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Abstract

Sustainably realizing applications of the future with high performance demands re-
quires that energy efficiency becomes a central design criterion for the entire system.
For example, the power consumption of the analog-to-digital converter (ADC) can
become a major factor when transmitting at large bandwidths and carrier frequen-
cies, e.g., for ultra-short range high data rate communication. The consumed energy
per conversion step increases with the sampling rate such that high resolution ADCs
become unfeasible in the sub-THz regime at the very high sampling rates required.
This makes signaling schemes adapted to 1-bit quantizers a promising alternative. We
therefore quantify the performance of bandlimited 1-bit quantized wireless commu-
nication channels using techniques like oversampling and faster-than-Nyquist (FTN)
signaling to compensate for the loss of achievable rate.

As a limiting case, we provide bounds on the mutual information rate of the hard
bandlimited 1-bit quantized continuous-time – i.e., infinitely oversampled – additive
white Gaussian noise channel in the mid-to-high signal-to-noise ratio (SNR) regime.
We derive analytic expressions using runlength encoded input signals. For real signals
the maximum value of the lower bound on the spectral efficiency in the high-SNR limit
was found to be approximately 1.63 bit/s/Hz.

Since in practical scenarios the oversampling ratio remains finite, we derive bounds
on the achievable rate of the bandlimited oversampled discrete-time channel. These
bounds match the results of the continuous-time channel remarkably well. We observe
spectral efficiencies up to 1.53 bit/s/Hz in the high-SNR limit given hard bandlim-
itation. When excess bandwidth is tolerable, spectral efficiencies above 2 bit/s/Hz
per domain are achievable w.r.t. the 95 %-power containment bandwidth. Applying
the obtained bounds to a bandlimited oversampled 1-bit quantized multiple-input
multiple-output channel, we show the benefits when using appropriate power alloca-
tion schemes.

As a constant envelope modulation scheme, continuous phase modulation is con-
sidered in order to relieve linearity requirements on the power amplifier. Noise-free
performance limits are investigated for phase shift keying (PSK) and continuous
phase frequency shift keying (CPFSK) using higher-order modulation alphabets and
intermediate frequencies. Adapted waveforms are designed that can be described as
FTN-CPFSK. With the same spectral efficiency in the high-SNR limit as PSK and CPFSK,
these waveforms provide a significantly improved bit error rate (BER) performance.
The gain in SNR required for achieving a certain BER can be up to 20 dB.
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Zusammenfassung

Die nachhaltige Realisierung von zukünftigen Übertragungssystemen mit hohen Leis-
tungsanforderungen erfordert, dass die Energieeffizienz zu einem zentralen Designkri-
terium für das gesamte System wird. Zum Beispiel kann die Leistungsaufnahme des 
Analog-Digital-Wandlers (ADC) zu einem wichtigen Faktor bei der Übertragung mit 
großen Bandbreiten und Trägerfrequenzen werden, z. B. für die Kommunikation mit 
hohen Datenraten über sehr kurze Entfernungen. Die verbrauchte Energie des ADCs 
steigt mit der Abtastrate, so dass hochauflösende ADCs im Sub-THz-Bereich bei den 
erforderlichen sehr hohen Abtastraten schwer einsetzbar sind. Dies macht Signal-
isierungsschemata, die an 1-Bit-Quantisierer angepasst sind, zu einer vielversprechen-
den Alternative. Wir quantifizieren daher die Leistungsfähigkeit von bandbegrenzten 
1-Bit-quantisierten drahtlosen Kommunikationssystemen, wobei Techniken wie Over-
sampling und Faster-than-Nyquist (FTN) Signalisierung eingesetzt werden, um den 
durch Quantisierung verursachten Verlust der erreichbaren Rate auszugleichen.

  Wir geben Grenzen für die Transinformationsrate des Extremfalls eines strikt band-
begrenzten 1-Bit quantisierten zeitkontinuierlichen – d.h. unendlich überabgetasteten –
Kanals mit additivem weißen Gauß’schen Rauschen bei mittlerem bis hohem Signal-
Rausch-Verhältnis (SNR) an. Wir leiten analytische Ausdrücke basierend auf lauflän-
gencodierten Eingangssignalen ab. Für reele Signale ist der maximale Wert der unteren 
Grenze der spektralen Effizienz im Hoch-SNR-Bereich etwa 1,63 Bit/s/Hz.

  Da die Überabtastrate in praktischen Szenarien endlich bleibt, geben wir Grenzen 
für die erreichbare Rate eines bandbegrenzten, überabgetasteten zeitdiskreten Kanals 
an. Diese Grenzen stimmen mit den Ergebnissen des zeitkontinuierlichen Kanals 
bemerkenswert gut überein. Im Hoch-SNR-Bereich sind spektrale Effizienzen bis zu 
1,53 Bit/s/Hz bei strikter Bandbegrenzung möglich. Wenn Energieanteile außerhalb  
des Frequenzbandes tolerierbar sind, können spektrale Effizienzen über 2 Bit/s/Hz pro 
Domäne – bezogen auf die Bandbreite, die 95 % der Energie enthält – erreichbar sein.
Durch die Anwendung der erhaltenen Grenzen auf einen bandbegrenzten überabge-
tasteten 1-Bit quantisierten Multiple-Input Multiple-Output-Kanal zeigen wir Vorteile 
durch die Verwendung geeigneter Leistungsverteilungsschemata.

  Als Modulationsverfahren mit konstanter Hüllkurve betrachten wir kontinuierliche 
Phasenmodulation, um die Anforderungen an die Linearität des Leistungsverstärkers 
zu verringern. Beschränkungen für die erreichbare Datenrate bei rauschfreier Übertra-
gung auf Zwischenfrequenzen mit Modulationsalphabeten höherer Ordnung werden 
für Phase-shift keying (PSK) and Continuous-phase frequency-shift keying (CPFSK)



untersucht. Weiterhin werden angepasste Signalformen entworfen, die als FTN-CPFSK
beschrieben werden können. Mit der gleichen spektralen Effizienz im Hoch-SNR-
Bereich wie PSK und CPFSK bieten diese Signalformen eine deutlich verbesserte
Bitfehlerrate (BER). Die Verringerung des erforderlichen SNRs zur Erreichung einer
bestimmten BER kann bis zu 20 dB betragen.
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Introduction 1
„In a deep-submicron CMOS process, time-domain

resolution of a digital signal edge transition is
superior to voltage resolution of analog signals.

— R. B. Staszewski [Sta12]

1.1 Motivation and Scope
The ever increasing demand for performance of networks (wireless and wired) is
more and more opposed by the limited resources available, especially w.r.t. power
consumption. Thus, sustainably realizing applications of the future with high perfor-
mance demands requires that energy efficiency becomes a central design criterion for
the entire system as, e.g., in [FDC+19]. This clearly has an impact on the system
design process of communication and computation systems: instead of separately
designing building blocks for best performance under reasonable power consumption,
all building blocks and interfaces need to jointly provide sufficient performance to meet
an overall target while minimizing the energy consumed. This approach is for example
described in [ABG+10] from a system level point of view as trade-off between system
capacity, quality of service (QoS), and energy consumption of a mobile communication
network.

The example in [FDC+19] aims for small scale, energy efficient high-performance
compute nodes, e.g., for the mobile edge cloud. Its system design from software down
to hardware over all layers is centered around energy efficiency. This includes the
concept of the wireless backplane, which enables a new energy efficient computing
architecture. In this case, the requirement on the wireless link is to deliver ultra-
short range and energy efficient communication with high data rates. Naturally, for
high data rates at short transmission range high carrier frequencies are promising,
e.g., the extremely high frequency (EHF) band, given the large bandwidths available.
In this case of short range communication with a line-of-sight (LOS) component
between printed circuit boards, it has further been measured that such channels can
be considered largely frequency flat, despite the large bandwidth [FuHLF13]. The
targeted performance is to provide 100 Gbps at 100 to 300 GHz carrier frequency over
2 to 10 cm range.
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This results in challenging requirements on the hardware, e.g., the analog-to-digital
converter (ADC). In digital communications, it is typically assumed that the ADC at
the receiver provides a sufficiently fine grained quantization of the magnitude of the
received signal. However, for very high data rate short link communication the power
consumption of the ADC becomes a major factor. The consumed energy per conversion
step increases with the sampling rate [Mur18] such that high resolution ADCs become
unfeasible in the sub-THz regime at the very high sampling rates required. This and the
small voltage headroom of downscaled complementary metal–oxide–semiconductor
(CMOS) technology [Sta12] make signaling schemes adapted to 1-bit quantizers an
attractive alternative. The resulting advantage is that the 1-bit ADC is just a simple
comparator and can be implemented with very low power consumption [SMS09] since,
for example, an automatic gain control (AGC) may not be required [SPM09]. While
this approach can reduce the power consumption, the resulting loss in data rate needs
to be mitigated. By using oversampling, the loss in amplitude information can be
partly recovered such that quantization resolution of the signal magnitude is traded
off by resolution in time domain. Optimal communication over the resulting channel
including the ADC requires a modulation and signaling scheme adapted to this specific
channel. Thus, in this case hardware restrictions imply the choice of the signaling
scheme resulting in a bottom-up approach in systems design.

When it comes to the achievable rate of such a communication scheme, early
works target noise-free scenarios [Gil93; Sha94] while more recent studies focus
on the low signal-to-noise ratio (SNR) domain [KL10] or the mismatched capacity
[Zha12]. Moreover, simulation-based bounds are evaluated, e.g., in [LDF18; LDF17]
for different signaling strategies, often w.r.t. the 90 %-power containment bandwidth
as a bandwidth measure. However, an analytical evaluation of the channel capacity of
the bandlimited 1-bit quantized oversampled additive white Gaussian noise (AWGN)
channel in the mid-to-high SNR domain is still open. This capacity depends on the
oversampling factor since Nyquist-sampling – like any other sampling rate – does not
provide a sufficient statistic due to 1-bit quantization.

Thus, the scope of this work is to quantify the performance of bandlimited 1-bit
quantized wireless communication channels targeting energy efficiency. Hereby, a
central performance metric applied is the achievable rate or mutual information rate.
Since the amplitude information is discarded in 1-bit quantized systems, techniques
like oversampling and faster-than-Nyquist (FTN) signaling in combination with run-
length modulation are applied to compensate for the loss of achievable rate. The
overall objective is to derive bounds on the achievable rate that can be evaluated
without a complex simulation framework, preferably either by analytical or numerical
computations. Thus, the influence of varying system parameters on the performance
can be evaluated with comparably small effort and insights on suitable signal designs
can be obtained. Given the outlined application scenario of short range multigigabit/s
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communication, we focus on the system performance in the mid-to-high SNR domain
and over AWGN channels for our derivations. An additional concern is relieving the
power consumption at the transmitter, especially caused by the power amplifier (PA),
using constant envelope modulation. Here, the focus is on performance limits of the
achievable rate in a noise-free scenario as well as the bit error rate (BER) performance.

1.2 Outline and Main Contributions
In the following, Chapter 2 is concerned with the energy consumption in wireless
links, where especially PAs, ADCs, and channel decoders have been identified as
power bottlenecks. Challenges as well as recent and expected advances w.r.t. these
building blocks are reviewed. Additionally, previous results regarding the performance –
especially the achievable rate – of 1-bit quantized oversampled communication systems
are reviewed and summarized illustrating the need for analytical and numerical
frameworks.

Chapter 3 provides bounds on the mutual information rate of the hard bandlimited
1-bit quantized continuous-time AWGN channel in the mid-to-high SNR regime. The
continuous-time scenario is the limiting case of increasing the oversampling rate to
infinity, however, it imposes challenges on the analysis. We derive analytic expressions
for the obtained bounds, such that they can be used as benchmarks for 1-bit quantized
communication systems and support design choices. Assumptions and approximations
that need to be made in order to obtain analytical results are justified – if not by
rigorous proof – by numerical computations and simulations.

Chapter 4 focuses on the achievable rate in a discrete-time scenario. Bounds on
the achievable rate are derived that are simple to evaluate and match the results
of Chapter 3 remarkably well. Given the popularity of low-resolution quantizers in
multiple-input multiple-output (MIMO) scenarios, the results are applied to a MIMO-
channel.

In Chapter 5 continuous phase modulation (CPM) modulation is considered as a
constant envelope modulation scheme. Noise-free performance limits are investigated
for phase shift keying (PSK) and continuous phase frequency shift keying (CPFSK)
using higher-order modulation alphabets. Furthermore, adapted waveforms are de-
signed that can be described as FTN-CPM. With the same spectral efficiency (SE) in the
high-SNR limit as PSK and CPFSK, these waveforms provide a significantly improved
BER performance. Finally, Chapter 6 provides the conclusion and an outlook.

1.2 Outline and Main Contributions 3



1.3 Notation
Throughout this thesis the following notations are applied: vectors are set bold,
random variables sans serif. Thus, X(K) is a random vector of length K. Omitting
the superscript denotes the corresponding random process X for K → ∞. Sets are
denoted in calligraphic font, in particular, the alphabet from which a random variable
X can be chosen is denoted by X .

Sequences of a variable x are denoted by xkl , where the sequence is considered from
time instant l to k. If l corresponds to 1 (first symbol), it is omitted. This notation
can also apply to sequences of vectors xkl , random variables xkl , or random vectors xkl
while xk refers to the value of x at time instant k.

For information measures, (·)′ denotes the corresponding rate. Bounds on any
quantity x are referred to using the indices xUB and xLB for upper and lower bound,
respectively. Furthermore, (a)+ denominates the maximum of a and zero.
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State of the Art 2
This work considers approaches to wirelessly communicate high data rates as energy
efficiently as possible, where the focus is on short distances. One central measure in
this regard is applying low-resolution 1-bit quantizers at the receiver. This chapter is
therefore divided in two main parts: review of the energy consumption of a wireless
transceiver chain and known results w.r.t. receivers applying coarse quantization.

2.1 Energy Consumption Considerations

Data
Channel
Encoder

Modulation DAC
Transmit
Filter

Up-
conversion

PA

Receive
Filter

LNA
Down-

conversion
ADC

De-
modulation

Channel
Decoder

Estimated
Data

a)

b)

Fig. 2.1. Wireless transceiver chain: a) transmitter and b) receiver. Critical elements w.r.t. power
consumption are highlighted in gray.

Fig. 2.1 depicts a typical transceiver chain in wireless communications. In [Lan17,
Chapter 2.1], a wireless communication system has been analyzed with regard to
the most power consuming elements. Although progress can be assumed in terms of
the actual numbers since, it is safe to assume that the power bottlenecks that have
been identified remained such. Thus, three elements can be considered as major
energy consumers and are highlighted in gray in Fig. 2.1: the power amplifier (PA),
the analog-to-digital converter (ADC), and the channel decoder. In the following,
we will thus focus on these three and their contribution to the power consumption
of a wireless communication system, especially with focus on transmission in the
extremely high frequency (EHF) band, i.e., carrier frequencies between 30 GHz to
300 GHz. Furthermore, link budget considerations for wireless high-speed short range
communications shall be reviewed in order to define the SNR-range, which is of
interest for the operation of such a system.
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2.1.1 Power Amplifier
Common efficiency measures for PAs are the drain efficiency, given by the ratio of
output, i.e., transmitted power P T divided by the power consumption PPA of the PA

ηPA = P T
PPA

(2.1)

and the power added efficiency (PAE) given by

PAE = P T − PS
PPA

= P T
PPA

(
1− 1

GPA

)
(2.2)

where PS is the power of the signal to be amplified and GPA is the gain of the amplifier
[JHAS15]. With this, the power PD dissipated by the PA can be written as [McC13]

PD
P T
≈ 1
PAE

− 1 (2.3)

given that PAs are designed to provide a high gain GPA. From (2.3) one can compute
that for a PAE of 50 % the dissipated power is equal to the output power while in order
for the dissipated power to fall below 10 % of the output power, the PAE must be at
least 91 %. These parameters highly depend the class of the PA as well as its desired
operation point. Surveys [JHAS15; RKD12] show that with increasing operational
frequency, the efficiency of the PA decreases drastically – in [RKD12] a drain efficiency
drop from 90 % to around 40 % and below is observed for operating frequencies above
10 GHz for the highly efficient class E amplifiers. However, in wireless communications
amplifiers of the classes A, B and AB are widely used [JHS12] given their good linearity
characteristics. In [JHAS15] drain efficiencies between approximately 20 % and 30 %
are reported for amplifiers operating in the ultra high frequency (UHF) band, 300
MHz to 3 GHz, and the super high frequency (SHF) band, 3 GHz to 30 GHz. Table 2.1
summarizes the parameters of recently published PAs in the SHF and EHF band. It
confirms that obtaining high gains and efficiencies becomes increasingly difficult with
increasing frequency.

This is especially problematic for operation in the EHF band. Circuit measure-
ments are usually carried out using an unmodulated so-called continuous wave signal.
However, in practice modulation techniques like orthogonal frequency-division mul-
tiplexing (OFDM) can have a high peak-to-average power ratio (PAPR) and require
highly linear amplifiers. While a so-called input backoff, i.e., reducing PT sufficiently
below the peak output power of the amplifier, can reduce the distortion by clipping the
signal, it also reduces the efficiency of the amplifier [JHS12]. This can be seen in Ta-
ble 2.1, e.g., for [MLL17; PJJ+16; IR17] where the PAE has also been given for linear
operation or under transmission of modulated data. There are techniques to improve
the tradeoff between linearity and efficiency, such as outphasing, envelope elimination

6 Chapter 2 State of the Art



Reference Technology f [GHz] P Sat
[dBm]

Gain
[dB]

P 1dB
[dBm]

PAE [%]

[MLL17] 0.25 um
GaN/SiC HEMT

15 34.1 28.2 32.2 38.7 (peak),
30 (linear)

[MLL18] 22 nm FD
CMOS SOI

28 17.5 27.0 13.0 29.1 (peak),
14.1 (P1dB)

[PJJ+16] 28 nm CMOS 28 19.8 13.6 18.6 43.3 (peak),
28.5 (linear)

[NAU19] 130 nm SiGe
28 18.4 16.2 33 (peak)
60 17.2 11.8 21 (peak)

[RHS+19] 22 nm CMOS
FDSOI

29.45 16.3 11.9 13.9 23 (peak)

[IR17] 28nm bulk
CMOS

32 19.8 22.0 16.0 21 (peak),
5.8 (64QAM)

[LNG+16] 90 nm CMOS
60 13.2 16.0 19.5 (peak)
94 10.6 10.4 8.9 (peak)

[TNB19] 45 nm CMOS
SOI

61 14.0 9.0 20.4 (peak)

[FRCE19] 0.13 um SiGe 61.5 14.6 18.0 12.0 11 (peak)

[GURP16] 250nm InP HBT
71-95 19.8-

21.1
10.0-
11.5

16.7 40 (peak),
10.5 (P1dB)

96-120 19.3-
20.2

10.0-
13.0

17.7 21.2 (peak),
13.5 (P1dB)

[BHZ17] 130 nm SiGe 120 15.5 19.0 6.4 (peak)
[AFAS16] 130 nm SiGe 160 11.0 24.8 9.5 5 (peak)
[SALP16] 130 nm SiGe

BiCMOS
215 9.6 25.0 4.0 0.5 (peak)

Tab. 2.1. Parameters of state-of-the-art power amplifiers

and restoration, envelope tracking or Doherty techniques [JHS12]. However, this
shows that modulation techniques with low PAPR are promising for communication
in the EHF band when it comes to energy efficiency. This includes continuous phase
modulation (CPM) and modulation optimized for 1-bit quantization, e.g., runlength
based modulation schemes, which are discussed in this work.

2.1.2 Data Converter
Data converters are often classified in two main types: (i) amplitude domain converters
where the input signal amplitude is transformed in a binary number, (ii) time domain
converters (TDCs) or frequency converters, in which the duration between zero-
crossings or the frequency of the input signal is converted into the digital domain.
While the former are well studied and used successfully for decades, TDCs have
recently received increasing attention due to issues arising with continuing device
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scaling. The resulting voltage supply scaling reduces the signal headroom for amplitude
processing [Sta12] including difficult trade-offs w.r.t. noise, linearity, bandwidth,
power consumption etc. and yielding performance limitations of analog circuits
operating in the amplitude-domain (voltage and current) [Man18], whereas in time-
domain circuits reduced switching times present a promising alternative.

Analog-to-Digital Converters

Regarding the power consumption of ADCs, [SMS09] presents a theory for lower
bounding the power consumption of Nyquist sampling ADCs. By assuming that the
noise power of sampling noise is designed to be equal to the quantization noise, it
results as minimum power for sampling the input signal

P samp,min = 48kBTfs22ENOB (2.4)

where kB is the Boltzmann constant, T is the temperature, and fs is the sampling
frequency. In the case of matched noise mentioned above, the effective number of
bits (ENOB) is given by ENOB = b− 0.5, where b is the quantizer resolution in bits.
Furthermore, lower bounds on the power consumption of comparator elements PC

and amplifiers PA are derived, which result to be proportional to P samp,min when
using the same criterion for sampling and quantization noise as above. This means
that, neglecting other effects, the power consumption of an ADC increases at least by
factor 2 for doubling fs and factor 4 for adding 1 bit resolution.

A figure of merit (FoM) to relate the power consumption PADC of the ADC, fs and
the ENOB was introduced by Walden [Wal99] as

FoMW,ADC = 2ENOBf samp,nyq
PADC

(2.5)

where f samp,nyq relates to fs in the case of Nyquist sampling and to the maximum
possible signal bandwidth in the case of oversampling architectures. Despite not cap-
turing the relations between power consumption, resolution, and sampling frequency
observed above as criticized, e.g., in [Mur08] where it is recommended for comparing
low-resolution ADCs, Walden’s FoM remains widely used. Often the inverse of (2.5)
is used, e.g., in the annually updated ADC survey [Mur18], where it represents the
energy spent per conversion step. In Fig. 2.2, said energy consumption in fJ per
conversion step is depicted for state-of-the-art ADCs according to the data in [Mur18].
It can be observed that for sampling rates above 1 GHz it becomes increasingly difficult
to build energy efficient ADCs with high resolution. Thus, this constitutes the so-called
ADC-bottleneck and motivates the use of low-resolution or time-based converters with
appropriate signaling strategies for wireless communication in the EHF band.
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Time-to-Digital Converters

It can be observed in Fig. 2.2 that the effective resolution, ENOB, of the ADCs is at least
3 bit. However, this does not mean that this number of bits is encoded in amplitude
information. Using digital-to-time converters (DTCs) and TDCs, a number of bits can
be encoded into the time differences between given events, e.g., the crossing of a
threshold or zero-crossing (ZC).

Basic building blocks for TDCs and DTCs are inverters and D-type edge-triggered
flip-flops [Man18]. While inverters are used to build voltage controlled delay units
that later can be used for architectures based on ring-oscillators and voltage controlled
delay lines, e.g., like in [UKCE18], the flip-flop can be used to realize a comparator
function [Man18; Nar09]. Basic time-domain based data converter architectures can
be found in [RA10; Nar09].

