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ABSTRACT 

 

Solving the nonlinear estimation problem is known to be a challenging task because 

of the implicit relationship between the measurement data and the unknown parameters to 

be estimated. Iterative methods such as the Taylor-series expansion based ML estimator 

are presented in this thesis to solve the nonlinear estimation problem. However, they 

might suffer from the initialization and convergence problems. Other than the iterative 

methods, this thesis aims to provide a computational effective, asymptotically efficient 

and closed-form solution to the nonlinear estimation problem. 

Two kinds of classic nonlinear estimation problems are considered: the geometric 

shape fitting problem and the source localization problem. For the geometric shape fitting, 

the research in this thesis focuses on the circle and the ellipse fittings. Three iterative 

methods for the fitting of a single circle: the ML method, the FLS method and the SDP 

method, are provided and their performances are analyzed. To overcome the limitations 

of the iterative methods, asymptotically efficient and closed-form solutions for both the 

circle and ellipse fittings are derived. The good performances of the proposed solutions 

are supported by simulations using synthetic data as well as experiments on real images. 

The localization of a source via a group of sensors is another important nonlinear 

estimation problem studied in this thesis. Based on the TOA measurements, the CRLB 

and MSE results of a source location when sensor position errors are present are derived 

and compared to show the estimation performance loss due to the sensor position errors. 

A closed-formed estimator that takes into account the sensor position errors is then 

proposed. To further improve the sensor position and the source location estimates, an  

xvii 



algebraic solution that jointly estimates the source and sensor positions is provided, 

which provides better performance in sensor position estimates at higher noise level 

comparing to the sequential estimation-refinement technique. The TOA based CRLB and 

MSE studies are further extended to the TDOA and AOA cases. Through the analysis one 

interesting result has been found: there are situations exist where taking into account the 

sensor position errors when estimating the source location will not improve the 

estimation accuracy. In such cases a calibration emitter with known position is needed to 

limit the estimation damage caused by the sensor position uncertainties. Investigation has 

been implemented to find out where would be the optimum position to place the 

calibration emitter. When the optimum calibration source position may be of theoretical 

interest only, a practical suboptimum criterion is developed which yields a better 

calibration emitter position than the closest to the unknown source criterion.  
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Chapter 1

Introduction

1.1 Research Areas and Motivations

The primary object of my research is to provide solutions to the important and chal-

lenging nonlinear estimation problem. The nonlinear estimation problem is not trivial

to solve because there is only an implicit rather than explicit relationship between

the observed data measurements and the unknown parameters to be estimated.

Based on the probability density function (pdf) of the measurement noise, the

Maximum Likelihood (ML) estimator can be derived, which is an asymptotically

efficient estimator when the signal-to-noise ratio (SNR) is high. However, it is not

straightforward to obtain the ML estimator for the nonlinear estimation problem.

The Taylor-series expansion can be used to obtain the ML solution for the nonlinear

estimation problem via iterations, but its estimation accuracy could be heavily relied

on the initial solution guess. Some techniques, such as the semi-definite relaxation

(SDR) and the semi definite programming (SDP), can be implemented to the ML

cost function and its constraints in order to guarantee an optimum global convergence
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solution, but the trade-off is the dramatic increase in computation.

Having the disadvantages of the ML solution in mind, we intend to apply digital

signal processing techniques to the nonlinear estimation problem in order to provide

a computational effective, efficient and most importantly, closed-form solution. The

solution should not require iteration so that it avoids the initialization problem as

well as the convergence issue, and it should not be computationally intensive.

In this thesis we aim to provide new solutions to two important nonlinear es-

timation problems: the circle and ellipse fittings, and the source localization via a

collection of spatially distributed sensors. They are similar to each other in a way that

their measurements only have nonlinear relationships with respect to the unknown

parameters we are interested in. More details of the nonlinear relationships will be

provided in the following chapters.

1.1.1 Circle and Ellipse Fittings

The fitting of a geometric shape to a number of noisy data points has been a funda-

mental and important problem for pattern recognition [1] and object classification [2].

Among different geometric objects, circle and ellipse are the most popular shapes for

data fitting because they encompass the shapes of many different objects encoun-

tered in practice. For example, the boundaries of a human iris and a mechanical

pipe. This classic nonlinear estimation problem continues to attract a broad range

of research interests over the years in applications such as biometric matching [3],

robotic applications [4] and image processing [5].

We begin the research work in this thesis by examining classic two methods de-

signed to estimate parameters of a circle: the ML method and the Full-Least-Squares

2



(FLS) method. The new implementation of the ML estimator in this thesis is based

on the noisy model from the data while the FLS method minimizes the geometric

distance square. Both methods provide iterative solutions through the Taylor-series

linearization technique. The ML estimator has been shown to attain the CRLB accu-

racy asymptotically [6] and the study in [7] shows that the FLS method gives the ML

solution. However, through the comparison of their cost functions, we show analyti-

cally that the FLS method approximates the ML estimator only if the noise power is

much less than the circle radius square.

Though the Taylor-series linearization approach can be used to obtain the ML

solution for the circle fitting problem through iterations, its estimation accuracy could

be highly dependent on how it is initialized. Poor initialization may lead to a solution

that converges to a local minimum instead of a global minimum. To handle the

initialization issue, a SDP solution for the circle fitting problem based on the SDR [8]

technique is proposed. In this approach the ML cost function is reformulated and

relaxed in order to convert a nonconvex problem to an approximate but convex one.

As a result, the SDP method, which guarantees an optimum global convergence, can

be implemented to obtain the circle parameter estimates.

Other than the fitting of a single circle or ellipse, the fitting of coupled geometric

objects, such as a pair of concentric circles or concentric ellipses, is also an important

and challenging problem in the field of reverse engineering [9] and metric vision [10].

Many objects encountered in practice are circularly concentric. A simple example is

the inner and outer boundaries of a pipe. Another example is the inner and outer

edges of an iris image. When viewing from different angles, concentric circles would

become concentric ellipses. The concentric circles and concentric ellipses fitting meth-

3



ods proposed in this thesis have potential usages in automatic inspection for pipes,

iris recognition for biometric applications, calibration for cameras and ellipticity es-

timation of steel coils. To solve this nonlinear estimation problem, asymptotically

efficient estimators for concentric circle and concentric ellipse fittings based on the

weighted equation error formulation and nonlinear parameter transformation are de-

rived. The proposed estimators have explicit solutions and do not require iterations

and initial solution guesses. The Cramér-Rao Lower Bound (CRLB) for the parame-

ters of concentric circles and concentric ellipses under Gaussian additive noise are also

developed to serve as the performance benchmark. Small-noise analysis is conducted

to show that the estimators reach the CRLB accuracy asymptotically.

1.1.2 Source Localization

The second nonlinear estimation problem considered in this thesis is the source

localization based on measurements from a collection of sensors. This important prob-

lem has wild applications in cellular networks, wireless local area networks (WLAN)

and sensor networks [11–13]. There are many types of measurements that are com-

monly used to estimate the source location: the received signal strength (RSS),

time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA) and

frequency-difference-of-arrival (FDOA) of a source signal in reaching the sensors [14].

The source localization algorithms proposed in this thesis focus on the TOA measure-

ment, while the CRLB and mean-square error (MSE) studies of the source localization

problem in the later chapter cover TOA, TDOA and AOA measurements.

Most existing TOA positioning algorithms do not take into account the uncertain-

ties in sensor positions and assumed they are perfectly known. This assumption is

4



very unlikely to be satisfied in practice due to the possible variation or the inaccurate

knowledge of sensor positions. Studies [15–17] have been conducted to minimize the

decrease in localization performance caused by sensor position uncertainties. How-

ever, they neither theoretically analyze the degradation in accuracy of the source

location estimate nor provide solutions in closed-form when sensor position errors are

present.

In this thesis, based on the TOA measurements, the CRLB of the source location

when sensor position errors are present is derived in order to examine the performance

decrease. The theoretical increase in the MSE of a source location estimate when the

sensor position errors are ignored is also developed. Most importantly, a closed-form

solution of the source location that accounts for the sensor position uncertainties

is provided. The proposed solution is not iterative and is able to reach the CRLB

accuracy.

As shown in the study, the sensor position uncertainty could contribute to consid-

erable amount of degradation in localization accuracy. One can improve the sensor

positions by using one or multiple sources, often called calibration sources or anchors,

that are at known locations. However, deploying a calibration source could be costly.

A more practical approach is to refine the sensor positions upon the localization of

an unknown emitting source [18, 19]. Based on the available, although inexact, sen-

sor positions one can identify the location of the unknown source. The estimated

unknown source location can be exploited to refine the inaccurate sensor positions.

This is the technique taken in [20] which has shown that such a refinement scheme

can achieve the CRLB accuracy for the sensor positions.

The approach in this thesis is different than the previous stated estimation-
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refinement scheme and performs joint estimation of the unknown source locations

and the inaccurate sensor positions together. Joint estimation of the positions of

the source and sensors for the TDOA measurement has been examined in [21]. The

proposed solution extends the method for the TOA case in sensor networks and com-

pares the performance with the sequential estimation-refinement approach. Rather

than resorting to the traditional Maximum Likelihood Estimator (MLE) which re-

quires good initialization and high complexity [18] or suboptimum estimator [19],

here a computationally efficient algebraic solution is developed. The joint estimation

is expected to tolerate higher noise level before the thresholding effect caused by the

nonlinear estimation starts to occur.

Besides the TOA based source localization techniques, studies in [13], [18] and

[22] also have taken into account the sensor position errors in their source localiza-

tion methods based on other measurements, such as direction-of-arrival (DOA) and

TDOA, in order to improve the localization performance. These investigations on the

relation between the sensor position uncertainties and the estimation performance

motivate us to extend the CRLB and MSE studies implemented in the TOA source

localization solution further to include the TDOA and AOA measurements. After

generalizing the CRLB derivation for different types of measurements in the pres-

ence of the sensor position errors, we evaluate the MSE of a ML estimator for an

arbitrary measurement, pretending the sensor position uncertainties are absent. The

MSE evaluation is based on the Taylor-series expansion under small error analysis,

which means only linear noise terms are kept in the expansion. This study shows

that when the sensor position and measurement noise covariance matrices satisfy cer-

tain relationships, one can simply assume the sensor position noise is absent and yet
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achieving the optimum Cramer-Rao Lower Bound (CRLB) [6] performance. This is

a rather interesting result and can simplify the localization task when such kind of

sensor position and measurement noise occur. Such relationships for TOA, TDOA

and AOA positionings are developed. The conditions are derived by obtaining the

localization mean-square error matrix of the Maximum Likelihood Estimator (MLE)

designed for accurate sensor positions, evaluating the CRLB for joint estimation of

source and sensor positions and equating the two.

In the view of performance instead of computation, such kinds of sensor position

noise is not preferred since there is no accuracy gained by taking the sensor position

statistics into account. Advancing the performance would require the deployment of

a calibration emitter whose position is exactly known [22]. This thesis also investi-

gates the optimum placement problem of calibration source. This is accomplished by

maximizing the Fisher Information Matrix (FIM), which is the inverse of the CRLB,

of the source location estimate with respect to the calibration source position. This

is a rather challenging problem and there is no analytical solution in general. Under

certain situations such as independent, identically distributed (IID) or very signifi-

cant sensor position errors compared to measurement noise, the optimum calibration

position is shown to be the unknown source position. One would expect, even not

necessarily practical, placing the calibration emitter as close to the unknown source

as possible would give better performance. This is not necessarily the case from our

analysis. We therefore propose a calibration emitter positioning criterion that indeed

outperforms the closest to unknown source placement strategy.
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1.2 Circle and Ellipse Fittings Basics

In general, the nonlinear estimation problem of circle or ellipse fitting can be stated

as follows. Given a collection of N data points in a 2-D plane, we intend to esti-

mate the corresponding center and radius of a circle, or the center, semi-major axis,

semi-minor axis and rotation angle of an ellipse. Unlike line fitting, circle or ellipse

fitting is a much more challenging task because the nonlinear relationship between

the measurements and the unknowns. In this section, we first review the available

algorithms and methods for circle and ellipse fittings in literatures. Then, some basic

knowledge regarding to the SDR and SDP techniques are introduced.

1.2.1 Literature Survey

Many methods for circle fitting have been proposed over the years [7], [23] - [30].

The full-least squares (FLS) method is able to achieve the CRLB performance. It

is, however, iterative and numerical solution is needed. The average of intersections

(AI) method, the reduced least-squares (RLS) method and the modified least-squares

(MLS) method yield closed-form solutions. Their performance, on the other hand, is

not able to reach the CRLB accuracy. The K̊asa method [23,24], which has a closed-

form solution and is simple to apply, appears to be most widely used in practice. It is

able to reach the CRLB accuracy when the noise components in x and y coordinates

are independent and have equal variances (isotropic observation noise) [27,28]. Branch

and bound method [29] is proposed for the purpose to obtain maximum likelihood

(ML) estimator and its performance is close to the K̊asa’s method.

The ellipse fitting problem is more difficult than the circle case and conic formu-
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lation is often used. A few closed-form solutions are presented in [31–33]. Iterative

solutions include the Fundamental Numerical Scheme (FNS) [34], the Heteroscedas-

tic Errors-In-Variables (HEIV) method [35,36] and the renormalization method [37].

These iterative methods have better performance than the closed-form solutions and

they have been proven analytically to reach the Kanatani-Cramér-Rao (KCR) lower

bound [28] accuracy.

All of the above circle and ellipse fitting solutions as well as the KCR lower bound

are designed for a single circle or ellipse. Not many literatures are available for the

fitting of coupled geometric objects, such as concentric circles and concentric ellipses.

Many objects encountered in practice are concentric, a simple example is the inner

and outer circles of a DVD. Another example is the inner and outer boundaries of

an iris. Kim et al. [38] solved the camera calibration problem by determining the

position of a projected circle center through concentric circle formulation. Motivated

by determining the original size of the ruined Abhayagiriya stupa, Dampegama [39]

provided a specific solution to his problem using concentric circle estimation. [9]- [10]

presented more general solutions to the concentric circle/ellipse estimation problems.

Benko et al. [9] considered simultaneous fitting of multiple curves and surfaces for

reverse engineering. The fitting method they proposed is iterative and requires good

initial guesses. Even though it can be extended to the fitting of concentric circles,

the work by Marot and Bourennane [40] focused on the radius estimation and the

distortion characterization between a circular contour and a circle. O’Leary et al. [10]

proposed a quadratically constrained total least squares method for the fitting of

coupled geometric objects in metric vision. This method yields closed-form solution

when the noise is isotropic but no KCR lower bound performance evaluation was
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given.

1.2.2 Semi-definite Programming and Relaxation for Circle

Fitting

The concept of SDR was first introduced by Lovász [41] in 1979. In the late 1990s,

SDR and SDP are started to be known as powerful tools in solving optimization

problem and they have been shown to be computationally efficient by Goemans and

Williamson [42]. From the early 2000s, SDR and SDP have been at the center of

many research topics in the field of signal processing and communications, such as

MIMO detection [43], mobile location [44] and sensor network node localization [15].

A n× n matrix X is called positive semi-definite if

vTXv ≥ 0 for any v ∈ Rn . (1.1)

In this thesis we use X � 0 to denote that X is symmetric and positive semi-definite.

Let C also be a symmetric matrix, then a semi-definite program is an optimization

problem of the form [45]

minimize C •X

s.t. Ai •X = bi, i = 1, 2, · · · ,m,

X � 0,

(1.2)

where C •X =
∑n

i=1

∑n
j=1 CijXij is a linear function of X.

The circle fitting problem can be considered as nonconvex quadratically con-

strained quadratic programs (QCQPs) (for details please refer to Chapter 3), which
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can be expressed as [43]

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, 2, · · · ,m ,

(1.3)

where Di denotes ≥, =, or ≤ for different i. Let Tr(∗) be the trace operation, using

the matrix property about the trace operation

xTCx = Tr(xTCx) = Tr(CxxT ) ,

xTAix = Tr(xTAix) = Tr(AixxT )

(1.4)

and replacing xxT by X, (1.3) becomes

min Tr (CX)

s.t. Tr (AiX) Di bi, i = 1, 2, · · · ,m ,

X � 0, rank(X) = 1 .

(1.5)

Now, except the nonconvex rank one constraint, The rest of the constraints and the

cost function in (1.5) are all convex in X. If we further relax the rank one constraint

on X, we arrive at

min Tr (CX)

s.t. Tr (AiX) Di bi, i = 1, 2, · · · ,m ,

X � 0 .

(1.6)

(1.6) is called the semi definite relaxation of (1.3). In the proposed circle fitting

method we shall present in Chapter 3, the ML cost function is re-formulated and
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relaxed using the SDR technique in order to be solved using the SDP method.

1.3 Source Localization Basics

Source localization is another classic nonlinear estimation problem considered in this

thesis. In this section, we first provide basic knowledge about different types of

measurements that are commonly used for source localization. Secondly, a literature

survey on the available source localization algorithms and methods that taking into

account the sensor position errors is presented. Last but not least, an overview of

some of the TOA based localization algorithms is given.

1.3.1 Source Localization Measurements

In this subsection, we describe the concepts and applications of three commonly used

measurements in source localization: the TOA, AOA and TDOA measurements.

Time of Arrival (TOA)

The time when the signal from the source arrives at a sensor is the basic element of the

TOA measurement. Here we denote uo = [xo, yo]T as the Cartesian coordinate vector

in column format of the source, and let soi = [xoi , y
o
i ]
T be the Cartesian coordinate

vector in column format of the sensor i, i = 1, 2, · · · ,M , where M is the total number

of sensors. Note that we can convert the time measurements to range measurements

by multiplying with the known signal propagation speed c. Let roi = ‖uo − soi‖ be

the true range between the source uo and sensor soi , where ‖ · ‖ denotes the Euclidean
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norm. The TOA measurement between the source and sensor i is

ri = roi + nri, i = 1, 2, · · · ,M , (1.7)

where nri is the TOA measurement noise. From the definition of roi , we know that

each TOA measurement gives a locus of a circle centered at sensor soi , and the location

of the source will be on the circle. As a result, we are able to use the intersection point

from three circles that defined by three TOA measurements as the source location in

the two dimensional (2D) case. This localization process is shown in Fig. 1.1.
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Figure 1.1: Source localization using TOA measurement. The triangle is the source
uo. The sensors are denoted as the squares.

Angel of Arrival (AOA)

The AOA measurement utilizes the bearing between the received source signal and

sensors. Let boi be the true bearing of the source with respect to sensor i, the AOA
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measurement is then

bi = boi + nbi, boi = tan−1 y
o − yoi
xo − xoi

, i = 1, 2, · · · ,M , (1.8)

where nbi is the bearing noise, xo and yo are the source location, xoi and yoi are

the positions of sensor i. Each AOA measurement forms a line between the source

and sensor i. Therefore, by intersecting two lines from two AOA measurements can

determine the location of the source, which is shown in Fig. 1.2.
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o
 

Figure 1.2: Source localization using AOA measurement. The triangle is the source
uo. The sensors are denoted as the squares.

Time Difference of Arrival (TDOA)

As the name implies, the TDOA measurement provides the difference of the arrival

times of the source signal when it reaches a pair of sensors. As in the TOA case,

the time difference can be converted to range difference. By using so1 as the reference

sensor, the TDOA measurement from the source uo to the sensor pair i and 1, after
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multiplying with the signal propagation speed, is

ri1 = roi1 + ni1, i = 2, 3, · · · ,M , (1.9)

where roi1 = roi − ro1 and ni1 is the TDOA measurement noise. For each TDOA

measurement and the corresponding sensor pair, the source will be located at one

half of a hyperbola whose foci are the two sensors. In Fig. 1.3, we shown that in the

2D case, the intersection point of the two hyperbolas from two TDOA measurements

is the location of the source.

Hyperbola defined by 

sensor pair 1 and 3 

s1
o 

s2
o 

s3
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uo 
2

Hyperbola defined by 

sensor pair 1 and 2 

Figure 1.3: Source localization using TDOA measurement. The triangle is the source
uo. The sensors are denoted as the squares.
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1.3.2 Literature Survey of Source Localization Methods

There are many factors that affect the localization accuracy. Some of them can

be taken into account during the system design, such as the number and the ar-

rangement of sensors. Others are often not possible to control, such as the received

signal-to-noise ratios (SNRs), the multipath propagations and the sensor position un-

certainties. Traditional localization system, such as in radar, has fixed receivers at

designated locations with direct line of sight reception and the performance is pretty

much determined by the SNRs. In wireless communications and indoor localization,

multipath reflections occur very common and they introduce bias to the signal arrival

times at the sensors [46]. The TOA and TDOA containing multipath propagation

could degrade the localization performance significantly and they need to be filtered

out [47]. Modern localization uses mobile or randomly deployed sensors and their

precise positions are not known exactly, which causes reduction in estimation accu-

racy [13].

Several studies have been conducted to minimize the decrease in localization per-

formance caused by sensor position errors. In the direction-of-arrival (DOA) esti-

mation, Rockah and Schultheiss [18] showed that for the far-field scenario when the

sensor positions are erroneous, major performance gain can be achieved through array

shape calibration. Chen et al. [48] estimates the AOA using Toeplitz approximation

in the presence of sensor position errors. However, these methods focus on the es-

timation of DOA measurements, not the estimate of source location. Ho et al. [13]

analyzed the performance degradation due to sensor position errors for TDOA posi-

tioning and developed a closed-form solution to improve the source location estimate.

Recently, Ho and Yang [22] used a calibration source at exactly known position to

16



improve the TDOA localization performance further in the presence of sensor position

uncertainties.

