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Abstract

A multicarrier signal can be synthesized thanks to a symbol sequence and a Gabor family (i.e., a regularly
time–frequency shifted version of a generator pulse). In this article, we consider the case where the signaling density
is increased such that inter-pulse interference is unavoidable.
Over an additive white Gaussian noise channel, we show that the signal-to-interference-plus-noise ratio is maximized
when the transmitter and the receiver use the same tight Gabor frame. What is more, we give practical efficient
realization schemes and show how to build tight frames based on usual generators. Theoretical and simulated
bit-error probability are given for a non-coded system using quadrature amplitude modulations. Such a
characterization is then used to predict the convergence of a coded system using low-density parity-check codes.
We also study the robustness of such a system to errors on the received bits in an interference cancellation context.

Keywords: Multicarrier modulations, Faster-than-Nyquist signaling, Linear system, Optimal pulse shapes,
Gabor frames, Interference analysis, Interference cancellation, Low-density parity-check codes

1 Introduction
In most of current communication systems, information
symbols can be transmitted and reconstructed thanks
to linear operations. More precisely, the synthesis and
analysis families used in the transmitter and the receiver
form biorthogonal frames (also known as Riesz bases). In
a single-carrier band-limited scenario, this requires the
Nyquist criterion to be respected [1]. In other words,
the transmission rate must be lower than the bilateral
bandwidth of the transmitted signal.
With an increasing need of spectral efficiency driven by

overcrowded frequency bands, the main strategy relies on
an increase of constellation size while keeping a constant
transmission power, bandwidth, and symbol rate (below
the Nyquist limit). This choice induces a decrease of the
minimum Euclidean distance between symbols, and the
transmitted signal becomes more sensitive to noise, thus
increasing bit-error probability [2].
A more unusual way to improve spectral efficiency is

to increase the symbol rate until the Nyquist criterion
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is overridden, leading to unavoidable inter-pulse inter-
ference (IPI). This idea has been proposed by J. Mazo
under the denomination “faster-than-Nyquist” (FTN) [3].
His work showed that up to a certain point, an increase
of the Nyquist symbol rate keeps the minimal distance
between symbols unchanged. As a consequence, consid-
ering the work of G.D. Forney on the optimal detec-
tion in presence of inter-symbol interference, one can
achieve identical bit-error probability using an optimal
receiver [2].
FTN transmission techniques can be extended to mul-

ticarrier modulations [4]. In this case, denoting F0 the
inter-carrier spacing and T0 the multicarrier symbol dura-
tion, it can be shown that if ρ = 1/(F0T0) > 1, then the
synthesis and analysis families, respectively used for trans-
mission and reception, can no longer be biorthogonal but
can still form overcomplete frames [5–7]. This leads to IPI
both in time and/or frequency. Numerous studies focus on
the realization of coded multicarrier FTN systems using,
in particular, series or parallel concatenations [8] as well
as turbo equalization techniques [9]. Studies of these lat-
ter systems over additive white Gaussian noise (AWGN)
channels show great performance, confirming their rele-
vance, even if their intrinsic complexitymakes their design
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and performance comparison particularly demanding in
terms of simulation time.
In this article, we study a linear multicarrier system

operating with overcomplete Gabor frames (i.e., a gener-
alization of an FTN system), as it plays a fundamental role
in more complex systems (e.g., decision feedback equaliz-
ers, forward error correction, turbo equalizers). Our work
includes guidelines for the design of optimal transmission
and reception Gabor frames with respect to the signal-
to-interference-plus-noise ratio (SINR) criterion over an
AWGN channel. An efficient realization scheme is pro-
posed and assessed with several classical pulse shapes (i.e.,
square-root-raised-cosine, rectangular...) built using the
Wexler–Raz theorem.
This article is constructed as follows. Section 2 estab-

lishes input–output relations of the system in presence of
noise, based on frame theory. This theoretical framework
enables a closed-form expression of the SINR and the the-
oretical bit-error probability (BEP), assuming a circularly
symmetric Gaussian distribution of the interference term.
We then give in Section 3 practical efficient realization
schemes. Next, Section 4 shows how we can easily find
pulse shapes generating dual and tight frames. Section 5
first focuses on the statistical properties of the interfer-
ence in an empirical way, as to confirm the relevance
of its Gaussian approximation. We then present bit-error
rate (BER) simulations to verify our theoretical results.
In particular, we show how our closed-form BEP expres-
sion can predict the performance of a coded system. The
last simulation scenario analyzes the relevance of inter-
ference cancellation techniques in this communication
context. Finally, conclusions and insights are presented in
Section 6.
Notations are described in the following. Sets are

denoted by uppercase roman bold letters, with Z, R and
C defined as the sets of integers, real numbers and com-
plex numbers, respectively. Lowercase bold letters denote
families of vectors. The linear span and the closed lin-
ear span of any family of vectors x are denoted Span(x)
and Span(x), respectively. The conjugation operator is
denoted (·)∗, and the expectation operation is given
by E(·). The complex-circular normal distribution, with
meanm and variance σ 2 is written CN (m, σ 2). Let x ∈ R,
we denote �x� the greatest integer such that �x� ≤ x,
and �x� the least integer such that �x� ≥ x. For any con-
tinuous time signal x(t), t ∈ R and discrete-time signal
y[k], k ∈ I ⊂ Z, we define the spaces L2(R) = {x :
R → C/