With regard to performance, it is observed that based on the data in [Mur18]
"the performance of the published architectures so far spans the medium signal-to-noise-
and-distortion ratio (SNDR) range [and] medium bandwidth range" and "the energy
efficiency isn’t the most competitive, though recent data points seem to show appreciable
improvement in conversion efficiency" [Man18]. It is however argued further that
beyond this first impression, time based data converters are generally more compact
area wise and especially successful in embedded and mobile applications as well as
low-cost, low-power sensing scenarios, e.g., for the Internet of Things (IoT). Moreover,
it is expected that TDCs/DTCs will scale well – with respect to chip area but especially
w.r.t. conversion efficiency – and that they will see improvement in jitter performance
when transitioning from planar MOS to FinFET based architectures [Man18; Nar09].
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2.1.3 Decoder
A decoder converts the received data stream into a sequence of symbols or bits, which
could have been sent. Ideally, the decoder is able to return the sequence that has
actually been sent – otherwise an error occurs in transmission. If this decision is based
on the conditional probability density function (pdf) p(y|x) or likelihood function,
where y and x are a the sequences of data at the channel output and channel input,
respectively, then

x̂ = arg max
x
p(y|x) (2.6)

is called the maximum likelihood (ML) decoder [Nus15]. For general channels, the
following issues can be associated with (2.6)

1. The likelihood function may not be known or not available in closed form.

2. Depending on the length of the sequences y and x and the size of the alphabet,
the search space can become huge rapidly.

In order to address these problems, a multitude of decoder architectures has been
developed like sequence- and symbol-based algorithms, e.g., the Viterbi algorithm
[Vit67], the Bahl-Cocke-Jelinek-Raviv-algorithm (BCJR) [BCJR74], and iterative algo-
rithms. The energy consumption estimation in [Lan17, Chapter 2.1] has been made
based on an iterative decoder for low density parity check (LDPC) codes, which are
for example used in 5G New Radio [RK18], yielding an estimate of 1116 mW for a
communication system operating at 180 GHz with 20 GHz bandwidth.

Recently, interest in decoder architectures based on neural networks (NNs) is grow-
ing since an NN could even address the problem of an unkown likelihood function by
learning it. NN-based decoders are considered to be efficient during run-time but to
consume more energy during training phase. In conclusion, any modulation scheme
that seeks to relieve the expense of energy in the transceiver, must consider the price
of decoder complexity.

2.1.4 Link Budget
As outlined previously, this work focuses on the scenario of ultra-short range communi-
cation of high data rates with low energy consumption per transmitted bit. Specifically,
we consider line-of-sight (LOS) transmission over a range of several centimeters. In
[FDC+19], based on measured and estimated hardware parameters, a link budget
calculation is made for transmitting at 180 GHz carrier frequency over a distance of ap-
proximately 2 to 10 cm for wireless communication within the chassis of a small-scale
high performance compute node. Since all transceivers have fixed position, antenna
arrays with a passive beam-switching network are used. Based on this architecture and
assuming that the PA can provide 6 dBm output power, worst case (i.e., for the longest
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link) receive signal-to-noise ratio (SNR) estimates of 13.6 dB are obtained. Thus, we
are not interested in achievable data rates in the low-SNR regime of 0 dB or below but
are rather looking for characterizing the achievable rate for SNRs values above of 5 dB
or even 10 dB.

2.2 Relevant Signaling Concepts for 1-Bit
Quantization

This section introduces methods and concepts, which are relevant in the context of
1-bit quantized wireless communication and which are applied in this work.

2.2.1 Faster-Than-Nyquist Signaling
Since its first introduction by Mazo in 1975 [Maz75] faster-than-Nyquist (FTN) sig-
naling has received wide attention [ARO13; ET13; ZGQ+19]. The concept is directly
related to the channel impulse response h(t), which usually is orthogonal w.r.t. to shifts
of multiples of the symbol duration Tsymb. These pulses are also called Nyquist pulses.
Due to the orthogonality, at the optimal sampling instances, neighboring symbols are
invisible to each other and there is no intersymbol interference (ISI). If TNyq is the
Nyquist interval, i.e., the time interval w.r.t. which h(t) is orthogonal, and the signaling
rate fsig = 1/Tsymb is increased beyond 1/TNyq, we speak of FTN signaling. Then, the
FTN-factor is

MFTN = TNyq
Tsymb

= fsigTNyq. (2.7)

Originally, [Maz75] showed for binary transmission using sinc-pulses that the minimum
distance dmin does not decrease below 2 (its value in the case of orthogonality) until
MFTN ≈ 1.247, meaning a 25 % increase of data rate. The limit, at which dmin falls
below its orthogonal value, is known as Mazo limit. For other Nyquist-pulses like,
e.g., raised cosine (RC) pulses, with some excess bandwidth beyond 1/TNyq and, thus,
less ISI due to a faster decay of h(t), data rate can be increased by 30 % to 100 % at
the same cost w.r.t. bandwidth and energy per bit. However, this is at the expense
of a more complex receiver architecture, which is needed to resolve the ISI [ARO13;
ET13]. The concept of the Mazo limit can be applied to non-binary transmission,
non-orthogonal pulses, and non-linear modulation [ARO13]. It is known that the FTN
capacity is

CFTN =
∫ ∞

0
log2

(
1 + 2P

N0
|H(f)|2

)
dfbits/s (2.8)

where P is the signal power and H(f) is its spectral distribution, normalized to unit
integral over the real line. CFTN exceeds the orthogonal pulse linear modulation
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[...1, 1, −1, −1, −1, 1, 1, −1, ...] RLL seq.

[...1, 0, 1, 0, 0, 1, 0, 1, ...] dk-seq.

a)

1 2 d d+1

po

1− po

b)

Fig. 2.3. Illustration of a) the conversion of a dk-sequence to a RLL sequence and b) the state diagram
of a d-sequence (k →∞)

capacity for all except sinc-pulses [RA09]. The potential of augmenting the amount of
data transmitted in a given time and with a given bandwidth, makes FTN signaling
appealing for communication with 1-bit quantization in order to increase the achievable
rate.

2.2.2 Runlength Limited Sequences
The concept of runlength limited (RLL) sequences has been widely studied in the
field of magnetic and optical recording [Imm90]. Hereby, runlength refers to the
number of consecutive alike symbols. We denote the runlength of the kth run of an
RLL sequence by ak. It is limited by two constraints: a minimum and a maximum
runlength, respectively. RLL sequences are closely related to so called dk-sequences,
which are binary sequences where every one has to be followed by at least drll and at
most krll zeros. RLL sequences can be generated from dk-sequences by non-return-to-
zero inverse (NRZI) coding, where every one translates into a zero-crossing. This is
illustrated in Fig. 2.3a).

The minimum and maximum runlength then becomes amin = drll + 1 and krll + 1,
respectively. The minimum runlength amin controls the maximum transition frequency.
Therefore, it has a major impact on the spectrum of the signal and, thus, the ISI
when the signal is conveyed over a bandlimited channel. The maximum runlength on
the other hand is relevant for facilitating clock recovery. In our work we are mainly
interested in quantifying the impact of bandlimitation and, thus, ISI such that we
consider krll →∞. Fig. 2.3b) depicts the state diagram, which can be used to describe
the resulting d-sequence, where the probability of returning to state one is given by po,
which results in the occurrence of symbol one.

The entropy maximizing distribution for a positive discrete random variable with
given expectation is the geometric distribution [Kap93, Section 1.9.32], which means
that for max-entropic RLL sequences the runlength ak is geometrically distributed
[Imm90]. The capacity per sample of a d-sequence is given by [Imm90] as

Crll(drll,∞) = log2 λrll (2.9)
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Tab. 2.2. Capacity per sample, average runlength, 90 % power containment bandwidth and corre-
sponding spectral efficiency of RLL sequences weighted with a triangular pulse of duration
2Ts

amin 1 2 3 4 5 6
Crll(amin) [bit] 1 0.6942 0.5515 0.4650 0.4057 0.3620

E[ak] 2 3.618 5.148 6.63 8.08 9.506
B90%Ts 0.849 0.507 0.375 0.311 0.276 0.255

Crll(amin)
B90%Ts

[bit/s/Hz] 1.178 1.369 1.472 1.495 1.469 1.417

with λrll being the largest real root of zdrll+1−zdrll−1 = 0. For max-entropic sequences,
which achieve Crll, the spectrum of the d-sequence is given as [ZW88; BLDF16]

Srll(ω) = 1
E[ak] sin2 (ω

2
) 1−

∣∣∣ ej(drll+1)ω

λrll
drll (λrll−ejω)

∣∣∣2∣∣∣1 + ej(drll+1)ω

λrll
drll (λrll−ejω)

∣∣∣2 . (2.10)

Intuitively, Srll(ω) becomes narrower with increasing amin since the maximum transi-
tion frequency decreases. Thus, the runlength coding reduces the effective two-sided
bandwidth 2W of the transmit signal such that it is favorable to choose channel filters
with a bandwidth 2W < 1

Ts
. It is known that from a system design point of view this

is equivalent to increasing the signaling rate while maintaining the filter bandwidth
[ARO13], i.e., FTN signaling. The spectral efficiency of such an FTN-RLL system
depends on how fast Crll(drll,∞) decreases compared to the reduction of the occupied
bandwidth.

Table 2.2 illustrates the decrease of the capacity per sample and the corresponding
increase of the average runlength E[ak] with amin. Furthermore, the normalized 90 %
power containment bandwidth B90%Ts is given assuming that the RLL sequence is
transmitted using a triangular pulse of duration 2Ts. As a result, we see an optimum
of the maximum spectral efficiency w.r.t. to the 90 % power containment bandwidth
Crll(amin)
B90%Ts

at amin = 4. This indicates that RLL coding in combination with FTN signaling
is a suitable way of boosting the spectral efficiency of a communication system that
is restricted to a resolution of one bit at the ADC. We will see this confirmed in
Section 2.3 as well as in the following chapters. Note, however, that the toy example
in Table 2.2 does neither consider noise nor ISI due to suppression of out-of-band
emissions. This will be considered in more detail in Section 4.1.

2.2.3 Intersymbol Interference
From the previous sections it becomes clear that the treatment and modeling of
ISI is very relevant if one would like to apply these concepts to a communication
system. Sequence estimation techniques are required at the receiver for detection and
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Fig. 2.4. Simplified baseband system model of a noise free bandlimited 1-bit quantized communication
channel

it has been shown also in the context of 1-bit quantized communication systems that
appropriate sequence design is beneficial in terms of achievable rate, cf. Section 2.3.2
or [LDF18; Lan17]. Furthermore, Section 2.3.2 presents a technique how sequence
estimation, namely the BCJR, can be used to evaluate a lower bound on the achievable
rate. However, as discussed below depending on the parameter choices this quickly
becomes computational intensive.

Parts of this work are concerned with deriving low-complexity frameworks to eval-
uate achievable rates or spectral efficiencies of bandlimited 1-bit quantized wireless
communication channels. In order to achieve this, we choose to model ISI as noise.
Fig. 2.4 depicts a simplified baseband system model of a noise free bandlimited 1-bit
quantized communication channel. Here, h(t) is the overall channel impulse response,
which is typically a lowpass (LP) filter. The distortion caused by LP filtering is then

x̃(t) = x̂(t)− x(t). (2.11)

The more energy of x(t) is removed by filtering, the stronger the ISI x̃(t) becomes. The
amount of power removed by LP filtering can be used to quantify the amount of ISI as

E
[
|x̃(t)|2

]
= E

[
|x̂(t)− x(t)|2

]
= 1

2π

∫ ∞
−∞

S x̂(ω)− Sx(ω)dω (2.12)

= 1
2π

∫ ∞
−∞

(|H(ω)|2 − 1)Sx(ω)dω (2.13)

where Sx(ω) and S x̂(ω) are the power spectral density (PSD) of x(t) and x̂(t), respec-
tively, and H(ω) is the Fourier transform of h(t).

2.3 Achievable Rate with 1-Bit Quantization
This section elaborates on previous results regarding the achievable data rate when
considering systems with 1-bit quantization. This includes theoretical bounds and
simulation-based approaches to evaluate the achievable rate. Furthermore, known
results and definitions w.r.t. to the trade-off between time and amplitude resolution
are discussed.
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2.3.1 Time vs. Amplitude Domain
The trade-off between resolution in amplitude and resolution in time as illustrated from
a hardware perspective in Section 2.1.2, is equally of interest from a communication
and information theoretic point of view. In order to analyze this trade-off, early works
[Gil93; Sha94] consider noise free scenarios and are based on system models similar
to the one depicted in Fig. 2.4. Thereby a bandlimited process x̂(t), which may be
generated by filtering an input process x(t) using an ideal LP filter h(t) with one-sided
bandwidth W , is fed to a limiter or 1-bit quantizer. This limiter realizes what we will
further refer to as 1-bit quantization function

Q1(x) =

1 if x ≥ 0

−1 if x < 0
. (2.14)

The output of the limiter is fed into a sampling unit, which maps the signal onto a
discrete time grid. Given a finite signal bandwidth 2W and according to the sampling
frequency fs, the following cases can be distinguished

• Nyquist sampling (fs = 2W ): According to the Nyquist–Shannon sampling
theorem [Sha49], an unquantized signal is completely described by its values
at the sampling instances. The sampled signal provides a sufficient statistic
and no information is lost due to sampling. Only the information loss due to
quantization has to be considered.

• Sub-Nyquist sampling (fs < 2W ): Although information is lost due to sam-
pling, this is still an interesting case especially in the context of rate-distortion
theory and compressed sensing. If, for example, distortion is introduced due to
quantization, the sampling rate can be reduced below the Nyquist rate without a
penalty w.r.t. the rate-distortion trade-off [KGE15]. In the context of this work,
this case is not of interest and merely mentioned for the sake of completeness.

• Oversampling (fs > 2W ): In the case of unquantized signals, oversampling
would provide only redundant information, however, due to coarse quantization,
the additional samples can help to compensate for the amplitude information lost
through the limiter. The oversampling ratio (OSR) w.r.t. the signal bandwidth is
defined as

Mosr,f = fs
2W . (2.15)

Another option to define oversampling is w.r.t. the symbol duration, i.e.,

Mosr,t = Tsymb
Ts

(2.16)
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where Ts is the sampling period. We will refer to this case as temporally oversampled.
Oversampling and temporal oversampling can be equivalent. Consider a transmission
using Nyquist signaling and ideal LP filters with symbol duration Tsymb = 1

2W and
sampling period Ts. Then

Mosr,t = Tsymb
Ts

= fs
2W = Mosr,f . (2.17)

This changes when considering FTN signaling as introduced in Section 2.2.1. For an
ideal LP with one-sided bandwidth W , we have TNyq = 1

2W . Thus, from (2.7) it can
be seen that there is a connection between FTN signaling and oversampling, which
yields for the relation of signaling and sampling rate

fs
fsig

= Mosr,f2W
MFTN2W = Mosr,f

MFTN
. (2.18)

If now Mosr,f = MFTN > 1, then fs = fsig and the system is oversampled w.r.t. its
bandwidth but not w.r.t. the symbol duration. Both types of oversampling are used in
this work and it will be indicated in the corresponding chapter, whether oversampling
or temporal oversampling is applied.

Performance Results for Low-Resolution Quantizers and Nyquist Sampling

In the case of Nyquist signaling and Nyquist sampling, the maximum achievable rate
is clearly limited by the quantizer resolution yielding

Rmax = b

TNyq
. (2.19)

The performance loss by decreasing the quantizer resolution under finite SNR and
different communication channels has been subject to various studies. In [SDM09],
the impact of low-precision ADCs (1-3 bits) was analyzed with focus on Nyquist
sampling for communication over an additive white Gaussian noise (AWGN) channel.
It results that the optimal input distribution does not need to have more than 2b + 1
mass points. Furthermore, numerical computations show that up to moderate SNRs
of 20 dB, quantization with 2 or 3 bits only yields 10-20 % reduction in spectral
efficiency compared to unquantized observations and that fractionally spaced samples
can provide small performance gains. In [ZSK12], it was shown that in the case of ISI
channels, uniform quantizers are in general suboptimal. Moreover, a framework for
the design of low-precision quantizers was developed that maximize a lower bound on
the information rate for finite SNR. The ergodic capacity of Rayleigh fading channels
with 1-bit quantization at the receiver was analyzed in [KF10].
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Theoretical Results on Performance Limits with Oversampling

First results focus on noise free scenarios. In [Gil93], the achievable rate of a two-fold
oversampled bandlimited process is given when using a Gaussian source as well as a
discrete source with a four-letter alphabet and equally likely symbols. It is found that
the achievable rate is 1.072 bits per Nyquist interval (bpni) for the Gaussian source and
1.049 bpni for the discrete source using evenly spaced samples. Based on one example,
it is further shown that non-evenly spaced samples have the potential to increase the
achievable rate. For the specific example, 1.089 and 1.063 bpni are obtained for the
Gaussian and the discrete source, respectively.

Lower bounds on the achievable rate when oversampling a bandlimited process are
first given in [Sha94] based on Zakai bandlimited processes. The bounds are

ILB,1(x̂; y) = log2(Mosr + 1) bpni (2.20)

ILB,2(x̂; y) =

Mosr log2 2 bpni Mosr = 1, 2

log2Mosr + (Mosr − 1) log2

(
Mosr
Mosr−1

)
bpni Mosr > 2

(2.21)

where the index (·)LB denotes the lower bound. The expression in (2.20) is at the same
time an upper bound on the achievable rate when quantizing any input process in
amplitude using a quantizer with Mosr thresholds, which illustrates well the potential
of trading amplitude resolution for time resolution. Interesting questions arising from
this idea include performance under noise as well as the design of suitable signaling
schemes.

Considering the low SNR domain, in [KL10] a lower bound on the capacity per
unit-cost, i.e., the slope of the capacity-vs-input-power curve at zero, is obtained for
two-fold oversampling. It shows an increase of at least 17 % compared to Nyquist
sampling. Considering more general SNR ranges, in [KF12] capacity expressions for
non-bandlimited 1-bit quantized oversampled channels are obtained by numerical
computation. Moreover, closed-form expression for the high-SNR-limit and an high-
OSR-approximation are given. Promising results w.r.t. the achievable rate are obtained
by computation using the cutting-plane algorithm, e.g., 4 bits per channel use (bpcu)
for Mosr = 16 in the high-SNR. However, the study does not take into account that
in practice independent noise samples at the receiver (as assumed) would lead to
decreasing SNR with increasing OSR since the filter bandwidth would need to be
increased. It further finds that transmission under coarse quantization can benefit
from random dithering yielding higher achievable rates in the mid- than the high-SNR
domain. Dithering has also found to be beneficial [SDF19a; SDF19b] w.r.t. to the
performance limits of channel estimation for 1-bit quantized, oversampled channels.
Based on derivation of the Fisher information and the Cramér-Rao lower bound, it has
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been shown that phase and timing dithering can improve the respective estimation
performance.

In [Zha12], a framework was derived for analyzing channels with non-linear distor-
tion using the performance measure of generalized mutual information (GMI) with
a Gaussian codebook ensemble and nearest-neighbor decoding. It is shown that that
oversampling increases the GMI for all SNRs. Furthermore, w.r.t. 1-bit quantized
channels, the GMI can exceed 1 bpcu by approximately 0.1 bpcu in the high-SNR limit.
These rather small improvements can be explained by the fact that the GMI represents
a mismatched capacity [GLT00], where the tightness of the lower bound depends
strongly on the choice of the input distribution [Zha12]. In [DZZ19], a transceiver
is designed based on truncation of the pulses of infinite duration in [Sha94]. By
employing an integrate-and-dump filter at the receiver, which is in general suboptimal,
a discrete memoryless channel (DMC) model can be obtained facilitating the analysis.
The study provides analytical results in the high-SNR limit as well as numerical results
on the achievable rate showing that reliable communication at rates exceeding one
bit per Nyquist interval is possible in the mid-SNR domain and that performance
comparable to (2.20) can be achieved. Where applicable, the results reviewed in this
section have been included in Fig. 2.5. Note that the results in [DZZ19] are not strictly
bandlimited due to truncation of the pulses to integer multiples of the Nyquist interval
iTNyq. For i → ∞, the impact of truncation vanishes and the achievable rate in the
high-SNR limit converges to (2.20).

2.3.2 Simulation-based Performance Evaluation of
Oversampled 1-bit Quantized Communication

Performance evaluation of any communication scheme requires the choice of a perfor-
mance metric. Very common metrics chosen are the bit error rate (BER) performance
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and the achievable rate or mutual information rate, which can both be evaluated by
Monte-Carlo simulation. Hereby, the main difference between the latter two is that
achievable rate requires the existence of a coding theorem. While BER-simulations are
comparably straight forward to implement, for obtaining the information rate some
thought is required.

Obtaining the Mutual Information Rate by Simulation

Consider two random processes A and D. If A and D are discrete, the mutual
information I between two random vectors A(K) and D(K) of length K is defined as

I(A(K); D(K)) =
∑

(a,d)∈AK×DK
pA,D(a,d) log2

pA,D(a,d)
pA(a)pD(d) (2.22)

where pA,D(a,d) is their joint and pA(a) and pD(d) are their individual probability
distributions, respectively. Furthermore, AK and DK are the corresponding alphabets.
The mutual information rate I ′, i.e., the amount of data transmitted per unit time is
then given as

I ′ (A; D) = lim
K→∞

1
K

I(A(K); D(K)) = H ′(D)−H ′(D|A) (2.23)

where H ′ is the entropy rate. When oversampling w.r.t. the signaling rate is used,
every symbol Ak at the input generates a vector of observations Dk at the channel
output. For stationary processes, applying the Shannon-McMillan-Breimann theorem
to (2.23), we have

I ′ (A; D) = lim
K→∞

{
− 1
K

log2 p(D(K))
}
− lim
K→∞

{
− 1
K

log2 p(D(K)|A(K))
}
. (2.24)

For independent and identically distributed (i.i.d.) input symbols, it is known that
independent channel realizations yield a lower bound on the mutual information rate

I ′ (A; D) = lim
K→∞

1
K

I(A(K); D(K)) ≥ I(Ak; Dk) (2.25)

where k is the time index of the current symbol. Thus, a memoryless channel results
and (2.24) can be obtained by Monte-Carlo simulation on symbol basis. If, however,
the channel does have memory, an algorithm to obtain the mutual information rate
between A and D is described in [ALV+06].