In the case of TOA localization, Srirangarajan et al. [16] presented a second order

cone programming (SOCP) approach to solve the problem with noisy distance mea-

surements and inaccurate anchor positions. Lui et al. [15] devised SDP algorithms for

node localization in the presence of uncertainties in anchor positions and/or propaga-

tion speed. Zheng and Wu [17] also proposed a method that jointly solves the source

location and the time synchronization with bounded anchor uncertainties. However,

these methods didn’t theoretically analyze the degradation in accuracy of the source

location estimate when sensor position errors are present. Also, none of them provide

closed-form solutions.

1.3.3 Overview of TOA Source Localization Methods

Because of the nonlinear relation between the source location and the TOA measure-

ment, it is non trivial to solve the TOA source localization problem. By assuming

the distribution of the TOA measurement noise is available, the source localization

problem can be solved using the ML algorithm such as the one in [11]. However, even

though the ML algorithms could reach the CRLB accuracy asymptotically, they are

normally iterative and require an initial guess of the source location. As a result,

local minima instead of global minima are very likely to occur if the initial solution

guess is not chosen carefully. To handle this issue, some algorithms [15,16] based on

SOCP and SDP are proposed. With increases in computation, these methods can

provide optimum global convergence solutions.

The CRLB establishes a lower bound on the error covariance matrix for any deter-

17



ministic unbiased estimator [6]. Empirically, it is also an accurate performance limit

for a nonlinear estimation problem over the small noise region in which the bias is in-

significant. The CRLB is usually served as a benchmark to evaluate the performance

of the TOA source localization methods. When a source localization estimator gives

an unbiased source location estimate with a covariance matrix that is equal to the

CRLB, we consider this estimator as an efficient estimator. Or when the estimate

covariance matrix is approximately equal to the CRLB, we called it approximately

efficient. With accurate sensor position measurements, most existing TOA algorithms

are (approximately) efficient and are able to reach the CRLB accuracy within certain

noise range.

The proposed TOA source localization algorithms in this thesis taking into account

the sensor position errors when estimating the source location and provide closed form

solutions. They does not suffer from the initialization problem as in the ML estimator.

They also has been shown analytically to reach the CRLB accuracy in the presence

of sensor position errors.

1.4 Organization of the Thesis

In this section we provide a brief description of the research works included in this

thesis. The two research topics considered here are the circle and ellipse fittings

problem (Chapter 2 to Chapter 4), and the source localization problem (Chapter 5

to Chapter 7).

Chapter 2 focuses on a new implementation of the ML estimator based on the noisy

model from the data through the Taylor-series linearization technique, as well as the

18



comparison of the ML estimator and the FLS method. The theoretical investigation

indicates that the FLS method is not the ML estimator. This is in contrast to the

previous study [7] stating that the FLS method gives the ML solution. We have shown

that the FLS method approximates the ML estimator only when the noise power of

the measurements is much smaller than the radius square of the circle. Hence, we

arrive at the conclusion that the ML solution outperforms the FLS method when

the noise power is large or when the circle radius is small. The theoretical study is

supported by simulations at the end of the chapter.

The ML solution presented in Chapter 2 is based on the Taylor-series linearization

and its solution needs to be obtained through iterations. As a result, its estimation

performance is highly dependent on the initial solution guess. In order to handle

this problem, in Chapter 3 we propose another implementation of the ML estimator

using the SDR and SDP techniques. We re-formulate the ML cost function and the

constraints in order to implement the semi-definite relaxation. After the relaxation,

the nonconvex estimation problem is converted to an approximate but convex one, and

can be solved using the SDP method, which provides an optimum global convergence

solution. At the end of the chapter, the performance of the proposed estimator

is shown to have the CRLB accuracy and is compared with the well-known Kȧsa

method.

To the best of the author’s knowledge, not many studies in literature are available

for the fittings of concentric circles and concentric ellipses. In Chapter 4 we develop

new solutions for the fittings of concentric circles and concentric ellipses without

requiring uncorrelated behavior of the noise. The proposed estimator is based on

nonlinear transformation of the unknown parameters to be estimated through the
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formulation of weighted equation error minimization. The proposed solutions have

explicit forms. It can also produce a non-iterative solution but the performance is

suboptimal. Self-initialized iterative refinement can improve the estimation accuracy

to optimum. To validate the efficient performance of the proposed solutions, we also

provide the KCR lower bounds for the concentric circle and concentric ellipse fitting

problems.The proposed concentric circle and concentric ellipse estimators are different

from the previous solutions in [38]- [39] which are specific to their particular problems.

More importantly, comparing to [10] the proposed estimator is shown analytically

and validated by simulations to achieve the optimum KCR lower bound performance

asymptotically (when the measurement noise is small). When contrasting to FNS

and HEIV methods extended to coupled object fittings, the proposed estimators have

higher noise tolerance levels before the thresholding effects take place. The proposed

methods can be reduced back to the fittings of a single circle and a single ellipse. In

such cases, they maintain the KCR lower bound performance for both isotropic and

anisotropic noise. Anisotropic noise, meaning that the noise components in the x and

y coordinate points are correlated, occurs quite often in practice such as in robotics

and archaeology [4,30]. In the end of the chapter, we implement the proposed fitting

method on the iris recognition application using real images.

For the source localization problem, based on the TOA measurement, in Chapter

5 we examine the decrease in the source localization accuracy due to the sensor

position errors. The examination is done by the comparing the CRLB of the source

location when sensor position errors are present with the MSE of a source location

estimate when the sensor position errors are ignored but in fact exist. The contrast

of the CRLB and the MSE indicates how much the performance degradation is due
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to the sensor position errors. In order to improve the source location accuracy in

the presence of sensor position errors, a closed-form solution that can achieve the

CRLB performance is developed. Simulations are included to support the theoretical

development.

In modern localization systems/platforms such as sensor networks, improving the

sensor positions is necessary in order to achieve better localization performance. In

Chapter 6 a joint estimator for locating multiple unknown sources and refining the

sensor positions using TOA measurements is proposed. Rather than resorting to the

traditional iterative nonlinear least-squares approach that requires careful initializa-

tions, the proposed estimator is algebraic and computationally attractive. The small

noise analysis shows that the proposed estimator is able to attain the CRLB perfor-

mance for both the unknown sources and the sensor positions. Simulations support

the efficiency of the proposed estimator.

The studies in Chapters 5 and 6 have shown that an estimator would require the

use of the statistical knowledge of the sensor positions errors in order to reach the op-

timum localization performance. Chapter 7 shows that when the covariance matrices

of the sensor position and the measurement noise satisfy certain relationships, taking

the sensor position error into account is not necessary and a simpler estimator that

pretends the sensor position uncertainties are absent is sufficient to reach the opti-

mum performance. Further accuracy improvement necessitates a calibration emitter

whose position is known exactly to correct the sensor positions. It is known that the

performance gain from a calibration emitter depends on where it is placed. We derive

the optimum calibration position by maximizing the Fisher Information of the source

location estimate. The optimum position is of theoretical interest and may not be
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practical. A suboptimum criterion for realistic calibration emitter placement is then

proposed. We shall use TOA, TDOA and AOA localizations to illustrate the de-

rived results. Simulations support the theoretical developments and the performance

analysis.

Chapter 8 summaries the report and discusses the ideas of future research works.

1.5 Major Contributions

In this section, the major contributions of this thesis is listed as follow:

a) A new Maximum likelihood (ML) estimator based on Taylor-series linearization

under Gaussian white noise is developed and compared with the Full least-square

(FLS) method. Unlike the result from a previous work [7], it has be shown here that

the FLS method only approximates the ML estimator if the ratio between noise power

and circle radius square is much less than unity.

b) The semi-definite programming (SDP) and the semi-definite relaxation (SDR)

techniques are applied to the circle fitting problem. The SDP and SDR are two pow-

erful tools in solving optimization problem and they have been shown to be computa-

tionally efficient. In this thesis the ML cost function and constraints are re-formulated

and relaxed so that the nonlinear estimation problem can be solved using a new SDP

method, which provides the optimum global convergence solution.

c) Computational efficient solutions for concentric circles and concentric ellipses

fittings are derived. The new estimators have explicit forms and can produce both

non-iterative and iterative solutions. The non-iterative solution has better computa-

tional efficiency than the other existing non-iterative methods. The iterative solution
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is self-initialized and provides optimum performance. It also has higher noise toler-

ance level for the thresholding effect comparing to other existing iterative methods.

The new estimators can be reduced back to the fitting of a single circle and a single

ellipse.

d) For the research regarding to the source localization in the presence of sensor

position noise, based on the TOA measurement the degradation in accuracy of the

source location estimate is analyzed theoretically. The analysis indicates how sensitive

is the source location estimate with respect to the sensor position errors. A new

closed-form solution that accounts the sensor position errors and achieves the CRLB

performance is derived.

e) A joint estimator for locating multiple unknown sources and refining the erro-

neous sensor positions using TOA measurements is proposed. Rather than resorting

to the traditional iterative nonlinear ML estimator that requires careful initializations

and high complexity, the new estimator is algebraic and computationally attractive.

Other than the estimation of the source locations, the proposed method can refine

the inaccurate sensor positions which can improve the localization accuracy of newly

appeared sources subsequently.

f) It is common believe that ignoring the uncertainties of sensor position when

estimating the source location will result in non-optimum estimation performance.

However, with further investigation this thesis shows the relations of the sensor posi-

tion and measurement noise covariance matrices for TOA, TDOA and AOA localiza-

tions, under which taking into the sensor position errors into account is not necessary

and does not improve the localization accuracy. In such cases, a calibration emitter

with known position is needed to limit the damage due to the sensor position errors.
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Its optimum placement position is derived for the TOA, TDOA and AOA measure-

ments with independent, identical distributed (IID) or very significant sensor position

noise relative to the measurement errors. When the optimum calibration placement

may not be possible in practice, a suboptimal but practical calibration placement

criterion is provided.
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Chapter 2

Maximum Likelihood and Full

Least-squares Estimators for Circle

Fitting

2.1 The Circle Fitting Problem

Let si = [xi, yi]
T , i = 1, 2, · · · , N , be a set of N measurement points defined as

si = soi + ni (2.1)

where soi = [xoi , y
o
i ]
T is the true data point sampled from a circle of center co = [xo, yo]T

and radius ro such that it satisfies

‖soi − co‖ = ro (2.2)

25



and ‖ ∗ ‖ is the Euclidean norm. ni is the measurement noise and is modeled as zero

mean Guassian with diagonal covariance matrix σ2I2×2. It is further assumed that

ni is I.I.D. for i = 1, 2, · · · , N . Given the noisy measurements si, we are interested to

find an estimate of θo = [coT , ro]T that best fits the measurements in some optimal

sense.

2.2 The ML Solution

Since ni ∼ N(0, σ2I2×2), the ML cost function is simply equal to

J(θ) =
N∑
i=1

‖si − soi (θ)‖2 (2.3)

and the ML solution is the value of θ that minimizes J(θ). The ML cost function is

not quadratic with respect to θ because soi (θ) is related to θ in a highly nonlinear

manner as shown in (2.2). We shall propose the use of Taylor-series linearization

approach to minimize J(θ) through iteration.

Let θ(o) = [x(o), y(o), r(o)]
T be an initial solution guess. Expanding so(θ) through

Taylor-series up to linear term gives

soi (θ) = soi (θ(o)) + Gi(θ(o))(θ − θ(o)) (2.4)

where Gi(θ(o)) =
∂soi (θ)

∂θ

∣∣∣
θ(o)

is the 2 × 3 gradient matrix. Putting (2.4) into (2.3)

forms

J(θ) '
N∑
i=1

‖si − soi (θ(o))−Gi(θ(o))(θ − θ(o))‖2 . (2.5)
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(2.5) is quadratic with respect to θ, whose minimum is achieved when

θ = θ(o) +
[ N∑
i=1

Gi(θ(o))
TGi(θ(o))

]−1

×
[ N∑
i=1

Gi(θ(o))
T
(
si − soi (θ(o))

)]
. (2.6)

To improve the solution, we set θ(o) to the answer from (2.6) and repeat the compu-

tation. Indeed, the proposed solution can be easily expressed as

θ(k+1) = θ(k) +
[ N∑
i=1

Gi(θ(k))
TGi(θ(k))

]−1

×
[ N∑
i=1

Gi(θ(k))
T
(
si − soi (θ(k))

)]
(2.7)

for k = 0, 1, · · · , where k is the iteration count. The iteration stops when ‖θ(k+1) -

θ(k)‖ < δ, where δ is some small number.

We now determine soi (θ(k)) and Gi(θ(k)) to complete the iterative solution. Using

Chan & Thomas [49] parametric form of circle representation, a point (xoi , y
o
i ) on a

circle can be expressed as

xoi = xo + ro cos(φoi ), y
o
i = yo + ro sin(φoi ) (2.8)

where φoi = tan−1 yoi−yo
xoi−xo

. Thus, given θ(k) = [x(k), y(k), r(k)]
T ,

soi (θ(k)) =

x(k)

y(k)

+ r(k)

cos(φi)

sin(φi)


φi = tan−1

yi − y(k)

xi − x(k)

.

(2.9)

Note that we have replaced (xoi , y
o
i ) by (xi, yi) in obtaining φi because (xoi , y

o
i ) is not

available.
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The gradient matrix Gi(θ(k)) is

∂soi (θ)

∂θ

∣∣∣∣∣
θ(k)

=

∂xoi∂x ∂xoi
∂y

∂xoi
∂r

∂yoi
∂x

∂yoi
∂y

∂yoi
∂r

 ∣∣∣∣∣
θ(k)

(2.10)

whose elements are [49], after replacing (xoi , y
o
i ) by (xi, yi) because (xoi , y

o
i ) is not

known,

∂xoi
∂x

∣∣∣∣∣
θ(k)

=
(xi − x(k))

2

r2
(k)

,
∂xoi
∂y

∣∣∣∣∣
θ(k)

=
(xi − x(k))(yi − y(k))

r2
(k)

,

∂yoi
∂y

∣∣∣∣∣
θ(k)

=
(yi − y(k))

2

r2
(k)

,
∂yoi
∂x

∣∣∣∣∣
θ(k)

=
(xi − x(k))(yi − y(k))

r2
(k)

,

∂xoi
∂r

∣∣∣∣∣
θ(k)

=
xi − x(k)

r(k)

,
∂yoi
∂r

∣∣∣∣∣
θ(k)

=
yi − y(k)

r(k)

.

(2.11)

(2.7) together with (2.9)-(2.11) forms the ML iterative solution.

2.3 The FLS Solution

The cost function of FLS is [24]

F =
N∑
i=1

(r − ‖si − c‖)2 . (2.12)

The solution θ = [cT , r]T is found by minimizing F . It is related to θ in a complicated

manner and iterative minimization is needed. Following the same approach as in

the previous section through Taylor-series linearization, the FLS solution through
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iteration is

θ(k+1) = θ(k) +
[ N∑
i=1

Hi(θ(k))
THi(θ(k))

]−1

×
[ N∑
i=1

Hi(θ(k))
T
(
r(k)−‖si−c(k)‖

)]
(2.13)

for k = 0, 1, · · · , where θ(o) = [cT(o), r(o)]
T is some initial guess. The iteration stops

when ‖θ(k+1) - θ(k)‖ < δ, where δ is a small value. The gradient matrix Hi(θ(k)) is

Hi(θ(k)) =

[(
si−c(k)
‖si−c(k)‖

)T
1

]
. (2.14)

2.4 Comparison

Let us now compare ML and FLS. We begin with the FLS cost function in (2.12).

Expanding the square gives

(r − ‖si − c‖)2 = r2 + ‖si − c‖2 − 2r‖si − c‖. (2.15)

Let soi (θ) be a point on the circle defined by θ. Then

r2 = ‖soi (θ)− c‖2 (2.16)

we can express ‖si − c‖2 as

‖si − c‖2 = ‖soi (θ)− c + si − soi (θ)‖2

= r2
[
1 +
‖si − soi (θ)‖2

r2
+

2

r2
(soi (θ)− c)T (si − soi (θ))

]
.

(2.17)
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If r is large compared to ‖si − soi (θ)‖ so that ‖si − soi (θ)‖/r � 1, then from (2.17),

‖si − c‖ ' r
[
1 +

1

r2

(
soi (θ)− c

)T (
si − soi (θ)

)]
. (2.18)

Putting (2.17)-(2.18) into (2.15) yields immediately

(r − ‖si − c‖)2 ' ‖si − soi (θ)‖2 (2.19)

so that (2.12) becomes

F '
N∑
i=1

‖si − soi (θ)‖2 (2.20)

which is the ML cost function in (2.3).

We can now conclude that in general FLS is not the same as ML estimator. It

approaches the ML estimator if

εi =
‖si − soi (θ)‖

r
� 1. (2.21)

This condition is satisfied if the noise level in the data measurements is small, or when

r is big. Thus, we expect that the ML solution will outperforms the FLS method

when the noise level is high or when the radius of the circle is small.

A previous work [7] shows that FLS gives the ML solution. However, it was based

on the assumption that c and φi are independent variables. This is not the case as

can be inferred from (2.8).
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2.5 Simulation

We shall investigate the performance of the proposed ML solution and the FLS

method via simulation. The N true data points are sampled from an arc of a circle

with radius r and range from 0 to β. The center of the circle is set to be (80, 60)m.

The noisy measurements are generated by adding to the true data points zero mean

Gaussian white noise with covariance matrix σ2I2N×2N . The estimation accuracy is

defined as MSE(θ)=
∑L

l=1‖θl − θo‖2/L. where θl is the estimated unknown vector

at ensemble l and L = 10000 is the number of ensemble runs.

Fig. 2.1 shows the results when N = 5, r = 10m and β = π/3. The MSEs of ML

and FLS methods, together with the CRLB are shown as function of noise power σ2.

When σ2 is less than or equal to −25 in log scale, both methods achieve the CRLB

accuracy. After σ2 reaches −20 in log scale, the performance of FLS method suffers

from the thresholding effect, while the ML estimator remains to generate seasonable

estimates of θo. This observation is consistent with our theoretical analysis in section

5 that for large noise power, the ML solution will outperform the FLS method.

Fig. 2.2 gives the results when N = 5, r = 10m and β = 2π. The trend observed

is similar as in Fig. 2.1. The MSEs of both methods are smaller because the data

points are distributed in the whole circle instead of clustering on a small arc.

Fig. 2.3 depicts the averaged fitted circles from five noisy measurement points.

Simulation configuration is the same as in Fig. 2.2 except that σ2 is fixed at −3 in

log scale. We can see the circle estimated by ML solution is very close to the true one

while the FLS circle significantly deviates from it. This again verifies the theoretical

development that FLS method would not behave as an ML estimator when the noise

power becomes large.

31



Fig. 2.4 illustrated the MSEs of ML and FLS method when N = 20, r = 10m and

β = 2π. The figure indicates that both ML and FLS have lower estimation MSE as

N increases. Both methods deviate gradually from the CRLB when σ2 is larger than

0 in log scale but no threshold effect occurs.

In generating Fig. 2.5, the parameters are N = 20, r = 2m and β = 2π. It is

evident that when the radius of the circle decreases, the ML estimator gives much

better result than the FLS method after σ2 reaches 0 in log scale. This observation

verifies the result in (2.21) that only when the ratio between noise power and circle

radius square is much less than unity, the FLS approximates the ML estimator.

2.6 Concluding Remarks

This chapter derives the ML solution for circle fitting using Taylor-series linearization

approach, where the noise in the data measurements are Gaussian and white. It

then provides a comparison in performance between the ML estimator and the FLS

method. Unlike the result from a previous work that illustrates FLS gives the ML

solution, we have shown analytically that FLS does not give ML estimation. It

approximates the ML estimator if the ratio between noise power and circle radius

square is much less than unity. Otherwise the ML estimator gives much better results.

Simulations confirm the theoretical findings.
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Figure 2.1: Performance comparison of the ML and FLS method when N = 5, r = 10
and β = π/3.
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Figure 2.2: Performance comparison of the ML and FLS method when N = 5, r = 10
and β = 2π.
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Figure 2.3: Averaged fitted circles of the ML and FLS method when N = 5, r =
10, β = 2π and σ2 = 3dB.
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Figure 2.4: Performance comparison of the ML and FLS method when N = 20, r = 10
and β = 2π.
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Figure 2.5: Performance comparison of the ML and FLS method when N = 20, r = 2
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Chapter 3

Circle Fitting Using Semi-definite

Programming

3.1 Problem Formulation

Let the measurement points be

si = soi + ni, i = 1, 2, · · · ,M, (3.1)

where si = [xi, yi]
T , soi = [xoi , y

o
i ]
T is the true data point on a circle centered at

co = [xo, yo]T with radius ro. ni = [nxi, nyi]
T is the measurement noise of the i-th

data point. It is modeled as zero mean Gaussian with covariance matrix Qi and is

independent of nj for j 6= i. The relation among soi , co and ro is

‖soi − co‖2 = ro2, i = 1, 2, · · · ,M, (3.2)
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where ‖ ∗ ‖ is the Euclidean norm.

Since ni ∼ N(0,Qi), the ML estimator can be expressed as

min
co,ro,soi

M∑
i=1

(si − soi )
TQ−1

i (si − soi )

s.t. (soi − co)T (soi−co) = ro2, i = 1, 2, · · · ,M.

(3.3)

The unknown parameters we intend to estimate are θo = [coT , ro]T .

In Chapter 2 the Taylor-series linearization approach is used to obtain the ML

solution through iterations. However, its estimation accuracy could be highly depen-

dent on how it is initialized. Poor initialization may lead to a solution that converges

to a local minimum instead of a global minimum. To overcome the initialization and

converge problem, a ML estimator based on the SDR and SDP techniques is derived.