∫ +∞
−∞ |x(t)|2 dt < +∞} and �2(I) = {y : I →

C/
∑

k∈I |y[k] |2 < +∞}. Let us now define x1(t), x2(t) ∈
L2(R), such that theL2-inner product of those two signals
is given by

〈x1, x2〉 =
∫ +∞

−∞
x∗
1(t)x2(t) dt (1)

and the L2-norm of x1(t) is given by ‖x1‖ = √〈x1, x1〉.
The �2-inner product and its induced norm is defined
similarly in the case of discrete-time signals.

2 Systemmodel
2.1 Input–output relations in presence of white Gaussian

noise
Let us denote c = {cm,n}(m,n)∈� ∈ �2(�) with � ⊂
Z2, a sequence of zero-mean, independent, and identi-
cally distributed (i.i.d.) coefficients. Its variance is σ 2

c . The
multicarrier equivalent baseband signal is given by:

s(t) =
∑

(m,n)∈�

cm,ngm,n(t), t ∈ R, (2)

where g = {gm,n}(m,n)∈� is a synthesis Gabor family, with
parameters F0,T0 > 0 and whose elements are given by
the generator g(t) ∈ L2(R) such that:

gm,n(t) = g(t − nT0)ej2πmF0t , (m, n) ∈ �. (3)

As a result, the information carried by c is regularly
spread in the time–frequency plane (Fig. 1) with a mini-
mum distance F0 in frequency and T0 in time.
In a real case scenario, transmission is bounded in

time and in frequency such that � = {0, . . . ,M −
1} × {0, . . . ,K − 1} whereM,K are strictly positive inte-
gers representing respectively the number of subcarriers
and the number of multicarrier symbols to be transmit-
ted. Such a restriction to a finite signaling set induces the
convergence of the sum in (2). Nevertheless, it can still
contain a large amount of terms, so it is important tomake
it BIBO (bounded-input bounded-output) stable. In other
words, s(t) defined in Eq. (2) should be well defined even
if � = Z2. Denoting Hg = Span(g), the stability of (2) is

Fig. 1 Representation of a transmitted signal in the time–frequency
plane. Here, the parameters g, F0 and T0 are chosen such that pulse
shapes do not overlap in the frequency domain
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guaranteed when g is a Bessel sequence, which means that
we can find an upper bound Bg > 0 such as:

∑

(m,n)∈�

∣
∣〈gm,n, x

〉∣∣2 ≤ Bg‖x‖2, x ∈ Hg , (4)

In order to retrieve the data c from the knowledge of
s(t), it is furthermore necessary and sufficient for g to be
a linearly independent family. Hence, g should be a Riesz
basis forHg , in other words a linearly independent family
for which we can find 0 < Ag ≤ Bg such that:

Ag‖x‖2 ≤
∑

(m,n)∈�

∣
∣〈gm,n, x

〉∣∣2 ≤ Bg‖x‖2, x ∈ Hg . (5)

If one defines the density of the Gabor frame g as
ρ = 1/(F0T0), the former linear independence condition
requires ρ ≤ 1. In this context, there exists an analysis
Gabor family h such that

cp,q = 〈hp,q, s
〉
, (p, q) ∈ �. (6)

On the contrary, in order to increase the spectral effi-
ciency of the system (for a fixed number of bits per sym-
bol), this article focuses on the case where ρ > 1. Thus,
this increase in spectral efficiency is counterbalanced by
an induced interference. Indeed, when ρ > 1, g is neces-
sarily a linearly dependent Gabor family, but it may be an
overcomplete frame of L2(R), i.e., a family for which (5) is
valid not only for x ∈ Hg but also for every x ∈ L2(R). In
this case, (2) is always stable andHg = L2(R). However, g
cannot be a basis of L2(R).
A linear receiver is considered as a first stage of a more

complete FTN system (necessarily non-linear in order to
yield acceptable performance). In this context, the esti-
mated symbols ĉ = {ĉp,q}(p,q)∈� are given by

ĉp,q = 〈ǧp,q, r
〉
, (p, q) ∈ �, (7)

where ǧ = {ǧm,n}(m,n)∈� is an analysis Gabor family,
r(t) = s(t) + n(t) is the signal seen by the receiver where
n(t) is a zero-mean circularly symmetric Gaussian noise,
independent from the symbols, and whose bilateral power
spectral density is γn(f ) = 2N0, f ∈ R.

2.2 Interference and noise terms analysis
By rewriting (7) thanks to (2) and using the linearity of the
inner product, we obtain:

ĉp,q= cp,q
〈
ǧp,q, gp,q

〉

︸ ︷︷ ︸
c̃p,q :useful signal

+
∑

(m,n)∈�\{(p,q)}
cm,n

〈
ǧp,q, gm,n

〉

︸ ︷︷ ︸
ip,q :interference

+ 〈ǧp,q, n
〉

︸ ︷︷ ︸
np,q :noise

.