Under the assumption that the channel is ergodic and can be represented by a
finite state machine (FSM), [ALV+06] shows that I ′ (A; D) can be obtained via an
algorithm based on generating two very long sequences AK and DK and evaluating
(2.24) numerically. If the channel law is not exactly known or memory-wise too
computationally expensive, an auxiliary channel law satisfying p̃(·) > 0 whenever
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Fig. 2.6. Actual and auxiliary channel for simulation-based evaluation of the achievable rate

p(·) > 0 will yield a lower bound on I ′ (A; D) [ALV+06]. Thus, limiting the channel
memory w.r.t. input and output by L and N symbols, respectively, using

p̃(Dk|Ak,Dk−1) = p(Dk|Akk−L−N ,Dk−1
k−N ) (2.26)

yields an auxiliary channel lower bound. This is illustrated in Fig. 2.6. Note that the
accuracy of the results depends on the length K of the sampled sequences. For the
computation of p̃(DK) and p̃(DK |AK), the forward recursion of the BCJR [BCJR74]
can be used based on (2.26). Hereby the computational complexity strongly depends
on the number of states in the FSM and, thus, the memory L + N . Based on the
auxiliary channel, [ALV+06] also gives an upper bound on the mutual information
rate. In [LF14a], this technique is applied specifically to oversampled 1-bit quantized
communication channels confirming the benefit of oversampling in terms of the
achievable rate in this context.

For the evaluation of (2.24), assuming 1-bit quantization and oversampling, the
transition probabilities in the BCJR need to be obtained via numerical integration
over a multivariate distribution. The probability that the kth oversampled, quantized
received vector is the ith element in DMosr when the jth element in A was sent, is

Pr(Dk = Di|Ak = Aj) =
∫
· · ·
∫

DMosr
i

pr|A(r|Aj)dr (2.27)

where r is the unquantized received vector and DMosr
i is the subspace of RMosr which is

mapped to di. While (2.27) can be computed offline, i.e., prior to the execution of the
BCJR, for every combination of input and output symbol, it needs to be repeated for
every slight variation of the channel. Its dimension is Mosr for real channels and 2Mosr

for complex channels.

Simulation-based Performance Results

The BER performance has been investigated for example in [HLF14b] based on
amplitude shift keying (ASK) transmission over an ISI channel using a BCJR decoder.
It is shown that the BER can be improved by oversampling and a specific design of the
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input distribution. The optimization of the input distribution was refined in [SLF15].
However, the choice of the input distribution will have an impact on the achievable
data rate, which is not visible directly when considering BERs. Thus, the mutual
information rate is a widely used metric, e.g., in [HLF14a] where with (2.25) the
benefit of FTN signaling for i.i.d. 4- and 16-quadrature amplitude modulation (QAM)
is shown for a 1-bit quantized channel. Furthermore, [LDF18] summarizes results
on the achievable rate for different signaling strategies, namely optimized sequences
of ASK symbols [LF14b], as well as RLL sequences and sequences optimized using
the Blahut-Arimoto algorithm [LDF15]. Due to sequence design and FTN signaling,
the achievable rate cannot be fairly compared in bpcu but either in bits per Nyquist
interval or as spectral efficiencies. For the latter, a reference bandwidth is required,
e.g., the 3dB-bandwidth or a power containment bandwidth. In [LDF18] the 90 %
power containment bandwidth and 95 % power containment bandwidth are chosen,
while in [DZZ19] (cf. Section 2.3.1), the 95 % power containment bandwidth is
chosen for spectral efficiency evaluation. Both show spectral efficiencies comparable
to (2.20). In [LDF17], the signaling strategies in [LDF15] are applied to bandlimited
channels, which reduces the achievable rate but still achieves more than 1 bits per
Nyquist interval.

Furthermore, channel filter optimization was carried out based on compliance with
a spectral mask and using FTN signaling [BLDF16] yielding 10 to 20 % performance
improvements in terms of achievable rate compared to Gaussian shaped filtering. In
[LDdF18], CPM is considered for data transmission over 1-bit quantized oversampled
channels. Also for this case oversampling is beneficial as the additional samples provide
information on phase transitions, which convey the information. The resulting spectral
efficiency for the 90 % power containment bandwidth is slightly lower compared to the
previous studies while gaining the advantages of the constant envelope modulation,
i.e., the option of using non-linear PAs, cf. Section 2.1.1.

For high SNR, the spectral efficiencies of the different approaches are compared in
Fig. 2.7 based on the effective oversampling ratio

Mosr,eff = Mosr,t
BxTsymb

= Mosr,tMFTN
BxTNyq

(2.28)

where Bx is the bandwidth measure applied. Note that the results are based on
different bandwidth measures; if not stated otherwise Bx = B90% is the 90 % power
containment bandwidth. Fig. 2.7 especially underlines the suitability of FTN signaling
for increasing the spectral efficiency under 1-bit quantization.
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Fig. 2.7. Simulation-based results on the achievable rate of oversampled 1-bit quantized communication
strategies in the high-SNR regime (∗Bx = B3dB, ?Bx = B95%, pulse length of iTNyq)

2.3.3 1-Bit Quantization for Multiple-Input Multiple-Output
Systems

So-called multiple-input multiple-output (MIMO) channels are very attractive espe-
cially for communication in the range of millimeter wave (mmWave) carrier frequen-
cies. This is due to the small size of antennas at these frequencies allowing for
reasonably sized antenna arrays and the larger bandwidths available in mmWave
regime, which both boost the achievable data rate. However, this makes mmWave
MIMO channels even more affected by the ADC-bottleneck discussed in Section 2.1.2
since not only one but many fast ADCs are required for the many radio frequency (RF)
chains. This is reflected in a multitude of research regarding communication over
MIMO channels using few-bit and especially 1-bit quantizers. Research questions range
from beam-forming strategies and pre-coding, over channel estimation, to detection
performance and achievable data rates [ZDL+18]. Fig. 2.8 depicts a typical system
model with Nt transmit and Nr receive antennas, which can be summarized as

yk = Q1 (HCxk + n̂k) . (2.29)

Here, y is the Nr × 1 sampled receive vector, H is the channel state matrix, C is the
precoding operation, x is the Nt × 1 transmit vector, and n̂ is the Nr × 1 sampled
and filtered AWGN vector. Variations of this model include the number of RF chains
per quantizer [RPSN18] or a small number of high-resolution quantizers scattered in-
between the 1-bit quantizers [PS17]. Other works consider multi-user MIMO channels,
e.g., [JDC+17; ÜY18; MCLH17]. Mostly, the analysis is focused on Nyquist-signaling
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Fig. 2.8. Typical system model for investigations on 1-bit quantized multiple-input multiple-output
channels

and sampling, however, temporal oversampling is considered for example in [GBLV17;
ÜY18; SLd18]. The performance impact of spatial oversampling is investigated in
[HL17].

With respect to the achievable rate, simulation-based performance evaluations
are plenty, e.g, [JDC+17; RPL14; HL17], where the latter is considering spatial
oversampling. Analytical results can be found for example in [MN07; MN12] and
[MH15]. A common approach for analyzing the achievable rate, e.g., in [MN12;
DJM+17] is based on Bussgang’s decomposition [Bus52]. This means that the output
of the nonlinear quantizer is decomposed into a desired signal component and an
uncorrelated distortion, which represents a linearization using an effective channel
H′. In [MH15], the focus is on the high-SNR capacity and among other results,
lower bounds on the capacity of the 1-bit quantized MIMO channel are given based
on channel inversion (CI) and the additive quantization noise model (AQNM). For
quantitative comparison of selected results the reader is referred to Section 4.2.
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On the Achievable Rate of the
1-Bit Quantized
Continuous-Time Channel

3

In this chapter, we study the achievable rate of the 1-bit quantized continuous-time
additive white Gaussian noise (AWGN) channel. Continuous-time hereby means
infinite resolution in time at the receiver and can be interpreted as the limiting case
of increasing the oversampling rate to infinity. Like for the AWGN channel capacity,
which has been given by Shannon [Sha48], without time quantization we have no
quantization in the information carrying dimension. However, the non-linearity
imposed by 1-bit quantization makes the analysis more involved.

We therefore base the analysis on a specially constructed input signal. Since with
1-bit quantization the information is effectively transmitted in the zero-crossings (ZCs)
of the transmitted signal, we encode the data into the distances of these ZCs. This
approach has similarities to the channel considered in [AV96]. The slope of the signal
at the ZC is then limited by the available bandwidth, which is why we will consider
a transmission pulse shaping the transition and, thus, to some extend the spectrum.
We will see that besides well-known magnitude errors in the transmitted symbols this
channel is prone to synchronization errors (insertions and deletions). Furthermore,
the bandlimitation requires a model of the intersymbol interference (ISI), which we
will base on Section 2.2.3.

Analytic expressions for upper and lower bounds on the mutual information rate are
obtained based on our specific signaling scheme, which can be used as benchmarks for
1-bit quantized communication systems and gives insights on design choices. In order
to treat the problem analytically, assumptions and approximations are needed, which
are justified – if not by rigorous proof – by numerical computations and simulations.
For a special case of a sine-shaped transition waveform, an early model has been
published in [BDF17a]. Parts of this chapter with the results for the special case of
a sine-shaped transition waveform have been submitted for publication to EURASIP
Journal for Wireless Communication and Networks [BDFa].
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Fig. 3.1. System model for the bandlimited 1-bit quantized continuous-time channel

3.1 System Model
The analysis is based on the system model depicted in Fig. 3.1. Given a 1-bit quantizer,
we must recover all information from the sequence of time instants of ZCs1. Thus,
the channel input and output vectors A(K) = [A1, ...,AK ]T and D(M) = [D1, ...,DM ]T

contain the temporal distances of two consecutive ZCs of the signal x(t) and the
received signal r(t), respectively. As the resolution in time is infinite, Ak and Dm are
continuous random variables. Note that K is not necessarily equal to M since the
noise can add or remove ZCs.

3.1.1 Signal Structure and Input Distribution
The mapping between the random vector A(K) and the continuous-time signal x(t) is
depicted in Fig. 3.2. The signal x(t) alternates between two levels ±

√
P̂ with P̂ being

the peak power of x(t). The time when the kth transition between the levels ±
√
P̂

begins, is defined as

Tk =
k∑
i=1

Ai + t0. (3.1)

where without loss of generality we set t0 = 0. In order to reduce the bandwidth of
the signal, the transitions between the signal levels are controlled by a pulse shape

g(t) =
(

1 + ζ

(
t− β

2

))
· 1[0,β](t) + 2 · 1[β,∞)(t) (3.2)

where ζ(t) is an odd function between (−β/2,−1) and (β/2, 1) and zero otherwise.
Furthermore, 1[u,v](x) is the indicator function being one in the interval [u, v] and zero
otherwise. The resulting time instant of the kth ZC is

T′k = Tk + β

2 . (3.3)

1One additional bit is carried by the sign of the first sample. However, its effect on the mutual
information rate between channel input and output can be neglected as it converges to zero for
infinite blocklength.
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Fig. 3.2. Mapping input sequence A(K) to x(t) and transmit signal x̂(t) for a sine-shaped transition

This can be seen in Fig. 3.2, where the solid curve depicts x(t). The transition from the
level

√
P̂ begins at time Tk = T′k − β/2 and follows ζ(t) – in this example sine-shaped –

until time Tk + β, where the level is maintained until time Tk+1. Thus, ζ(t) describes
the waveform and β the duration of the transition.

The input symbols Ak are the temporal distances between the kth and the (k − 1)th
ZC of x(t). The signal x(t) is given by the superposition of pulses g(t) with alternating
signs as

x(t) =
(

K∑
k=1

√
P̂ (−1)kg(t− Tk)

)
+
√
P̂ . (3.4)

The Ak are considered to be independent and identically exponentially distributed
with minimum length β, i.e.,

pAk(a) = λe−λ(a−β)
1[β,∞)(a). (3.5)

The distribution in (3.5) is chosen since it is the entropy maximizing distribution for
positive continuous random variables with mean Tavg. The mean symbol duration of
Ak is then given by

Tavg = 1
λ

+ β (3.6)

and the variance of the input symbols is

σ2
A = 1/λ2. (3.7)

The distribution of the Tk or any other sum L of a subset of the Ak is then the Erlang-
distribution, which is known to be the distribution of a sum of exponentially distributed
random variables and which is a special case of the Gamma-distribution. Thus,

pTk(t) =λke−λ(t−kβ) (t− kβ)k−1

(k − 1)! , t ≥ kβ. (3.8)

3.1 System Model 27



By choosing β to be the minimum value of the Ak, we can guarantee that x(t) reaches
the level

√
P̂ between two transitions. While this is not necessarily capacity-achieving,

it facilitates the derivation of a lower bound on the mutual information rate.

3.1.2 Channel Model
The signal x(t) is lowpass (LP)-filtered yielding the transmit signal x̂(t), which is
transmitted over an AWGN channel. The LP-filters at transmitter and receiver are
considered to be ideal LPes with one-sided bandwidth W and amplitude one. The
available bandwidth W is related to the transition time β, where the latter is chosen
such that

β = 1
2W . (3.9)

Then, in the limiting case of λ→∞, x(t) has one-sided signal bandwidth W . However,
for λ <∞ the signal x(t) is not strictly bandlimited, such that a distortion

x̃(t) = x̂(t)− x(t) (3.10)

is introduced by LP-filtering. Further implications of (3.9) will be discussed in Sec-
tions 3.1.3 and Appendix A.2. The relation between the channel bandwidth and the
randomness at the channel input is captured via the normalized bandwidth

κ = W/λ. (3.11)

The filtered transmit signal x̂(t) is depicted in Fig. 3.2 as the dash-dotted curve. It
can be seen that the main effect of filtering is a reduced slope at the ZCs as well
overshoot and ringing w.r.t. the levels ±

√
P̂ . The filtered signal x̂(t) can be obtained

by superposition, analogous to (3.4), of the filtered transmit pulses

ĝ(t) = 1
2π

∫ 2πW

−2πW
G(ω)ejωtdω (3.12)

where

G(ω) =
∫ ∞

0
g(t)e−jωtdt (3.13)

is the Fourier transformation of the waveform g(t) in (3.2). The distortion x̃(t) has the
variance

σ2
x̃ = E

[
|x̂(t)− x(t)|2

]
= 1
π

∫ ∞
2πW

Sx(ω)dω (3.14)
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where Sx(ω) is the power spectral density (PSD) of x(t). The resulting transmit power
of the system is Px̂ = P − σ2

x̃, where P is the average power of x(t). It is given by

P = P̂

Tavg

(∫ β

0
ζ2
(
t− β

2

)
dt+ 1

λ

)
= P̂

m + 2κ
1 + 2κ (3.15)

where m captures the impact of the transition waveform by integration over ζ2(t). At
the receiver, LP-filtering ensures bandlimitation of the noise and the demapper realizes
the conversion between the noisy received signal r(t) and the sequence D(M) of ZC
distances. The received signal after quantization and LP-filtering is given by

y(t) = Q1(r(t)) = Q1(x̂(t) + n̂(t)) (3.16)

where Q1(·) denotes the 1-bit quantization function, cf. (2.14). Here, n̂(t) is the
filtered additive white Gaussian noise n(t) with mean zero and PSD N0/2. Its variance,
i.e., the total in-band noise power, is

σ2
n̂ = N0W (3.17)

and its PSD is given by

Sn̂(f) =

N0/2 for |f | ≤W

0 otherwise
. (3.18)

The total distortion z(t) = r(t)− x(t) between the designed signal x(t) and the received
signal r(t) results to

z(t) = n̂(t) + x̃(t). (3.19)

Note that despite the deterministic nature of the filtering, it is not clear yet if and
how the resulting ISI can be equalized at the receiver given that 1-bit quantization
does not provide a sufficient statistic. For the purpose of lower-bounding the mutual
information rate, we thus treat the ISI as noise, cf. Section 2.2.3. The implication of
this approach are discussed in more detail in the corresponding sections, especially
in Section 3.1.5. On the other hand, an upper bound on the achievable rate can be
obtained by not considering the filter distortion.

Furthermore, we only obtain an upper and a lower bound on σ2
x̃, cf. Section 3.1.4,

and therefore we cannot evaluate the exact transmit power Px̂. Hence, the signal-to-
noise ratio (SNR) is defined w.r.t. x(t) as

ρ = P

N0W
. (3.20)
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3.1.3 Error Events
When transmitting the signal x(t) over the channel described in Section 3.1.2, which
includes LP-distortion and AWGN, three types of errors can occur:

• shifts of ZCs, which lead to magnitude errors of the received symbols

• insertion of ZC pairs, which cause insertions of received symbols

• deletion of ZC pairs, which lead to deletions of received symbols.

To the best of our knowledge, only capacity bounds for binary discrete-time channels
are available for channels with insertions and deletions, e.g., [Gal61; Zig69; FDE11;
DMP07].

The transition time β of the input sequence is matched to the channel bandwidth, cf.
(3.9). Hence, we can assume that the filtered noise process at time instances spaced
by a temporal distance larger than β is uncorrelated and, therefore, the possibility of a
noise event inverting an entire symbol can be neglected. This argument leads to the
conclusion that, given (3.9), deletions do not need to be included in the model. This is
supported by the simulation results given in Appendix A.2.

Thus, the remaining error events are shifts and insertions of ZC. Insertions are
synchronization errors, which prevent that the receiver correctly identifies where
a transmit symbol begins. Information stability and Shannon’s coding theorem for
channels with synchronization errors has been proven by Dobrushin for discrete and
finite random variables [Dob67], although to him "it appears that these restrictions are
not essential". In the case of continuous random processes A and D this problem is still
open and remains for future work.

Given a temporal separation of the two error events (shifts and insertions of ZCs),
we are able to separately evaluate their impact in order to analyze the achievable rate.
This separation is given as long as there are no insertions in a transition interval (TI)
[Tk,Tk + β] and a ZC cannot be shifted out of the TI. The dynamics of the noise within
the TI are limited since the noise is bandlimited with bandwidth 2W , which is matched
to the length β of one TI, cf. (3.9). Therefore, multiple ZCs per TI occur only with very
small probability in the mid-to-high SNR regime. We conduct a numerical evaluation of
curve-crossing problems for Gaussian random processes, which support this argument
for an SNR above 5 dB, see Appendix A.3. In this analysis, x̃(t) is assumed to follow a
Gaussian distribution, cf. Section 3.1.5.

On the other hand, a ZC cannot be shifted out of the TI if the shift introduced by
the noise is smaller than β

2 with high probability. We show in Appendix A.4 that this is
valid for ρ & 10 dB. These assumptions affect the validity region of the bounds derived.
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3.1.4 Some Signal Properties Induced by Filtering
In order to model the impact of the ISI that is caused by LP-distortion, some parameters
are required to quantify the impact of the ISI w.r.t. the relevant error events mentioned
above. In (2.13) the power of the LP-distortion x̃(t) is given. In this chapter due to the
ideal LP-filter this reduces to (3.14), which requires an expression for the spectrum
Sx(ω) of x(t). Based on the definition of x(t) in (3.4), we are able to derive bounds on
the spectrum of x(t) for |ω| > 0 in Appendix A.1. Given any transition waveform ζ(t),
this yields

SX,LB(ω) = P̂ |G(ω)|2

Tavg(1 + 2c(ω)) ≤ SX(ω) ≤ P̂ |G(ω)|2

Tavg
(1 + 2c(ω)) = SX,UB(ω). (3.21)

with
c(ω) = 1√

1 + ω2λ−2 − 1
. (3.22)

Properties of x̃(t) that are of interest are its variance σ2
x̃, cf. (3.14), and later on s′′x̃x̃(0),

which is the second derivative of the auto-correlation function (ACF) of x̃(t) at τ = 0,
see Sections 3.1.5 and 3.2.3. With (3.21), (3.14), and

Γ0 =
∫ ∞

2πW
|G(ω)|2 dω (3.23)

we can bound σ2
x̃ by

σ2
x̃,LB = P̂

(1 + 2c1)πTavg
Γ0 ≤ σ2

x̃ ≤
P̂ (1 + 2c1)
πTavg

Γ0 = σ2
x̃,UB. (3.24)

where c1 is obtained by one further bounding step: c(ω) is monotonically decreasing
w.r.t. |ω| and, hence, for all |ω| ≥ 2πW it holds c(ω) ≤ c(2πW ) = c1.