3.2 SDP Solution

In this section, we perform semi-definite relaxation on the ML estimator in order to

obtain the optimum SDP solution by utilizing the well-developed SDP solver. From

(3.3), the ML estimator can be rewritten as, after dropping the irrelevant terms

min
co,ro,soi

M∑
i=1

(
soi
TQ−1

i soi − 2sTi Q−1
i soi

)
s.t. (soi − co)T (soi−co) = ro2, i = 1, 2, · · · ,M.

(3.4)
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Let Tr(∗) be the trace operation and Zi = soi s
o
i
T . Using the matrix property about

the trace operation, (3.4) can be written as

min
M∑
i=1

{
Tr(Q−1

i Zi)− 2sTi Q−1
i soi

}
s.t. (soi − co)T (soi−co) = ro2, i = 1, 2, · · · ,M.

(3.5)

Let aoi = ro[cosαi, sinαi]
T , i = 1, 2, · · · ,M , where αi is the angle of the i-th data

point soi with respect to the circle center co. Exploring the relation between soi and

aoi yields

soi = aoi + co , ‖aoi‖2 = aoi
Taoi = ro2 . (3.6)

In addition, we shall denote Bi = [aoi , c
o] and it is used to form the matrix Di, i =

1, 2, · · · ,M , as

Di =

BT
i Bi BT

i

Bi I2

 =


aoi

Taoi aoi
Tco aoi

T

coTaoi coTco coT

aoi co I2

 , (3.7)

where I2 is an identity matrix of size 2. Note that the circle radius ro is embedded

in the matrix Di. Also, let 1 be a 2 × 1 vector of unity, Tr(Zi) can be expressed in

terms of the elements of Di by

Tr(Zi) = soi
T soi = (aoi + co)T (aoi + co) = 1TDi(1 : 2, 1 : 2)1 . (3.8)

Substituting (3.6), (3.7) and (3.8) into (3.5) yields the ML estimator in terms of
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unknowns Zi and Di:

min
Zi,Di

M∑
i=1

{
Tr(Q−1

i Zi)− 2sTi Q−1
i [Di(3 : 4, 1 : 2)1]

}
s.t. Tr(Zi) =1TDi(1 : 2, 1 : 2)1

Zi = [Di(3 : 4, 1 : 2)1][Di(3 : 4, 1 : 2)1]T

Di =

BT
i Bi BT

i

Bi I2

 , i = 1, 2, · · · ,M

Dj(2 : 4, 2) = D1(2 : 4, 2)

Dj(1,1) = D1(1, 1), j = 2, 3, · · · ,M.

(3.9)

Note that in (3.9) the quantity to minimize is convex with respect to Zi and Di but

the constraints on them are not convex. We shall next apply the SDR technique to

translate (3.9) from a nonconvex problem to an approximate but convex problem.

When applying SDR to the constraints in (3.9) to relax the matrix rank, (3.9) can

be approximated by the following convex optimization problem

min
Zi,Di

M∑
i=1

{
Tr(Q−1

i Zi)− 2sTi Q−1
i Di(3 : 4, 1 : 2)1

}
s.t. Tr(Zi) = 1TDi(1 : 2, 1 : 2)1 Zi Di(3 : 4, 1 : 2)1

1TDi(3 : 4, 1 : 2)T 1

 � 03×3

Di � 04×4, i = 1, 2, · · · ,M

Dj(2 : 4, 2) = D1(2 : 4, 2)

Dj(1, 1) = D1(1, 1), j = 2, 3, · · · ,M,

(3.10)
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where the symbol � denotes the matrix is symmetric positive semi-definite.

Now a SDP solver can be utilized to obtain the solutions of Zi and Di, i =

1, 2, · · · ,M . After Di
′s are found, the estimates of the circle center and radius are

obtained as

ĉ = D1(3 : 4, 2),

r̂ =
1

M

M∑
i=1

‖Di(3 : 4, 1)‖.
(3.11)

We shall simply refer (3.10) - (3.11) as the SDP solution of circle fitting.

3.3 Simulation

In this section we shall examine the performance of the proposed SDP solution via

simulations. The M data points are collected randomly from an arc of a circle ranging

from 0 to β. The circle center is co = (0, 0) and the radius is ro = 10. Fig. 3.1 shows

how the true data points are distributed when M = 5 and β = 2π. The noisy

measurements are generated by adding zero mean Gaussian noise to the true data

points. The noise in each measurement point is I.I.D. and its covariance matrix is

Qi = σ2I2×2. The mean square error (mse) of the parameter estimate is computed as

mse(θ) =
∑L

l=1 ‖θ(l) − θo‖2/L, where L is the the number of ensemble runs, θ(l) is

the solution estimate at ensemble l and θo is the true value of the circle parameters.

Unless specified otherwise, L is set to 500 in the simulations. The implementation

of the proposed SDP solution uses the YALMIP [50] toolbox in MATLAB and the

SDPT3 [51] solver.

Fig. 3.2 compares the performance of the proposed SDP solution with the K̊asa
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method when M = 5 and β = 2π. The noise power varies from 10−4 to 102 in the

simulation. The upper set of results is for circle center and the lower set is for the

circle radius. In each set, the straight line, the star symbols and the circle symbols

are the CRLB, the mse of the SDP solution and the mse of the K̊asa method. For the

circle center, when the noise power is less than 10, both methods are able to reach

the CRLB accuracy. The K̊asa method starts to deviate from the CRLB when the

noise power is larger than 10 while the SDP solution remains to be at the CRLB

accuracy. For circle radius estimation, both methods move away from the CRLB

when the noise power reaches 10 but the deviation from the SDP solution is less than

the K̊asa method.

Fig. 3.3 depicts the averaged fitted circle (denoted by dash line) from the SDP

solution using the same simulation configuration as in Fig. 3.2 except that the noise

power is set to 2 in this case. We can observe that the circle estimated by the SDP

solution is very close to the true one.

Fig. 3.4 shows the performances of the SDP solution and the K̊asa method when

M = 5 and β = π. Similar to the observation in Fig. 3.2, on the aspect of circle

center estimation, the SDP solution can reach the CRLB accuracy when the noise

power is not larger than 10. The K̊asa method begins to depart from the CRLB when

the noise power reaches 10. For the circle radius estimation, the performances of both

methods become worse and worse when the noise power is equal to or larger than 1.

With M = 5 and β further reduced to π/3, Fig. 3.5 gives the resultant mse of

the circle center and radius together from the SDP solution and the K̊asa method.

Because of the short circle segment from which the data points are sampled, the

performance of both methods is affected by the bias and is not able to reach the
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CRLB accuracy after the noise power exceeds 0.1.

To examine the effect of the number of data points M on the algorithm perfor-

mance, we fix the noise power to 1 and vary M from 5 to 30, where the data points are

sampled randomly from the entire circle. Also we increase the number of ensemble

runs to 2000. The results are shown in Fig. 3.6. The upper set of results is for the

circle center whereas the lower set is for the circle radius. Performance difference be-

tween the SDP solution and the K̊asa method appears in the circle radius estimation

when the total number of data points exceeds 15. When the number of data points

reaches 30, the K̊asa method has about 1dB deviation from the CRLB whereas the

SDP solution is still able to provide an estimate that is quite close to the CRLB

accuracy.

3.4 Concluding Remarks

Using the relaxation approach, this chapter proposes a semi-definite programming

solution for the circle fitting problem. The ML estimator is reformulated and relaxed

to arrive at an approximate but convex problem that can be solved using the well-

developed SDP solver. Simulations are performed and the results illustrate that the

performance of the proposed SDP solution is slightly better than the well-known

K̊asa method and is able to reach the CRLB accuracy when the noise level is not

high. Previous studies [15] and [44] have shown that the SDP algorithms have better

noise resistance comparing with other algorithms. This property is not obvious from

our SDP solution for circle fitting when comparing with the K̊asa method. Further

investigation will be conducted in this regard.
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Figure 3.1: Distribution of the true data points on the circle, M = 5 and β = 2π.
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Figure 3.2: Performance comparison of the SDP and the K̊asa methods when M = 5
and β = 2π. The upper set of results is for circle center and the lower set is for circle
radius.

43



−10 −5 0 5 10

−10

−5

0

5

10

X coordinate

Y
 c

oo
rd

in
at

e

 

 
True circle

Noisy data

Circle center

SDP

Figure 3.3: Fitted circle from the SDP solution when M = 5 and β = 2π, the noise
power is 2.
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Chapter 4

Asymptotically Efficient

Estimators for the Fitting of

Coupled Circles and Ellipses

4.1 Problem Formulation

The iterative circle fitting methods presented in Chapter 2 and Chapter 3 are designed

for the fitting of a single circle. Many objects encountered in practice are coupled

geometric objects such as concentric circles and concentric ellipses. However, not

many studies in the literature are available for the fittings of them. In this chapter

asymptotically efficient estimators for the fittings of coupled circles and ellipses are

derived, which can also be reduced back to the fittings of a single circle or ellipse.

For ease of illustration, we shall only consider a pair of objects that has two circles

or two ellipses coupled together. The coupled geometric shapes considered here have

the same center and are scaled versions of each other. Examples of such kind of
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objects include the inner and outer boundaries of a pipe and the inner and outer

edges of an iris. The derived solutions can be easily extended to more than two

coupled geometric shapes or reduced to one in a very direct manner.

Let Ni be the number of data points on the i-th component of the coupled objects,

i = 1, 2. The data from the coupled objects are modeled as

sij = soij + nij, j = 1, 2, · · · , Ni, i = 1, 2, (4.1)

where sij = [xij yij]
T represents the 2 × 1 vector containing the Cartesian coordi-

nates of a data point, soij = [xoij y
o
ij]
T is the true value and nij = [nxij nyij ]

T is the

observation noise of sij.

In the case of concentric circles, soij satisfies the following relation

‖soij − co‖2 = roi
2, (4.2)

where co = [ao bo]T is the common circle center, ro1 and ro2 are the two circle radii,

and ‖ ∗ ‖ is the Euclidean norm. The unknown parameters we intend to estimate are

θoc = [ao bo ro1 ro2]T .

For concentric ellipses having the same shape and orientation as those considered

in this study, soij fulfills the ellipse equation

(soij − co)TΓo
i (s

o
ij − co) = 1,

Γo
1 =

Ao1 ρo1

ρo1 Bo
1

 , Γo
2 =

Ao2 ρo2

ρo2 Bo
2

 = εoΓo
1,

(4.3)
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where co = [ao bo]T is the common ellipse center, εo is a positive constant scalar and

Γo
i defines the size, eccentricity and rotation angle of ellipse i. In our convention,

ellipse 1 is the smaller one. The semi-major and semi-minor axes of ellipse i are

equal to
[
Ao

i +Bo
i±
√

(Ao
i−Bo

i )2+4ρoi
2

2(Ao
iB

o
i−ρoi

2)

]1/2

and the rotation angle with respect to the x-axis

is tan−1
(
−(Ao

i−Bo
i )−
√

(Ao
i−Bo

i )2+4ρoi
2

2ρoi

)
. The unknown parameters to be estimated are θoe

= [ao bo Ao1 ρo1 Bo
1 εo]T .

For notation simplicity, we shall collect all N = N1 +N2 measurement data points

together and represent them as

s = so + n, (4.4)

where s = [sT11, · · · , sT1N1
, sT21, · · · , sT2N2

]T is a 2N × 1 vector, so is the true value of s

and n = [nT11, · · · ,nT1N1
,nT21, · · · ,nT2N2

]T is the noise vector. In this study, we shall

model n as zero-mean Gaussian with a covariance matrix equal to Q. In general, Q

is not diagonal and examples are in robotics [4] and archaeology [30] applications. In

most cases, it is reasonable to assume nik and nil, for k 6= l, are independent so that

Q is block diagonal while the elements in nij are correlated. It should be noted that

the proposed fitting solutions and the KCR lower bound do not require Q to be of

any particular form.

4.2 Proposed Fitting Solutions

In this section, we derive the proposed estimators for concentric circles and concentric

ellipses based on parameter transformation and weighted equation error formulation.

48



4.2.1 Concentric Circles

Expressing the true data point as soij = sij −nij in (4.2) gives ‖sij − co−nij‖2 = roi
2.

Expanding the square on the left and rearranging the terms yield

2
(
sij − co

)T
nij − nTijnij = ‖sij‖2 − 2sTijc

o −
(
roi

2 − ‖co‖2
)
. (4.5)

The left side is the equation error and the right side is its functional dependency on

the concentric circles parameters. Collecting all N equations for j = 1, 2, · · · , Ni and

i = 1, 2 gives

Bcn− η = hc −Gcϕ
o
c, (4.6)

where

Bc = 2



(s11 − co)T · · · 0T 0T · · · 0T

...
. . .

...
...

. . .
...

0T · · · (s1N1 − co)T 0T · · · 0T

0T · · · 0T (s21 − co)T · · · 0T

...
. . .

...
...

. . .
...

0T · · · 0T 0T · · · (s2N2 − co)T


, (4.7)
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hc =



‖s11‖2

...

‖s1N1‖2

‖s21‖2

...

‖s2N2‖2


, Gc =



2sT11 1 0

...
...

...

2sT1N1
1 0

2sT21 0 1

...
...

...

2sT2N2
0 1


, ϕoc =


co

ro1
2 − ‖co‖2

ro2
2 − ‖co‖2

 . (4.8)

In Bc, 0 is a 2× 1 vector of zero. n is defined below (4.4) and η is an N × 1 vector

whose elements are nTijnij. ϕ
o
c is the re-parameterization form of θoc and there is a

unique one-to-one mapping relationship between them because roi is always positive.

ϕoc is the unknown vector to be found.

The measurement equation (4.6) is linear with respect to ϕoc. When the SNR

is sufficient such that the second order noise components are negligible, Bc can be

treated as nearly noiseless and η is insignificant. Since n is Gaussian, if we ignore the

dependency of Bc with co, the negative of the log-likelihood function corresponding

to (4.6) for minimization is (hc−Gcϕ
o
c)
TWc(hc−Gcϕ

o
c), where Wc is the weighting

matrix equal to the inverse of the noise covariance [6]:

Wc =
(
BcQBT

c

)−1
. (4.9)

Other choices of the weighting matrix could be used instead, which would result in

higher estimation variance and different amount of bias. Note that Wc contains

the concentric circles center which is unknown to us. Some previous studies show

that error in the weighting matrix does not affect the solution accuracy much [52].
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Assuming some approximation of Wc in (4.9) is available, the solution of ϕoc is

ϕc =
(
GT
c WcGc

)−1
GT
c Wchc. (4.10)

Since Gc contains the noisy measurements si, the ill-conditioned problem may occur,

although very rarely, in performing the inverse in (4.10). In such a case, pseudo

inverse should be used instead.

The solution strategy is therefore setting Wc to identity to obtain an initial es-

timate of ϕoc (the least-squares solution), from which a better Wc can be generated

to yield a better solution. The process can be iterated to improve performance. The

convergence of the iterations has been studied in [53]. Through extensive simulations,

we find that iterating equations (4.7)-(4.10) twice is sufficient. Further iterating to

regenerate the weighting matrix is not likely to yield better results.

The proposed solution (4.10) is expected to behave similarly to the ML solution

obtained directly from the data model (4.1) when the SNR is high. The transforma-

tion we use here is non-linear and introduces higher order noise components. Hence

we expect the proposed solution will deviate from the actual ML solution as the SNR

decreases. The proposed concentric circles estimator is translation invariant.

From the definition of ϕoc in (4.8), the estimate of θoc can be found from ϕc as

θc =



ϕc(1)

ϕc(2)√
ϕc(3) +ϕc(1)2 +ϕc(2)2√
ϕc(4) +ϕc(1)2 +ϕc(2)2


. (4.11)

51



4.2.2 Concentric Ellipses

The proposed estimator uses the expanded form of the ellipse equation (4.3). Using

soij = sij − nij and multiplying out soTij Γo
i s
o
ij give

2
(
sij − co

)T
Γo
inij − nTijΓ

o
inij

= x2
ijA

o
i + 2xijyijρi

o + y2
ijB

o
i − 2sTijΓ

o
ic
o + coTΓo

ic
o − 1.

(4.12)

When the noise nij is zero, (4.12) becomes the familiar conic equation of the form

Āx2 + B̄xy + C̄y2 + D̄x+ Ēy + F̄ = 0 in ellipse fitting [31].

For simplicity, let

ko = coTΓo
1c
o − 1. (4.13)

We have from ellipse 1

2
(
s1j − co

)T
Γo

1n1j − nT1jΓ
o
1n1j

= x2
1jA

o
1 + 2x1jy1jρ1

o + y2
1jB

o
1 − 2sT1jΓ

o
1c
o + ko.

(4.14)

For ellipse 2, since Γo
1 and Γo

2 are related by Γo
2 = εoΓo

1 from (4.3), we have

2
(
s2j − co

)T
Γo

1n2j − nT2jΓ
o
1n2j

= x2
2jA

o
1 + 2x2jy2jρ1

o + y2
2jB

o
1 − 2sT2jΓ

o
1c
o + ko +

εo − 1

εo
.

(4.15)

The unknowns are considered to be Ao1, ρ1
o, B1

o, Γ1
oco and εo−1

εo
, which are re-

parameterizations of the elements in vector θoe. Collecting all N equations from (4.14)
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and (4.15) in matrix form yields

Ben− η̂ = kohe −Geϕ
o
e, (4.16)

where

Be = 2



(s11 − co)TΓo
1 · · · 0T 0T · · · 0T

...
. . .

...
...

. . .
...

0T · · · (s1N1 − co)TΓo
1 0T · · · 0T

0T · · · 0T (s21 − co)TΓo
1 · · · 0T

...
. . .

...
...

. . .
...

0T · · · 0T 0T · · · (s2N2 − co)TΓo
1


, (4.17)
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he =



1

...

1

1

...

1


N×1

, ϕoe =



Γo
1c
o

Ao1

ρo1

Bo
1

εo−1
εo


,

Ge =



2x11 2y11 −x2
11 −2x11y11 −y2

11 0

...
...

...
...

...
...

2x1N1 2y1N1 −x2
1N1

−2x1N1y1N1 −y2
1N1

0

2x21 2y21 −x2
21 −2x21y21 −y2

21 −1

...
...

...
...

...
...

2x2N2 2y2N2 −x2
2N2

−2x2N2y2N2 −y2
2N2

−1


.

(4.18)

In Be, 0 is a 2× 1 vector of zero. n is defined below (4.4) and η̂ is an N × 1 vector

whose elements are nTijΓ1
onij. Note that both ko and ϕoe are related to the concentric

ellipses parameter vector θoe.

The measurement equation (4.16) is linear with respect to ϕoe. By following the

same argument as in the concentric circles case, the negative of the log-likelihood

function corresponding to (4.16) for minimization is

( kohe −Geϕ
o
e )TWe( k

ohe −Geϕ
o
e ), (4.19)

where We is the weighting matrix and the choice of it will be discussed later in this

subsection. Note that (4.19) is in quadratic form with respect to the unknowns ϕoe and

ko. Minimizing (4.19) with respect to them will give the unwanted trivial solutions
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ϕe = 0 and k = 0. To avoid the trivial solutions, the monic constraint should be

imposed in (4.19), which is described below.

Monic Solution

The monic solution rewrites the cost function (4.19) as

( he −Ge(ϕ
o
e/k

o) )T ( ko2We ) ( he −Ge(ϕ
o
e/k

o) ) (4.20)

and solves for ϕoe/k
o only. We is the weighting matrix chosen to be the inverse of the

noise covariance

We =
(
BeQBT

e

)−1
(4.21)

to achieve the minimum variance of solution estimate [6]. Other choices of the weight-

ing matrix could be used. However, the estimation variance will be higher and the

amount of bias is different. Similar to the concentric circles case, We contains the

ellipse parameters which are unknown to us. Assuming some approximation of We

in (4.21) is available, the solution of ϕoe/k
o is

(ϕe/k) =
(
GT
e WeGe

)−1
GT
e Wehe . (4.22)

If the ill-conditioned problem occurs, pseudo inverse will be used instead. The map-

ping of ϕe/k back to c, Γ1 and ε will give the concentric ellipses parameter vector

estimate θe. In particular, using Γ1/k obtained from the third to the fifth element

of ϕe/k together with the first two elements gives c. Putting Γ1/k and c into the

definition of ko in (4.13) fixes k and hence Γ1 can be determined. Using k and the
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last element of ϕe/k gives the estimate of ε.

The solution strategy is first setting We to identity to obtain an initial estimate of

ϕoe/k
o (the least-squares solution), from which a better We can be generated to yield

a better solution. Through extensive simulations, we find that iterating equations

(4.17)-(4.22) twice is sufficient. Further iterating to regenerate the weighting matrix

does not lead to much improvement in accuracy.

The proposed solution (4.22) is expected to behave similarly to the ML solution

obtained directly from the data model (4.1) when the SNR is high, based on the same

rationale as in the concentric circles case.

The monic solution requires ko to be not close to zero. To ensure this requirement,

we add to the x and y coordinate points of the measurements a large constant, 500

in our case. After obtaining the monic solution we can simply subtract this constant

out from the center estimate. The other parameter estimates are not affected by the

translation in the data points. In Appendix A we provide a formal mathematical

justification of our strategy regarding to ko.

4.3 KCR Lower Bound

Kanatani [54] has derived the lower bound for the parameter estimation accuracy

of an unbiased curve fitting estimator. However, most of the existing curve fitting

estimators from the literature are biased. Chernov and Lesort [28] modified the lower

bound from Kanatani for biased estimator and called it the KCR lower bound. The

KCR lower bound applies to the fitting problem of any algebraic curve and provides

the lower bound on the leading term of the mean-square parameter estimator error.
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In this section, we present the KCR lower bounds for the fittings of concentric

circles and concentric ellipses that are derived based on the formulations in [28] and

[55].

4.3.1 KCR Lower Bound for Concentric Circles Fitting

For the concentric circles fitting, the unknown parameter vector is θoc = [ao bo ro1 ro2]T .