(8)

We have suggested in [10] that the SINR shoud be max-
imized when ǧ and g are dual canonical (i.e., Ag = 1/Aǧ
and Bg = 1/Bǧ) tight (i.e., Ag = Bg and ǧ = g/Ag)
frames. This enables an analytic expression for the SINR.

Indeed, let us denote σ 2
c̃p,q , σ 2

ip,q and σ 2
np,q the variances

of the useful signal, the interference, and filtered noise,
respectively. Then, the SINR at frequency index p and
time index q is given by:

SINRp,q =
σ 2
c̃p,q

σ 2
ip,q + σ 2

np,q
. (9)

Since we assume that cp,q is zero-mean with variance σ 2
c ,

we deduce from (8) that c̃p,q is zero-mean too with vari-
ance σ 2

c̃p,q = σ 2
c
∣
∣〈ǧp,q, gp,q

〉∣∣2.What is more, we impose that
ǧ = g/Ag , and therefore,
∣
∣〈ǧp,q, gp,q

〉∣∣2 = ∣∣〈gp,q, gp,q
〉∣∣2 /A2

g = ∥∥gp,q
∥
∥4/A2

g = ∥∥g∥∥4/A2
g ,

(10)

using (3). In addition, since g is assumed to be a tight
frame,

∥
∥g
∥
∥2 = Ag/ρ [11]. Thus, finally,

∣
∣〈ǧp,q, gp,q

〉∣∣2 = 1/ρ2, (11)

so that σ 2
c̃p,q is independent from p and q and

σ 2
c̃p,q = σ 2

c̃ = σ 2
c /ρ2. (12)

As for the interference term ip,q, using the fact that sym-
bols cm,n are assumed to be zero-mean, i.i.d. and with
variance σ 2

c , (8) shows that ip,q is zero-mean too with
variance given by

σ 2
ip,q =E

(|ip,q|2
)=σ 2

c

⎛

⎝
∑

(m,n)∈�

∣
∣〈ǧp,q, gm,n

〉∣∣2−∣∣〈ǧp,q, gp,q
〉∣∣2

⎞

⎠.

(13)

Since we impose that g is a tight frame with bound Ag
and ǧ = g/Ag , we obtain that ǧ is also a tight frame with
bound 1/Ag . Thus, by definition:

∑

(m,n)∈�

∣
∣〈ǧp,q, gm,n

〉∣∣2 = ∥∥gp,q
∥
∥2/Ag = 1/ρ. (14)

Then, combining Eqs. (11), (13), and (14), we obtain

σ 2
ip,q = σ 2

i = σ 2
c (ρ − 1)/ρ2. (15)

Concerning the filtered noise np,q, (8) shows that it is
Gaussian, zero-mean with variance

σ 2
np,q = E

(|np,q|2
) = 2N0

∥
∥ǧp,q

∥
∥2 = 2N0

ρAg
= σ 2

n , (16)

Finally, let us denote Es = 1
2σ

2
c
∥
∥g
∥
∥2 the per symbol

energy. Recalling
∥
∥g
∥
∥2 = Ag/ρ, we get

Es = σ 2
c Ag

2ρ
. (17)
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And finally, combining Eqs. (12), (15), (16), and (17), we
obtain that the SINR is independent from the frequency
and time indices and expressed by:

SINRp,q = SINR = 1
ρ − 1 + N0

Es

. (18)

We can see that the interference term ip,q is a random
variable independent from the noise and corresponding
to the sum of a large number of random variables c̃m,n
which are zero-mean, independent, and following the
same type of law but with different variances σ 2

c̃m,n
:

c̃m,n = cm,n
〈
ǧp,q, gm,n

〉
and σ 2

c̃m,n
= σ 2

c | 〈ǧ, gm−p,n−q
〉 |2.
(19)

All the conditions for applying the central limit theorem
are thus not fulfilled, but as shown by our simula-
tions in Section 5.1, the Gaussian approximation is
accurate for the sake of error–probability estimation.
That is why in the following, we will assume ip,q ∼
CN (0, σ 2

i ) independent from the noise. This is analo-
gous to a case where the symbols would have been
transmitted through an AWGN channel character-
ized by a signal-to-noise ratio (SNR) given by (18).
It is interesting to note that the noise term np,q is a col-
ored zero-mean random variable following a Gaussian
distribution.

2.3 Theoretical error probability with a linearM-ary
system

Wenow restrict our analysis to the case where the symbols
c are taken from an P-ary constellation, such as quadrature
amplitude modulation (P-QAM) or phase-shift keying
(P-PSK) with P the size of the constellation.
Approximating the interference distribution with a nor-

mal distribution, let us use classical formulas for BER in
presence of AWGN [12, 13]. Given that these classical
formulas usually give BER as a function of Eb/N0 (with
Eb = Es/ log2(P) the per-bit energy), the only adaptation
to be made in order to take into account the intereference
is to change Eb/N0 to SINR/ log2(P).
We give two examples, using the two constellations that

will be used throughout this paper. First, for a classical
(orthogonal) system using Gray code bit mapping with
quadrature phase-shift keying (or 4-QAM) over AWGN,
the BER is given by Q(2Eb/N0). Thus, the BER for a
multicarrier FTN system using tight frames in the same
scenario is given by:

Pe,QPSK = Q
(√

SINR
)

= Q
(√

1
(ρ − 1) + N0

2Eb

)

.

