78 research outputs found

    Multipath Multiplexing for Capacity Enhancement in SIMO Wireless Systems

    Full text link
    This paper proposes a novel and simple orthogonal faster than Nyquist (OFTN) data transmission and detection approach for a single input multiple output (SIMO) system. It is assumed that the signal having a bandwidth BB is transmitted through a wireless channel with LL multipath components. Under this assumption, the current paper provides a novel and simple OFTN transmission and symbol-by-symbol detection approach that exploits the multiplexing gain obtained by the multipath characteristic of wideband wireless channels. It is shown that the proposed design can achieve a higher transmission rate than the existing one (i.e., orthogonal frequency division multiplexing (OFDM)). Furthermore, the achievable rate gap between the proposed approach and that of the OFDM increases as the number of receiver antennas increases for a fixed value of LL. This implies that the performance gain of the proposed approach can be very significant for a large-scale multi-antenna wireless system. The superiority of the proposed approach is shown theoretically and confirmed via numerical simulations. {Specifically, we have found {upper-bound average} rates of 15 bps/Hz and 28 bps/Hz with the OFDM and proposed approaches, respectively, in a Rayleigh fading channel with 32 receive antennas and signal to noise ratio (SNR) of 15.3 dB. The extension of the proposed approach for different system setups and associated research problems is also discussed.Comment: IEEE Transactions on Wireless Communication

    Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

    Full text link
    Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained symbol alphabet and detector complexity. In this work, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a butterfly equalizer and four 8-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by TFP at different signal-to-noise ratios. An experimental demonstration of the designed system is finally provided with five dual-polarization QPSK-modulated optical carriers, densely packed in a 100 GHz bandwidth, employing a recirculating loop to test the performance of the system at different transmission distances.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog

    FTN multicarrier transmission based on tight Gabor frames

    Get PDF
    A multicarrier signal can be synthesized thanks to a symbol sequence and a Gabor family (i.e., a regularly time-frequency shifted version of a generator pulse). In this article, we consider the case where the signaling density is increased such that inter-pulse interference is unavoidable.Over an additive white Gaussian noise channel, we show that the signal-to-interference-plus-noise ratio is maximized when the transmitter and the receiver use the same tight Gabor frame. What is more, we give practical efficient realization schemes and show how to build tight frames based on usual generators. Theoretical and simulated bit-error-probability are given for a non-coded system using quadrature amplitude modulations. Such a characterization is then used to predict the convergence of a coded system using low-density parity-check codes. We also study the robustness of such a system to errors on the received bits in an interference cancellation context

    Analysis of a FTN Multicarrier System: Interference Mitigation Based on Tight Gabor Frames

    Get PDF
    Cognitive radio applications require flexible waveforms to overcome several challenges such as opportunistic spectrum allocation and white spaces utilization. In this context, multicarrier modulations generalizing traditional cyclic-prefix orthogonal frequency-division multiplexing are particularly justified to fit time-frequency characteristics of the channel while improving spectral efficiency.In our theoretical framework, a multicarrier signal is described as a Gabor family the coefficients of which are the symbols to be transmitted and the generators are the time-frequency shifted pulse shapes to be used. In this article, we consider the case where non-rectangular pulse shapes are used with a signaling density increased such that inter-pulse interference is unavoidable. Such an interference is minimized when the Gabor family used is a tight frame. We show that, in this case, interference can be approximated as an additive Gaussian noise. This allows us to compute theoretical and simulated bit-error-probability for a non-coded system using a quadrature phase-shift keying constellation. Such a characterization is then used in order to predict the convergence of a coded system using low-density parity check codes. We also study the robustness of such a system to errors on the received bits in an interference cancellation context

    High performance faster-than-nyquist signaling

    Get PDF
    AbstractIn a wireless broadband context, multi-path dispersive channels can severely affectdata communication of Mobile Terminals (MTs) uplink.Single Carrier withFrequency-Domain Equalization (SC-FDE) has been proposed to deal with highlydispersive channels for the uplink of broadband wireless systems. However, currentsystems rely on older assumptions of the Nyquist theorem and assume that a systemneeds a minimum bandwidth 2Wper MT. Faster-Than-Nyquist (FTN) assumesthat it is possible to employ a bandwidth as low as 0.802 of the original Nyquistbandwidth with minimum loss - despite this, the current literature has only proposedcomplex receivers for a simple characterization of the wireless channel. Furthermore,the uplink of SC-FDE can be severely affected by a deep-fade and or poor channelconditions; to cope with such difficulties Diversity Combining (DC) Hybrid ARQ(H-ARQ) is a viable technique, since it combines the several packet copies sent bya MT to create reliable packet symbols at the receiver.In this thesis we consider the use of FTN signaling for the uplink of broadbandwireless systems employing SC-FDE based on the Iterative Block with DecisionFeedback Equalization (IB-DFE) receiver with a simple scheduled access HybridAutomatic Repeat reQuest (H-ARQ) specially designed taking into account thecharacteristics of FTN signals. This approach achieves a better performance thanNyquist signaling by taking advantage of the additional bandwidth employed of aroot-raised cosine pulse for additional diversity.Alongside a Packet Error Rate (PER) analytical model, simulation results show that this receiver presents a better performance when compared with a regular system,with higher system throughputs and a lower Energy per Useful Packet (EPUP)