The ACF of the LP-distortion x̃(t) is given by

sx̃x̃(τ) = 1
π

∫ ∞
2πW

SX(ω) cos(ωτ)dω (3.25)

such that its second derivative is

s′′x̃x̃(τ) = 1
π

∫ ∞
2πW

SX(ω) ∂
2

∂τ2 cos(ωτ)dω. (3.26)

Here, the exchangeability of differentiation and integration has been shown via
Lebesgue’s dominated convergence theorem [Rud87, Theorem 1.34] where the domi-
nating function is f(ω) = ω2SX,UB(ω). Furthermore, an upper bound on SX(ω) results
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in a lower bound on s′′x̃x̃(0) because ∂2

∂τ2 cos(ωτ)
∣∣
τ=0 = −ω2 in (3.26) and since SX(ω)

is positive for all ω. With (3.21) and

Γ2 =
∫ ∞

2πW
ω2 |G(ω)|2 dω (3.27)

we thus can obtain the lower bound

s′′x̃x̃(0) ≥ −(1 + 2c1)P̂
πTavg

Γ2. (3.28)

Furthermore, the description of the filtered pulse ĝ(t) can be tedious since for
t > β the pulse ĝ(t) exhibits the typical ringing, which can be difficult to characterize
compactly. The value

u = (ĝ(β)− 1)
√
P̂ (3.29)

represents the lowest signal level of ĝ(t) for t > β and thus can serve as a lower bound
on ĝ(t) in this region where required. A simplified description for the transition can be
obtained by using the slope of ĝ(t) at t = β/2, which corresponds to the slope of the
filtered version ζ̂(t) of ζ(t) at t = 0. Thus,

ζ̂0 = dζ̂(t)
dt

∣∣
t=0 (3.30)

and with ζ̂(t) = ĝ(t + β/2) − 1, 0 ≤ t ≤ β we can define an approximated version of
ĝ(t) as

ĝappr(t) =


0, t < 0

ζ̂0
(
t− β

2

)
+ 1, 0 ≤ t ≤ β

1 + u√
P̂
, t > β

. (3.31)

3.1.5 Model of the Intersymbol Interference
As mentioned above, for the purpose of lower-bounding the mutual information rate,
we model the ISI as an additional noise component. For this, we approximate its
distribution and obtain the corresponding parameters in this section. The original
sequence x(t) is designed such that there is no ISI. Due to LP-filtering, ĝ(t) shows the
typical ringing such that depending on the temporal distances between the pulses –
given by the data symbols Ak – interference occurs. Our approach to approximate
the ISI distribution is depicted in Fig. 3.3. Starting from ĝappr(t), we already have a
characterization of the impact of filtering on the pulse starting at Tk, which we will
refer to as the kth pulse. It remains to characterize the ISI generated by all neighboring
pulses. Due to the separability of the error events, cf. Section 3.1.3, we divide the time
interval belonging to the kth pulse in a TI and a hold period (HP).
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x̃l(tk), l=k+1
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u
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g(t− Tk)− 1

ĝ(t− Tk)− 1

ĝappr(t− Tk)− 1

(−1)l(ĝ(t− Tl)|l6=k − 1)

Fig. 3.3. ISI model for the kth pulse for transition interval (TI) and hold period (HP): Original pulse
g(t− Tk)− 1, filtered pulse ĝ(t− Tk)− 1 and its approximation ĝappr(t)− 1, and interfering
pulses (−1)l(ĝ(t− Tl)|l 6=k − 1); exemplarily for a sine-shaped transition waveform

In the TI, the filtering does not change the position of the ZC, i.e., the designed
waveform g(t−Tk) and the transmit waveform ĝ(t−Tk) both generate a ZC at Tk+β/2.
However, the ringing of the lth neighboring pulse (−1)lĝ(t − Tl), l 6= k causes an
interference of x̃l(tk,TI = T′k) w.r.t. the kth pulse. In the HP, there is a symmetry
w.r.t. tk,HP = Tk + Ak+1+β

2 , which we exploit to approximate the distribution of the ISI.
Overall, the interfering signal x̃(tk) at time tk ∈ [Tk,Tk+1] can be represented as the
sum of ISI-contributions of all other pulses as

x̃(tk) =
k−1∑
l=1

x̃l(tk)+
K∑

l=k+1
x̃l(tk)= x̃lhs(tk)+x̃rhs(tk). (3.32)

The x̃l(tk) can be obtained via a deterministic mapping as

x̃l(tk) =

(−1)lg̃(
∑k
i=l+1 Ai + t̃k) l < k

(−1)l+1g̃(
∑l
i=k+1 Ai − t̃k + β) l > k

(3.33)

where g̃(t) = ĝ(t)− g(t), t̃k = tk − Tk and the sums

Lmn+1 =
∑m

i=n+1
Ai, m > n (3.34)

follow the Erlang-distribution in (3.8). The two terms x̃lhs(tk) and x̃rhs(tk) are inde-
pendent as the Ak are independent and identically distributed (i.i.d.). Therefore, we
have

p(x̃(tk)) = p(x̃lhs(tk))∗p(x̃rhs(tk)). (3.35)

Unfortunately, the analytical derivation of p(x̃(tk)) becomes infeasible because g̃(t)
cannot be inverted. Moreover, the x̃l(tk) for l > k and l < k, respectively, are not
independent. Thus, the distributions of p(x̃lhs(tk)) and p(x̃lhs(tk)) cannot be obtained
by convolution of the densities p(x̃l(tk)). Hence, we obtain an empirical distribution for
x̃lhs(tk) and x̃rhs(tk) by analyzing 104 sequences A(K) with 2000 interfering pulses each.
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The results are depicted in Fig. 3.4. Due to the symmetry, it is sufficient to analyze
the scenario of an up-crossing symbol2 as shown in Fig. 3.3. As mentioned above, we
consider two time instants of special interest in order to analyze the behavior of the
ISI:

(a) The time instant tk = tk,TI = Tk + β
2 of the ZC of the kth pulse in the TI. Any

distortion here affects the position of the ZC and, thus, the magnitude of the
received symbol.

(b) The middle of the HP tk = tk,HP = Tk + Ak+1+β
2 , where in our model the ISI

can obtain its largest values as discussed below. This is relevant for assuring
synchronization in the receiver as large noise amplitudes here could insert
additional ZCs.

The numerical evaluation is carried out for two exemplaric transition waveforms,
namely a sine-shaped and a linear transition. It will become clear in Section 3.3
that the characteristics of the signal are mainly dominated by the bandwidth W and
that the waveform plays a subordinated role. It is therefore no coincidence that the
simulation results for both waveforms are almost identical.

Case (a) is depicted in Fig. 3.4a) and c). Here, we have with (3.33)

x̃l(tk,TI) =

(−1)lg̃(Lkl+1 + β
2 ) l < k

(−1)l+1g̃(Llk+1 + β
2 ) l > k

. (3.36)

It can be seen from (3.36) that interfering pulses are weighted with inverted signs if
they are separated by the same number of symbols ν from tk,TI, i.e., if they have the
same probability distribution of Lmn+1. Thus, the convolution of the probability density
functions (pdfs) of this pair of (x̃l=k+ν(tk), x̃l=k−ν(tk)) becomes an auto-correlation,
such that if all x̃l(tk) were independent we would expect an even function with mean
zero as result of (3.35). As can be seen in Fig. 3.4a) and c) this still holds for low to
moderate κ. With the bounds on the variance of the ISI obtained below, cf. (3.41)
and (3.24), we observe that the distribution of the ISI can be approximated by a
Gaussian distribution as a worst-case scenario up to ratios κ = W/λ . 3. For larger
κ the simulated distribution starts to exceed the Gaussian distribution based on the
upper bound on the variance of the ISI.

Since we consider that ĝ(t − Tk) is approximated by ĝappr(t − Tk), it can be seen
in Fig. 3.3, why case (b) describes the worst case scenario in the HP: The kth pulse
ĝ(t − Tk) (green) is lower-bounded by its lowest value u, cf. (3.29). In the interval
Tk + β < t < tk,HP, the strongest interference comes from the (k + 1)th (red) pulse.
Since the envelope of g̃(t) is monotonically decreasing for t ≥ β, the interference

2As upcrossing we denote zero-crossings with positive transition slope, i.e., from −
√
P̂ to

√
P̂ . Corre-

spondingly, downcrossings have a negative slope.
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Fig. 3.4. Numerically obtained distribution of x̃(tk): a) sine-shaped transition, tk = tk,TI, b) sine-shaped
transition, tk = tk,HP, c) linear transition, tk = tk,TI, and d) linear transition, tk = tk,HP.

of (k + 1)th pulse can be highest at tk,HP. For tk,HP < t < Tk+1, the scenario can be
analyzed with the red pulse approximated by u and the green one as interferer. Thus,
in the middle of the HP (3.33) becomes

x̃l(tk,HP) =

(−1)lg̃(Lkl+1 + Ak+1
2 + β

2 ) l < k

(−1)l+1g̃(Llk+2 + Ak+1
2 + β

2 ) l > k
. (3.37)

Now, differently to (3.36), the interferers with the same probability distribution of
Lmn+1 are weighted with the same sign. For Ak + Ak+1

2 and Ak+1
2 + Ak+2, these are the

pulses k − 1 (orange) and k + 2 (violet). Therefore, a function with a mean deviating
from zero towards positive values results from the convolution in (3.35), cf. Fig. 3.4b).
This is actually beneficial, since in this region additional ZCs that can be inserted
by large noise amplitudes are the relevant error event, cf. Section 3.1.3. Given that
we look at an up-crossing, i.e., x(Tk + β) > 0, the tail of the distribution towards
negative x̃ is important. It can be seen that a Gaussian distribution with mean zero
and upper-bounded variance, see below (3.41) and (3.24), has a heavier tail towards
negative values compared to the actual distribution. This holds for κ . 10. Therefore,
the Gaussian approximation can be used to give an upper bound on the probability of
additional ZCs in that region of κ.
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The variance of x̃(t) depends for both, TI and HP, on the amount of energy σ2
x̃

removed by LP-filtering. We have derived bounds on σ2
x̃ in Section 3.1.4, however,

σ2
x̃ captures besides the ISI also the distortion of the current pulse, which is already

included in the approximation ĝappr(t). The amount of the energy of g̃(t) that con-
tributes to ISI is the one, for which t ≥ tmin, where tmin is the minimum temporal
distance between an interfering pulse and tk,TI or tk,HP, respectively. With Ak ≥ β,
(3.34), (3.36), and (3.37), we find that for for l > k it holds for the TI that

tmin = min(Llk+1) + β

2 = min(l − k)β + β

2 = β + β

2 (3.38)

while for the HP
tmin = min(Llk+2) + min(Ak+1)

2 + β

2 = β. (3.39)

Thus, we consider the fraction α of σ2
x̃ that contributes to the ISI to be

α =
∫∞
tmin

g̃2(t)dt∫∞
β
2
g̃2(t)dt , tmin =

β HP
3β
2 TI

. (3.40)

Based on ζ(t), (3.40) can be evaluated by numerical integration for TI and HP yielding

σ2
ISI =

αHPσ
2
x̃ in the HP

αTIσ
2
x̃ in the TI

(3.41)

and

s′′ISI(0) = αHPs
′′
x̃x̃(0). (3.42)

3.2 Bounding the Achievable Rate
The capacity of a communication channel is defined as the highest rate at which data
can be transmitted over the channel with an arbitrary small error probability. It is
given by

C = sup I ′ (A; D) (3.43)

where the supremum is taken over all distributions of the input signal, for which x̂(t) is
constrained to the average power P − σ2

x̃ and the bandwidth W . In (3.43) the mutual
information rate is given by

I ′ (A; D) = lim
K→∞

1
KTavg

I
(

A(K); D(M)
)

(3.44)
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with I
(
A(K); D(M)) being the mutual information. Here, the mutual information rate

is defined based on a normalization w.r.t. the expected transmission time KTavg.
In this section we derive a lower bound on the capacity by using the class of input
signals introduced in Section 3.1.1. Later on, we will consider the supremum of
I ′
(
A; D

)
over the rate parameter λ of the exponential input distribution, cf. (3.5).

Additionally, we derive an upper bound on the achievable rate of this specific signaling
scheme. While this bound will not serve as an upper bound on the capacity, it is
useful to quantify the impact of the applied bounding steps. However, due to the data
processing inequality, the AWGN capacity serves as an upper bound on the capacity of
the considered communication system.

3.2.1 Bounds on the Achievable Rate
We apply the concept of a genie-aided receiver as, e.g, given in [FDE11]. The genie-
aided receiver is supplied with information on the inserted ZCs via an auxiliary process
V. The criterion for the choice of V is that it provides sufficient information to the
genie-aided receiver such that the additional ZCs can be removed. Let D̂ contain
the temporal distances of the ZCs at the receiver without the additional ZCs. With a
suitable choice of V, the process D̂ can be determined based on D and V such that the
mutual information rate in case the receiver has side information about the inserted
ZCs is given by

I ′(A; D̂) = I ′(A; D,V). (3.45)

Using the chain rule of mutual information, we have

I ′(A; D) = I ′(A; D,V)− I ′(A; V|D). (3.46)

Here, I ′(A; D) is the mutual information rate without the side information on addi-
tional ZCs at the receiver. The impact of the shifted ZCs is contained in I ′(A; D,V)
and the effect of the inserted ZCs is described by I ′(A; V|D).

Given that mutual information is always non-negative, i.e., I ′(A; V|D) ≥ 0, the
mutual information rate I ′(A; D) can be upper-bounded by

I ′(A; D) ≤ I ′(A; D,V) = I ′(A; D̂) (3.47)

independently of the nature of the auxiliary process V. In order to characterize the
auxiliary process V, we consider the transmission of a single input symbol Ak. Its
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Fig. 3.5. Illustration of the error processes and the mutual information rates with and without genie-
aided receiver

adjacent ZCs T′k−1 and T′k will be shifted to T̂k−1 and T̂k by the noise process, such
that

T̂k = T′k + Sk (3.48)

where Sk denotes the error introduced by the shift. On the other hand, inserted ZCs
will lead to a vector of received symbols Dk belonging to Ak. This can be reversed,
if the receiver knows which of the received ZCs correspond to the ones originally
transmitted. Then the receiver can sum up the distances Dm contained in Dk that are
separated by the additional ZCs, which yields the corresponding symbol D̂k. Intuitively,
such an algorithm would start with the first received symbol, which leads to the
definition of V applied here: instead of providing the receiver with the exact positions
in time of the additional ZCs, it is sufficient to know how many received symbols
have to be summed up to obtain D̂k. Thus, the auxiliary sequence V(K) consists of
positive integer numbers Vk ∈ N, which represent the number of output symbols that
correspond to each input symbol Ak. Hence, we have a discrete auxiliary process V
that can be used to lower-bound the mutual information rate in (3.46) as

I ′(A; D) = I ′(A; D,V)−H ′(V|D) +H ′(V|D,A) (3.49)

≥ I ′(A; D,V)−H ′(V|D) (3.50)

≥ I ′(A; D,V)−H ′(V). (3.51)

Here, the inequalities hold since the entropy rate of a discrete random process is
non-negative (3.50) and due to the fact that conditioning cannot increase entropy
(3.51). The error processes and mutual information rates are illustrated in Fig. 3.5.
Subsequently, bounds on I ′(A; D,V) and H ′(V) will be derived.

38 Chapter 3 On the Achievable Rate of the 1-Bit Quantized Continuous-Time
Channel



3.2.2 Achievable Rate of the Genie-Aided Receiver
In this section we evaluate the mutual information rate of the genie-aided receiver
I ′(A; D̂) = I ′(A; D,V) between the sequences of temporal spacings of ZCs A(K) and
D̂(K)

. Since the additional ZCs have been removed by the genie-aided receiver, both
vectors A(K) and D̂(K)

have the same length. The remaining errors are the shifts Sk of
the zero-crossing time instants T′k to T̂k. Thus, on symbol level the channel output
becomes with (3.48) and (3.1)

D̂k = T̂k − T̂k−1 = Ak + Sk − Sk−1 = Ak + ∆k. (3.52)

In order to derive bounds on the mutual information rate of this channel, we require
knowledge on the probability distribution of Sk.

Approximation of the Distribution of the Shifting Errors

The bandlimited signal x̂(t) can be completely described by a sampled representation
with sampling rate 1/β, which fulfills the Nyquist condition, cf. (3.9). Note that the
concept of sampling is used here only to evaluate the overall distortion z(t), cf. (3.19),
at the time instants T′k of the transmitted ZCs. The receiver is still able to resolve the
time instants of the ZCs with infinite resolution.

In order to obtain the distribution of the shifting error Sk, we map the pdf of the
additive noise z(T′k) at the time T′k into the pdf of the ZC-shift Sk on the time axis.
The mapping depends on the filtered transmit pulse ĝ(t), cf. (3.12), and is given by

z(T′k) = −
√
P̂ ζ̂(Sk) =

√
P̂

(
1− ĝ

(
Sk + β

2

))
≈ −

√
P̂ ζ̂0Sk. (3.53)

Here we assume that Sk � β since we are considering the behavior in the mid-to-high
SNR regime. We therefore use the linearization of ĝ(t) around t = β

2 in (3.30). In
Appendix A.4 we show that this holds for ρ & 10 dB.

Deriving the pdf of Sk requires the pdf of the additive noise z(T′k), which consists of
two parts: the LP-filtered Gaussian noise n̂(T′k) and the ISI. The latter originates from
the oscillation of the neighboring pulses ĝ(t) due to the LP-filtering, cf. Section 3.1.5.
Since due to the 1-bit quantization it is not clear if and how we can equalize the
ISI, which affects the position of the ZCs, we model the ISI as additional noise for
lower-bounding the mutual information rate. W.r.t. an upper bound on the mutual
information rate, the ISI is not considered. Then, only n̂(T′k) contributes to z(T′k).
We have shown in Section 3.1.5 that we can approximate the distribution of x̃(t) by a
Gaussian distribution for ratios κ = W/λ in the order of one, which will prove to be the
relevant ones in the considered scenario.
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We thus have

z(t) ∼ N (0, σ2
z) (3.54)

with

σ2
z =

σ
2
n̂ + σ2

ISI for the lower bound

σ2
n̂ for the upper bound

(3.55)

where σ2
ISI is the variance of the ISI, cf. (3.41). This yields

pS(s) =
∣∣∣∣∣−
√
P̂
∂ζ̂(s)
∂s

pz

(√
P̂ ζ̂(s)

)∣∣∣∣∣ (3.56)

≈

√√√√ P̂ ζ̂02

2πσ2
z

exp
{
− P̂ ζ̂0

2

2σ2
z
s2
}
. (3.57)

Thus, the ZC errors Sk are approximately Gaussian distributed in the mid-to-high SNR
domain for κ in the order of one, i.e., Sk ∼ N (

0, σ2
S
)

with

σ2
S = σ2

z
P̂ ζ̂02

. (3.58)

Upper Bound on the Achievable Rate of the Genie-Aided Receiver

With Sk ∼ N (
0, σ2

S
)

and (3.55), it results for ∆k = Sk − Sk−1 in (3.52)

∆k ∼ N (0, 2σ2
S) (3.59)

since the Sk are approximately independent as the minimum distance of two ZCs is β,
which in turn is matched to the bandwidth, cf. (3.9). However, the ∆k are correlated
since they always depend on the current and the previous Sk. Thus, the ACF of ∆ is

φ∆∆(m) = E [∆l∆l+m] =


2σ2

S, m = 0

−σ2
S, |m| = 1

0, otherwise

(3.60)

such that the covariance matrix R(K)
∆ of ZC shifts ∆(K) = [∆1, ...,∆K ]T becomes

R(K)
∆ = E

[
(∆(K))T∆(K)

]
= σ2

S


2 −1 0 ... 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 ... 0 −1 2

 . (3.61)
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This shows that the channel with the genie-aided receiver is a colored additive Gaussian
noise channel with input A, output D̂, and noise ∆. Here, ∆ is independent of A
since the ISI is not considered, cf. (3.55). It is known that the capacity of the colored
additive Gaussian noise channel is achieved by a Gaussian input distribution [CT06,
Chapter 9, Eq. (9.97)], which gives us an upper bound on the mutual information rate
of the channel with the genie-aided receiver and the exponential input distribution.
Thus, we have

I ′(A; D̂) ≤ 1
2

∫ 1
2

− 1
2

log
(

1 + (ν − S∆(f))+

S∆(f)

)
df (3.62)

where the water level ν is given by

∫ 1
2

− 1
2

(ν − S∆(f))+df = σ2
A (3.63)

with σ2
A given in (3.7). Furthermore, S∆(f) denotes the PSD of ∆, which is given by

the z-transform of (3.60) as

S∆(f) = 2σ2
S(1− cos(2πf)), |f | < 0.5. (3.64)

Although S∆(f) is equal to zero for f = 0, the integral in (3.62) exists. This can be
shown by using that ν ≥ (ν − S∆(f))+ ∀f and solving

∫ 1
2

− 1
2

log
(

1 +
ν/(2σ2

S )

1− cos(2πf)

)
df = arcosh

(
ν

2σ2
S

+ 1
)
. (3.65)

Lower Bound on the Achievable Rate of the Genie-Aided Receiver

The mutual information between A(K) and D̂(K)
of the genie-aided receiver is

I
(
A(K); D̂(K)) = h

(
A(K))− h(A(K)|D̂(K))

(3.66)

= h
(
A(K))− h(A(K) − Â(K)

LMMSE
∣∣D̂(K))

(3.67)

where h(·) is the differential entropy. Furthermore, Â(K)
LMMSE denotes the estimate of

A(K) based on D̂(K)
with a linear minimum mean-squared error (LMMSE) estimator.

Equality in (3.67) holds due to the fact that the addition of a constant does not change
the differential entropy. Since Â(K)

LMMSE is a deterministic function of D̂(K)
, it can be

treated as a constant while conditioning on D̂(K)
.

As a next step, we upper-bound the term h
(
A(K) − Â(K)

LMMSE
∣∣D̂(K))

on the right-hand
side of (3.67). It represents the randomness of the estimation error of the LMMSE
estimator when estimating A(K) based on D̂(K)

. An upper bound on this error can
be given by the differential entropy of a Gaussian random variable with the same
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covariance matrix [CT06, Theorem 8.6.5]. Then, with (3.52), the estimation error
covariance matrix of the LMMSE estimator becomes

Q(K)
err =E

[(
A(K) − Â(K)

LMMSE
)(

A(K) − Â(K)
LMMSE

)T ]
= QA − (QA + QA∆)(QA + Q∆ + QA∆ + QT

A∆)−1(QA + QA∆)T . (3.68)

Here, all covariance matrices Q have size K ×K and QA = σ2
AI(K). Moreover, I(K) is

the identity matrix of dimension K×K, and σ2
A is given in (3.7). The cross-covariance

matrix of A(K) and ∆(K) is QA∆ = E[A(K)(∆(K))T ] and the covariance matrix of ∆(K)

is Q∆ = E[∆(K)(∆(K))T ].
If we ignore the correlation between A(K) and ∆(K), this corresponds to QA∆ = 0.

Furthermore, neglecting the correlation between the ISI samples x̃(T′k), k = 1, ...,K
is equivalent to Q∆ = R(K)

∆ , with R(K)
∆ in (3.61). It is shown in Appendix A.5 that

these assumptions, i.e., QA∆ = 0 and Q∆ = R(K)
∆ , result in an upper bound on

h(A(K) − Â(K)
LMMSE

∣∣D̂(K)) yielding

h(A(K) − Â(K)
LMMSE

∣∣D(K)) ≤ 1
2 log det

(
2πeQ(K)

err

)
(3.69)

≤ 1
2 log det

(
2πeR(K)

err

)
(3.70)

with

R(K)
err = σ2

AI(K) − σ4
A
(
σ2

AI(K) + R(K)
∆
)−1

. (3.71)

Thus, the lower bound on the mutual information in (3.67) becomes

I(A(K); D̂(K)) ≥ h(A(K))− 1
2 log det

(
2πeR(K)

err

)
= Kh(Ak) + 1

2 log det
(
(2πe)−1

(
σ−2

A I(K) + (R(K)
∆ )−1

))
. (3.72)

Here, h(A(K)) = Kh(Ak) follows from the independence of the input symbols Ak. For
the second term of (3.72) we have used (3.71) and the matrix inversion lemma. With
(3.72) the lower bound on the mutual information rate in (3.45) is given by

I ′(A; D̂) ≥ lim
K→∞

1
KTavg

{
Kh(Ak) + 1

2 log det
[ 1

2πe
(
σ−2

A I(K) + (R(K)
∆ )−1

)]}
(3.73)

= 1
Tavg

{
h(Ak) + 1

2

∫ 1
2

− 1
2

log
(
σ−2

A
2πe

(
1 + σ2

A
S∆(f)

))
df

}
(3.74)

where we have used Szegö’s theorem on the asymptotic eigenvalue distribution of
Hermitian Toeplitz matrices [Gra06], [GS58, pp. 64-65] for (3.74). Again, S∆(f) is
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the PSD of ∆, cf. (3.64), which corresponds to the sequence of covariance matrices
R(K)

∆ . As shown in (3.65), the integral exists. The entropy at the channel input is

h(Ak) = 1− log(λ) (3.75)

since the Ak are exponentially distributed. If we now insert the expressions for Tavg,
σ2

A, β, and h(Ak), i.e., (3.6), (3.7), (3.9), and (3.75), we can write with (3.65) for the
lower bound in (3.74)

I ′(A; D̂) ≥
W

[
log

(
e

2π
)

+ arcosh
(

1
2σ2

Sλ
2 + 1

)]
1 + 2Wλ−1 . (3.76)

3.2.3 Bounds on the Entropy of the Auxiliary Process
In Section 3.2.1 we defined the elements Vk of the auxiliary process V as random vari-
ables that describe the number of received symbols corresponding to the transmitted
symbols Ak. Based on this, we now have to find an upper bound for H ′(V), cf. (3.51).
The Vk depend on the number Nk of inserted ZCs as Vk = Nk+1. Since we assume sep-
arability of shift and insertion errors, we do not have to consider the TIs, which contain
only the shifted ZCs. Thus, it remains the HP of duration Tsat = E[Ak]−β = λ−1 where
x(t) maintains the level ±

√
P̂ . Without the LP-filters, this would yield a level-crossing

problem w.r.t. the level ±
√
P̂ . However, for the actual transmit signal x̂(t) we have a

curve crossing problem due to the typical ringing, cf. Fig. 3.2. Thus we apply a further
bounding step such that we can obtain a closed form expression for an upper bound
on Nk: We consider a level crossing problem w.r.t. the lowest value u of the kth pulse
in the HP. Here, u is given by (3.29).