(20)

Using identical reasoning on the results from [13],
changing the constellation to 16-QAM gives the following
bit-error probability:

Pe,16QAM = 1
4

2∑

k=1

(
1−2−k4

)
−1

∑

i=0
(−1)

⌊
i2k−3

⌋ (

2k−1 −
⌊

i2k−3 + 1
2

⌋)

·Q
(

(2i + 1)
√
SINR
5

)

. (21)

3 Discrete-time implementation of the linear
system

In this section, we derive a discrete-time efficient
implementation of the linear multicarrier system. Sur-
prinsingly, such a process does not seem well documented
in the literature. In the following, we first derive the
input-output relation of a causal discrete-time system.
Then, we develop an efficient time-domain implementa-
tion using the fast Fourier transform algorithm and finite
impulse response filtering.

3.1 Discrete-time equivalent linear system
Let us recall the multicarrier transceiver defined by (2)
and (7) with a finite number of subcarriers M and
a finite number of multicarrier symbols K, such that
� = {0, . . . ,M − 1} × {0, . . . ,K − 1}. The trans-
mission generator g(t) is supposed to have a band-
width Wg . It results an overall system bandwidth W =
(M − 1)F0 + Wg that can be approximated by
MF0 hereafter assuming |Wg − F0|/(MF0) � 1.
In practice, it is generally the case if we consider a
large number of subcarriers. As a consequence, the sig-
nal can be sampled at critical rate 1/Ts = MF0 and we
denote N the number of samples per multicarrier sym-
bol such that T0 = NTs. Note that the density can
be rewritten as ρ = M/N , and considering a
unique multicarrier symbol, the FTN case is illustrated
in the discrete-time domain by a number of samples
per multicarrier symbol N less than the number of
subcarriersM.
In order to yield a causal transceiver with finite impulse

response generators, the impulse response g(t) and ǧ(t)
are truncated, and we define three positive integer param-
eters D, Lg , and Lǧ such that g(t) and ǧH(t) = ǧ∗(−t)
have their support included in [−((D+1)/2)Ts; (Lg−(D+
1)/2)Ts[ and [−((D+1)/2)Ts; (Lǧ−(D+1)/2)Ts[, respec-
tively. Therefore, the discrete-time causal generators can
be expressed as

g[k] = √Tsg
((

k − D
2

)

Ts

)

, (22)

ǧ[k] = √Tsǧ
((

k − D
2

)

Ts

)

, (23)
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where the factor
√
Ts is used for energy normalization.

From (2), the discrete-time transmitted signal can be
expressed as

s[k]= √Tss
((

k − D
2

)

Ts

)

=
∑

(m,n)∈�

cm,ngm,n[k] ,

(24)

with

gm,n[k] = √Tsgm,n

((

k − D
2

)

Ts

)

(25)

= g[k − nN] ej2π
m
M
(
k−D

2
)
. (26)

Assuming an ideal channel (i.e., r[k] = s[k]), an esti-
mated symbol c̃p,q for all (p, q) ∈ � can be obtained in a
similar way as (7):

c̃p,q = 〈ǧp,q, r
〉 =

+∞∑

k=−∞
ǧ∗
p,q[k] r[k] , (27)

with

ǧp,q[k] = √Tsǧp,q
((

k − D
2

)

Ts

)

(28)

= ǧ[k − qN] ej2π
p
M
(
k−D

2
)
. (29)

Notice that the support of g[k] and ǧ[k] are
{0, . . . , Lg − 1} and {D − (Lǧ − 1),D}, respectively. In
order to ensure a causal receiver, we define d = �D/N�
and consider the (q − d)th estimatedmulticarrier symbol:

c̃p,q−d =
+∞∑

k=−∞
ǧ[k − qN + dN] e−j2π m

M
(
k−D

2
)
r[k] .

(30)

Given (22) and (23), it is usually desirable to use
short-length generators in order to keep a low latency
transceiver. In the following, for the sake of clarity, causal-
ity of the transceiver will be implicit.

Fig. 2Multicarrier transmitter algorithm
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Fig. 3Multicarrier receiver algorithm

3.2 Time domain efficient implementation of the linear
system

A detailed algorithmic description of the linear trans-
mitter/receiver is proposed in Figs. 2 and 3. Even
if the transceiver is designed for the FTN case, it
remains generic enough to comply with any density
(0 < ρ < + ∞) and arbitrary generator lengths
Lg ≥ N and Lǧ ≥ N . However, further simplifi-
cations should be done in various particular cases (e.g.,
short filters, rectangular filters) [14]. The transmitter’s and
the receiver’s algorithms can be divided into three steps
described below: rotation, discrete Fourier transform, and
filtering.
Symbol rotation is performed at the transmitter and

at the receiver side in order to account for the delay D
required to yield a causal transceiver. Since such opera-
tions are dual and have no consequence on the perfor-
mance of the system, they can be omitted at both ends for
simulation purpose.