    Achievable Rate and Modulation for Bandlimited Channels with Oversampling and 1-Bit Quantization at the Receiver

    Get PDF
    Sustainably realizing applications of the future with high performance demands requires that energy efficiency becomes a central design criterion for the entire system. For example, the power consumption of the analog-to-digital converter (ADC) can become a major factor when transmitting at large bandwidths and carrier frequencies, e.g., for ultra-short range high data rate communication. The consumed energy per conversion step increases with the sampling rate such that high resolution ADCs become unfeasible in the sub-THz regime at the very high sampling rates required. This makes signaling schemes adapted to 1-bit quantizers a promising alternative. We therefore quantify the performance of bandlimited 1-bit quantized wireless communication channels using techniques like oversampling and faster-than-Nyquist (FTN) signaling to compensate for the loss of achievable rate. As a limiting case, we provide bounds on the mutual information rate of the hard bandlimited 1-bit quantized continuous-time – i.e., infinitely oversampled – additive white Gaussian noise channel in the mid-to-high signal-to-noise ratio (SNR) regime. We derive analytic expressions using runlength encoded input signals. For real signals the maximum value of the lower bound on the spectral efficiency in the high-SNR limit was found to be approximately 1.63 bit/s/Hz. Since in practical scenarios the oversampling ratio remains finite, we derive bounds on the achievable rate of the bandlimited oversampled discrete-time channel. These bounds match the results of the continuous-time channel remarkably well. We observe spectral efficiencies up to 1.53 bit/s/Hz in the high-SNR limit given hard bandlimitation. When excess bandwidth is tolerable, spectral efficiencies above 2 bit/s/Hz per domain are achievable w.r.t. the 95 %-power containment bandwidth. Applying the obtained bounds to a bandlimited oversampled 1-bit quantized multiple-input multiple-output channel, we show the benefits when using appropriate power allocation schemes. As a constant envelope modulation scheme, continuous phase modulation is considered in order to relieve linearity requirements on the power amplifier. Noise-free performance limits are investigated for phase shift keying (PSK) and continuous phase frequency shift keying (CPFSK) using higher-order modulation alphabets and intermediate frequencies. Adapted waveforms are designed that can be described as FTN-CPFSK. With the same spectral efficiency in the high-SNR limit as PSK and CPFSK, these waveforms provide a significantly improved bit error rate (BER) performance. The gain in SNR required for achieving a certain BER can be up to 20 dB.Die nachhaltige Realisierung von zukünftigen Übertragungssystemen mit hohen Leistungsanforderungen erfordert, dass die Energieeffizienz zu einem zentralen Designkriterium für das gesamte System wird. Zum Beispiel kann die Leistungsaufnahme des Analog-Digital-Wandlers (ADC) zu einem wichtigen Faktor bei der Übertragung mit großen Bandbreiten und Trägerfrequenzen werden, z. B. für die Kommunikation mit hohen Datenraten über sehr kurze Entfernungen. Die verbrauchte Energie des ADCs steigt mit der Abtastrate, so dass hochauflösende ADCs im Sub-THz-Bereich bei den erforderlichen sehr hohen Abtastraten schwer einsetzbar sind. Dies macht Signalisierungsschemata, die an 1-Bit-Quantisierer angepasst sind, zu einer vielversprechenden Alternative. Wir quantifizieren daher die Leistungsfähigkeit von bandbegrenzten 1-Bit-quantisierten drahtlosen Kommunikationssystemen, wobei Techniken wie Oversampling und Faster-than-Nyquist (FTN) Signalisierung eingesetzt werden, um den durch Quantisierung verursachten Verlust der erreichbaren Rate auszugleichen. Wir geben Grenzen für die Transinformationsrate des Extremfalls eines strikt bandbegrenzten 1-Bit quantisierten zeitkontinuierlichen – d.h. unendlich überabgetasteten – Kanals mit additivem weißen Gauß’schen Rauschen bei mittlerem bis hohem Signal-Rausch-Verhältnis (SNR) an. Wir leiten analytische Ausdrücke basierend auf lauflängencodierten Eingangssignalen ab. Für reelle Signale ist der maximale Wert der unteren Grenze der spektralen Effizienz im Hoch-SNR-Bereich etwa 1,63 Bit/s/Hz. Da die Überabtastrate in praktischen Szenarien endlich bleibt, geben wir Grenzen für die erreichbare Rate eines bandbegrenzten, überabgetasteten zeitdiskreten Kanals an. Diese Grenzen stimmen mit den Ergebnissen des zeitkontinuierlichen Kanals bemerkenswert gut überein. Im Hoch-SNR-Bereich sind spektrale Effizienzen bis zu 1,53 Bit/s/Hz bei strikter Bandbegrenzung möglich. Wenn Energieanteile außerhalb des Frequenzbandes tolerierbar sind, können spektrale Effizienzen über 2 Bit/s/Hz pro Domäne – bezogen auf die Bandbreite, die 95 % der Energie enthält – erreichbar sein. Durch die Anwendung der erhaltenen Grenzen auf einen bandbegrenzten überabgetasteten 1-Bit quantisierten Multiple-Input Multiple-Output-Kanal zeigen wir Vorteile durch die Verwendung geeigneter Leistungsverteilungsschemata. Als Modulationsverfahren mit konstanter Hüllkurve betrachten wir kontinuierliche Phasenmodulation, um die Anforderungen an die Linearität des Leistungsverstärkers zu verringern. Beschränkungen für die erreichbare Datenrate bei rauschfreier Übertragung auf Zwischenfrequenzen mit Modulationsalphabeten höherer Ordnung werden für Phase-shift keying (PSK) and Continuous-phase frequency-shift keying (CPFSK) untersucht. Weiterhin werden angepasste Signalformen entworfen, die als FTN-CPFSK beschrieben werden können. Mit der gleichen spektralen Effizienz im Hoch-SNR-Bereich wie PSK und CPFSK bieten diese Signalformen eine deutlich verbesserte Bitfehlerrate (BER). Die Verringerung des erforderlichen SNRs zur Erreichung einer bestimmten BER kann bis zu 20 dB betragen

