at high noise level. Sec-

tion 2.4 presents simulations and Section 2.5 gives the conclusion. The paper uses

elliptic time delay measurements [37] for presentation. All the developments and re-

sults apply to hyperbolic TDOA measurements as well, with the changes indicated

wherever necessary. Both 2-D and 3-D localizations are included.

2.1 Localization Scenario

𝐬𝑀

𝐬1

𝐬2
u

𝐬0

Figure 2.1: Elliptic positioning geometry in 2-D view.

The scenario consists of one transmitter at s0 ∈ RK and M receivers at si ∈ RK for
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locating an object at uo ∈ RK , i = 1, 2, · · · , M , such as in UWB indoor localization

[37, 41]. K is the dimension of localization which is either 2 or 3. Both the transmitter

and receiver positions s0 and si are known exactly. The transmitter sends out a signal

which is reflected or re-transmitted by the object [37, 41] and arrives at the receiver

si, as illustrated by the dotted line of Fig. 2.1. The resulting signal propagation time

(range) measurement at si is modeled as

di = ‖uo − si‖+ ‖uo − s0‖ + ni (2.1)

for i = 1, 2, · · · , M and ni is the measurement noise. Note that we have multi-

plied the time with the signal propagation speed that is assumed known in (2.1).

The propagation time can be determined by time stamping the transmitted signal

or through cross-correlating the reflected signal and the direct signal from the trans-

mitter to the receiver [37]. Each di defines an elliptic (K=2) curve or an ellipsoidal

surface (K=3) for the object location. The intersection among them yields the object

position estimate.

For simplicity, we use d = [ d1, d2, · · · , dM ]T to represent the collection of the

measurements. The associated noise vector n is modeled by a zero mean Gaussian

random vector with covariance matrix Q.

In addition to elliptic measurement, a slight modification of (2.1) represents

TDOA measurement. In this case, s0 denotes the reference sensor of TDOA and

the addition becomes subtraction:

di = ‖uo − si‖ − ‖uo − s0‖ + ni (2.2)

for i = 1, 2, · · · , M . di is the TDOA between sensor pair (si, s0) and it forms a

hyperbola (K=2) or a hyperboloid (K=3) in which the object lies.
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2.2 Minimum Measurement Solution

We shall derive the explicit algebraic solution for the object position, using a minimum

number of measurements that can yield a finite number of solutions. The minimum

number of measurements needed is equal to the number of unknowns, which is 2 for

K=2 and 3 for K=3. The minimum measurement solution has been investigated by

many researchers [24]-[27], for the TDOA case. We focus on the elliptic case instead.

The proposed solution here is more general, can work with any sensor geometry and

has low complexity where it requires the root of a quadratic equation. We begin with

the solution derivation for the elliptic positioning, extend it for hyperbolic localization

next and then deduce the intersection conditions.

2.2.1 Elliptic Positioning

We shall show that the solution evaluation reduces to the intersection of an ellipse (2-

D) or an ellipsoid (3-D) with a straight line, thereby requiring the roots of a quadratic

equation only. Let us first express the measurement equation in a quadratic form

representing an ellipse (ellipsoid). The solution obtained from the noisy measurements

is represented by u such that it satisfies di = ‖u− si‖+ ‖u− s0‖ according to (2.1).

Rewriting the equation as di − ‖u− s0‖ = ‖u− si‖ and squaring both sides give

2di||u− s0|| = d2
i + ||s0||2 − ||si||2 + 2(si − s0)Tu . (2.3)

Dividing both sides by 2di, which is positive and non-zero, yields

||u− s0|| = αTi u + ki (2.4)
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where αi and ki are known values equal to

αi =
1

di
(si − s0) , ki =

1

2di
(d2
i + ||s0||2 − ||si||2) . (2.5)

Squaring both sides of (2.4) once more yields a quadratic equation in u, which can

be expressed in a compact matrix form as

[ uT 1 ] A

u

1

 = 0 , A =

αiαTi − I kiαi + s0

kiα
T
i + sT0 k2

i − ‖s0‖2

 . (2.6)

It is the standard form of an ellipse for 2-D (K = 2) or an ellipsoid for 3-D (K = 3).

The 2-D case requires two measurements d1 and d2. Subtracting (2.4) with i=1

and that with i=2 yields the straight line

[
(α1 −α2)T k1 − k2

] [
uT 1

]T
= 0 . (2.7)

The solution is the intersection between the ellipse (2.6) with i=1 (or 2) and the line

(2.7), giving two points at most as illustrated in Fig. 2.1. Putting the unknown u as

u = [x y ]T in (2.7) and expressing x in terms of y lead to

u

1

 = B

y
1

 , B =


α2(2)−α1(2)
α1(1)−α2(1)

k2−k1
α1(1)−α2(1)

1 0

0 1

 . (2.8)

Substituting (2.8) into (2.6) with i = 1 yields a quadratic equation in y,

[
y 1

]
H

[
y 1

]T
= 0 , H = BTAB . (2.9)
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The roots are

y =


−h(1,2)±

√
h(1,2)2−h(1,1)h(2,2)

h(1,1)
, h(1, 1) 6= 0 ;

− h(2,2)
2h(1,2)

, h(1, 1) = 0 .
(2.10)

Putting (2.10) back to (2.8) completes the solution. If h(1, 1) = 0, the line and the

ellipse touch each other and we have only one solution. There are two solutions when

h(1, 1) 6= 0 and only one of them is the actual object location estimate. The solution

ambiguity can be resolved by knowing the region where the object lies [2].

The 3-D case requires three measurements d1, d2 and d3. With d1 and d2 (2.7)

now represents a plane. Using d1 and d3, we have another plane defined by

[
(α1 −α3)T k1 − k3

] [
uT 1

]T
= 0 . (2.11)

Putting the unknown u in its coordinates as u = [ x y z ]T , we can solve x and y in

terms of z from (2.7) and (2.11) and hence

u

1

 = B

z
1

 , B =


(α1(1 : 2)− α2(1 : 2))T

(α1(1 : 2)− α3(1 : 2))T

−1α2(3)− α1(3) k2 − k1

α3(3)− α1(3) k3 − k1


I2

 .

(2.12)

(2.12) is a straight line in the 3-D space. The solution is the intersection of the line

with an ellipsoid defined by any one of the three measurements. Substituting (2.12)

into (2.6) (with i=1, 2 or 3) gives a quadratic equation in z,

[
z 1

]
H

[
z 1

]T
= 0 , H = BTAB . (2.13)

Putting the roots back to (2.12) yields two solutions, unless h(1, 1) = 0 which cor-

responds to the plane (2.7) touches the ellipsoid from d3. The one corresponding to
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the object position can be identified based on the expected region of interest.

The object location solution is subject to error due to measurement noise. Using

the first order analysis where the noise level is not significant such that the bias square

is negligible compared to variance, we have from the differential of (2.1)

∆di = (ρuo,si + ρuo,s0)
T∆u (2.14)

where ρa,b is a unit vector pointing from b to a, i.e.

ρa,b =
(a− b)

||a− b||
. (2.15)

Thus the covariance matrix of the location estimate is

cov(u) = G−1 Q G−T . (2.16)

G =

[
ρ1 · · · ρK

]T
(2.17)

is a square matrix of size K (M = K for minimum measurement solution) and

ρi = ρuo,si + ρuo,s0 . (2.18)

The algebraic solution is simple to compute. It is indeed the Maximum Likelihood

(ML) estimate when only K measurements are available and the covariance matrix

(2.16) is the CRLB when the measurement noise is Gaussian.

2.2.2 Hyperbolic Positioning

The measurement equation is (2.2). Going through the same derivation process, the

solution expressions for hyperbolic positioning are the same as for elliptic positioning,

the only difference is the sign change of αi and ki that are defined in (2.5), which will
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not affect the solution expressions. The covariance matrix of the location estimate

remains to be given by (2.16), with the vector ρi for the matrix G now becomes

ρi = ρuo,si − ρuo,s0 . (2.19)

2.2.3 Intersection Condition

The curves/surfaces defined by measurements must intersect to ensure a solution.

Intersection may not occur when the noise level is large or some measurement is

invalid. Revealing whether intersection occurs from two measurements would be

useful to determine if solution exists or if a measurement is corrupted to some extent

that should not be used. The solution derivations above can give us the condition for

intersection that has not appeared in the literature.

2-D case (K=2)

The y-coordinate solution (2.10) must be real. Hence the condition for intersection

is that the quantity inside the square-root is positive, i.e.

det (H) ≤ 0 . (2.20)

H is the 2× 2 matrix defined in (2.9), and B and A are given by (2.8) and (2.6).

3-D case (K=3)

Let us consider the two measurements d1 and d2. The intersection between two

ellipsoids can be reduced to that of the plane (2.7) and one of them. Solving x in

terms of y and z (2.7) gives

u

1

 = C


y

z

1

 , C =

(α1(1)− α2(1))−1
[
(α2(2 : 3)− α1(2 : 3))T k2 − k1

]
I3

 .

(2.21)
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Using (2.21) in (2.6), the intersection of the two ellipsoids is defined by

[
y z 1

]
H

[
y z 1

]T
= 0 , H = CTAC . (2.22)

It has been proven that the intersection of a plane and an ellipsoid forms an ellipse

[64]. Thus ensuring intersection for two elliptical measurements requires (2.22) to

form a real ellipse in the y-z plane. The expression (2.22) is a conic that defines a

real ellipse if the following two conditions are met [65]:

 det(H(1 : 2, 1 : 2) ) > 0 ;

trace(H(1 : 2, 1 : 2))× det(H) ≤ 0 .
(2.23)

Hence there is intersection of the two LOPs from d1 and d2 if (2.23) is satisfied.

Albeit the condition (2.20) is obtained for elliptic positioning, it is also applicable

for 2-D hyperbolic localization. In 3-D, the intersection of two hyperboloids can be

circle, ellipse or hyperbola [66].

2.3 Overdetermined Solution

We shall consider in this section the derivation of the overdetermined solution from the

minimum measurement solution. In practice, a localization system often has sensor

measurements more than the number of unknowns to mitigate the additive noise

and increase the positioning accuracy. Having more than the minimum number of

measurements also eliminates the solution ambiguity. Most of the solutions proposed

over the years in the literature are for such a situation. Some of them are iterative

such as the iterative implementation of the MLE that requires good initial guesses

close to the actual solution [50, 67]. Others are explicit closed-form solutions that are

applicable when the noise level is not significant [2, 41, 11], or are convex optimization
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solutions with semi-definite relaxation that may increase solution bias [68, 69]. We

shall develop a new solution by combining the individual minimum measurement

algebraic solutions developed in Section 2.2. The proposed solution does not require

iteration and can tolerate a larger amount of noise than the existing closed-form

solutions from the literature. Under Gaussian noise, we are able to show that the

proposed estimator can achieve the CRLB performance.

In the following, we shall first identify the correct minimum measurement solu-

tion by eliminating the solution ambiguity. The proposed solution is next developed

through the BLUE [50] approach. Analysis is performed to show the proposed method

is able to give the CRLB performance. Finally, a method to select the individual so-

lutions for BLUE is proposed that can yield better performance when the noise level

is large.

2.3.1 Eliminating Minimum Solution Ambiguity

There are two solutions obtained from a minimum number of measurements as shown

in Section 2.2.1. Both are exact but only one corresponds to the object location. In the

absence of prior knowledge of the region where the object lies, we shall use a statistical

approach based on the residual error obtained from the rest of the measurements to

decide which of the two relates to the object location.

Let us be given M measurements, denoted by the vector d. Among the M mea-

surements, we select K and use them to produce the two minimum measurement

solutions p1 and p2. We take those K measurements used in finding p1 and p2 out

from d and denote the rest by the vector d̃, which has a length of M−K. Also, let Q̃

be the noise covariance matrix of d̃, which is essentially Q with the rows and columns

corresponding to the K measurements removed. For each of the two solutions, we
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generate the residual square error

ξj = (d̃− d̃(pj))
T Q̃−1(d̃− d̃(pj)) , j = 1, 2 (2.24)

where d̃(pj) is the reconstructed measurement values using pj. If pj is the solution

corresponding to the object, ignoring the estimation error, ξj will follow the central χ2

distribution with M−K degrees of freedom [71], i.e. ξj ∼ χ2
M−K [50]. Given a certain

tail probability for incorrect decision, say 0.01, we can determine the corresponding

threshold T . The proper solution is pj∗ if ξj∗ ≤ T , j∗ = 1, 2.

2.3.2 Proposed Final Solution

Let us first introduce the notation u(i) to denote the minimum measurement solution,

also called individual solution for simplicity, using measurements d(((i−1)K+1)modM),

· · · , d((iK)modM), where d0 is the same as dM . The modulo operation is to account

for the situation that the number of measurements M is not an integer multiple of

the localization dimension K where the first few measurements are used twice. For

instance, if M = 7 and K = 3, u(2) is the 3-D positioning solution obtained by using

the measurements d4, d5 and d6, and u(3) is the solution from d7, d1 and d2. According

to (2.14) and (2.16), we can model u(i) as

u(i) = uo + (G(i))−1n(i) (2.25)

where G(i) is the matrix defined in (2.17), with the sensor indexes {1, 2, · · · , K}

replaced by {((i − 1)K + 1)modM, · · · , (iK)modM} and n(i) is the K × 1 noise

vector of the measurements used to determine u(i). We shall obtain the final estimate

from (2.25) using the BLUE [50]. Since n(i) is Gaussian distributed, the BLUE will

correspond to the MLE under the linear model (2.25) [50].
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The proposed method consists of the following three steps:

• divide M measurements into L = dM/Ke sets each has K elements;

• generate the minimum measurement solution from each set to obtain u(i),

i = 1, 2, · · · , L, where the solution ambiguity is resolved using the procedure

described in the previous subsection;

• combine these individual solutions by BLUE to produce the final estimate.

When the noise is not significant, it is irrelevant of how the measurements are divided

in the first step. A smart way to partition the measurements, however, can improve

the accuracy in the large error region, which will be developed later in this section.

The second step follows the method in Section 2.2.1. We shall elaborate on the third

step in more details.

After obtaining the individual solutions u(1), · · · ,u(L), the matrix equation con-

structed based on (2.25) is

h = Huo + Bε , (2.26)

h =
[
u(1)T , u(2)T , · · · , u(L)T

]T
, H = [ IK , IK , · · · , IK ]T , (2.27)

and B is the LK × LK matrix

B = diag
{

G(1), G(2), · · · , G(L)
}−1

. (2.28)

The noise vector is

ε =
[
n(1)T · · · , n(L)T

]T
= Cn (2.29)

and C is an LK ×M matrix given by

C =

 IM

ILK−M 0

 . (2.30)
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Applying the Gauss-Markov Theorem [50], the BLUE for uo from (2.26) is

u = (HTWH)−1HTWh , (2.31)

W = E[BεεTBT ]† = B−TC†TQ−1C†B−1 , (2.32)

where (2.29) has been used. We use pseudo inverse since E[εεT ] is singular when

M < LK. Appendix A.1 shows that C† is an M × LK matrix equal to

C† =

0.5ILK−M 0 0.5ILK−M

0 I2M−LK 0

 . (2.33)

The diagonal blocks of B contains the true object location that is the unknown. We

shall replace uo in G(i) by the average
∑L

i=1 u(i)/L.

2.3.3 Performance

When the error is negligible in approximating G(i) by using the average
∑L

i=1 u(i)/L

for uo in forming B, the analysis below shows that the proposed solution attains the

CRLB performance under Gaussian noise.

The CRLB for the object location with elliptic measurements in Gaussian noise

is [11]

CRLB(uo) =
(

[ρ1, ρ2, · · · , ρM ]Q−1[ρ1, ρ2, · · · , ρM ]T
)−1

(2.34)

where ρi is defined in (2.18).

To obtain the covariance matrix of the proposed solution, we subtract both sides

of (2.31) by uo, multiply with its transpose and take expectation, giving

cov(u) =
(
HTWH

)−1
. (2.35)
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It becomes after substituting the second line of (2.32)

cov(u) =
(
HTB−TC†TQ−1C†B−1H

)−1
. (2.36)

From direct evaluation using (2.27) and (2.28),

HTB−T=
[
G(1)T , G(2)T , · · · , G(L)T

]
= [ρ1, ρ2, · · · , ρM ]

ILK−M 0 ILK−M

0 I2M−LK 0

 .
(2.37)

Substituting (2.33) yields

HTB−TC†T = [ρ1, ρ2, · · · , ρM ] . (2.38)

Using (2.38) in (2.36), comparing with (2.34) validates immediately that the proposed

solution is able to achieve the CRLB accuracy:

cov(u) = CRLB(uo) . (2.39)

We would like to emphasize that (2.39) is obtained under the condition that the

noise level is not exceedingly large so that replacing the true value uo by the average∑L
i=1 u(i)/L in G(i) for the proposed method has negligible error.

2.3.4 Individual Solution Selection

The performance analysis shows that as long as the proposed method combines a

minimum set of individual solutions that covers all the measurements, the accuracy

can reach the CRLB under Gaussian noise. This is the case when the measurement

noise level is not significant. Otherwise, the performance will move away from the

bound. This is a general phenomenon for a non-linear estimation problem.
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Different groupings of the measurements give different individual solutions for

BLUE in the proposed method, which can lead to different behaviors in the large

error region. We shall propose a grouping such that the final estimate has higher

noise tolerance that the performance will deviate from the CRLB later as the noise

power increases. In most cases, we observe that the final solution with the proposed

grouping has comparable noise threshold with MLE having performance deviating

from the CRLB.

The measurement grouping problem with least amount of measurement replication

is equivalent to selecting L = dM/Ke individual solutions to combine, where the

union of the measurements that generate them contains all M measurements. The

motivation for individual solution selection comes from the fact that the quality of

the individual solutions is different, depending on the relative geometry between the

object and the sensors for an individual solution. When selecting the better quality

individual solution to combine using BLUE, the final solution can have a higher level

of noise tolerance in reaching the performance bound.

In essence, given M measurements for localization in the K dimensional space,

there is a total of CM
K individual solutions

S =
{
ui : i = 1, 2, · · · , CM

K

}
. (2.40)

We are interested in selecting L = dM/Ke elements from S for BLUE to generate the

final solution. The set of all possible combinations having the L individual solutions

produced by all the measurements is denoted by

C = {cj = (j1, j2, · · · , jL) : j = 1, 2, · · · , J} . (2.41)
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Appendix A.2 shows that J is equal to

J =
(M − L)!

(K!)L−1(M − (L− 1)K)!
CM
L CLK−K

LK−M . (2.42)

For instance assuming M = 5. For 2-D positioning (K = 2), the number of individ-

ual solutions is CM
K = 10, the minimum number of individual solutions to cover all

measurements is L = dM/Ke = 3 and the number of possible choices of individual

solutions for BLUE is J = 20. In the case of 3-D, the values become 10, 2 and 15.

We would like to choose the combination in C such that the final solution has high

noise tolerance.

The quality of an individual solution can be characterized by the η-confidence

ellipsoid [72]. It is the minimum volume ellipsoid centered at the estimate u that

contains uo with a confidence level of η, which is represented by the set of values of

the vector v satisfying

ξη =
{

v | (v − u)TΣΣΣ−1(v − u) ≤ F−1
χ2
K

(η)
}

(2.43)

where Fχ2
K

is the cumulative distribution function of a chi-squared random variable

with K degrees of freedom. ΣΣΣ is the covariance matrix of the estimate u. A scalar

measure for the solution quality is the volume of the η-confidence ellipsoid given by

[72]

vol(ξη) =

(
F−1
χ2
K

(η)π
)K/2

Γ(K/3)
det
(
ΣΣΣ1/2

)
(2.44)

where Γ(•) is the Gamma function. The determinant of a square matrix is equal to

the product of its eigenvalues. Thus the volume is proportional to the determinant

of the covariance matrix of the location estimate. A logical approach to improve the

performance at higher noise level is to select the individual solutions with smaller

ellipsoid volumes (smaller determinants of the covariances) for BLUE.
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The procedure to select the individual solutions for BLUE is as follows:

• For each individual solution ui ∈ S, compute the determinant of its covariance

matrix defined in (2.16) and call it Ri;

• For each combination choice cj ∈ C, obtain the quality factor

Qj =
L∏
l=1

Rjl ; (2.45)

• The combination choice for the individual solutions to apply the proposed esti-

mator is

c∗ = arg min
cj∈C

Qj . (2.46)

In the first step, the uo needed in (2.18) for the covariance expression will be

replaced by the individual solution. In the second step, we use product to emphasize

that the ellipsoid volumes of all the individual solutions for BLUE are considered

together. Using addition instead of multiplication should also work.

The proposed individual solution selection scheme is more suitable when the num-

ber of measurements M is not large. Otherwise, the complexity may not be easy to

manage as the number of combinations J can increase considerably.

The individual solution selection scheme presented in this section is needed only

when the measurement noise level is high for the purpose of extending the noise

threshold where the estimation accuracy starts deviating from the CRLB. When the

noise level is low, it is not necessary to apply this scheme. The minimum solution

selection algorithm is summarized below.
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Algorithm 1 Minimum Measurement Solution Selection

Input: Individual solution ui ∈ S, where S is defined in (2.40).
Step 1. For each ui, obtain Ri = det(cov(ui)) from (2.16) with uo replaced by ui.
Step 2. For each choice cj ∈ C where C is defined in (2.41), evaluate the quality
factor (2.45).
Step 3. The individual solution set for applying BLUE is the choice c∗ obtained
from (2.46).

2.4 Simulations

We shall present localization performance of the proposed solution for elliptic as well

as hyperbolic positionings. The results will be for a single configuration and for the

average of 20 configurations. In the latter case, the geometries are generated by

placing the sensors and the object at random locations. The number of ensemble

runs in each geometry is 2000.

For the proposed estimator, no prior knowledge about the region where the object

lies is assumed. We use the procedure described at the end of Section 2.3.1 to decide

which of the two individual solutions corresponds to the location of interest. The

threshold T is set to 6.635. This value corresponds to a tail (false detection) proba-

bility of 0.01 from the central χ2 distribution, when the number of measurements is

M = K + 1, where K is the dimension of localization. The results from MLE are

provided for comparison. It is implemented by the Gauss-Newton iteration with at

least 30 random initializations, where the final MLE solution is the one having the

largest likelihood. It is quite computationally intensive albeit expected to yield the

CRLB performance. Also included are the closed-form solution from [11] for elliptic,

and [2] and [48] for hyperbolic in the literatures. The noise covariance matrix is σ2IM

for elliptic and σ2(IM + 1M1TM)/2 for hyperbolic positionings [2]. The performance is

shown in terms of the Mean-Square Error (MSE) of the uo estimate.
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Figure 2.2: Performance of the proposed minimum measurement solution in 3-D
hyperbolic localization.

2.4.1 Minimum Measurement Solution

To validate the proposed minimum measurement solution, Fig. 2.2 performs com-

parison with the Fang’s solution [27] and the SX method [28]. 3-D hyperbolic lo-

calization configuration is used as the Fang and SX methods were developed for

hyperbolic positioning. The object is located at uo = [15, 10, 6]T and sensor positions

are s0 = [0, 0, 0]T , s1 = [10, 10,−10]T , s2 = [10,−20, 30]T and s3 = [20,−10, 20]T . In

each ensemble run, s1 to s3 were perturbed slightly by adding uniformly distributed

random values U [−0.5, 0.5] × 10−5, otherwise the SX method could not produce a

solution. The proposed method and the Fang method give essentially identical re-

sult, although the former only needs to solve a quadratic equation while the latter

quartic. SX method is not robust and does not provide good estimate for this sensor

configuration especially when the noise level is not significant.
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Figure 2.3: Performance for 2-D elliptic positioning with 3 measurements.
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Figure 2.4: Performance for 2-D elliptic positioning with 5 measurements.

2.4.2 Elliptic Positioning

We next consider the 2-D scenario where the object is at uo = [−15, 10]T , transmitter

at s0 = [20,−30]T , and the receiving sensors at s1 = [35, 15]T , s2 = [−40,−30]T ,
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s3 = [10, 10]T , s4 = [40,−20]T , s5 = [0,−50]T . Fig. 2.3 illustrates the performance

when only the first three receivers are used. There are three individual solutions and

only two are selected to combine together to form the final. The proposed solution is

able to reach the CRLB accuracy as expected by the analysis. When the proposed

scheme in Section 2.3.4 is applied to select the better individual solutions for BLUE,

rather than just using the two from (d1, d2) and (d3, d1) (indicated by NoSelection in

the legend), we are able to extend the reaching of the CRLB from 10 log(σ2) = −15

to 5 and provide comparable performance with the MLE. The proposed solution also

behaves better than the closed-form solution from [11] with a gain of about 3dB at

10 log(σ2) = 5.

Fig. 2.4 gives the results when we have all five receivers. The number of individual

solutions is 10 and only two among those are selected by the proposed scheme to

generate the final. In this particular simulation, the proposed solutions with and

without individual solution selection give comparable performance. The proposed

estimator has some improvement over the closed-form solution from [11] and similar

performance with MLE.

Fig. 2.5 illustrates the averaged results over 20 randomly generated geometries

where the transmitter and the receivers are placed randomly in the space [−100, 100]2

from uniform distribution. The number of measurements is 3. To limit the possibil-

ity of degenerated geometry, the distance between any two of them is not less than

20. The object is randomly placed in the difference of the area between [−100, 100]2

and [−50, 50]2. Using individual solution selection does not appear to improve re-

sults compared to using individual solutions from (d1, d2) and (d3, d1) to combine as

shown in the figure. However, the difference appears if we use the individual solu-

tions from (d1, d2) and (d2, d3) for NoSelection instead. The results are consistent

with the single geometry cases. The proposed algorithm is able to reach the CRLB

performance, yields better accuracy than the closed-form solution from [11] by about
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Figure 2.5: Performance for 2-D elliptic positioning, averaged over 20 randomly gen-
erated localization geometries.

5dB at 10 log(σ2) = −5, and has comparable performance with MLE although the

complexity is much lower.

Fig. 2.6 repeats the simulation in Fig. 2.5 for the 3-D scenario, where the transmit-

ter, receivers, object are placed in a similar manner now over the region [−100, 100]3.

The number of measurements is 4. The observations are similar to those of Fig. 2.5.

The performance improvement over the solution from [11] is very significant.

2.4.3 Hyperbolic Positioning

The classical Chan-Ho method from [2] provides a closed-form solution to hyperbolic

positioning. Its performance may not be sufficient when the object is near the center of

the sensors arranged in a circle or sphere. The SCWLS solution [48] is an alternative,

at the expense of higher complexity. We repeat the same simulation experiment in

[48], where the object is at [4.9, 5.1]T and the sensors at [0, 0]T , [0, 10]T , [10, 0]T and
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Figure 2.6: Performance for 3-D elliptic positioning, averaged over 20 randomly gen-
erated localization geometries.

[10, 10]T . The results are shown in Fig. 2.7. The Chan-Ho Solution fails. The

proposed method does not have difficulty for such a configuration and provides the

CRLB performance. It seems to deviate a little earlier from the bound than SCWLS

as the noise power increases.

To better assess performance, Fig. 2.8 illustrates the accuracy in 2-D positioning

with the average of 20 geometries. There are 4 sensors, giving a total of 3 measure-

ments. Their positions are generated randomly in each geometry over the area of

[−50, 50]2, with the distance between any two larger than 20. The object is placed

randomly in the same area. The proposed solution works better than the Chan-Ho

method and the SCWLS solution as the noise level increases. It yields comparable

performance with MLE having a similar noise threshold.

Fig. 2.9 is the results for the 3-D scenario averaged over 20 geometries. The

sensors and the object are placed in a similar manner as in Fig. 2.8 except the region

now is expanded to [−50, 50]3. The number of sensors is 5 giving 4 measurements
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Figure 2.7: Performance for 2-D hyperbolic positioning with the object near the center
of the sensors.
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Figure 2.8: Performance for 2-D hyperbolic positioning, averaged over 20 randomly
generated localization geometries.
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Figure 2.9: Performance for 3-D hyperbolic positioning, averaged over 20 randomly
generated localization geometries.

for positioning. In this simulation, both Chan-Ho and SCWLS do not work well

and the proposed method yields much better performance even without individual

solution selection. The use of the individual solution selection scheme extends the

noise tolerance by about 5 dB compared to the MLE in this simulation.

To complete the simulation studies, we compare the computation complexity of

the proposed method with other solutions in Table 2.1 (for Fig. 2.2), Table 2.2 (for

Figs. 2.4 and 2.6), and Table 2.3 (for Figs. 2.8-2.9). The complexity is obtained

from Matlab implementation running on a PC with i7 processor and 8GB of memory.

The values shown are computation times relative to the proposed method. It is clear

from Table 2.1 that the proposed minimum measurement solution is more efficient

than the other two that take about 1.5 and 2.5 times longer. For elliptic positioning,

without solution selection in the proposed method saves a little the computation

time as illustrated in Table 2.2. It runs much faster than the iterative MLE, although

it is slower than the comparison algorithm [11]. We have similar observations for
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hyperbolic positioning in Table 2.3. The Chan-Ho method is most efficient, but it

does not work well as seen in Figs. 2.7-2.9. The proposed solution is more efficient

than the SCWLS method for the 2-D scenario.

Table 2.1: Computational complexity comparison for minimum measurement solu-
tions

Proposed FANG[27] SX Solution [28]
Relative

Computation Time / 3-D 1 1.48 2.48

Table 2.2: Computational complexity comparison for the simulation results in elliptic
positioning

Proposed Proposed(NoSelection) MLE Solution from [11]
Relative

Computation Time / 2-D 1 0.88 26.04 0.48
Relative

Computation Time / 3-D 1 0.98 47.13 0.80

Table 2.3: Computational complexity comparison for the simulation results in hyper-
bolic positioning

Proposed Proposed(NoSelection) MLE Chan-Ho [2] SCWLS [48]
Relative

Computation Time / 2-D 1 0.98 16.62 0.12 1.50
Relative

Computation Time / 3-D 1 0.95 20.10 0.17 0.67

2.5 Conclusion

We have provided a simple and direct derivation of the proposed minimum measure-

ment solution from a geometric perspective for elliptic time delay measurement and

apply it for object position estimation. Compared to the previous minimum mea-

surement solutions [27, 28], the proposed solution is more computationally attractive

that requires the roots of a quadratic equation instead of quartic, and it is more

general and robust that can work with arbitrary sensor arrangements. Using a set of
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the individual minimum measurement solutions that covers all the measurements, a

linear estimator based on BLUE is proposed to integrate them together to produce

the final location estimate. Such an estimator by forming and combining individual

solutions is algebraic and closed-form. Most important it is able to achieve the CRLB

performance under Gaussian noise as validated by analysis and simulations. We also

proposed an individual solution selection scheme to improve the final estimate by

extending the noise level at which performance deviates from the CRLB. The results

presented are applicable to elliptic time delay as well as hyperbolic time difference

measurements, in both 2-D and 3-D.

48



Chapter 3

Multistatic Localization in the
Absence of Transmitter Position

In this chapter, we will investigate the scenario for elliptic localization where the

position of the transmitter is completely unavailable. Multistatic localization with

unknown transmitter position appears in the passive coherent location system in

which the illumination signal is from some unknown radio source. It also happens

when the transmitter position is unable to be obtained or the obtained position is

unreliable. Such as in sonar localization where the transmitter can be floating and

drifting with the currents, making the previously estimated transmitter position not

applicable. The position of the transmitter can even be intentionally left unknown

and operates as an illumination source only so that its structure can be simplified,

resulting in significantly lower hardware and implementation costs.

Instead of locating the object position by formulating the range differences, which

eliminates the dependency of the transmitter position, this thesis takes a different

approach for such a localization scenario by jointly estimating the object location and

the transmitter position, although the transmitter position may not be of interest. We

begin the study by formulating the localization scenario in Section 3.1. In Section 3.2,
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we show that by making use of both indirect- and direct-path measurements for joint

estimation, we are able to demonstrate through the study via the CRLB the advantage

of using joint estimation and the improvement in the positioning accuracy compared

to using the differencing approach. We next develop an algebraic closed-form solution

to solve the highly nonlinear joint estimation problem in Section 3.3, and we also show

analytically that it can achieve the CRLB performance under Gaussian noise in the

small error region. In the same section, the solution is extended for the scenarios when

sensor positions have random errors [34] and when multiple transmitters at unknown

positions are present. The optimum receiver placement for elliptic localization when

the transmitter position is not known is derived in Section 3.4. Both the optimization

criteria of the estimation confidence region and the localization variance for the object

location are considered. They yield slightly different configurations. The optimum

placements enable us to characterize the loss in the best possible performance resulted

from the transmitter position that is not known. Section 3.5 presents the simulations

and Section 3.6 gives the conclusion.

3.1 Problem Formulation

Fig. 3.1 depicts a multistatic localization arrangement for locating an object using one

transmitter and M receivers in a K dimensional space. The transmitter at unknown

position to ∈ RK sends out a time stamped signal and it is reflected by the object

at unknown position denoted by uo ∈ RK . Receiver i at known position si ∈ RK

observed the indirect path signal through the object and the direct path signal from

the transmitter, i = 1, 2, · · · , M . We are interested in estimating the object position

uo using the indirect- and direct-path time delays where the transmitter position is

not known.

The terms delay and range are used interchangeably as they are scaled version
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Figure 3.1: Localization geometry

of each other by the known signal propagation speed. For the transmit-receive pair

(to, si), the true bistatic range (indirect path delay) is

roi = ‖uo − si‖+ ‖uo − to‖ (3.1)

and the range between them (direct path delay) is

doi = ‖si − to‖ . (3.2)

The direct path delay is always smaller than the indirect path delay as illustrated in

Fig. 3.1, which enables the distinction between them. The direct path delay does not

depend on the object position and is usually ignored in the traditional multistatic

localization, especially when the transmitter position is known.

The observations are corrupted by additive noise. The vector form of the indirect-
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and direct-path measurements are

r = [r1, r2, · · · , rM ]T = ro + εεεr, (3.3a)

d = [d1, d2, · · · , dM ]T = do + εεεd. (3.3b)

εεεr = [εr1, εr2, . . . , εrM ]T and εεεd = [εd1, εd2, . . . , εdM ]T are uncorrelated zero-mean

Gaussian noise vectors with known covariance matrices Qr and Qd. The composite

noise vector is εεεr,d = [εεεTr , εεε
T
d ]T and it has the covariance matrix

Q = diag(Qr, Qd). (3.4)

The developments mainly concentrate on the one transmitter case for ease of

illustration. Extension of the study to the multiple transmitter scenario is elaborated

in Section 3.3.4.

3.2 CRLB

The CRLB provides the performance limit of an unbiased estimator in terms of its

covariance matrix. The localization problem we are addressing is nonlinear, leading to

possibly a biased estimator. Nevertheless, when the noise level is not significant such

that the bias is negligible compared to the estimation variance, the CRLB remains

to be a good indicator for the maximum achievable accuracy [2, 37].

We shall consider three approaches to obtain the object location when the trans-

mitter position to is not known. The first approach pre-processes the data mea-

surement before estimation by forming the differences of indirect ranges, thereby

eliminating the transmitter position in the estimation process. The second approach

introduces a nuisance variable that represents the distance between the object and

the transmitter, and estimates the nuisance variable and the object location together.
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The third is more involved by joint estimation of the object and transmitter positions.