Level-crossing problems have been widely studied, especially for Gaussian processes,
for example in [Kac43; Ric44; CL67]. Our upper bound on H ′(V) is based on the first
moment of the distribution of Vk. It is known that for a stationary zero-mean Gaussian
random process with variance σ2

z , the expected number of crossings of the level u in
the time interval Tsat = λ−1 is given by the Rice formula [Ric44]

µ = E[Vk] = 1
π

√
−s′′zz(0)
σ2

z
exp

(
− u2

2σ2
z

)
1
λ

+ 1. (3.77)

In (3.77) szz(τ) is the ACF of the Gaussian process z(t) and s′′zz(τ) = ∂2

∂τ2 szz(τ) is its
second derivative. This yields analogously to (3.55)

s′′zz(0) = s′′n̂n̂(0) + s′′ISI(0) = −4
3N0W

3 + s′′ISI(0) (3.78)
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where the first term on the right-hand side stems from the AWGN. Moreover, sISI(τ)
is the ACF of the ISI. In order for E[Vk] to be finite, it is required that −s′′zz(0) < ∞
[CL67], which holds for finite bandwidths W since then s′′n̂n̂(0) and s′′ISI(0) are finite.

The distribution that maximizes the entropy of a discrete random variable on N
for a given mean µ in (3.77) is the geometric distribution, cf. [Kap93, Section 2.1].
Therefore, we upper-bound the entropy of H(Vk) by

H(Vk) ≤ (1− µ) log (µ− 1) + µ logµ (3.79)

which yields for the entropy rate of the auxiliary process

H ′(V) ≤ H(Vk)
Tavg

≤ (1− µ) log (µ− 1) + µ logµ
Tavg

(3.80)

as independent Vk maximize the entropy rate. It results that the bound on H(Vk) is
an increasing function in the expected number of level-crossings µ of the Gaussian
random process. Here, µ increases with σ2

z . Therefore, an upper bound on σ2
z and,

thus, on σ2
ISI is required to evaluate (3.77). An upper bound on σ2

ISI results in a lower
bound on s′′ISI(0), cf. Section 3.1.4 and Section 3.1.5, as both parameters depend on
the ACF of the distortion process x̃(t) and cannot be chosen independently. This in
turn yields an upper bound on −s′′ISI(0) and, thus, −s′′zz(0).

3.3 Impact of the Transition Waveform
The choice of transition waveform affects the model in several ways. In principle, a
steeper transition increases the noise resistance since the overall distortion z(t) then
translates to a smaller distortion in time. However, a steeper transition is as well
subject to a stronger distortion due to filtering, i.e., increasing z(t) in the first place
such that the advantage might be canceled out completely. In order to shed light on
this question, we analyze three different transition waveforms

ζsine(t) =

sin
(
π t
β

)
for |t| ≤ β/2

0 otherwise
(3.81)

ζ lin(t) =


2
β t for |t| ≤ β/2

0 otherwise
(3.82)

ζpoly,2B+1(t) =


∑B
i=0 b2i+1

(
t
β

)2i+1
for |t| ≤ β/2

0 otherwise.
(3.83)
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Fig. 3.6. Transition waveforms a) linear and sine, b) polynomial of order 2B + 1

Tab. 3.1. Coefficients for polynomial transitions

2B + 1 b7 b5 b3 b1
3 0 0 −4 3
5 0 12 −10 15

4
7 −40 42 −35

2
35
8

In the case of polynomial transitions (polys), polynomials of degree 3 to 7, i.e.,
B ∈ N, 1 ≤ B ≤ 3, are considered. Recall that ζ(t) is required to be odd such that
only odd exponents occur. For smoothness of the overall waveform, the coefficients
bi are chosen such that the first to (2B + 1)th derivatives at t = ±β

2 are zero. This
yields the coefficients listed in Table 3.1. All waveforms are depicted in Fig. 3.6. It
can already be seen that despite the different characteristics of the original waveforms
g(t), the ĝ(t) vary only slightly. This is confirmed by the similar slopes ζ̂0 in Table 3.2,
which summarize relevant parameters and properties introduced in Section 3.1 for
the different waveforms. Consequently, the parameter Γ0 capturing the impact of the
waveform on the distortion increases for the steeper waveforms. This can be seen as
well in Fig. 3.7, where the signal based on the sine-shaped waveform has more out of
band energy. This is strong evidence for the assumption that given the structure of
the model applied, increasing the slope will not improve the bounds on the achievable
rate. We will see this confirmed in Section 3.4.

Note that except of the α in (3.40), all expressions can be given in closed form,
which however is omitted in Table 3.2 for the sake of clear presentation. The closed-
form expressions for the parameters of all waveforms can be found in Appendix A.6.
The numerical integration for obtaining the α has been carried out using Mathematica,
which gives us increased accuracy compared to [BDFa], where we used MATLAB.
This has a slight impact on optimal value of κ, which is evaluated in the next section.
Section 3.4 furthermore gives the results w.r.t. the bounds on the mutual information
rate for the different waveforms based on the findings of the previous sections.
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Tab. 3.2. Model parameters of the waveforms, m = 2W
∫ β

0 ζ2
(
t− β

2

)
dt, cf. (3.15)

waveform P
P̂

m Γ0 Γ2
u√
P̂

ζ̂0 αTI αHP

sine

m+2κ
1+2κ

1
2 0.2601β 1.1689

β 0.81 1.8519
β 0.3160 0.4283

linear 1
3 0.1224β 2.8438

β 0.77 1.7453
β 0.4474 0.6924

2B
+

1 3 17
35 0.2446β 4.3395

β 0.8121 1.8439
β 0.3267 0.4447

5 131
231 0.3399β 6.7321

β 0.8289 1.8872
β 0.2726 0.3649

7 797
1287 0.4123β 9.0052

β 0.8384 1.9116
β 0.2432 0.3246

3.4 Results and Summary
This section summarizes the results of the previous sections, which leads to the final
form of the obtained lower and upper bounds on the mutual information rate. It
furthermore discusses the optimal value for the normalized bandwidth κ as well as the
spectral efficiency of the system and provides the conclusion of the chapter.

3.4.1 Lower and Upper Bound on the Achievable Rate
In order to obtain the final form of the lower bound on the mutual information rate of
the bandlimited 1-bit quantized continuous-time channel, we have to use

I ′(A; D) ≥ I ′(A; D̂)−H ′(V) (3.84)
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which is obtained from (3.51) and (3.45). Here, we have to substitute the results
of Sections 3.2.2 and 3.2.3 for I ′(A; D̂) and H ′(V), i.e., (3.76) and (3.80). With the
definitions for Tavg, β, and κ, i.e., (3.6), (3.9), and (3.11), this yields

I ′(A; D) ≥ W

2κ+1

[
arcosh

(
P̂ ζ̂0

2

2σ2
z,UBλ

2 +1
)

+ log
(
e

2π

)
+2µUB log

(
µUB−1
µUB

)
− 2 log(µUB−1)

]
= I ′LB(A; D). (3.85)

The bound holds for small ratios κ = W/λ in the order of one due to the limitations
of the Gaussian approximation of the LP-distortion. With the indices (·)LB and (·)UB

we refer to lower and upper bounds on the indexed variable, respectively. The upper
bound on the mutual information rate for the given signaling scheme is valid for all κ.
It is given by, cf. (3.62),

I ′(A; D) ≤ W

2κ+1

∫ 1
2

− 1
2

log
(

1 + (ν − S∆,LB(f))+

S∆,LB(f)

)
df = I ′UB(A; D). (3.86)

Both bounds are valid for ρ & 10 dB, i.e., when |Sk| < β/2 with high probability. Thus,
the temporal separation of error events (ZC-shifts and additional ZCs) holds.

In (3.85), with (3.15), (3.20), (3.24), (3.6), (3.9), and (3.11) we can express σ2
z,UB

as function of P̂ , ρ, and κ by

σ2
z,UB = N0W + αTI/HPσ

2
x̃,UB = P̂

(
m + 2κ

(1 + 2κ)ρ + αTI/HP(1 + 2c1)c0
2π2(1 + 2κ)

)
(3.87)

Note that c1 is a function of κ. The same applies to
−s′′zz,LB(0)

λ2 in (3.77) with (3.78),
(3.42), and (3.28) yielding

−s′′zz,LB(0)
λ2 = P̂ κ2

(4
3

m + 2κ
(1 + 2κ)ρ + αHP2(1 + 2c1)c2

1 + 2κ

)
. (3.88)

Furthermore, for a given waveform ζ̂0 ∼ 1
β , cf. Appendix A.6, such that ζ̂02/λ2 ∼ 4κ2 and

u2 ∼ P̂ . Hence, both µUB in (3.77) and the normalized lower bound I ′LB(A; D)/W
depend solely on κ and ρ. By expanding the fraction in (3.86) with σ−2

A , we have

σ2
S,LBσ

−2
A = σ2

z,LB
P̂

λ2

ζ̂02 , cf. (3.64), which shows that the same behavior applies to
I ′UB(A; D)/W .

An upper bound on the mutual information rate with 1-bit quantization is given by
the capacity CAWGN = W log (1 + ρ) of the AWGN channel without output quantization.
The ratio between CAWGN and I ′LB(A; D) is given by

∆I = log(1 + ρ)
1
W I ′LB(A; D)

= f(κ, ρ). (3.89)
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Fig. 3.8. Optimal ratio κ = Wλ−1 over the SNR and corresponding ratio ∆I = CAWGN/I′
LB(A; D), valid for

ρ & 10 dB

which is a function of κ and ρ. Thus, for a given ρ we can find the κ minimizing ∆I.
The results are shown in Fig. 3.8. We observe that the optimal κ is in the order of
one, which means that the randomness at the channel input needs to be matched
to the bandwidth of the channel. This can be achieved if λ grows linearly with W .
The optimal κ is approximately 0.66 to 0.7 for the steeper transition waveforms (sine
and polynomial) and slightly lower with approximately 0.62 to 0.67 for the linear
waveform. This values diverge slightly from the ones given in [BDFa] due to the
increased accuracy of the numerical integration, cf. Section 3.3, however, the impact
on the lower bound on the mutual information rate is negligible. The ratio ∆I is
smallest for approximately 12 dB SNR.

Note that these results depend heavily on the connection of the transition time β
and the signal bandwidth W given in (3.9). By reducing the bandwidth, for example
to W = 1/(2Tavg), the utilization of the spectrum could be improved. However, the mini-
mum symbol duration then not longer corresponds to the coherence time of the noise,
based on which we neglect symbol deletions. Thus, in order to model transmission
scenarios with W < 1/(2β), deletions have to be included, see Appendix A.2.

3.4.2 Spectral Efficiency Results
The resulting bounds over the SNR ρ in terms of spectral efficiency are given in Fig. 3.9.
Due to the normalization with the bandwidth 2W they depend solely on κ. Three
bounds are compared: I ′LB(A; D) from (3.85), I ′UB(A; D) from (3.86), and the lower
bound without ISI, I ′LB,noISI(A; D), which results for αTI = αHP = 0, cf. (3.41). The
latter two bounds hold for any κ, while I ′LB(A; D) is only valid for values of κ in the
order of one, cf. Section 3.1.5. However, this restriction is not critical as with κ in the
order of one, we obtain the highest mutual information rates and, therefore, the best
lower bounds. In Fig. 3.9a) exemplarily the results for a linear transition are depicted.
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waveform sine linear poly 3 poly 5 poly 7
spectral efficiency limit [bit/s/Hz] 1.545 1.632 1.551 1.521 1.505

Tab. 3.3. High SNR limits for the spectral efficiency

We observe that below ca. 16 dB SNR, I ′LB(A; D) and I ′UB(A; D) approach each other
with increasing SNR. This illustrates the decreasing impact of H ′(V) on I ′LB(A; D)
as I ′UB(A; D) does not include additional ZCs and their probability decreases with
the SNR. In the high SNR domain, on the other hand, I ′LB(A; D) and I ′UB(A; D)
diverge again. This is the case when the system becomes dominated by the ISI,
which is considered only in I ′LB(A; D). Interestingly, I ′LB,noISI(A; D) does not saturate
over the SNR, which coincides with the observation in [AV96] that the achievable
rate of the timing channel tends to infinity under noise free conditions (ρ → ∞).
Since I ′LB,noISI(A; D) and I ′UB(A; D) are considerably close especially in the high-SNR
domain, we conclude that the bounding steps applied, mostly in Section 3.2.2, do not
impact the behavior of the bound prohibitively.

Fig. 3.9a) displays the obtained bounds when for every SNR the optimal κ is used.
It can be seen that in any case, although the differences are marginal, the linear
transition waveforms yields the best results, even for I ′UB(A; D) and I ′LB,noISI(A; D).
This is due to the reduced average power P and, for I ′LB(A; D), additionally due to
an reduced σ2

ISI. The approximate limits of the lower bound I ′LB(A; D) for high SNR
are given in Tab. 3.3.
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3.4.3 Conclusions
In this chapter we derived a lower bound on the mutual information rate of the
bandlimited 1-bit quantized continuous-time AWGN channel. The focus was on
the mid-to-high SNR regime and the lower bound is valid for SNR values above
approximately 10 dB and κ = W/λ . 3, in which case the filter distortion can be
approximated by a Gaussian distribution. Moreover, for the specific signaling scheme
applied, we provided an upper bound on the mutual information rate. We conclude
that the bounds provide a valuable characterization of the actual mutual information
rate with the given signaling scheme on 1-bit quantized channels in an SNR range
between approximately 10 and 20 dB, where they are relatively close. The bounds
hold under the following assumptions:

• In order to obtain a closed form expression of the lower bound, the LP-distortion
error x̃(t) is approximated to be Gaussian. This is suitable for κ . 3, for which
we obtain the best lower bounds, cf. Section 3.1.5.

• If W = 1
2β , the occurrence of deletions is negligible in the mid-to-high SNR

scenario and for the considered input signals, cf. Appendix A.2.

• Per transition interval [Tk,Tk + β] with high probability only one zero-crossing
occurs. This follows from the limited dynamics of the noise due to bandlimitation.
It has been verified for an SNR above 5 dB by numerical computation based on
curve-crossing problems for Gaussian random processes, cf. Appendix A.3.

• When deriving the upper bound, the individual elements of the process S are
considered to be i.i.d. since the minimum temporal separation of the individual
Sk is β, which is matched to the bandwidth of the noise, cf. (3.9). Furthermore,
the main contributor to correlation is ISI, which is neglected for upper-bounding.

• For the mid-to-high SNR-domain we have Sk � β. Thus, the transition can be
linearized around the ZC, cf. (3.53). Appendix A.4 shows that this holds for
ρ & 10 dB.

In order to maximize the lower bound on the mutual information rate for a given
bandwidth, the rate parameter λ of the exponential distribution of the Ak has to grow
linearly with the bandwidth W . The optimal coefficient κ depends on the SNR and
the waveforms. For the considered system it lies between 0.6 and 0.7 for high SNR.
Furthermore, the system model has to incorporate deletions if the filter bandwidth W
is smaller than 1/2β as otherwise the spectral efficiency of the system is overestimated.
Due to the LP-distortion, the derived lower bound on the mutual information rate
saturates for high SNR since the designed signal x(t) is not strictly bandlimited. This is
not the case if the ISI due to filtering is neglected. Thus, the accuracy of the bound
could be improved with a more elaborated ISI model, where ISI is not treated as noise.
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Discrete-Time Channels and
Multiple-Input Multiple-Output
Channels

4

This chapter aims to illustrate applications of the previously obtained results to discrete-
time scenarios. Due to the digital nature of today’s communications systems, it is
highly relevant to see which insights carry over and which may not.

4.1 Discrete-Time Runlength Limited Signals
In [BSK+17], it has been shown how the bounding techniques of Section 3.2 can be
applied to a discrete-time system. However, spectral efficiencies are only given for
non-bandlimited systems w.r.t. the 90 %-power containment bandwidth. Since it has
been shown in Section 3.4 that the way of modeling of the intersymbol interference
(ISI) plays a central role in this regard, in this section a framework is derived in
order to obtain bounds on the spectral efficiency without complex simulations. This
includes strictly bandlimited channels and allows also the evaluation of faster-than-
Nyquist (FTN) signaling schemes as introduced in Section 2.2.1. As input signaling
scheme runlength limited (RLL) sequences of Section 2.2.2 are used, however, the
framework can be applied to any 1-bit quantized binary signaling scheme. The bounds
on the achievable rate in this chapter are as in Chapter 3 based on an auxiliary process
providing genie-aided information to the receiver. The upper bound on the entropy
of the auxiliary process is constructed by modeling the ISI as noise as described
in Section 2.2.3. The resulting bounds have the advantage of evaluation with low
computational complexity for any channel impulse response. The results of this
chapter for selected choices of the channel impulse response have been submitted for
publication to IEEE Communication Letters [BDFb].

4.1.1 System Model
The system model is depicted in Fig. 4.1a). Again, the elements of the channel
input and output vectors A(K) = [A1, ...,AK ]T and D(M) = [D1, ...,DM ]T represent
the temporal distances of two consecutive zero-crossings (ZCs) of the signal x(t)
and the received signal r(t), respectively. However, in this case due to sampling the
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Fig. 4.1. Discrete-time runlength encoded system: a) system model, b) mapping between Ak and x(t)
for a triangular pulse g(t) of width 2Ts

resolution of Ak and Dm is finite and limited to multiples of the sampling interval Ts.
Nevertheless, again K is not necessarily equal to M since insertions and deletions can
occur. Furthermore, the Ak are independent and identically distributed (i.i.d.). The
channel input symbols Ak are converted into ak consecutive Dirac-pulses, which yields
a sequence xNsamp−1

0 , where xn ∈ {−1, 1} is the weight of the Dirac-pulse and Nsamp

denotes the total number of samples. In order to obtain x(t), this sequence is then
convolved with the impulse response g(t) of a transmit pulse former yielding

x(t) =
√
P̂

Nsamp−1∑
n=0

xng(t− nTs). (4.1)

Fig. 4.1b) shows this mapping for a triangular pulse g(t) of duration 2Ts.
The number of consecutive alike samples ak will be limited to a minimum runlength

amin, which yields an RLL sequence as described in Section 2.2.2 without a constraint
on the maximum runlength. Based on the fact that for max-entropic RLL sequences
the runlength ak is geometrically distributed [Imm90], the entropy of an input symbol
is given by

H(Ak) = H(ak) = (1 + µ̃) log(1 + µ̃)− µ̃ log(µ̃) (4.2)

where µ̃ = E[ak]− amin. Since the input symbols Ak are i.i.d., the entropy rate of the
input process becomes

H ′(A) = lim
K→∞

H(A1,A2, ...,AK)
K E[Ak]

= H(Ak)
E[ak]Ts

= Crll(amin)
Ts

(4.3)

where Crll is the capacity in bits per channel use (bpcu) of the RLL sequence [Imm90].
It is given in Table 2.2 for some amin = drll + 1. The spectrum of the signal x(t) is

SX(ω) = |G(ω)|2

Ts
Srll(ω) (4.4)

where Srll(ω) is the spectrum of the RLL sequence given in (2.10) and G(ω) is the
Fourier transform of g(t).
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If not mentioned otherwise, we assume ideal lowpasses (LPes) with one-sided
bandwidth W and amplitude one as channel filters. With the combined impulse
response of transmit and receive filter

hLP(t) = (vtx ∗ vrx)(t) (4.5)

the overall channel impulse h(t) response is

h(t) = (g ∗ hLP)(t). (4.6)

The receiver consists of a data converter, which samples the received signal with
sampling rate fs = 1

Ts
, and a 1-bit quantizer. The received signal r(t) becomes

r(t) = (vrx ∗ x̂)(t) + n̂(t) (4.7)

where x̂(t) is the transmit signal. In the case of the ideal LPes, x̂(t) is the noise-free
receive signal as well, i.e., x̂(t) = (vtx ∗ x)(t) = (hLP ∗ x)(t). Moreover, n̂(t) is the
filtered version of the additive white Gaussian noise (AWGN) n(t) with mean zero and
power spectral density (PSD) N0/2. After LP filtering the noise power at the receiver
becomes

σ2
n̂ = 1

2π
N0
2

∫ ∞
−∞
|Vrx(ω)|2dω (4.8)

where Vrx(ω) is the Fourier transform of vrx(t). For ideal LPes, we have σ2
n̂ = N0W .

The amount of the LP filter distortion

x̃(t) = x̂(t)− x(t) (4.9)

depends on hLP(t) as

σ2
x̃ = E

[
|x̂(t)− x(t)|2

]
= 1

2π

∫ ∞
−∞

(|HLP(ω)|2 − 1)Sx(ω)dω (4.10)

= 1
π

∫ ∞
2πW

SX(ω)dω. (4.11)

where HLP(ω) is the Fourier transform of hLP(t) and (4.11) holds only for the ideal LP.
For the transmit power PTx of x̂(t) we have

PTx = E
[
|x̂(t)|2

]
= 1

2π

∫ ∞
−∞
|Vtx(ω)|2SX(ω)dω (4.12)

where Vtx(ω) is the Fourier transform of vtx(t). For the special case of the ideal LPes
this results to PTx = P − σ2

x̃ where the average power P = E
[
|x(t)|2

]
depends on P̂
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and the waveform g(t). In this case we have PRx = PTx for the received power, while
in general holds

PRx = E
[
|x̂(t)|2

]
= 1

2π

∫ ∞
−∞
|HLP(ω)|2SX(ω)dω. (4.13)

Thus, we have for the signal-to-noise ratio (SNR)

SNR = PRx
σ2

n̂
. (4.14)

The received signal r(t) is sampled with sampling frequency fs and quantized by a
1-bit quantizer. For the sampled received vector we have

y = [y0, y1, ..., yn, ..., yNsamp−1] (4.15)

= [Q1(r(0)), Q1(r(Ts)), ..., , Q1(r(nTs)), ..., Q1(r((Nsamp − 1)Ts))]. (4.16)

The sampled received sequence y is then mapped to a sequence Dm = dmTs of ZC
distances. Due to the spectral shaping properties of RLL sequences, cf. Section 2.2.2,
oversampling is considered here w.r.t. to the signal bandwidth. The oversampling
ratio (OSR) is

Mosr = Mosr,f = fs
2W . (4.17)

The possible error events are again shift, insertion and deletions, such that with a
suitable choice on an auxiliary process V, the bound in (3.51) can be applied to
lower-bound the mutual information rate.