The discrete Fourier transform step should be imple-
mented, thanks to the FFT algorithm, in order to ensure
a computational complexity O(M logM). In Figs. 2 and 3,
operations denoted FFT and its inverse (IFFT) refer to
a column-wise implementation of [15]. Interestingly, but
without computational complexity gain, rotations and
discrete Fourier transform operations can be merged
together with the help of the chirp-z transform, as pro-
posed in [16].
The filtering step takes into account the length of the

signals (i.e., Ls, Lr , Lg , Lǧ) as well as the parametersM and
N to avoid unnecessary operations (e.g., multiplications by
zero). For example, at the transmitter side, the summation
bounds over n in (24) can be restricted to n1[k] and n2[k],
respectively, as illustrated by Fig. 4. A similar restriction
holds at the receiver side. Lastly, a circuit implementa-
tion can further simplify the filtering step if pulse shaping
operations are performed thanks to polyphase filtering.
Such a hardware implementation is beyond the scope of
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Fig. 4 Illustration of the summation bound restriction at the filtering
stage of the transmitter. The following parameters are taken:
Lg = 10, N = 3, K = 3

this article; however, the reader will find realizations in
[17–19].

4 Selection of the generators
We have seen in Section 2.1 that a Gabor family g may be
a Riesz basis of Span(g) if ρ ≤ 1 or a frame of L2(R) if
ρ > 1. The case ρ ≤ 1 corresponds to “slower-than-
Nyquist” (STN) or Nyquist rate (ρ = 1) systems, and

it is the only possibility to obtain a perfect reconstruc-
tion (PR) system. On the contrary, Gabor families with
ρ > 1 constitute FTN multicarrier systems. The PR case
(ρ ≤ 1) has been well studied and is also often referred to
as filtered multitone (FMT) systems [20], or oversampled
orthogonal (or biorthogonal) frequency-division multi-
plexing (OFDM and BFDM) systems [21]. Such systems
are also said to be orthogonal when the same generator
is used at transmission and reception and biorthogonal if
otherwise.
Classically, authors simply use filters generating orthog-

onal systems at the Nyquist rate (or below the Nyquist
rate) and then reduce the time interval [4, 9] with a nor-
malization factor. Thus, given a PR (STN or Nyquist rate)
system, with generator g̃ and frequency and time spac-
ings F̃0 and T̃0, respectively, a common and classical way
to get an FTN system is to use a generator g = αg̃
(α ∈ R) and frequency and time spacings F0 = F̃0
and T0 = 1/(ρF0) < T̃0, respectively. However, this
does not guarantee that the obtained system is based on
tight frames. On the contrary, here, we want to use filters
generating tight Gabor frames, ensuring a maximal SINR.
To this extent, we can take advantage of the strong link
between systems with ρ > 1 and ρ < 1. Indeed , the
Wexler–Raz theorem ([5], Theorem 9.3.4) states that if g̃
and ˜̌g yield a PR (bi)orthogonal system , then g and ǧ are
two dual frames when:

F̃0 = 1
T0

, T̃0 = 1
F0

, g̃ = 1√
F0T0

g, ˜̌g = 1√
F0T0

ǧ.

(31)

And, finally, taking g̃ = ˜̌g , let us obtain tight frames
withAg = 1. A summary of duality relations between PR-
FMT systems (biorthognal) and FTN-FMT systems can be
found in Table 1.
There are various ways to get PR-FMT filters. The

more obvious one is to simply use at transmis-
sion and reception the same rectangular filter g̃(t) =
˜̌g(t) =

√
F̃0	(F̃0t) = F̃0 if |t| < 1/(2F̃0) and g̃(t) =

˜̌g(t) = 0 if |t| > 1/(2F̃0). This leads to an orthogonal

Table 1 Duality relations between STN and FTN multicarrier communication

System STN FTN

Frequency spacing F̃0 = 1/T0 F0 = 1/T̃0

Time spacing T̃0 = 1/F0 T0 = 1/F̃0

Density ρ̃ = 1/(F̃0T̃0) = F0T0 < 1 ρ = 1/(F0T0) = F̃0T̃0 > 1

Interference mitigation PR with biorthogonal frames Dual frames

Noise reduction PR with orthogonal frames Tight frames with Ag = 1

Transmission generator g̃ = g/
√

ρ̃ = √
ρ g g = g̃/

√
ρ = √

ρ̃ g̃

Reception generator ˜̌g = ǧ/
√

ρ̃ = √
ρ ǧ ǧ = ˜̌g/√ρ = √

ρ̃ ˜̌g
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Fig. 5 Generator filters providing dual or tight frames for ρ = 4/3

PR-FMT system. By duality, choosing g(t) = ǧ(t) =
1/

√
ρT0	(t/T0) leads to tight frames. This will be

referred as the RECTT0 generator in the rest of this text.