Due to different parameterizations of the unknowns, the three approaches exploit the

data measurements differently, resulting in separate estimation accuracy that can

be revealed by the CRLB. We shall evaluate the CRLB for the source location of

the three cases, and compare them through algebraic manipulation in the positive

semidefinite viewpoint. The comparison provides insight about which of the three

approaches yields the best localization accuracy of the object.

For notation simplicity, we shall use the symbol ∇ab to denote the partial deriva-

tive of the parametric form of ao with respect to boT evaluated at the true values,

i.e.

∇ab
def
=

∂ao

∂boT
. (3.5)

To proceed, let us define a few gradient matrices shown below:

∇∇∇u = [ρρρuo−s1 , ρρρuo−s2 , · · · , ρρρuo−sM ]T , (3.6a)

∇∇∇rt =
∂ro

∂toT
= [ρρρto−uo , ρρρto−uo , · · · , ρρρto−uo ]T , (3.6b)

∇∇∇ru =
∂ro

∂uoT
=∇∇∇u −∇∇∇rt , (3.6c)

∇∇∇dt =
∂do

∂toT
= [ρρρto−s1 , ρρρto−s2 , · · · , ρρρto−sM ]T . (3.6d)

3.2.1 Multistatic Range Difference

Only the second term in (3.1) depends on the transmitter position to and it is common

among all the indirect path range measurements. We can eliminate the unknown to

by forming the difference ri − r1, i = 2, 3, . . . ,M , where r1 (or any other one) is used

as the reference for subtraction. d does not depend on uo and has no use in this

approach.

Let us denote the collection of the resulting differences by q ∈ RM−1 and the
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differencing matrix as H ∈ RM×(M−1)

H = [−1M−1, IM−1]T . (3.7)

q and its covariance matrix Qq are related to the indirect path measurement vector

r and the original covariance matrix Qr by

q = HT r, (3.8a)

Qq = HTQrH . (3.8b)

Clearly q is Gaussian as premultiplying by HT is a linear operation on the Gaussian

vector r. The logarithm of its probability density function parameterized by uo is,

after ignoring the constant term independent of the unknown,

ln fq(q ; uo) = −1

2
(q− qo)TQ−1

q (q− qo) , (3.9)

where qo is the range difference vector as a function of uo whose elements are ‖uo −

si‖ − ‖uo − s1‖, i = 2, 3, . . . , M . The CRLB of uo is [50]

CRLBq(uo) = −E
[
∂2 ln fq
∂uo∂uoT

]−1

=

(
∂qoT

∂uo
Q−1

q

∂qo

∂uoT

)−1

. (3.10)

We have ∂qo/∂uoT = HT∇∇∇ru from (3.8a) and (3.6c). Together with (3.8b), (3.10)

becomes

CRLBq(uo) = (∇∇∇T
ruKq∇∇∇ru)−1 , (3.11)

where Kq is

Kq = H(HTQrH)−1HT . (3.12)
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3.2.2 Using an Auxiliary Variable

Rather than using the differences, we keep the common scalar term in the indirect

path range measurements and call it δo = ‖uo − to‖ so that (3.1) becomes

roi = ‖uo − si‖+ δo. (3.13)

The unknown vector is considered as [uoT , δo]T . The direct path measurement vector

d does not depend on the unknowns. From the Gaussian density of r, the CRLB is

CRLBr([u
oT , δo]T ) =

([
∂ro

∂uoT
,
∂ro

∂δo

]T
Q−1

r

[
∂ro

∂uoT
,
∂ro

∂δo

])−1

. (3.14)

From the model (3.13), we have ∂ro/∂uoT =∇∇∇u in (3.6a) and ∂ro/∂δo = 1M . Hence

CRLBr([u
oT , δo]T ) =

 Xr yr

yTr zr


−1

(3.15)

where

Xr =∇∇∇T
uQ−1

r ∇∇∇u , (3.16a)

yr =∇∇∇T
uQ−1

r 1M , (3.16b)

zr =1TMQ−1
r 1M . (3.16c)

The CRLB for uo is the upper left K × K block. Invoking the partitioned matrix

inversion formula [50] yields

CRLBr(u
o) =

(
Xr − yry

T
r /zr

)−1
. (3.17)
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Inserting Xr, yr and zr defined by (3.16) results in

CRLBr(u
o) =

(
∇∇∇T

uKr∇∇∇u

)−1
, (3.18)

where Kr is

Kr = Q−1
r −Q−1

r 1M(1TMQ−1
r 1M)−11TMQ−1

r . (3.19)

3.2.3 Joint Estimation

The unknown parameter vector is

θθθo = [uoT , toT ]T . (3.20)

The unknowns appear in both r and d. Under Gaussian noise and uncorrelated r

and d,

CRLBr,d(θθθo) =

(
∂roT

∂θθθo
Q−1

r

∂ro

∂θθθoT
+
∂doT

∂θθθo
Q−1

d

∂do

∂θθθoT

)−1

. (3.21)

From (3.1) and (3.2) and with the notations in (3.6),

∂ro

∂θθθoT
= [∇∇∇ru , ∇∇∇rt ] ,

∂do

∂θθθoT
= [ O , ∇∇∇dt ] . (3.22)

Thus,

CRLBr,d(θθθo) =

 X Y

YT Z


−1

. (3.23)

The submatrices are, using (3.6),

X =∇∇∇T
ruQ−1

r ∇∇∇ru , (3.24a)

Y =∇∇∇T
ruQ−1

r ∇∇∇rt , (3.24b)
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Z =∇∇∇T
rtQ

−1
r ∇∇∇rt +∇∇∇T

dtQ
−1
d ∇∇∇dt . (3.24c)

Applying the block matrix inversion formula [50] gives

CRLBr,d(uo) =
(
∇∇∇T

ru [ Q−1
r −Q−1

r ∇∇∇rt(∇∇∇T
rtQ

−1
r ∇∇∇rt +∇∇∇T

dtQ
−1
d ∇∇∇dt)

−1∇∇∇T
rtQ

−1
r ]∇∇∇ru

)−1
.

If (∇∇∇T
dtQ

−1
d ∇∇∇dt) is non-singular, invoking the Woodbury identity [50] to the matrix

terms inside the square bracket gives the alternative form

CRLBr,d(uo) =
(
∇∇∇T

ruK−1∇∇∇ru

)−1
, (3.25)

and

K = Qr +∇∇∇rt(∇∇∇T
dtQ

−1
d ∇∇∇dt)

−1∇∇∇T
rt . (3.26)

The CRLB with known transmitter position is
(
∇∇∇T

ruQ−1
r ∇∇∇ru

)−1
. From (3.26),

the absence of the transmitter location is equivalent to increasing the indirect path

covariance matrix by an extra term that is dependent on the covariance matrix of the

direct path and the relative positions among the object, transmitter and receivers.

3.2.4 Performance Comparison

The CRLB is a theoretical lower bound on the performance of an unbiased estimator

and its trace gives the minimum possible estimation MSE. In general, localization

approach A outperforms another approach B if CRLBB−CRLBA � 0, meaning that

the minimum uncertainty space of the estimate from A is inside that from B. The

positive semidefinite relation also implies Tr(CRLBB)− Tr(CRLBA) ≥ 0.
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CRLBq(uo) vs CRLBr(u
o)

The CRLB when using the range difference is given by (3.11)-(3.12), and that of using

the indirect path range with the auxiliary variable δo is (3.18)-(3.19). We shall show

that the two CRLBs are identical.

To begin, let us define Ĥ = Q
1
2
r H ∈ RM×(M−1) and 1̂ = Q

− 1
2

r 1 ∈ RM×1, where

Q
1
2
r represents the square root of Qr such that Q

1
2
r Q

1
2
r = Qr. The projection matrices

onto their column spaces are

PĤ = Ĥ(ĤT Ĥ)−1ĤT , (3.27a)

P1̂ = 1̂(1̂T 1̂)−11̂T . (3.27b)

From (3.7) ĤT 1̂ = HT 1 = 0M−1, meaning that 1̂ is orthogonal to the column space

of Ĥ. The two projection matrices span orthogonal subspaces and they together

compose the entire. Hence

PĤ + P1̂ = IM . (3.28)

Expressing Ĥ and 1̂ in terms of H and 1 from their definitions, pre- and post-

multiplying by Q
− 1

2
r relates Kq and Kr defined in (3.12) and (3.19) by

Kq = Kr . (3.29)

It is direct to validate from the definitions of H in (3.7) and ∇∇∇rt in (3.6b) that

HT∇∇∇rt = O. (3.30)

Hence using (3.6c)

HT∇∇∇ru = HT∇∇∇u. (3.31)
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Putting (3.12) into (3.11) and applying (3.29) and (3.31) yield immediately

CRLBq(uo) = CRLBr(u
o) . (3.32)

The localization performance of using the indirect path range differences turns out

to be identical to that of introducing the auxiliary variable.

CRLBq(uo) vs CRLBr,d(uo)

Let us begin with CRLBq(uo) for the comparison. Making use of (3.30), we can verify

from (3.26) that

HTKH = HTQrH. (3.33)

Putting it in (3.12) and CRLBq(uo) in (3.11) can be expressed in terms of K by

CRLBq(uo) = (∇∇∇T
ruH(HTKH)−1HT∇∇∇ru)−1 . (3.34)

The matrix K in (3.26) is symmetric and positive definite, it has inverse and

can be decomposed as K = K
1
2 K

1
2 . Let us define ∇̃∇∇ru = K−

1
2∇∇∇ru ∈ RM×K and

H̃ = K
1
2 H ∈ RM×(M−1). (3.34) and (3.25) can be rewritten as

CRLBq(uo)−1 = ∇̃∇∇
T

ruH̃(H̃T H̃)−1H̃T∇̃∇∇ru , (3.35)

CRLBr,d(uo)−1 = ∇̃∇∇
T

ru∇̃∇∇ru , (3.36)

where H̃(H̃T H̃)−1H̃T is the projection matrix onto the column space of H̃. From the

property of projection matrix [51],

IM − H̃(H̃T H̃)−1H̃T � 0 . (3.37)
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Pre- and Post-multiplying it by ∇̃∇∇
T

ru and ∇̃∇∇ru gives CRLBr,d(uo)−1−CRLBq(uo)−1 �

0, or equivalently,

CRLBq(uo) � CRLBr,d(uo) . (3.38)

In other words, joint localization using both the indirect- and direct-path measure-

ments can often perform better than estimating the object location using the differ-

ences of the indirect path measurements. Identical performance only appears under

some special geometries. Appendix B.1 shows that such a configuration is that the

transmitter and all receivers are collinear in 2-D positioning and coplanar in 3-D

localization.

The following expression summarizes the relative performance of the three local-

ization approaches:

CRLBq(uo) = CRLBr(u
o) � CRLBr,d(uo) . (3.39)

3.3 Algebraic Closed-Form Solution

We would like to obtain a solution for the joint estimation of the object and transmit-

ter positions. Both the indirect and direct measurements are nonlinearly related to

the unknowns, making the estimation problem complicated to solve. While iterative

solution is a possibility, it could be sensitive to the initial solution guesses and have

divergence issue. We shall resort to an algebraic solution instead.

The proposed estimator follows the two-stage processing approach [2]. The first

stage forms pseudolinear equation from the measurement model by introducing aux-

iliary variables as additional unknowns and solves it by the linear least-squares min-

imization. The second stage exploits the relationship between the auxiliary variables

and the actual unknowns to refine the estimate.

The proposed solution essentially converts the nonlinear estimation problem to
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a linear form that enables the use of linear estimation technique for obtaining the

solution. It inherently assumes the measurement noise is not significant. The ap-

proximations in the solution derivations come from ignoring the second and higher

order noise terms, unless specified otherwise. As a result, the proposed solution is

expected to achieve good performance only over the small error region.

We shall first derive the closed-form solution followed by an analysis to validate

that the solution accuracy reaches the CRLB over the small error region. The solution

is next extended to handle the presence of sensor position errors, and the use of

multiple transmitters at unknown positions.

3.3.1 Algorithm

First Stage

Starting with the indirect path data model (3.1), moving ‖uo− to‖ from the right to

the left and taking the square operation on both sides yield

roi
2 − ‖si‖2 + 2sTi uo − 2uoT to − 2roi ‖uo − to‖+ ‖to‖2 = 0. (3.40)

The true value roi is not available. Substituting roi = ri − εri and realizing ri − ‖uo −

to‖ = ‖uo − si‖+ εri, we obtain

‖uo − si‖ εri '
1

2
(r2
i − ‖si‖2) + sTi uo − uoT to − ri‖uo − to‖+

1

2
‖to‖2 , (3.41)

where εr
2
i is neglected. For the direct path measurement, squaring both sides of (3.2)

and using doi = di − εdi give

‖si − to‖ εdi '
1

2
(d2
i − ‖si‖2) + sTi to − 1

2
‖to‖2 , (3.42)
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in which do = ‖si−to‖ is used and εd
2
i ignored on the left side. We define the unknown

vector as

ϕϕϕo =
[
uoT , toT , uoT to, ‖uo − to‖, ‖to‖2

]T
. (3.43)

Collecting the M equations from (3.41) and those from (3.42) produces the pseudo-

linear equations in matrix form

Brεεεr = hr −Grϕϕϕ
o , (3.44a)

Bdεεεd = hd −Gdϕϕϕ
o . (3.44b)

The matrices and vectors are defined as

Br = diag (‖uo − s1‖, ‖uo − s2‖, · · · , ‖uo − sM‖) , (3.45a)

hr =
1

2

[
(r2

1 − ‖s1‖2), · · · , (r2
M − ‖sM‖2)

]T
, (3.45b)

Gr = [gr1 , gr2 , · · · , grM ]T , gri =

[
−sTi , 0TK , 1, ri, −

1

2

]T
, (3.45c)

Bd = diag (‖s1 − to‖, ‖s2 − to‖, · · · , ‖sM − to‖) , (3.45d)

hd =
1

2

[
(d2

1 − ‖s1‖2), · · · , (d2
M − ‖sM‖2)

]T
, (3.45e)

Gd = [gd1 , gd2 , · · · , gdM ]T , gdi =

[
0TK , −sTi , 0, 0,

1

2

]T
. (3.45f)

Stacking (3.44a) and (3.44b) together gives

B1εεεr,d = h1 −G1ϕϕϕ
o , (3.46)

where

B1 = diag(Br, Bd)T , h1 = [hTr , hTd ]T , G1 = [GT
r , GT

d ]T , (3.47)

and εεεr,d is defined below (3.3). Let us pretend the elements of ϕϕϕo are independent.
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Applying the WLS optimization to (3.46) gives the estimate

ϕϕϕ = (GT
1 W1G1)−1GT

1 W1h1 . (3.48)

W1 is the weighting matrix set according to the equation error and is equal to [50]

W1 = E[B1εεεr,dεεε
T
r,dBT

1 ]−1 =
(
B1QBT

1

)−1
. (3.49)

Under the condition (C1) in (3.62), the noise in G1 is small enough to be neglected.

Subtracting both sides of (3.48) by ϕϕϕo, multiplying by the transpose and taking

expectation give

cov(ϕϕϕ) ' (GT
1 W1G1)−1 . (3.50)

Second Stage

The first stage supposes that the elements of ϕϕϕo defined in (3.43) are unrelated, but

indeed only uo and to are. The second stage improves the estimation accuracy by

exploring their relations.

We shall express the elements of the first stage solution ϕϕϕ in terms of the two

independent unknowns uo and to in linear form. Rewriting it as ϕϕϕ = ϕϕϕo + εεε1 where

εεε1 is the estimation error, we have from (3.43)

εεε1(1 : K) = ϕϕϕ(1 : K)− uo , (3.51)

εεε1(K + 1 : 2K) = ϕϕϕ(K + 1 : 2K)− to , (3.52)

where K is the localization dimension. From (3.51) and (3.52), the true value of the

element 2ϕϕϕ(2K+ 1) can be expressed as 2ϕϕϕ(2K+ 1)− 2εεε1(2K+ 1) = 2uoT to = (ϕϕϕ(1 :

K)− εεε1(1 : K))T to + (ϕϕϕ(K + 1 : 2K)− εεε1(K + 1 : 2K))Tuo so that after rearranging
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the terms

− toTεεε1(1 : K)− uoTεεε1(K + 1 : 2K) + 2εεε1(2K + 1)

= 2ϕϕϕ(2K + 1)−ϕϕϕT (K + 1 : 2K)uo −ϕϕϕT (1 : K)to .

(3.53)

Expressing ϕϕϕ(2K+ 2) = ‖uo− to‖+εεε1(2K+ 2), squaring both sides and ignoring the

second order error term give

ϕϕϕ2(2K + 2) ' ‖uo‖2 + ‖to‖2 − 2uoT to + 2‖uo − to‖εεε1(2K + 2). (3.54)

Using ‖uo‖2 = (ϕϕϕ(1 : K)−εεε1(1 : K))Tuo, ‖to‖2 = (ϕϕϕ(K+1 : 2K)−εεε1(K+1 : 2K))T to

and uoT to = ϕϕϕ(2K + 1)− εεε1(2K + 1), we have

− uoTεεε1(1 : K)− toTεεε1(K + 1 : 2K) + 2εεε1(2K + 1) + 2‖uo − to‖εεε1(2K + 2)

' 2ϕϕϕ(2K + 1) +ϕϕϕ2(2K + 2)−ϕϕϕT (1 : K)uo −ϕϕϕT (K + 1 : 2K)to.

(3.55)

Pre-multiplying (3.52) by −toT and realizing that toT to = ϕϕϕ(2K + 3) − εεε1(2K + 3),

we obtain

−toTεεε1(K + 1 : 2K) + εεε1(2K + 3)=ϕϕϕ(2K + 3)−ϕϕϕT (K + 1 : 2K)to . (3.56)

Setting the unknown vector as θθθo defined in (3.20), (3.51)-(3.56) form the linear

matrix equation

B2εεε1 = h2 −G2θθθ
o. (3.57)
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The matrices and vector for (3.57) are given by

B2 =



IK OK×K 0K 0K 0K

OK×K IK 0K 0K 0K

−toT −uoT 2 0 0

−uoT −toT 2 2‖uo − to‖ 0

0TK −toT 0 0 1


, (3.58a)

h2 =[ϕϕϕT (1 : K),ϕϕϕT (K + 1 : 2K), 2ϕϕϕ(2K + 1),

2ϕϕϕ(2K + 1) +ϕϕϕ2(2K + 2), ϕϕϕ(2K + 3)]T , (3.58b)

G2 =



IK OK×K

OK×K IK

ϕϕϕT (K + 1 : 2K) ϕϕϕT (1 : K)

ϕϕϕT (1 : K) ϕϕϕT (K + 1 : 2K)

0TK ϕϕϕT (K + 1 : 2K)


. (3.58c)

Applying the WLS optimization yields the final estimate

θθθ = (GT
2 W2G2)−1GT

2 W2h2. (3.59)

The ideal weighting matrix is E[B2εεε1εεε
T
1 BT

2 ]−1. Using (3.50), we set it to the approx-

imated version

W2 =
(
B2(GT

1 W1G1)−1BT
2

)−1
. (3.60)

The noise of W2 is negligible under (C1) in (3.62) and that of G2 can be ignored

under (C2)-(C3). The covariance matrix of the estimate can be approximated by

cov(θθθ) ' (GT
2 W2G2)−1 . (3.61)

The weighting matrices W1 and W2 depend on the true object and transmitter
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positions. We shall first fix B1 to the identity matrix to generate W1 and obtain

an initial estimate of ϕϕϕ. Then a better W1 can be generated for a more accurate

ϕϕϕ estimate. The true values uo and ϕϕϕo in B2 for W2 shall be approximated by the

solution ϕϕϕ from the first stage. Such approximations are reasonable as the WLS is

insensitive to the noise in the weighting matrix [52].

3.3.2 Analysis

We shall compare the theoretical covariance matrix of the proposed solution with the

CRLB. The comparison is under the first order analysis where the second order noise

term is negligible in the presence of the first order. Let us introduce the following

small error conditions:

(C1) diag(ro)−1εεεr ' 0,

(C2) diag(uo)−1εεε1(1 : K) ' 0 or εεε1(1 : K) ' 0,

(C3) diag(to)−1εεε1(K + 1 : 2K) ' 0 or εεε1(K + 1 : 2K) ' 0.

(3.62)

The first condition requires the indirect path range measurement noise be small rela-

tive to the true value. The second and third conditions demand the estimation errors

for the object and transmitter locations from the first stage be small relative to the

true values. All three conditions are satisfied over the small error region.

Under the small noise conditions, the approximation in (3.61) is valid. Substitut-

ing (3.60) and (3.49) into (3.61) yields

cov(θθθ) ' (GT
3 Q−1G3)−1 , (3.63)

where

G3 = B−1
1 G1B

−1
2 G2 . (3.64)

66



Appendix B.2 shows that under the three conditions (C1)-(C3),

G3 '
[
∂roT

∂θθθo
,
∂doT

∂θθθo

]T
. (3.65)

Using it in (3.63) together with (3.4) yields

cov(θθθ) '
(
∂roT

∂θθθo
Q−1

r

∂ro

∂θθθoT
+
∂doT

∂θθθo
Q−1

d

∂do

∂θθθoT

)−1

. (3.66)

Comparing with (3.21) concludes

cov(θθθ) ' CRLB(θθθo). (3.67)

Thus, under the conditions (C1)-(C3) and over the small error region, the proposed

solution reaches the CRLB accuracy for Gaussian measurement noise.

3.3.3 Presence of Sensor Position Error

Often the receiving sensor positions cannot be known perfectly and the available

values have random errors. Ignoring the sensor position errors can lead to significant

performance degradation [53]. We shall extend the closed-form solution to account

for receiver position errors.

Let us use s̃i to denote the available position of the i-th receiver. s = [ sT1 , sT2 , · · · , sTM ]T

and s̃ = [ s̃T1 , s̃T2 , · · · , s̃TM ]T represent the vector forms of the true receiver positions

that are not known and the available receiver positions. The receiver position error

vector is

∆s = s̃− s (3.68)

where ∆s = [∆sT1 , ∆sT2 , · · · , ∆sTM ]T and ∆si = s̃i − si. We shall model ∆s as zero-

mean Gaussian distributed with known covariance matrix Qs. Putting si = s̃i −∆si
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into (3.41) and (3.42), and with a high probability that the second-order position error

terms are negligible compared to the linear error terms, the measurement equations

can be approximated by

‖uo − si‖ εri + (uo − si)
T∆si '

1

2
(r2
i − ‖s̃i‖2) + s̃Ti uo − uoT to − ri‖uo − to‖+

1

2
‖to‖2,

(3.69)

‖to − si‖ εdi + (to − si)
T∆si '

1

2
(d2
i − ‖s̃i‖2) + s̃Ti to − 1

2
‖to‖2. (3.70)

Collecting these measurement equations together yields

Brεεεr + Dr∆s = h̃r − G̃rϕϕϕ
o , (3.71a)

Bdεεεd + Dd∆s = h̃d − G̃dϕϕϕ
o , (3.71b)

where ϕϕϕo is defined in (3.43) and Br and Bd in (3.45a) and (3.45d). h̃r, h̃d, G̃r and

G̃d are hr, hd, Gr and Gd given in (3.45) with si replaced by s̃i. Dr = diag((uo −

s1)T , (uo − s2)T , · · · , (uo − sM)T ) and Dd = diag((s1 − to)T , (s2 − to)T , · · · , (sM −

to)T ). Stacking (3.71a) and (3.71b) yields

B1εεεr,d + D1∆s = h̃1 − G̃1ϕϕϕ
o , (3.72)

where B1 and εεεr,d are defined below (3.46), and D1 = [DT
r , DT

d ]T . h̃1 and G̃1 are h1

and G1 in (3.46) with si replaced by s̃i. The WLS solution in the first-stage is

ϕϕϕ = (G̃T
1 W̃1G̃1)−1G̃T

1 W̃1h̃1. (3.73)

The weighting matrix W̃1 is, from the equation error of (3.72),

W̃1 =
(
B1QBT

1 + D1QsD
T
1

)−1
. (3.74)
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The second-stage is not affected by the presence of receiver position errors. It is

the same as in Section 3.3.1 and the final solution is (3.59).

The weighting matrix W̃1 depends on the true object and transmitter positions.

It is handled as for W1 by approximating Br and Bd properly and setting D1 to zero

to initialize W̃1, and obtaining a better W̃1 through an update.

3.3.4 Multiple Transmitters

It is common in multistatic system especially in sonar/radar to use multiple transmit-

ters for increasing performance. We formulate the general case that all transmitter

positions are not known. The situation that some transmitters are known can be eas-

ily accounted for in the proposed algorithm. We also consider the presence of receiver

position errors. The accurate sensor position scenario is a special case by setting Qs

to zero.

Let toj , j = 1, 2, · · · , N be the unknown position of the j-th transmitter. Each

transmitter gives M indirect and M direct measurements. There are 2MN in total

whose ideal values are

roi,j = ‖uo − si‖+ ‖uo − toj‖ , (3.75a)

doi,j = ‖si − toj‖ , (3.75b)

for i = 1, 2, · · · ,M and j = 1, 2, · · · , N . Each transmitter has the same set of pseudo

linear matrix equations as in (3.71). Putting them together for all transmitters yields

(3.72), where the matrices and vectors are defined in Appendix B.3, with Br, Dr, Bd

and Dd replaced by B̃r, D̃r, B̃d and D̃d. The unknown vector in the first-stage now
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becomes

ϕ̃ϕϕo =[ uoT , to1
T , to2

T , · · · , toN
T , uoT to1, uoT to2, · · · , uoT toN ,

‖uo − to1‖, ‖uo − to2‖, · · · , ‖uo − toN‖, ‖to1‖2, ‖to2‖2, · · · , ‖toN‖2 ]T
(3.76)

and it has K(N + 1) + 3N variables. The solution is (3.73).

The unknown vector in the second-stage is

θ̃θθ
o

= [uoT , to1
T , to2

T , · · · , toN
T ]T . (3.77)

The solution is (3.59), where the relevant matrices and vector are now re-defined

according to Appendix B.3.

3.4 Optimal Geometry

It is commonly known that the relative transmitter-object-sensor geometry is of great

importance in network planning [5, 54], resource allocation [55, 56, 57, 58], and target

localization and tracking [59, 60], as it sets the limit on the achievable performance.

This section derives the optimal receiver placement for the joint localization of the

object and transmitter locations. To limit the scope, we shall consider the scenario

of object localization with one transmitter and M receivers in the 2-D plane, where

M is even. Following the previous studies [37] and [61], the measurement noise is IID

such that

Qr = σ2
rIM , Qd = σ2

dIM . (3.78)

Without loss of generality, we use uo as the center point and set ρρρto−uo = [1, 0]T

for coordinate reference. Let αi and βi be the bearing angles of the i-th receiver

with respect to the transmitter and to the object as shown in Fig. 3.2 such that

ρρρsi−to = [cosαi, sinαi]
T and ρρρsi−uo = [cos βi, sin βi]

T . The optimum geometry is
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Figure 3.2: An optimal geometry for 2-D joint localization

defined by αi and βi, i = 1, 2, · · · ,M .

We shall use two criteria to derive the optimum receiver placement. One is the

minimization of the localization confidence region which is equivalent to the maxi-

mization of the determinant of the FIM. The other is the minimization of the local-

ization variance defined by the trace of the CRLB.

The FIM for the object location is given by (3.25), which is dependent on the

matrix K in (3.26). Using (3.78) and substituting (3.6b) and (3.6d) give, in terms of

αi and βi

K = σ2
rIM + σ2

d∇∇∇rt(∇∇∇T
dt∇∇∇dt)

−1∇∇∇T
rt = σ2

r(IM + a1M1TM) . (3.79)

The value a is caused by the transmitter position that is not known. It is dependent

on the direct measurement noise power and the receiver-transmitter angle αi and is

always positive,

a =
σ2
d

σ2
r

·
∑M

i=1 sin2 αi∑M
i=1 cos2 αi

∑M
i=1 sin2 αi − (

∑M
i=1 cosαi sinαi)2

. (3.80)

The inverse of K is

K−1 = σ−2
r (IM + b1M1TM). (3.81)
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b relates to a through

b = − a

1 + aM
, (3.82)

and it is always negative. Applying (3.81) and using the angle representation for

(3.6c), (3.25) becomes

FIMr,d(uo) = σ−2
r

υ0 υ1

υ1 υ2

 , (3.83)

where

υ0 = b
( M∑
i=1

pi

)2

+
M∑
i=1

p2
i , (3.84a)

υ1 = b
M∑
i=1

pi

M∑
j=1

qj +
M∑
i=1

piqi, (3.84b)

υ2 = b
( M∑
i=1

qi

)2

+
M∑
i=1

q2
i . (3.84c)

In (3.84),

pi = (1 + cos βi), qi = sin βi , (3.85)

and from trigonometry identity they are related by

q2
i = pi(2− pi) . (3.86)

Note that

0 ≤ pi ≤ 2 . (3.87)

Before proceeding further, let us first look at the worst case and the best case per-

formance scenario caused by unknown transmitter position. The worst case appears
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when K is largest in PSD sense, which is when a reaches the maximum value. This

happens when the denominator of (3.80) becomes zero, resulted from cosαi = c sinαi

according to the Cauchy-Schwartz inequality [73], where c is a constant. Thus un-

known transmitter position will degrade the localization accuracy most if the trans-

mitter and all the receivers lie on a straight line. The corresponding smallest value

of b from (3.82) is −1/M .

The best case happens when a is smallest, which is when

M∑
i=1

cosαi sinαi = 0 , (3.88a)

| cosαi| → 1. (3.88b)

The minimum possible value of a is

amin =
σ2
d

σ2
r

· 1

M
, (3.89)

and the largest value of b is

bmax = − σ2
d

σ2
r + σ2

d

· 1

M
. (3.90)

3.4.1 Minimizing Estimation Confidence Region

The minimization is equivalent to the maximization of the determinant of the FIM

FIMr,d(uo) [38]. From (3.83), the determinant is

ζ = σ−4
r (υ0υ2 − υ2

1) . (3.91)
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Let

υ2 = υ2,1 + υ2,2 ,

υ2,1 =b
( M∑
i=1

qi

)2

, υ2,2 =
M∑
i=1

q2
i .

(3.92)

Then

ζ = σ−4
r

(
υ0υ2,1 + υ0υ2,2 + (−υ2

1)
)
. (3.93)

From (3.84a), υ0 is the diagonal elements of FIM and cannot be negative. Recall that

b is negative. Hence the first term satisfies υ0υ2,1 ≤ 0. Obviously the third term is

(−υ2
1) ≤ 0. Let us consider maximizing the middle term which is always non-negative.

Using (3.86) gives

(υ0υ2,2) =
(
b
( M∑
i=1

pi
)2

+
M∑
i=1

p2
i

)(
2

M∑
i=1

pi −
M∑
i=1

p2
i

)
. (3.94)

The derivatives of (υ0υ2,2) with respect to pi, i = 1, 2, · · · ,M yield the same expres-

sion, giving the relation

p1 = p2 = · · · = pM = p , (3.95)

for reaching the maximum. Using (3.95) in (3.94), setting to zero the gradient with

respect to p gives p = 3/2. Applying (3.85) then yields cos βi = 1/2 or βi = ±60 deg.

For even M , we can distribute the sensors evenly above and below the coordinate

reference line to − uo so that

βi = (−1)i60 deg , i = 1, 2, · · · ,M . (3.96)

In such a case, from (3.85), we have
∑M

i=1 qi = 0 and
∑M

i=1 piqi = 0 such that from

(3.84b) and (3.92) the negative terms υ0υ2,1 and (−υ2
1) of (3.93) vanish. As a result,
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putting p = 3/2 back to (3.94) yields the maximum value

ζmax = σ−4
r

27

16
M2(bM + 1) . (3.97)

It can be further optimized with respect to b. Clearly, it is increasing with b.

The maximum value of b is given in (3.90), which is achieved when both conditions

(3.88a) and (3.88b) are satisfied. To fulfill (3.88a), we require the receivers not only

evenly but also symmetrically deployed on the two sides of the reference line and it

will be satisfied under (3.96). The condition (3.88b) requires the receivers very close

to or the transmitter far away from the object to maintain (3.96). The achievable

maximum value of ζ is, when substituting (3.90),

ζmax = σ−4
r

27

16
M2

(
σ2
r

σ2
r + σ2

d

)
. (3.98)

The corresponding optimum geometry is shown in Fig. 3.2, where βi is given by

(3.96) and αi approaches ±180 deg.

It should be noted that fulfilling the condition (3.88b) implies the indirect path and

direct path delays have comparable values, implying the noise power σ2
r = σ2

d = σ2
εεε

when the determinant of FIM is maximized. As a result ζmax simplifies to

ζmax = σ−4
εεε

27

32
M2 . (3.99)

Comparing with the results from [38] where the transmitter position is known, the

optimum receiver placement is the same. Nevertheless, ζmax is reduced by a factor of

two, which is equivalent to doubling the size of the confidence region.
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3.4.2 Minimizing Estimation Variance

Tr(CRLB) is the minimum possible MSE of an unbiased estimator. Optimizing it will

yield a configuration that has the best positioning accuracy in terms of MSE over the

small error region where the bias is negligible compared to variance. CRLBr,d(uo)

is the inverse of FIMr,d(uo). Minimizing Tr(CRLB) is equivalent to maximizing

1/Tr(CRLB). From (3.83)-(3.84), the objective for maximization is

ξ =
1

Tr(CRLBr,d(uo))
=

det(FIMr,d(uo))

Tr(FIMr,d(uo))
= σ−2

r

(
υ0υ2

υ0 + υ2

+
−υ2

1

υ0 + υ2

)
. (3.100)

The second term is negative. If we are able to maximize the first term while at the

same time making the second term zero, ξ will reach the maximum value. Let us

denote the first term inside the bracket of (3.100) by γ. After ignoring the constant

σ−2
r and using (3.92),

γ =
υ0υ2,1 + υ0υ2,2

υ0 + υ2,1 + υ2,2

. (3.101)

It is monotonic increasing with υ2,1 as υ0 + υ2,1 + υ2,2 = Tr(FIMr,d(uo)) ≥ 0. b is

negative and υ2,1 ≤ 0. γ is upper bounded by

γ ≤ υ0υ2,2

υ0 + υ2,2

, (3.102)

with the equality holds when υ2,1 = 0. From (3.84) and using (3.86), in terms of the

variables pi,

γ ≤

(
b
(∑M

i=1 pi
)2

+
∑M

i=1 p
2
i

)(
2
∑M

i=1 pi −
∑M

i=1 p
2
i

)
2
∑M

i=1 pi + b
(∑M

i=1 pi
)2 . (3.103)

Due to the symmetric structure with respect to pi, i = 1, 2, · · · ,M , we have (3.95)

for attaining maximum on the right side. Keeping this requirement while at the same
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time distributing the receivers evenly above and below the reference line uo − to,

we have
∑M

i=1 qi = 0 and
∑M

i=1 piqi = 0 from (3.85) such that υ1 = 0 from (3.84b).

Such an arrangement maintains (3.95) while at the same time making the second

term −υ2
1/(υ0 + υ2) on the right side of (3.100) zero. Furthermore, equality holds for

(3.102). As a result, the maximum value of ξ is the same as that of γ.