Its KCR lower bound is

KCR
(
θc
)

=
[
Po
c
T
(
Bo
cQBo

c
T
)−1

Po
c

]−1

, (4.23)

where

Bo
c = 2



(so11 − co)T · · · 0T 0T · · · 0T

...
. . .

...
...

. . .
...

0T · · · (so1N1
− co)T 0T · · · 0T

0T · · · 0T (so21 − co)T · · · 0T

...
. . .

...
...

. . .
...

0T · · · 0T 0T · · · (so2N2
− co)T


, (4.24)

Po
c = 2

[
poc,11 · · · poc,1N1

poc,21 · · · poc,2N2

]T
,

poc,1j =
[
(so1j − co)T ro1 0

]T
, j = 1, 2, · · · , N1,

poc,2j =
[
(so2j − co)T 0 ro2

]T
, j = 1, 2, · · · , N2.

(4.25)

In Bo
c, 0 is a 2 × 1 vector of zero. Q is the covariance matrix of the measurement

data.
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4.3.2 KCR Lower Bound for Concentric Ellipses Fitting

The unknown parameter vector for the concentric ellipses fitting is θoe = [ao bo Ao1 ρ
o
1 B

o
1 ε

o]T .

The KCR lower bound of θoe is

KCR
(
θe
)

=
[
Po
e
T
(
Bo
eQBo

e
T
)−1

Po
e

]−1

, (4.26)

where

Bo
e=−2



(so11 − co)TΓo
1 · · · 0T 0T · · · 0T

...
. . .

...
...

. . .
...

0T · · · (so1N1
− co)TΓo

1 0T · · · 0T

0T · · · 0T (so21 − co)TΓo
1 · · · 0T

...
. . .

...
...

. . .
...

0T · · · 0T 0T · · · (so2N2
− co)TΓo

1


,

(4.27)

Po
e = 2

[
poe,11 · · · poe,1N1

poe,21 · · · poe,2N2

]T
,

poe,1j =
[
− (so1j − co)TΓo

1 qT1j 0
]T
, j = 1, 2, · · · , N1,

poe,2j =
[
− (so2j − co)TΓo

1 qT2j
1

εo2

]T
, j = 1, 2, · · · , N2,

qij =
[1

2
(xoij − ao)2 (xoij − ao)(yoij − bo)

1

2
(yoij − bo)2

]T
.

(4.28)

In Bo
e, 0 is a 2 × 1 vector of zero. Q is the covariance matrix of the measurement

data.
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4.4 Performance Analysis

In this section we perform the first order analysis of the proposed solution by evalu-

ating its covariance matrix. The first order analysis is valid when the measurement

noise is small. After obtaining the covariance matrix, we shall compare it with the

KCR lower bound.

4.4.1 Concentric Circles

The relation between θc and ϕc is given in (4.11). Taking the differential on both

sides of (4.11) with respect to the true values gives

∆θc = Φo
c∆ϕc, Φo

c =



1 0 0 0

0 1 0 0

ao

ro1

bo

ro1

1
2ro1

0

ao

ro2

bo

ro2
0 1

2ro2


. (4.29)

The estimate θc from (4.11) has negligible bias under the first order approximation

and its covariance matrix is

cov(θc) = Φo
c cov(ϕc) ΦoT

c . (4.30)

From the theory of Weighted-Least-Squares (WLS) minimization [6], we have cov(ϕc) '(
GoT
c Wo

cG
o
c

)−1
when the noise is small, where Go

c and Wo
c are Gc in (4.8) and Wc in

(4.9) when replacing the noisy values by the true values. Hence the covariance matrix
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of θc for the proposed method is

cov(θc) '
[
Φo
c
−TGoT

c Wo
cG

o
cΦ

o
c
−1
]−1

. (4.31)

We shall next compare cov(θc) with the KCR lower bound which is given in (4.23)

and has the same structural form as cov(θc) in (4.31). Using the definitions of Po
c in

(4.25) and Φo
c in (4.29), we can verify that Po

cΦ
o
c = −Go

c and hence

Go
cΦ

o
c
−1 = −Po

c. (4.32)

Under the first order analysis, (4.9) can be approximated as

Wc ' (Bo
cQBoT

c )−1 (4.33)

where Bo
c is defined in (4.24). Putting (4.32) and (4.33) into (4.31) yields

cov(θc) '
[
Po
c
T
(
Bo
cQBo

c
T
)−1

Po
c

]−1
= KCR(θc). (4.34)

Thus the proposed concentric circles estimator reaches the KCR lower bound accuracy

under the first order analysis.

4.4.2 Concentric Ellipses

We shall perform the analysis of the proposed estimator with the monic constraint.

For simplicity we shall denote ϕe/k as ϕ̂e and Γ1/k as Γ̂1. The monic solution ϕ̂e is

given in (4.22). From the definition of ϕoe in (4.18), the differentials of the first two
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elements of ϕ̂e are

∆ϕ̂e(1 : 2) = Γ̂
o

1∆c + ∆Γ̂1c
o. (4.35)

Γ̂1 is given by the third to the fifth elements of ϕ̂e, whose error ∆Γ̂1 can be expressed

in terms of ∆ϕ̂e(3 : 5). Accordingly, we have

∆θe(1 : 2) = ∆c = VT
ab∆ϕ̂e, (4.36)

where

Vab =

koΓo
1
−1

1 0 −coT 0 0

0 1 0 −coT 0



T

, (4.37)

and Γ̂
o

1 = Γo
1/k

o has been used. The subscript ab of Vab represents that it is for the

concentric ellipses center.

The value k is equal to
[
cT ϕ̂e(1 : 2) − 1

]−1
from (4.13) and its differential is

∆k = −ko2
[
coT∆ϕ̂e(1 : 2) + ϕ̂oe(1 : 2)T∆c

]
. Using ϕ̂oe(1 : 2) = Γ̂

o

1c
o = Γo

1c
o
/
ko from

(4.18) and ∆c from (4.36), we have

∆k = vTk ∆ϕ̂e, (4.38)

where

vk , −ko
([
kocoT 0T

]
+ coTΓo

1 VT
ab

)T
(4.39)

and 0 is a 4× 1 vector of zero. Since θe(3 : 5) = kϕ̂e(3 : 5) according to (4.18), their

differentials are

∆θe(3 : 5) = ko∆ϕ̂e(3 : 5) + ϕ̂oe(3 : 5)∆k = VT
Γ ∆ϕ̂e (4.40)

61



where

VΓ =
([

O koI 0
]

+ ϕ̂oe(3 : 5)vTk

)T
, (4.41)

O is a 3 × 2 matrix of zero, I is the identity matrix of size 3, 0 is a 3 × 1 vector of

zero and (4.38) has been used.

The value of ε is
[
1 − kϕ̂e

]−1
from (4.18). Its differential is εo2

[
ko∆ϕ̂e(6) +

∆kϕ̂oe(6)
]

and by using (4.38) we arrive at

∆θe(6) = vTε ∆ϕ̂e, (4.42)

where

vε = εo2
([

0T ko
]

+
εo − 1

εoko
vTk

)T
(4.43)

and 0 is a 5 × 1 vector of zero. Thus from (4.36), (4.40) and (4.42), we obtain the

relationship between the errors in θe and ϕ̂e as

∆θe = Φo
e∆ϕ̂e, Φo

e =
[
Vab VΓ vε

]T
. (4.44)

Under the first order approximation, the covariance matrix of θe is

cov(θe) = Φo
e cov(ϕ̂e) Φo

e
T . (4.45)

When the noise in Ge and Be are small enough to be neglected, the covariance

matrix of ϕ̂e from WLS minimization [6] is

cov(ϕ̂e) '
(
GoT
e Wo

eG
o
e

)−1
, (4.46)
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where Go
e and Wo

e are Ge in (4.18) and We in (4.21) when replacing the noisy

quantities by their true values. Since Φo
e is invertible, substituting (4.46) into (4.45)

yields the covariance matrix of θe as

cov(θe) =
(
Φo
e
−TGoT

e Wo
eG

o
eΦ

o
e
−1
)−1

. (4.47)

The KCR lower bound for the concentric ellipses parameters is given in (4.26),

which has the same structural form as cov(θe) in (4.47).

From (4.28) and (4.44), performing direct matrix multiplication and using the

ellipse equation (4.3) for simplification give Po
eΦ

o
e = −Go

e. Hence

Go
eΦ

o
e
−1 = −Po

e . (4.48)

Also, We in (4.21) can be approximated as

We ' (Bo
eQBoT

e )−1 (4.49)

under the first order approximation where the noise level is low. The substitution of

(4.48) and (4.49) into (4.47) gives immediately

cov(θe) '
[
Po
e
T
(
Bo
eQBo

e
T
)−1

Po
e

]−1
= KCR(θe). (4.50)

In other words, the proposed concentric ellipses fitting method achieves the KCR

lower bound performance asymptotically.
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4.5 Simulation and Experiment

We shall examine the performance of the proposed estimators and support the the-

oretical developments using synthetic data and actual image captures. Their results

will be presented separately.

4.5.1 Synthetic Data

Unless specified otherwise, the N = N1 + N2 data points are collected randomly

(with a uniform distribution) along partial segments of the coupled circles or coupled

ellipses. The noisy measurements are generated by adding zero-mean Gaussian noise

to the true data points. The noise covariance matrix Q is diag{R,R, · · · ,R}, where

R is a 2 × 2 matrix equal to σ2

1 δ

δ 1

 and δ is the correlation coefficient in the x

and y noise components. In most curve fitting studies, using a scaled identity matrix

for Q is sufficient [28, 54]. However, in application such as archaeology, the elements

in nij for each data point can be correlated due to the process of digitizing [30].

In practice, the noise power σ2 and the noise correlation factor δ can be estimated

from data measurements [30]. The estimation accuracy is presented using the mean-

square error (mse) of the estimate of the unknown vector θ, which is computed as

mse(θ) =
∑L

l=1 ‖θ(l) − θo‖2/L, where θ(l) is the solution obtained at ensemble run

l, θo is the true value and L is the number of ensemble runs. L is equal to 10000

throughout the simulations unless stated otherwise. The results for the concentric

circles and the concentric ellipses will be shown separately in sequel, as well as the

ones of the single circle and the single ellipse.
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Concentric Circles and Single Circle

The common center of the concentric circles is co = [0 0]T and the two radii are

ro1 = 10 and ro2 = 20. In addition to the proposed estimator, the estimation results

from the method proposed by O’Leary et al. [10], the K̊asa method [23, 24] and

the Pratt method [25] are also shown for comparison purpose. When applying the

K̊asa method on the concentric circles, the parameters of the two circles are obtained

independently and the common circle center estimate is computed as the average of

the two independent circle center estimates.

Fig. 4.1 and Fig. 4.2 compare the performance of the proposed estimator (×

symbol) with the O’Leary method (© symbol) and the K̊asa method (+ symbol)

for the concentric circles center and radii estimates. We randomly sampled 10 data

points from each of the two arcs of the concentric circles starting from 0 to π rad,

i.e. N1 = N2 = 10. The noise power σ2 varies from 10−4 to 10 and the correlation

coefficient δ is 0.8. Fig. 4.1 shows that the proposed estimator reaches the KCR lower

bound accuracy for the concentric circles center estimate very well as expected from

the theory. The O’Leary and the K̊asa methods have constant differences of about 2.7

decibel (dB) and 1.5 dB with the KCR lower bound before the noise power reaches

1, above which larger deviations occur. For the radii estimates shown in Fig. 4.2, the

observations are similar in which the proposed method attains the KCR lower bound

accuracy until the noise power exceeds 0.1 while the O’Leary and the K̊asa methods

always deviate away from the bound.

To investigate a little further, we compared the estimation bias when the weighting

matrix Wc is equal to (4.9) and when it is set to be an identity matrix for the

simulation case corresponding to Figs. 4.1 and 4.2. The results are tabulated in
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Table 4.1 when the noise level is fixed at 10−4. It clearly shows the effect of weighting

matrix on the bias. For concentric circles, when Wc is equal to (4.9) the bias is about

0.5 dB larger than the one if Wc is equal to an identity matrix. However, choosing

Wc as in (4.9) did provide smaller estimation variance. It is non-trivial to analyze

how the weighting matrix would affect the estimate bias theoretically. We plan to

look at it in more detail and report the findings elsewhere.

The proposed concentric circles estimator can also generate a non-iterative solution

by setting Wc in (4.10) to an identity matrix. In such a case, its performance would

be suboptimal. Fig. 4.3 and Fig. 4.4 show the results of the non-iterative solution

together with those from the O’Leary and K̊asa methods. From the plots we can

observe that the performance of the non-iterative solution is similar to the one from

the O’Leary method for both the concentric circles center and radii estimates. It is

slightly worse than the K̊asa method for the center estimate but yields better results

for the radii estimates. However, the proposed solution in non-iterative form is more

computational efficient than the O’Leary and K̊asa methods. Table 4.2 shows the

relative computation time in matlab over 10000 ensemble runs when the noise power

is 10−4. The non-iterative solution requires less computation time than the other two

methods. The iterative solution of the proposed estimator requires more computation

time than the non-iterative version but provides much better estimation performance.

The proposed estimator can reduce back for the fitting of a single circle. By using

the same setting as in Figs. 4.1 and 4.2, Figs. 4.5 and 4.6 examine the performance

of the proposed estimator when the data points are only from the arc of the circle

whose radius is 10. The proposed method is able to attain the KCR lower bound

accuracy for both the single circle center and radius estimates when σ2 is less than
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10−0.5 while the K̊asa and Pratt methods are not able to reach the KCR lower bound

performance at all.

To supplement Figs. 4.3 - 4.6, we show in Table 4.3 numerically the performance

difference with the KCR lower bounds of different estimators. The values given are

obtained by averaging over the range of noise power varying from 10−4 to 0.1.

Concentric Ellipses and Single Ellipse

The concentric ellipses center is co = [0 0]T , the semi-major and semi-minor axes

of the inner ellipse (ellipse 1) are 20 and 6.67, the rotation angle is π/6 rad (Ao1 =

0.0075, Bo
1 = 0.0175, ρo1 = −0.0087). The scale factor between Γo

1 and Γo
2 as defined

in (4.3) is εo = 0.25.

The performance of the O’Leary method [10], the Taubin method [31], the FNS

method [34] and the HEIV method [35] are also evaluated for comparison. Note that

except the O’Leary method, these methods are originally developed for the single

ellipse fitting based on the conic ellipse equations and we have extended them for

coupled ellipses. We convert their conic parameter estimates to ellipse parameters as

defined in (4.3) when performing the comparison.

Fig. 4.7 gives the result of the concentric ellipses center estimate as σ2 increases

from 10−4 to 1, when the noise correlation coefficient δ is −0.6 and N1 = N2 = 10

data points are sampled randomly from the concentric ellipses portions that are above

the common major axis. The proposed estimator (× symbol), the FNS method (4

symbol) and the HEIV method (5 symbol) attain the KCR lower bound accuracy

very well when σ2 is not larger than 10−2.5. After that, the FNS method deviates

from the bound. When σ2 reaches 0.1, only the proposed method attains the KCR
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lower bound accuracy.

With the same settings as in Fig. 4.7, Fig. 4.8 shows the results of the estimates

Γ1 (A1, ρ1 and B1) and ε. The upper set of results is for ε and the lower one is

for Γ1. The estimation accuracy of the proposed estimator and that of the HEIV

method achieve the KCR lower bound when σ2 is not larger than 10−1.5. We can

observe from Figs. 4.7 and 4.8 the proposed method has a higher noise tolerance of

the thresholding effect than the FNS and HEIV methods.

We compare the estimation bias when the weighting matrix We is equal to (4.21)

and when it is set to an identity matrix for the simulation case corresponding to

Figs. 4.7 and 4.8, and the results are tabulated in Table 4.1 at the noise level 10−4.

The resulting bias and variance when We is chosen as (4.21) are both smaller than

the ones if We is equal to an identity matrix. It is non-trivial to analyze how the

weighting matrix would affect the estimate bias theoretically. We plan to look at it

in more detail and report the findings elsewhere.

A non-iterative solution can be generated from the proposed concentric ellipses

estimator by replacing We in (4.22) with an identity matrix. Using the same settings

as in Figs. 4.7 and 4.8, Figs. 4.9 and 4.10 give the estimation performance of the

non-iterative solution (× symbol), the O’Leary method (© symbol) and the Taubin

method (4 symbol). When σ2 is not larger than 10−2.5, the non-iterative solution

has a similar performance as the other two methods. However, Table 4.2 indicates

that the non-iterative solution is more computation efficient than the others. The

relative computation time are obtained from matlab over 10000 ensemble runs at the

noise level of 10−4. The iterative solution of the proposed estimator requires more

computation time than the non-iterative version but provides much better accuracy.
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The proposed estimator can be simplified for the single ellipse fitting. Figs. 4.11

and 4.12 examine the performance of the proposed estimator using the same set of

data sampled from the inner ellipse as in Figs. 4.7 and 4.8. The proposed estimator

attains the KCR lower bound accuracy before σ2 reaches 0.01, while the Taubin

and Fitzgibbon methods are not able to reach the bound at all. There is significant

bias in the center estimate of the Fitzgibbon method when σ2 > 0.01, making its

mse lower than the KCR lower bound. The performance degradation of the proposed

estimator when σ2 is larger than 0.01 is caused by the thresholding effect in non-linear

estimation.

4.5.2 Experiment with Real Images

We shall apply the proposed estimators on several real images to test their perfor-

mance. The real images we use here are either taken by a digital camera or from

the iris database CASIA-IrisV3 [56] collected by the Chinese Academy of Sciences’

Institute of Automation (CASIA).

Concentric Objects Images

The left parts of Fig. 4.13 and Fig. 4.16 depict images of the concentric circles

and concentric ellipses captured by a digital camera with a 640 × 480 resolution.

The images are clean and have been converted to 8bpp gray scale with each pixel

value between 20 and 224. To examine the estimators’ performance under noise,

we normalize the gray scale images by 255, add zero-mean Gaussian white noise of

certain power ξ2, truncate each pixel value to be within 0 to 1 and multiply by 255 to

restore the original dynamic range. The Canny edge detection [57] is applied to the
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noisy images to obtain the edges of the concentric circles and concentric ellipses. The

edges are converted to binary images as shown on the right parts of Fig. 4.13 and Fig.

4.16. The binary images define the data points on which the proposed estimators are

applied.

Using the data points from concentric circles edges in Fig. 4.13, Fig. 4.14 and Fig.

4.15 examine the performance of the proposed estimator (× symbol) and compare it

with the O’Leary method (© symbol). The noise covariance Q is a scaled identity

matrix in (4.9) for the proposed method. N1 = N2 = 20 data points are randomly

sampled from each of the concentric circles edges. The power ξ2 of the zero-mean

Gaussian white noise added to the original image before edge detection is varied

from 10−4 to 10−1.4 and L = 5000 ensemble runs are performed at each noise power

level. Instead of the mse, the variances of the parameter estimates are shown for the

performance comparison because the true parameter values are not known. Fig. 4.14

indicates the variance of the center estimate from the proposed method is lower than

that from the O’Leary method. The difference between them is about 2 dB when the

noise power is not larger than 10−1.8. This amount of performance improvement is

consistent with the mse results we have in Fig. 4.1. Note that the edge detection is in

terms of pixel coordinates in integers and the noise in the data is quantized to integer

values. As a result, when the noise power varies from 10−4 to 10−1.8, the parameter

estimation variance only changes slightly, and when the noise power reaches higher

values it increases sharply. We observe from Fig. 4.15 the proposed method has only

slight performance improvement on the radii when the noise power is larger than

10−3, much less than those shown in Fig. 4.2. It is because the Gaussian noise used

in this experiment is white (δ = 0) while the one in Fig. 4.2 is anisotropic with a
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correlation coefficient δ = 0.8. The improvement in radii estimates increases when δ

increases.

Fig. 4.17 shows the variances of the concentric ellipses center estimate when 20

data points are sampled randomly from each of the concentric ellipses boundaries and

ξ2 varies from 10−4 to 0.1. In (4.21), the noise covariance Q is set proportional to

an identity matrix for the proposed method. The estimation variance of the O’Leary

method (© symbol) is always higher than the one of the proposed method (× symbol)

by about 2dB when ξ2 ≤ 10−1.6 . This is consistent with the simulation results in

Fig. 4.7 and Fig. 4.9. Since the noise in the data points is quantized, the parameter

variances of both methods vary only slightly as the noise power increases and they

jump to much higher values when the noise power exceeds 10−1.6.

Fig. 4.18 shows the estimation performance of the Γ1 and ε parameters. The

upper set of results is for ε and the lower one is for Γ1. Since the Gaussian noise

added here is white (δ = 0), we do not observe the performance improvement from

the proposed method as indicated in Fig. 4.8 and Fig. 4.10 where the Gaussian noise

is anisotropic with a correlation coefficient δ = −0.6. If correlated Gaussian noise is

used, the performance improvement will be more apparent.

Eye Images

One main application of ellipse fitting is in biometrics for iris recognition [58,59]. Iris

recognition requires accurate extraction of the inner and outer boundaries of the iris

(pupil and limbus). We shall show below the experimental results of applying the

proposed concentric ellipses estimator with Q = I in (4.21) to the edge data points

extracted from an iris image. The iris (eye) images are from the CASIA-IrisV3 iris
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database with a resolution of 320 × 280 pixels. The images are processed directly

without adding any noise. However, due to the blurring behavior in the images,

the exacted edges will have inherent noise. Each figure to be presented has four

subfigures. The upper left subfigure shows all the edges detected from the original

eye image using the Canny edge detection technique [57]. The upper right subfigure

shows only the edges belonging to the inner and outer boundaries of the iris. The

lower left subfigure displays the original eye image with the estimated concentric

ellipses from the proposed method superimposed. The lower right subfigure shows

the ellipses obtained by other methods. N1 = N2 = 25 data points are sampled

randomly from each of the iris inner and outer boundaries for the estimation.