Setting g̃(t) =
√
F̃0	(F̃0t) and ˜̌g(t) =

√
F̃0	(t/T̃0)

leads to a PR biorthogonal STN system, but it is
not orthogonal since g̃ �= ˜̌g. By duality, this
allows us to obtain dual frames which are not tight:
g(t) = 1/

√
ρT0	(t/T0) = RECTT0(t) and

ǧ(t) = 1/
√

ρT0	(t/ρT0)) = RECTρT0(t).
Another classical way to obtain orthogonal FMT sys-

tems is to use square-root-raised-cosine (SRRC) genera-
tors. Indeed, they meet the Nyquist criterion for a T̃0 time
spacing on each subband. What is more, since their fre-
quency occupancy is [−(1 + α)/(2T̃0); (1 + α)/(2T̃0)],
where α designates the roll-off factor, there is no inter-
carrier interference granted that (1 + α)/T̃0 ≤ F̃0 which
is also equivalent to α ≤ 1/ρ̃ − 1. Finally, we thus
obtain tight frames with SRRC generators with roll-off fac-
tor α ≤ ρ − 1. In here, we will use α = ρ − 1 and a
truncation length equal to 32T0.
Finally, we have chosen to also use two types of discrete-

time-optimized orthogonal filters published in [20]. The
first one is designed in order to minimize out-band energy

(OBE), and the second one maximizes time–frequency
localization (TFL). They also have the property of hav-
ing a minimal time duration. With a proper adaption as
described previously, they lead to tight frames.
Time and frequency responses of these different filters

are depicted in Figs. 5 and 6 for ρ = 4/3 and ρ = 15/16,
respectively, and M = 128. It is worthwhile mention-
ing that when ρ tends toward 1, all ρT0-duration tight
frames tend toward RECTT0 , which explains that time
responses of RECTT0 , RECTT0 , and TFL and OBE filters
are particularly difficult to distinguish from each other
when ρ = 16/15 (see Fig. 6).

5 Simulations

5.1 Empirical study of the interference term
In this sub-section, we discuss the relevance of the Gaus-
sian approximation of the interference. To this extent, we
measure 3.6 × 106 realizations of the interference term
ip,q by performing a transmission of M = 64 subcarri-
ers over K = 50000 multicarrier symbols for different
values of ρ, using a QPSK constellation and tight frames.
The variance of the obtained samples is then normalized
thus giving standardized versions of ip,q depending on ρ,

Fig. 6 Generator filters providing dual or tight frames for ρ = 16/15
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Table 2 χ2 and Kolmogorov–Smirnov (KS) statistical tests results for the null hypothesis that the real (R) and imaginary part (I ) of the
interference come from a normal distribution

Pulse shape ρ KS rejected KS p value χ2 rejected? χ2 p value

R I R I R I R I

TFL 16/15 Yes Yes 2.1 × 10−6 2.1 × 10−6 Yes Yes < 10−6 < 10−6

8/5 Yes Yes < 10−6 < 10−6 Yes Yes < 10−6 < 10−6

OBE 16/15 Yes Yes 3.4 × 10−5 3.4 × 10−5 Yes Yes < 10−6 < 10−6

8/5 Yes Yes < 10−6 < 10−6 Yes Yes < 10−6 < 10−6

SRRC 16/15 Yes Yes < 10−6 < 10−6 Yes Yes < 10−6 < 10−6

8/5 Yes Yes < 10−6 < 10−6 Yes Yes < 10−6 < 10−6

RECTT0 16/15 Yes Yes < 10−6 < 10−6 Yes Yes < 10−6 < 10−6

8/5 Yes Yes < 10−6 < 10−6 Yes Yes < 10−6 < 10−6

The rejection criteria are given at 5% confidence level

whose empirical probability density functions and cumu-
lative distribution functions (CDF) are comparable. Thus,
we will simply denote by i|ρ the random variable whose
realizations are ip,q, with the knowledge of ρ. The behavior
described here has been observed to be similar for various
generators forming tight frames.
We consider a transmission over a noise-free perfect

channel (SINR = 1/(ρ − 1)) of zero-mean, indepen-
dent, and identically distributed symbols. We define two
functions F̃i|ρ and Fi|ρ as follows:

F̃i|ρ(x) = 1
2

(P {R{i} ≤ x|ρ} + P {I{i} ≤ x|ρ}) , (32)

where R{·} and I{·} denote the real and imaginary part,
respectively, of a complex number, and

Fi|ρ(x) = 1
2

(
F̃i|ρ(x) + 1 − F̃i|ρ(−x)

)
, (33)

such that the bit-error probability can be expressed as:

Pe(ρ) = 1 − Fi|ρ
(√

SINR
)

= 1 − Fi|ρ

(√
1

ρ − 1

)

. (34)

As stated in Section 2.2, the central limit theorem does
not apply to the interference term. This is confirmed as
all statistical tests ran for various prototypes and values of