Using (3.95) in (3.103),

γmax = M(bM + 1)
2p2 − p3

bMp+ 2
. (3.104)

It can further be optimized. Taking the derivative with respect to p and setting it to

zero result in

bMp2 + (3− bM)p− 4 = 0 . (3.105)

b is negative and the axis of symmetry of this quadratic equation is (bM − 3)/(2bM) ≥

2 by considering the smallest value of b. Since 0 ≤ p ≤ 2, the correct solution to

(3.105) is given by

p =
bM − 3

2bM
+

√
(bM + 1)(bM + 9)

2bM
. (3.106)

We next find the appropriate b to fix the solution (3.106).

It is direct to validate that γmax is increasing with b, by taking the gradient of

(3.104) with respect to b. Thus γmax will reach the largest possible value by using bmax

from (3.90), which requires (3.88a) and (3.88b) to be satisfied. (3.88a) is automatically

fulfilled by the symmetric sensor arrangement. (3.88b) demands the transmitter far

away from the sensors, which implies σ2
r = σ2

d = σ2
εεε and leads to bmax = −1/(2M).

Putting it back to (3.106) gives the solution of p as p = (7−
√

17)/2. In other words,

βi = acos((5 −
√

17)/2) ' ±64 deg, i = 1, 2, · · · , M . Putting everything back to
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(3.100) gives the minimum value

Tr(CRLBr,d(uo)) ' 2.2046

M
σ2
εεε . (3.107)

The corresponding geometry is shown in Fig. 3.2, where βi is

βi = (−1)i64 deg , i = 1, 2, · · · ,M , (3.108)

and αi approaches ±180 deg, i = 1, 2, · · · ,M .

If the transmitter position is known, [37] has determined the minimum achievable

value for Tr(CRLB) is (27/16)σ2
εεε/M = 1.6875σ2

εεε/M , with the angle βi = 70.53 deg.

The performance loss resulted from unknown transmitter position is by the factor of

2.2046/1.6875 = 1.3064 = 1.16 dB.

Contrasting the results from the two optimization criteria, having an even number

of receivers, both allocate them symmetrically on the two sides of the reference line

uo − to and place them near the object. Half lie on a straight line passing through

uo and the other half another. The difference is that the first criterion requires the

bearing angle of the receivers with respect to the object to be |βi| = 60 deg and the

second criterion |βi| ' 64 deg. The effect of unknown transmitter position results in

a loss of 3 dB for the first criterion and 1.16 dB for the second.

3.5 Simulations

In the simulation setting, the unit is meter for the position coordinates and the range

measurements. It is square meter for the powers of the measurement noise and sensor

position errors and for the MSE.
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Figure 3.3: Performance of the proposed solution with single transmitter and four
receivers, compared with hyperbolic positioning

3.5.1 Joint Estimation

We evaluate localization performance through Monte-Carlo simulation of a 2000 trials,

in 2-D for ease of illustration. The results are shown in terms of the MSE between

the object location estimate and the true position, in log-scale. The log-scale is

used in order to cover a large dynamic range of estimation performance for ease of

visualization.

We first consider locating an object at uo = [2000, 5000]T m using one trans-

mitter and four receivers whose positions are to = [0, 0]T m, s1 = [1000, 1000]T m,

s2 = [1000, −1000]T m, s3 = [−1000, 1000]T m and s4 = [−1000, −1000]T m [74]. The

noise covariance matrix is given by (3.78) with σ2
r = σ2

d = σ2. Fig. 3.3 illustrates

the performance of the proposed estimator in terms of MSE as the measurement

noise power σ2 increases. Also shown are the performances of the Gauss-Newton

iterative MLEs (IMLEs), initialized randomly from the area [−10000, 10000] m ×

[−10000, 10000] m for the joint estimation and at the true object location for the hy-

perbolic approach described in Section 3.2.1 to ensure convergence before the thresh-
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Figure 3.4: Performance of the proposed solution in the presence of sensor position
error at different measurement noise levels when σ2

s = 0.1 m2

olding effect happens. Both the proposed estimator and IMLE validate the significant

performance advantage of joint estimation over the hyperbolic approach and reach

the CRLB performance from (3.25). The proposed estimator deviates from the CRLB

earlier than IMLE. Nevertheless, it is about 2.5 times faster and does not have ini-

tialization issue. The minimum possible MSE when using 4 receivers from (3.107) is

about 12 dB lower.

We next examine the performance of the proposed estimator in Section 3.3.3 when

sensor position errors are present having Qs = σ2
sJ, where σ2

s indicates the sensor

position error power and J = diag([5, 5, 40, 40, 20, 20, 10, 10]T ). Keeping σ2
s at 0.1 m2,

Fig. 3.4 confirms the proposed algorithm is able to reach the CRLB accuracy. Fig.

3.5 illustrates the results as the sensor position error increases, at the measurement

noise power σ2
r = σ2

d = 1 m2. The proposed estimator attains the CRLB accuracy

before the noise level becomes high and is 8 times faster than IMLE albeit deviating

from the bound earlier.

Finally, we evaluate the estimation performance when using multiple transmitters
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Figure 3.5: Performance of the proposed solution in the presence of sensor position
error at different levels of sensor position errors

at unknown positions. There are three transmitters whose true positions are t1 =

[−100, 0]T m, t2 = [100, 0]T m and t3 = [0, 100]T m. The object and sensor locations

are the same as before. The measurement noise and sensor position noise are IID

and are independent with each other. The sensor position errors are having σ2
s =

0.1 m2. Fig. 3.6 shows that the proposed estimator in Section 3.3.4 reaches the

CRLB accuracy well, before the noise level becomes significant. It ran 13 times faster

than IMLE in matlab implementation.

The proposed algorithm estimates the transmitter position in conjunction with the

object position while the hyperbolic approach using the multistatic range differences

does not. Table 3.1 compares the computation time of the proposed algorithm, the

IMLE for joint estimation and the IMLE for hyperbolic positioning. The algorithms

were implemented using Matlab, running on an i7 processor with 8 GB memory. The

computation times were recorded for the simulation in Fig. 3.3 with σ2 varying from

0.1 m2 to 1000 m2, normalized by the processing time of the proposed algorithm. The

proposed algorithm is more computationally efficient than the IMLE for joint esti-
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Figure 3.6: Performance of the proposed solution in the presence of sensor position
error using multiple transmitters

mation. Experiments show that only when initialized at the true target position,

the iterations for IMLE using the range differences for estimating the object location

can be largely reduced, resulting in less computation time than the proposed algo-

rithm. However, the running time will be substantially escalated if it is not initialized

properly and the thresholding effect will appear early.

Table 3.1: Computational complexity comparison for the simulation results in Fig.
3.3

Proposed
Solution

IMLE/
Hyperbolic

IMLE/
Joint

Normalized
Computation time 1 0.89 2.42

We have shown in Section 3.3.2 that the proposed solution is able to achieve the

CRLB performance over the small error region under Gaussian noise. Figs. 3.3-3.6

illustrate that the CRLB accuracy remains attainable by the proposed algorithm at

high range noise levels (low SNR in signal reception). Using the same receiver con-

figuration in Fig. 3.3 while keeping the object angle at atan(2.5), Fig. 3.7 evaluates
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Figure 3.7: Performance of the proposed solution as the object range increases under
different noise levels

the performance of the proposed algorithm in a different perspective as the range of

the object relative to the receiver baseline (
√

2×2000 m) increases, at range measure-

ment noise power σ2 equal to [0.1, 1, 10, 100, 1000] m2. As the noise power increases,

the maximum object range that the proposed algorithm can yield the CRLB per-

formance decreases. This is not unexpected as the noise tolerance reduces when the

localization geometry becomes poor, i.e. the object is farther away from the receivers.

The observations are similar in the presence of receiver position errors, as the pro-

posed algorithm translates the receiver position errors to an increase in the range

measurement noise.

3.5.2 Optimal Geometry

We shall validate the optimal geometries derived in Section 3.4. The measurement

noise is IID so that σ2
r = σ2

d. The determinant of FIM det(FIMr,d(uo)) and the inverse

of the CRLB trace 1/Tr(CRLBr,d(uo)) are normalized by their maximum values for

illustration.
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Figure 3.8: normalized det(FIMr,d) as function of β1 and β2
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Figure 3.9: normalized 1/Tr(CRLBr,d) as function of β1 and β2

First, we use two receivers to locate an object at uo = [0, 0]T m, with a transmitter

at to = [100, 0]T m. The receiver positions are si = [r cos βi, r sin βi]
T m, where βi is

the receiver-object bearing angle and r = 10 m for having the receivers near the object.

The contour plots in Figs. 3.8 and 3.9 for det(FIMr,d(uo)) and 1/Tr(CRLBr,d(uo))

confirm the optimum angles (3.96) and (3.108) from the derivations.
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Figure 3.10: normalized det(FIMr,d) as function of β and α
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Figure 3.11: normalized 1/Tr(CRLBr,d) as function of β and α

Second, we use two receivers placed symmetrically with respect to the x-axis to

locate an object at uo = [0, 0]T m with a transmitter at to = [1, 0]T m. Figs. 3.10

and 3.11 give the contour plots of det(FIMr,d(uo)) and 1/Tr(CRLBr,d(uo)) as the

receiver-object angle β and receiver-transmitter angle α vary. The former reaches the

maximum value at (β = −60 deg, α = −180 deg) or (β = 60 deg, α = 180 deg), and

85



Figure 3.12: normalized det(FIMr,d) as function of r1 and r2

Figure 3.13: normalized 1/Tr(CRLBr,d) as function of r1 and r2

the latter at (β = −64 deg, α = −180 deg) and (β = 64 deg, α = 180 deg). They

validate the analysis that besides the conditions of (3.96) and (3.108), the optimal

geometries also require the receiver-transmitter angle approaches ±180 deg.

Next, we use two receivers to locate an object at uo = [0, 0]T m with a transmitter

at to = [100, 0]T m. The receiver positions are generated by s1 = [r1 cos β, r1 sin β]T m
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and s2 = [r2 cos β, −r2 sin β]T m, where β = 60 deg for det(FIMr,d(uo)) and 64 deg

for 1/Tr(CRLBr,d(uo)). Figs. 3.12 and 3.13 illustrate their values as r1 and r2 vary.

It confirms the receivers should be placed near the object. Even if the receivers are

at 50 units away from the object, we still have around 90% of the maximum values

of det(FIMr,d(uo)) and 1/Tr(CRLBr,d(uo)). From our study, it appears putting the

receivers at half the distance away from the object as the transmitter would yield

approximately the optimum results.

At last, we use the genetic algorithm to find the minimum of −det(FIMr,d(uo))

and Tr(CRLBr,d(uo)) for further confirmation of the optimum geometries. There

are four receivers at si = [ri cos βi, ri sin βi]
T m and a transmitter at to = [d, 0]T m,

and the object is at uo = [0, 0]T m. The optimization parameters are ri, βi for

i = 1, . . . , 4 and d, with their search ranges 2 m ≤ ri ≤ 10 m, −π rad ≤ βi ≤ π rad

and 50 m ≤ d ≤ 100 m. The maximum generation number of the genetic algorithm

is 3000 and it stops if the average relative change of the best fitness function value

over 50 generations is not more than 10−15. The numerical solutions for the two

optimization criteria are shown in Table 3.2. First, the results for receiver-object

angles βi validate (3.96) and (3.108). Second, ri = 2 m and d = 100 m support the

theoretical analysis that (i) the receivers should be deployed symmetrically on the

two sides of the line joining uo and to, (ii) the receivers should be placed close to the

object, and (iii) the transmitter should be far away from the object.

Table 3.2: The genetic algorithm solution for optimal geometry with four receivers
criterion r1 r2 r3 r4 β1 β2 β3 β4 d

−det(FIMr,d(uo)) 2 2 2 2 −60◦ −60◦ 60◦ 60◦ 100
Tr(CRLBr,d(uo)) 2 2 2 2 −64◦ −64◦ 64◦ 64◦ 100

In practice, only some coarse estimate of the unknown location is available for

design purpose, such as in resource allocation that exploits the uncertainty region of

the object position formed by the coarse estimate [56, 57, 58]. For the problem of

optimal receiver allocation, a coarse estimate of the object and transmitter locations
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may be sufficient if the objective measure is not sensitive to their exact optimal

positions. The results in Fig. 3.10 and Fig. 3.11 show that the normalized det(FIMr,d)

and 1/Tr(CRLBr,d) remain large over a considerable region around the exact values

of the optimal angles. In Fig. 3.10 for the det(FIMr,d) measure, the optimal angles

are (α, β) = (180, 60) deg. The achievable det(FIMr,d) is within 90% of the best

value for α within 145 to 180 deg and β within 47 to 73 deg. In Fig. 3.11 for

the 1/Tr(CRLBr,d) measure, the optimal angles are (α, β) = (180, 64) deg. The

achievable 1/Tr(CRLBr,d) is within 90% of the best value for α within 145 to 180 deg

and β within 50 to 80 deg. We believe the optimum placement of the receiving sensors

is not sensitive to the object and transmitter locations and their coarse estimates

would be sufficient for achieving the (near) optimal receiver placement.

3.6 Conclusion

This chapter investigates a multistatic system to locate an object in which the trans-

mitter position is not available. Starting from the fundamental study via the CRLB,

we illustrate the performance improvement by using both the indirect- and direct-

path measurements for joint estimation of the object and the transmitter position, in

contrast to using the indirect measurement alone via the hyperbolic approach or by

introducing a new variable for the transmitter-object distance. An algebraic closed-

form solution is proposed to solve the nonlinear joint estimation problem, with the

first-order analysis in confirming the CRLB performance under Gaussian noise in the

small error region. The algorithm is extended to account for receiver position errors

as well as the use of multiple transmitters at unknown locations. We also derived the

optimum receiver placement for such a localization system in the 2-D scenario when

the number of receivers is even. The loss in the best achievable performance is 3dB

when the optimum receiver placement criterion is the minimization of the estima-
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tion confidence region and is 1.16 dB when it is the minimization of the estimation

variance.

The proposed localization method assumes the transmitter is cooperative so that

timestamp is available in the transmitted signal for the receivers to obtain the indirect-

and direct-path range measurements. In the situation where the transmitter is not

intentional such as for the passive coherent system, the signal sent time is often not

known. If the transmitted signal has a well-defined pattern such as some standard

synchronization or pilot sequence, it would still be able to estimate the indirect- and

direct-path ranges but with an unknown constant offset added. The extension of

such a situation will be illustrated in the next chapter. The proposed method is

not applicable for the non-cooperative scenario where the transmitted signal has no

timestamp or the transmitted signal does not have some known pattern.
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Chapter 4

Multistatic Moving Object
Localization by a Moving
Transmitter of Unknown Location
and Offset

The previous Chapter shows that by incorporating the direct-path measurements and

considering the transmitter position as an auxiliary unknown in addition to the object

location, the positioning accuracy of the object increases. It assumes the transmitter,

although at an unknown location, is cooperative and synchronized with the receivers

for acquiring the indirect- and direct-path time delays. It studied the static case only

where both the transmitter and object are at fixed locations without motion.

This chapter advances the research and considers the non-cooperative situation

in which the transmitter is not synchronized with receivers. In such a case, the

receivers are still able to obtain the time delays by exploiting the known structure

or pilot pattern in the signal, but subject to an unknown amount of time offset.

We also extend the scenario to dynamic for locating the position and velocity of

a moving object, where the transmitter is moving as well. An example of such a

transmitter could be an unmanned aerial vehicle (UAV) in radar or an autonomous
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underwater vehicle (AUV) in sonar. The motion effects create Doppler shifts in

the frequency observations that can be exploited to better locate the object. The

dynamic scenario, on the other hand, leads to a new level of complexity where not

only the transmitter position but also its velocity is not known, not to mention the

frequency observations are also subject to an unknown frequency offset. This chapter

provides a fundamental investigation of moving object localization using time delay

and frequency observations having the unknown amount of time and frequency offsets,

by a moving transmitter of unknown position and velocity.

In this chapter, we first formulate the localization problem in Section 4.1. Section

4.2 evaluates the usefulness of the direct-path measurements for the dynamic localiza-

tion scenarios from the perspective of CRLB analysis. In Section 4.3, the degradation

due to time and frequency offsets is investigated. The condition that can eliminate

the degradation is derived as well. We proposed a new estimator based on the two-

stage processing technique to jointly estimate the object location and velocity, the

transmitter position and velocity, and the time and frequency offsets in Section 4.4.

The estimation performance is also analyzed in the same section. Optimum receiver

placement using TOA measurements only in the presence of time offset is derived in

Section 4.5. Section 4.6 presents the simulations and Section 4.7 closes this chapter

with some concluding remarks.

4.1 Localization Scenario

We are interested in determining the position uo ∈ RK and the velocity u̇o ∈ RK

of an object as shown in Fig. 4.1, using M synchronized receivers/sensors at known

positions si ∈ RK , i = 1, 2, . . . ,M , in a K dimensional space. To accomplish this task,

a transmitter at unknown position to ∈ RK and velocity ṫo ∈ RK emits a narrowband

signal (signal with small bandwidth to carrier frequency ratio). The signal arrives at
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Figure 4.1: Localization geometry

the object, reflects back and reaches the sensors. The sensors extract the positioning

parameters from the observed signals and use them to locate the position and velocity

of the object.

The transmitter is non-cooperative, meaning that it is not synchronized with the

sensors and its carrier frequency is not known. The consequence is the received signals

will have unknown time and frequency offsets with respect to the emitted signal.

We shall consider two positioning parameters, the time of arrival (TOA) and

frequency of arrival (FOA). They will be used interchangeably with the range and

range rate, respectively, as they are related by scaling factors.

4.1.1 TOA

Let c be the signal propagation speed that is known. As illustrated in Fig. 4.1,

the TOA of the transmitted signal reflected by the object and arrived at sensor i,

i = 1, 2, . . . ,M , after multiplying with the propagation speed c, is

roi = ‖uo − si‖+ ‖uo − to‖ . (4.1)

All variables on the right are not known except si.
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In addition to the indirect-path TOA, sensor i can also obtain the direct-path

TOA from the line-of-sight propagation between the transmitter and receiver,

doi = ‖to − si‖ . (4.2)

The transmitter signal emission time is not known and the observed TOAs have

an unknown amount of time offset boτ/c, which is common to all sensors. Including

noise, the TOA measurements in terms of distances are mr,i = roi + boτ + εmr,i and

md,i = doi + boτ + εmd,i . Hence

mr = [mr,1, mr,2, . . . , mr,M ]T = ro + boτ1 + εmr , (4.3a)

md = [md,1, md,2, . . . , md,M ]T = do + boτ1 + εmd
. (4.3b)

ro and do are the true values by collecting roi and doi from (4.1) and (4.2). The

noise terms εmr = [εmr,1 , εmr,2 , . . . , εmr,M ]T and εmd
= [εmd,1 , εmd,2 , . . . , εmd,M ]T are

modeled by zero-mean Gaussian random vectors with known covariance matrices Qmr

and Qmd
.

4.1.2 FOA

The object and transmitter are moving and relative motion appears in the indirect-

path propagation. If the transmitted carrier frequency is f oc , the received frequency

at receiver i is [32]

for,i = foc

(
1−

(
u̇o − ṫo

)T
ρuo−to/c

) (
1− u̇oTρuo−si/c

)
. (4.4)

In terms of the range rate ṙoi = (1 − f or,i/f oc )c and after neglecting the second order

relative velocity term,

ṙoi =
(
u̇o − ṫo

)T
ρuo−to + u̇oTρuo−si . (4.5)
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The direct-path propagation contains the Doppler effect from the transmitter

motion. The received frequency and the corresponding range rate are

f od,i = f oc
(
1− ṫoTρto−si/c

)
, (4.6)

ḋoi = ṫoTρto−si . (4.7)

The transmitted carrier frequency f oc is not known. Using the local assumed

carrier frequency instead, the observed range rates are subject to an unknown amount

of offset bof , and it is common to all sensors. Thus the observations are mṙ,i =

ṙoi + bof + εmṙ,i and mḋ,i = ḋoi + bof + εmḋ,i , where εmṙ,i and εmḋ,i are noise. The

measurement vectors are

mṙ = [mṙ,1, mṙ,2, . . . , mṙ,M ]T = ṙo + bof1 + εmṙ
, (4.8a)

mḋ = [mḋ,1, mḋ,2, . . . , mḋ,M ]T = ḋo + bof1 + εmḋ
. (4.8b)

The true values ṙo and ḋo are defined by ṙoi and ḋoi from (4.5) and (4.7), i = 1, 2, . . . ,M .

The noise vectors εmṙ
= [εmṙ,1 , εmṙ,2 , . . . , εmṙ,M ]T , εmḋ

= [εmḋ,1 , εmḋ,2 , . . . , εmḋ,M ]T are

zero-mean Gaussian with known covariance matrices Qmṙ
and Qmḋ

.

For ease of illustration, we shall assume that the additive noise in the four sets of

measurements mr, md, mṙ and mḋ are uncorrelated. The indirect-path measurement

vector is

mI = [ mT
r , mT

ṙ ]T = mo
I + εmI

, (4.9)

where mo
I is the true value. The composite noise vector is εmI

= [ εTmr
, εTmṙ

]T , which

is zero-mean with covariance matrix QmI
= diag(Qmr ,Qmṙ

). The direct-path mea-

surement vector is similarly defined as

mD = [ mT
d , mT

ḋ
]T = mo

D + εmD
, (4.10)
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and mo
D is the true value. The noise εmD

= [ εTmd
, εTmḋ

]T has zero-mean and covari-

ance matrix QmD
= diag(Qmd

,Qmḋ
).

It appears the direct-path measurements md and mḋ do not contain the unknowns

uo and u̇o of interest and may not be useful. Indeed, the indeterminate factor ‖uo−to‖

of roi in (4.1) and the offset term boτ can be removed by applying subtraction operation

between two indirect-path TOA measurements. The unknown factor (u̇o− ṫo)Tρuo−to

in (4.5) and offset bof can be handled in a similar manner. It is unclear if the direct-

path measurements can add value in locating the object.

4.2 CRLB

This section investigates and contrasts two CRLBs to examine the usefulness of the

direct-path measurements. The CRLBs are for the object position and velocity rep-

resented by the unknown vector

θo = [uoT , u̇oT ]T . (4.11)

One uses only the two sets of indirect-path measurements mI. The other applies all

four sets of measurements mI and mD. We shall use the symbol ∇ab to denote the

partial derivative of the parametric form of ao with respect to boT evaluated at the

true values defined in (3.5).

4.2.1 CRLB Using Indirect-Path Measurements

We remove the dependency of transmitter position in roi and range offset boτ in the

observation by subtracting the TOA measurement of sensor 1 from that of sensor i, i =

2, 3, . . . ,M . The same approach is used to eliminate the dependency of transmitter

position and velocity in ṙoi and range rate offset bof in the FOA measurements. Let us
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define the 2M × 2(M − 1) matrix

H =

 [−1M−1, IM−1]T 0M×(M−1)

0M×(M−1) [−1M−1, IM−1]T

 , (4.12)

to represent the differencing. The subtraction process is a linear operation and the

resulting data vector HTmI remains to be Gaussian distributed. Applying HTmI for

the estimation of θo, the CRLB is derived in Appendix C.1.1 as

CRLBmI
(θo) = (∇T

mIθ
KmI

∇mIθ)
−1 , (4.13)

KmI
= H(HTQmI

H)−1HT . (4.14)

Appendix C.1.1 provides an alternative form of (4.13),

CRLBmI
(θo) = (FIMmI

(θo)− FIMLoss)
−1 , (4.15a)

FIMmI
(θo) = ∇T

mIθ
Q−1

mI
∇mIθ (4.15b)

FIMLoss = ∇T
mIθ

Q−1
mI

11TQ−1
mI
∇mIθ/(1

TQ−1
mI

1) . (4.15c)

FIMmI
(θo) is the Fisher Information Matrix (FIM), whose inverse is the CRLB for

θo when the transmitter position and velocity as well as the offsets boτ and bof are

known in the measurements mI. Thus the second term FIMLoss is the loss in the FIM

due to the unknown transmitter parameters and offsets. The loss term, interesting

though, is governed by the constant vector 1. This turns out to be reasonable as the

transmitter dependency term and the offset component are common in the TOA as

well as in the FOA measurements.
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4.2.2 CRLB Using Indirect- and Direct-path Measurements

In addition to the intended unknown θo, the measurements also contain the nuisance

variables ϕo = [toT , ṫoT , boτ , b
o
f ]
T . The unknown vector for CRLB evaluation is

ψo = [θoT , ϕoT ]T = [ uoT , u̇oT , toT , ṫoT , boτ , b
o
f ]T . (4.16)

From the Gaussian data model, Appendix C.1.2 shows that the CRLB for θo using

both sets of measurements is

CRLBmImD
(θo) =

(
∇T

mIθ
K−1

mImD
∇mIθ

)−1
, (4.17)

KmImD
= QmI

+ ∇mIϕ(∇T
mDϕ

Q−1
mD

∇mDϕ)−1∇T
mIϕ

. (4.18)

An interesting interpretation of (4.17) is in order through (4.15b). The optimum

estimation accuracy in this case is equivalent to estimating the object location using

the indirect-path measurements only having the transmitter parameters and offsets

known, with the measurement quality diluted in terms of an increase of the measure-

ment error covariance matrix by the second PSD term on the right of (4.18). The

amount of dilution is inversely proportional to the accuracy of the direct-path mea-

surements through Q−1
mD

. In the limiting case where the direct-path measurements are

clean without noise, the performance loss due to the unknown transmitter parameters

and offsets is gone!

4.2.3 Comparison

Comparison of the two CRLBs (4.13) and (4.17) will provide insight if the direct-

path measurements can improve performance. Applying linear algebra manipulation
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through the projection matrix technique, Appendix C.1.3 shows that

CRLBmI
(θo) � CRLBmImD

(θo) . (4.19)

(4.19) is always true regardless of the localization geometry, the quality of the direct-

path measurements, the transmitter parameters and the amount of offsets. The PSD

relation (4.19) implies that the direct-path measurements are beneficial to improve

the estimation accuracy of θo.

Chapter 3 provides a similar conclusion that the direct-path measurement can

improve estimation accuracy of the object location, for the simpler case of static

scenario where both the object and transmitter are static and there is no time offset.

The result (4.19) here is much stronger that for the dynamic scenario where the

object and transmitter are moving and even if unknown time and frequency offsets

are present, the direct-path measurements remain to be able to provide positive effect

in increasing the localization performance.

4.3 Effect of Offsets

4.3.1 Degradation by Offsets

While the CRLB (4.17) of using both mI and mD is not affected by the values of

the offsets, degradation in localization accuracy could be present when they are not

known. We shall contrast the CRLBs between the presence and absence of offsets

and quantify the performance loss.

In the case when the time and frequency offsets are absent such as in the cooper-

ative situation where the transmitter is synchronized with the sensors, the nuisance

variable vector reduces to ϕo = [toT , ṫoT ]T . Following the same steps as in Section
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4.2.2, the resulting CRLB is

CRLBmImD
(θo) = (∇T

mIθ
K
−1

mImD
∇mIθ )−1 , (4.20)

KmImD
= QmI

+ ∇mIϕ(∇T

mDϕ
Q−1

mD
∇mDϕ)−1∇T

mIϕ
, (4.21)

∇mIϕ =

∇mrt 0M×K

∇mṙt ∇mṙṫ

 , ∇mDϕ =

∇mdt 0M×K

∇mḋt
∇mḋṫ

 . (4.22)

Comparing (4.17) and (4.20) reveals the difference between them comes from KmImD

and KmImD
that are given in (4.18) and (4.21). Let M = [I2K , 02K×2]T . The gradient

matrices ∇mIϕ and ∇mDϕ in (C.8) are related to those in (4.22) by

∇mIϕ = ∇mIϕM , ∇mDϕ = ∇mDϕM . (4.23)

The difference of KmImD
and KmImD

is

KmImD
−KmImD

= ∇mIϕJ∇T
mIϕ

, (4.24a)

J =
(
∇T

mDϕ
Q−1

mD
∇mDϕ

)−1 −M
(
MT∇T

mDϕ
Q−1

mD
∇mDϕM

)−1
MT . (4.24b)

We shall show that J is PSD. Based on (C.8d), ∇T
mDϕ

Q−1
mD

∇mDϕ can be expressed

in block form

∇T
mDϕ

Q−1
mD

∇mDϕ =

 X Y

Y
T

Z

 , (4.25)

where X = MT∇T
mDϕ

Q−1
mD

∇mDϕM, Y = MT∇T
mDϕ

Q−1
mD

(I2 ⊗ 1M) and Z = (I2 ⊗

1M)TQ−1
mD

(I2⊗1M). Using the block matrix inversion formula for the inverse of (4.25)

yields

J =

 X
−1

YCY
T
X
−1

B

BT C

 , (4.26)
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where C = (Z −Y
T
X
−1

Y)−1 and B = −X
−1

YC. First, the existence of inverse of

(4.25) implies C is positive definite (PD). Second, directly substituting B shows that

the Schur complement [51] of C is

X
−1

YCY
T
X
−1 −BC−1BT = 02K×2K . (4.27)

Using the Schur complement condition for PSD matrix [51] leads to J � 0 and hence

from (4.24a)

KmImD
−KmImD

� 0 . (4.28)

It implies ∇T
mIθ

K
−1

mImD
∇mIθ � ∇T

mIθ
K−1

mImD
∇mIθ. As a result, we conclude from

(4.17) and (4.20) that

CRLBmImD
(θo) � CRLBmImD

(θo) . (4.29)

It confirms the existence of time and frequency offsets can degrade the estimation

accuracy. Interesting though, the relation is PSD instead of PD implies the possibility

that the degradation can be absent under some condition. We shall derive such a

condition in the next subsection.

4.3.2 Eliminating Degradation from Unknown Offsets

The degradation from unknown offsets disappears if

KmImD
−KmImD

= 0 . (4.30)

Substituting (C.8b) and (4.26) and together with (C.1c), (C.1e) and (C.1j), (4.24a)

becomes

KmImD
−KmImD

= (I2 ⊗ 1)(P− I2)C(P− I2)T (I2 ⊗ 1)T , (4.31)
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P =

 ρTto−uo 0TK

−vTu,tP⊥to−uo ρTto−uo

X
−1

Y . (4.32)

The pre-multiplication of I2 ⊗ 1M and post-multiplication of its transpose in (4.31)

replicate M2 times the term (P − I2)C(P − I2)T . C is PD. Hence (4.30) will be

fulfilled if

P = I2 . (4.33)

(4.33) is the condition when satisfied can eliminate the performance degradation

from unknown offsets for IID Gaussian noise. The matrix P depends on the relative

positions and velocities among the object, transmitter and sensors. It translates to

certain configuration that is resilient to the offsets.

To gain insight about such a configuration, we simplify further by assuming

vu,t ' 0 and vt,i ' 0 for i = 1, 2, . . . ,M . From (C.2b), the first assumption will

be satisfied if the object and the transmitter are not near such that the relative ve-

locity is small compared to their separation. The second assumption, from (C.2c),

is fulfilled when the transmitter is far from the sensors so that movement of the

transmitter is negligible.

Under the two assumptions we have

P⊥to−uovu,t ' 0 , ∇mḋt
' 0 , (4.34)

where (C.1h) is used. Substituting X and Y defined below (4.25), together with

(C.1k), (C.8d) and (4.34), (4.33) reduces to

ρTto−uo(∇T
mdt

Q−1
md

∇mdt)
−1∇T

mdt
Q−1

md
1 = 1, (4.35a)

ρTto−uo(∇T
mdt

Q−1
mḋ

∇mdt)
−1∇T

mdt
Q−1

mḋ
1 = 1 . (4.35b)

If the noise is IID such that Qmd
= σ2

md
IM and Qmḋ

= σ2
mḋ

IM , the two requirements
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Table 4.1: Sample solutions for the angles αi that satisfy (4.38),
A=Tr(CRLBmImD

(θo)) and B=Tr(CRLBmImD
(θo)). For A and B, the settings

are u = [0, 0]Tm, u̇ = [10, 25]Tm/s, t = [5000, 0]Tm, ṫ = [−15, 20]Tm/s,
si = [2000 ∗ cos(αi) + 5000, 2000 ∗ sin(αi)]

Tm, σ2
mr

= σ2
md

= 1 m2,
σ2
mṙ

= σ2
mḋ

= 0.1 (m/s)2.

α1 α2 α3 α4 A B
−50.2◦ −77.4◦ 156.3◦ −99.6◦ 4.7 4.7
−169.6◦ 76.7◦ 114.4◦ 92.3◦ 6.3 6.3
−90.0◦ 75.4◦ −110.4◦ 151.6◦ 2.7 2.7
165.9◦ −20.4◦ 151.6◦ −53.2◦ 6.7 6.7
−169.9◦ −64.9◦ 137.9◦ −128.9◦ 3.6 3.6

in (4.35) become the same expression

ρTto−uo(∇T
mdt

∇mdt)
−1∇T

mdt
1 = 1 , (4.36)

where ∇mdt is given by (C.1g). Let us consider the 2-D case for illustration. Without

loss of generality, we translate and rotate the coordinate system so that uo is at the

origin and the transmitter is on the positive side of the x-axis. Let αi be the angle of

the i-th sensor viewed from the transmitter so that ρto−si = −[cosαi, sinαi]
T . The

condition (4.36) can be expressed in terms of αi by

∑M
i=1 sinαi

∑M
i=1 sinαi cosαi −

∑M
i=1 sin2 αi

∑M
i=1 cosαi∑M

i=1 sin2 αi
∑M

i=1 cos2 αi − (
∑M

i=1 sinαi cosαi)2
= 1 , (4.37)

which is equivalent to∑
i,j

(
(sinαj − sinαi) sin(αi − αj)

)∑
i,j sin2(αi − αj)

= 1 , (4.38)

where i = 1, 2, . . . ,M − 1 and j = i+ 1, i+ 2, . . . ,M .

There are numerous geometries defined by the angles αi that satisfy equation

(4.38) for avoiding the performance degradation. For M = 4 sensors, TABLE 4.1

gives a few such geometries. We have Tr(CRLBmImD
(θo)) ' Tr(CRLBmImD

(θo)) for

each with the difference in the order of 10−4. The CRLBs are different for different
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geometries.

4.4 Algebraic Closed-Form Solution

This section develops a new algebraic closed-form solution for localizing the object

using both the indirect-path and direct-path measurements. The derivation is based

on the two stage framework [2]. The first stage transforms the data model equations

and introduces auxiliary variables that enable the use of linear estimation technique.

The second stage refines the solution by exploiting the auxiliary variables through

another nonlinear transformation. The approximations in the equations come from

dropping the second order noise terms, unless stated otherwise.

The unknown vector is ψo defined in (4.16), where θo is the vector of desired

unknowns shown in (4.11) and ϕo contains the nuisance variables indicated above

(4.16). We summarize the major steps and equations of the algorithm below. The

derivation details are in Appendix C.2.