4.1.2 Bound on the Achievable Rate and Auxiliary Process
As described above, while the different input symbols Ak are independent, the samples
of the received signal are not. The number ak of consecutive alike samples encodes
the transmitted information. Therefore, a flipped sample can change the number of
received symbols and – as in Chapter 3 – we are dealing with a insertion- and deletion-
channel. The capacity for insertion- and deletion-channels is in general unknown. In
[FDE11] an approach is introduced how the achievable rate can be lower-bounded
by using an auxiliary process. It is therefore required that we are able to define an
appropriate discrete auxiliary process V to provide genie-aided information about
insertions and deletions to the receiver. We then can use (3.51) for lower-bounding
the achievable rate, i.e.,

I ′(A; D) ≥ I ′(A; D,V)−H ′(V). (4.18)
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Note that in contrast to the continuous-time case, the coding theorem exists and has
been proven by Dobrushin [Dob67]. In the simplest case, V is a binary sequence
(±1) that is multiplied with the received vector. It indicates which samples are to be
flipped (−1) and which not (+1). In that case, the auxiliary process allows for perfect
reconstruction of the transmitted sequence and we have

I ′(A; D,V) = I ′(A; A) = H ′(A). (4.19)

The entropy rate of the auxiliary process can then be bounded based on the average
sample flipping probability pb. It results

H ′(V) ≤ 1
NsampTs

Nsamp−1∑
n=0

H(Vn) = 1
NsampTs

Nsamp−1∑
n=0

Hb(pb,n) (4.20)

≤ 1
Ts
Hb

 1
Nsamp

Nsamp−1∑
n=0

pb,n

 = 1
Ts
Hb(pb) (4.21)

where Hb(·) is the binary entropy function and pb,n denotes the flipping probability of
the nth sample. The first inequality holds since independence maximizes the entropy
(4.20) while the second is based on Jensen’s inequality as Hb(·) is a concave function
(4.21). Contributions to pb result from the filtered noise as well as the ISI. Despite
being deterministic when conditioned on x(t), x̃(t) is still a random process. With
(4.9), the received signal at time nTs can be written as

r(nTs) = x(nTs) + x̃(nTs) + n̂(nTs) = xn + x̃n + n̂n. (4.22)

where

x̃n = (h0 − 1)xn +
Nsamp−1∑
i=0
i6=n

h((i− n)Ts)xi = (h0 − 1)xn + zISI,n. (4.23)

In order to bound the average sample flipping probability pb, we condition on the
current sample xn. Then x̃n consists of a deterministic and a random contribution. The
deterministic contribution is (h0−1)xn, where h0 = h(0) is the maximum value of h(t),
yielding a deterministic reduction of the power per sample. The random contribution,
zISI,n, represents the ISI, which depends on the realization of the neighboring symbols.
In order to upper-bound H ′(V) in (4.21), we assumed independent samples. Thus, we
model the ISI as additional noise, which allows us to obtain bounds the achievable
rate that can be evaluated with low computational complexity. However, the sequence
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information remains captured in I ′(A; D,V), cf. (4.18). The flipping probability pb of
the nth sample is

pb = Pr(yn 6= xn) (4.24)

= Pr(yn = 1|xn = −1) Pr(xn = −1) + Pr(yn = −1|xn = 1) Pr(xn = 1) (4.25)

= 1
2(Pr(zISI,n + n̂n > h0|xn = −1) + Pr(zISI,n + n̂n < −h0|xn = 1)) (4.26)

= Pr(zISI,n + n̂n < −h0|xn = 1)) (4.27)

where we have used that RLL sequences are zero-mean, i.e., Pr(xn = 1) = Pr(xn =
−1) = 1

2 . Furthermore, due to the symmetry of the setup Pr(zISI,n + n̂n > h0|xn =
−1) = Pr(zISI,n + n̂n < −h0|xn = 1). An upper bound on the expression in (4.26) can
be given by

pb ≤
1
2 Pr(|zISI,n + n̂n| > h0) = p̃b. (4.28)

Bounds for (4.28) are given, e.g., in [Sal68; Lug69] for i.i.d. samples, in [Gla72] and,
more completely, in [Mat73] for correlated samples. The basic idea is to find the
distribution for zISI,n that maximizes (4.28) based on Chebyshev’s inequality; knowing
that

p̃b =
∫

|zn|>h0

pzISI(zn) ∗ pn̂(zn)dzn =
Z∫
−Z

pzISI(zn)Ω(zn)dzn (4.29)

with
Ω(zn) = 1

2

(
erfc

(
h0 − zn√

2σn̂

)
+ erfc

(
h0 + zn√

2σn̂

))
(4.30)

due to the AWGN channel and under the conditions that the ISI is zero-mean and

zISI,n ∈ [−Z,Z]
Z∫
−Z

pzISI(zn)dzn = 1
Z∫
−Z

z2
npzISI(zn)dzn = σ2

zISI . (4.31)

Here, pzISI(zn) denotes the probability density function of zISI,n, where the time index
n in the subscript is omitted for notational convenience. The resulting bounds are

pb ≤
1
2



Ω(σzISI), h0 ≤
√

3σn̂

Ω(σzISI), h0 >
√

3σn̂, z0 < σzISI(
1− σ2

zISI
z2

0

)
Ω(0) + σ2

zISI
z2

0
Ω(z0), h0 >

√
3σn̂, σzISI ≤ z0 ≤ Z(

1− σ2
zISI
Z2

)
Ω(0) + σ2

zISI
Z2 Ω(Z), h0 >

√
3σn̂, z0 > Z

(4.32)
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Fig. 4.2. Histogram of pzISI(zn) for a strong ISI scenario 2WTs = 0.4 and minimum runlength amin =
{1, 2}, h0 = 0.3830

where
z0 = arg max Ω(zn)− Ω(0)

z2
n

. (4.33)

For details on the derivation the reader is referred to [Mat73]. While holding, these
bounds are very loose in our case due to the strong constructive ISI, which is occurring
since we use RLL sequences. This is illustrated in Fig. 4.2 for a strong ISI scenario. As-
sume σ2

n̂ → 0, such that pzISI+n̂(zn) ≈ pzISI(zn). We observe that for i.i.d. samples, i.e.,
amin = 1, (4.27) and (4.28) are equivalent (shaded in gray) since both distributions,
the marginal distribution pzISI(zn) and the conditional distribution pzISI|x(zn|xn = 1)
coincide and are zero-mean. On the other hand, for amin = 2 bounding (4.28) yields
an upper bound on the blue area while we are looking for an upper bound on the red
area. We see that when amin > 1, the conditional distribution pzISI|x(zn|xn = 1) is not
longer symmetric nor zero-mean, which remains valid for the marginal distribution. In
order to reduce the overestimation of pb, we thus attempt to bound (4.27) directly. We
have

pb =
Z2∫
Z1

pzISI|x(zn|xn = 1)1
2 erfc

(
h0 + zn√

2σn̂

)
dzn (4.34)

assuming that that

zISI ∈ [Z1, Z2],
Z2∫
Z1

z2
npzISI|x(zn|xn = 1)dzn = E[z2

ISI,n|xn = 1]

Z2∫
Z1

pzISI|x(zn|xn = 1)dzn = 1,
Z2∫
Z1

znpzISI|x(zn|xn = 1)dzn = E[zISI,n|xn = 1]. (4.35)

Note that the conditional ISI distribution pzISI|x(zn|xn = 1) is unknown. Furthermore,
it is neither symmetric nor zero-mean, which is why additional parameters are needed
in order to describe the support and the mean of the ISI. A simple method to obtain
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estimates on Z1, Z2, E[zISI,n|xn = 1], and E[z2
ISI,n|xn = 1] is a low-complexity Monte-

Carlo simulation by simply generating a long RLL sequence, which is filtered by h(t).
Furthermore, a method for obtaining Z and σ2

zISI is given in [Big74] for finite impulse
response (FIR) filters and in [Gla72]

E[z2
ISI,n] = 1

2πTs

∫ π
Ts

− π
Ts

Srll(ω)|H̃(ω)− h0Ts|2dω (4.36)

H̃(ω) =


∑∞
i=−∞H

(
ω + 2πi

Ts

)
, |ω| ≤ π

Ts

0, |ω| > π
Ts

(4.37)

is given, when the spectrum of the data sequence is known and the ISI. Hereby H(ω)
is the Fourier transform of the channel impulse response h(t).

Since erfc(x) is monotonically decreasing in x, we deduce from Fig. 4.2 that in order
to obtain an upper bound on (4.34) as much weight as possible has to be put onto zn
close to Z1 while the conditions in (4.35) have to hold. Therefore, we upper-bound pb
based on a worst-case pzISI|x(zn|xn = 1) with two mass points at z1 and z2 of probability
pz1 and pz2 . This yields for the upper bound on the average sample flipping probability

pb ≤
1
2

(
p∗z1 erfc

(
h0 + z∗1√

2σn̂

)
+ (1− p∗z1) erfc

(
h0 + z∗2√

2σn̂

))
(4.38)

where z∗1 , z∗2 , and p∗z1 denote the values that maximize the right-hand side of (4.38).
The maximization in (4.38) can be carried out as shown in Appendix B.1 or directly
using a nonlinear programming solver.

4.1.3 Achievable Rate Results
The system analyzed in this section combines the concepts of FTN signaling and
RLL coding. This combination can be beneficial in terms of spectral efficiency, cf.
Section 2.2.2. At the same time the signal is oversampled w.r.t. its bandwidth. We will
analyze the performance bounds w.r.t. the spectral efficiency by

• evaluating the bounds on pb obtained previously, which are then used to obtain
a bound SELB,an on the spectral efficiency that can be evaluated foremost by
analytical and numerical computations

• evaluating pb based on a long realization of x̂(t) via

pbsim = 1
Nsamp

Nsamp∑
n=1

1
2 erfc

( x̂nxn√
2σn̂

)
(4.39)

yielding a simulation-aided bound SELB,sim on the spectral efficiency
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Tab. 4.1. Waveform overview

waveform g(t) G(ω) P/P̂

rectangular
√
P̂ rect

(
t
Ts

) 2
√
P̂ sin(ωTs2 )

ω 1

triangular
√
P̂ tri

(
t
Ts

)
2
√
P̂ (1−cos(ωTs))

ω2Ts

(
1− 2

3E[ak]

)
cosine

√
P̂

2

(
1 + cos

(
πt
Ts

))
1[−Ts,Ts](t)

√
P̂ π2 sin(ωTs)

ω(π2−(ωTs)2)

(
1− 1

2E[ak]

)

With respect to the waveform g(t) in what follows we will consider a rectangular pulse
of duration Ts, a triangular pulse of duration 2Ts (as in [BSK+17]), and a cosine
wave of frequency 1/2Ts and duration 2Ts (as in Chapter 3 and [BDFa; BDF17a]). The
waveforms are summarized in Table 4.1. The spectral efficiency of the system w.r.t. to
a chosen bandwidth measure Bx is then given as

SE = I ′(A; D)
Bx

≥ Crll(amin)−Hb(pb)
BxTs

= SELB. (4.40)

Application to Strictly Bandlimited Channels

We now evaluate the spectral efficiency assuming ideal LP filters at transmitter and
receiver. The bandwidth measure is therefore the occupied two-sided bandwidth
Bx = 2W . In Fig. 4.3, the average bit flipping probability pb and the resulting spectral
efficiencies are depicted using a cosine waveform. The indices (·)sim, (·)cheb, (·)cond,
(·)noISI denote the results based on (4.39), (4.32), (4.38), and without filtering (i.e.,
vtx(t) = vrx(t) = δ(t)), respectively. The following observations can be made

• For amin = 1, pb,cheb gives the tighter bound on the average flipping probabil-
ity compared to pb,cond. This is due to the fact that pzISI|x(zn|xn) = pzISI(zn),
whose symmetry is captured in Ω(zn), which gives additional information in the
maximization of pb yielding a symmetric set of mass points. However, for all
amin > 1, pb,cond yields the tighter bounds. This is due to the better treatment of
the constructive interference inherent to the RLL sequence. In what follows we,
thus, consider

pb,UB =

pb,cheb, amin = 1

pb,cond, amin > 1
. (4.41)

• The analytically and numerically obtained bounds pb,UB are especially valuable
for describing low to medium ISI scenarios. If the ISI becomes too strong (cf.
Fig. 4.3 for 2WTs = 0.5 and amin = {1, 2}) pb,UB is not converging to zero for
high SNR. Thus, the corresponding bounds on the spectral efficiency, SELB,an,
will not converge against SELB,sim. If amin > 1, the bounds will converge if
z∗1 > −h0 as then a bit cannot be flipped purely due to ISI. Table 4.2 gives the
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Fig. 4.3. Bounds on pb and corresponding spectral efficiency for the cosine waveform and Nyquist
signaling (2WTs = 1) as well as two-fold FTN signaling (2WTs = 0.5)

minimum bandwidth (2WTs)min for which this criterion is fulfilled. Since the ISI
is dominated by the channel filters, there is no notable difference between the
waveforms g(t).

• Differently to pb,sim, it is possible that the bounds pb,UB increase when the
SNR increases. This occurs for strong ISI scenarios, i.e., if z∗1 < −h0. Then
the probability decreases that the error introduced by the ISI – which itself is
bounded to be at a mass point close to its worst case value – is "repaired" by the
noise.

• Where they converge, both bounds SELB,sim and SELB,an show increased spectral
efficiencies for 2WTs = 0.5 and amin > 1. Thus, they confirm the benefit of
applying FTN signaling and RLL sequences to 1-bit quantized channels and
allow for insights on the performance of a concrete system implementation via
numerical computations and very low complexity simulations.
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Tab. 4.2. Minimum bandwidth (2WTs)min for which bounds and simulation results converge w.r.t.
minimum runlength amin

amin 1 2 3 4 5 6
(2WTs)min 0.96 0.57 0.44 0.36 0.33 0.33

In Fig. 4.4 the application of the spectral efficiency bounds to FTN transmission is
depicted. For different bandwidths 2WTs and SNR values the spectral efficiency is
given for the amin that maximizes SELB. The amin, at which the maximum is attained,
is indicated by markers. The choice of the normalized bandwidth 2WTs of hLP(t)
determines the degree of FTN signaling. Hereby, strictly speaking 2WTs = 1 is not
Nyquist-signaling as h(t) is not orthogonal w.r.t. 1

2W since hLP(t) is convolved with
g(t). However, roughly we have

MFTN ≈
1

2WTs
(4.42)

i.e., 2WTs = 1 can be considered as Nyquist signaling, 2WTs = 0.5 as twofold FTN
and so on.

We observe that, as in Chapter 3, due to the ideal LP-filters, the actual shape of
the waveform plays a subordinate role and the achievable rate is mainly defined
by 2WTs. Also, similarly, the maximum spectral efficiency in the high-SNR limit is
observed using a triangular pulse as lim

SNR→∞
SELB,sim ≈ 1.53 bit/s/Hz for amin = 4 and

2WTs = 0.29. On the other hand, for low SNR values FTN signaling is not beneficial
due to the increased ISI, which was to be expected. Furthermore, we observe that
the amin maximizing SELB,sim is often different from the one maximizing SELB,an.
This is due to the fact that the ISI is pushed to its limits if the spectral efficiency is
maximized. In this case we have z∗1 < −h0 and pb,UB exhibits an error floor such that
SELB,an becomes loose and does not converge to SELB,sim as discussed above. This
can already be observed in Fig. 4.3 for amin = 2 for two-fold FTN. Exceptions are
2WTs = {0.6, 0.7, 1} where SELB,an and SELB,sim reach the maximum for the same
amin and converge to the same values.

For the triangular and the cosine pulse, the bounds from Chapter 3 (c.f. Fig. 3.9) are
plotted over the respective SNR range. In the latter case, they fit well to the envelope
of the achievable rate curves for SNR ≥ 10 dB, while in the former, there is about
0.1 bit/s/Hz difference in the high-SNR limit. Moreover, the AWGN-spectral efficiency
1
2 log (1 + SNR) is given for comparison with SELB,sim.

Performance with Excess Bandwidth

Excess bandwidth is known to notably increase the performance of FTN signaling. A
small amount of out of band power is usually tolerable in a mobile communication
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Fig. 4.4. Lower bounds on the maximum spectral efficiencies for strictly bandlimited channels and FTN
signaling: simulation-aided bound SELB,sim (left) and analytical bound SELB,an (right) for
three different pulses g(t), a) rectangular pulse, b) triangular pulse, and c) cosine pulse
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system. Therefore, we continue with analyzing the performance bounds of the 1-bit
quantized FTN system using other filters than ideal LPes for vtx(t) and vrx(t). We
assume that the pulse shape h(t) is solely determined by hLP(t), i.e., g(t) = δ(t). The
choices of hLP(t) that we analyze comprise

• raised cosine (RC) filters, i.e., vtx(t) and vrx(t) are root raised cosine (RRC)
filters

• RRC filters, i.e., the convolution of vtx(t) and vrx(t) is an RRC filter

• squared raised cosine (SRC) filters, i.e., vtx(t) and vrx(t) are RC filters

with different roll-off factors αRC. Note that here, except for αRC = 0, x̂(t) is not the
noise-free receive signal anymore. As bandwidth measure Bx we use the 95 % power
containment bandwidth B95% of the transmit signal x̂(t) and in order to define the
degree of FTN signaling we continue to refer to the bandwidth 2W of an ideal LP, i.e.,
the bandwidth of the filter for αRC = 0.

The spectral efficiency bounds for RC filters are depicted in Fig. 4.5. Here, for
2WTs = 1, the pulse h(t) is truly orthogonal and

MFTN = TNyq
Tsymb

= 1
2WTs

. (4.43)

It can be observed that when increasing αRC from 0 to 0.5 and further to 1, the
convergence between SELB,sim and SELB,an improves with increased αRC due to the
decreasing ISI. Increasing the roll-off factor of the RC filter furthermore reduces the
SNR that is required for the bounds to achieve a given spectral efficiency. While
for example approximately 24 dB are required to achieve 1.8 bit/s/Hz for αRC = 0,
this reduces to 18 dB for αRC = 0.5 and further to 17 dB for αRC = 1. Again the
AWGN-spectral efficiency 1

2B95%Ts
log (1 + SNR) is given for comparison with SELB,sim.

In the high SNR limit, the maximum values for the lower bounds on the spectral
efficiency observed are 1.8, 2.23, and 2.09 bit/s/Hz for αRC = {0, 0.5, 1}, respectively,
requiring 3.33- and 5-fold FTN signaling. This confirms the expected benefit of excess
bandwidth for FTN signaling.

Since for the considered configurations we observe a maximum of the spectral
efficiency at αRC = 0.5, there is clearly a trade-off between ISI and the bandwidth
occupied w.r.t. the chosen bandwidth measure. While the former reduces with the
roll-off factor of an RC filter, the latter increases. Besides the roll-off factor, which
quantifies the additional bandwidth spent compared to an ideal LP, also the slope of
the filter has an impact on the 95 % power containment bandwidth.

We therefore compare as a last step the maximum of SELB,sim over amin for the
RRC, RC, and SRC filter, respectively, as mentioned above. The results are depicted
in Fig. 4.6. For the sake of presentation, indicating the amin for which these spectral
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Fig. 4.5. Lower bounds on the maximum spectral efficiencies for channels with FTN signaling and
excess bandwidth (RC-pulses) w.r.t. 95 %-power containment bandwidth: simulation-aided
bound SELB,sim (left) and analytical bound SELB,an (right) for three different roll-off factors,
a) αRC = 0, b) αRC = 0.5, and c) αRC = 1
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Fig. 4.6. Simulation-aided lower bound SELB,sim on the maximum spectral efficiencies for channels
with FTN signaling and excess bandwidth w.r.t. 95 %-power containment bandwidth for the
roll-off factors a) αRC = 0.5, b) αRC = 0.5

efficiencies are obtained is omitted. The largest values for SELB,sim are obtained for
amin = {4, 5, 6}. There is no need to consider αRC = 0 since then all three filters are
equivalent and the spectral efficiencies are already given in Fig. 4.5a). At high SNR
and for a fixed 2WTs it can be seen in Fig. 4.6 that in most cases the spectral efficiency
of the SRC filter exceeds the one of the RC filter, which in turn exceeds the spectral
efficiency of the RRC filter. This is true as long as sufficient bandwidth is available to
accommodate the spectrum of the RLL sequence without major distortion since the
bandwidth measure B95% increases from SRC to RC to RRC filter for a fixed 2WTs.
However, for large FTN factors, the steeper slopes of the RC and RRC filter reduce the
ISI, which results beneficial and leads to an SELB,sim up to the previously observed
2.23 bit/s/Hz for αRC = 0.5 and up to 2.47 bit/s/Hz for αRC = 1. For low SNR values,
the reduced ISI of RRC filters results in larger spectral efficiencies for 2WTs < 1.

4.2 Application to MIMO Channels
In [BDF17b] we analyzed power allocation schemes for oversampled multiple-input
multiple-output (MIMO) channels based on previously obtained lower bounds on the
achievable rate for a continuous and a discrete-time scenario. We found that assuming
full channel state information at the transmitter (CSIT), simple precoding and power
allocation schemes can deliver good performance results. Precoding plays an important
role for 1-bit quantized MIMO transmission since due to the 1-bit quantizer any post-
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processing at the receiver in the digital domain becomes more difficult. So while the
assumption of full CSIT is arguable, it is a common starting point for analysis. In
this section we briefly review the system model and approach of [BDF17b] and then
evaluate the most suitable precoding and power allocation schemes w.r.t. the new
results obtained for the bounds in Chapter 3 and Section 4.1.

4.2.1 System Model
The considered channel is a bandlimited complex Nr ×Nt MIMO channel with 1-bit
quantization and oversampling at the receiver. Here, Nr and Nt denote the number
of receive and transmit antennas, respectively. Fig. 4.7 depicts the respective system
model. Note that the in-phase and quadrature components of the signal are processed
separately at mapper, analog-to-digital converter (ADC), and demapper. The informa-
tion continues to be encoded in the position of the ZCs of the real and imaginary part
of the transmitted signal, respectively.