Fig. 4.19 represents an eye image that contains the whole iris inner boundary and

only a portion in the outer boundary. The advantage of the concentric ellipses fitting

over the single ellipse fitting is clear in this case. The lower left plot of Fig. 4.19 shows

the accurate fitted concentric ellipses from the proposed method. The lower right plot

shows two fitted ellipses obtained separately from the method derived by Harker and

O’Leary [60]. Both methods fit the inner iris boundary very well. However, the single

ellipse fitting method has difficulty for the iris outer boundary and gives wrong result,

while the proposed method fits the outer ellipse quite well.

Fig. 4.20 compares concentric ellipses fitting between the proposed method (lower

left) and the O’Leary method [10] (lower right) for this particular eye image in which

the edges are relatively clean as shown in the upper right plot. Both methods give

comparable results in this case.

Fig. 4.21 gives the results when the data points from the iris outer boundary are a

little noisier than those in Fig. 4.20. Comparing the fitted ellipses from the proposed
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method (lower left) and the O’Leary method (lower right) shows that the common

ellipse center estimate from the O’Leary method shifts to the left and it performs a

little worse than the proposed method, especially on the iris inner boundary.

Fig. 4.22 depicts the results when the outer ellipse data points are quite noisy.

The fitted ellipses from the proposed method (lower left) are much better than those

from the O’Leary method (lower right). The common ellipse center estimated from

the O’Leary method is much worse than the one from the proposed method.

To provide better measures of the performance comparison, Table 4.4 shows the

total-square errors between the 50 measurement points and their closest points from

the fitted ellipses for Figs. 4.20 - 4.22. The second column is from the proposed

method and the third column is from the O’Leary method. The relative percentage

reduction in the total-square errors of the proposed method relative to the O’Leary

method is shown in the fourth column. The amount of improvement increases as the

extracted edge data points become noisier due to the inherent characteristics of the

images. For the image in Fig. 4.22, a 32.79% error reduction is achieved.

4.6 Concluding Remarks

This paper provides computationally efficient solutions for the fitting of concentric

circles as well as for concentric ellipses. The proposed estimators have explicit solu-

tions and are derived through equation error formulation and non-linear parameter

transformation. They can be in non-iterative forms by setting the weighting matrix to

identity. The non-iterative form has better computational efficiency than the other

non-iterative solutions from the literature and achieves comparable accuracy. The
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iterative form is self-initialized and provides better performance. The KCR lower

bounds for the parameters of concentric circles and concentric ellipses are provided.

The first order analysis shows that the proposed estimators in iterative form approach

statistical efficiency asymptotically. Compared to the other iterative solutions from

the literature, the proposed estimators appear to have higher noise tolerance level for

the thresholding effect. Simulations on synthetic data and experimental results from

real images validate the theoretical developments and the promising performance of

the proposed estimators.

4.7 Appendix

The monic solution we proposed requires ko to be not near zero. This requirement

can be easily fulfilled by adding a large constant to the measurement data. Such

an operation is linear and it only translates the concentric ellipses center co and

changes the value of ko. The other parameters Γo
1 and εo would not be affected by

this operation.

Let the translation be f = [f, f ]T and the transformed data is s̃ij = sij + f . The

estimate of the unknown parameter vector in (4.22) for s̃ij is

ϕe
k

=
[Γ1(c + f)

k
,
A1

k
,
ρ1

k
,
B1

k
,
ε− 1

εk

]T
, ϕ̂e. (4.51)

Following the steps described after (4.22), the translated concentric ellipses center
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Table 4.1: Bias results (in dB) from the proposed concentric circles and concentric
ellipses estimators with different weighting matrices. The results were obtained from
the average of 10000 ensemble runs when the noise power was set to 10−4.

Concentric circles Bias MSE KCR lower bound

Wc as in (4.9) -38.98 dB -36.61 dB -36.69 dB

Wc = σ2I -39.50 dB -34.15 dB -36.69 dB

Concentric ellipses Bias MSE KCR lower bound

Wc as in (4.21) -30.68 dB -30.76 dB -30.84 dB

Wc = σ2I -25.93 dB -28.98 dB -30.84 dB

estimates from ϕ̂e are

a+ f =
ϕ̂e(5)ϕ̂e(1)− ϕ̂e(4)ϕ̂e(2)

ϕ̂e(3)ϕ̂e(5)− ϕ̂e(4)2
,

b+ f =
ϕ̂e(3)ϕ̂e(2)− ϕ̂e(4)ϕ̂e(1)

ϕ̂e(3)ϕ̂e(5)− ϕ̂e(4)2
.

(4.52)

From (4.52), we can see that the effect of k in ϕ̂e has been canceled out in the

translated concentric ellipses center estimates. The estimate of ko is

k =
1

(a+ f)ϕ̂e(1) + (b+ f)ϕ̂e(2)− 1
. (4.53)

After finding k, it is straightforward to obtain the estimates of Γo
1 and εo and they are

seen to be unaffected by the linear operation of the measurement data. The actual

concentric ellipses center is estimated as its translated version subtracts the large

constant term f that is known to us.
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Table 4.2: Computation time of the non-iterative and iterative solutions of the pro-
posed estimators, the O’Leary method, the K̊asa method for concentric circles and
concentric ellipses fittings. The results are relative to the proposed non-iterative
solution and are obtained through 10000 ensemble runs at the noise power of 10−4.

Concentric
circles

Proposed
non-
iterative
solution

O’Leary method [10] K̊asa method [23] Proposed
iterative
solution

1 15.56 2.56 3.76

Concentric
ellipses

Proposed
non-
iterative
solution

O’Leary method [10] Taubin method [31] Proposed
iterative
solution

1 16.38 3.92 6.63

Table 4.3: Averaged performance difference (in dB) with the KCR lower bounds
of different estimators for Figs. 4.3 to 4.6. The values provided are obtained by
averaging over the range of noise power from 10−4 to 0.1.

Non-iterative methods Proposed estimator O’Leary method [10] K̊asa method [23]

Fig. 4.3 2.79 dB 2.84 dB 1.46 dB

Fig. 4.4 2.27 dB 2.35 dB 3.84 dB

Single circle fitting Proposed estimator K̊asa method [23] Pratt method [25]

Fig. 4.5 0.04 dB 1.59 dB 1.60 dB

Fig. 4.6 0.04 dB 1.02 dB 1.07 dB

Table 4.4: Comparisons of the total-square errors between the 50 data points and
their closest points on the fitted ellipses from the proposed method and the O’Leary
method.

Figure Proposed method O’Leary method [10] Relative reduction (%)

4.20 59.5781 62.1671 4.16

4.21 72.7397 85.8301 15.25

4.22 162.3400 241.5422 32.79
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Figure 4.1: Comparison of the proposed estimator, the O’Leary method and the K̊asa
method with the KCR lower bound for the estimations of the concentric circles center
co = [0 0]T with data points from the two arc segments between 0 and π rad when
the noise power σ2 varies, δ = 0.8 and N1 = N2 = 10.
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Figure 4.2: Comparison of the proposed estimator, the O’Leary method and the K̊asa
method with the KCR lower bound for the estimations of the concentric circles radii
ro1 = 10 and ro2 = 20 with data points from the two arc segments between 0 and π
rad when the noise power σ2 varies, δ = 0.8 and N1 = N2 = 10.
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Figure 4.3: Comparison of the non-iterative solution from the proposed estimator, the
O’Leary method and the K̊asa method with the KCR lower bound for the estimations
of the concentric circles center co = [0 0]T with data points from the two arc segments
between 0 and π rad when the noise power σ2 varies, δ = 0.8 and N1 = N2 = 10.
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Figure 4.4: Comparison of the non-iterative solution from the proposed estimator, the
O’Leary method and the K̊asa method with the KCR lower bound for the estimations
of the concentric circles radii ro1 = 10 and ro2 = 20 with data points from the two
arc segments between 0 and π rad when the noise power σ2 varies, δ = 0.8 and
N1 = N2 = 10.
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Figure 4.5: Comparison of the proposed estimator, the K̊asa method and the Pratt
method with the KCR lower bound for the estimations of the single circle center
co = [0 0]T when σ2 varies, δ = 0.8 and N1 = N2 = 10.
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Figure 4.6: Comparison of the proposed estimator, the K̊asa method and the Pratt
method with the KCR lower bound for the estimation of the single circle radius
ro1 = 10 when σ2 varies, δ = 0.8 and N1 = N2 = 10.
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Figure 4.7: Comparison of the proposed estimator, the FNS method and the HEIV
method with the KCR lower bound for the estimations of the concentric ellipses center
co = [0 0]T when σ2 varies from 10−4 to 1, N1 = N2 = 10 and δ = −0.6. The data
points are sampled from the concentric ellipses portions that are above the common
major axis.

−40 −35 −30 −25 −20 −15 −10 −5 0

−80

−70

−60

−50

−40

−30

−20

10log(σ2)

10
lo

g(
m

se
)

 

 

KCR lower bound
Proposed estimator
FNS method
HEIV method

Figure 4.8: Comparison of the proposed estimator, the FNS method and the HEIV
method with the KCR lower bound for the estimations of εo = 0.25 (upper) and Γo

1

(Ao1 = 0.0075, Bo
1 = 0.0175 and ρo1 = −0.0087) (lower) when σ2 varies from 10−4 to

1, N1 = N2 = 10 and δ = −0.6. The data points are sampled from the concentric
ellipses portions that are above the common major axis.
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Figure 4.9: Comparison of the non-iterative solution of the proposed estimator, the
O’Leary method and the Taubin method with the KCR lower bound for the esti-
mations of the concentric ellipses center co = [0 0]T when σ2 varies from 10−4 to 1,
N1 = N2 = 10 and δ = −0.6.
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Figure 4.10: Comparison of the non-iterative solution of the proposed estimator,
the O’Leary method and the Taubin method with the KCR lower bound for the
estimations of εo = 0.25 (upper) and Γo

1 (Ao1 = 0.0075, Bo
1 = 0.0175 and ρo1 = −0.0087)

(lower) when σ2 varies from 10−4 to 1, N1 = N2 = 10 and δ = −0.6.
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Figure 4.11: Comparison of the iterative solution of the proposed estimator, the
Taubin method and the Fitzgibbon method with the KCR lower bound for the es-
timations of the single ellipse center co = [0 0]T when σ2 varies from 10−4 to 0.1,
N1 = 10 and δ = −0.6. The data points are sampled from the single ellipse portion
that is above the major axis.
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Figure 4.12: Comparison of the iterative solution of the proposed estimator, the
Taubin method and the Fitzgibbon method with the KCR lower bound for the es-
timations of Γo

1 (Ao1 = 0.0075, Bo
1 = 0.0175 and ρo1 = −0.0087) when σ2 varies from

10−4 to 0.1, N1 = 10 and δ = −0.6. The data points are sampled from the single
ellipse portion that is above the major axis.
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Figure 4.13: Original image of concentric circles with zero-mean Gaussian white noise
added (left) and the corresponding image after edge detection (right).
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Figure 4.14: Comparison of the proposed estimator and the O’Leary method for the
variance of the concentric circles center estimate when the noise power ξ2 varies and
N1 = N2 = 20.
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Figure 4.15: Comparison of the proposed estimator and the O’Leary method for the
variance of the concentric circles radii estimate when the noise power ξ2 varies and
N1 = N2 = 20.

Figure 4.16: Original image of concentric ellipses with zero-mean Gaussian white
noise added (left) and the corresponding image after edge detection (right).
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Figure 4.17: Comparison of the proposed estimator and the O’Leary method for the
variance of the concentric ellipses center estimate when the noise power ξ2 varies and
N1 = N2 = 20.
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Figure 4.18: Comparison of the proposed estimator and the O’Leary method for the
variance of the ε (upper) and Γ1 (lower) estimates when ξ2 varies and N1 = N2 = 20.
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Figure 4.19: Results of an occlusive eye image: the output of Canny edge detection
(upper left); the extracted iris boundaries (upper right); the estimated ellipses from
the proposed estimator (lower left); the estimated ellipses by fitting inner and outer
boundaries independently (lower right).

Figure 4.20: Results of an eye image with relatively clean detected edges: the output
of Canny edge detection (upper left); the extracted iris boundaries (upper right);
the estimated ellipses from the proposed estimator (lower left); the estimated ellipses
from the O’Leary method (lower right).
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Figure 4.21: Results of an eye image with a little noisy detected edges: the output
of Canny edge detection (upper left); the extracted iris boundaries (upper right);
the estimated ellipses from the proposed estimator (lower left); the estimated ellipses
from the O’Leary method (lower right).

Figure 4.22: Results of an eye image with quite noisy detected edges: the output
of Canny edge detection (upper left); the extracted iris boundaries (upper right);
the estimated ellipses from the proposed estimator (lower left); the estimated ellipses
from the O’Leary method (lower right).
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Chapter 5

TOA Localization in the Presence

of Random Sensor Position Errors

5.1 TOA Localization Problem and Its CRLB and

MSE Analysis

The localization of a source via a collection of sensors is another classic and important

nonlinear estimation problem. In this chapter the source localization problem based

on TOA measurements in the presence of sensor position uncertainties is studied.

We consider one source and M sensors in the localization scenario as shown in Fig.

1. The true source location uo = [xo, yo, zo]T is unknown and it is to be estimated

using the TOAs of the source signal received at the sensors. The true positions of

the sensors soi = [xoi , y
o
i , z

o
i ]
T , i = 1, 2, · · · ,M are not known. The available sensor

positions are si and they are inaccurate, i.e. si = soi + nsi, where nsi represents

the position error of sensor i. They are collected to form a 3M × 1 sensor position
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vector s = [sT1 , s
T
2 , · · · , sTM ]T = so + ns, where so is the true sensor position vector

and ns = [nTs1,n
T
s2, · · · ,nTsM ]T . We model ns as a zero-mean Gaussian random vector

with covariance matrix Qs.

The TOA observations are converted to the range measurements denoted by an

M × 1 range vector r = [r1, r2, · · · , rM ]T = ro + nr, where ro is the true range vector

and nr = [nr1, nr2, · · · , nrM ]T is the range measurement noise vector. nr is also

modeled as a zero-mean Gaussian random vector with covariance matrix Qr. We

assume that ns and nr are independent of each other for the purpose of simplifying

exemplification.

In order to better understand how the sensor position error affects the estimation

accuracy of the source location, we evaluate the source location CRLB in the presence

of sensor position errors. From data vector d = [rT , sT ]T , the Fisher information

matrix (FIM) of the unknown λo = [uoT , soT ]T is [6]

FIM = −E
[∂2lnp(d;λo)

∂λo∂λoT

]
, (5.1)

where lnp(d;λo) is the logarithm of the probability density function of d parameter-

ized on λo. (5.1) can be expressed using three block matrices X,Y and Z as

FIM =

 X Y

YT Z

 , (5.2)

where

X =
( ∂ro

∂uo
)T

Q−1
r

( ∂ro

∂uo
)
, Y =

( ∂ro

∂uo
)T

Q−1
r

(∂ro

∂so
)
, Z =

(∂ro

∂so
)T

Q−1
r

(∂ro

∂so
)
+Q−1

s . (5.3)
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Let qi = (uo − soi )/r
o
i , i = 1, 2, · · · ,M , then the ith rows of ( ∂r

o

∂uo ) and (∂r
o

∂so
) are equal

to

(
∂roi
∂uo

)T = qTi , (
∂roi
∂so

)T = [0T3(i−1)×1,−qTi ,0
T
3(M−i)×1]. (5.4)

The CRLB of the source location corresponds to the upper left 3 × 3 submatrix

of the inverse of the FIM. After applying the partitioned matrix inverse formula, we

have

CRLB(uo) = X−1 + X−1Y(Z−YTX−1Y)−1YTX−1. (5.5)

The first term X−1 represents the source location CRLB when there is no sensor

position error and the second term is the increase in the CRLB due to the presence

of sensor position errors.

We next examine the MSE of the source location estimate from a Taylor-series

based estimator [61] that pretends the known sensor positions are accurate but in

fact they are erroneous. We shall let fi(u) = ‖u− si‖, i = 1, 2, · · · ,M for simplicity.

Suppose we have an initial guess of the source location ǔ that is close to uo. Using

the Taylor-series expansion up to linear term, we have

f(u) ' f(ǔ) + F(ǔ)(u− ǔ) (5.6)

where f(u) = [f1(u), f2(u), · · · , fM(u)]T and F(ǔ) = ∂f(u)
∂u

∣∣
ǔ
.

Subtracting (5.6) from the range vector r produces the error ef = r − f(ǔ) −

F(ǔ)(u − ǔ) and u can be found by minimizing eTf Q−1
r ef . Taking derivative with

respect to u, setting the gradient to zero and using uo as ǔ in the solution give

u− uo = U−1F(uo)TQ−1
r [r− f(uo)], (5.7)
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where U = [F(uo)TQ−1
r F(uo)]. Note that r is with respect to the true sensor positions

where as f(uo) is formed using the available sensor positions. Applying the Taylor-

series expansion up to linear term on f(uo) at the true sensor positions and simplifying

as in [13], we arrive at

r− f(uo) ' nr −Rns (5.8)

where R is the same as (∂r
o

∂so
) which is defined in (5.4).

Substituting (5.8) into (5.7) and multiplying by its transpose yield

MSE(u) = U−1 + U−1F(uo)TQ−1
r RQsR

TQ−1
r F(uo)U−1. (5.9)

In (5.6), the sensor position noise in F(ǔ) is multiplied by the term (u − ǔ), which

will result in a second-order error term when ǔ is close to the true sensor position uo.

Therefore, the error resulting from replacing si by soi in F(ǔ) can be ignored. In such

a case, U−1 in (5.9) is identical to X−1 in (5.5), the CRLB when the sensor positions

are known exactly. The second term on the right hand side of (5.9) is the increase of

inaccuracy caused by the sensor position errors. Using the source location and sensor

position settings in Section 4, Fig. 5.3 shows the difference between the MSE and the

CRLB for a distant and a near source. As the sensor position error power increases,

the difference is about 3 dB and 5 dB. This is a consequence of ignoring the sensor

position errors in the estimation process.
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5.2 Proposed Solution

The performance loss is not negligible if the inaccuracy in sensor positions is ignored.

We shall develop a new estimator that would take into account the sensor position

errors and eventually improve the estimation of the source location. We follow the

general procedure in [13] for the development.

First we look at the true range between the source and sensor i, roi = ‖uo−soi‖, i =

1, 2, · · · ,M . Replacing roi by ri − nri, soi by si − nsi and taking square on both sides

give

r2
i − 2roinri = sTi si + 2(uo − si)

Tnsi − 2sTi uo + uoTuo (5.10)

where the second order noise terms have been ignored. Let ei = 2roinri+2(uo−si)
Tnsi

and Pi = sTi si. Rearranging the elements in (5.10) and collecting all ei yield

e = h1 −G1η
o
1 (5.11)

where

h1 =


r2

1 − P1

...

r2
M − PM

 ,G1=−2


sT1 −1

2

...
...

sTM −1
2

 ,ηo1 =

 uo

uoTuo

 . (5.12)

From the definition of ei below (5.10), we also have

e = V1nr + O1ns (5.13)
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where

V1=2


ro1 · · · 0

...
. . .

...

0 · · · roM

,O1=2


(uo−s1)T · · · 0T3×1

...
. . .

...

0T3×1 · · · (uo−sM)T

 , (5.14)

and nr and ns are the measurement noise vectors.

The equation (5.11) is nonlinear with respect to uo. But if we assume uo and

uoTuo are independent with each other, it is linear in ηo1 and the weighted least-

squares (WLS) method [6] can be used to estimate ηo1:

η1 = (GT
1 W1G1)−1GT

1 W1h1 (5.15)

where W1 = E[eeT ]−1 and from (5.13)

W1 = (V1QrV
T
1 + O1QsO

T
1 )−1. (5.16)

If the sensor position error is small enough such that we can ignore the noise in G1,

the covariance matrix of η1 is

cov(η1) = (GT
1 W1G1)−1. (5.17)

The first three elements of η1 give an estimate of uo. However, this solution is

not accurate because we assume uo and uoTuo are unrelated when solving for η1, but

this is certainly not the case. Therefore, further processing is needed to refine the

estimation result.
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Let ∆η1 be the estimation error of η1. Then

η1(1 : 3)� η1(1 : 3) ' uo � uo + 2uo �∆η1(1 : 3). (5.18)

Here symbol � denotes the element by element multiplication and ∆η1(1 : 3)�∆η1(1 :

3) has been ignored. (5.18) together with η1(4) ' uoTuo + ∆η1(4) form

V2∆η1 = h2 −G2η
o
2 (5.19)

where

V2 = diag[2xo, 2yo, 2zo, 1],

h2 = [η2
1(1),η2

1(2),η2
1(3),η1(4)]T ,

G2 =



1 0 0

0 1 0

0 0 1

1 1 1


,ηo2 = uo � uo =


xo2

yo2

zo2

 .
(5.20)

At this point, (5.19) is linear with respect to ηo2. The WLS solution of ηo2 is equal to

η2 = (GT
2 W2G2)−1GT

2 W2h2 (5.21)

and the weighting matrix is

W2 = E[(V2∆η1)(V2∆η1)T ]−1 = V−T2 cov(η1)−1V−1
2 (5.22)
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where cov(η1) is given by (5.17). The final source location estimate is

u = diag{sign[η1(1 : 3)]}√η2. (5.23)

Note that the true value uo is needed in forming the weighting matrices W1 and

W2. To handle this situation, we shall begin by setting W1 to identity to obtain an

initial u estimate, from which an approximate W1 can be created to obtain η1 using

(5.15). The u estimate in η1 can be used to replace the true source location in W2.