First Stage

Let us first transform the indirect-path measurement. Representing roi by mr,i− boτ −

εmr,i from (4.3a), the range model expression (4.1) is

mr,i − boτ − ‖uo − to‖ = ‖uo − si‖+ εmr,i . (4.39)

Squaring both sides leads to

‖uo − si‖ εmr,i '
1

2
(m2

r,i − ‖si‖2) + sTi uo −mr,ib
o
τ −mr,ia

o(1)− ao(2)− 1

2
ao(3) ,

(4.40)
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where we have introduced three auxiliary variables

ao(1) = ‖uo − to‖ , (4.41a)

ao(2) = uoT to − ‖uo − to‖boτ − ‖to‖2 , (4.41b)

ao(3) = ‖to‖2 − boτ
2 . (4.41c)

Putting ṙoi = mṙ,i − bof − εmṙ,i , the range rate from (4.5) is

mṙ,i − bof − ρTuo−to(u̇o − ṫo) = ρTuo−siu̇
o + εmṙ,i . (4.42)

Multiplying both sides by ‖uo − si‖ and using (4.39) on the left side for ‖uo − si‖,

we arrive at

ρTuo−siu̇
o εmr,i + ‖uo − si‖ εmṙ,i 'mr,imṙ,i + sTi u̇

o −mṙ,ib
o
τ −mr,ib

o
f

−mṙ,ia
o(1)−mr,ia

o(4)− ao(5)− ao(6) .

(4.43)

The auxiliary variables introduced in (4.43) are

ao(4) = ρTuo−to(u̇
o − ṫo) , (4.44a)

ao(5) = uoT ṫo + toT u̇o − ‖uo − to‖bof − ρTuo−to(u̇o − ṫo)boτ − 2toT ṫo , (4.44b)

ao(6) = toT ṫo − boτbof . (4.44c)

(4.40) and (4.43) are the pseudo-linear equations for the indirect-path measure-

ments when considering the auxiliary variables are independent with the unknowns.

For the direct-path measurements, the range model (4.2) after substituting doi =

md,i − boτ − εmd,i is

md,i − boτ = ‖to − si‖+ εmd,i . (4.45)
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Squaring both sides gives

‖to − si‖ εmd,i '
1

2
(m2

d,i − ‖si‖2) + sTi to −md,ib
o
τ −

1

2
ao(3) . (4.46)

When we replace ḋoi by mḋ,i − bof − εmḋ,i , the range rate model (4.7) becomes

mḋ,i − b
o
f = ρTto−si ṫ

o + εmḋ,i . (4.47)

Multiplying both sides by ‖to − si‖, using (4.45) for ‖to − si‖ on the left side and

applying (4.47) for the grouped term multiplied with εmd,i give

ρTto−si ṫ
o εmd,i + ‖to − si‖ εmḋ,i ' md,imḋ,i + sTi ṫo −mḋ,ib

o
τ −md,ib

o
f − ao(6) . (4.48)

(4.46) and (4.48) are the pseudo-linear equations for the direct-path measurements.

Incorporating the auxiliary vector ao defined by (4.41) and (4.44) to the original

unknown vector (4.16) forms the unknown for the first stage processing,

ηo =
[
θoT , ϕoT , aoT

]T
=
[
uoT , u̇oT , toT , ṫoT , boτ , b

o
f , aoT

]T
. (4.49)

Collecting the equations from (4.40), (4.43), (4.46) and (4.48) separately for i =

1, 2, . . . ,M produces

Bmrεmr ' hmr −Gmrη
o , (4.50a)

Bmṙ
εmr + Bmrεmṙ

' hmṙ
−Gmṙ

ηo , (4.50b)

Bmd
εmd
' hmd

−Gmd
ηo, (4.50c)

Bmḋ
εmd

+ Bmd
εmḋ
' hmḋ

−Gmḋ
ηo . (4.50d)
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The matrices and vectors are defined as

Bmr = diag (‖uo − s1‖, ‖uo − s2‖, . . . , ‖uo − sM‖) , (4.51a)

hmr =
1

2

[
(m2

r,1 − ‖s1‖2), . . . , (m2
r,M − ‖sM‖2)

]T
, (4.51b)

Gmr = [gmr,1 , gmr,2 , . . . , gmr,M
]T , (4.51c)

gmr,i
=

[
−sTi , 0TK , 0TK , 0TK , mr,i, 0, mr,i, 1,

1

2
, 0T3

]T
, (4.51d)

Bmṙ
= diag

(
ρTuo−s1 u̇

o, ρTuo−s2 u̇
o, . . . , ρTuo−sM u̇o

)
, (4.51e)

hmṙ
= [mr,1mṙ,1, mr,2mṙ,2, . . . , mr,Mmṙ,M ]

T
, (4.51f)

Gmṙ
= [gmṙ,1

, gmṙ,2
, . . . , gmṙ,M

]T , (4.51g)

gmṙ,i =
[
0TK , −sTi , 0T2K , mṙ,i, mr,i, mṙ,i, 0

T
2 , mr,i, 1, 1

]T
, (4.51h)

Bmd
= diag ( ‖to − s1‖, ‖to − s2‖, . . . , ‖to − sM‖ ) , (4.51i)

hmd
=

1

2

[
(m2

d,1 − ‖s1‖2), . . . , (m2
d,M − ‖sM‖2)

]T
, (4.51j)

Gmd
= [gmd,1

, gmd,2
, . . . , gmd,M

]T , (4.51k)

gmd,i
=

[
0TK , 0

T
K , −sTi , 0TK , md,i, 0

T
3 ,

1

2
, 0T3

]T
, (4.51l)

Bmḋ
= diag

(
ρTto−s1 ṫ

o, ρTto−s2 ṫ
o, . . . , ρTto−sM ṫo

)
, (4.51m)

hmḋ
=
[
md,1mḋ,1, md,2mḋ,2, . . . , md,Mmḋ,M

]T
, (4.51n)

Gmḋ
= [gmḋ,1

, gmḋ,1
, . . . , gmḋ,1

]T , (4.51o)

gmḋ,1
=
[
0TK , 0

T
K , 0

T
K , −sTi , mḋ,i, md,i, 0

T
5 , 1

]T
. (4.51p)

Stacking (4.50a)-(4.50d) together gives

B1ε = h1 −G1η
o , (4.52)

B1 =



Bmr 0 0 0

Bmṙ
Bmr 0 0

0 0 Bmd
0

0 0 Bmḋ
Bmd


, (4.53a)
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h1 = [hTmr
, hTmṙ

, hTmd
, hTmḋ

]T , (4.53b)

G1 = [GT
mr
, GT

mṙ
, GT

md
, GT

mḋ
]T . (4.53c)

The noise vector is ε = [εTmI
, εTmD

]T , whose covariance matrix is Q = diag(QmI
, QmD

).

Considering the elements of ηo as independent variables, the weighted least-

squares (WLS) solution to (4.52) is

η = (GT
1 W1G1)−1GT

1 W1h1 . (4.54)

W1 is the weighting matrix whose best choice that achieves the smallest estimation

covariance matrix in the PD sense is the inverse of the covariance matrix of the error

B1ε [50]

W1 = E[B1εε
TBT

1 ]−1 =
(
B1QBT

1

)−1
. (4.55)

Subtracting both sides of (4.54) by ηo, multiplying by the transpose and taking

expectation give

cov(η) ' (GT
1 W1G1)−1 , (4.56)

where the noise in G1 is assumed negligible.

Second Stage

The solution (4.54) from the first stage assumes the auxiliary vector ao is an indepen-

dent variable with the actual unknown vector ψo. This is not the case as apparent

in (4.41) and (4.44). The estimation accuracy for ψo will increase by exploiting the

dependency.

Let us use •̂ to denote the solution for •o in (4.54) with the estimation error is ∆•̂.

The first stage solution (4.54) is essentially η = [ûT , ˆ̇uT , t̂T , ˆ̇tT , b̂τ , b̂f , â
T ]T , Appendix

C.3 gives the correspondence of the elements of η to those individual estimates. The
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estimation error of η is ∆η.

In terms of the individual variables of ηo defined in (4.49),

∆û = û− uo , ∆ˆ̇u = ˆ̇u− u̇o (4.57a)

∆t̂ = t̂− to , ∆ˆ̇t = ˆ̇t− ṫo , (4.57b)

∆b̂τ = b̂τ − b̂oτ , ∆b̂f = b̂f − b̂of . (4.57c)

We shall express each element of the auxiliary variable ao in terms of the indepen-

dent unknowns in ψo. Squaring both sides of (4.41a) and putting ao(1) = â(1)−∆â(1)

form

â(1)2 − 2ao(1)∆â(1) ' (uo − to)Tuo − (uo − to)T to . (4.58)

To handle the coupled product terms of uo and to, we express those inside the brackets

in terms of û and t̂ from (4.57a) and (4.57b). Rearranging yields

−(uo − to)T∆û + (uo − to)T∆t̂ + 2ao(1)∆â(1)

' â(1)2 − (û− t̂)Tuo + (û− t̂)T to .

(4.59)

(4.59) is a linear equation of the two unknowns uo and to. The rest of the quantities on

the right side are known from the first stage solution and the left side is the equation

error.

We apply the same technique to obtain linear equations of the unknowns from

(4.41b), (4.41c) and (4.44a)-(4.44c). The details of derivations are in Appendix C.2.

The resulting equations are (C.21), (C.22), (C.24), (C.26) and (C.27).

The unknown vector for the second stage is ψo defined in (4.16). Collecting (4.57),

(4.59), (C.21), (C.22), (C.24), (C.26) and (C.27) establish the linear matrix equation

B2∆η ' h2 −G2ψ
o . (4.60)
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In (4.60),

B2 =

I4K+2 0(4K+2)×6

B23 B24

 , (4.61a)

B24 =



2ao(1) 0 0 0 0 0

2boτ 2 0 0 0 0

0 0 1 0 0 0

2ao(4) 0 0 2ao(1) 0 0

2bof 0 0 2boτ 2 0

0 0 0 0 0 2


, (4.61b)

h2 =[ψ̂T , â(1)2, 2â(2), â(3), 2â(1)â(4), 2â(5), 2â(6)]T , (4.61c)

G2 =
[
I4K+2 , GT

22

]T
, (4.61d)

and B23 and G22 are given at the bottom of the page.

The WLS solution to (4.60) is the final estimate

ψ = (GT
2 W2G2)−1GT

2 W2h2 . (4.62)

The ideal weighting matrix that yields the least amount of estimation variance is the

inverse of the covariance matrix of the error B2∆η, i.e. E[B2∆η∆ηTBT
2 ]−1. Using

B23 =



−(uo − to)T 0TK (uo − to)T 0TK 0 0

−toT 0TK −(uo − 2to)T 0TK 0 0

0TK 0TK −toT 0TK boτ 0
−(u̇o − ṫo)T −(uo − to)T (u̇o − ṫo)T (uo − to)T 0 0

−ṫoT −toT −(u̇o − 2ṫo)T −(uo − 2to)T 0 0

0TK 0TK −ṫoT −toT bof boτ

 ,

G22 =



(û− t̂)T 0TK −(û− t̂)T 0TK 0 0

t̂T 0TK (û− 2t̂)T 0TK −2â(1) 0

0TK 0TK t̂T 0TK −b̂τ 0

(ˆ̇u− ˆ̇t)T (û− t̂)T −(ˆ̇u− ˆ̇t)T −(û− t̂)T 0 0
ˆ̇tT t̂T (ˆ̇u− 2ˆ̇t)T (û− 2t̂)T −2â(4) −2â(1)

0TK 0TK
ˆ̇tT t̂T −b̂f −b̂τ



(4.62e)
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(4.56), we set it to the approximated version,

W2 =
(
B2(GT

1 W1G1)−1BT
2

)−1
. (4.63)

The weighting matrices W1 and W2 require B1 and B2 in (4.53a) and (4.61a),

which depend on the true values of the unknowns. We handle this situation by first

setting B1 to the identity matrix to create W1 and obtain an initial solution from

(4.54). Using the initial solution to form W1 produces the stage one solution η. The

true values needed for B2 are replaced by the values from η. Such approximations

are reasonable as the WLS is insensitive to the noise in the weighting matrix [52].

The proposed algorithm will provide a unique solution at the minimum of the

ML cost function under Gaussian noise. In some rare localization geometry where

the positioning curves from all measurements intersect at exactly two points, the

proposed algorithm (provided that the matrix G1 is non-singular) will give either one

of them, albeit only one corresponds to the actual object location and the other is

the ghost solution. The two intersection points have the same cost function values

and both are valid solutions. Under such a scenario it is not possible to ensure an

algorithm will always yield the one for the object location. This is the case even with

the ML estimator that optimizes the cost function directly.

4.4.1 Analysis

This section examines the performance of the proposed solution by comparing its

covariance matrix under the first order approximation with the CRLB. The first

order analysis is valid over the small error region where bias is insignificant relative

to variance. The analysis uses the following small error conditions:

(C1) diag(mo
I )
−1εmI

' 0 , (4.64a)
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diag(mo
D)−1εmD

' 0 ; (4.64b)

(C2) diag(ψo)−1∆ψ̂ ' 0 or ∆ψ̂ ' 0 . (4.64c)

Under (C1)-(C2), the noise in B2, W2 and G2 are negligible. The covariance

matrix of the estimate (4.62) can be approximated by

cov(ψ) ' (GT
2 W2G2)−1 . (4.65)

Substituting (4.55) and (4.63) leads to

cov(ψ) ' (GT
3 Q−1G3)−1 , (4.66)

G3 = B−1
1 G1B

−1
2 G2 . (4.67)

Appendix C.4 shows that under conditions (C1) and (C2),

G3 '
[
∂moT

I

∂ψo
,
∂moT

D

∂ψo

]T
. (4.68)

Using it in (4.66) and realizing Q = diag(QmI
, QmD

),

cov(ψ) '
(
∂moT

I

∂ψo
Q−1

mI

∂mo
I

∂ψoT
+
∂moT

D

∂ψo
Q−1

mD

∂mo
D

∂ψoT

)−1

. (4.69)

Comparing it with (C.7) concludes that

cov(ψ) ' CRLBmImD
(ψo) . (4.70)

Thus, under the first order approximation and the conditions (C1) and (C2), the pro-

posed solution yields the CRLB performance when the measurement noise is Gaus-

sian.
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In some practical situation, the receivers may only be capable of acquiring TOA

measurements mr and md. As a result, we can only estimate the position of the

object but not its velocity. Such a scenario is equivalent to the localization of a non-

moving object by a fixed transmitter of unknown position and offset. Different from

the previous study in Chapter 3, we now have the unknown time offset. Appendix

C.5 reduces the theoretical study and proposed solution to this special case. The

optimum transmitter-object-sensor geometry exists for this case, and it is derived

next.

4.5 Optimum Geometry

The localization accuracy depends not only on the measurement noise but also on

the geometry formed by the transmitter, object and receivers that is often termed

as the geometric dilution of precision (GDOP). Certain geometry can reduce GDOP,

resulting in better positioning performance. This section derives the optimum trans-

mitter and receiver arrangement that minimizes the GDOP in terms of the estimation

confidence region or the estimation variance. Optimizing the placement configuration

for reaching better localization performance is particularly useful in sensor selection

[77, 78] when the sensors are deployed at fixed locations, or in path planning [79, 80]

when the sensors are moving, where we have the freedom of allocating or rearranging

the sensors dynamically.

The scenario considered is for the special case of time delay measurements with

the object and transmitter not moving, where the transmitter position is not known

and an unknown amount of time offset is present. The optimum geometry for the

motion scenario involves the additional object and transmitter velocities, which is

beyond what we intend to cover in this paper. To make the study tractable, we

shall consider 2-D localization, IID measurement noise such that Qmr = σ2
mr

IM and

Qmd
= σ2

md
IM , and even number of receivers M .
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Without loss of generality, we choose uo as the center point and set ρto−uo = [1, 0]T

for coordinate reference. Let αi and βi be the angles of the i-th receiver with respect to

the transmitter and to the object as shown in Fig. 4.2, giving ρsi−to = [cosαi, sinαi]
T

and ρsi−uo = [cos βi, sin βi]
T . The angles αi and βi, i = 1, 2, . . . ,M , define the

geometry, where from the geometric relationship |αi| ≥ |βi|.

The estimation confidence region is inversely proportional to the determinant

of the FIM [38] and the estimation variance is the trace of the CRLB. Both are

determined by (C.34). Let’s denote

∇T
mdϕ

∇mdϕ = A3×3 . (4.71)

It is symmetric and has elements

a11 =
M∑
i=1

cos2 αi , a22 =
M∑
i=1

sin2 αi , a33 = M ,

a12 =

M∑
i=1

sinαi cosαi , a13 = −
M∑
i=1

cosαi , a23 = −
M∑
i=1

sinαi .

(4.72)

Under IID noise and using the coordinate representation, the matrix Kmrmd
in (C.35)

can be reduced to

Kmrmd
= σ2

mr
(IM + δ1M1TM) . (4.73)

The scalar δ is

δ = w
(
A−1(1, 1) + 2A−1(1, 3) + A−1(3, 3)

)
, (4.74)
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𝐮o 𝐭o

𝐬𝑖
𝛼𝑖𝛽𝑖

Figure 4.2: 2-D Localization geometry defined by the angles αi and βi with |αi| ≥ |βi|,
i = 1, 2, . . . ,M

A−1(1, 1) = (a22a33 − a2
23)/det(A) ,

A−1(1, 3) = (a12a23 − a22a13)/det(A) ,

A−1(3, 3) = (a11a22 − a2
12)/det(A) , w = σ2

md
/σ2

mr
.

(4.75)

Note that δ is always positive. The inverse of Kmrmd
is

K−1
mrmd

= σ−2
mr

(IM + ξ1M1TM) . (4.76)

ξ is related to δ by

ξ = − δ

1 + δM
. (4.77)

Based on (C.34) and (4.73) and following similar derivation steps in Section 3.4 of

Chapter 3, the optimum geometry requires:

1. Minimizing Estimation Confidence Region:

βi = (−1)iπ/3 rad , i = 1, 2, . . . ,M , (4.78)

det(FIMmrmd
(uo))max = σ−4

mr

27

16
M2(ξM + 1) . (4.79)

2. Minimizing Estimation Variance.

βi = (−1)iacos(p− 1) rad , i = 1, 2, . . . ,M , (4.80)
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Tr(CRLBmrmd
(uo))min =

(
σ−2
mr
M(ξM + 1)

2p2 − p3

ξMp+ 2

)−1

, (4.81)

p =
ξM − 3

2ξM
+

√
(ξM + 1)(ξM + 9)

2ξM
. (4.82)

(4.78) and (4.80) imply the receivers should be placed symmetrically above and

below the coordinate reference line to − uo. Both criteria require the largest value of

ξ in reaching their optimum values. In addition, the optimum angles βi of the second

criterion are dependent on ξ as well. We shall next determine the choice of αi to

maximize ξ. It is clear from (4.77) that finding the largest value of ξ is equivalent to

determining the minimum possible value of δ.

Let us define

Υ = w
a11 + a33 − 2a13

a11a33 − a2
13

. (4.83)

After some algebraic evaluation, we have

δ −Υ = w
(a23(a11 − a13) + a12(a33 − a13))2

det(A)(a11a33 − a2
13)

. (4.84)

The numerator is non-negative. det(A) is positive from (4.71) and (a11a33 − a2
13) is

positive as well from (4.72). Thus,

δ ≥ Υ . (4.85)

We shall show next that Υ is lower bounded by

Υ ≥ w
1

M − 1
. (4.86)
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The proof begins from the difference

Υ− w 1

M − 1
= w

M2 −M + a2
13 − 2(M − 1)a13 − a11

(a11a33 − a2
13)(M − 1)

, (4.87)

where a33 = M from (4.72) has been used in the numerator. The denominator is

non-negative. Ignoring the positive constant w and using (4.72), the numerator can

be expressed as

ΦM =
( M∑
i=1

cosαi

)2
+ (M − 1)

(
M + 2

M∑
i=1

cosαi

)
−

M∑
i=1

cos2 αi. (4.88)

i . For M = 2 ,

Φ2 = 2(1 + cosα1)(1 + cosα2) ≥ 0. (4.89)

ii . For M > 2 ,

ΦM+1 − ΦM = 2(1 + cosαM+1)(M +
M∑
i=1

cosαi) ≥ 0. (4.90)

Thus, by induction ΦM ≥ 0 for M ≥ 2. The proof of (4.86) is complete.

It is direct to observe from (4.85) that the minimum value of δ is the smallest

value of Υ and

δmin = w
1

M − 1
. (4.91)

Reaching the lowest value of Υ requires the equality in (4.86), which needs ΦM = 0.

It is satisfied only if all αi are equal to π rad except one. In other words,

(α1, α2 . . . , αM−1, αM) = (π, π, . . . , π, α) rad. (4.92)
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In (4.92), α can take on any value whose magnitude is larger than |βi| except 0 or π

rad to avoid the factor a11a33 − a2
13 equal to zero in the denominator of Υ. Such a

geometry cannot be realized for localization. This is because αi = π implies βi = 0

or π from Fig. 4.2 for i = 1, 2, . . . ,M − 1, and βi cannot be zero or π and must be

set according to either (4.78) or (4.80).

Nevertheless, (4.92) implies that the effects of unknown transmitter position and

time offset can be minimized if the transmitter is far away from the receivers so

that the distances between the object and (M − 1) receivers are small relative to the

distance between the object and transmitter, while the remaining receiver should not

be close to the other receivers.

To summarize, for any even number of receivers, we allocate them evenly along

the two symmetric lines on the two sides of the reference line to − uo according to

either (4.78) or (4.80). M − 1 of them should be placed not far from the object to

ensure (4.92) since the location of the transmitter is unknown. Fig. 4.2 illustrates

such a configuration.

The minimum possible value of δ is given by (4.91) under such a geometry. The

maximum value of ξ from (4.77) is

ξmax = − w

wM + (M − 1)
. (4.93)

When we place most receivers near the object, it is reasonable to assume that the

noise powers in the direct- and indirect-paths are comparable so that σ2
md

= σ2
mr

= σ2

and w = 1. As a result, ξmax = −1/(2M − 1). Using it in (4.79) gives

det(FIMmrmd
(uo))max = σ−4 27

16
M2 M − 1

2M − 1
. (4.94)

From the studies in Chapter 3 that assumes no time offset, det(FIMmrmd
(uo))max is

reduced by the factor (2M − 1)/(2M − 2). The difference becomes negligible when
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M is large.

Putting ξmax back to (4.82) gives the solution of p,

p =
7M − 3

2M
−
√

(M − 1)(17M − 9)

2M
. (4.95)

Tr(CRLBmrmd
(uo))min and the corresponding angle βi are fixed by using (4.95) in

(4.81) and (4.80). The dependency of p on M indicates that the optimum value of βi

for minimizing the estimation variance depends on the number of receivers used for

localization. Interesting though, when M is large enough, p approaches (7−
√

17)/2

giving the optimum angle βi ' ±64◦ and Tr(CRLBmrmd
(uo))min ' 2.2046σ2

mr
/M ,

which are the values when the time offset is absent. Thus the performance loss due

to unknown time offset is negligible under the optimum geometry when M is large,

for both optimization criteria.

The optimum geometries are dependent on the true locations uo and to. It is

reasonable to use their initial estimates to obtain the optimum geometry and re-

estimate them for reaching better performance. Simulations in Section 4.6 illustrate

that the optimum geometry, designed using either criterion, is not sensitive to the

deviations around uo and to.

4.6 Simulations

This section uses simulations to support the developed theory, validate the perfor-

mance of the proposed localization algorithm and confirm the optimum geometry

configuration. Apart from Section 4.1 for corroborating the general theory that is ap-

plicable to a generic localization system, we shall use sonar as an application example

for the simulation. The transmitter can be interpreted as a vessel or an autonomous

underwater vehicle (AUV) and the receivers are sonobuoys.
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The noise covariance matrices Qmr , Qmd
, Qmṙ

and Qmḋ
are diagonal unless spec-

ified otherwise. Their diagonal elements are σ2
mr,i

, σ2
md,i

, σ2
mṙ,i

, σ2
mḋ,i

. The values σ2
mr,i

,

σ2
md,i

are set according to the understanding that the attention of signal propagation

is proportional to the distance traveled,

σ2
mr,i

=
ro2i
m̄2

σ2 , σ2
md,i

=
do2i
m̄2

σ2 , (4.96a)

m̄2 =
M∑
i=1

(
ro2i + do2i

)
/(2M) . (4.96b)

m̄2 is the mean of the true squared-distances in the indirect and direct paths and σ2

reflects the noise level. The range rate noise powers are chosen as [32]

σ2
mṙ,i

= k σ2
mr,i

, σ2
mḋ,i

= k σ2
md,i

. (4.97)

The factor k has a typical range between 0.001 to 1 [25, 32, 62, 81].

4.6.1 CRLB Comparison

The performance improvement using indirect- and direct-path measurements and

degradation by offsets are examined in this subsection. A total of 100,000 random

geometries are created in 3-D with M = 6 sensors, where the positions of the sensors

are generated in the region [0, 500]3, object and transmitter in [0, 2000]3 and the

velocities in [−20, 20]3 from uniform distribution. The distance between any two of

them is not less than 20 to limit the possibility of degenerated geometry [37]. The

noise powers are set with σ2 = 1. The CRLB comparisons for the TOA and FOA

case (first two rows) and the special case of TOA only (last row) are illustrated

by the histograms in Fig. 4.3. We have varied the factor k from 0.1 to 0.001 and

the histograms are nearly identical. The degradation from unknown offset(s) is less

when the object and transmitter positions are generated in the same region as for
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the sensors. It shows that (i) the use of direct-path measurements can improve

the localization accuracy compared to using the indirect-path measurements only,

even in the presence of unknown time and frequency offsets; (ii) the unknown time

and frequency offsets have unfavorable effect on the localization performance. These

observations confirm the theoretical development in the paper.

Figure 4.3: Histograms for CRLB comparison

4.6.2 Closed-form Solution

This subsection presents localization performance of the proposed closed-form esti-

mator. The number of Monte-Carlo trials is 5,000.

We first consider locating an object by the TOA and FOA measurements when

both the object and transmitter are moving. We use the configuration based on sonar

application in [74] where M = 4 receivers at s1 = [0, 1000]Tm, s2 = [1000, 0]Tm, s3 =

[−1000, 0]Tm and s4 = [0, −1000]Tm are used to locate an object at unknown location
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having uo = [2000, 5000]Tm and u̇o = [−13, 8]Tm/s. The unknown transmitter

location is to = [3000, 2000]Tm and ṫo = [3, 13]Tm/s. The unknown offsets are set

arbitrarily as boτ = 500 m and bof = 10 m/s. The factor k used is 0.1 [62]. Fig.
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Figure 4.4: Performance of the proposed solution for the TOA and FOA localization
case at different measurement noise levels

4.4 illustrates the estimation accuracy of the proposed estimator in terms of mean-

square error (MSE) as the noise power σ2 increases. Also shown is the performance

of two Gauss-Newton iterative MLEs (IMLEs), initialized at the true values. The

first uses both indirect- and direct-path measurements for locating jointly the object

and transmitter. The other uses only the indirect-path measurements and applies

the TDOA and FDOA approach to estimate the source location only. The proposed

estimator is able to reach the performance governed by the trace of the CRLB over

the small error region. It deviates from the bound at lower noise level than the

first IMLE. Nevertheless, it is more computationally efficient and does not require

initialization. Joint estimation for locating both the object and transmitter performs
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Figure 4.5: Target location and velocity estimates as k varies

significantly better than the TDOA and FDOA approach for locating the object only,

having the MSE 13.5 dB lower for both position and velocity estimate. The joint

estimation without offset can reduce the MSE by 13 dB in this simulation.

Fig. 4.5 examines the object location and velocity estimates as k varies, where the

lines represent the CRLBs. It shows that the object location estimate is not sensitive

to the value of k and the velocity estimate improves as k decreases. The results agree

with the intuition that in general, the object location estimate is mainly governed by

range measurements while the velocity estimate is solely determined by the range rate

and as such its estimation accuracy increases as the range rate measurement noise

reduces.

We next evaluate the estimation performance for the special case of TOA measure-

ments only (same situation as non-moving object and transmitter). The configuration

is obtained by removing the object and transmitter velocities in the previous simula-

tion. Fig. 4.6 confirms that the proposed estimator summarized in Appendix C.5 is

able to reach the CRLB accuracy at low to moderate noise level and deviates from the
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CRLB performance when the noise level is large. The MSE for the position estimate

from jointly estimating the object and transmitter positions with both indirect- and

direct-path measurements is nearly 13.5 dB lower than the TDOA approach.
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Figure 4.6: Performance of the proposed solution for the TOA localization case at
different measurements noise levels

Depending on the propagation environment and whether the receivers have the

exact pattern of the transmitted signal, noise correlation in the indirect- and direct-

path measurements could exist. To assess performance in such a situation, the off

diagonal elements of Qmr and Qmd
are chosen as

Qmr(i, j) = σmr,iσmr,j
‖uo − to‖2

roi r
o
j

,

Qmd
(i, j) = ρ σmd,iσmd,j ,

(4.98)

and ρ = 0.1. Noise correlation in the indirect-path measurements is proportional to

the common segment and that in the direct-path comes from the signal mismatch

between the actual and expected. The results by repeating Figs. 4.4 and 4.6 with
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Figure 4.7: Performance of the proposed solution for the TOA and FOA localization
case when noise correlation exists

the new noise settings are shown in Figs. 4.7 and 4.8. The results improve slightly

when noise correlation exists. The performance of the proposed solutions relative to

the CRLBs and the TDOA & FDOA approach maintains as before.

4.6.3 Optimum Geometry

We shall validate the optimum geometries derived in Section 4.5 by using the multi-

start [75] algorithm which uses the gradient-based local solver to find the minimizers of

−det(FIMmrmd
(uo)) and Tr(CRLBmrmd

(uo)). The object and transmitter positions

are uo = [0, 0]T m and to = [100, 0]T m. The noise settings are Qmr = Qmd
= σ2I

and σ2 = 1 m2. There are four receivers and their positions si are generated accord-

ing to the optimization variables αi and βi for i = 1, . . . , 4, with their search range

[−π, π] rad. The number of local solvers for the multistart algorithm is 20 and it stops
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Figure 4.8: Performance of the proposed solution for the TOA localization case when
noise correlation exists

after exhausting all the random starting points. Over a total of 1,000 trials each with

a different random initialization, TABLE 4.2 gives the numerical solutions for the two

optimization criteria. αi, i = 1, 2, 3 are the α angle solutions that are near but not

equal to π and their ranges are specified. The remaining angle α4 varies considerably

in different trials. β1 and β3 are the positive β angle solutions and β2 and β4 the

negative ones. The variations in βi appear mostly from numerical accuracy. At these

optimum angles, Fig. 4.9 shows the values of the two criteria as |α4| changes from |βi|

to 180◦. The two criteria maintain their minimum values regardless of the angle |α4|

before approaching 180◦. The results match the theoretical development in Section

4.5.

To assess the sensitivity of perturbations in the object and transmitter positions

for constructing the optimum geometry, we form the near optimum geometry using

the ML estimates for uo and to and compare the resulting best criterion value when

using the exact uo and to. This simulation utilizes four receivers to locate an object
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Table 4.2: The multistart algorithm solution for optimum geometry with four re-
ceivers

minimization
criterion −det(FIMmrmd

(uo)) Tr(CRLBmrmd
(uo))

α1, α2, α3 [−0.26◦, 0.26◦] + 180◦ [−0.23◦, 0.23◦] + 180◦

β1, β3 [−0.14◦, 0.14◦]− 60◦ [−0.12◦, 0.12◦]− 62.5◦

β2, β4 [−0.14◦, 0.14◦] + 60◦ [−0.12◦, 0.12◦] + 62.5◦
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Figure 4.9: −det(FIMmrmd
(uo)) and Tr(CRLBmrmd

(uo)) versus the angle |α4|

at uo = [0, 0]T m, with a transmitter at to = [300, 0]T m. The receiver positions are

generated according to the optimum angles β = {−60◦, 60◦,−60◦, 60◦} for the first

criterion from (4.78) and β = {−62.5◦, 62.5◦,−62.5◦, 62.5◦} for the second criterion

from (4.80), and the near optimum angles α = {−175◦, 175◦,−175◦, 100◦}. The first

three α angles are set as 5◦ from the optimum because in practice it is not possible

to have the sensors at the object location implied by αi = 180◦.
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Fig. 4.10 shows the objective value of the first criterion det(FIMmrmd
(uo)) av-

eraged over 2,000 ensemble runs having perturbations in the object and transmitter

locations, relative to the value obtained at their true values. The perturbations in-

crease with the measurement noise level. The reduction in the objective value is

about 12% only, or -0.56 dB, even when the noise level σ2 = 100 m2. The results for

the second criterion Tr(CRLBmrmd
(uo)) are shown in Fig. 4.11. The performance

loss in this case is by a factor of 1.3, or 1.14 dB at the noise level of σ2 = 100 m2.

4.7 Concluding Remarks

This chapter investigates the localization of a moving object using multistatic TOA

and FOA measurements having unknown offsets caused by a non-cooperative mov-

ing transmitter at unknown location. We first applied the CRLB analysis to show

that joint estimation of the object and transmitter locations together with the time

and frequency offsets by both the indirect- and direct-path measurements has better

performance than applying the TDOA and FDOA approach to estimate the object lo-

cation only. The condition that can avoid the performance loss due to unknown offsets

is derived for IID Gaussian noise. A computationally attractive algebraic closed-form

solution is proposed and analyzed that reaches the CRLB accuracy under Gaussian

noise at the small error region. The special case of having time measurements only is

examined, and the corresponding optimum localization geometry is derived. Under

the optimum geometry, the degradation due to unknown time offset is shown to be

negligible when the number of sensors is sufficiently large.

In some practical systems, ambiguity may appear in deciding whether the received

signal is a direct blast from the transmitter or an echo from the object, especially if

the transmitted waveform is made of two or more sub-pulses which are scaled copies

of each other. In such a case, one possible approach to resolve the ambiguity is to

128



obtain two solutions, by switching the assumed indirect- and direct-path signals. The

one that yields the smaller cost function value is expected to be the correct solution.
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Chapter 5

Multistatic Localization in Partial
Dynamic Scenario With Only
Sensor Positions Available

The previous work in Chapter 3 illustrates that by incorporating the direct-path/direct-

blast (DP) measurements from the transmitter to the receivers to the indirect-path/object-

reflected (IP) measurements and estimating jointly the object and transmitter posi-

tions together, the positioning accuracy of the object increases. It also provides an

algebraic solution for the joint estimation. Chapter 4 furthered the research to the

dynamic scenario where the object and transmitter velocities are unknown for esti-

mation together with their positions. It also considers unknown offsets in the time

delay and Doppler-shifted frequency observations.

The work in Chapter 3 looked at the static situation only and Chapter 4 only

studied the general case where both the transmitter and the object are moving. It

happens often in practice that either the object or the transmitter is moving. For

instance, the transmitter may be a transmission station at an unknown fixed location

but the object of interest is moving. Another example is that the transmitter is an

unmanned aerial vehicle (UAV) or an autonomous underwater vehicle (AUV) that
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is moving and the object is static on the ground. When only either one is moving,

we cannot draw a conclusion from the existing works that the DP measurements can

lead to performance improvement. Even so, the corresponding algorithms are not

available. Unless the DP measurements are proven to be useful, it is not wise to use

them as acquiring them takes extra resources and incorporating them complicates the

algorithm.