Fig. 7 Example of CDF for real and imaginary part of the interference with ρ = 8/5, QPSK constellation. We can see that they are at least very
similar and exhibit a rotational symmetry of center (0, 0.5)
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Fig. 8 Comparison of the error probability in absence of noise and its Gaussian approximation depending on ρ , QPSK constellation

ρ rejected the null hypothesis that the real and imaginary
part of the interference does come from a normal distribu-
tion at the 5% significance level (Table 2). Still, in practice,
we notice that R{i|ρ} and I{i|ρ} show identical distribu-
tion that furthermore exhibit a central symmetry of center
(0, 0.5), as illustrated in Fig. 7. This means that Fi|ρ(x)
could be replaced by P {R{i} ≤ x|ρ} or P {I{i} ≤ x|ρ}
in the expression of the bit-error probability. However,
in absence of any formal proof, this may be a mere
simplification.

Since the Gaussian distribution of the interference term
is revoked by empirical measurements, one may ask how
far the real and Gaussian-approximated bit-error proba-
bility are. In order to answer this question, we compare
the values of the functions Pe(ρ) and Q

(√
1/(ρ − 1)

)
for

various ρ in Fig. 8 and conclude that the relative approx-
imation error is negligible, except for ρ which is close
to one. Our simulations furthermore revealed that the
Gaussian approximation then constitutes an upper bound
for the bit-error probability. This result ensures that the

Fig. 9 SINR as a function of Es/N0, with ρ = 16/15, QPSK constellation
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Fig. 10 BER as a function of ρ , with Eb/N0 = 20 dB, QPSK constellation

Gaussian approximation can be safely used for multicar-
rier FTN communication system design, provided that
tight frames are used.

5.2 Linear system performance
The simulations presented in this sub-section consist in
the transmission of K = 5000 multicarrier symbols
over M = 128 subcarriers with a QPSK constellation.
They were run for various generators, as presented in
Section 4.
Figure 9 exhibits the perfect prediction of the SINR

by (18) when the generators used in transmission and
reception form a dual canonical tight pair of frames. In
addition, Figs. 10 and 11 confirm the accuracy of the

expression of the bit-error probability (20) and the rele-
vance of the Gaussian approximation of the interference,
although we can see its limits for strong Eb/N0 (≥ 14 dB)
and ρ close to 1 (ρ = 16/15).
In terms of performance, for this kind of non-coded

multicarrier FTN system, Fig. 10 shows that the bit-error
rate (BER) rapidly rises with the density. We can also see
in Fig. 11 that a lower-bound of the BER appears as noise
becomes negligible compared to interference. In addition,
and in accordance with the expression of the SINR, the
performance gets worse if the frames used are not tight
nor canonical dual. These results confirm the needs to
develop non-linear detectors allowing for a more efficient
IPI mitigation.

Fig. 11 BER as a function of Eb/N0, with ρ = 16/15, QPSK constellation
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Fig. 12 Output BER (BERout) as a function of the input BER (BERin) for a rate 1/2 LDPC encoder/decoder. In this configuration, the convergence
threshold is at an input BER of 0.15

5.3 Use in a coded systemwith iterative decoding
As highlighted in the previous sub-section, a linear system
is not sufficient to combine practical BER performance
with attractive density gains. To overcome this issue, one
can add forward error correction (FEC). In this work, we
focus on FEC schemes enabling iterative decoding (e.g.,
LDPC, turbo codes) due to their good performance at an
affordable computational complexity.
Each encoder/decoder can be characterized by its

so-called convergence threshold [22]. It is defined as

the input BER threshold from which the coded system
achieves better performance than the uncoded one. In
other words, the convergence threshold is the largest value
BERthr

in such that BERout < BERin. As an example, Fig. 12
shows that a coded system using the LDPC code of rate
1/2 specified in the DVB-S2 standard [23] has its conver-
gence threshold for an input BER of approximately 0.15.
According to (20) in the case of an FTN system using
QPSK and tight frames, the SINR at the output of the
linear receiver must be such that Q(

√
SINR) < 0.15 to

Fig. 13 Comparison of BER versus Eb/N0 performance, with a TFL generator and a QPSK constellation, of an FTN (ρ = 4/3) using a rate 1/2 LDPC
code, and an orthogonal system (ρ = 1) using a rate 2/3 LDPC code for ten iterations of the decoders. Both systems have the same spectral
efficiency η = 4/3 bits/s/Hz
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Fig. 14 Block diagram of the pseudo-genie interference cancellation receiver

yield convergence of the decoder. These constraints can
easily be fulfilled by setting appropriate restrictions to
Eb/N0 and ρ.
In Fig. 13, we observe that when used with a multi-

carrier FTN system using tight frames, the coded system
converges as expected when the input BER goes below
0.15, at Eb/N0 = 2 dB. However, we can see in Fig. 13
that this FTN system is surpassed by the orthogonal one
using the rate 2/3 LDPC code of the DVB-S2 standard,
which provides the same spectral efficiency. This advo-
cates for dedicated strategies of interference mitigation in
FTN systems, as treating it as noise does not allow for a
full use of the available knowledge on the self-interference
structure.