For every input i, there are two input vectors A(K)
i,< and A(K)

i,= containing the ZC-
distances of the real and the imaginary part of the signal xi(t), respectively. The design
of the signal xi(t) corresponds to the approaches from Chapter 3 and Section 4.1, i.e.,

xi,</=(t)=
(∑K

k=1

√
P̂ i(−1)kg(t−Ti,</=,k)

)
+
√
P̂ i (4.44)

considering a continuous-time channel model and

xi,</=(t)=
√
P̂ i

Nsamp−1∑
n=0

xi,</=,ng(t− nTs) (4.45)

for the discrete-time model. All signal parameters are defined in the respective sections.
In what follows, we use the matrix notation, where the sampling period Ts is used for
defining the time instants. Note that the continuous-time model in (4.44) implies that
Ts → 0.

Before transmission the signal xi(t) is filtered by an ideal LP with one-sided band-
width W . This yields the transmit signal x̂i(t), which is transmitted via an Nr × Nt
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MIMO channel with precoding. The received signal y = [y1(lTs), y2(lTs), ...yNr(lTs)]T

after sampling and quantization is given by

y = Q1 (HCx̂ + n̂) . (4.46)

Here, H is the time-variant Nr ×Nt channel matrix containing the complex Gaussian
distributed channel coefficients at time lTs and x̂ = [x̂1(lTs), x̂2(lTs), ...x̂Nt(lTs)]T .
Furthermore, and n̂ is the filtered and sampled complex AWGN vector with mean zero
and variance σ2

n̂. The noise samples are temporally correlated due to bandlimitation
and oversampling. Moreover, Q1(·) denotes the 1-bit quantization function and C is
the precoding operation. We will omit the sampling time index l at H, x̂, n̂ and y for
notational convenience.

As motivated in Chapter 1, we are interested in high-speed short-range communica-
tion scenarios. For very short range board-to-board communication with line-of-sight
component it was found that such channels can be considered largely frequency flat
despite their large bandwidth [FuHLF13]. Therefore, we assume full channel state
information (CSI) at transmitter and receiver. Channel estimation with 1-bit ADCs is a
topic under active research, e.g., [IN07; MAN10; MSPH14; ZSK12; SLd19].

At the receiver, the positions of the ZCs of the real and imaginary component are
mapped back onto vectors of distances DJ

j,< and DJ
j,= for every receive signal yj . Recall

that the length K of the input vector is not necessarily equal to the length J of the
output vector since the noise can insert or delete ZCs. The signals xi(t) in (4.44)
and (4.45) are not bandlimited such that LP-filtering introduces a distortion to the
signal. This yields to a reduced achievable rate due to ISI, which has been modeled in
Chapter 3 and Section 4.1 accordingly. We assume that the noise is i.i.d. for all receive
antennas. The sum transmit power is

P =

E[‖Cx̂‖2] for the discrete-time model

E[‖Cx‖2] for the continuous-time model1
. (4.47)

4.2.2 Channel Decomposition and Power Allocation Schemes
It is known that the capacity of the MIMO channel without output quantization is
achieved by circular-symmetric complex Gaussian input symbols with covariance
matrix Rx = WP WH . Here, W is obtained by singular value decomposition (SVD)
of H = UΣWH , where U and W are unitary. The diagonal matrix Σ contains the
weights σv for every channel, which are the singular values of H. Based on SVD
we can pre- and post-process the transmit and receive signals in order to obtain

1Refer to Section 3.1.2 for the reasoning behind this definition.
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ν = rank(H) ≤ min(Nt, Nr) independent and non-interfering channels. We assume
that channel coefficients in H are generated from CN (0, 1). Then the receive SNR on
the vth channel becomes ρv,rx = σ2

v
P v
σ2

n̂
. It then remains to find an appropriate power

distribution P = diag(P 1, ..., P ν) among all channels given that

P =
ν∑
v=1

P v. (4.48)

With 1-bit quantization, however, it is not possible to apply the post-processing the
receiver since multiplication of the coarsely quantized signal with UH would not yield
the desired result. Thus, precoding is often used to shape the signal already at the
transmitter. One option is to carry out channel equalization already at the transmitter
by channel inversion (CI). This comes at the cost of potentially increased transmit
power or a decreased receive SNR, respectively, since the different channel weights σv
cannot be leveraged and ρv,rx = P v

σ2
n̂

.
In any case, based on the corresponding processes for K →∞ the achievable rate is

given by the sum rate of the achievable rates on the individual channels

I ′ (A; D) =
ν∑
v=1

I ′ (Av; Dv) (4.49)

where A = [A1,<,A1,=, ...,Aν,<,Aν,=] and D = [D1,<,D1,=, ...,Dν,<,Dν,=]. With the
techniques obtained previously, (4.49) can be evaluated in terms of lower bounds, cf.
(3.51) and (4.18).

One can think of different power allocation schemes that can be applied to MIMO
systems. Fig. 4.8 summarizes the schemes analyzed in [BDF17b], which are

• SVD with waterfilling (WF) (SVD WF)

• SVD with equal power allocation (EP) (SVD EP)

• SVD with a maximum effective channel SNR (SVD ρmax), i.e., no more power is
assigned to a channel that has already the maximum receive SNR ρv,rx = ρmax

until every channel has this maximum receive SNR

• CI at the transmitter with with equal power allocation (CI Tx)

• CI at the transmitter using only a subset of the ν channels such that the sum rate
is maximized (CI Tx opt).

Out of the above, only the CI based power allocation schemes can be implemented
straightforward under 1-bit quantization and CI Tx opt has been shown in [BDF17b]
to perform close to or even outperform the SVD based schemes. Nevertheless, the
following evaluation of (4.49) will consider all schemes for the sake of comparison.
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4.2.3 Results on the Achievable Rate
The results on the achievable rate are depicted in Fig. 4.9 for the 2×2 and 4×4 MIMO
channel. For comparison existing bounds for Nyquist sampling are given: an upper
bound (UB) [MH15] as well as lower bounds (LBs) based on Bussgang decomposition
[MN12], CI and an additive quantization noise model (AQNM) [MH15]. Furthermore,
the Gaussian capacity CAWGN using waterfilling is given. We assume that the complex
noise is of unit variance, i.e., σ2

n̂ = 1, such that the achievable rate can be given over
the amount of transmit power P that can be allocated.

We depict the lower bound on the spectral efficiency of the continuous-time channel
for the linear transition waveform and the near-optimal κ = 0.7. The low SNR range
is omitted due to the restrictions on the validity of the bound. The lower bound on
the spectral efficiency of the discrete-time channel is given for the linear transition
waveform and amin = 4. We observe that the spectral efficiencies achieved with the
discrete-time model are only about 0.5 bit below the ones of the continuous-time
channel for the 2× 2 MIMO channel, which increases 1 bit for the 4× 4 MIMO channel.
Furthermore, except classical CI all schemes perform comparably. This is due to the
noise enhancement of CI. However, it also shows that with the adapted channel
inversion scheme CI Tx opt spectral efficiencies comparable to SVD can be achieved
without post-processing the 1-bit quantized receive signal. Note that this requires full
CSI at transmitter and receiver, which is also true for SVD. Furthermore, we observe
that oversampling improves the achievable spectral efficiencies compared to Nyquist
sampling especially in the high-SNR regime, while for the 2 × 2 MIMO channel in
the low-SNR regime the lower bound based on CI shows higher spectral efficiencies.
Overall, we conclude that for 1-bit quantized oversampled MIMO channels, intelligent
precoding is sufficient to achieve a good performance.

4.3 Summary
We have applied the insights obtained in Chapter 3 to more practical scenarios. We
used the bounding techniques based on the genie-aided receiver for discrete channels
with finite OSRs. With this approach, lower bounds on the achievable rate of the
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Fig. 4.9. Lower bounds on the spectral efficiencies of the oversampled strictly bandlimited channel
MIMO channel for discrete and continuous-time scenarios with a linear waveform

runlength-modulated 1-bit quantized discrete-time AWGN channel using FTN signaling
have been derived. Here, FTN signaling corresponds to oversampling w.r.t. the
channel bandwidth. Two lower bounds are given based on maximizing the average
sample flipping probability pb, which in turn maximizes the entropy of the auxiliary
process. First, an analytical expression for pb is obtained by deriving a worst-case ISI
distribution. Secondly, an estimate of pb based on a sufficiently long realization of the
filtered transmit signal yields a simulation-aided lower bound on the spectral efficiency.
With increasing ISI, the bounds diverge until the analytical bound collapses. This is
due to the fact that it is based on a worst-case assumption for the probability density
function (pdf) of the ISI. However, for low to moderate ISI, both bounds converge.
Given a hard bandlimited channel, the achievable rates derived match the results of
the continuous-time channel well achieving up to approximately 1.53 bit/s/Hz. When
excess bandwidth is tolerable, spectral efficiencies up to 2.47 bit/s/Hz in the real
domain are achievable w.r.t. the 95 %-power containment bandwidth.

We show that these bounds as well as the ones for the continuous-time scenario can
be applied to the oversampled 1-bit quantized MIMO channel using appropriate power
allocation schemes. Especially in the high-SNR regime the gain by oversampling or
FTN signaling is significant.
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The Potential of Continuous
Phase Modulation for 1-bit
Quantized Communication

5

As constant envelope modulation scheme, continuous phase modulation (CPM) enables
the use of highly efficient non-linear, e.g., class-E, power amplifiers (PAs). Originally
designed to reduce spectral side lobes, the continuous phase trajectory provides the
opportunity to extract additional information by oversampling the signal. Thus, it
appears to be a natural match to oversampled 1-bit quantized communication. In this
chapter, basic properties of CPM are introduced and system model of the oversampled
1-bit quantized CPM system is given. We analyze the limiting performance in terms
of distinguishable symbols in a noise-free scenario as well as the bit error rate (BER)
performance under noise given channel filters and faster-than-Nyquist (FTN) signaling.
Parts of the presented results are published in [BDF19; FDB+19].

5.1 Background on Continuous Phase Modulation
A passband CPM-signal can be described as [AAS86, Chapter 2.2]

s(t) = <
{√

2Es
Tsymb

ej(2πf0t+φ(t)))
}

(5.1)

where Tsymb is the symbol duration, Es is the symbol energy of the bandpass signal,
and f0 is the carrier frequency. The phase term φ(t) is the superposition of all previous
phase transitions up to the present time t. It depends on the corresponding CPM-
symbols αk ∈ A as

φ(t) = 2πhcpm

K−1∑
k=0

αkq(t− kTsymb) + φ0. (5.2)

Here, φ0 is the initial phase at t = 0, K is the number of symbols, and hcpm is the
modulation index. Moreover, |A| = Mcpm is the order of the modulation alphabet.
Conventionally, Mcpm is chosen to be even with the symbol alphabet being

A = {±1,±3, ...,±(Mcpm − 1)}. (5.3)
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time invariant trellis based on ψ(t), c) wrapped trellis and d) constellation diagram

Furthermore, q(t) is the phase smoothing response, for which it holds

q(t) =

0, t ≤ 0
1
2 , t > LcpmTsymb

. (5.4)

Here, Lcpm is the memory of the CPM-symbol in terms of the symbol duration Tsymb.
The choice of q(t) for 0 < t ≤ LcpmTsymb defines the phase transition. The derivative
in time q′(t) of q(t) represents the instantaneous frequency of the pulse. It can be used
to define CPM families. Examples are the Lcpm-REC family based on a rectangular
q′(t), i.e., a linear q(t), or the Lcpm-(S)RC families based on a (spectral) raised cosine
frequency pulse. A special case of the Lcpm-REC family is continuous phase frequency
shift keying (CPFSK) corresponding to 1-REC, which in turn becomes minimum shift
keying (MSK) when hcpm = 1/2, Mcpm = 2. Classical phase shift keying (PSK) can be
represented in this framework based on a step function as phase smoothing response
q(t), i.e., based on the Dirac delta function as frequency pulse q′(t).

The phase term φ(t) can be represented using a trellis diagram. With the definition
of the alphabet A in (5.3), a time variant trellis results as given for Mcpm = 2 in
Fig. 5.1a). It is possible to transform a time variant into a time invariant trellis by
adding a frequency offset [Rim88] as depicted in Fig. 5.1b), i.e.,

ψ(t) = φ(t) + 2π∆f (5.5)

with
∆f = hcpm(Mcpm − 1)

2Tsymb
. (5.6)

Fig. 5.1c) depicts the wrapped trellis, which results when taking into account the
periodicity of the phase. Furthermore, in Fig. 5.1d) the constellation diagram is
given, which comprises nconst constellation points in the complex plane. From each
constellation point Mcpm transitions are possible. Note that nconst is not necessarily
equal to Mcpm and that in order for nconst to be finite, hcpm needs to be a rational
number.
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Compared to pulse amplitude modulation schemes obtaining the spectrum of a
general CPM signal is more involved. Closed form solution exist for example for PSK,
CPFSK, and MSK. For more general configurations and independent and uniformly
distributed (i.u.d.) symbols, an algorithm for computing the power spectral density
(PSD) based on the auto-correlation function (ACF) is given in [AAS86, Chapter 4.2].
The closed form expression available for Mcpm-ary PSK is [AAS86, Chapter 4.3]

S(f) = Tsymb
log2Mcpm

sin2
(
πf

Tsymb
log2 Mcpm

)
(
πf

Tsymb
log2 Mcpm

)2 (5.7)

while the CPFSK spectrum is given as

S(f) = Tsymb
log2Mcpm

2
Mcpm

Mcpm∑
i=1

1
2

sin2 νi
ν2
i

+ 1
Mcpm

Mcpm∑
j=1

Bij sin νi
νi

sin νj
νj

 (5.8)

νi = π

(
f

Tsymb
log2Mcpm

− (2i−Mcpm − 1)hcpm
2

)

Bij =
cos(νi + νj)− ξα cos

(
νi + νj − 2πf Tsymb

log2 Mcpm

)
1− 2ξα cos

(
2πf Tsymb

log2 Mcpm

)
+ ξ2

α

ξα = 1
Mcpm

sinMcpmπhcpm
Mcpmπhcpm

.

Fig. 5.2b) illustrates that the difference between (5.7) and (5.8) is mainly in the height
of the spectral side lobes while Fig. 5.2a) shows the spectrum of CPFSK depending
on Mcpm and hcpm. The bandwidth occupied is mainly determined by the product
hcpmMcpm. This is due to the fact that with (5.3) the maximum difference in instanta-
neous frequency between two symbols at time k is hcpm(Mcpm − 1)/Tsymb. The price to
pay for decreasing the bandwidth by reducing hcpm is a decreased Euclidean distance
dmin. The distance between two paths trough the trellis can be obtained by using a
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difference sequence γ = α− α̃, where α and α̃ are any two possible distinct sequences
of CPM symbols. The minimum distance results to [AAS86, Chapter 3]

d2
min = log2McpmminγK

[
K − 1

Tsymb

∫ KTsymb

0
cosφ(t,γK)dt

]
. (5.9)

Since testing all possible difference sequences γ quickly becomes tedious, an upper
bound can be obtained choosing any of the possible distance sequences γ. Good
candidates for tight upper bounds are infinitely long sequences merging as soon as
possible preferably independently of hcpm. Based on these so-called inevitable mergers
of paths, e.g., γ = [γ0,−γ0, ....], this yields for Mcpm-ary CPFSK with Lcpm = 1 and
constant hcpm

d2
min,UB = log2Mcpmmin1≤i≤Mcpm−12

(
1− sin(2πihcpm)

2πihcpm

)
. (5.10)

Fig. 5.3 depicts the upper bound in (5.10) on the minimum distance as well as the
normalized 90 %-power containment bandwidth (PCBW) depending on hcpm, which
shows that up to hcpm = 0.5 robustness can be obtained at the cost of bandwidth.

5.2 System Model
The system model of the 1-bit quantized oversampled CPM system is depicted in
Fig. 5.4. In every time interval Tsymb, log2(Mcpm) bits are mapped to a CPM-symbol
αk using Gray mapping. The phase modulated signal is then generated using the
phase smoothing response q(t), cf. (5.2). After transmit filtering with vtx(t), the signal
is up-converted to the carrier frequency f0. This gives the transmit signal ŝ(t) as
filtered version of s(t), cf. (5.1), which is transmitted over an additive white Gaussian
noise (AWGN) channel. The AWGN signal n(t) has noise power density N0. After

74 Chapter 5 The Potential of Continuous Phase Modulation for 1-bit Quantized
Communication



nRF(t)

+

v r
x
(t
)

v t
x
(t
)Symbol

Mapper

CPM
Modulator

q(t)

1-bit
ADC

CPM
Demodu-
lator

Symbol
Demapper

x x

f0 f0−fIF

d d̂
α x(t) x̂(t) ŝ(t) r(t) y α̂
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down-conversion to an intermediate frequency fIF and receive filtering with vrx(t),
the received signal becomes

r(t) = vrx(t) ∗ (vtx(t) ∗ x(t) + n(t)) (5.11)

= h(t) ∗ x(t) + n̂(t). (5.12)

It is oversampled with sampling rate fs = Mosr
Tsymb

and quantized with two 1-bit quantiz-
ers, one for each dimension. Thus, we have y = [y0, ..., yK−1] and yk = [yk,1, ..., yk,Mosr ].
With

rk,m = r
((

k + m

Mosr

)
Tsymb

)
, m = 1, ...,Mosr (5.13)

it results for the complex received sample

yk,m = Q1(<{rk,m}) + jQ1(={rk,m}). (5.14)

Note that oversampling is defined here w.r.t. the symbol duration Tsymb. Thus,
Mosr = Mosr,t, cf. (2.16), and Ts = Tsymb

Mosr
is the sampling period. Here, Q1(·) is the

1-bit quantization function. Defining

xk,m = x
((

k + m

Mosr

)
Tsymb

)
, (5.15)

nk,m = n
((

k + m

Mosr

)
Tsymb

)
(5.16)

and
n̂k,m = n̂

((
k + m

Mosr

)
Tsymb

)
(5.17)

the vectors x, x̂, n, and n̂ as well as xk, x̂k, nk, and n̂k can be expressed accordingly.
The estimated received symbols α̂ = α̂K−1

0 are mapped to the bit sequence d̂. Both,
the transmit and the receive filter are root raised cosine (RRC) filters with bandwidth
time product 2WTsymb and roll-off factor αRC. Thus, the channel impulse response
h(t) is a raised cosine (RC)-filter.

In what follows, we focus on parameter settings that results into time invariant trellis
diagrams and constellation diagrams that are symmetric w.r.t. the quantizer thresholds,
i.e., the axes in the complex plane. The former facilitates detection while the latter
is favorable in the presence of noise since the average distance to the quantization
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threshold is maximized. In order to obtain a symmetric constellation diagram, the
number of constellation points nconst needs to be 1, 2, or a multiple of four, such that
there can exist a φ0 yielding said symmetry. From (5.3), (5.4), and (5.2) one can see
that the difference in phase rotation caused by any two symbols is an integer multiple
of 2πhcpm. Thus, 2πhcpm is the minimum angle between two constellation points.
Assuming hcpm ≤ 1, we therefore have1

nconst = 1
hcpm

= 2c1 , c1 ∈ N0 (5.18)

constellation points on the unit circle. For a symmetric constellation diagram we then
need

φ0 =
π/2

2dnconst/4e
=


π
4 hcpm > 1

4

πhcpm hcpm ≤ 1
4

(5.19)

where d·e is the ceiling function. One common configuration fulfilling this is that
Mcpm is a multiple of four, hcpm = 1/Mcpm, and φ0 = π

Mcpm
. Furthermore, we assume

Lcpm = 1.
The signal-to-noise ratio (SNR) is defined using the energy of the samples after the

receive filter according to [Lap17, Theorem 8.4.3] as

SNR = Ts
∑K−1
k=0

∑Mosr
m=1 |rk,m|2

Ts
∑K−1
k=0

∑Mosr
m=1 |n̂k,m|2

=
∑K−1
k=0

∑Mosr
m=1 |rk,m|2∑K−1

k=0
∑Mosr
m=1 |n̂k,m|2

. (5.20)

5.3 Maximum Achievable Rate in a Noise-free
Scenario and Intermediate Frequencies

In this section, we aim to understand the limits of oversampled CPM under 1-bit
quantization in an ideal transmission scenario, i.e., without any noise and filter
distortion. This is equivalent to h

(
n
Tsymb
Mosr

)
= δ [n], n ∈ Z and n̂k,m = 0 for all

k = 0, ...,K − 1 and m = 1, ...,Mosr, i.e.,

r(t) = x(t). (5.21)

In contrast to classic baseband PSK with Mcpm > 4, with CPM the continuous phase
change over time can be tracked by oversampling the received signal, even when the
amplitude information is discarded due to 1-bit quantization. With the additional
observations it is possible to more accurately determine the speed of the phase change,
which in turn corresponds to a transmit symbol αk. We thus examine the number of

1For hcpm > 1 the denominator would need to be mod (hcpm, 1), which complicates notation un-
necessarily since this case is of very limited relevance here due to bandwidth efficiency reasons (c.f.
Section 5.1).
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resolvable symbols (or paths in the trellis) Nd that can be distinguished despite 1-bit
quantization.

In order to illustrate the problem, Fig. 5.5 depicts phase transitions (corresponding
to transmitted symbols) of ψ(t) for an 8-CPFSK constellation on a 3-fold oversampled
grid. Two phase transitions are distinguishable if they produce a different sequence of
samples, i.e., if at least one sample differs after 1-bit quantization. Fig. 5.5a) shows
the phase trajectories if φ0 is in the first quadrant and depending on φ0 either 6 or 7
symbols can be distinguished. For distinguishable trajectories one of the grid points
of the oversampled grid, marked with black dots, has to be in between the lines
representing the phase trajectories. If not, the two trajectories are ambiguous, which
is marked by filled areas. Due to the symmetry of the constellation diagram w.r.t.
the quadrants, it is sufficient to consider φ0 to be in the first quadrant. Therefore, in
this scenario for i.u.d. input symbols we can distinguish on average 6.5 symbols, i.e.,
log2 6.5 ≈ 2.7 bits per channel use (bpcu). By increasing Mosr, we would be able to
resolve the blue and the upper gray ambiguity, however, the lower gray ambiguity
remains as both trajectories are in the same quadrant.

Recall that ψ(t) is obtained from φ(t) by adding a frequency offset ∆f . Thus, in
contrast to ejφ(t), the signal ejψ(t) is not a baseband signal anymore but its center
frequency is at an intermediate frequency (IF). Increasing this IF as depicted in
Fig. 5.5b) provides a solution to the remaining ambiguity in the first quadrant, which
yields log2 7 ≈ 2.8 bpcu. Thus, the parameters Mosr and fIF determine the number of
distinguishable phase transitions Nd

2.