The goal of this chapter is to complete the study by investigating if the DP mea-

surements remain to be beneficial for improving performance when either the object

or transmitter is moving, and providing the estimation algorithm if they do. To make

the investigation general, we use both the time delay and frequency measurements,

and consider the more practical scenario in which the transmitter is non-cooperative

so that unknown amounts of time and frequency offsets are present.

This chapter starts with the two different localization scenarios of static object

moving transmitter (SOMT) and moving object static transmitter (MOST), depend-

ing on the motion status of the object and the transmitter. The two cases are thor-

oughly investigated from the perspective of the CRLB under Gaussian noise model,

from which the impact in the positioning accuracy by including the DP measure-

ments, and the degradation due to time and frequency offsets are examined. In the

SOMT case, the possible benefit of exploiting the motion of the transmitter is also

analyzed. Furthermore, the performance improvement of SOMT and MOST over the

use of the general moving object moving transmitter (MOMT) formulation is investi-

gated in detail. We next propose new computational efficient closed-form estimators

for the two cases, which cannot be obtained from the one of MOMT with special

settings. Theoretical analysis shows that the proposed estimators are able to reach

the CRLB performance over the small error region under Gaussian noise. Simulations

are included to support the theoretical investigations.
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Figure 5.1: Localization geometry

5.1 Localization Scenario

The multistatic localization problem in the K-dimensional space is illustrated in Fig.

5.1. We are interested in locating an object by exploiting the measurements observed

at M receivers whose positions are known, using the signal emitted by a transmitter

at an unknown location for illumination. This work considers two separate scenarios.

The first is SOMT shown in Fig. 1(a), in which the object is static and the transmitter

is moving. The unknown of interest is the object position denoted by uo ∈ RK . The

unknowns related to the transmitter are the transmitter position to ∈ RK and velocity

ṫo ∈ RK . The second is MOST in Fig. 1(b) where motion appears in the object and

the transmitter is static. The unknowns of interest are the object position uo ∈ RK

and its velocity u̇o ∈ RK . The unknown of the transmitter is the transmitter position

to ∈ RK . In both cases, the receivers are static, and their positions are known and

represented by si ∈ RK , i = 1, 2, · · · , M .

Each receiver is capable of receiving the transmitter signal from the DP propa-

gation to the receiver, and from the IP propagation that is reflected by the object

before reaching the receiver. Based on the observed signals, we are able to produce

two kinds of measurements in a receiver. One is the time of arrival (TOA) of the

transmitted signal to the receiver coming from the travel time, and the other is the
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Doppler frequency shift (DFS) resulting from the motion. TOA is equivalent to the

range after multiplying with the signal propagation speed c, and DFS corresponds

to the range rate after scaling by c and dividing by the center frequency f oc . The

terminologies TOA and DFS will be interchanged with range and range rate.

5.1.1 TOA

As long as a receiver knows a certain transmitted signal pattern such as the pilot

sequence, cross-correlation gives TOA. For the IP, aided by Fig. 1, it is modeled by

roi = ‖uo − si‖+ ‖uo − to‖+ δoτ , (5.1)

in terms of range, where i = 1, 2, . . . ,M is the receiver number. δoτ corresponds to the

time offset that is not known. It is resulted from the unknown signal emission time

and is common to all receivers.

For the DP, we have from Fig. 1,

doi = ‖to − si‖+ δoτ . (5.2)

5.1.2 DFS

The IP propagation contains the Doppler effect from the motion due to the object or

the transmitter. The DFS is modeled differently depending on the scenario.

SOMT

The object velocity is zero in this case. The Doppler effect in the IP happens in

the segment between the object and the transmitter only. The range-rate model,
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obtained simply by taking the time derivative of (5.1) with u̇ = 0, is

ṙoi = −ρuo−to ṫ
oT + δof . (5.3)

δof is the frequency offset that is not known. It is caused by the difference between

the actual center frequency f oc and the one fc assumed in a receiver,

δof = c(fc − f oc )/f oc . (5.4)

The DP also has the Doppler effect due to the transmitter motion in this case. From

the time derivative of (5.2),

ḋoi = ρTto−si ṫ
o + δof . (5.5)

MOST

The transmitter velocity is zero. For the IP, the Doppler effect appears in the segment

between the object and the transmitter, and between the object and the receiver.

Hence

ṙoi = ρTuo−tou̇
o + ρTuo−siu̇

o + δof . (5.6)

Both the transmitter and receivers are stationary. The DP signal does not have

the Doppler effect. The frequency offset, however, is present in DFS observations so

that

ḋoi = δof . (5.7)

Regardless of which scenario, taking into account observation noise, the measure-

ments are ri = roi + nr,i, di = doi + nd,i, ṙi = ṙoi + nṙ,i and ḋi = ḋoi + nḋ,i, where nr,i,

nd,i, nṙ,i and nḋ,i are the additive noise components. The measurements over all M
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receivers are

r = [r1, r2, · · · , rM ]T = ro + nr, (5.8a)

ṙ = [ṙ1, ṙ2, · · · , ṙM ]T = ṙo + nṙ, (5.8b)

d = [d1, d2, · · · , dM ]T = do + nd, (5.8c)

ḋ = [ḋ1, ḋ2, · · · , ḋM ]T = ḋo + nḋ. (5.8d)

The noise vectors nr = [nr,1, nr,2, . . . , nr,M ]T , nṙ = [nṙ,1, nṙ,2, . . . , nṙ,M ]T , nd =

[nd,1, nd,2, . . . , nd,M ]T and nḋ = [nḋ,1, nḋ,2, . . . , nḋ,M ]T are assumed uncorrelated for

simplicity. The are modeled by zero-mean Gaussian vectors having known covariance

matrices Qr, Qṙ, Qd, Qḋ.

The measurement vector of the IP is

bI = [ rT , ṙT ]T = boI + nI , (5.9)

The noise vector nI = [ nTr , nTṙ ]T is zero-mean Gaussian with covariance matrix QI =

diag(Qr,Qṙ). The DP measurement vector is

bD = [ dT , ḋT ]T = boD + nD . (5.10)

nD = [ nTd , nT
ḋ

]T is the zero-mean Gaussian noise vector with covariance matrix QD =

diag(Qd,Qḋ).

5.2 Performance: SOMT

Over the small error region where the bias is small compared to variance so that

a location estimator can be approximately unbiased, we shall apply the CRLB to

examine the performance of joint estimation of all unknowns by both the IP and DP
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measurements, and compare with that of using the IP measurements by estimating

only the unknowns related to the object. The insights gained will indicate if the DP

measurements are beneficial, considering that it does not contain information about

the object location and introduces additional unknowns.

The CRLB involves many partial derivatives of the parametric forms of the mea-

surements with respect to a number of variables. Appendix D.1 summarizes the

detailed expressions of the partial derivatives appeared in this Section.

5.2.1 Including DP Measurements

The unknown of interest is only uo in this scenario. The IP measurements have the

additional unknowns of the transmitter position to and time offset δoτ in TOA, and

the transmitter location (to, ṫo) and frequency offset δof in DFS. They also appear in

the DP measurements. The parameter vector for the CRLB evaluation is

γo = [uoT , βoT ]T , (5.11a)

βo = [ toT , δoτ , ṫoT , δof ]T . (5.11b)

The measurements available for estimation are bI and bD. From the Gaussian model

of the measurements, we have [50]

CRLBsm(γo) =

(
∂Tγ bIQ

−1
I ∂γbI + ∂Tγ bDQ

−1
D ∂γbD

)−1

. (5.12)

The partial derivatives in terms of uo and βo are

∂γbI = [ ∂ubI, ∂βbI ] , ∂γbD = [ ∂ubD, ∂βbD ] , (5.13)
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and the partitioned form of (5.12) is

CRLBsm(γo)

=

 ∂TubIQ
−1
I ∂ubI ∂TubIQ

−1
I ∂βbI

∂TβbIQ
−1
I ∂ubI ∂TβbIQ

−1
I ∂βbI + ∂TβbDQ−1

D ∂βbD


−1

.
(5.14)

Using the block matrix inversion formula [50], we obtain from the upper left block

CRLBsm(uo) =
(
∂TubI

[
Q−1

I −Q−1
I ∂βbI(∂

T
βbI

Q−1
I ∂βbI + ∂TβbDQ

−1
D ∂βbD)−1∂TβbIQ

−1
I

]
∂ubI

)−1
.

(5.15)

If we use the Woodbury matrix identity [50] to the matrix terms inside the square

bracket, it becomes

CRLBsm(uo) =
(
∂TubIR

−1
sm∂ubI

)−1
. (5.16)

The matrix Rsm is

Rsm = QI + ∂βbI(∂
T
βbDQ−1

D ∂βbD)−1∂TβbI , (5.17)

and the partial derivatives are

∂ubI =
[
∂Tu r, ∂Tu ṙ

]T
, (5.18a)

∂βbI =

 ∂ro

∂βoT

∂ṙo

∂βoT

 =

∂tr 1M 0M×K 0M

∂tṙ 0M ∂ṫṙ 1M

 (5.18b)

∂βbD =

 ∂do

∂βoT

∂ḋo

∂βoT

 =

∂td 1M 0M×K 0M

∂tḋ 0M ∂ṫḋ 1M

 . (5.18c)

The CRLB for uo is
(
∂TubIQ

−1
I ∂ubI

)−1
when the nuisance parameter βo is known.

Comparing with (5.16), the performance loss caused by not knowing βo is equivalent
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to increasing the covariance matrix of the IP measurements by the second term in

(5.17) that is PSD. The performance loss is less when the DP measurements are more

accurate, i.e. smaller QD.

5.2.2 Ignoring DP Measurements

We shall consider the case of using IP measurements only. The advantages are that

the acquisition is easier as we do not need to look at the direct-blast signal at a

receiver, and there are only two extra unknowns of ‖uo − to‖ and δoτ in addition to

uo. Indeed, both extra unknowns will disappear if we subtract ro1 from roi using the

TOA expression (5.1),

roi − ro1 = ‖uo − si‖ − ‖uo − s1‖ , (5.19)

where i = 2, 3, . . . ,M . Such a range difference is essentially equivalent to the TDOA

termed in the literature. Localization solutions for TDOA positioning are numerous.

The subtraction operation can be represented by the matrix [−1M−1, IM−1]T ∈

RM×(M−1). The IP DFS ṙoi in (5.3) does not contain the object position after sub-

traction, and such difference has no effect in the estimation. For convenience in later

development, we include it in the data vector by defining the expanded difference

matrix H ∈ R2M×2(M−1),

H =

 [−1M−1, IM−1]T 0M×(M−1)

0M×(M−1) [−1M−1, IM−1]T

 . (5.20)

The data vector for estimating uo is HTbI, and its last M -1 elements are zero. HTbI

is Gaussian distributed with covariance matrix HTQIH. We have HT∂βbI = 0 by

direct substitution of (5.18b), (5.20), (D.1c), (D.1e) and (D.1j). As a result, from
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(5.17),

HTRsmH = HTQIH. (5.21)

Thus, the CRLB when using the IP measurements only is

CRLBsm,I(u
o) =

(
∂Tu (HTbI)(H

TQIH)−1∂u(HTbI)
)−1

=
(
∂TubIH(HTRsmH)−1HT∂ubI

)−1
.

(5.22)

Let us now examine if the estimation by including the DP measurements can

provide better estimation accuracy for uo, compared to using the IP observations

only.

The matrix H has a rank of 2(M − 1) and the size of Rsm is 2M × 2M . From

linear algebra,

R−1
sm � H(HTRsmH)−1HT . (5.23)

As a result, comparing between (5.16) and (5.22) yields

CRLBsm,I(u
o) � CRLBsm(uo) . (5.24)

In other words, the DP measurements can increase the localization accuracy.

5.2.3 Ignoring DFS Measurements

The previous subsection indicates the DP measurements are useful. The next ques-

tion we would like to answer is whether the DFS measurements can contribute to

improving performance. The IP DFS (5.3) is common to all receivers. Whilst it

contains the unknown uo, it also introduces the extra unknowns of ṫ and δof . The DP

DFS (5.5) does not contain uo at all.

If we use only the TOA measurements from the IP and DP, the data vector will
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be [rT , dT ]T and the nuisance unknown vector βo in (5.11) will become

βoτ = [ toT , δoτ ]T . (5.25)

The scenario can be interpreted as stationary object stationary transmitter (SOST).

It is different from the case investigated in Chapter 3 where the time offset δoτ is

present. Following the same evaluation procedure as in the previous subsection, the

resulting CRLB is

CRLBss(u
o) =

(
∂Tu rR−1

ss ∂ur
)−1

, (5.26)

Rss = Qr + ∂βτ r(∂TβτdQ−1
d ∂βτd)−1∂Tβτ r , (5.27)

where

∂βτ r = [ ∂tr, 1M ] , ∂βτd = [ ∂td,1M ] . (5.28)

We have from (5.18a) that

∂ur = LT∂ubI , (5.29)

where L = [I2M , 02M×2M ]T . Hence (5.26) can be expressed as

CRLBss(u
o) =

(
∂TubI (LR−1

ss LT ) ∂ubI

)−1
. (5.30)

(5.30) is different from (5.16) by the matrix component in the middle. Through

the use of the block matrix inversion formula [50] and the Schur complement [51],

Appendix D.2 has shown that

R−1
sm � LR−1

ss LT . (5.31)

Thus, we conclude from (5.16) and (5.30) that

CRLBss(u
o) � CRLBsm(uo) . (5.32)
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It indicates the DFS measurements can contribute to improving the localization ac-

curacy.

This rather interesting result appears to stem from the fact that the DP DFSs

can improve the estimation accuracy of t, thereby improving the estimation accuracy

of uo from the IP TOAs. Simulation in Section 5.6 confirms this observation.

5.2.4 Effect of Unknown Offsets

If the time and frequency offsets are absent, which can happen when the transmitter

and receivers are cooperative, the resulting CRLB has the same form as (5.16), with

the auxiliary unknown βo in (5.11) reduces to βo = [ tT , ṫT ]T . We shall call the

corresponding CRLB as CRLBsm(uo). It can be shown analytically that

CRLBsm(uo) � CRLBsm(uo) . (5.33)

The presence of offsets degrades performance as expected.

Interestingly though, conditions that are related to the localization configuration

exist in which the performance degradation due to the offsets can be avoided. It can

be shown that the condition to eliminate the offsets degradation is the same as the

one for the MOMT case in Chapter 4.

5.3 Performance: MOST

We shall study the performance for the MOST case in this section, and examine if

exploring the DP measurements improves the estimation accuracy.

The unknown vector of interest contains the object position and velocity,

θo = [uoT , u̇oT ]T . (5.34)
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5.3.1 Including DP Measurements

Apart from the intended unknown θo, the additional unknowns are the transmitter

position to, and the offsets δoτ and δof . The unknown vector for the CRLB evaluation

is

γo = [θoT , β̃oT ]T , (5.35a)

β̃o = [toT , δoτ , δ
o
f ]
T . (5.35b)

Regarding observations, we have both TOA and DFS measurements (5.1), (5.2),

(5.6), (5.7) from the IPs and DPs, where the DP DFS ḋ only contains offset and

noise. Under the Gaussian noise model and uncorrelated IP and DP measurements,

the CRLB is [50]

CRLBms(γ
o) =

(
∂Tγ bIQ

−1
I ∂γbI + ∂Tγ bDQ

−1
D ∂γbD

)−1

. (5.36)

Expressing the partial derivatives in terms of θo and β̃o,

CRLBms(γ
o) =

 ∂Tθ bIQ
−1
I ∂θbI ∂Tθ bIQ

−1
I ∂β̃bI

∂T
β̃
bIQ

−1
I ∂θbI ∂T

β̃
bIQ

−1
I ∂β̃bI + ∂T

β̃
bDQ−1

D ∂β̃bD


−1

. (5.37)

From the upper left block after using the block matrix inversion formula [50], we

obtain

CRLBms(θ
o) =

(
∂Tθ bI

[
Q−1

I −Q−1
I ∂β̃bI(∂

T
β̃
bIQ

−1
I ∂β̃bI

+∂T
β̃
bDQ

−1
D ∂β̃bD)−1∂T

β̃
bIQ

−1
I

]
∂θbI

)−1
.

(5.38)

The Woodbury identity [50] provides the inverse form for the matrix terms inside the
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square bracket so that

CRLBms(θ
o) =

(
∂Tθ bIR

−1
ms∂θbI

)−1
. (5.39)

Rms = QI + ∂β̃bI(∂
T
β̃
bDQ−1

D ∂β̃bD)−1∂T
β̃
bI , (5.40)

where ∂θbI, ∂β̃bI and ∂β̃bD are

∂θbI =

∂ur 0M×K

∂uṙ ∂u̇ṙ

 ; ∂β̃bI =

∂tr 1M 0M

∂tṙ 0M 1M

 (5.41a)

∂β̃bD =

 ∂td 1M 0M

0M×K 0M 1M

 . (5.41b)

We can gain some insight from the CRLB expression. First, considering that

∂Tθ bIQ
−1
I ∂θbI is the CRLB for θo when the transmitter position and the time and

frequency offsets are known, the consequence when they are not known is the same as

reducing the quality of the IP measurements by changing the covariance matrix from

the actual of QI to Rms in (5.40), where the additional term is PSD. Second, the extra

PSD term is proportional to the noise covariance matrix in the DP measurements.

The better the DP measurements in having smaller QD, the smaller will be this PSD

term and the performance will be closer to the case that the transmitter position and

offsets are known.

5.3.2 Using IP Measurements Only

The localization problem is solvable with the IP measurements only. In fact, using

(5.1), when we subtract the TOA observation ro1 from that of receiver i, i = 2, . . . ,M ,

we obtain (5.19) in which the nuisance parameters t and δoτ are eliminated. Similarly,

from (5.6) and applying subtraction,
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ṙoi − ṙo1 = u̇oTρuo−si − u̇oTρuo−s1 . (5.42)

It is a function having the unknowns of the object position and velocity only. (5.42)

is range rate difference (equivalent to FDOA) of the signal from the object arrived

at receivers i and 1. By forming the differences in TOA and DFS, we do not need to

care about the unknown transmitter position and the unknown offsets when locating

the object.

Using the difference matrix defined in (5.20), the data vector for the estimation

of θo is HTbI, which is zero-mean Gaussian with covariance matrix HTQIH. From

(5.41) and the partial derivatives given in Appendix D.1, we can verify HT∂β̃bI = 0

so that substituting (5.40) gives HTRmsH = HTQIH. Hence the CRLB when using

the IP measurements only is

CRLBms,I(θ
o) =

(
∂Tθ bIH(HTRmsH)−1HT∂θbI

)−1
. (5.43)

To facilitate the comparison between CRLBms(θ
o) and CRLBms,I(θ

o), we shall ex-

press Rms as R
1
2
msR

1
2
ms and let ∂̃θbI = R

− 1
2

ms∂θbI ∈ R2M×2K , H̃ = R
1
2
msH ∈ R2M×2(M−1).

The alternative forms of (5.39) and (5.43) are

CRLBms(θ
o)−1 = ∂̃Tθ bI∂̃θbI , (5.44a)

CRLBms,I(θ
o)−1 = ∂̃Tθ bIPH̃∂̃θbI . (5.44b)

PH̃ = H̃(H̃T H̃)−1H̃T is a projection matrix satisfying [50]

I2M −PH̃ � 0 . (5.45)
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Pre-multiplying by ∂̃Tθ bI, post-multiplying by its transpose, taking inverse gives

CRLBms,I(θ
o) � CRLBms(θ

o) . (5.46)

Whilst using both the IP and DP measurements require the estimation of the

extra unknowns of the transmitter position and the two offsets, it can offer better

localization accuracy than applying the TDOA and FDOA approach by using the IP

measurements only.

The previous work in Chapter 3 shows that the DP measurements can improve

performance, when the object is stationary and the offsets are absent. It turns out

that the conclusion remains the same, when the object is moving and the time and

frequency offsets are present.

Unlike SOMT, conditions do not exist in MOST where the performance degrada-

tion due to the unknown offsets can be avoided.

5.4 Performance Comparison with MOMT

The two localization problems of SOMT and MOST can be addressed through the

general solution from the MOMT case, which has been fully studied in Chapter 4.

While MOMT treats both the object and transmitter moving and estimates their

velocities, it is applicable to the SOMT or MOST case where the true object or

transmitter velocity is zero. Intuitively, exploiting the prior knowledge of the motion

status of the object and transmitter will improve the performance of the object loca-

tion estimate. This section conducts a performance comparison between the special

cases SOMT and MOST and the general case MOMT to validate the improvement.

The unknown parameter vector for the MOMT case consists of θo in (5.34) and

βo in (5.11b). The CRLB for θo from the MOMT formulation derived in Chapter 4
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is

CRLBmm(θo) =
(
∂Tθ bIR

−1
sm∂θbI

)−1
. (5.47)

where ∂θbI and Rsm are given by (5.41) and (5.17).

5.4.1 SOMT vs MOMT

Using ∂θbI = [∂ubI, ∂u̇bI], we have

CRLBmm(θo) =

 ∂TubIR
−1
sm∂ubI ∂TubIR

−1
sm∂u̇bI

∂Tu̇bIR
−1
sm∂ubI ∂Tu̇bIR

−1
sm∂u̇bI


−1

. (5.48)

The CRLBmm(uo) is the upper left K × K block. Compared with CRLBsm(uo) in

(5.16) for the SOMT case, it is direct to verify after using the block matrix inversion

formula that

CRLBmm(uo) � CRLBsm(uo) . (5.49)

The difference between two CRLBs depends on the localization geometry governed

by to, uo, si, and ṫo.

To gain additional insight, let us consider the situation where the transmitter

velocity ṫo divided by ‖to − si‖ and by ‖to − uo‖ are small enough to be neglected

such that from (D.1e), (D.1f) and (D.1h),

∂tṙ ' 0 , ∂uṙ ' 0 , ∂tḋ ' 0 . (5.50)

Furthermore, when the noise covariance matrices QI and QD are diagonal, using

(5.50) in (5.17) reduces R−1
sm to diagonal. Realizing ∂ubI ' [∂Tu r ,0T ]T and ∂u̇bI =

[0T , ∂Tu̇ ṙ]T , the off-diagonal element ∂TubIR
−1
sm∂u̇bI in (5.48) is zero. Under such par-

ticular situations, the CRLBs for uo from SOMT and MOMT are identical.
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Using Rsm defined in (D.5) reduces CRLBsm(uo) in (5.16) to

CRLBsm(uo) =
(
∂Tu rX̃−1∂ur

)−1

. (5.51)

It is direct to show that X̃D2 and ỸD in (D.7) are zero when (5.50) is satisfied. Putting

them into (D.8) and comparing with (5.27) shows

X̃ = Qr + ∂βτ r(∂TβτdQ−1
d ∂βτd)−1∂Tβτ r = Rss. (5.52)

Putting (5.52) into (5.51) and comparing with CRLBss(u
o) defined in (5.26) yields

another interesting observation that the PSD relation in (5.32) becomes equal. In

other words, when the transmitter velocity divided by the transmitter-receiver and

by the transmitter-object distances are small, the whole localization system is nearly

stationary and the optimal localization accuracy from SOMT reduces back to that

of SOST. In addition, when the noise covariance matrices are diagonal, SOMT ap-

proaches the same localization as MOMT.

5.4.2 MOST vs MOMT

The difference between the CRLBs (5.39) of MOST and (5.47) of MOMT comes from

Rsm and Rms, where MOMT has the extra unknown ṫo for estimation. Appendix

D.3 shows that

Rsm � Rms . (5.53)

Hence, we have

CRLBmm(θo) � CRLBms(θ
o) , (5.54)

meaning that using the prior knowledge that the transmitter is stationary, the object

localization accuracy can be improved.
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Substituting (5.18) into (D.13) yields

Rsm −Rms =

 0 0

0 ∂βf ṙC∂
T
βf

ṙ

 . (5.55)

When the object is not fast moving, the approximations in (5.50) are valid. If the noise

covariance matrices QI and QD are diagonal, ∂θbI, Rsm and Rms become diagonal.

Taking the upper left K ×K blocks of CRLBmm(θo) and CRLBms(θ
o) indicates that

CRLBmm(uo) = CRLBsm(uo). We arrive at an interesting conclusion that when the

object velocity divided by ‖uo − si‖ and by ‖uo − to‖ are small, MOST and MOMT

have identical optimal estimation accuracy for the object position. On the other

hand, they will have different optimal estimation accuracy for the object velocity.

5.5 Algebraic Closed-Form Solution

After showing the DP measurements can improve performance, we now proceed to

develop an algorithm to locate the object. A possibility is the Maximum-Likelihood

Estimator (MLE). It requires numerical search for direct realization that is computa-

tionally expensive or an initial guess for iterative implementation that may be difficult

to determine. An alternative is the more attractive algebraic closed-form solution that

is computationally efficient and does not require initialization. While closed-form so-

lutions have been derived for the SOST case and the MOMT case in Chapter 3 and

4 respectively, they are not available for the SOMT and MOST scenarios considered

in this paper.

The solution derivation follows the framework from [2] and involves approxima-

tions. Unless specified otherwise, the approximations come from ignoring the second

and higher order terms of the noise by assuming it is small. The performance may

suffer consequently when the noise level is high. Nonetheless, they can be used as the
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initial guess for the iterative MLEs for reaching better results in such a situation.

5.5.1 SOMT

The unknown vector for estimation in the SOMT scenario is γo in (5.11). The mea-

surement equations are highly nonlinear with respect to the unknowns. The idea to

obtain an algebraic solution is to introduce additional auxiliary variables that enables

the measurement equations becoming pseudo-linear for estimation. The auxiliary

variables are then exploited to refine the estimates.

First Stage

Let us define the auxiliary variable vector ϕo having 5 elements given by

ϕo(1) = ‖uo − to‖ , (5.56a)

ϕo(2) = uoT to − ‖uo − to‖δoτ − ‖to‖2 , (5.56b)

ϕo(3) = ‖to‖2 − δoτ
2 , (5.56c)

ϕo(4) = ρTuo−to ṫ
o − δof , (5.56d)

ϕo(5) = toT ṫo − δoτδof . (5.56e)

ϕo(4) is different from that used in Chapter 4.

From the IP TOA model equation (5.1), moving ‖uo − to‖ + δoτ to the left and

substituting roi = ri − nr,i form

ri − δoτ − ‖uo − to‖ = ‖uo − si‖+ nr,i . (5.57)

After squaring both sides and dropping n2
r,i, we end up with

‖uo − si‖nr,i '
1

2
(r2
i − ‖si‖2)− aTγ,riγ

o − aTϕ,riϕ
o, (5.58)
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aγ,ri =
[
−sTi , 0TK , ri, 0TK , 0

]T
, (5.59a)

aϕ,ri =
[
ri, 1, 1/2, 0T2

]T
. (5.59b)

In terms of the noisy value by using ṙoi = ṙi − nṙ,i, the IP DFS expression in (5.3) is

nṙ,i = ṙi − aTϕ,ṙiϕ
o , (5.60)

aϕ,ṙi =
[
0T3 , −1, 0

]T
. (5.61)

For the DP measurements, substituting doi = di − nd,i to TOAs in (5.2) gives

di − δoτ = ‖to − si‖+ nd,i . (5.62)

Squaring both sides and dropping n2
d,i, we obtain

‖to − si‖nd,i '
1

2
(di

2 − ‖si‖2)− aTγ,diγ
o − aTϕ,diϕ

o , (5.63)

aγ,di =
[
0TK , −sTi , di, 0TK , 0

]T
, (5.64a)

aϕ,di =
[
0T2 , 1/2, 0T2

]T
. (5.64b)

The DP DFS, after replacing ḋoi by ḋi − nḋ,i in (5.5), is

ḋi − δof = ρTto−si ṫ
o + nḋ,i . (5.65)

Multiplying (5.62) and (5.65) separately on the two sides and removing the second
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order noise terms,

ρTto−si ṫ
o nd,i + ‖to − si‖nḋ,i ' diḋi − aT

γ,ḋi
γo − aT

ϕ,ḋi
ϕo , (5.66)

aγ,ḋi =
[

0TK , 0TK , ḋi, −sTi , di

]T
, (5.67a)

aϕ,ḋi =
[
0T4 , 1

]T
. (5.67b)

We shall pretend γo and ϕ are independent variables so that the unknown vector

is

ηo =
[
γoT , ϕoT

]T
. (5.68)

Hence (5.58), (5.60), (5.63) and (5.66) can be interpreted as linear in terms of ηo.

Putting them together for i = 1, 2, . . . ,M yields

Crnr ' hr −Arη
o , (5.69a)

nṙ ' hṙ −Aṙη
o , (5.69b)

Cdnd ' hd −Adη
o, (5.69c)

Cḋnd + Cdnḋ ' hḋ −Aḋη
o . (5.69d)

The matrices and vectors are defined as

Cr = diag (‖uo − s1‖, ‖uo − s2‖, . . . , ‖uo − sM‖) , (5.70a)

hr =
1

2

[
(r21 − ‖s1‖2), . . . , (r2M − ‖sM‖2)

]T
, (5.70b)

Ar =
[

[aTγ,r1 , a
T
ϕ,r1 ]T , . . . , [aTγ,rM , a

T
ϕ,rM ]T

]T
, (5.70c)

hṙ = [ ṙ1, ṙ2, . . . , ṙM ]
T
, (5.70d)

Aṙ =
[

[0T3K+2 , a
T
ϕ,ṙ1 ]T , . . . , [0T3K+2 , a

T
ϕ,ṙM ]T

]T
, (5.70e)
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Cd = diag ( ‖to − s1‖, ‖to − s2‖, . . . , ‖to − sM‖ ) , (5.70f)

hd =
1

2

[
(d1

2 − ‖s1‖2), . . . , (dM
2 − ‖sM‖2)

]T
, (5.70g)

Ad =
[

[aTγ,d1 , a
T
ϕ,d1 ]T , . . . , [aTγ,dM , a

T
ϕ,dM ]T

]T
, (5.70h)

Cḋ = diag
(
ρTto−s1 ṫ

o, ρTto−s2 ṫ
o, . . . , ρTto−sM ṫo

)
, (5.70i)

hḋ =
[
d1ḋ1, d2ḋ2, . . . , dM ḋM

]T
, (5.70j)

Aḋ =
[

[aT
γ,ḋ1

, aT
ϕ,ḋ1

]T , . . . , [aT
γ,ḋM

, aT
ϕ,ḋM

]T
]T
. (5.70k)

Stacking (5.69a)-(5.69d) together gives

C1n ' h1 −A1η
o , (5.71)

C1 =



Cr 0 0 0

0 IM 0 0

0 0 Cd 0

0 0 Cḋ Cd


, (5.72a)

h1 = [hTr , hTṙ , hTd , hT
ḋ

]T , (5.72b)

A1 = [AT
r , AT

ṙ , AT
d , AT

ḋ
]T , (5.72c)

Q = diag(QI, QD). (5.72d)

The noise vector n = [nTr , nTṙ , nTd , nT
ḋ

]T has the covariance matrix Q = diag(Qr, Qṙ, Qd, Qḋ).

The weighted least-squares (WLS) solution to (5.71) is

η = (AT
1 W1A1)−1AT

1 W1h1 . (5.73)

W1 is the weighting matrix set to minimize the mean-square equation error of (5.71)

[50],

W1 = E[C1nnTCT
1 ]−1 =

(
C1QCT

1

)−1
. (5.74)
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Assuming the noise in A1 is small, we have [50]

cov(η) ' (AT
1 W1A1)−1 . (5.75)

Second Stage

The performance can be improved by considering the relation between γo and ϕo. The

solution (5.73) in terms of the individual parameter estimates is η = [ γ̂T , ϕ̂T ]T =

[ ûT , t̂T , δ̂τ ,
ˆ̇tT , δ̂f , ϕ̂

T ]T . We shall express each component of η in linear form with

the actual unknown γo.

For γ̂,

∆γ̂ = γ̂ − γo . (5.76)

Putting ϕo(1) as ϕo(1) = ϕ̂(1)−∆ϕ̂(1), squaring both sides and using (5.56a) result

in

ϕ̂(1)2 − 2ϕo(1)∆ϕ̂(1) ' (uo − to)Tuo − (uo − to)T to . (5.77)

Taking advantage of the initial solution η, we have uo − to = û−∆û− t̂ + ∆t̂ and

(5.77) becomes

cTγ,1∆γ̂ + cTϕ,1∆ϕ̂ ' ϕ̂(1)2 − aTγ,1γ
o , (5.78)

cγ,1 =
[
−(uo − to)T , (uo − to)T , 0, 0TK , 0

]T
, (5.79a)

cϕ,1 = [ 2ϕ(1)o, 0, 0, 0, 0 ]T , (5.79b)

aγ,1 =
[

(û− t̂)T , −(û− t̂)T , 0, 0TK , 0
]T
. (5.79c)

Appendix D.4 derives the expressions for the other auxiliary variables defined in

(5.56b)-(5.56e) and they are given by (D.17), (D.19), (D.22) and (D.24).

153



Putting (5.76), (5.78), (D.17), (D.19), (D.22) and (D.24) together gives the linear

matrix equation

C2∆η ' h2 −A2γ
o , (5.80)

C2 =

I3K+2 0(3K+2)×5

Cγ Cϕ

 , (5.81a)

Cγ = [ cγ,1, . . . , cγ,5 ]T , (5.81b)

Cϕ = [ cϕ,1, . . . , cϕ,5 ]T , (5.81c)

h2 = [γ̂T , ϕ̂(1)2, 2ϕ̂(2), ϕ̂(3), 2ϕ̂(1)ϕ̂(4), 2ϕ̂(5)]T , (5.81d)

A2 =
[
I3K+2 , Ā2

]T
, Ā2 = [aγ,1, aγ,2, . . . , aγ,5]T . (5.81e)

The final estimate is the WLS solution to (5.80),

γ = (AT
2 W2A2)−1AT

2 W2h2 . (5.82)

The weighting matrix is the approximation of the inverse of the covariance matrix of

the error D2∆η. Using (5.75),

W2 =
(
C2(AT

1 W1A1)−1CT
2

)−1
. (5.83)

The resulting covariance matrix of the estimate (5.82) can be approximated by [50]

cov(γ) ' (AT
2 W2A2)−1 . (5.84)

C1 and C2 for the weighting matrices W1 and W2 contain the unknowns. One

reasonable approach is to replace C1 by the identity matrix in W1 to generate an

initial solution from (5.73). Approximating the true values in C1 using the initial

solution will give a better W1 and the first stage solution η can be obtained. C2 can
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be formed by using η to approximate the true values needed. The approximations to

obtain the two weighting matrices are reasonable as the WLS formulation in general

is insensitive to the noise in the weighting matrix [52].