5.4 Performance with interference cancellation
From the expressions of the bit-error probabilities (20)
(21), it is obvious that the FTN linear system shows
worse performance compared to the orthogonal case.

Besides, from the expression of the received signal (8),
one can notice that the performance of the orthogonal
system can be retrieved by removing the interference
induced by the FTN system, allowing for an improvement
of the spectral efficiency of the transmission while keeping
the same BER.
Such an interference cancellation (IC) is usu-

ally performed by estimating the received symbols,
then computing the interference term from these esti-
mations and subtract it to the received signal. Given
that this estimation might not be perfect, it is interest-
ing to assess the behavior of this system in presence
of errors on the estimated symbols. To fulfill that
purpose, we implemented the pseudo-genie receiver
depicted by Fig. 14. The difference with a “true genie”
receiver is that its knowledge of the transmitted symbols
is corrupted by a binary symmetric channel inducing an
error probability Pe,genie on the bits used to compute the
interference term.

Fig. 15 BER as a function of Eb/N0, with a pseudo-genie receiver, ρ = 2, a TFL generator, and Pe,genie ∈ {10−1, 10−2, 10−3} compared to an
orthogonal (ρ = 1) 16-QAM transmission (both schemes have a spectral efficiency η = 4 bits/s/Hz)
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Fig. 16 BER as a function of Eb/N0, with a turbo IC receiver (10 iterations), ρ = 2 and a TFL generator were compared to an orthogonal (ρ = 1)
16-QAM transmission, both coded with a (7, 5) convolutional code (spectral efficiency η = 2 bits/s/Hz)

Figure 15 presents the performance of this system with
a density ρ = 2 and a QPSK constellation, compared
to an orthogonal system using a 16-QAM constellation.
In these simulations, K = 5000 multicarrier symbols
were transmitted over M = 32 subcarriers using a
TFL generator. Firstly, we can see that this FTN system
with interference cancellation is quite robust to errors
on the bits used to compute and cancel the interfer-
ence. This gives an insight on how non-linear receivers
using interference cancellation (such as decision feed-
back or turbo equalization) could efficiently prevent inter-
carrier interference. Secondly, we notice that at low SNR,
this system can rapidly surpass the 16-QAM orthogo-
nal system having the same spectral efficiency as the
probability of error on the estimated bits gets lower.
However, two facts ask for a refinement of this tech-
nique: (i) the BER of the linear receiver is too high to
allow for a good interference cancellation in, for instance,
a simple decision–feedback setup and (ii) even with a
low error probability; one can observe an error floor at
high SNR.
A viable option to circumvent these two limitations is

to associate the IC with an error-correcting code with
probabilistic information exchange between the two, that
is, using a “turbo” structure ([22], Chap. 11). Indeed,
using an error-correcting code should lower the bit-
error rate at the first iteration. Also, using “soft sym-
bols” should avoid pollution of the interference can-
cellation by unreliable symbols. Simulation of Fig. 16
uses a convolutional code with polynomial (7, 5)8 (rate
R = 1/2), decoded with a SISO BCJR decoder [24].
The soft symbols used by the IC, as well as its output

log likelihood ratios, are computed following the con-
ventions established by previous works on linear turbo
equalization [25]. The other parameters are the follow-
ing: the encoder is fed with Nb = 16, 384 bits, and the
coded bits on its output are shuffled with an interleaver
and given to a binary to symbols converter (using QPSK
or 16-QAM) and then to the multicarrier modulator using
M = 32 subcarriers. This setup allows for a fair compar-
ison of the orthogonal 16-QAM and the FTN (ρ = 2)
QPSK coded systems as they have same spectral efficiency
η = 2. Here, we observe that indeed, using turbo IC
allows better BER performance than orthogonal 16-QAM
for Eb/N0 > 3.1 and does not suffer from the problem of
error floor at high SNR.

6 Conclusions
Through this article, we specified a linear multicarrier
system based on the use of overcomplete Gabor frames,
enabling an increase in signaling density in the time
and/or the frequency domain and leading to a bidimen-
sional FTN system. Consequently, an increase of the
spectral efficiency beyond (bi)-orthogonal systems (for a
given constellation size) yields interference between pulse
shapes.
The results presented in this article compare the per-

formance of FTN multicarrier systems based on the
parameters of their linear stage (e.g., time–frequency lat-
tice density, transmission/reception generators...) in the
presence of additive white Gaussian noise. Additionally,
guidelines for efficiently choosing transmission/reception
generators and implementing the discrete-time equivalent
linear system are provided.
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Finally, we have shown that the performance of linear
systems should be studied before designing more com-
plex receiver structures (e.g., LDPC/turbo decoders, turbo
equalizers). Besides, such a separate analysis helps to
lower simulations’ computational complexity.
Future work includes the assessment of the com-

plete FTN multicarrier system over more realistic chan-
nel models (e.g., fading...). More precisely, it would be
interesting to evaluate the robustness of such a system in
the presence of an imperfect channel estimation.
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