Simulation results show that the performance degradation from this approximation

process is insignificant.

5.3 Simulation

The simulation scenario contains M = 6 sensors whose true positions are listed in

Table 5.1. The source is either distant at [2000, 2500, 3000]T or near at [600, 650, 550]T .

Except for the evaluation of the CRLB, the true sensor positions are not used and

only their erroneous observations are presented to an estimation algorithm.

The covariance matrix of the sensor position measurements is Qs = σ2
sJ, where

J = diag[1, 1, 1, 2, 2, 2, 10, 10, 10, 40, 40, 40, 20, 20, 20, 3, 3, 3]. σ2
s is the sensor position

error power and it varies between 10−6 and 1. Qr = σ2
rI is the covariance matrix of the

range measurements, where I is a 6× 6 identity matrix, σ2
r is the range measurement

noise power that is fixed to 10−4.

In Fig. 5.2, we compare the traces of CRLB(u) in the presence (solid line) and

absence (dash line) of sensor position errors for the distant source. The comparison

shows that the gap between them becomes larger and larger as σ2
s increases. The
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Table 5.1: True Sensor Positions
Sensor i xoi yoi zoi Sensor i xoi yoi zoi

1 300 100 150 4 350 200 100
2 400 150 100 5 -100 100 -100
3 300 500 200 6 200 -300 -200

difference is about 10 dB when σ2
s = 10−4 and it becomes about 28 dB when σ2

s goes

to 10−2.

In the presence of sensor position errors, Fig. 5.3 examines the theoretical MSE(u)

when ignoring sensor position errors when estimating the distant (cross symbol) and

near (circle symbol) sources. The CRLB(u) from (5.5) is also given for comparison.

The theoretical MSE deviates from the corresponding CRLB gradually as σ2
s increases.

Eventually when σ2
s is larger than 10−3.2, the decrease in accuracy reaches a stable

value of about 3 dB for the distant source and about 5 dB for the near source.

Fig. 5.4 displays the accuracy of the proposed solution for both the distant (up

triangle symbol) and near (down triangle symbol) sources together with the CRLBs.

The performance of the proposed method is indicated using mse(u) =
∑K

k=1 ‖uk −

uo‖2/K, where K = 104 is the total number of ensemble runs and uk is the source

location estimate at run k. The proposed method reaches the CRLB accuracy very

well in estimating the source location in both cases.

5.4 Concluding Remarks

In this chapter, we first evaluate the CRLB of the source location estimated from

TOA measurements in the presence of sensor position errors. The CRLB analysis

indicates how sensitive is the source location estimate with respect to the inaccuracy

in sensor positions. The source location MSE is derived for an estimator that pretends
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the error in sensor positions is absent. We develop a closed-form solution to improve

the source location estimate when sensor position errors are present. At the end,

simulation is presented to confirm that the proposed method is able to reach the

CRLB accuracy.
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Figure 5.1: Localization of the source at uo using a number of sensors at si. Open
squares denote the true sensor positions that are not known and closed squares are
the available sensor positions that are erroneous.

−60 −50 −40 −30 −20 −10 0
−20

−10

0

10

20

30

40

10
lo

g(
tr

ac
e(

C
R

LB
(u

))
)

10log(σ
s
2)

Figure 5.2: Comparison of the CRLB of a source location estimate in the presence
(solid line) and the absence (dash line) of sensor position errors for the distant source.
Only the traces of the CRLBs are shown.
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Figure 5.3: Theoretical MSE of the source location estimate from an algorithm that
ignores sensor position errors, cross symbol for MSE of the distant source, circle
symbol for MSE of the near source, solid lines for CRLB. Only the traces of MSE(u)
and CRLB(u) are shown.
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Figure 5.4: Performance of the proposed estimator for the distant (up triangle symbol)
and the near (down triangle symbol) source with respect to the CRLB (solid line).
Only the traces of the CRLBs are shown.
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Chapter 6

Joint Source Localization and

Sensor Position Refinement for

Sensor Networks

6.1 Problem Formulation and Proposed Solution

The study in Chapter 5 shows that the presence of sensor position errors would lead

to a remarkable degradation in the source location estimate accuracy. A TOA based

estimator is proposed in Chapter 5 to take into account the sensor position errors

when estimating the source location. However, in addition to the source location,

the erroneous sensor positions can also be estimated to further improve the source

location estimate. In this chapter, by using the TOA measurements, a closed-form

solution that jointly estimates the source and sensor positions is developed.

Let us consider the localization scenario as shown in Fig. 6.1, which consists of

M sensors to locate K independent sources. The sources can be unknown emitters of
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interests or newly added sensor nodes. The true locations of the unknown sources to

be found are denoted by N × 1 vectors uoi , i = 1, 2, · · · , K, of Cartesian coordinates,

where N = 2 for 2D localization or N = 3 for 3D localization. The precise positions

of the sensors soj , j = 1, 2, · · · ,M , are not known and the available inaccurate sensor

positions are sj = soj + ∆sj, where ∆sj represents the position error of sensor j. They

are collected to form a NM×1 sensor position vector s = [sT1 , s
T
2 , · · · , sTM ]T = so+∆s,

where so is the true sensor position vector and ∆s = [∆sT1 ∆sT2 , · · ·∆sTM ]T is the

random error vector. We shall model ∆s as a zero-mean Gaussian random vector

with covariance matrix Qs.

TOA measurements are commonly used in sensor networks. Assuming each sensor

can acquire the signal from each source, we have, after multiplying with the signal

propagation speed, the MK × 1 measurement vector r = [rT1 , r
T
2 , · · · , rTK ]T = ro + n,

where ro is the true range vector and n is the noise vector. ri = [r1,i, r2,i · · · , rM,i]
T

is the measurement vector from source i and rj,i is the TOA measurement of source

i to sensor j. n is modeled as a zero-mean Gaussian random vector with covariance

matrix Qr. We shall assume ∆s and n are independent of each other for ease of

illustrations.

Our goal is to estimate the source locations and at the same time improve the

inaccurate sensor positions as good as possible using the TOA measurements. The

unknown parameter vector is θ = [uoT1 uoT2 , · · · ,uoTK soT ]T .

The proposed method makes use of a hypothetical source locations ũi = uoi +∆ũi,

where ∆ũi is the difference between the hypothetical and the actual source location.

The hypothetical locations are easy to obtain, please refer to [62] for details.
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We begin the algorithm development from the parametric form of roj,i:

roj,i = ||uoi − soj ||. (6.1)

Squaring both sides of (6.1), substituting roj,i = rj,i−nj,i, soj = sj−∆sj,u
o
i = ũi−∆ũi

and ignoring the second order terms of nj,i,∆sj, and ∆ũi yield

rj,inj,i =
1

2

[
r2
j,i − sTj (sj − 2ũi)

]
− sTj ∆ũi

− 1

2
uoTi uoi − (ũi − sj)

T∆sj.

(6.2)

We shall consider uoTi uoi as a new independent unknown so that (6.2) becomes as

a pseudo linear equation.

Other than the TOA measurements, the statistical knowledge of the sensor posi-

tion errors ∆s can also be utilized in the estimation. Following the technique from [63]

and putting (6.2) together for j = 1, 2 · · · ,M and i = 1, 2, · · · , K yield the matrix

equation

ε1 = h1 −G1ϕ
o
1, (6.3)
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where

ε1 =
[
(B1n)T ,−∆sT

]T
,

B1 = diag
{
B1,1,B1,2, · · · ,B1,K

}
,

B1,i = diag
{
r1,i, r2,i, · · · , rM,i

}
,

h1 =
[
ηT1 ,η

T
2 , · · · ,ηTK ,0TNM×1

]T
,

ηi=
1

2

[
r2

1,i − sT1 (s1 − 2ũi), · · · , r2
M,i − sTM(sM − 2ũi)

]T
,

ϕo1 =
[
∆ũT1 ,u

oT
1 uo1, · · · ,∆ũTK ,u

oT
K uoK ,∆sT

]T
,

G1=



G1,1 · · · OM×(N+1) D1

...
. . .

...
...

OM×(N+1) · · · G1,K DK

ONM×(N+1) · · · ONM×(N+1) INM×NM


.

(6.4)

Di and G1,i in G1 each has M rows and their jth rows, j = 1, 2, · · · ,M , are equal to[
0TN(j−1)×1, (ũi − sj)

T ,0TN(M−j)×1

]
and

[
sTj ,

1
2

]
.

The weighted least-squares (WLS) solution of ϕo1 from the matrix equation (6.3)

is

ϕ1 =
(
GT

1 W1G1

)−1
GT

1 W1h1, (6.5)

where the weighting matrix W1 is chosen to minimize the parameter estimation mean-

square error:

W1 = diag
{
B1QrB1,Qs

}−1
. (6.6)

The estimation accuracy is characterized by the covariance of ϕ1, which is equal
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to

cov(ϕ1) '
(
GT

1 W1G1

)−1
(6.7)

when the sensor position noise is relatively small and can be neglected in G1.

After ϕ1 is obtained, the estimates of ∆ũi and ∆s can be represented as

ϕ1,i , ϕ1

(
(N + 1)(i− 1) + 1 : (N + 1)(i− 1) +N

)
= ∆ũi + δũi,

ϕ1,s , ϕ1

(
(N + 1)K + 1 : (N + 1)K +NM

)
= ∆s + δs,

(6.8)

where δũi and δs are the estimation errors of ∆ũi and ∆s. Subtracting ϕ1,i and ϕ1,s

from the hypothetical source location ũi and the sensor position vector s will provide

the source and sensor position estimates. They are, however, not able to reach the

CRLB accuracy. This is because we have introduced K additional variables uoTi uoi ,

i = 1, 2, · · · , K, in ϕ1. We next explore these K additional variables to improve the

estimation accuracy.

Though uoTi uoi is not related to so, the estimation errors of ∆ũi and ∆s in ϕ1 are

correlated. As a result, when the accuracy of source location estimates is improved

through the additional variables, the sensor position estimates can also be enhanced.

In our stage-2 solution, we will estimate the error terms δũi and δs in (6.8) in order

to provide more accurate estimations of the source locations and sensor positions.

The (N + 1)ith, i = 1, 2 · · · , K, element of ϕ1is the estimate of uoTi uoi

ϕ1

[
(N + 1)i

]
= uoTi uoi + ∆ϕ1

[
(N + 1)i

]
. (6.9)
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Putting uoi = ũi −ϕ1,i + δũi into (6.9) gives

∆ϕ1

[
(N+1)i

]
= ϕ1

[
(N+1)i

]
− (ũi−ϕ1,i)

T (ũi−ϕ1,i)

− 2(ũi −ϕ1,i)
T δũi.

(6.10)

Since δũi = ∆ϕ1

[
(N+1)(i−1)+1 : (N+1)(i−1)+N

]
and δs = ∆ϕ1

[
(N+1)K+1 :

(N + 1)K +NM
]
, together with (6.10) we have the linear matrix equation

ε2 = h2 −G2ϕ
o
2, (6.11)

where

ε2 = B2∆ϕ1,

B2 = diag
{
B2,1,B2,2, · · · ,B2,K ,−INM×NM

}
,

B2,i = I(N+1)×(N+1), h2 =
[
ξT1 , ξ

T
2 , · · · , ξTK ,0TNM×1

]T
,

ξi =
[
0TN×1,ϕ1

(
(N + 1)i

)
− (ũi −ϕ1,i)

T (ũi −ϕ1,i)
]T
,

G2 = diag
{
G2,1,G2,2, · · · ,G2,K , INM×NM

}
,

G2,i =
[
− IN×N , 2(ũi −ϕ1,i)

]T
,

ϕo2 =
[
δũT1 , δũ

T
2 , · · · , δũTK , δsT

]T
.

(6.12)

The WLS solution of ϕo2 is then

ϕ2 =
(
GT

2 W2G2

)−1
GT

2 W2h2, (6.13)
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where the weighting matrix W2 is

W2 = B−1
2 cov(ϕ1)−1B−1

2 . (6.14)

Let ϕ2,i be ϕ2

[
N(i− 1) + 1 : Ni

]
and ϕ2,s be ϕ2

[
NK + 1 : NK +NM

]
. According

to (6.8) the final source and sensor position estimates are

ûi = ũi −
(
ϕ1,i −ϕ2,i

)
, ŝ = s−

(
ϕ1,s −ϕ2,s

)
. (6.15)

6.2 Performance Analysis

In this section we shall show analytically that the proposed solution can reach the

CRLB accuracy. By using ∆ũi = ũi − uoi and the definitions of ϕ1,i, ϕ1,s in (6.8),

(6.15) can be expressed as

ûi = uoi −
(
δũi −ϕ2,i

)
= uoi + ∆ϕ2,i,

ŝ = so −
(
δs−ϕ2,s

)
= so + ∆ϕ2,s.

(6.16)

As a result, the covariance matrix of θ̂ =
[
ûT1 , · · · , ûTK , ŝT

]T
is the same as that of

ϕ2. When the error component in G2 is small enough to be neglected (ũi sufficiently

accurate), based on the WLS theory we have

cov(θ̂) ' (GT
2 W2G2)−1 =

 X̃ Ỹ

ỸT Z̃


−1

, (6.17)
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where

X̃ = GT
3 Q−1

r G3, Ỹ = GT
3 Q−1

r G4, Z̃ = GT
4 Q−1

r G4+Q−1
s ,

G3 = diag
{
G3,1,G3,2, · · · ,G3,K

}
,

G3,i = B−1
1,iG1,iB

−1
2,iG2,i,

G4 =
[
GT

4,1,G
T
4,2, · · · ,GT

4,K

]T
,G4,i = −B−1

1,iDi.

(6.18)

Following a procedure similar to that in Appendix V of [62], we can prove that

when the noise is small compared to target range,

||∆sj||
roj,i

' 0,
|nj,i|
roj,i
' 0, i = 1, 2, · · · , K, j = 1, 2, · · · ,M (6.19)

we have

G3 '
∂ro

∂uo
, G4 '

∂ro

∂so
. (6.20)

Putting (6.20) into (6.18) and comparing (6.17) with the CRLB given in Appendix

A of [20] yield

cov(θ̂) ' CRLB(θo). (6.21)

From the small noise analysis above, the proposed solution is able to attain the

CRLB accuracy for both the source location and sensor position estimates.

6.3 Simulation

A total of 100 random localization geometries are used in the simulations. Each

geometry has K = 2 sources and M = 5 sensors, where the sources and sensors are
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placed randomly with uniform distribution over a square area of 100×100 and 60×60

respectively. Fig. 6.2 shows the overlay of the 100 geometries.

The performance indices are the mean squared error (MSE) of the estimates com-

puted by mse(u) = 1
K

∑K
i=1

(∑L
l=1 û

(l)
i − uo‖2/L

)
and mse(s) =

∑L
l=1 ‖ŝ(l) − so‖2/L,

where L is the number of ensemble runs, û
(l)
i and ŝ(l) are the ith source location esti-

mate and the sensor position estimates at ensemble l. Besides the proposed method,

the sequential method [20] (estimation-refinement scheme) and the iterative MLE [6]

are implemented for comparison. The sensor position estimates from [62] are also

included. The approach in [62] is applied to obtain the hypothetical source locations

for the proposed estimator. The same hypothetical source locations are used as the

initial guesses for the MLE .

The covariance matrix of the TOA measurements (after multiplied with signal

propagation speed square) is Qr = σ2
rI, where I is an identity matrix of size MK,

σ2
r is the noise power which is fixed to 10−3 in the simulations. The covariance

matrix of the sensor positions is Qs = σ2
sJ, where J is a NM ×NM diagonal matrix

whose diagonal elements are uniformly distributed between 1 and 10. We generate

a different J for each localization geometry. σ2
s is a scaling proportion of the sensor

position covariance matrix whose value varies between 10−2.25 and 100.25. The number

of ensemble runs L is 1000 in each geometry and the results given are the average

over the 100 geometries.

Fig. 6.3 gives the performance for source and sensor position estimates as the

sensor position noise power increases. The sensor position noise power (σ2
avg) in

the x axis is trace(Qs)/(NM) averaged over the 100 geometries. From the source

location estimate results in Fig. 6.3(a), when σ2
avg is not larger than 10−0.25, the
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proposed method, the sequential method and the MLE give similar results and attain

the CRLB accuracy. For the sensor estimates in Fig. 6.3(b), the proposed method is

always better than [62] by more than 1 dB when σ2
avg is not larger than 1. When σ2

avg

exceeds 100.5, the proposed method is worse than [62] because of the joint estimation

rather than the sensor position estimation only as in [62]. The proposed method also

outperforms the sequential method when σ2
avg is larger than 0.1. The MLE deviates

from the CRLB slightly later than the proposed method but it requires iterations and

higher computational cost.

The improvement of computation speed of the proposed method over the MLE

(with an average of 3 iterations) is about a factor of two, measured using computation

time in matlab for the simulations provided. The actual speed improvement could

vary depending on implementations.

One purpose of refining the sensor positions is for better locating a newly appeared

source. To demonstrate, we continue the simulation study as follows: for each of the

100 random geometries of two sources and five sensors, we add one new emitting

source. After the positions of the two sources and five sensors are estimated, the

refined sensor positions are used to locate the new source and the results are shown

in Fig. 6.4. We observe that the CRLB of the new source location estimate is about

3 dB lower when using the refined sensor positions. The proposed method performs

better than the sequential method in estimating the new source position. Interestingly

enough, it yields comparable results with the MLE.
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6.4 Concluding Remarks

In this paper, we have developed an algebraic solution that jointly estimates the

positions of multiple sources and sensors. The proposed method is able to achieve

the CRLB performance for both the source and the sensor locations. The refined

sensor positions can improve the localization of newly appeared sources subsequently.

The good performance of the proposed estimator is shown analytically and supported

by simulations. Compared to the sequential estimation-refinement technique, the

proposed estimator provides better performance in sensor position estimates at higher

noise level.
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Figure 6.1: Localization of the sources at uoi using sensors at sj. Open squares denote
the true sensor positions that are not known and closed squares are the available sensor
positions that are erroneous.
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Chapter 7

A Study on the Effects of Sensor

Position Error and Calibration

Emitter Placement for Source

Localization

7.1 Localization Problem

The studies in Chapter 5 and Chapter 6 show that an estimator would require the use

of the statistical knowledge of the sensor position errors in order to improve the source

location estimate accuracy. It is common believe that ignoring the sensor position

errors and pretending they are accurate will result in non-optimum performance.

However, the research presented in this chapter shows that conditions exist under

which one can simply assume the sensor position error is absent and yet achieving the
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optimum CRLB performance. In such cases, the placement of a calibration emitter

is necessary to correct the sensor position errors.

We are interested to locate a stationary source using M sensors as shown in Fig.

7.1. The unknown source location is dented by the column vector uo. The sensor

positions when the measurements were acquired are soi , i = 1, 2, · · · ,M . However, soi

are not known and only the deviated sensor positions si are available to us. We shall

represent the sensor position vector as

s = [sT1 , s
T
2 , · · · .sTM ]T = so + ns . (7.1)

ns is the sensor position noise vector and it is modeled as a zero-mean Gaussian

random vector with covariance matrix Qs = E[nsn
T
s ].

To locate the source, the sensor array generates a set of positioning variables,

simply called measurements, based on the received signals from the source,

m = mo + nm (7.2)

where mo is the true measurement vector and nm is the noise. The measurements

considered here are TOA, TDOA and AOA. The measurement noise is modeled as

zero-mean Gaussian with covariance matrix Qm = E[nmnTm]. We further assume

that the sensor position noise and the measurement noise are uncorrelated so that

E[nsn
T
m] = O.

The localization accuracy is characterized by the CRLB which is the inverse of

the FIM [6]. Defining the data vector as x = [mT , sT ]T and the unknown vector as
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θo = [uoT , soT ]T , the FIM of θo is

FIM = −E
[∂2lnp(x;θo)

∂θo∂θoT

]
=

 X Y

YT Z

 , (7.3)

where p(x;θo) is the probability density function of x parameterized on θo. From the

Gaussian density function,

X = GT
uQ−1

m Gu, Y = GT
uQ−1

m Gs,

Z = GT
s Q−1

m Gs + Q−1
s .

(7.4)

In (7.4), Gu =
(
∂mo

∂uo

)
denotes the gradient of mo with respect to uo and Gs =

(
∂mo

∂so

)
is that with respect to so.

Invoking the block matrix inversion formula [6] gives the CRLB of uo and so from

the upper left and lower right blocks,

CRLB(uo) = (X−YZ−1YT )−1 , (7.5)

CRLB(so) = (Z−YTX−1Y)−1 . (7.6)

Applying the matrix inversion lemma [6] gives an alternative form of (7.5) as

CRLB(uo) = X−1 + X−1YCRLB(so)YTX−1 . (7.7)

The first term on the right is the CRLB of the source location when there are no

sensor position errors. The second term is the increase of the CRLB caused by the

sensor position errors and it is proportional to the estimation accuracy of the sensor
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positions.

It appears from (7.7) that it is necessary to take into account the inaccuracy of

the sensor positions, such as by estimating them together with the source position,

in order to reach the CRLB accuracy. We would like to investigate if situations exist

where taking the statistics of the sensor position errors when estimating the source

location will not provide better result.

7.2 Performance when Ignoring Sensor Position

Errors

The MLE is known to be asymptotic efficient in reaching the CRLB performance [6].

Let us denote the MLE for estimating a source location with exact sensor positions

as MLEu and that for estimating the source and sensor positions jointly as MLEus.