Analysis

The performance of the proposed solution can be assessed by the first order analysis

for comparison with the CRLB, where the first order noise term is maintained in the

solution so that the bias is negligible compared to variance. The first order analysis is

valid in the small estimation error region. We shall impose the following small error

conditions:

(C1) diag(boI )
−1nI ' 0 , (5.85a)

diag(boD)−1nD ' 0 ; (5.85b)

(C2) diag(γo)−1∆γ̂ ' 0 or ∆γ̂ ' 0 . (5.85c)

Substituting (5.74) and (5.83) to (5.84) gives

cov(γ) ' (ΓTQ−1Γ)−1 , Γ = C−1
1 A1C

−1
2 A2 . (5.86)

Under (C1)-(C2), Appendix D.4 shows that the noise in A1 and A2 are negligible

and

Γ '
[
∂Tγ bI, ∂

T
γ bD

]T
. (5.87)

Using it in (5.86) and noting that Q = diag(QI, QD),

cov(γ) '
(
∂Tγ bIQ

−1
I ∂γbI + ∂Tγ bDQ

−1
D ∂γbD

)−1

. (5.88)
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The right side is identical to (5.12) and we conclude that

cov(γ) ' CRLBsm(γo) . (5.89)

Thus, under the Gaussian measurement model and given the conditions (C1) and

(C2), the proposed solution yields the CRLB performance over the small estimation

error region where the first order analysis is valid.

5.5.2 MOST

The transmitter velocity is known to be zero in this case and we need to estimate the

object velocity. The unknown vector is (5.35) that contains the desired unknown θo

in (5.34) and the extra unknown β̃o. We shall follow the two-stage technique as in

the SOMT case to obtain the closed-form solution.

First Stage

The auxiliary parameter vector ϕo remains to have five elements. The first three are

the same as before in (5.56a)-(5.56c). The last two elements are redefined as

ϕo(4) = ρTuo−tou̇
o + δof , (5.90a)

ϕo(5) = toT u̇o − ‖uo − to‖δof − ρTuo−tou̇oδoτ − δoτδof . (5.90b)

They are different from those in Chapter 4.

The pseudo-linear equations for the IP and DP TOAs are identical to those from

the SOMT case and are given by (5.58) and (5.63).

For IP DFS in (5.6), putting ṙoi = ṙi − nṙ,i yields

ṙi − δof − ρTuo−tou̇o = ρTuo−siu̇
o + nṙ,i . (5.91)
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Multiplying (5.57) and (5.91) separately on both sides while ignoring the second order

noise term yield

ρTuo−siu̇
o nr,i + ‖uo − si‖nṙ,i ' riṙi − aTγ,ṙiγ

o − aTϕ,ṙiϕ
o , (5.92)

aγ,ṙi =
[
0TK , −sTi , 0TK , ṙi, 0

]T
, (5.93a)

aϕ,ṙi = [ ṙi, 0, 0, ri, 1 ]T . (5.93b)

Using ḋoi = ḋi − nḋ,i, the DP DFS in (5.7) is

nḋ,i = ḋi − aT
γ,ḋi
γo , (5.94)

aγ,ḋi =
[
0T3 , 0, 1

]T
. (5.95)

Considering the unknown vector is (5.68), we have from (5.58), (5.63), (5.92) and

(5.94), for i = 1, 2, . . . ,M ,

Crnr ' hr −Arη
o , (5.96a)

Cṙnr + Crnṙ ' hṙ −Aṙη
o , (5.96b)

Cdnd ' hd −Adη
o , (5.96c)

nḋ ' hḋ −Aḋη
o. (5.96d)

Cr, hr, Ar, Cd, hd and Ad are given in (5.70a)-(5.70c) and (5.70f)-(5.70h). The

other matrices and vectors are redefined as

Cṙ = diag
(
ρTuo−s1u̇

o, . . . , ρTuo−sM u̇o
)
, (5.97a)

hṙ = [ r1ṙ1, r2ṙ2, . . . , rM ṙM ]T , (5.97b)
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Aṙ =
[

[aTγ,ṙ1 , aTϕ,ṙ1 ]
T , . . . , [aTγ,ṙM , aTϕ,ṙM ]T

]T
, (5.97c)

hḋ =
[
ḋ1, ḋ2, . . . , ḋM

]T
, (5.97d)

Aḋ =
[

[aT
γ,ḋ1

, 0T5 ]T , . . . , [aT
γ,ḋM

, 0T5 ]T
]T

. (5.97e)

Stacking (5.96a)-(5.96d) and following the steps for (5.71)-(5.74) yields the first stage

solution given by (5.73) and (5.74), where

C1 =



Cr 0 0 0

Cṙ Cr 0 0

0 0 Cd 0

0 0 0 IM


, (5.98a)

h1 = [hTr , hTṙ , hTd , hT
ḋ

]T , (5.98b)

A1 = [AT
r , AT

ṙ , AT
d , AT

ḋ
]T . (5.98c)

Second Stage

The main procedure is to express the elements of the auxiliary variable ϕo in terms

of the independent unknowns in γo. The relations between the first three estimates

ϕ(1 : 3) and the actual unknown γo in linear form are (5.78), (D.17) and (D.19).

Appendix D.5 gives the details in relating linearly the last two auxiliary variable

estimates ϕ(4 : 5) with γo and they are given by (D.31) and (D.34). Taking the

five equations together with (5.76), we have (5.80), where its components cγ,4, cϕ,4

and aγ,4 are replaced by (D.32a)-(D.32c), cγ,5, and cϕ,5 and aγ,5 are replaced by

(D.35a)-(D.35c).

The final solution is given by (5.82)-(5.83). The same procedure as in the SOMT

case is used to approximate W1 and W2.

The covariance matrix of the final estimate is (5.86). Under the small error con-
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ditions (5.85), Appendix D.5 shows that

cov(γ) ' CRLBms(γ
o) . (5.99)

The proposed solution is able to yield the CRLB performance for small Gaussian

measurement noise.

5.5.3 Computational Complexity

The computational complexity for the proposed solutions are dominated by evaluating

the matrix for inversion and computing the inversion, in the first stage. The inverse

of an P × P matrix typically requires O(P 3) computation [82]. P is equal to the

length of the first stage unknown vector ηo that is 3K + 7 and it is 4K + 8 for

the MOMT algorithm. The IMLE complexity in each of the L iterations is also

dominated by evaluating the matrix for inversion and obtaining its inverse, where the

corresponding P is 3K + 2. Table 5.1 compares the complexity for them. Clearly the

proposed solutions have lower complexity.

Table 5.1: Computational complexity, M is the number of sensors, K is the localiza-
tion dimension, L is the number of iterations

Estimator Computational Complexity
Proposed SOMT

or MOST Solution O
(
(4M)2(3K + 7) + (3K + 7)3

)
MOMT Solution O

(
(4M)2(4K + 8) + (4K + 8)3

)
IMLE L×O

(
(4M)2(3K + 2) + (3K + 2)3

)

5.6 Simulations

We verify the theoretical development and analyze the performance of the proposed

closed-form estimators through 2,000 trial Monte-Carlo simulations. The localization
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configurations we considered are based on the underwater acoustic sensor networks

[83]. The transmitter, object and receivers can generally be interpreted as nodes in

a sensor network. They are randomly deployed in the region [0, 100]3 m. This paper

uses two moving speed 10 m/s and 20 m/s for the transmitter in SOMT and for the

object in MOST. The number of receivers M = 6. The unknown offsets are set

arbitrarily as δoτ = 10 m and δof = 2 m/s.

The noise covariance matrices Qr, Qd, Qṙ and Qḋ are diagonal with elements of

σ2
r,i, σ

2
d,i, σ

2
ṙ,i, σ

2
ḋ,i

. Their values are set by taking into account the propagation path

power loss proportional to distance traveled square as Chapter 4.

σ2
r,i =

ro2i
m̄2

σ2 , σ2
d,i =

do2i
m̄2

σ2 , (5.100a)

m̄2 =
M∑
i=1

(
ro2i + do2i

)
/(2M) , (5.100b)

σ2
ṙ,i = k σ2

r,i , σ2
ḋ,i

= k σ2
d,i . (5.100c)

The factor k used in this paper is 0.01 [32].

For the purpose of comparison, we have implemented the Gauss-Newton based

iterative Maximum Likelihood Estimator (IMLE) for the passive localization scenario

where the object is a source and no transmitter is needed. The measurement model

follows (5.1) without the term ‖uo−to‖ for TOA, and (5.6) without the term ρTuo−tou̇
o

for DFS. The measurement noise covariance matrices are Qr and Qṙ, which remain

unchanged for comparison. The results are optimistic by initializing the IMLE at the

true value and denoted by the blue ’+’ symbol in the simulation figures, labeled as

IMLE-NoTx.

The results of IMLE-NoTx follow closely with the CRLB when only the indirect-

path measurements are used.
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Figure 5.2: Performance for the object position in the SOMT case when transmitter
speed is 10 m/s, one particular geometry.

SOMT

Fig. 5.2 shows the mean-square errors (MSE) of the proposed estimator for one ran-

domly generated configuration given by s1 = [94.7, 35.7, 41.5]T m, s2 = [86.5, 26.1, 62.1]T m,

s3 = [9.4, 52.4, 13.7]T m, s4 = [36.9, 75.2, 31.4]T m, s5 = [90.0, 3.9, 86.8]T m, s6 =

[68.6, 82.5, 10.7]T m, to = [66.0, 89.8, 54.9] m, uo = [96.3, 86.1, 13.7] m, for the trans-

mitter speed at 10 m/s. Also shown are Tr(CRLBsm,I(u
o)) (dashed line), Tr(CRLBmm(uo))

(dotted line), Tr(CRLBss(u
o)) (dashdotted line), Tr(CRLBsm(uo)) (black solid line)

and Tr(CRLBsm(uo)) (red solid line). First, Fig. 5.2 confirms the performance ad-

vantage of using both IP and DP measurements (CRLBsm(uo)) over using just IP

measurement (CRLBsm,I(u
o)), the SOST modeling by ignoring the DFS observations

(CRLBss(u
o)) and the general case of MOMT formulation (CRLBmm(uo)) analyzed

in Section 5.2, 5.3 and 5.4.1. The improvement from the SOMT solution is about

15.5 dB compared to using only IP measurements and 8.5 dB to MOMT. It also

displays the performance degradation due to the unknown offsets, about 2.5 dB in
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Figure 5.3: Average performance for the object position in the SOMT case when
transmitter speed is 10 m/s, 100 randomly generated geometries.

this simulation, discussed in Section 5.2.4. Second, the MSE validates the CRLB ac-

curacy of the proposed estimator in the small noise region. To improve performance

under higher noise level, the proposed solution is used to initialize the Gauss-Newton

iterative MLE (IMLE). The initialization is quite effective where the noise level is

extended by about 20 dB before the performance deviates from the CRLB.
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Figure 5.4: Performance for the object position in the SOMT case when transmitter
speed is 20 m/s, one particular geometry.
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Figure 5.5: Average performance for the object position in the SOMT case when
transmitter speed is 20 m/s, 100 randomly generated geometries.

Fig. 5.3 depicts the average results over 100 randomly generated configurations. It

shows that in general the proposed SOMT method performs better than the MOMT
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solution and the improvement is about 2 dB on average. While the improvement

on average is less, the degradation from the proposed method is much less when the

accuracy deviates from the CRLB occurs. Applying IMLE to the proposed closed-

form solution as initialization extends the performance in matching the CRLB by

about 10 dB in the noise level.

We next increase the transmitter velocity to 20 m/s. The result for the single

localization configuration is shown in Fig. 5.4. The improvement compared to using

only IP measurement is nearly 20 dB and to MOMT is about 13 dB. Fig. 5.5 gives

the average result over the 100 randomly generated configurations. The observations

are similar to those in Fig. 5.3.

MOST

We next evaluate the performance of the proposed estimator in the MOST case.

For a certain geometry where s1 = [8.3, 19.7, 37.3]T m, s2 = [64.7, 97.0, 78.9]T m,

s3 = [35.8, 65.7, 12.6]T m, s4 = [22.4, 30.8, 15.6]T m, s5 = [35.7, 40.4, 14.4]T m, s6 =

[8.6, 6.1, 73.0]T m, to = [90.7, 8.1, 50.3]T m, uo = [93.0, 6.3, 79.1]T m, and the object

velocity u̇ is 10 m/s, Fig. 5.6 validates that the proposed estimator can reach the

CRLB accuracy for low noise level. It confirms the joint estimation of the object

and transmitter location using both IP and DP measurements performs significantly

better than using IP measurement only. The joint estimation reduces the MSE, re-

spectively, by 8 and 15 dB for the object position and velocity estimates in this

simulation. Interestingly, the position estimate of MOST has nearly the same accu-

racy as MOMT. The improvement is on the velocity estimate which is about 3 dB.

The IMLE initialized at the proposed solution increases the noise tolerance by about

5 dB in position estimate and 10 dB in velocity estimate. The average result for

100 randomly generated configurations is shown in Fig. 5.7. Joint estimation with IP

and DP observations achieves an average of 9 and 13 dB improvement in position and
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Figure 5.6: Performance for the object position (top) and velocity (bottom) in the
MOST case when transmitter speed is 10 m/s, one particular geometry.

velocity estimates compared to using the IP measurement only. On average, MOST

maintains very close performance with MOMT, albeit the computational complexity

is less.
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Figure 5.7: Performance for the object position (top) and velocity (bottom) in the
MOST case when transmitter speed is 10 m/s, 100 randomly generated geometries.
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Figure 5.8: Performance for the object position (top) and velocity (bottom) in the
MOST case when transmitter speed is 20 m/s, one particular geometry.

Fig. 5.8 shows the result for the single localization configuration with the object
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velocity increased to 20 m/s. Compared to using IP measurement only, joint estima-

tion increases the position and velocity estimate by about 1.5 and 4.5 dB, respectively.

The position estimate shows no obvious difference compared to MOMT and the ve-

locity has a 3 dB improvement. The proposed estimator is able to attain the CRLB

accuracy when the noise is small and the IMLE initialized at the proposed solution

significantly extends the noise tolerance. Fig. 5.9 shows the average result over 100

randomly generated geometries. The position and velocity estimate have about 9

and 12 dB improvement compared to using IP measurement only. The MOST and

MOMT performs very close to each other on average.

-30 -25 -20 -15 -10 -5 0

10 log10( 2(m2))

-30

-20

-10

0

10

20

30

10
 lo

g1
0(

M
S

E
(m

2
))

-30 -25 -20 -15 -10 -5 0

10 log10( 2(m2))

-40

-30

-20

-10

0

10

20

10
 lo

g1
0(

M
S

E
((

m
/s

)
2
))

Figure 5.9: Performance for the object position (top) and velocity (bottom) in the
MOST case when transmitter speed is 20 m/s, 100 randomly generated geometries.

Moving Speed

Let us examine the performance of SOMT and MOST as the speed of the transmitter

or the object varies. A total of 100 random geometries are generated according to

the simulation settings. The noise level is kept at σ2 = 0.001 m2. Fig. 5.10 gives
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the results for the SOMT case. Joint estimation by IP and DP provides consistent

improvement over estimation using IP only. Performance advantage over MOMT

increases gradually as the transmitter speed increases. This finding confirms the

analysis in Section 5.4.

Fig. 5.11 illustrates the performance for the MOST case. Again, the improvement

of joint estimation over using IP measurement only is clear. Compared to MOMT, the

observations are consistent with our analysis that the position estimates of MOST and

MOMT have comparable performance and the main difference appears on the velocity

estimate especially when the object speed is low. The observations are consistent with

the analysis in Section 5.4.
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Figure 5.10: Performance for the object position between the SOMT and MOMT
cases at different transmitter speeds.
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Figure 5.11: Performance for the object position (left) and velocity (right) between
the MOST and MOMT cases at different object speeds.

5.7 Concluding Remarks

This chapter studied the problem of multistatic localization in the non-cooperative

SOMT and MOST scenarios using time delay and Doppler Shift observations, where

only the sensor positions are available. Detailed investigations using the CRLB under

Gaussian measurement model shows that (i) using the DP measurements in addi-

tion to those of IP improves the localization accuracy for both SOMT and MOST

scenarios, albeit extra unknowns from the transmitter and the measurement offsets

are introduced; (ii) the DP Doppler shift observations improves the performance of

SOMT localization although it is resulted from the transmitter motion only and is

not related to the object position; (iii) geometric condition exists for SOMT where

the performance degradation due to unknown offsets can be avoided and there is no

such condition for MOST; (iv) in addition to complexity reduction, both the proposed

SOMT and MOST formulations with IP and DP measurements yield better accuracy
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than that of MOMT. The performance difference is more significant when the trans-

mitter velocity is larger for SOMT. For MOST, the performance difference on position

estimate is larger when the object is nearer to the transmitter and receivers and that

of velocity estimate is larger when the object is further away from the transmitter

and receivers. Algebraic closed-form solutions were developed for SOMT and MOST.

Both theoretical analysis and simulation studies confirm the optimal performance of

the algorithms under Gaussian noise in the small error region. The proposed solu-

tions are effective to initialize the IMLE to achieve better results when the noise level

becomes high.
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Chapter 6

Asynchronous Multistatic
Localization in the Absence of
Transmitter Position

The aforementioned work from Chapters 3, 4 and 5 focused on the multistatic local-

ization in the absence of transmitter position, when both the indirect- and direct-path

measurements are available though maybe corrupted by unknown offsets. They show

the benefit of incorporating the direct-path measurements into the indirect-path mea-

surements when estimating the object and transmitter positions simultaneously. In

elliptic localization, one advantage over the TOA and TDOA technique is that it can

operate without requiring the transmitter and receiver, or the receiver themselves

to be synchronized. Under asynchronous scenario where the receivers can not be

synchronized with the transmitter or among themselves, the receivers are not able

to obtain the indirect- and direct-path range measurements separately. Instead, by

auto-correlating the signal at a receiver or by estimating the indirect- and direct-path

arrival times with respect to a local receiver clock and subtracting them, the range

difference measurements between the indirect propagation reflected off the object and

the direct propagation from the transmitter can be calculated. Chapter 6 addresses
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such localization problems in the absence of transmitter position.

The localization scenario in Chapter 3 assumes the transmitter position is un-

available but still works cooperatively. Such localization scenario appears when the

transmitter is synchronized with the receivers but its reported position is unreliable.

It also happens when the transmitter operates as an illumination source only so that

no self-localization or GPS is needed to obtain its own position. Chapters 4 and

5 relax the synchronization assumption between the transmitter and receivers but

require the transmitted signal to have a well-defined pattern such as some standard

synchronization or pilot sequence, it obtains the indirect- and direct-path range mea-

surements subject to an unknown amount of time offset. For the non-cooperative

transmitter scenario where the transmitted signal has no timestamp and does not

have some known pattern, the proposed methods in these Chapters are not applica-

ble. Thus we will resort to the range difference measurements between the indirect-

and direct-path to jointly estimate the object and the transmitter position.

We shall structure this chapter as follows. Section 6.1 provides the localization

scenario and the data models. Section 6.2 investigates the CRLB of the object esti-

mate using the range difference measurements between the indirect- and direct-path

and assesses its performance by comparing with that developed in Chapter 3, 4 and

the traditional hyperbolic (TDOA) localization technique. We next propose a refine-

ment method to jointly estimate the object and transmitter positions in Section 6.3.

Theoretical analysis shows that the proposed estimator is able to reach the CRLB

performance over the small error region under Gaussian noise. Three hypothesized

solutions are derived to initialize the refinement estimator. Section 6.4 provides the

simulations and Section 6.5 concludes this chapter.
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Figure 6.1: Localization geometry

6.1 Localization Scenario

We are interested in determining the position uo ∈ RK of an object, using a trans-

mitter at unknown position to ∈ RK and M receivers(sensors) at known positions

si ∈ RK , i = 1, 2, . . . ,M , in a K dimensional space. The transmitter emits a signal to

the object. Each receiver captures the signal from direct propagation and the indirect

reflection of the object. The sensors extract the time difference of arrival between

the direct and indirect signals through autocorrelation and use them to locate the

position of the object.

Let c be the signal propagation speed that is known. The TOA of the transmitted

signal reflected by the object and arrived at sensor i, i = 1, 2, . . . ,M , after multiplying

with the propagation speed c, is

roI,i = ‖uo − si‖+ ‖uo − to‖ . (6.1)

The direct-path TOA from the line-of-sight propagation between the transmitter and
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receiver is

roD,i = ‖to − si‖ . (6.2)

The TDOA between two received signals at sensor i from the autocorrelation is

doi = roI,i − roD,i = ‖uo − si‖+ ‖uo − to‖ − ‖to − si‖ . (6.3)

To avoid confusion with the general TDOA concept (defined as the time difference

between two sensors) in the literature, we shall denote doi as combined measurement.

In practice, the combined measurements contain noise. Thus we have

d = [d1, d2, . . . , dM ]T = do + εd . (6.4)

do is the true values by collecting doi from (6.3). The noise term εd = [εd1 , εd2 , . . . , εdM ]T

is zero-mean Gaussian random vector with covariance matrices Qd.

The positioning system using combined measurements is very flexible in the sense

that no synchronization between the transmitter and a receiver, or among the receivers

is needed.

6.2 CRLB

This section investigates the CRLB of the object estimate using the combined mea-

surements with unknown transmitter position. To assess its performance, the fol-

lowing CRLBs are included as a comparison: CRLBF using indirect- and direct-path

TOAs studied in Chapter 3, which requires synchronization between the transmitter

and receivers; CRLBF using indirect- and direct-path TOAs in the presence of un-

known offset studied in Chapter 4, which works with non-cooperative transmitter;

CRLBI using traditional TDOA, which requires synchronization among the receivers.
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The unknown vector for the CRLB evaluation is

θo = [uoT , toT ]T . (6.5)

We use the symbol ∇ab to denote the partial derivative of the parametric form of

ao with respect to boT evaluated at the true values defined in (3.5)

6.2.1 CRLB Using Indirect- and Direct-Path TOAs

Let us denote the collection of indirect- and direct-path TOAs as mo
F = [roTI , roTD ]T ,

where roI , roD are the collection of indirect- and direct-path TOAs in (6.1) and (6.2).

They are corrupted with additive zeros-mean Gaussian noise vector with covariance

matrices Qr,I, Qr,D. The two sets of measurements are uncorrelated so that the noise

on mo
F has covariance matrix QF = diag(Qr,I, Qr,D). Using the notation (3.5), we

have [50]

CRLBF(θo) =
(
∇T

mFθ
Q−1

F ∇mFθ

)−1
. (6.6)

where

∇mFθ = [∇mFu, ∇mFt ] =

 ∇rIu ∇rIt

0M×K ∇rDt

 , (6.7)

with

∇u = [ρuo−s1 , ρuo−s2 , . . . , ρuo−sM ]T , (6.8a)

∇rIt = 1M ⊗ ρTto−uo , (6.8b)

∇rIu = ∇u −∇rIt , (6.8c)

∇rDt = [ρto−s1 , ρto−s2 , . . . , ρto−sM ]T . (6.8d)
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6.2.2 CRLB Using Indirect- and Direct-Path TOAs in the
Presence of Unknown Offset

In the presence of unknown time offset, the unknown vector for the CRLB evaluation

becomes

ψo = [θoT , δoT ]T . (6.9)

where δo is the unknown range offset added to roI and roD in (6.1) and (6.2). The

CRLB of ψo is

CRLBF(ψo) =
(
∇T

mFψ
Q−1

F ∇mFψ

)−1

=

 ∇T
mFθ

Q−1
F ∇mFθ ∇T

mFθ
Q−1

F 1

1TQ−1
F ∇mFθ 1TQ−1

F 1


−1

(6.10)

The CRLB of θo is the upper left 2K×2K block. Invoking the block matrix inversion

formula gives

CRLBF(θo) =

(
∇T

mFθ

(
Q−1

F −Q−1
F 1(1TQ−1

F 1)−11TQ−1
F

)
∇mFθ

)−1

. (6.11)

6.2.3 CRLB Using Traditional TDOA

The TDOA depends only on the differences between the indirect TOAs and remove

the dependency of the transmitter position in the observation by subtracting the

TOAs of sensor i, i = 2, 3, . . . ,M by that of sensor 1. Let us define the differencing

matrix

H =
[
[−1M−1, IM−1], 0(M−1)×M

]T
, (6.12)

The subtraction operation generates TDOA measurement vector HTmF which re-

mains to be Gaussian distributed with covariance matrix HTQFH. The CRLB for
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the estimation of uo is

CRLBI(u
o) = (∇T

mFu
KI∇mFu)−1 , (6.13)

KI = H(HTQFH)−1HT . (6.14)

6.2.4 CRLB Using Combined Measurement

The combined measurements are the difference between the indirect- and direct-path

TOAs. Similar to (6.12), we define

Hc = [IM , −IM ]T , (6.15)

to represent the differencing. do relates mo
F through

do = HT
c mo

F , Qd = HT
c QFHc = Qr,I + Qr,D (6.16)

From the Gaussian data model, the CRLB for θo using combined measurements

is

CRLBC(θo) =
(
∇T

mFθ
KC∇mFθ

)−1
, (6.17)

KC = Hc(H
T
c QFHc)

−1HT
c . (6.18)

6.2.5 Comparison

Comparison of the CRLBs will provide the performance insight of the combined

measurement approach.
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CRLBF(θo) vs CRLBC(θo)

Let us factorize the matrix QF as QF = Q
1
2
FQ

1
2
F . Let ∇̃mFθ = Q

− 1
2

F ∇mFθ ∈ R2M×2K

and H̃c = Q
1
2
FHc ∈ R2M×M . From (6.6) and (6.17), we have

CRLBF(θo)−1 = ∇̃T
mFθ

∇̃mFθ (6.19a)

CRLBC(θo)−1 = ∇̃T
mFθ

PHc∇̃mFθ (6.19b)

where PHc = H̃c(H̃
T
c H̃c)

−1H̃T
c is a projection matrix and hence [51]

I2M � PHc . (6.20)

Pre-multiplying ∇̃T
mFθ

and Post-multiplying ∇̃mFθ lead to

CRLBC(θo) � CRLBF(θo) . (6.21)

The results agree with the intuition that in general, CRLBF(θo) using both the

indirect- and direct-path TOAs exploits more information for the estimation so that

performs better than the combined measurement approach.

CRLBF(θo) vs CRLBC(θo)

Let 1̃ = Q
− 1

2
F 1 ∈ R2M×1. (6.11) can be represented as

CRLBF(θo)−1 = ∇̃T
mFθ

(I−P1)∇̃mFθ (6.22)

where P1 = 1̃(1̃T 1̃)−11̃T is a projection matrix onto the column space of 1̃. Let

H̃ = Q
1
2
FH ∈ R2M×(M−1). We denote H̃f = [H̃c, H̃] ∈ R2M×(2M−1). It is direct to

show that H̃T
f 1̃ = [H̃c, H̃]T1 = 0, meaning that 1̃ is the orthogonal subspace of H̃f .

Thus orthogonal projection onto the space of 1̃ is equivalent to the projection onto
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H̃f . In other words,

I−P1 = PHf
(6.23)

where PHf
= H̃f (H̃

T
f H̃f )

−1H̃T
f . Putting (6.23) into (6.22) gives

CRLBF(θo)−1 = ∇̃T
mFθ

PHf
∇̃mFθ (6.24)

Since the column space of H̃c is included in the column space of H̃f . As a result,

CRLBC(θo) � CRLBF(θo) . (6.25)

The CRLB using indirect- and direct-path TOAs in the presence of time offset is lower

than that using the combined measurements. Identical performance can be obtained

when the projection PHf
∇̃mFθ is onto the column space of H̃c only.

CRLBI(u
o) vs CRLBC(uo)

Using (6.7) in (6.17) and applying the block matrix inversion formula yields

CRLBC(uo) =

(
∇T

mFu

(
KC −KC∇mFt

(∇T
mFt

KC∇mFt)
−1∇T

mFt
KC

)
∇mFu

)−1

.

(6.26)

Comparing CRLBI(u
o) in (6.13) and CRLBC(uo) in (6.26) analytically is not tractable.

In the limiting case where the transmitter and sensors form a straight line with sen-

sors on the same side of the transmitter, the localization approach using combined

measurements is not applicable since the gradient matrix ∇rDt is rank deficient. On

the other hand, the TDOA approach works since it does not depend on the trans-

mitter position. Contrariwise, when the object and sensors form a straight line with

sensors on both sides of the object, the TDOA approach will fail but the combined

measurement approach still works. The two approaches have no PSD relationship
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thus we shall rely on numerical evaluations to contrast their performance.

6.3 Solutions

This section develops some solutions to locate the object and transmitter using the

combined measurements. The combined measurement equations are first transformed

into the pseudolinear equations by introducing auxiliary variables. The localization

dimension considered in this section is 2-D. The approximations in the solution deriva-

tions come from ignoring the second and higher order noise terms, unless specified

otherwise.

The unknown vector is θo defined in (6.5). Let us first transform the combined

measurement equations in (6.3). Moving ‖uo−to‖ to the left and squaring both sides,

after representing doi by its noisy value di − εdi leads to

‖uo − si‖‖to − si‖ − (di − ‖uo − to‖)εdi + ε2
di

= sTi si −
1

2
d2
i − sTi (uo + to) + di‖uo − to‖+ uoT to

(6.27)

Squaring both sides and ignoring the second to fourth order noise terms yields

− 2‖uo − si‖‖to − si‖(doi − ‖uo − to‖)εdi

' −sTi sid2
i +

1

4
d4
i + d2

i s
T
i a

o(1 : 2) + (d2
i − sTi si)a

o(3)− ao(4) + di(2s
T
i si − d2

i )a
o(5)

+ 2sTi a
o(6 : 7)− 2dis

T
i a

o(8 : 9) + 2dia
o(10) + (si � s)Tao(11 : 12) +

1

2
sTi Psia

o(13)

(6.28)

where ao is the auxiliary variable vector with

ao(1 : 2) = uo + to , (6.29a)

ao(3) = ‖uo − to‖2 − uoT to , (6.29b)

ao(4) = uoTuotoT to − (uoT to)2 , (6.29c)

ao(5) = ‖uo − to‖ , (6.29d)
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ao(6 : 7) = uoTuoto + toT touo − uoT to(uo + to) , (6.29e)

ao(8 : 9) = ‖uo − to‖(uo + to) , (6.29f)

ao(10) = ‖uo − to‖uoT to , (6.29g)

ao(11 : 12) = (uo − to)� (uo − to)− 1uoT to , (6.29h)

ao(13) = (uo − to)TP(uo − to) , (6.29i)

where

p =

 0 1

1 0

 . (6.30)

Stacking the equations (6.28) for i = 1, 2, . . . ,M produces

Bdεd ' hd −Gdao (6.31)

The matrices and vector are defined as

Bd = diag (b1, b2, . . . , bM) , bi = −2‖uo − si‖‖to − si‖(doi − ‖uo − to‖) (6.32a)

hd =

[
1

4
d2

1 − sT1 s1d
2
1, . . . ,

1

4
d2
M − sTMsMd

2
M

]T
, (6.32b)

Gd = [ gd,1, gd,2, . . . , gd,M ]T , (6.32c)

gd,i = [−d2
i s
T
i , sTi si − d2

i , 1, d3
i − 2dis

T
i si, −2sTi , 2dis

T
i , −2di, −(si � si)

T , −1

2
sTi Psi]

T

(6.32d)

6.3.1 Refinement Method

Solution Derivation

The refinement method is based on [84]. The algorithm starts with a hypothesized

solution to formulate the linear equations. Compared to the iterative ML method,
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the refinement method does not require the hypothesized locations very near to the

true locations and too many iterations. Given a hypothesized solution denoted by

θ̃ = [ũT , t̃T ]T , the deviation ∆θ is

∆θ = θ̃ − θo . (6.33)

Putting it into (6.29) gives

a(θ̃) ' ao + G∆∆θ . (6.34)

where G∆ is given at the bottom of the page and the cross terms within ∆u, ∆t and

between them are ignored.

Expressing ao = a(θ̃)−G∆∆θ and using it in (6.31) yields

Bdεd ' h−G∆θ (6.36)

where h = hd −Gda(θ̃) and G = −GdG∆.

The weighted least-square (WLS) solution to (6.36) is

∆θ̃ = (GTWG)−1GTWh . (6.37)

W is the weighting matrix whose best choice is the inverse of the covariance matrix

G∆ =



I2 I2

(2ũ− 3t̃)T (2t̃− 3ũ)T

2(t̃T t̃ũ− ũT t̃t̃)T 2(ũT ũt̃− ũT t̃ũ)T

ρT
ũ−t̃ −ρT

ũ−t̃
(t̃T t̃− ũT t̃)I2 + 2t̃ũT − (ũ + t̃)t̃T (ũT ũ− ũT t̃)I2 + 2ũt̃T − (ũ + t̃)ũT

‖ũ− t̃‖I2 + (ũ + t̃)ρT
ũ−t̃ ‖ũ− t̃‖I2 − (ũ + t̃)ρT

ũ−t̃
‖ũ− t̃‖t̃T + ũT t̃ρT

ũ−t̃ ‖ũ− t̃‖ũT − ũT t̃ρT
ũ−t̃

diag(2(ũ− t̃))− 1t̃T diag(2(t̃− ũ))− 1ũT

2(ũ− t̃)TP −2(ũ− t̃)TP


.

(6.35)

182



of the errors Bdεd [50]

W = E[Bdεdε
T
dBT

d ]−1 =
(
BdQdBT

d

)−1
. (6.38)

According to (6.33), the final solution is given by

θ̂ = θ̃ −∆θ̃ . (6.39)

It is direct to show that the estimation error θ̂ − θo = ∆θ −∆θ̃. Subtracting both

sides of (6.37) by ∆θ, multiplying by the transpose and taking expectation give

cov(θ̂) ' (GTWG)−1 , (6.40)

where the noise in G is assumed negligible.

The processing steps from (6.33)-(6.37) imply an iteration framework that allow

the final solution updated to a more accurate one. In case the hypothesized solution

is initialized far away from the true values. We can assign the hypothesized solution

to be the estimate θ̂ and repeat the refinement method one more time to obtain a

better estimation.

Analysis

We now would like to examine the performance of the proposed solution by comparing

its covariance matrix deduced from the first-order approximation with the CRLB.

The first-order analysis is valid over the small error region where bias is insignificant

relative to variance. The analysis uses the following small error conditions:

(C1)
|εdi |
|di|
' 0 , (6.41a)

(C2)
|di − ‖uo − to‖|
‖uo − si‖‖to − si‖

' 0 . (6.41b)

183



(C3) diag(θo)−1∆θ ' 0 (6.41c)

Substituting (6.38) into the covariance matrix in (6.40) leads to

cov(θ̂) ' (G̃TQ−1
d G̃)−1 , (6.42)

G̃ = B−1
d G = −B−1

d GdG∆ . (6.43)

Appendix E shows that under conditions (C1)-(C3),

G̃ ' ∂do

∂θoT
. (6.44)

Using it in (6.42), we have

cov(θ̂) '
(∂doT

∂θo
Q−1

d

∂do

∂θoT
)−1

. (6.45)

Comparing it with (6.17) concludes that

cov(θ̂) ' CRLBC(θo) . (6.46)

Thus, under the first-order approximation and the conditions (C1)-(C3), the proposed

refinement solution yields the CRLB performance when the measurement noise is

Gaussian.

Hypothesized Solution Realization

The refinement method requires hypothesized solution to formulate (6.34). We shall

derive an asymptotic solution which can be used as a hypothesized solution in the

refinement method.

The derivation starts from the pseudolinear equation (6.31), applying the WLS
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gives the solution

ã = (GT
dWGd)−1GT

dWhd . (6.47)

The weighting matrix W is given by (6.38). In order to recover the desired solution θo

from the auxiliary variable vector ao, we shall apply the multistage solution framework

[25] to simplify ao.