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    Non-Orthogonal Signal and System Design for Wireless Communications

    Get PDF
    The thesis presents research in non-orthogonal multi-carrier signals, in which: (i) a new signal format termed truncated orthogonal frequency division multiplexing (TOFDM) is proposed to improve data rates in wireless communication systems, such as those used in mobile/cellular systems and wireless local area networks (LANs), and (ii) a new design and experimental implementation of a real-time spectrally efficient frequency division multiplexing (SEFDM) system are reported. This research proposes a modified version of the orthogonal frequency division multiplexing (OFDM) format, obtained by truncating OFDM symbols in the time-domain. In TOFDM, subcarriers are no longer orthogonally packed in the frequency-domain as time samples are only partially transmitted, leading to improved spectral efficiency. In this work, (i) analytical expressions are derived for the newly proposed TOFDM signal, followed by (ii) interference analysis, (iii) systems design for uncoded and coded schemes, (iv) experimental implementation and (v) performance evaluation of the new proposed signal and system, with comparisons to conventional OFDM systems. Results indicate that signals can be recovered with truncated symbol transmission. Based on the TOFDM principle, a new receiving technique, termed partial symbol recovery (PSR), is designed and implemented in software de ned radio (SDR), that allows efficient operation of two users for overlapping data, in wireless communication systems operating with collisions. The PSR technique is based on recovery of collision-free partial OFDM symbols, followed by the reconstruction of complete symbols to recover progressively the frames of two users suffering collisions. The system is evaluated in a testbed of 12-nodes using SDR platforms. The thesis also proposes channel estimation and equalization technique for non-orthogonal signals in 5G scenarios, using an orthogonal demodulator and zero padding. Finally, the implementation of complete SEFDM systems in real-time is investigated and described in detail

    Faster-than-Nyquist signaling for next generation communication architectures

    Get PDF
    We discuss a few promising applications of the faster-than-Nyquist (FTN) signaling technique. Although proposed in the mid 70s, thanks to recent extensions this technique is taking on a new lease of life. In particular, we will discuss its applications to satellite systems for broadcasting transmissions, optical long-haul transmissions, and next-generation cellular systems, possibly equipped with a large scale antenna system (LSAS) at the base stations (BSs). Moreover, based on measurements with a 128 element antenna array, we analyze the spectral efficiency that can be achieved with simple receiver solutions in single carrier LSAS systems
    • …
    corecore