We shall evaluate the mean-square error matrix MSE defined as MSE(u) = E[(u −

uo)(u−uo)T ], where u is the source position estimate from MLEu by pretending noisy

sensor positions si as accurate. A contrast of the MSE(u) and the CRLB(uo), which

is the asymptotic performance of MLEus, provides the insight on how sensitive is the

localization accuracy with respect to the sensor position errors.

The MSE for the special case of TDOA localization was examined in [13]. We

generalize the derivations here and extend the results for an arbitrary measurement

type. The development uses small error analysis up to linear noise term.

We shall use f(u) to denote the functional relationship of the measurement vector

m in terms of u when using s as the sensor position vector. For example, the first

element of f(u) is ‖u−s1‖ for TOA. Note that f(uo) 6= mo because f(uo) is computed
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using the noisy sensor positions and mo is with respect to the true sensor positions.

Let us pretend s is the actual sensor positions and use MLEu to estimate the

source location. Under Gaussian noise the cost function of MLEu is eTf Q−1
m ef , where

ef = m− f(u). f(u) is a nonlinear function of u and it is very difficult to minimize

the cost function. One has to use iterative approach to obtain the location estimate.

The localization performance of MLEu is examined by expanding f(u) using the

Taylor-series at u = uo up to the linear term

f(u) ' f(uo) + F(uo)(u− uo) (7.8)

where F(uo) = ∂f(u)
∂u

∣∣
uo . It can be approximated by Gu when the sensor position error

is small and u is not far away from uo because the effect of sensor position noise in

f(uo) will be diminished after multiplying with (u− uo). Hence

ef 'm− f(uo)−Gu(u− uo) . (7.9)

The cost function becomes quadratic in u and it reaches the minimum value at

u− uo ' X−1GT
uQ−1

m [m− f(uo)], (7.10)

where X is defined in (7.4). f(uo) is computed using the inaccurate sensor positions.

Expanding f(uo) at the true sensor positions and keeping up to the first order noise

term give f(uo) 'mo + Gsns. Hence

m− f(uo) ' nm −Gsns (7.11)
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where we have used the fact that ∂f(uo)
∂s

∣∣∣
s=so

= Gs.

Substituting (7.11) into (7.10), multiplying by its transpose and taking expectation

yield

MSE(u) = X−1 + X−1YQsY
TX−1 (7.12)

and Y is defined in (7.4). Recall that X−1 is the CRLB of u when there is no sensor

position errors. The second term on the right is the decrease in accuracy resulted

from the sensor position uncertainties.

7.3 CRLB and MSE Comparison

We would like to investigate if conditions exist that even though the statistics of

the sensor position errors are taken into account, we will not be able to improve the

source location estimate. Under such conditions, the characteristics of the CRLB will

be investigated further.

7.3.1 Conditions for Identical CRLB and MSE

For simplicity let us define G̃u = Q
−1/2
m Gu and G̃s = Q

−1/2
m Gs. (7.4) can be

written as

X = G̃T
u G̃u, Y = G̃T

u G̃s, Z = G̃T
s G̃s + Q−1

s . (7.13)

The CRLB(uo) in (7.7) and the MSE(u) in (7.12) differ from each other in their second

terms. Let us simplify the second term of (7.7). Putting (7.13) to the CRLB(so) in

117



(7.6) yields

CRLB(so)−1 = Q−1
s + G̃T

s G̃⊥u G̃s
(7.14)

where G̃⊥u = I−G̃u

(
G̃T
u G̃u

)−1
G̃T
u is the orthogonal projection matrix of the subspace

spanned by the columns of G̃u and I is an identity matrix of appropriate size. Invoking

the matrix inversion lemma [6] gives

CRLB(so) = Qs −Qs

[(
G̃T
s G̃⊥u G̃s

)
Qs + I

]−1
G̃T
s G̃⊥u G̃sQs. (7.15)

Hence upon using Y = G̃T
u G̃s,

CRLB(so)YT = QsY
T −Qs

[(
G̃T
s G̃⊥u G̃s

)
Qs + I

]−1
G̃T
s G̃⊥u G̃sQsG̃

T
s G̃u. (7.16)

If there exists situation such that

G̃sQsG̃
T
s = kI (7.17)

where k is a scalar constant, then the second term in (7.16) vanishes because G̃⊥u G̃u

is zero. As a result

CRLB(so)YT = QsY
T (7.18)

and (7.7) becomes

CRLB(uo) = X−1 + X−1YQsY
TX−1 = MSE(u). (7.19)
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Consequently, we conclude that when condition (7.17), or alternatively

GsQsG
T
s = kQm (7.20)

is satisfied, the CRLB will equal to the MSE.

7.3.2 Increase in CRLB due to Sensor Position Errors

Under the condition (7.20) and using (7.4),

YQsY
T = GT

uQ−1
m GsQsG

T
s Q−1

m Gu = kX . (7.21)

Putting (7.21) in the second term of (7.19) yields a very simple expression for the

increase in CRLB due to sensor position errors:

∆CRLB(uo) = kX−1 . (7.22)

We reach an interesting result that the increase in CRLB is a scalar multiple of X−1,

the CRLB when the sensor position errors are absent. The value of k depends on

the specific measurement type used and sensor position noise powers which will be

elaborated further in the subsequent section.

The condition (7.20) is not much useful in practice because it requires the exact

knowledge of the measurement and sensor position noise covariance matrices. Most

important, it is dependent on the source location to be estimated through the gradient

matrix Gs. However, geometry independent relation does exist.
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7.4 Geometry Independent Conditions For Differ-

ent Positionings

We shall identify the geometry independent solutions to the condition (7.20) for the

TOA, TDOA and AOA localizations.

7.4.1 TOA

Let

roi = ‖uo − soi‖ (7.23)

be the true range between the source and sensor i, where ‖ · ‖ denotes the Euclidean

norm. After multiplying the TOAs with the signal propagation speed, the measure-

ment vector m is m̄ = ro + nm, where ro = [ ro1, r
o
2, · · · , roM ]T .

Let

qi = (uo − soi )/r
o
i (7.24)

be the unit vector pointing from soi to uo. The ith rows, i = 1, 2, · · · , M of Gu and

Gs are

Ḡu(i, :) =

(
∂roi
∂uo

)T
= qTi , (7.25a)

Ḡs(i, :) =

(
∂roi
∂so

)T
=
[
0TN(i−1)×1,−qTi ,0

T
N(M−i)×1

]
(7.25b)

where N is the dimension of localization. We have called the m, Gu and Gs in the

TOA case as m̄, Ḡu and Ḡs to distinguish them from those of TDOA and AOA cases.
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It is straightforward to validate that Ḡs satisfies the relation

ḠsḠ
T
s = IM (7.26)

where IM is an identity matrix of size M .

A careful look at (7.20) together with (7.26) shows that the geometry independent

solution to (7.20) is:

Qm = kΣ , Qs = Σ⊗ IN (7.27)

where

Σ = diag{σ2
1, σ

2
2, · · · , σ2

M} (7.28)

is a diagonal matrix containing the average noise powers in the coordinates of each

sensor and ⊗ is the Kronecker product. In particular, if the noise powers of the M

TOA measurements are the same, we simply have

Qm = σ2
rIM , Qs = σ2

sINM . (7.29)

In other words, we arrive at the interesting result that if the measurement noise and

sensor position covariance matrices are proportional to an identity matrix, there is

no need to take the sensor position errors into account in the estimation regardless

of what the localization geometry is. IID TOA measurement noise occurs when the

source is distant or in message exchange based sensor networks [64].

For the special solution (7.29), k is

k =
σ2
s

σ2
r

(7.30)

121



and the increase of CRLB in (7.22) becomes, upon using the definition of X in (7.4),

∆CRLB(uo) = σ2
s(Ḡ

T
u Ḡu)

−1. (7.31)

It is directly proportional to the sensor position noise power.

7.4.2 TDOA

When using so1 as the reference sensor, the TDOA measurement vector, after multi-

plying with the signal propagation speed, is related to that of TOA by

m = Hm̄ . (7.32)

The matrix H is defined as

H = [−1M−1 IM−1] (7.33)

where 1M−1 is the length (M -1) column vector of unity. From (7.32), Gu and Gs are

Gu =

(
∂mo

∂uo

)
= HḠu , Gs =

(
∂mo

∂so

)
= HḠs (7.34)

and Ḡu and Ḡs are defined in (7.25). We have from (7.26) that

GsG
T
s = HHT . (7.35)

The geometry independent solution of Qm and Qs that satisfies (7.20) is

Qm = kHΣHT , Qs = Σ⊗ IN (7.36)

122



where Σ is defined in (7.28). In the special case of Σ = σ2
rIM , we have

Qm = σ2
rHHT , Qs = σ2

sINM . (7.37)

This form of Qm often appears in distant source estimation [13,22] and in radar [65].

The corresponding factor k has the same value in (7.30) and (7.22) becomes, after

using the definition of X in (7.4),

∆CRLB(uo) = σ2
s

[
ḠT
u

(
IM −

1M1TM
M

)
Ḡu

]−1

(7.38)

where HT (HHT )−1H = (IM−1M1TM/M) has been used. The matrix 1M1TM is positive

semi-definite. Hence the increase in CRLB for TDOA will be at least as much as that

for TOA.

7.4.3 AOA

Unlike TOA and TDOA where distances are used to estimate the source location,

AOA utilizes the bearing between the source and sensors. AOA positioning is mostly

used for 2D localization. The true bearing of the source with respect to sensor i is

boi = tan−1 y
o − yoi
xo − xoi

, i = 1, 2, · · · ,M . (7.39)

The measurement vector is m = bo + nm, where bo = [bo1, b
o
2, · · · , boM ]T .
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Using (7.39), we have

(
∂boi
∂uo

)T
= (Tqi)

T/roi , (7.40a)(
∂boi
∂so

)T
=
[
0T2(i−1)×1,−(Tqi)

T/roi ,0
T
2(M−i)×1

]
(7.40b)

and they can be expressed in terms of Ḡs and Ḡu as

Gu = RḠuT , Gs = RḠs (IM ⊗T) (7.41)

where

T =

 0 1

−1 0

 , R = diag

{
1

ro1
,

1

ro2
, · · · , 1

roM

}
. (7.42)

Note that we have the equality TTT = I2. Using the same form of Qs as in TOA

and TDOA, the solution to (7.20) is

Qm = kRΣR , Qs = Σ⊗ IN (7.43)

and Σ is defined in (7.28). In the special case of Σ = σ2
rIM ,

Qm = σ2
rR

2 , Qs = σ2
sINM . (7.44)

Note that Qm reduces back to scalar multiple of identity when the source is distant.

AOA measurement noise is often independent because the AOAs come from different

sensors of multiple elements.

The factor k is again given by (7.30) and the increase of CRLB from (7.22) be-
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comes, after using the definition of X in (7.4),

∆CRLB(uo) = σ2
sT

T
(
ḠT
u Ḡu

)−1
T. (7.45)

The condition (7.20) is geometry dependent in general. We have established geom-

etry independent particular solutions (7.29) for TOA, (7.37) for TDOA and (7.44) for

AOA ((7.44) is range dependent to be exact). They all require Qs to be proportional

to identity. Although this is not the case for the self-localized sensor nodes, this form

of sensor position errors occurs in UWB localization [66] and beacon positions [15,64].

7.5 Optimum Calibrator Position

Taking the statistical property of the sensor position errors into account cannot reduce

the degradation in source localization accuracy if the condition (7.20) is satisfied. In

such a situation or for the purpose of achieving better performance, we will need to

deploy a calibration emitter whose position is known exactly to limit the damage

caused by the sensor position uncertainties [22].

When a calibration source is available for deployment, we would like to decide

where to place the calibration source so as to maximize the performance gain. This

section derives the optimum calibration source position that yields the FIM whose

difference with those from all other calibration positions to be positive definite (PD).

While the solution may be of theoretical interest only, the insights gained from the

derivations lead to the development of a practical criterion for the calibration emitter

placement.

Let c be the Cartesian coordinate position of the calibration source to be deter-
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mined. The measurements from the calibration emitter to the sensors are

mc = mo
c + nc, (7.46)

where mo
c is the true value and nc is the calibration measurement noise vector. nc

follows zero-mean Gaussian distribution with covariance matrix Qc. To simplify the

development, we shall assume nc is independent of nm and ns.

Starting from the composite data vector
[
mT ,mT

c , s
T
]T

and its probability density

function, we can obtain, using the same steps as in Section II, the FIM of uo

FIM(uo) = X−YZ−1
c YT . (7.47)

X and Y are defined in (7.4), and Zc is

Zc = GT
s Q−1

m Gs + GT
c Q−1

c Gc + Q−1
s , (7.48)

where Gc = ∂mo
c/∂so is the gradient of mo

c with respect to so.

We shall derive below the optimum value of c that makes FIM(uo) as large as

possible in the PD sense for TOA, TDOA and AOA localizations.

7.5.1 TOA

In this case, Gu and Gs in (7.4) are equal to Ḡu and Ḡs given in (7.25a) and (7.25b).

The matrix Gc is equal to Ḡc whose i-th row is

Ḡc(i, :) =
[
0TN(i−1)×1,−γTi ,0TN(M−i)×1

]
, (7.49)
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where

γi = (c− si)/‖c− si‖ (7.50)

is a unit vector from si to c.

The optimization problem is quite challenging and not straightforward. By rep-

resenting the columns of ḠT
c in the basis formed by the columns of ḠT

s and its

orthogonal complement Ḡ⊥Ts , Appendix A shows that (7.47) can be expressed as

FIM(uo) = ḠT
u (Qm + Q̃c)

−1Ḡu (7.51)

where Q̃c is defined in (7.78) and it is dependent on the calibration emitter position c.

Note that (7.51) is in the same form as X in (7.4), the FIM when sensor position errors

are absent. Hence we can consider (Qm + Q̃c) as the equivalent measurement noise

covariance matrix when calibration emitter is available to reduce the sensor position

uncertainties. The optimum calibration emitter placement problem is to reduce Q̃c

as much as possible in the PD sense as described below (7.80).

The optimization problem is not easy to solve in general. We shall consider a few

special cases that yield easy and meaningful solutions.

Qs = σ2
sI

When Qs is proportional to an identity matrix, Appendix B shows that the minimum

value of Q̃c in the PD sense is

Q̃o
c =

( 1

σ2
s

I + Q−1
c

)−1
(7.52)
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when the calibration emitter is placed at

co = uo. (7.53)

The optimum calibrator position is at the unknown source location.

Qs � Qc

If Qs is much smaller than Qc in the sense that Qc−hQs remains PD for some large

scalar value h, Appendix B deduces that the optimum calibration emitter position is

the same as (7.53). In the extreme case as Qs → O, FIM(uo) reduces back to the

one when the sensor positions are accurate.

Qs � Qc

In this case of very large sensor position uncertainties, Appendix B derives that the

optimum calibration emitter position is also given by (7.53) and the corresponding

FIM is

FIM(uo) = ḠT
u (Qm + Qc)

−1Ḡu. (7.54)

It should be noted that (7.53) is the optimum calibration emitter position for the

three special cases considered above. It may not be given by (7.53) for other forms

of Qs.
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7.5.2 TDOA

The gradient matrices Gu and Gs are related to those of TOA through (7.34). The

same relationship occurs for Gc as well:

Gc = HḠc. (7.55)

The covariance matrices Qm and Qc are of size (M − 1) in TDOA positioning. Using

(7.34) and (7.55), (7.4) and (7.48) can be written as

X = ḠT
u

(
HTQ−1

m H
)
Ḡu, Y = ḠT

u

(
HTQ−1

m H
)
Ḡs,

Zc = ḠT
s

(
HTQ−1

m H
)
Ḡs+ḠT

c

(
HTQ−1

c H
)
Ḡc+Q−1

s .

(7.56)

They are the same as those in the TOA case when Q−1
m and Q−1

c for TOA are replaced

by

Q−1
m,TOA = HTQ−1

m,TDOAH,

Q−1
c,TOA = HTQ−1

c,TDOAH.

(7.57)

The results in Section 7.5.1 are valid for TDOA, as long as we made the substitution

(7.57). Note that the matrix inversion lemma is needed in (7.80) and (7.87) when

using the substitution (7.57). The optimum calibration source position remains to be

given by (7.83) for the three special cases of Qs in Section 7.5.1.
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7.5.3 AOA

The gradient matrices for the AOA case is related to those of the TOA case through

(7.41) and

Gc = RḠcT. (7.58)

After substituting them into (7.47) and (7.48), the FIM for the AOA case is

FIM(uo)AOA = TTFIM(uo)TOAT, (7.59)

where FIM(uo)TOA is given by (7.80), (7.78) and (7.73), with Qm and Qc there

replaced by

R−1QmR−1, R−1QcR
−1. (7.60)

The matrix T is unitary. The results and conclusions from TOA are valid for AOA

as well, where the optimum sensor position is (7.53) for the three specific cases of Qs

in Section 7.5.1.

7.5.4 Suboptimum Calibration Emitter Position

The investigation in Section 7.5.1-3 indicates that under the three specific forms of Qs,

the optimum calibration emitter position is at the source position. It is not possible

to deploy the calibration emitter at the source position because it is not known. Even

if we know roughly where the source is, it may not be practical to place a calibration

emitter nearby. We are interested to determine if there is any suboptimum calibration

position.

The derivations in Appendices A and B provide the insight that it is preferable
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to allocate the calibration emitter to a position such that A is close to unity. A is

a diagonal matrix defined in (7.65) and (7.69) where each diagonal element is the

proportion of the unity vector between the calibration emitter and a sensor to the

unity vector between the unknown source and the same sensor.

Premultiplying (7.68) by Ḡs and using (7.25b), (7.26) and (7.49) yield

A = ḠsḠ
T
c = diag{qT1 γ1,q

T
2 γ2, . . . ,q

T
MγM}. (7.61)

where qi and γi are defined in (7.24) and (7.50). A appears as a pair in Q̃c shown

in (7.78) under the three specific cases of Qs in Section 7.5.1 and the signs of the

elements in A are irrelevant. Thus, we propose the criterion

J = 1− 1

M
trace(A2) (7.62)

for minimization to obtain the calibration source position.

Computing (7.62) requires the true source and sensor positions that are not known.

We shall apply MLEus to obtain the initial source and sensor locations, from which

(7.62) can be evaluated for a given calibration emitter position. The simulation results

in the next Section indicate suboptimum calibration position exists that could be far

from uo.

In practice, many calibration emitters may be deployed in different locations that

cover a large geographic area. Normally the calibration emitters do not send out any

signals for various reasons such as reducing interferences or for security purposes, and

they only do so as needed. When we are ready to locate an unknown source, the

application of (7.62) at different calibration emitter locations can be evaluated. The
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one giving the smallest J value will be activated to send out calibration signals for

improving the source localization performance.

Other than the proposed J criterion, the trace of the CRLB of the source location

estimate can also be used as a criterion to determine the position of the calibration

emitter. As the next Section shows, however, it requires much more computation to

obtain the CRLB value than the proposed J value. The proposed J criterion is more

efficient than the CRLB criterion.

7.6 Simulation

There are two sets of simulations. The first is for the validation of the relationships

on the sensor position and measurement noise covariance matrices from which it is

not necessary to take the sensor position errors into account to reach the CRLB

performance. The second is for the placement of calibration emitter.

The simulation uses M = 6 sensors to locate a source in 3-Dimensions for TOA

and TDOA and in 2-Dimensions for AOA. The geometries for all three positionings

are common and the z coordinates are set to zero for the AOA case. A total of 250

geometries are created randomly, where the sensors are within a cube with edge length

of 200 units and the source is within a cube with edge length of 1000 units. The x,

y and z coordinates of the sensors and the source are uniformly distributed and are

independent. The number of ensemble runs is 1000 for each of the random geometries

and the mean-square localization error (mse) results presented are the average over

the 250 geometries. The MLE with Gauss-Newton iterative implementation is used

to estimate the source location in each ensemble run. The initial guesses of the source
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location and the sensor positions are randomly generated according to two Gaussian

distributions whose means are the true values of the source and sensor positions, and

the corresponding covariances are four times their CRLBs where only the diagonal

elements are kept.

We shall use the following notations to represent the noise powers. The TOA

(range) noise power is σ2
r = trace(Qm)/M , the TDOA (range difference) noise power

is σ2
d = trace(Qm)/(M − 1), the AOA noise power is σ2

a = trace(Qm)/M and the

sensor position noise power is σ2
s = trace(Qs)/NM , where N is the dimension of

localization (3 for TOA and TDOA, and 2 for AOA).

7.6.1 Special Relationships between Qs and Qm

To verify the relation (7.20), we generate randomly PD Qs and use (7.20) to obtain

Qm for creating the measurement noise. Qs and hence Qm are different for each

geometry but held fixed during the ensemble runs. Please note that we generate Qs

and Qm in this manner for validation of (7.20) only. In practice, Qs and Qm are

determined by the localization scenario and cannot be chosen.

The lower sets of curves in Figs. 7.2-7.4 give the results for TOA, TDOA and

AOA positionings as the sensor position noise power increases. The noise settings

are σ2
r = 10−4, σ2

d = 10−4 and σ2
a = 10−4. In the figures, the circle symbol represents

the estimation accuracy when applying MLEus that jointly estimates the source and

sensor positions and the cross symbol denotes the performance when applying MLEu

that pretends the sensor positions are correct. Also shown are the CRLBs. It is clear

that the performance of the two estimators overlaps with each other and meets the

CRLB. Joint estimation provides better behavior in the case of TOA and AOA at
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large sensor position noise power when the thresholding effect starts to take place. It

is interesting that the thresholding behaviors for the two estimators are very similar

for the TDOA case which starts after σ2
s > 0.1.

When we keep σ2
s to 10−1 and vary the measurement noise powers, the performance

is depicted in the lower sets of curves in Figs. 7.5-7.7. The simulation results confirm

very well that under (7.20), taking the sensor position errors into account is not

necessary and does not improve performance unless the sensor position noise power

is large.