Let the estimation error of ã be ∆ã = ã−ao and the second stage unknown vector

be

ao2(1 : 2) = uo + to , (6.48a)

ao2(3 : 4) = (uo − to)� (uo − to) , (6.48b)

ao2(5) = ‖uo − to‖ , (6.48c)

ao2(6) = uoT to , (6.48d)

ao2(7) = (uo − to)TP(uo − to) , (6.48e)

ao2(8) = uoTuotoT to − (uoT to)2 , (6.48f)

ao2(9 : 10) = uoTuoto + toT touo , (6.48g)

We shall express each component of the solution ã in terms of the second stage

unknowns ao2. Clearly, the first two solutions ã(1 : 2) can be expressed as

∆ã(1 : 2) = ã(1 : 2)− (uo + to) = ã(1 : 2)− ao2(1 : 2) . (6.49)

In terms of solution ã(3), we have

∆ã(3) = ã(3)− (‖uo − to‖2 − uoT to)

= ã(3)−
(
(ã(5)−∆ã(5))‖uo − to‖ − uoT to

)
.

(6.50)

where ‖uo − to‖ = ã(5) − ∆ã(5) is used. Putting the error term to the left reduces
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(6.50) to

∆ã(3)− ao2(5)∆ã(5) = ã(3)− ã(5)ao2(5) + ao2(6) . (6.51)

Applying the same technique to ã(4 : 13) generates the following equations

∆ã(4) = ã(4)− ao2(8) , (6.52a)

∆ã(5) = ã(5)− ao2(5) , (6.52b)

∆ã(1 : 2)ao2(6) + ∆ã(6 : 7) = ã(6 : 7) + ã(1 : 2)ao2(6)− ao2(9 : 10) , (6.52c)

−∆ã(1 : 2)ao2(5)− ao2(1 : 2)∆ã(5) + 2∆ã(8 : 9) = 2ã(8 : 9)− ao2(1 : 2)ã(5)− ã(1 : 2)ao2(5) ,

(6.52d)

− ao2(6)∆ã(5) + ∆ã(10) = ã(10)− ã(5)ao2(6) , (6.52e)

∆ã(11 : 12) = ã(11 : 12) + 1ao2(6)− ao2(3 : 4) , (6.52f)

∆ã(13) = ã(13)− ao2(7) . (6.52g)

Collecting (6.49), (6.51) and (6.52) produces

B2∆ã = h2 −G2a
o
2 (6.53)

where the matrices and vector are

B2 =



I2 0 0 0 02 02 0 02 0

0T 1 0 −ao2(5) 0T 0T 0 0T 0

0T 0 1 0 0T 0T 0 0T 0

0T 0 0 1 0T 0T 0 0T 0

ao2(6)I2 0 0 0 I2 02 0 02 0

−ao2(5)I2 0 0 −ao2(1 : 2) 02 2I2 0 02 0

0T 0 0 −ao2(6) 0T 0T 1 0T 0

02 0 0 0 02 02 0 I2 0

0T 0 0 0 0T 0T 0 0T 1



, (6.54a)

186



h2 =
[
ãT (1 : 7), 2ãT (8 : 9), ãT (10 : 13)

]T
, (6.54b)

G2 =



I2 02 0 0 0 0 02

0T 0T ã(5) −1 0 0 0T

0T 0T 0 0 0 1 0T

0T 0T 1 0 0 0 0T

02 02 0 −ã(1 : 2) 0 0 I2

ã(5)I2 02 ã(1 : 2) 0 0 0 02

0T 0T 0 ã(5) 0 0 0T

02 I2 0 −1 0 0 0T

0T 0T 0 0 1 0 0T



. (6.54c)

The WLS solution gives the second stage estimate

ã2 = (GT
2 W2G2)−1GT

2 W2h2 . (6.55)

where

W2 =
(
B2(GT

dWGd)−1BT
2

)−1
. (6.56)

The solution ã2 is still a mix of the desired unknowns uo and to but more simplified

than ã. We next apply the similar procedure as obtaining ã2 from ã and recover the

estimate of the desired individual unknowns uo and to.

Let the second stage estimation error be ∆ã2 = ã2 − ao2. The first two solutions

ã2(1 : 2) can be expressed as

∆ã2(1 : 2) = ã2(1 : 2)− (uo + to) . (6.57)
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For the solution ã2(3 : 4), we have

ao2(3 : 4) =ã2(3 : 4)−∆ã2(3 : 4)

=ã2(3 : 4)�
(
1−∆ã2(3 : 4)� ã2(3 : 4)

)
.

(6.58)

Taking square root on both sides and realizing ao2(3 : 4) = (uo − to)� (uo − to) leads

to

uo − to ' ±
√

ã2(3 : 4)�
(
1− 1

2
∆ã2(3 : 4)� ã2(3 : 4)

)
. (6.59)

where the following first-order approximation has been applied

√
1−∆ã2(3 : 4)� ã2(3 : 4) ' 1− 1

2
∆ã2(3 : 4)� ã2(3 : 4) . (6.60)

For equation (6.59), putting the error terms to the left yields

±1

2
∆ã2(3 : 4)�

√
ã2(3 : 4) ' ±

√
ã2(3 : 4)− (uo − to) . (6.61)

(6.57) and (6.61) are now allow us to recover the estimate of the desired unknowns.

Combining (6.57) and (6.61) gives the linear equation

Bθ∆ã2 ' hθ −Gθθ
o (6.62)

where

Bθ =

I2 02 02×6

02 ±1
2diag(

√
ã2(3 : 4)) 02×6

 , (6.63a)

hθ =

[
ãT2 (1 : 2), ±

√
ãT2 (3 : 4)

]T
, (6.63b)
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Gθ =

I2 I2

I2 −I2

 . (6.63c)

The LS solution gives the estimate

θ̃i = G−1
θ hiθ . (6.64)

The hypothesized solution is thus given by θ̃i. i = 1, 2, 3, 4 accounts for the ambi-

guities introduced by the square root operation. In general, there are four different

combinations of positive(+) and negative(−) signs if we do not consider the con-

straints between uo and to defined by ao. However, when the noise is small enough

so that the first stage solution ã still holds such constraints, we can reduce the num-

ber of combinations to two according to the value ã(13), which is the product of

(uox− tox)(uoy − toy). To determine which solution is correct, we can simply reconstruct

the combined measurements d̃i using each solution candidate θ̃i and compute the

residual square error

ξi = (d− d̃i)TQ−1
d (d− d̃i) . (6.65)

The correct solution should be chosen with the minimum residual error.

θ̃∗ = argmin
θ̃i

(ξi). (6.66)

The derivation to obtain the hypothesized solution only uses the first four elements of

the estimate ã2. By ignoring other elements, the hypothesized solution can be easily

solved after obtaining the second stage estimate since the matrices Gθ are quite

small and concise. It is thus considered very computationally efficient. However,

when the other elements in ã2 are exploited, though extra computation is added, a

more accurate estimate shall be expected. The following subsections illustrate two

different approaches to obtaining more accurate solutions by exploiting the elements
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in ã2 further.

6.3.2 Best Linear Unbiased Estimator (BLUE)

This subsection derives the closed-form solution based on BLUE. Let us first assume

the ambiguity are resolved according to (6.65)-(6.66) and the final solution (6.64) is

denoted by θ̃1. The estimation error can then be computed as

∆θ̃1 = θ̃1 − θo = G−1
θ (hθ −Gθθ

o) = G−1
θ Bθ∆ã2 (6.67)

where (6.62) is used. An alternative form is

θ̃1 = θo + G−1
θ Bθ∆ã2 (6.68)

θ̃1 only explores the first four elements in ã2. We next would like to derive another

estimate by exploring the rest elements ã22 = ã2(5 : 10). As can be seen in (6.48),

acquiring the estimate directly from ã22 is demanding. We shall use the idea from

refinement method to derive the other estimate. Similar to (6.34), putting ∆θ̃1 =

θ̃1 − θo into ao22 yields

ã22(θ̃1) ' ao22 + G22∆θ̃1 . (6.69)

with

G22 =



ρT
ũ−t̃ −ρT

ũ−t̃

t̃T ũT

2(ũ− t̃)TP −2(ũ− t̃)TP

2(t̃T t̃ũ− ũT t̃t̃)T 2(ũT ũt̃− ũT t̃ũ)T

t̃T t̃I2 + 2t̃ũT ũT ũI2 + 2ũt̃T


. (6.70)
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The second stage estimation error ∆ã2(5 : 10) is

∆ã2(5 : 10) = B22∆ã2 = ã22 − ao22 . (6.71)

where B22 = [06×4, I6×6]. Putting (6.69) into (6.71) yields

B22∆ã2 ' h22 + G22∆θ̃1 . (6.72)

where h22 = ã22 − ã22(θ̃1). The WLS solution to (6.72) is

∆θ̂1 = −(GT
22W22G22)−1GT

22W22h22 . (6.73)

W22 =
(
B22(GT

2 W2G2)−1BT
22

)−1
. (6.74)

The solution is then given by

θ̃2 = θ̃1 −∆θ̂1 . (6.75)

The estimation error can be shown

θ̃2 − θo = ∆θ̃1 −∆θ̂1 = (GT
22W22G22)−1GT

22W22B22∆ã2 . (6.76)

Alternatively,

θ̃2 = θo + (GT
22W22G22)−1GT

22W22B22∆ã2 . (6.77)

Stacking (6.68) and (6.77) forms

Bb∆ã2 = hb + Gbθ
o . (6.78)
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where

Bb =

 G−1
θ Bθ

(GT
22W22G22)−1GT

22W22B22

 , (6.79a)

hb = [ θ̃T1 , θ̃
T
2 ]T , (6.79b)

Gb = [ I4, I4 ]T . (6.79c)

The final BLUE is thus given by

θ̂ = (GT
b WbGb)

−1GT
b Wbhb . (6.80)

Wb =
(
Bb(G

T
2 W2G2)−1BT

b

)−1
. (6.81)

Subtracting both sides of (6.80) by θo, multiplying by the transpose and taking

expectation give

cov(θ̂) ' (GT
b WbGb)

−1 . (6.82)

The BLUE (6.80) explores all the elements in ã2 so that forms a more accurate

hypothesized solution than that in (6.64). The refinement solution adopts such hy-

pothesized solution shall obtain better localization accuracy.

6.3.3 Multistage Solution

In BLUE, we explore the rest elements using the obtained hypothesized solution in

(6.64). On the other hand, the multistage framework also enable us to go through

each stage until recover the final solution. After obtaining the second stage solution ã2

from (6.55) and the hypothesized solution θ̃1 from (6.64), let the third stage unknown
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vector be

ao3 = [uoT , toT , aoT2 (5 : 10)]T . (6.83)

where we simply keep the last six unknown elements ao3(5 : 10) = ao2(5 : 10) un-

changed. Clearly, the third stage solution ã3 is given by

ã3 = [θ̃T1 , ãT2 (5 : 10)]T . (6.84)

We next exploit the dependency between ao3(5 : 10) and θo to derive the final

stage solution. We shall express each component of ã3 in linear form with the desired

unknown θo. Let the estimation error ∆ã3 = ã3 − ao3.

For θ̃1 in ã3,

∆θ̃1 = θ̃1 − θo . (6.85)

Putting ao3(5) as ao3(5) = ã3(5)−∆ã3(5), squaring both sides result in

ã3(5)2 − 2ao3(5)∆ã3(5) ' (uo − to)Tuo − (uo − to)T to . (6.86)

Using solution θ̃1, we have uo − to = (ũ−∆ũ)− (t̃−∆t̃) and (6.86) becomes

−(uo − to)T∆ũ + (uo − to)T∆t̃ + 2ao3(5)∆ã3(5)

' ã3(5)2 − (ũ− t̃)Tuo + (ũ− t̃)T to ,

(6.87)

We apply the same technique to obtain linear equations for the unknowns ã3(6)-

ã3(10). The resulting equations are

− toT∆ũ− uoT∆t̃ + 2∆ã3(6) = 2ã3(6)− t̃Tuo − ũT to (6.88a)

− (uo − to)TP(∆ũ−∆t̃) + ∆ã3(7) = ã3(7)− (ũ− t̃)TP(uo − to) (6.88b)
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− 3toT touoT∆ũ− 3uoTuotoT∆t̃ + 4ao3(6)∆ã3(6) + 2∆ã3(8)

' 2ã3(6)2 + 2ã3(8)− t̃T t̃ũTuo − ũT ũt̃T to (6.88c)

− 2touoT∆ũ− 2uotoT∆t̃ + ∆ã3(9 : 10) = ã3(9 : 10)− uot̃T t̃− toũT ũ (6.88d)

Collecting (6.85), (6.87) and (6.88) establish the linear matrix equation

B4∆ã3 ' h4 −G4θ
o . (6.89)

where

B4 =



I2 02 0 0 0 0 02

02 I2 0 0 0 0 02

−(uo − to)T (uo − to)T 2ao3(5) 0 0 0 0T

−toT −uoT 0 2 0 0 0T

−(uo − to)TP (uo − to)TP 0 0 1 0 0T

−3toT touoT −3uoTuotoT 0 4ao3(6) 0 2 0T

−2touoT −2uotoT 0 0 0 0 I2



(6.90a)

h4 = [θ̃T1 , ã3(5)2, 2ã3(6), ã3(7), 2ã3(6)2 + 2ã3(8), ãT3 (9 : 10)]T , (6.90b)

G4 =



I2 02

02 I2

(ũ− t̃)T −(ũ− t̃)T

t̃T ũT

(ũ− t̃)TP −(ũ− t̃)TP

t̃T t̃ũT ũT ũt̃T

t̃T t̃I2 ũT ũI2



(6.90c)

From (6.89), the WLS solution gives the final solution

θ̃ = (GT
4 W4G4)−1GT

4 W4h4 . (6.91)
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The weighting matrix is computed as the inverse of the covariance matrix of the errors

B4∆ã3

W4 = E[B4∆ã3∆ãT3 BT
4 ]−1 . (6.92)

According to (6.84), (6.67) and (6.71), ∆ã3 is given by

∆ã3 = [∆θ̃T1 , ∆ãT2 (5 : 10)]T =

G−1
θ Bθ

B22

∆ã2 . (6.93)

So that the weighting matrix W4 in (6.92) is given by

W4 =
(
B5(GT

2 W2G2)−1BT
5

)−1
. (6.94)

where

B5 = B4

G−1
θ Bθ

B22

 . (6.95)

The final solution θ̃ in (6.91) can then be plugged into the refinement method to

obtain better localization accuracy. The multistage solution consists of four stages.

The first stage is formed by the pseudolinear equation (6.31) and the solution ã given

by (6.47). The second stage is formed by (6.53) and the solution ã2 given by (6.55).

The third stage is quite straightforward but vital for the whole process as from which

the individual solutions u and t are recovered. It explores the relations between

ao2(1 : 4) and θo given in (6.62). The solution is given by θ̃1 in (6.64) together with

the second stage solution ã2(5 : 10). The fourth stage is formed by (6.89) and gives

the final solution θ̃ in (6.91).

195



6.4 Simulations

This section presents simulation performance of the asynchronous multistatic localiza-

tion using combined measurements and the localization performance of the proposed

estimator. The simulations are conducted through a 2000 trials Monte-Carlo experi-

ment, in 2-D localization scenario.

The noise covariance matrices Qr,I and Qr,D are diagonal with elements of σ2
I,i,

σ2
D,i. Their values are set by taking into account the propagation path power loss

proportional to distance traveled square as Chapter 4.

σ2
I,i =

ro2I,i

m̄2
σ2 , σ2

D,i =
ro2D,i

m̄2
σ2 , (6.96a)

m̄2 =
M∑
i=1

(
ro2I,i + ro2D,i

)
/(2M) . (6.96b)

6.4.1 CRLB Comparison

A total number of 100,000 random geometries are generated in 2-D with M = 6

sensors to evaluate the CRLBs of the object position estimate. The Cartesian coordi-

nates of the object, transmitter and receivers are chosen randomly from independent

uniform distributions within an area of [−1000, 1000]2. The noise powers are set

with σ2 = 1. Fig. 6.2 gives the histograms of Tr(CRLBC(uo))/Tr(CRLBF(uo)) and

Tr(CRLBC(uo))/Tr(CRLBF(uo)) over the 100,000 randomly generated geometries. It

confirms that the use of indirect- and direct-path measurements can yield better per-

formance than the combined measurements, even in the presence of unknown time

offset. Nevertheless, it requires the transmitter and the receivers are well synchronized

or the transmitted signal has some known pattern.
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Figure 6.2: Histograms for CRLB comparison of Tr(CRLBC(uo))/Tr(CRLBF(uo))
and Tr(CRLBC(uo))/Tr(CRLBF(uo))

Figure 6.3: Histogram for CRLB comparison of Tr(CRLBI(u
o))/Tr(CRLBC(uo))

A more applicable approach to the multistatic localization with non-cooperative

transmitter is the TDOA technique which only requires the synchronization among
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Figure 6.4: CRLB comparison of Tr(CRLBI(u
o))/Tr(CRLBC(uo)) as the object range

increases

the receivers. The CRLB comparison between the TDOA and the combined mea-

surements is illustrated by the histogram in Fig. 6.3. As can be seen, the combined

measurements at times behaves better than TDOA and vice versa. Fig. 6.4 eval-

uates the average performance of Tr(CRLBI(u
o))/Tr(CRLBC(uo)) over the 10,000

randomly generated geometries as the range of the object to the center point of the

coordinate increases. The transmitter and receivers are randomly generated in the

same area of [−1000, 1000]2. It shows that when the object range is smaller than

about 1000, i.e. the object is in the same area as receivers, the TDOA performs

better on average. However, the combined measurements outperforms TDOA when

the object is farther away from the receivers. The result is not unexpected as the

performance of TDOA decreases when the localization geometry becomes poor due

to the increase of the object to receiver range. Thus the multistatic localization using

combined measurements is preferred when the object is outside of the receiver areas.
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Figure 6.5: The simulation scenario

6.4.2 Hypothesized Solutions and Refinement Estimator

The simulation uses one transmitter and fourteen receivers to locate one target. Their

positions are randomly generated in the area of [−1000, 1000]2 as depicted in Fig. 6.5.

Fig. 6.6 illustrates the accuracy of the object position estimate using the three hypoth-

esized solutions derived in Section 6.3. The simple hypothesized solution corresponds

to that derived in (6.64) where only part of the information is explored. Clearly, it

has a large error and is about 18.5 dB higher than the CRLB. Also shown are the

performances of the BLUE and the multistage estimator derived in (6.80) and (6.91).

The two proposed estimators are able to reach the performance governed by the trace

of the CRLB over the small error region. Both two approaches perform significantly

better than the simple hypothesized solution. It also implies that the BLUE and the

multistage estimators can be used alone to locate the target when the noise power is

sufficiently small.
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Figure 6.6: Performance of the proposed hypothesized solutions

-10 -5 0 5 10 15

10 log10( 2(m2))

-15

-10

-5

0

5

10

15

20

25

30

35

10
 lo

g1
0(

M
S

E
(m

2
))

CRLB
Simple hypothesized Solution Initialization
BLUE Initialization
Multistage Estimator Initialization

Figure 6.7: Performance of the proposed refinement estimator initialized with different
hypothesized solutions

We next incorporate the hypothesized solutions to the proposed refinement es-
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timator. The results are shown in Fig. 6.7 with different hypothesized solutions

as initializations. It shows that the refinement estimator works well with all three

hypothesized solutions and it can achieve the CRLB at low to medium noise level.

Compared with the BLUE and the multistage estimators shown in Fig. 6.6, where

they deviate from the bound at about 0 dB, the refinement estimator has a much

higher noise tolerance before the thresholding effect appears at around 10 dB.

6.5 Concluding Remarks

Incorporating the direct-path measurements into the indirect ones can significantly

improve the object position estimate when the transmitter position is unknown. How-

ever, this approach is not applicable to the asynchronous multistatic localization when

the transmitted signal has no timestamp and does not have a known pattern. This

chapter proposed a joint object and transmitter estimation using the combined mea-

surements. The combined measurements can be easily acquired as no synchronization

between the transmitter and the receiver, or among the receivers is needed. We have

shown that the approaches using both the indirect- and direct-path measurements

performs better than the combined measurements as it has a richer set of measure-

ments. The CRLBs between the approach using the combined measurements and the

TDOAs have no PSD relations and comparing them analytically is not tractable. It

is shown in the simulation that when the object range increases, the possibility that

the combined measurements approach outperforms TDOA increases.

We also proposed a refinement estimator to jointly estimate the object and trans-

mitter position, along with three different hypothesized solutions for initialization.

Theoretical development and simulation studies support the optimal performance of

the algorithm under Gaussian noise in the small noise region. The simulation also

shows that the proposed BLUE and the multistage hypothesized solution can achieve
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the CRLB performance when the noise is sufficiently small. All three hypothesized

solutions are effective in initializing the refinement estimator to achieve higher noise

tolerance.
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Chapter 7

Summary and Future Work

First, a summary of the research works studied in this thesis will be presented. Then,

the research topics that is worthy of pursuing in the future will be discussed.

7.1 Summary

In this study, We first provided a simple and direct derivation of the proposed mini-

mum measurement solution from a geometric perspective for elliptic time delay mea-

surement. The minimum measurement solution is then applied for the object position

estimate. The proposed solution is obtained by solving the roots of a quadratic equa-

tion, which makes it computationally efficient, more general and robust. For the

overdetermined case where more measurements are available, we propose a linear

estimator based on BLUE to integrate them together to produce the final location

estimate. Analysis shows that it is able to achieve the CRLB performance under Gaus-

sian noise when the set of the individual minimum measurement solutions covers all

the measurements. The proposed estimator by forming and combining individual so-

lutions is algebraic and closed-form. To extend the performance and make it deviate
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from the CRLB later, an individual solution selection scheme is developed to improve

the final estimate when the noise level is large. The simulation results confirm well

with the theoretical development. All the developments and results apply to elliptic

time delay as well as hyperbolic time difference measurements, in both 2-D and 3-D.

We then addressed the scenario for the multistatic system in which the transmitter

position is not available. We started from the fundamental study via the CRLB.

Two direct methods which eliminate the transmitter position by preprocessing the

measurements were used for comparison. One is the differencing approach that forms

the difference between the indirect measurements, and the other one introduces a

new variable for the transmitter-object distance. We theoretically illustrate that the

performance with using both the indirect and direct path measurements for joint

estimation of the object and the transmitter position is the best. We then devise an

algebraic closed-form solution to solve the nonlinear joint estimation problem. It is

shown that the proposed estimator is able to achieve the CRLB performance under

Gaussian noise in the small error region from the first-order analysis. The presence of

uncertainties in the receiver positions is considered and the algorithm that can account

for such errors is then developed. The algorithm is also extended to the scenario

where multiple transmitters at unknown locations are used. We also derived the

optimum receiver placement for such a localization system in the 2-D scenario when

the number of receivers is even. The loss in the best achievable performance is 3dB

when the optimum receiver placement criterion is the minimization of the estimation

confidence region and is 1.16 dB when it is the minimization of the estimation MSE.

The proposed localization method in Chapter 3 assumes the transmitter is co-

operative so that timestamp is available in the transmitted signal for the receivers

to obtain the indirect and direct path range measurements. In the situation where

the transmitter is not intentional such as for the passive coherent system, the signal

sent time is often not known. If the transmitted signal has a well-defined pattern
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such as some standard synchronization or pilot sequence, it would still be able to

estimate the indirect and direct path ranges but with an unknown constant offset

added. The extension of such a situation is investigated in Chapter 4 where the range

measurements obtained from the received signals are assumed with an unknown con-

stant offset. When the object or the transmitter is moving, Doppler frequency shift

measurements are used in addition to the time delay measurements, which are also

interfered by the unknown frequency offset. We transform the target tracking prob-

lem to motion analysis, where the source position and velocity are determined from

time delay and Doppler frequency shift measurements obtained at a single time in-

stant. Compared to the work in Chapter 3, we have the additional unknowns of the

object and transmitter velocities, the presence of unknown time and frequency offsets,

and the availability of frequency measurements. The extra unknowns and additional

measurements make the problem more challenging to investigate and tackle. In par-

ticular, apart from the more complex CRLB analysis, we have the new component

on analyzing the effect of unknown offsets and deriving the condition where the per-

formance degradation they cause can be eliminated. The algorithm is different and

more involved due to the presence of 2K + 2 additional unknowns where K is the

localization dimension, and the requirement of six auxiliary variables instead of three.

The optimal geometry development has further complications where new technique

and proof by induction are needed to handle the presence of unknown time offset,

and the final results are different.

Chapter 5 considers the partial dynamic scenario where only the transmitter or

the target is moving. It started with the two different localization scenarios of static

object moving transmitter (SOMT) and moving object static transmitter (MOST),

depending on the motion status of the object and the transmitter. The two cases

were thoroughly investigated from the perspective of the CRLB under Gaussian noise

model, from which the impact in the positioning accuracy by including the DP mea-
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surements, and the degradation due to time and frequency offsets were examined.

In the SOMT case, the possible benefit of exploiting the motion of the transmitter

was also analyzed. Furthermore, the performance improvement of SOMT and MOST

over the use of the general moving object moving transmitter (MOMT) formulation

was investigated in detail. We next proposed new computational efficient closed-form

estimators for the two cases, which cannot be obtained from the one of MOMT with

special settings. Theoretical analysis shows that the proposed estimators are able

to reach the CRLB performance over the small error region under Gaussian noise.

Simulations were included to support the theoretical investigations.

We studied in Chapter 6 where no synchronization between the transmitter and a

receiver, or among receivers in the multistatic localization. A self-calculated TDOA

measurement between the indirect and direct path signals was considered, which is

termed as the combined measurement in this thesis. Through CRLB analysis and

comparison, we showed that the combined measurement can not work as better as

the approaches studied in Chapters 3, 4 and 5, where they require approximately

accurate indirect and direct measurements can be obtained. Perhaps a more com-

petitive approach is using the traditional TDOA measurements between receivers

as only receivers are required to be synchronized. We showed that comparing the

CRLBs between the combined measurement and TDOA method analytically is not

tractable. Simulations showed that the combined measurement behaves better than

TDOA when the object is further away from the receivers. We developed an iterative

refinement estimator that can jointly estimate the object and transmitter positions.

Analysis and simulations showed its CRLB performance under Gaussian noise in the

small error region. We also developed three hypothesized solutions based on the

multistage processing technique. Simulations validate the effectiveness of them in

initializing the refinement method.
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7.2 Future Work

The optimum receiver placement carried out in Chapter 3 assumes an even number

of receivers. Finding the optimal geometry with an odd number of receivers can be

an interesting extension of this work. It is more challenging since the off diagonal

elements of the FIM in (3.83) is not guaranteed to be zero. A more interesting

extension of the work is to the 3-D localization problem, where both the optimal

azimuth angle and elevation angle should be solved. Moreover, the value a in (3.79)

will depend on the inverse of 3×3 matrix in 3-D case. Finding the minimum possible

value of a can be interesting but challenging work.

For the localization scenarios studied in Chapters 3, 4 and 5, an important research

direction to improve the object localization accuracy further is to investigate the

improvement from the use of moving receivers. The moving receivers provide more

flexibilities and it is more controllable than the transmitter especially when the latter

is assumed non-cooperative. Moreover, it will be an interesting and challenging work

to study the degradation effect when the uncertainties are presented in both the

receiver positions and velocities. Besides, another interesting work would be the

development of the optimal geometry which depends not only on the placement of

the receivers but also on their velocities.

Future work to Chapters 4 and 5 is to extend the proposed algorithm for multiple

transmitters at unknown locations and the presence of sensor position errors. When

the transmitters happen to emit similar or identical waveforms, the complication

arises in the attribution of arrivals to the respective sources. The processing algorithm

will likely need to perform data association in conjunction with localization in this

situation.

We only investigated the static object localization using static transmitters and

receivers in Chapter 6. In future work, the proposed method can be extended to

moving object localization using a moving transmitter and receivers. Besides the
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self-calculated TDOA measurements, the FDOA measurements between the indirect

and direct signals can be exploited to jointly estimate the object and transmitter

positions and velocities.
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Appendix A

Appendices of Chapter 2

A.1 Derivation of C†

The pseudo-inverse of C is defined as [76]

C† =
(
CTC

)−1
CT . (A.1)

From the definition of C in (2.30),

(
CTC

)−1
=

0.5ILK−M 0

0 I2M−LK

 . (A.2)

Thus we obtain (2.33).

A.2 Derivation of J

A set of L = dM/Ke individual solutions that cover all the measurements can be

obtained as follows. First, we select K measurements from M to produce the first
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individual solution. Second, we select another K measurements from the remaining

M − K to generate the second individual solution. The process continues until the

number of remaining measurements is M − (L − 1)K. To use these remaining mea-

surements, we choose LK −M measurements out of (L − 1)K that have been used

before. Thus the total number of ordered individual solutions is

(
L−2∏
i=0

CM−iK
K

) (
CLK−K
LK−M

)
. (A.3)

Simplifying the first product term gives

M !

(K!)L−1 (M − (L− 1)K)!

(
CLK−K
LK−M

)
. (A.4)

Taking into consideration that the ordering of the individual solutions is irrelevant,

the number of the minimum collection of individual solutions that covers all the

measurements is

1

L!

M !

(K!)L−1 (M − (L− 1)K)!

(
CLK−K
LK−M

)
, (A.5)

which can be rewritten as (2.42).
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Appendix B

Appendices of Chapter 3

B.1 Geometry for Identical CRLBs with and with-

out Joint Estimation

Without loss of generality, let

ρρρto−uo = [1, 0TK−1]T , (B.1)

and

∇∇∇T
dtQ

−1
d ∇∇∇dt =

 a bTK−1

bK−1 CK−1×K−1

 . (B.2)

Then

∇∇∇rt = 1Mρρρ
T
to−uo = 1M [1, 0TK−1]. (B.3)

Putting ∇∇∇rt and ∇∇∇dt into J =∇∇∇rt(∇∇∇T
rtQ

−1
r ∇∇∇rt +∇∇∇T

dtQ
−1
d ∇∇∇dt)

−1∇∇∇T
rt gives
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J = 1M [1, 0TK−1]

 1TMQ−1
r 1M + a bTK−1

bK−1 CK−1×K−1


−1  1

0K−1

1TM . (B.4)

We shall show that under the following special geometries,

(i) transmitter and receivers are colinear under the 2-D scenario,

(ii) transmitter and receivers are coplanar under the 3-D scenario,

the CRLB for jointly estimating the transmitter and object locations is the same as

that for estimating the object location only by forming the range differences.

Under the special geometry in (i) or (ii), the matrix in (B.2) is rank deficient,

giving zero Schur complement of the block C in (B.2) such that

a = bTK−1C
−1
K−1×K−1bK−1. (B.5)

Here, we assume the transmitter, receivers and object in (i) are not colinear, and they

are not coplanar in (ii). Besides, the transmitter and receivers in (ii) are not colinear

so that C is full rank and invertible. Should that be the case, we will not be able to

locate a 2-D object with the configuration in (i) or a 3-D object with that in (ii).

Applying the block matrix inversion formula and using (B.5) yield immediately

J = 1M(1TMQ−1
r 1M + a− bTK−1C

−1
K−1×K−1bK−1)−11TM = 1M(1TMQ−1

r 1M)−11TM .

(B.6)

As a result, from the definition of Kr in (3.19),

Q−1
r −Q−1

r JTQ−1
r = Kr. (B.7)

Using (3.29) shows immediately that the CRLB of using range differences in (3.11)

212



is identical to the CRLB (3.25) for the joint estimation.

B.2 Proof of (3.66)

Substituting B1 = diag(Br, Bd)T and G1 = [GT
r , GT

d ]T into (3.64) gives

G3 =

B−1
r Gr

B−1
d Gd

 ·B−1
2 G2 (B.8)

and Br, Bd, Gr, Gd, B2 and G2 are given in (3.45) and (3.58).

Under (C1) in Section 3.3.2, the noise in G1 is negligible so that

B−1
r Gr = [br1 , br2 , · · · , brM ]T

bri '
[
−sTi

‖uo − si‖
, 0TK ,

1

‖uo − si‖
,

roi
‖uo − si‖

,
−1

2‖uo − si‖

]T
,

(B.9)

B−1
d Gd = [bd1, bd2, · · · , bdM ]T

bdi '
[
0TK ,

−sTi
‖to − si‖

, 0, 0,
1

2‖to − si‖

]T
.

(B.10)

Under (C2) and (C3) in Section 3.3.2, the noise in G2 is insignificant. As a result

B−1
2 G2 '



IK OK×K

OK×K IK

toT uoT

ρρρTuo−to ρρρTto−uo

0TK 2toT


. (B.11)

Direct multiplication gives

B−1
r GrB

−1
2 G2 = [pr1, pr2, · · · , prM ]T , (B.12a)
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pri ' [ρρρTuo−si + ρρρTuo−to , −ρρρTuo−to ]T =
∂roi
∂θθθoT

,

B−1
d GdB−1

2 G2 = [pd1, pd2, · · · , pdM ]T , (B.12b)

pdi ' [0TK , ρρρ
T
to−si ]

T =
∂doi
∂θθθoT

.

We have B−1
r GrB

−1
2 G2 ' ∂ro/∂θθθT and B−1

d GdB−1
2 G2 ' ∂do/∂θθθT , putting them in

(B.8) yields (3.66).

B.3 Details for The Closed-Form Estimator With

Multiple Transmitter

B.3.1 Matrices for The First Stage

They are defined as follows:

B̃r = IN ⊗Br (B.13a)

B̃d = diag(Bd,1, Bd,2, · · · , Bd,N) (B.13b)

Bd,j = diag
(

[ ‖s1 − toj‖, ‖s2 − toj‖, · · · , ‖sM − toj‖ ]
)

D̃r = 1N ⊗Dr (B.13c)

Dr = diag
(
(uo − s1)T , (uo − s2)T , · · · , (uo − sM)T

)
D̃d =

[
DT

d,1, DT
d,2, · · · , DT

d,N

]T
(B.13d)

Dd,j = diag
(
(s1 − toj)

T , (s2 − toj)
T , · · · , (sM − toj)

T
)

h̃r = [hTr,1, hTr,2, · · · , hTr,N ]T (B.13e)

hr,j =
1

2

[
(r2

1,j − ‖s̃1‖2), · · · , (r2
M,j − ‖s̃M‖2)

]T
h̃d = [hTd,1, hTd,2, · · · , hTd,N ]T (B.13f)

hd,j =
1

2

[
(d2

1,j − ‖s̃1‖2), · · · , (d2
M,j − ‖s̃M‖2)

]T
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G̃r = [−1N ⊗ S̃, OMN×NK , IN ⊗ 1M , diag(r̃1, r̃2, . . . , r̃N), −1

2
IN ⊗ 1M ]T (B.13g)

r̃j = [r1,j, r2,j, . . . , rM,j]
T

G̃d =

[
OMN×K , −IN ⊗ S̃, OMN×2N ,

1

2
IN ⊗ 1M

]T
(B.13h)

S̃ = [̃s1, s̃2, . . . , s̃M ]T .

B.3.2 Matrices for The Second Stage

They are given by

B2 =



IK OK×KN OK×N OK×N OK×N

OKN×K IKN OKN×N OKN×N OKN×N

−T(1N ⊗ IK) −IN ⊗ uoT 2IN ON×N ON×N

−1NuoT −T 2IN 2∆∆∆ ON×N

ON×K −T ON×N ON×N IN


, (B.14a)

∆∆∆ = diag ( [‖uo − to1‖, ‖uo − to2‖, · · · , ‖uo − toN‖ ] ) ,

T = diag
(
to1
T , to2

T , · · · , toN
T
)
,

h2 = [ϕ̃ϕϕ(1 : K)T , ϕ̃ϕϕ(K + 1 : K(N + 1))T , 2ϕ̃ϕϕ(K(N + 1) + 1 : K(N + 1) +N)T ,

ϕ̃ϕϕ2((K + 1)(N + 1) : K(N + 1) + 2N)T + 2ϕ̃ϕϕ(K(N + 1) + 1 : K(N + 1) +N)T ,

ϕ̃ϕϕ(K(N + 1) + 2N + 1 : K(N + 1) + 3N)T ]T , (B.14b)

G2 =



IK OK×KN

OKN×K IKN

T̂(1N ⊗ IK) IN ⊗ ϕ̃ϕϕ(1 : K)T

1Nϕ̃ϕϕ
T (1 : K) T̂

ON×K T̂


, (B.14c)

T̂ = diag
(
ϕ̃ϕϕ(K + 1 : 2K)T , ϕ̃ϕϕ(2K + 1 : 3K)T , · · · , ϕ̃ϕϕ(NK + 1 : K(N + 1))T

)
.
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Appendix C

Appendices of Chapter 4

C.1 CRLBs and Comparison

This appendix evaluates the CRLB of the object location in terms of position and

velocity, for the two cases of using the indirect-path measurements only and using

both the indirect- and direct-path measurements.

The derivations involve a number of gradient matrices whose values are obtained

directly from the data models (4.1), (4.2), (4.5) and (4.7). They follow the notation

defined in (3.5) except ∇u and ∇u̇ and are listed below.

∇u = [ρuo−s1 , ρuo−s2 , . . . , ρuo−sM ]T , (C.1a)

∇u̇ = [P⊥uo−s1vu,1, . . . ,P
⊥
uo−sMvu,M ]T , (C.1b)

∇mrt = 1M ⊗ ρTto−uo , (C.1c)

∇mru = ∇u −∇mrt , (C.1d)

∇mṙt = −1M ⊗
(
P⊥uo−tovu,t

)T
, (C.1e)

∇mṙu = ∇u̇ −∇mṙt , (C.1f)

∇mdt = [ρto−s1 , ρto−s2 , . . . , ρto−sM ]T , (C.1g)
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∇mḋt
= [P⊥to−s1vt,1, . . . ,P

⊥
to−sMvt,M ]T , (C.1h)

∇mṙu̇ = ∇mru , (C.1i)

∇mṙṫ
= ∇mrt , (C.1j)

∇mḋṫ
= ∇mdt . (C.1k)

In (C.1b), (C.1e) and (C.1h),

vu,i = u̇o/‖uo − si‖ , (C.2a)

vu,t = (u̇o − ṫo)/‖uo − to‖ , (C.2b)

vt,i = ṫo/‖to − si‖ . (C.2c)

C.1.1 CRLB Using Indirect-Path Measurements

Let us call γoτ = ‖uo − to‖ + boτ and γof = (u̇o − ṫo)Tρuo−to + bof in the indirect-path

measurements. They are not known and are common in the respective TOA and

FOA data models mo
r,i and mo

ṙ,i in (4.3a) and (4.8a). The nuisance variable vector in

this case is ϕo = [ γoτ , γ
o
f ]
T . The CRLB of ψo = [θoT , ϕoT ]T is

CRLBmI
(ψo) =

(
∇T

mIψ
Q−1

mI
∇mIψ

)−1
. (C.3)

Following the approach in Chapter 3, the CRLB is the same as the one by applying

subtraction in the time and in the frequency measurements where the dependency on

γoτ and γof is removed.

Define the matrix H ∈ R2M×2(M−1) in (4.12). The indirect-path measurements

after subtraction are HTmI, which is Gaussian distributed with covariance matrix

HTQmI
H. From the CRLB formula [50], we obtain (4.13).

Let Q
1
2
mI be the matrix square-root of the symmetric matrix QmI

so that QmI
=
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Q
1
2
mIQ

1
2
mI . (4.13) can be expressed as

CRLBmI
(θo) = (∇T

mIθ
Q
− 1

2
mI P

Q
1
2
mI

H
Q
− 1

2
mI ∇mIθ)

−1 , (C.4)

where P
Q

1
2
mI

H
is the projection matrix onto the column space of Q

1
2
mIH,

P
Q

1
2
mI

H
= Q

1
2
mIH(HTQmI

H)−1HTQ
1
2
mI . (C.5)

The orthogonal subspace of Q
1
2
mIH is Q

− 1
2

mI 1. Projection onto the column space of

Q
1
2
mIH is equivalent to orthogonal projection onto Q

− 1
2

mI 1. In other words,

P
Q

1
2
mI

H
= I− Q

− 1
2

mI 11TQ
− 1

2
mI

1TQ−1
mI

1
. (C.6)

Using (C.6) in (C.4) yields (4.15).

C.1.2 CRLB Using Indirect- and Direct-path Measurements

The unknown vector for the CRLB evaluation is (4.16). The two sets of measurements

are uncorrelated and Gaussian distributed. Hence we have [50]

CRLBmImD(ψo) =

(
∇T

mIψ
Q−1

mI
∇mIψ + ∇T

mDψ
Q−1

mD
∇mDψ

)−1

. (C.7)

Note that the data models for mo
r and mo

d do not depend on u̇o and ṫo, and

that for the direct-path measurements mo
D does not involve θo. Thus the following

matrices are given by

∇mIθ =

 ∂mo
r

∂θoT

∂mo
ṙ

∂θoT

 =

∇mru 0M×K

∇mṙu ∇mṙu̇

 , (C.8a)
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∇mIϕ =

 ∂mo
r

∂ϕoT

∂mo
ṙ

∂ϕoT

 =

∇mrt 0M×K 1M 0M

∇mṙt ∇mṙṫ
0M 1M

 , (C.8b)

∇mDθ = 0 , (C.8c)

∇mDϕ =

 ∂mo
d

∂ϕoT

∂mo
ḋ

∂ϕoT

 =

∇mdt 0M×K 1M 0M

∇mḋt
∇mḋṫ

0M 1M

 . (C.8d)

The CRLB in (C.7) can be expressed in a block matrix form when representing ψo

by (4.16) as

CRLBmImD
(ψo) =

 X Y

YT Z


−1

, (C.9)

X =∇T
mIθ

Q−1
mI
∇mIθ , (C.10a)

Y =∇T
mIθ

Q−1
mI
∇mIϕ , (C.10b)

Z =∇T
mIϕ

Q−1
mI
∇mIϕ + ∇T

mDϕ
Q−1

mD
∇mDϕ . (C.10c)

The upper left block of CRLBmImD
(ψo) is the CRLB for θo. Upon using the block

matrix inversion formula [50], it is

CRLBmImD(θo) =
(
∇T

mIθ

[
Q−1

mI
−Q−1

mI
∇mIϕ(∇T

mIϕ

Q−1
mI

∇mIϕ + ∇T
mDϕ

Q−1
mD

∇mDϕ)−1∇T
mIϕ

Q−1
mI

]
∇mIθ

)−1
.

If ∇T
mDϕ

Q−1
mD

∇mDϕ is non-singular, invoking the Woodbury identity [50] to the matrix

terms inside the square bracket gives (4.17)-(4.18).
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C.1.3 Comparison

Using (C.1c), (C.1e), (C.1j), (C.8b) and (4.12), we can verify

HT∇mIϕ = 0 . (C.11)

Hence based on (4.18),

HTKmImD
H = HTQmI

H . (C.12)

Using it in (4.14) and (4.13) becomes

CRLBmI(θ
o) =

(
∇T

mIθ
H(HTKmImDH)−1HT∇mIθ

)−1
. (C.13)

The matrix KmImD
in (4.18) is symmetric and PD. It can be factorized as KmImD

=

K
1
2
mImDK

1
2
mImD and K

− 1
2

mImD exists. Let ∇̃mIθ = K
− 1

2
mImD∇mIθ ∈ R2M×2K and H̃ =

K
1
2
mImDH ∈ R2M×2(M−1). From (4.17) and (C.13),

CRLBmImD
(θo)−1 = ∇̃T

mIθ
∇̃mIθ , (C.14)

CRLBmI
(θo)−1 = ∇̃T

mIθ
H̃(H̃T H̃)−1H̃T∇̃mIθ , (C.15)

H̃(H̃T H̃)−1H̃T is a projection matrix and hence [51]

I2M � H̃(H̃T H̃)−1H̃T . (C.16)

Pre-multiplying ∇̃T
mIθ

and Post-multiplying ∇̃mIθ lead to CRLBmImD
(θo)−1 � CRLBmI

(θo)−1 �

0. As a result,

CRLBmI
(θo) � CRLBmImD

(θo) . (C.17)

The PSD relation (C.17) implies that the direct-path measurements are beneficial

to improve the estimation accuracy of θo, even if unknown time and frequency offsets
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are present.

C.2 Details of the Closed-form Solution Deriva-

tion

First Stage

Starting from (4.39), squaring both sides and expanding yield

(mr,i − boτ )2 − ‖si‖2 + 2sTi uo − 2uoT to + ‖to‖2 − 2(mr,i − boτ )‖uo − to‖ = 2‖uo − si‖εmr,i .

(C.18)

After rearranging and collecting terms, (C.18) becomes (4.40).

Multiplying both sides of (4.42) by ‖uo−si‖ and using (4.39) to represent ‖uo−si‖

on the left side form

ρTuo−siu̇
o εmr,i + ‖uo − si‖ εmṙ,i = (mr,i − boτ )(mṙ,i − bof )− (mr,i − boτ )ρTuo−to(u̇o − ṫo)

− (mṙ,i − bof )‖uo − to‖+ sTi u̇o − uoT ṫo − toT u̇o + toT ṫo

(C.19)

where we have used (4.42) again for the grouped term multiplied with εmr,i . Rear-

ranging gives (4.43).

Following similar manipulations in (4.45) and (4.47) for the direct-path TOA and

FOA expressions, we obtain (4.46) and (4.48).
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Second Stage

Using (4.57) for one variable in each coupled term on the right side and together with

(4.41a), (4.41b) becomes

2(â(2)−∆â(2)) = (t̂−∆t̂)Tuo + (û−∆û)T to − 2(â(1)−∆â(1))boτ − 2(t̂−∆t̂)T to .

(C.20)

Hence we obtain

−toT∆û− (uo − 2to)T∆t̂ + 2boτ∆â(1) + 2∆â(2) = 2â(2)− t̂Tuo − (û− 2t̂)T to + 2â(1)boτ .

(C.21)

Regarding ao(3) in (4.41c), expressing the terms on the right by ‖to‖2 = (t̂ −

∆t̂)T to and boτ
2 = (b̂τ −∆b̂τ )b

o
τ leads to

−toT∆t̂ + boτ∆b̂τ + ∆â(3) = â(3)− t̂T to + b̂τb
o
τ . (C.22)

For (4.44a), multiplying with (4.41a) yields

2ao(4)ao(1) = 2ρTuo−to(u̇
o − ṫo)‖uo − to‖ = (u̇o − ṫo)T (uo − to) + (uo − to)T (u̇o − ṫo) .

(C.23)

Using ao(1) = â(1)−∆â(1) and ao(4) = â(4)−∆â(4) on the left side, and expressing

the transpose terms on the right side by the first stage estimates from (4.57), (C.23)

reduces to

− (u̇o − ṫo)T∆û− (uo − to)T∆ˆ̇u + (u̇o − ṫo)T∆t̂ + (uo − to)T∆ˆ̇t + 2ao(4)∆â(1)

+ 2ao(1)∆â(4) ' 2â(1)â(4)− (ˆ̇u− ˆ̇t)Tuo − (û− t̂)T u̇o + (ˆ̇u− ˆ̇t)T to + (û− t̂)T ṫo .

(C.24)
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We can rewrite ao(5) in (4.44b) as

ao(5) = uoT ṫo + toT u̇o − ao(1)bof − ao(4)boτ − 2toT ṫo . (C.25)

Applying the same procedure as (C.24) gives

− ṫoT∆û− toT∆ˆ̇u− (u̇o − 2ṫo)T∆t̂− (uo − 2to)T∆ˆ̇t + 2bof∆â(1) + 2boτ∆â(4) + 2∆â(5)

' 2â(5)− ˆ̇tTuo − t̂T u̇o − (ˆ̇u− 2ˆ̇t)T to − (û− 2t̂)T ṫo + 2â(4)boτ + 2â(1)bof .

(C.26)

At last, the expression created by (4.44c) is

− ṫoT∆t̂− toT∆ˆ̇t + bof∆b̂τ + boτ∆b̂f + 2∆â(6) = 2â(6)− ˆ̇tT to − t̂T ṫo + b̂fb
o
τ + b̂τb

o
f .

(C.27)

C.3 Correspondence of First Stage Solution with

Individual Estimates

In terms of the elements in the first stage solution η given in (4.54), from (4.49), we

have û = η(1 : K), ˆ̇u = η(K + 1 : 2K), t̂ = η(2K + 1 : 3K), ˆ̇t = η(3K + 1 : 4K),

b̂τ = η(4K + 1), b̂f = η(4K + 2), and â = η(4K + 3 : 4K + 8).
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C.4 PROOF OF (4.69)

Substituting B1 and G1 defined in (4.53) into (4.67) gives

G3 =



B−1
mr

Gmr

−B−1
mr

Bmṙ
B−1

mr
Gmr + B−1

mr
Gmṙ

B−1
md

Gmd

−B−1
md

Bmḋ
B−1

md
Gmd

+ B−1
md

Gmḋ


·B−1

2 G2 . (C.28)

Bmr , Bmṙ
, Bmd

, Bmḋ
, Gmr , Gmṙ

, Gmd
, Gmḋ

are given in (4.51). Under (C1) and

from (4.53c), the approximation G1 ' Go
1 is valid.

Using B2 and G2 defined in (4.61), we obtain

B−1
2 G2 =

 I4K+2

B−1
24 (G22 −B23)

 , (C.29)

where B24 is shown in (4.61b), B23 and G22 are given in (4.62e).

Under (C2), the noise in G22 can be neglected so that G22 ' Go
22. After evaluating

B−1
24 (G22 −B23), we have

B−1
mr

GmrB
−1
2 G2 ' ∂mo

r/∂ψ
oT , (C.30a)

(−B−1
mr

Bmṙ
B−1

mr
Gmr + B−1

mr
Gmṙ

)B−1
2 G2 ' ∂mo

ṙ/∂ψ
oT , (C.30b)

B−1
md

Gmd
B−1

2 G2 ' ∂mo
d/∂ψ

oT , (C.30c)

(−B−1
md

Bmḋ
B−1

md
Gmd

+ B−1
md

Gmḋ
)B−1

2 G2 ' ∂mo
ḋ
/∂ψoT . (C.30d)

Putting them in (C.28) and in terms of the indirect- and direct-path ideal mea-

surement vectors mo
I and mo

D given in (4.9) and (4.10), we reach (4.68).
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C.5 TOA Measurement Only

C.5.1 Using Indirect-Path Measurements Only

The CRLB is given by (3.11) of Chapter 3, since subtraction removes the common off-

set in the measurements in addition to the unknown distance between the object and

transmitter. Setting H = [−1M−1, IM−1 ]T and using the equality that HT∇mru = 0,

the CRLB is

CRLBmr(u
o) =

(
∇T

mruH(HTKmrmd
H)−1HT∇mru

)−1
, (C.31)

where Kmrmd
is defined in (C.35).

C.5.2 CRLB By Indirect- and Direct-Path Measurements

Having the nuisance variables as ϕo = [toT , boτ ]
T , the unknown vector is

ψo = [uoT , ϕoT ]T . (C.32)

From the Gaussian noise model, the CRLB is

CRLBmrmd
(ψo) =

(
∇T

mrψQ
−1
mr

∇mrψ + ∇mdψQ
−1
md

∇mdψ

)
. (C.33)

Applying the same manipulation procedure as in Appendix C.1.2, we arrive at

CRLBmrmd
(uo) =

(
∇T

mruK−1
mrmd

∇mru

)−1
, (C.34)

where ∇mru is given by (C.1d) and

Kmrmd
= Qmr + ∇mrϕ(∇T

mdϕ
Q−1

md
∇mdϕ)−1∇T

mrϕ , (C.35)
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∇mrϕ = [∇mrt, 1 ] , ∇mdϕ = [∇mdt,1 ] . (C.36)

Following the steps in (C.14)-(C.16), we reach the conclusion that

CRLBmr(u
o) � CRLBmrmd

(uo) . (C.37)

Even with the presence of an unknown amount of time offset that favors the subtrac-

tion (TDOA) approach that automatically removes the bias, the direct-path measure-

ments remain to be useful for improving positioning performance.

C.5.3 Condition for Eliminating Offset Degradation

The nuisance variable is only to and the CRLB without offset is given by (3.25) of

Chapter 3. Applying the same procedure as in Section 4.3.2, we arrive at the same

condition (4.35a). When it is satisfied, the degradation from unknown time offset

is absent under IID Gaussian noise. TABLE 4.1 gives a few geometries that fulfill

(4.35a) for 2-D localization.

C.5.4 Algebraic Solution by Indirect- and Direct-Path Mea-
surements

First Stage

Removing the variables related to velocities and frequencies in (4.49), the first stage

unknown vector is

ηo =
[
uoT , toT , boτ , aoT

]T
, (C.38)

and the nuisance vector ao only contains the three elements in (4.41). The resulting

pseudo-linear matrix equations for the two sets of measurements from (4.40) and

(4.46) are (4.50a) and (4.50c). The matrices and vectors Bmr , hmr , Bmd
and hmd
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are given by (4.51). Gmr and Gmd
are redefined as

Gmr = [gmr,1 , gmr,2 , . . . , gmr,M
]T , (C.39a)

gmr,i
=
[
−sTi , 0TK , mr,i, mr,i, 1, 1/2

]T
, (C.39b)

Gmd
= [gmd,1

, gmd,2
, . . . , gmd,M

]T , (C.39c)

gmd,i
=
[
0TK , −sTi , md,i, 0, 0, 1/2

]T
. (C.39d)

Combining (4.50a) and (4.50c) forms (4.52), where the matrices and vector now

become B1 = diag(Bmr ,Bmd
), h1 = [hTmr

, hTmd
]T and G1 = [GT

mr
, GT

md
]T , and

ε is [εTmr
, εTmd

]T . The resulting solution is (4.54)-(4.55), with Q in W1 set to

Q = diag(Qmr , Qmd
). The associated covariance matrix is (4.56).

Second Stage

Let us represent the individual components of the first stage solution by η = [ ûT , t̂T , b̂τ , â
T ]T .

From (4.57), (4.59), (C.21), (C.22), the constructed matrix equation for the second

stage is (4.60), where its components are now

ψo = [ uoT , toT , boτ ]T , (C.40a)

B2 =

I2K+1 0(2K+1)×3

B23 B24

 , (C.40b)

B23 =


−(uo − to)T (uo − to)T 0 ,

−toT −(uo − 2to)T 0

0TK −toT boτ

 , (C.40c)

B24 =


2ao(1) 0 0

2boτ 2 0

0 0 1

 , (C.40d)
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h2 = [ ûT , t̂T , b̂τ , â(1)2, 2â(2), â(3) ]T , (C.40e)

G2 =

[
I2K+1

G22

]T
, G22 =


(û− t̂)T −(û− t̂)T 0

t̂T (û− 2t̂)T −2â(1)

0TK t̂T −b̂τ

 . (C.40f)

The final solution is given by (4.62)-(4.63). It can be shown analytically the solution

attains the CRLB accuracy for Gaussian noise under the small noise conditions in

(4.64).
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Appendix D

Appendices of Chapter 5

D.1 Partial Derivatives for the CRLB Evaluation

The partial derivatives in Section 5.2 are summarized below.

∂ul =
∂lo

∂uoT
= [ρuo−s1 , ρuo−s2 , · · · , ρuo−sM ]T , (D.1a)

∂2
utl =

∂2lo

∂uoT∂t
= [P⊥uo−s1vu,1, . . . ,P

⊥
uo−sMvu,M ]T , (D.1b)

∂tr =
∂ro

∂toT
= [ρto−uo , ρto−uo , · · · , ρto−uo ]

T , (D.1c)

∂ur =
∂ro

∂uoT
= ∂ul− ∂tr , (D.1d)

∂tṙ =
∂ṙo

∂toT
= −1M ⊗

(
P⊥uo−tovu,t

)T
, (D.1e)

∂uṙ =
∂ṙo

∂uoT
= ∂2

utl− ∂tṙ , (D.1f)

∂td =
∂do

∂toT
= [ρto−s1 , ρto−s2 , · · · , ρto−sM ]T (D.1g)

∂tḋ =
∂ḋo

∂toT
= [P⊥to−s1vt,1, . . . ,P

⊥
to−sMvt,M ]T , (D.1h)

∂u̇ṙ =
∂ṙo

∂u̇oT
= ∂ur , (D.1i)
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∂ṫṙ =
∂ṙo

∂ṫoT
= ∂tr (D.1j)

∂ṫḋ =
∂ḋo

∂ṫoT
= ∂td . (D.1k)

The variable t in (D.1b) represents time. lo in (D.1a) and (D.1b) is defined as

lo = [ ‖uo − s1‖, ‖uo − s2‖, . . . , ‖uo − sM‖ ]T . (D.2)

In (D.1b), (D.1e) and (D.1h),

vu,i = u̇o/‖uo − si‖ , (D.3a)

vu,t = (u̇o − ṫo)/‖uo − to‖ , (D.3b)

vt,i = ṫo/‖to − si‖ . (D.3c)

D.2 Proof of (5.31)

For ease of illustration, let us denote the unknown vector βo in (5.11) as βo =

[βoTτ , βoTf ]T with βoτ = [toT , δoτ ]
T , βof = [ṫoT , δof ]

T .

To compare (5.30) with (5.16), we evaluate the difference

J = R−1
sm − LR−1

ss LT . (D.4)

Based on (5.17), Rsm can be expressed in block form as

Rsm =

 X̃ Ỹ

ỸT Z̃

 , (D.5)

where X̃ = Qr + ∂βr(∂TβbDQ−1
D ∂βbD)−1∂Tβ r, Ỹ = ∂βr(∂TβbDQ−1

D ∂βbD)−1∂Tβ ṙ and
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Z̃ = ∂βṙ(∂TβbDQ−1
D ∂βbD)−1∂Tβ ṙ. Using the block matrix inversion formula for the

inverse of (D.5) yields

J =

 X̃−1 + X̃−1ỸCỸT X̃−1 −R−1
ss B

BT C

 , (D.6)

where C = (Z̃− ỸT X̃−1Ỹ)−1 and B = −X̃−1ỸC.

From (5.18c), ∂TβbDQ−1
D ∂βbD can be expressed as

∂TβbDQ−1
D ∂βbD =

 X̃D1 0

0 0

+

 X̃D2 ỸD

ỸT
D Z̃D

 , (D.7)

where X̃D1 = ∂TβτdQ−1
d ∂βτd, X̃D2 = ∂Tβτ ḋQ−1

ḋ
∂βτ ḋ, ỸD = ∂Tβτ ḋQ−1

ḋ
∂βf ḋ and Z̃D =

∂Tβf ḋQ−1

ḋ
∂βf ḋ. ∂βfd = 0 has been used in the first matrix on the right and the

second one is ∂Tβ ḋQ−1

ḋ
∂βḋ. Applying the block matrix inversion formula to (D.7) and

together with ∂βr = [∂βτ r, 0], X̃ in (D.6) becomes

X̃ = Qr + ∂βτ r(X̃D1 + X̃D2 − ỸDZ̃−1
D ỸT

D)−1∂Tβτ r. (D.8)

X̃D2 − ỸDZ̃−1
D ỸT

D is the Schur complement of Z̃D for the PSD matrix ∂Tβ ḋQ−1

ḋ
∂βḋ.

The existence of the inverse in (D.7) implies Z̃D is positive definite (PD). We can

conclude from the Schur complement condition for PSD matrix [51] that

X̃D2 − ỸDZ̃−1
D ỸT

D � 0 . (D.9)

Using it in (D.8) and comparing with Rss in (5.27) gives Rss � X̃. Thus,

X̃−1 � R−1
ss , (D.10)
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Using (D.10) in (D.6) shows that the Schur complement of C in J is PSD,

X̃−1 + X̃−1ỸCỸT X̃−1 −R−1
ss −BC−1BT � 0 . (D.11)

Since C is PD, we conclude from the Schur complement condition for PSD matrix

[51] that J � 0, which yields (5.31).

D.3 PROOF OF (5.53)

Let M = diag(I,M1) with M1 =
[
0TK , 1

]T
. The gradient matrices in (5.18) are

related to those in (5.41) by

∂β̃bI = ∂βbIM , ∂β̃bD = ∂βbDM . (D.12)

The difference between Rsm and Rms defined in (5.17) and (5.40) is

Rsm −Rms = ∂βbIJ̄∂
T
βbI , (D.13a)

J̄ =
(
∂TβbDQ−1

D ∂βbD

)−1

−M
(
MT∂TβbDQ−1

D ∂βbDM
)−1

MT .

(D.13b)

When we represent ∂TβbDQ−1
D ∂βbD by ZTZ,

J̄ = Z−1
(
I− ZM(MTZTZM)−1MTZT

)
Z−T . (D.14)

The matrix inside the big bracket is the orthogonal projection matrix onto the column

space of ZM and is PSD [51]. Thus J̄ � 0 and hence from (D.13a)

Rsm −Rms � 0 . (D.15)
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D.4 SOMT: Details of the Closed-form Solution

Derivation

Second Stage Error Equations

Expressing the true values by the estimates from η and using (5.56a), (5.56b) is

2(ϕ̂(2)−∆ϕ̂(2)) = (t̂−∆t̂)Tuo + (û−∆û)T to

−2(ϕ̂(1)−∆ϕ̂(1))δoτ − 2(t̂−∆t̂)T to .

(D.16)

Rearranging gives

cTγ,2∆γ̂ + cTϕ,2∆ϕ̂ ' 2ϕ̂(2)− aTγ,2γ
o , (D.17)

cγ,2 =
[
−toT , −(uo − 2to)T , 0, 0TK , 0

]T
, (D.18a)

cϕ,2 = [ 2δoτ , 2, 0, 0, 0 ]T , (D.18b)

aγ,2 =
[
t̂T , (û− 2t̂)T , −2ϕ̂(1), 0TK , 0

]T
. (D.18c)

Applying ‖to‖2 = (t̂−∆t̂)T to and δoτ
2 = (δ̂τ −∆δ̂τ )δ

o
τ to (5.56c) forms

cTγ,3∆γ̂ + cTϕ,3∆ϕ̂ ' ϕ̂(3)− aTγ,3γ
o , (D.19)

cγ,3 =
[
0TK , −toT , δoτ , 0TK , 0

]T
, (D.20a)

cϕ,3 = [ 0, 0, 1, 0, 0 ]T , (D.20b)

aγ,3 =
[

0TK , t̂T , −δ̂τ , 0TK , 0
]T
. (D.20c)
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Multiplying (5.56d) with (5.56a) on the two sides, we obtain

2ϕo(4)ϕo(1) = ṫoT (uo − to) + (uo − to)T ṫo − 2δofϕ
o(1) . (D.21)

Using ϕo(1) = ϕ̂(1) − ∆ϕ̂(1), ϕo(4) = ϕ̂(4) − ∆ϕ̂(4), ṫo = ˆ̇t − ∆ˆ̇t in the first term

on the right and uo − to = û−∆û− t̂ + ∆t̂ in the second term on the right, (D.21)

becomes

cTγ,4∆γ̂ + cTϕ,4∆ϕ̂ ' 2ϕ̂(1)ϕ̂(4)− aTγ,4γ
o , (D.22)

cγ,4 =
[
−ṫoT , ṫoT , 0, −(uo − to)T , 0

]T
, (D.23a)

cϕ,4 =
[

2
(
ϕo(4) + δof

)
, 0, 0, 2ϕo(1), 0

]T
, (D.23b)

aγ,4 =
[

ˆ̇tT , −ˆ̇tT , 0, (û− t̂)T , −2ϕ̂(1)
]T
. (D.23c)

Rewriting 2toT ṫo as (t̂−∆t)T ṫo+(ˆ̇t−∆ṫ)
T
to and 2δoτδ

o
f as (δτ−∆δτ )δ

o
f +(δf−∆δof )δ

o
τ ,

(5.56e) becomes

cTγ,5∆γ̂ + cTϕ,5∆ϕ̂ ' 2ϕ̂(5)− aTγ,5γ
o , (D.24)

cγ,5 =
[
0TK , −ṫoT , δof , −toT , δoτ

]T
, (D.25a)

cϕ,5 = [ 0, 0, 0, 0, 2 ]T , (D.25b)

aγ,5 =
[

0TK ,
ˆ̇tT , −δ̂f , t̂T , −δ̂τ

]T
. (D.25c)
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Proof of (5.87)

Substituting C1 and A1 defined in (5.72) to Γ in (5.86) gives

Γ =



C−1
r Ar

Aṙ

C−1
d Ad

−C−1
d CḋC−1

d Ad + C−1
d Aḋ


·C−1

2 A2 . (D.26)

Cr, Ar, Aṙ, Cd, Ad, Cḋ and Aḋ are given in (5.70). Under (C1), we have

ri = roi + nr,i = roi (1 + nr,i/r
o
i ) ' roi . (D.27)

Similarly, di ' doi and ḋi ' ḋoi with (C1) so that A1 ' Ao
1 is valid. Using C2 and A2

defined in (5.81) gives

C−1
2 A2 =

 I3K+2

C−1
ϕ (Ā2 −Cγ)

 , (D.28)

where Cγ , Cϕ and Ā2 are shown in (5.81).

Under (C2) and from (5.81e), applying the similar procedure as (D.27) leads to

γ̂ ' γo and ϕ̂ ' ϕo, which yields A2 ' Ao
2. After evaluating C−1

ϕ (Ā2 − Cγ), we

obtain

C−1
r ArC

−1
2 A2 ' ∂ro/∂γoT , (D.29a)

AṙC
−1
2 A2 ' ∂ṙo/∂γoT , (D.29b)

C−1
d AdC

−1
2 A2 ' ∂do/∂γoT , (D.29c)

(−C−1
d CḋC

−1
d Ad + C−1

d Aḋ)C−1
2 A2 ' ∂ḋo/∂γoT . (D.29d)

Putting them to (D.26) yields (5.87).
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D.5 MOST: Details of the Closed-form Solution

Derivation

Second Stage Error Equations

For (5.90a), multiplying it with (5.56a) on the two sides respectively gives

2ϕo(4)ϕo(1) = u̇oT (uo − to) + (uo − to)T u̇o + 2δofϕ
o(1) . (D.30)

Using the same manipulation for reaching (D.22) from (D.21) in (D.30), we have

cTγ,4∆γ̂ + cTϕ,4∆ϕ̂ ' 2ϕ̂(1)ϕ̂(4)− aTγ,4γ
o , (D.31)

cγ,4 =
[
−u̇oT , u̇oT , −(uo − to)T , 0, 0

]T
, (D.32a)

cϕ,4 =
[

2
(
ϕo(4)− δof

)
, 0, 0, 2ϕo(1), 0

]T
, (D.32b)

aγ,4 =
[

ˆ̇uT , −ˆ̇uT , (û− t̂)T , 0, 2ϕ̂(1)
]T
. (D.32c)

With the definition of ϕo(1) and ϕo(4) in (5.56a) and (5.56d), (5.90b) can be rewritten

as

ϕo(5) = toT u̇o − ϕo(1)δof −
(
ϕo(4)− δof

)
δoτ − δoτδof . (D.33)

Taking the same procedure as obtaining (D.31) forms

cTγ,5∆γ̂ + cTϕ,5∆ϕ̂ ' 2ϕ̂(5)− aTγ,5γ
o , (D.34)

cγ,5 =
[
0TK , −u̇oT , −toT , 0, 0

]T
, (D.35a)

cϕ,5 =
[

2δof , 0, 0, 2δoτ , 2
]T
, (D.35b)
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aγ,5 =
[

0TK , ˆ̇uT , t̂T , −2ϕ̂(4), −2ϕ̂(1)
]T
. (D.35c)

Analysis

Substituting C1 and A1 defined in (5.98) to Γ in (5.86) gives

Γ =



C−1
r Ar

−C−1
r CṙC

−1
r Ar + C−1

r Aṙ

C−1
d Ad

Aḋ


·C−1

2 A2 . (D.36)

Cr, Cṙ, Cd, Ar, Aṙ, Ad and Aḋ are given by (5.70) and (5.97). Under (C1) and

from (5.98c), we have A1 ' Ao
1.

Under (C2), we have the approximation A2 ' Ao
2. Using C−1

2 A2 given in (D.28)

and after evaluating C−1
ϕ (Ā2 −Cγ),

C−1
r ArC

−1
2 A2 ' ∂ro/∂γoT , (D.37a)

(−C−1
r CṙC

−1
r Ar + C−1

r Aṙ)C
−1
2 A2 ' ∂ṙo/∂γoT , (D.37b)

C−1
d AdC

−1
2 A2 ' ∂do/∂γoT , (D.37c)

AḋC
−1
2 A2 ' ∂ḋo/∂γoT . (D.37d)

Inserting them in (D.36) and in terms of the IP and DP ideal measurement vectors

boI and boD given in (5.9) and (5.10), together with (5.39), (5.99) is established.
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Appendix E

Appendix of Chapter 6

E.1 Proof of (6.44)

This appendix evaluates the performance of the refinement method to show that the

CRLB accuracy can be obtained under small noise condition.

Using Bd, Gd in (6.32) into G̃ defined in (6.43) shows that the ith row of G̃ is

G̃(i, :) =
gTd,iG∆

bi
. (E.1)

Upon using gd,i defined in (6.32) and G∆ defined in (6.35), the first two columns

G̃(1 : 2, :) can be computed as

G̃(i, 1 : 2) =
diciρ

T
ũ−t̃ + ci(t̃− si)

T + 2‖t̃− si‖2(ũ− si)
T

bi
. (E.2)

where

ci = −2sTi si + d2
i + 2sTi (ũ + t̃)− 2di‖ũ− t̃‖ − 2ũT t̃ . (E.3)

When condition (C3) is satisfied, we have ũ = uo(1 + ∆ũ � uo) ' uo, as well as
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t̃ ' to. With condition (C2), we can ignore the first and second noise terms in (6.27).

Thus, we have

ci ' −2‖uo − si‖‖to − si‖ . (E.4)

Under condition (C1), di = doi (1 + εdi/d
o
i ) ' doi . Putting (E.4) into (E.2) yields

G̃(i, 1 : 2) = ρTuo−to + ρTuo−si . (E.5)

A similar approach to the third and fourth column of G∆ leads to

G̃(i, 3 : 4) = ρTto−uo − ρTto−si . (E.6)

Thus we obtain (6.44).
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