We also did the simulation for IID sensor position noise with the measurement

covariance matrices given by (7.29), (7.37) for TOA and TDOA. They satisfy (7.20)

and are geometry independent. For AOA, we approximate (7.44) by setting Qm =

σ2
aI to obtain geometry independent relation. These forms of sensor position and

measurement noise covariance matrices occur in many practical applications [15, 18,

64,66–68]. The results are shown in the upper sets of curves in Figs 7.2-7.7. For Figs.

7.2-7.4, we used the same settings as before. For Figs. 7.5-7.7, σ2
s were set to 1 for

TOA, 0.01 for TDOA and 0.1 for AOA to make the performance variations apparent.

The observations and conclusions are essentially the same as those for the case of

geometry dependent noise covariance matrices.

7.6.2 Placement of Calibration Emitter

To gain some understandings of the calibration emitter position on the source lo-

calization accuracy, we generate the theoretical mse for 2-D localization using TOA

as an example in Fig. 7.8, where Qs is set proportional to identity, the true sensor

locations are shown as circles and the source location is marked as triangle. The

134



theoretical mse is the trace of the inverse of the source location FIM in (7.47) at a

given calibration emitter position defined by the x and y coordinates. Darker (bluer)

level corresponds to smaller mse. Note that the y coordinate range is much smaller

than that of the x coordinate.

The smallest mse occurs at the source location, indicating that this is the opti-

mum location for the calibration source as anticipated by the theory. An interesting

observation is that the theoretical mse does not increase monotonically as the cali-

bration emitter position moves away from the unknown source location. Indeed, at

the opposite side of the source with respect to the sensors, lower mse is also observed.

It implies that placing a calibration emitter close to the unknown source is not nec-

essary to achieve better performance. This has practical significance because having

a calibration emitter near to the source is difficult to achieve, if not impossible in

practice especially for non-cooperative positioning.

We next examine the placement of calibration emitter through simulations. For

each of the 250 randomly generated geometries (3-D for TOA and TDOA, 2-D for

AOA), 5 calibration positions are also created randomly using uniform distribution

over a cube with edge length of 1000. In each ensemble run, we first obtain the source

location estimate without using a calibration emitter. A calibration position is then

selected based on the minimum distance to the estimated source location, denoted

as min-D; the minimum of the proposed criterion J in (7.62), called min-J; or the

minimum of the trace of the source location CRLB by taking the inverse of (7.47),

denoted as min-C. A final source location estimate is produced from another MLE

that jointly estimates the source and sensor positions with the chosen calibration

position.
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The mse results of the source location estimates averaged over the 250 geometries

are shown in Figs. 7.9-7.11 for the three strategies (min-D, min-J and min-C) to

select the calibration emitter, where the noise covariance settings are according to

(7.29), (7.37) and (7.44). The noise powers are σ2
r = 10−4, σ2

d = 10−4 and σ2
a = 10−4.

For reference purpose, the minimum and the mean values of those mse results from

the 5 calibration positions are also given. By observing those figures, three notice-

able conclusions can be made. First, having a calibration source provides obvious

performance gain compared to without using one. Second, the min-D, min-J and

min-C results are all better than the mean of the mse results from the 5 calibration

positions. Third, the proposed minimum J criterion (min-J) yields about 2 dB mse

reduction for TOA and TDOA and about 4 dB for AOA compared to the criterion

of minimum distance to the unknown source (min-D). Indeed, min-J yields almost

identical performance as min-C and they are very close to the smallest mse results

from the 5 calibration positions.

One advantage the proposed J criterion has over the CRLB criterion is the com-

putation load: it’s much faster to compute the J value than the corresponding CRLB

of the source location estimate. Table 7.1 shows the averaged computation time of

the CRLB trace relative to those of the J value for the three positioning cases. They

are obtained from matlab and averaged over the 250 random geometries with 1000

ensemble runs each. From the results we can observe that the time required to com-

pute the CRLB trace value is at least 11 times longer than that required for the J

value. The proposed J criterion is much more computationally efficient.
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7.7 Concluding Remarks

It is often believed that an estimator needs to use the statistics of the sensor position

errors in addition to those of the measurement noise to achieve the optimum CRLB

performance in locating a source. This paper shows that condition exists on the

covariance matrices of sensor position and measurement noise where taking the sensor

position errors into account is not necessary to achieve the CRLB performance and a

simpler estimator can be used instead to locate the unknown source when the noise

is not excessive. The relations for TOA, TDOA and AOA are derived and they are

in general dependent on the localization geometry. However, geometry independent

conditions exist that can be satisfied in practice depending on applications. The

optimum placement of the calibration emitter is derived for the purpose to correct

the sensor positions. The optimum calibration position is at the unknown source

location when the sensor position errors are IID, very large or very small, regardless

the localization geometry or the noise covariance matrices. Placing a calibration

emitter near the unknown source may not be a good strategy and a suboptimum

criterion to allocate the calibration emitter is proposed. The suboptimum criterion

yields a better calibration position than the closest to the unknown source criterion.
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7.8 Appendix

7.8.1 A: Evaluation of FIM(uo) in the presence of a Calibra-

tion Emitter

The matrix ḠT
s defined in (7.25b) is NM×M and (7.26) indicates that it has a rank of

M with orthonormal columns. Let the NM×(N−1)M matrix Ḡ⊥Ts be the orthogonal

complement of ḠT
s such that the composite matrix

[
ḠT
s , Ḡ

⊥T
s

]
is orthonormal and its

columns span the entire space of dimension NM .

For N = 2 and i = 1, 2, · · · ,M , it is easy to verify that

Ḡ⊥s (i, :) =
[
0TN(i−1)×1, qi(2),−qi(1),0TN(M−i)×1

]
, (7.63)

For N = 3 and i = 1, 2, · · · ,M ,

Ḡ⊥s (2i− 1, :) =

[
0TN(i−1)×1,v

T
1 ,0

T
N(M−i)×1

]
‖v1‖

,

Ḡ⊥s (2i, :) =

[
0TN(i−1)×1,v

T
2 ,0

T
N(M−i)×1

]
‖v1‖

,

(7.64)

where v1 =
[
qi(2),−qi(1), 0

]T
, v2 =

[
qi(1)qi(3), qi(2)qi(3) ,−qi(1)2−qi(2)2

]T
and qi(j)

is the j-th element of qi defined in (7.24).

We can always decompose γi as

γi = aiqi + V⊥i bi (7.65)

where V⊥i is the orthogonal complement of qi with orthonormal columns. For N = 2,
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bi is a scalar and it is a 2× 1 vector when N = 3. Since γi has unity norm,

a2
i + bTi bi = 1, i = 1, 2, · · · ,M. (7.66)

In other words,

0 < |ai| < 1. (7.67)

Hence from (7.65),

ḠT
c = ḠT

s A + Ḡ⊥Ts B =

[
ḠT
s Ḡ⊥Ts

]A

B

 (7.68)

where

A=diag{a1, a2, · · · , aM}, B=



b1 0 · · · 0

0 b2 · · · 0

...
...

. . .
...

0 0 · · · bM


. (7.69)

Let

Σs =

Σs,11 Σs,12

ΣT
s,12 Σs,22

 =

Gs

G⊥s

Q−1
s

[
GT
s G⊥Ts

]
(7.70)

so that

Q−1
s =

[
GT
s G⊥Ts

]
Σs

Gs

G⊥s

 . (7.71)
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Using the representations (7.68) and (7.71), Zc in (7.48) can be expressed as

Zc =

[
ḠT
s Ḡ⊥Ts

]P11 P12

PT
12 P22


Ḡs

Ḡ⊥s

 (7.72)

where

P11 = Σs,11 + Q−1
m + AQ−1

c AT (7.73a)

P12 = Σs,12 + AQ−1
c BT (7.73b)

P22 = Σs,22 + BQ−1
c BT . (7.73c)

Recall that
[
ḠT
s , Ḡ⊥Ts

]
is orthonormal, we have

Z−1
c =

[
ḠT
s Ḡ⊥Ts

]P11 P12

PT
12 P22


−1 Ḡs

Ḡ⊥s

 . (7.74)

Using (7.26) and noting that ḠsḠ
⊥T
s = O, we have after using the definition of

Y in (7.4),

YZ−1
c YT = ḠT

uQ−1
m (P11 −P12P

−1
22 PT

12)−1Q−1
m Ḡu (7.75)

where (P11 − P12P
−1
22 PT

12)−1 is the upper left block of

P11 P12

PT
12 P22


−1

. As a result,

(7.47) becomes

FIM(uo) = ḠT
uQ−1

m Ḡu − ḠT
uQ−1

m (P11 −P12P
−1
22 PT

12)−1Q−1
m Ḡu

(7.76)

where the definition of X in (7.4) has been used. The second term in (7.76) is the
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loss of Fisher information caused by the sensor position errors.

We can reduce (7.76) to a simpler form. After substituting (7.73a),

P11 −P12P
−1
22 PT

12 = Q−1
m + Q̃−1

c (7.77)

where

Q̃c =
(
Σs,11 + AQ−1

c AT −P12P
−1
22 PT

12

)−1
. (7.78)

Note that Q̃c is PD. This is because Zc in (7.48) is PD. According to the PD matrix

properties [69], Z−1
c is also PD and hence from (7.74) and (7.77), (7.78) is PD. We

have the equality from matrix inversion lemma,

Q−1
m (Q−1

m + Q̃−1
c )−1Q−1

m = Q−1
m − (Qm + Q̃c)

−1. (7.79)

As a result, (7.76) can be simplified to

FIM(uo) = ḠT
u (Qm + Q̃c)

−1Ḡu . (7.80)

If Q̃c = O, FIM(uo) reduces back to the FIM when the sensor position errors are

absent, which is equal to X as defined in (7.4). Let Q̃o
c be Q̃c when c = co. We

define the optimum calibration position as co such that Q̃c > Q̃o
c for all c 6= co, where

Q̃c > Q̃o
c means that Q̃c − Q̃o

c is PD.

The dependency of Q̃c on c is through the matrices A and B defined in (7.69)

using the vector decomposition in (7.65). Hence we will determine the A and B

corresponding to co for achieving Q̃c > Q̃o
c, subject to the M constraints in (7.66) for

their elements.
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7.8.2 B: Maximizing (7.80) in the PD Sense under Special

Cases

Qs = σ2
sI

When Qs is proportional to an identity matrix, i.e. the sensor position errors are IID

in each coordinate, we have

Σs,11 =
1

σ2
s

IM , Σs,12 = OM×(N−1)M ,

Σs,22 =
1

σ2
s

I(N−1)M .

(7.81)

Putting them to (7.73) and noting that P12P
−1
22 PT

12 is positive semi-definite, we obtain

Q̃o
c when B = O. In such a case, P12P

−1
22 PT

12 is zero and Q̃o
c is

Q̃o
c =

( 1

σ2
s

I + Q−1
c

)−1
. (7.82)

Using (7.82) in (7.80) gives the maximum achievable FIM in the PD sense.

When B = O, according to (7.65) the optimum calibration position is the same

as the unknown source location:

co = uo. (7.83)

Qs � Qc

If Qs is small relative to Qc, we have from (7.73) the approximations

P12 ' Σs,12, P22 ' Σs,22. (7.84)
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Hence P12P
−1
22 PT

12 is nearly independent of the calibration emitter position. Q̃o
c ap-

pears when A = I, which implies the optimum c is the same as (7.83).

An interesting point to note is that if Qs → O, Σs,11 is very large and Q̃c '

(Σs,11)−1 ' O. According to (7.80), FIM(uo) reduces to the one without sensor

position errors as expected.

Qs � Qc

If Qs is big relative to Qc, we have

P12 ' AQ−1
c BT , P22 ' BQ−1

c BT + Σs,22. (7.85)

The solution is, again, A = I or B = O so that P12P
−1
22 PT

12 = O. Q̃o
c in this case is,

from (7.78),

Q̃o
c ' Qc (7.86)

where Σs,11 is small enough to be neglected. The largest FIM in the PD sense is

simply

FIM(uo) = ḠT
u (Qm + Qc)

−1Ḡu. (7.87)

Based on the solution A = I, the optimum calibration sensor position is the same

as given by (7.83).
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Table 7.1: Averaged computation time of the proposed J criterion and the corre-
sponding CRLB criterion of the source location estimate. The results are averaged
over the 250 random geometries when the sensor position noise power is 100.5 for TOA
and AOA, 0.01 for TDOA.

Proposed J criterion CRLB criterion

TOA 1 25.78

TDOA 1 21.21

AOA 1 11.89
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Figure 7.1: Localization scenario. Open circles denote the true sensor positions that
are not known and closed circles are the available sensor positions that are erroneous.
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Figure 7.2: Source location estimate mse results of MLEs considering and ignoring
sensor position errors using TOA measurements as σ2

s varies.
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Figure 7.3: Source location estimate mse results of MLEs considering and ignoring
sensor position errors using TDOA measurements as σ2

s varies.
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Figure 7.4: Source location estimate mse results of MLEs considering and ignoring
sensor position errors using AOA measurements as σ2

s varies.
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Figure 7.5: Source location estimate mse results of MLEs considering and ignoring
sensor position errors using TOA measurements as σ2

r varies.
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Figure 7.6: Source location estimate mse results of MLEs considering and ignoring
sensor position errors using TDOA measurements as σ2

d varies.
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Figure 7.7: Source location estimate mse results of MLEs considering and ignoring
sensor position errors using AOA measurements as σ2

a varies.
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Figure 7.8: Theoretical source location estimate mse for 2-D localization with a cali-
bration source position defined by the axes using TOA measurements, darker (bluer)
level represents smaller mse.
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Figure 7.9: Source location estimate mse results from the 5 calibration sources using
TOA measurements as σ2

s varies.
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Figure 7.10: Source location estimate mse results from the 5 calibration sources using
TDOA measurements as σ2

s varies.
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Figure 7.11: Source location estimate mse results from the 5 calibration sources using
AOA measurements as σ2

s varies.
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Chapter 8

Summary and Future Work

In this chapter we summarize the research works that have been presented in this

thesis. We shall also discuss some possible research topics we intend to conduct in

the future.

8.1 Research Summary

The nonlinear estimation problem has been known as a challenging yet very impor-

tant problem in the field of digital signal processing. The implicit relation between

the measurement data and the unknown parameters to be estimated makes the non-

linear estimation problem hard to solve. Based on the Taylor-series expansion, a ML

estimator can be developed to solve the nonlinear estimation problem via iterations.

However, the estimate accuracy can be highly dependent on how the estimator is

initialized. Poor initialization would lead to local minima instead of global minima

which we are really interested in. The research presented in this thesis aim to imple-

ment digital signal processing techniques to the nonlinear estimation problem in order
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to provide a computational effective, asymtotically efficient and closed-form solution.

We consider two kinds of nonlinear estimation problems here: the circle and ellipse

fittings, and the source localization. Both of them are classic nonlinear estimation

problems and continue to attract research interests in recent years.

For the circle and ellipse fittings, we first examined two widely used circle esti-

mation methods in Chapter 2: the ML estimator and the FLS estimator. Based on

their cost functions, we derived iterative solutions for both methods using the Taylor-

series expansion. After the two solutions are obtained, we further compared their

cost functions and analytically showed that the FLS solution approximates the ML

solution if the noise power is much less than the circle radius square. Otherwise, the

ML solution will have better performance than the FLS one.

The ML estimator we developed in Chapter 2 has an iterative solution based on

the Taylor-series expansion. However, it might suffer from the initialization problem

where if the initial solution guess is not close enough to the true one, the final so-

lution will converge to a local minimum instead of a global one. In order to handle

the initialization issue, in Chapter 3 we proposed a new implementation of the ML

estimator using the SDR and SDP techniques. The SDR and SDP techniques are

well-known techniques for solving the optimization problem. The major advantage of

using the SDP technique is that an optimum global convergence solution can be guar-

anteed. In order to solve the nonlinear circle fitting problem using the SDP method,

we first reformulated the ML cost function and its constraints. Then we applied the

SDR technique to relax the matrix rank constraint and translated the minimization

of the ML cost function from a nonconvex problem to an approximate but convex

one. Eventually, a SDP solver was used to estimate the circle parameters.
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The two ML solutions we derived in Chapter 2 and 3 are both for the fitting

of a single circle. However, the fitting of coupled objects, such as concentric circles

and concentric ellipses, is also a very common and important problem in practice.

We proposed two estimators in Chapter 4 for the fittings of concentric circles and

concentric ellipses. The asymptotically efficient estimators we developed are based

on two digital signal processing techniques: the weighted equation error formulation

and the nonlinear parameter transformation. As a result, they can provide explicit

solutions, do not require iterations and do not suffer from the initialization problem.

We also developed the KCR bounds for the concentric circle and concentric ellipse

parameters under Gaussian noise as a benchmark to evaluate the performances of the

proposed estimators. In the end of the chapter, we applied the the concentric ellipse

estimator to a main application of ellipse fitting in practice: iris recognition. Real

eye images were used for the fitting and the results verified the good performance of

the proposed estimator.

The iterative solution from Chapter 2 requires a good initial solution guess while

the SDP one in Chapter 3 can guarantee an optimum global convergence solution

but with a dramatic increase in computation. The proposed concentric circle and

concentric ellipse fitting methods in Chapter 4 can be reduced back to the fittings

of a single circle and a single ellipse in straightforward manners. For the fitting of a

single circle, the proposed estimator can provide a closed-form solution to avoid the

iterations and good initial solution guess requirement as in the ML estimator. Also it

has much less computation load comparing with the SDP solution. More importantly,

the proposed estimators can reach the KCR bounds accuracy even for the anisotropic

noise.
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The localization of a source using measurements from a collection of sensors is

another important nonlinear estimation problem we considered in this thesis. Many

studies have been conducted to show that the accuracy of a source location estimate

could be degraded significantly due to the sensor position uncertainties when the

TDOA measurements are used. Our work in Chapter 5 dealt with the source local-

ization problem based on the TOA measurements. We first derived the CRLB of a

source location when sensor position errors are present and compared it with the MSE

of a source location when ignoring the sensor position errors. Via the comparison,

the estimation performance loss due to the sensor position uncertainties was shown

analytically. A closed-form solution that accounts for the sensor position errors was

then proposed. In such a way, we were able to not only theoretically analyze the

degradation in accuracy of the source location estimate, but also provide an explicit

solution in the presence of sensor position errors. The proposed efficient estimator

was shown via simulations to reach the CRLB performance when the noise level is

small.

One can improve the sensor positions by using one or multiple sources, often called

calibration sources or anchors, that are at known locations. However, deploying a

calibration source could be costly. In Chapter 6 we have developed an algebraic

solution that jointly estimates the positions of multiple sources and sensors. The

proposed method is able to achieve the CRLB performance for both the source and the

sensor locations. The refined sensor positions can improve the localization of newly

appeared sources subsequently. The good performance of the proposed estimator

is shown analytically and supported by simulations. Compared to the sequential

estimation-refinement technique, the proposed estimator provides better performance
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in sensor position estimates at higher noise level.

The CRLB and MSE studies presented in Chapter 5 are for the TOA measurement

only. In Chapter 7 we extended the CRLB and MSE studies for the TDOA and

AOA cases and presented the analysis in a general form for the three measurements.

Through the analysis and the comparison results, we were able to show that in the

presence of sensor position errors, there are situations exist where taking into account

the sensor position errors when estimating the source location will not improve the

estimation accuracy. Under these situations, the CRLB when the sensor position

errors are present is equal to the MSE where the sensor position errors are ignored

but in fact exist. We also provided more details on what these situations would be

for the TOA, TDOA and AOA measurements respectively. We have also shown that

in the presence of sensor position errors, a calibration source with exactly known

position can be used to improve the localization performance further. The amount

of improvement of the source location estimate accuracy because of the calibration

source would be highly depended on the calibration source position. We investigated

where would be the optimum position to place the calibration source so that the

source location estimate accuracy would be improved maximally in the presence of

sensor position uncertainties. We also showed that placing a calibration emitter

near the unknown source may not be a good strategy and a suboptimum criterion

to allocate the calibration emitter is proposed. The suboptimum criterion yields a

better calibration position than the closest to the unknown source criterion.
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8.2 Future Research Work

In Chapter 3 we applied the SDR and SDP techniques on the fitting of a single circle.

The resulted estimator can guarantee an optimum global convergence solution, which

is a major advantage over other iterative circle fitting methods that might suffer

from the initialization problem. One possibility of our future research is that we can

implement the SDR and SDP techniques to the fitting of a single ellipse, which is

more difficult to deal with comparing to the circle fitting problem. To the best of

our knowledge, not much work has been done regarding to this aspect. After that,

we can also extend the SDP based single circle/ellipse fitting method to the fitting

of concentric circles/ellipses. Our hope is that the resulted concentric circle/ellipse

estimator can provide better noise resistance comparing to the one we presented in

Chapter 4.

The CRLB and MSE studies as well as the optimum calibration placement in-

vestigation we accomplished in Chapter 7 are all regarding to the stationary source

and sensors. When there are relative motions between the sensors and the source,

we known from [13] that the FDOA measurements can be combined with the TDOA

measurements to jointly locate the source. As a result, we can consider extending the

CRLB and MSE studies further to include this TDOA and FDOA source localization

problem where there are errors in both the sensor positions and velocities. Our ob-

jective will still be seeking whether situation exists that even taking into account the

uncertainties in the sensor positions and velocities when estimating the source location

would not help to improve the estimation performance. Also, the optimum calibra-

tion placement investigation can be conducted for the dynamic source and sensors

case. In this case both the calibration TDOA and calibration FDOA measurements
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will be used to determine the optimum position of the calibration source.
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