2Note that for a given oversampled grid like the one in Fig. 5.5, even more paths can be distinguished if
φ0, hcpm, and the phase changes πhcpmαk can be chosen freely. However, in general this yields the
already mentioned disadvantages of an unsymmetrical constellation diagrams and a time invariant
trellis.
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Intermediate Frequencies
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For analyzing the impact of the IF, we adopt the notations

ψ(t) = φ(t) + 2πfIFt (5.22)

and

fIF = ∆f + nIF
Tsymb

(5.23)

where we restrict nIF to
nIF = c2hcpm, c2 ∈ Z. (5.24)

This retains the property of a time invariant trellis since the additional phase turn is
always an integer multiple of the angle between two constellation points. From the
discussion on Fig. 5.5a) we observed that in order to resolve all ambiguities given a
sufficiently high oversampling factor, it must be avoided that more than one transition
starts and ends in the same quadrant. Since ∆f is already positive, we consider phase
changes counterclockwise, i.e., nIF > 0. With this and the assumptions in Section 5.2,
in Appendix C.1 the minimum IF for CPM to resolve all transitions in the trellis despite
1-bit quantization is shown to be

nIF,min = hcpm

(⌈
1

4hcpm

⌉
− 1

)
= hcpmc2,min. (5.25)

This is shown in Fig. 5.6 for Mcpm = 8 and CPFSK. Different parameters hcpm =
{1/4, 1/8, 1/16} correspond to different hcpmMcpm = {2, 1, 0.5} and, thus, different band-
widths, cf. Fig. 5.2. The minimum IFs according to (5.25) are 0, 0.125, and 0.1875,
respectively, i.e., c2 = {0, 1, 3}. This is confirmed in parts a) and b) of Fig. 5.6, where
the number of resolvable bits is given for different oversampling factors and IFs. The
corresponding required oversampling factors to resolve log2 (Mcpm) bits are 2, 5 and
13, respectively. Note that for hcpmMcpm = 0.5 in Fig. 5.6b) log2 (Mcpm) bits can be
already resolved for 11-fold oversampling using an IF larger than nIF,min.

Furthermore, Fig. 5.6a) shows that for a given Mosr, e.g., Mosr = 5, a larger nIF

is not necessarily better. Indeed, while for c2 = {1, 2} all paths can be resolved, this
is not the case for c2 > 2. In other words, for a given oversampling ratio (OSR) the
phase changes can be too fast for the 1-bit quantizer, which then has to be resolved by
increasing Mosr.

For CPFSK we investigate in Appendix C.2 an upper bound nIFmax on the interval
[nIFmin, nIFmax], which can serve as a restriction of the searching space when looking
for reasonable choices of nIF. Thus, nIFmax represents an IF beyond which increasing
nIF further has no additional benefit in terms of the number of resolvable bits. The
derivation is based on the assumption that when the phase rotates through a quadrant
without a sample being generated, the distinction of the paths in the trellis becomes
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more difficult for the 1-bit quantizer. Given that every symbol in A is associated with a
frequency fi, this yields for the minimum and maximum values of αi in A, cf. (5.3),
two possible upper bounds on nIF as

∆ψ = 2πfi
Tsymb
Mosr

<
π

2 (5.26)

nIF <
Mosr

4 − hcpm

(
αi +Mcpm − 1

2

)

=


Mosr

4 = nIF,max,1, αi = −(Mcpm − 1)
Mosr

4 − hcpm(Mcpm−1)
2 = nIF,max,2, αi = Mcpm − 1

. (5.27)

We evaluated the above expression for different OSRs and compared the results to
the number of resolvable paths for different Mosr and nIF, cf. Appendix C.2. We find
that for all non-trivial cases the performance is periodic over nIF and that the period
increases with Mosr. Interestingly, the performance in the interval [nIF,max,2, nIF,max,1]
is particularly bad, which leads us to the conclusion that our initial assumption was
correct and that passing a quadrant without sampling – even for just one out of the
Mcpm symbols, i.e., max

αi
(2πfi Tsymb

Mosr
) ≥ π

2 – represents a significant loss of information.

We thus conclude that for CPFSK a valid description for the desired searching space is

nIF,min ≤ nIF,CPFSK < nIF,max,2 (5.28)

which, however, does not mean that below nIF,max,2 all symbols can be resolved but
that there is an IF below nIF that achieves at least the same log2(Nd) bits as any
IF above. This and the low OSRs used also explain the limited benefit observed by
increasing nIF to one in [LDdF18].
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The minimum OSR to resolve all paths Mosr,min can be found by a simple search.
However, for CPFSK, also a closed-form expression can be given. Then, the minimum
OSR to distinguish all symbols can be given based on the set

Bp,s,n,(i,j) =
{
m

∣∣∣∣∣m ∈ N ∧m ∈
[⌈

2sf̃i
n
2 −

φ0,p
π

+ ε

⌉
,

⌊
2sf̃j

n
2 −

φ0,p
π

⌋]
∧m ≥ s

}
(5.29)

f̃i = hcpm

(
αi +Mcpm − 1

2 + c2

)
(5.30)

φ0,p = φ0 + 2π(p− 1)hcpm, p = 1, 2, ..., dnconst/4e (5.31)

which contains all OSRs that allow distinction between the ith and the jth symbol
in A at the sth sample using a threshold n. Hereby, i < j such that the symbols are
ordered w.r.t. increasing frequency and m ≥ s since the distinguishing sample must
be smaller then the OSR. Furthermore, n represents a multiple of π/2, i.e., the border
between two quadrants, ε is an arbitrary small positive number, p ≥ 1 is an integer
referring to the pth constellation point in the quadrant, and b·c is the floor function.
For more details on (5.29) to (5.34) refer to Appendix C.3. Denoting as countm(·) the
number of occurrences of element m in a set, the set

Bp,(i,j) =
∞⋃
s=1

(
nmax⋃
n=1

Bp,s,n,(i,j)
∖{

m

∣∣∣∣∣countm

(
nmax⋃
n=1

Bp,s,n,(i,j)
)

mod 4 = 0
})

(5.32)

nmax =
⌊ 1
π/2

(
φ0 + 2π (dnconst/4e − 1)hcpm + 2πfMcpmTsymb

)⌋
(5.33)

contains all OSRs that can distinguish between the ith and the jth symbol when
starting at φ0,p and

Mosr,min = min

nconst/4⋂
p=1

 ⋂
(i,j),i<j

Bp,(i,j)

 (5.34)

is the minimum OSR that allows to resolve all symbols for all starting points in the
constellation diagram. Fig. 5.7 depicts the results of (5.34) for different modulation
orders Mcpm and modulation indices hcpm given that nIF ≥ nIF,min. We observe
that with increasing OSR higher modulation orders can be resolved, e.g., 8-CPFSK
with 5-fold oversampling and 16-CPFSK with 14-fold oversampling at nIF,min for
hcpmMcpm = 1. When the bandwidth is small (hcpmMcpm = 1/2), higher OSRs are
required while a larger bandwidth can decrease the required OSR. However, the latter
does not hold always as can be seen for Mcpm = 4 and hcpmMcpm = 2. In this case the
frequencies associated with the symbols become so large that, due to the wrapping
of the phase with modulo 2π, at least two-fold oversampling is required to resolve
all symbols. Note, that in the presence of noise odd oversampling factors are to be

80 Chapter 5 The Potential of Continuous Phase Modulation for 1-bit Quantized
Communication



0 0.25 0.5 0.75 1 1.25 1.5

5

10

15

20

25

30

1

nIF

M
o
sr
,m

in

Mcpm = 4

Mcpm = 8

Mcpm = 16

hcpmMcpm = 1/2

hcpmMcpm = 1

hcpmMcpm = 2
nIF,min

Fig. 5.7. Minimum oversampling ratio of CPFSK to resolve Mcpm symbols according to (5.34) depending
on the intermediate frequency

preferred as this, due to the symmetry of the constellation diagram, avoids samples on
the decision thresholds of the quantizers.

For waveforms other than CPFSK, the number of resolvable bits can be obtained by
a simple search. Fig. 5.8 shows the number of resolvable bits for modulation orders 4,
8, and 16 for PSK, CPFSK and a sine shaped transition waveform using the IF nIFmin

obtained for CPM in (5.25). In principle, the considerations leading to (5.25) for CPM
also apply to PSK, whose phase trajectories are linear with a slope of 2πfIF and an
offset of height πhcpmαk. However, in Fig. 5.8c) we see that – in contrast to CPM –
for PSK nIFmin this is not the only criterion for resolving all symbols. The problem
is again the wrapping of the phase with modulo 2π. Since the slope of the phase
trajectory only depends on fIF and the information is only encoded in the offset, for
hcpmMcpm = 2 trajectories for different symbols overlap and become indistinguishable.
In other cases PSK can reduce the required OSR to resolve all bits, cf. Fig. 5.8a) and
b), however, it is not continuous in phase, which means increased side-lobes in the
spectrum compared to CPM. The difference between the sine shaped transition and
CPFSK is marginal. We therefore focus on CPFSK in the next sections due to the better
spectral characteristics given the smaller variations of instantaneous frequencies in
q′(t). Looking at the results for different hcpmMcpm, the interesting question is, given
the spectra in Fig. 5.2a), which configuration provides more spectral efficiency while
remaining robust under filtering and noise. This question shall be addressed in the
next sections.

5.4 Noisy Analysis
Due to oversampling and FTN signaling, the impact of intersymbol interference (ISI)
has to be modeled besides the AWGN in order to characterize the BER-performance.
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CPM is already a trellis based modulation, where the trellis only has to be extended
based on the channel filters. In this section, the conditional probability density
function (pdf) of the channel is given, which is required for the Bahl-Cocke-Jelinek-
Raviv-algorithm (BCJR). Furthermore, a simplified Viterbi-based decoder is proposed.

5.4.1 Conditional Probabilities of the Received Signal
With oversampling the complex receive vector that corresponds to the kth symbol αk
is given by rk = [rk,1, ..., rk,Mosr ]. Since oversampling and FTN signaling are used, noise
correlation has to be considered. With řk = [<{rk},={rk}]T being the stacked vector
of real and imaginary part of dimension 2Mosr × 1, we can express the conditional
probability of the received given the transmitted vector via the multivariate Gaussian
as distribution

p̌rk |̌xk(řk|x̌k) = e
− 1

2 (řk−x̌k)TR−1
ň (řk−x̌k)

√
(2π)2Mosr |Rň|

(5.35)

where x̌k is the expected receive signal in the absence of noise and Rň is covariance
matrix of the oversampled noise vector ňk = [<{n̂k},={n̂k}]T . The expected receive
signal is given by

x̌k =
[ <{x̂k}
={x̂Tk }

]
=
[
<{H(xkk−Lh )}
={H(xkk−Lh )T }

]
. (5.36)

Here, H is a Mosr ×Mosr(Lh + 1) Toeplitz matrix, whose first row is [h,0Mosr−1] using
the oversampled channel filter h = [h(−LhMosrTs

2 ), ..., h(0), h(Ts), ..., h(LhMosrTs
2 )] of

size 1×MosrLh + 1. Furthermore, Lh is the length of h(t) w.r.t. the symbols duration
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and 0a is an all-zero row vector of length a. Thus, the probability that the complex
1-bit quantized observation yi is received can be given by integrating over (5.35) as

Pr(yk = yi|x̌k = x̌i) =
∫
· · ·
∫

YMosr
i

p̌rk |̌xk(ř|x̌k)dř (5.37)

where YMosr
i denotes the quantization region to which yi belongs. Note that real

and imaginary part are correlated since the filters vtx(t) and vrx(t) have their center
frequency at fIF. Thus, we cannot compute (5.35) separately for real and imaginary
part. Therefore, Rň is of dimension 2Mosr × 2Mosr and is is given by

Rň = E
{[
<{V } −={V }
={V } <{V }

] [<{(nkk−Lv )T}
={(nkk−Lv )T}

] [
<{(nkk−Lv )T}
={(nkk−Lv )T}

]T [
<{V } −={V }
={V } <{V }

]T}
. (5.38)

Here, V is anMosr×(Lv+1)Mosr Toeplitz matrix, whose first row is [vrx,0Mosr−1] using
the oversampled receive filter vrx =[vrx(−LvMosrTs

2 ), ..., vrx(0), vrx(Ts), ..., vrx(LhMosrTs
2 )]

of size 1×MosrLv + 1, where Lv is the length of vrx(t) in terms of the symbol dura-
tion. The integration in (5.37) can be evaluated by a quasi-Monte Carlo integration
algorithm as, e.g., implemented in the MATLAB-function mvncdf(·). The conditional
probabilities can then be used in a trellis based detection algorithm as for example the
BCJR. However, as mentioned before, the computational effort required is very high.
The number of evaluations nev of (5.37) depends on the length of the phase response
Lcpm, the number of constellation points nconst, the filter length Lh, the alphabet size
|A| = Mcpm, and the OSR Mosr. It is given by

nev = 4Mosr nconst

4 Mcpm
Lh+Lcpm (5.39)

where 4Mosr is the number of possibly observed complex vectors yi. Furthermore, the
factor of 1/4 represents the symmetry w.r.t. the quadrants, due to which the evaluation
for the constellation points of the first quadrant is sufficient. With the parameters
Mcpm = 8, Mosr = 5, Lcpm = 1, and for a short filter length Lh = 2, this already
yields 10242 ≈ 106 evaluations of a 10-dimensional multivariate integral. This clearly
becomes infeasible for higher OSRs. Therefore, this method is suitable for small
temporal OSRs or for low modulations orders Mcpm. In other cases, however, it is
reasonable to consider a simplified decision criterion.

5.4.2 Simplified Decision Metric
The phase of the oversampled receive vector is θk = [θk,1, ..., θk,Mosr ] = arg(yi) with
θk,m ∈ {π4 ,

3π
4 ,

5π
4 ,

7π
4 }. It represent the sequence of quadrants in which the signal is

observed at the sampling instants. A simplified metric needs to capture the periodicity
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of the phase and it has to be able to operate on the 1-bit quantized samples. For
example, we can choose the following mapping M inspired by the concept of Hamming
distance

θ̃k,m = M(θk,m) =



[0, 0], if θk,m = π
4

[0, 1], if θk,m = 3π
4

[1, 1], if θk,m = 5π
4

[1, 0], if θk,m = 7π
4

(5.40)

where θ̃k = [θ̃k,1, ..., θ̃k,Mosr ] is of size 1 × 2Mosr. Then, the phases of the received
vector at time k can be compared with the possible transmit vector x̂i belonging to the
ith symbol αi in A using the Hamming distance

d(yk, αi) = dH
(
M(θk),M(arg(Q1(x̂Ti )))

)
. (5.41)

This is straight-forward to implemented in a trellis based algorithm, e.g., the Viterbi-
algorithm, using the XOR-operation.

5.5 Faster-than-Nyquist Phase Modulation
From Section 5.3 we took away the question how to most efficiently configure an
oversampled 1-bit quantized phase modulated system in the presence of noise and
channel filters. Could a 4-CPFSK modulation scheme with hcpmMcpm = 1/2 operate
under a channel filter channel filter using half the bandwidth and, thus, increasing
the spectral efficiency by 33 % compared to 8-CPFSK with hcpmMcpm = 1? Or is the
benefit marginal as decreasing hcpm does not decrease the main lobe of the spectrum
sufficiently, cf. Fig. 5.2? From [BDF19] we know that the temporally oversampled
CPFSK setup is very sensitive to noise and filter distortion. This is due to the fact, that
the samples that distinguish between two phase trajectories are naturally close to the
decision threshold. One option to resolve this problem could be using discontinuous,
e.g., PSK based, phase smoothing responses, however, this increases the side lobes and
the advantage we saw in Section 5.3 could be mitigated.

Another option would be to maximize the distance to the quantization threshold by
allowing the constellation points to take on only values of {π4 ,

3π
4 ,

5π
4 ,

7π
4 } and making

sure that the signal is always sampled at these points. In order to mitigate losses in
spectral efficiency, the concept of FTN signaling can be applied to the CPM signal.
Traditionally, FTN signaling is used with minimum phase filters [ARO13] in order to
use reduced search methods in the trellis. This is not ideal for phase modulation since
minimum phase filters do not have a linear phase response. However, in [BDF19] we
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proposed an adapted waveform for 1-bit quantized CPM based on shorter 2-CPFSK
symbols with hcpm = 1/4 using a filter with a linear phase response. This drastically
improves the BER performance due to the increased distance to the quantization
threshold. More generally described, this can be seen as a form of coded FTN 2-CPFSK.
This idea was further studied in [dAL19] using uncoded FTN 2-CPFSK with hcpm = 1/4

and a wideband channel filter. The BER performance was shown to be reasonable as
well with a BCJR sequence decoder as with a simple differential decoder.

5.5.1 Uncoded FTN Phase Modulation
There are two possibilities to model FTN transmission. One is depicted in Fig. 5.9
for nIF = nIF,min. Part a) shows the phase transitions of an 8-CPFSK symbol with
hcpmMcpm = 1. From Section 5.3 we know that this can be resolved under 5-
fold temporal oversampling. Part b) depicts 2-CPFSK symbols with hcpm = 1/4, i.e.,
hcpmMcpm = 1/2, with a reduced symbol duration T ′symb, which ideally only requires
3-fold oversampling w.r.t. Tsymb to transmit 3 bits. However, in part c) of the figure
the wider spectrum can be observed as already suspected above. The other option
is using Tsymb = T ′symb but to reduce the bandwidth 2W of the RC-filter available for
transmission.

In any case, we have for the FTN factor

MFTN = 1
2WT ′symb

. (5.42)

Furthermore, since the objective is to sample at maximum distance to the quantization
thresholds, i.e., at odd integer-multiples of π/4, the temporal oversampling factor w.r.t.
the symbol duration is

Mosr = Mosr,t =
T ′symb
Ts

= 1 (5.43)
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while the oversampling factor w.r.t. the system bandwidth is

Mosr,f = fs
2W = 1

2WTs
= 1

2WT ′symb
= MFTN. (5.44)

If all possible symbol combinations, i.e., all trajectories in Fig. 5.9b), are allowed, the
maximum attainable spectral efficiency is

SEmax = log2(Mcpm)
2WT ′symb

. (5.45)

This can be understood as uncoded FTN signaling, which was applied in [dAL19].

5.5.2 Coded FTN Phase Modulation
In contrast to [dAL19], the approach [BDF19] can be seen as coded FTN transmission.
Coded FTN transmission means the selection of a subset S of the FTN signals [ARO13]
such that the αk are no longer data symbols. One information symbol will be encoded
in a certain subsequence αl. In order to transmit the same number of bits compared
to uncoded FTN within Tsymb, T ′symb has to be further reduced. For example, if
Tsymb/T ′

symb = 5, then 8 out of the 25 = 32 possible FTN signals had to be selected
in order to transmit log2(8) = 3 bit. The temporal OSR w.r.t. to an FTN symbol αk
remains one, cf. (5.43), however, the information symbol is now encoded in αl of
duration Tsymb such that

Mosr = Tsymb
T ′symb

(5.46)

with l = bk/Mosrc and αl is of length Mosr. Fig. 5.10 illustrates the mapping from αk to
αl using the example from [BDF19] for Mosr = 5 and 8 code sequences, i.e., 3 bit.

Criteria for designing a code can be manifold. For example, one could maximize
the number of trajectories |S| given a minimum distance in terms of differing samples
between the trajectories. The criterion used in [BDF19] is that trajectories connecting
the same constellation points should be separated by the maximum possible number of
samples. The systematic design of good codes for coded FTN-CPM has remained out
of scope of this work. It would be interesting to see how known tools of coding theory
could be applied to this problem. For example, concatenated codes and generalized
concatenated codes (GCCs), see for example [ZSB99] for an introduction, have been
applied successfully in order to derive communication systems with low decoding
complexity and good error-control capabilities. Since the inner code can also be
considered to be the modulation scheme, i.e., CPFSK in our case, the outer code
would select the valid subsequences for coded FTN transmission. For example, in
[HBSU98], GCCs have been successfully applied to reduce the BER by designing outer
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1 [ 1,−1,−1,−1,−1]
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Fig. 5.10. Coded FTN example for Mosr = 5: a) mapping between αk ∈ A = {−1, 1} and αl for the
symbol indices i = 0, ..., |S| − 1 ans b) resulting phase trajectories

convolutional codes for CPFSK transmission over an unquantized AWGN channel with
Nyquist sampling.

The maximum attainable spectral efficiency for coded FTN signaling is given as

SEmax = log2(|S|)
2WTsymb

. (5.47)

while
MFTN = 1

2WT ′symb
. (5.48)

5.6 Numerical Results
For performance evaluation we apply the decoders derived in Section 5.4. We evaluate
the BER for temporally oversampled phase modulation using Nyquist signaling and
hcpmMcpm = 1 as well as coded and uncoded FTN transmission using 2-CPFSK with
hcpmMcpm = 1/2. This corresponds to the configurations shown in Fig. 5.9. For all
simulations we have nIF = nIF,min, fIF = ∆f + nIF

T ′symb
and use truncated RC- and

RRC-filters with Lh = Lv = 10. In order to limit the complexity of the decoder and the
number of states in the trellis, we use a shorter truncated version of h(t) with Lh = 2 for
the computation of the x̂i and for obtaining the conditional probabilities of the BCJR
and the states of the trellis. Hence, there is a small mismatch between the decoder
and the channel, such that the BCJR-decoder is not strictly optimal. We consider
blocks of length K = 104 symbols and simulate as many blocks until we observe at
least 100 symbol error events. For the computation of the spectral efficiencies, we
consider the 3 dB-bandwidth of the RRC transmit filter such that the roll-off factor αRC

directly relates to the percentage of excess or out-of-band bandwidth. We compare the
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Fig. 5.11. BER results for oversampled 8-CPFSK (Mosr = 5, 2WTsymb = 1.5), uncoded FTN 2-CPFSK
(Mosr = 1, 2WTsymb = 1/2), and coded FTN 2-CPFSK (Mosr = 5, 2WTsymb = 1.5), in all cases
SEmax = 2 bit/s/Hz, αRC = 1/2, and nIF = nIF,min

results to the theoretical bit error probabilities of unquantized quadrature phase-shift
keying (QPSK) and 8-PSK.

In Fig. 5.11 we compare the BCJR-based decoder, cf. Section 5.4.1, with the simpli-
fied metric described in Section 5.4.2 used in a Viterbi decoder for one example of each
approach, i.e., oversampled 8-CPFSK, coded and uncoded FTN 2-CPFSK signaling.
For the systems using temporal oversampling, i.e., oversampled 8-CPFSK and coded
FTN 2-CPFSK, the BCJR outperforms the Viterbi decoder with the simplified decision
metric. For uncoded FTN 2-CPFSK with no temporal oversampling and independent
symbols and, thus, a fully connected trellis, the BCJR and the Viterbi performs equally.
Overall, both decoders give reasonable results such that we use the simpler Viterbi
decoder for further analysis due to the lower complexity. Furthermore, we see that out
of the investigated approaches coded FTN 2-CPFSK can achieve BERs closest to the
theoretical results of a conventional unquantized QPSK system with Nyquist signaling

pb,QPSK = 1
2 erfc

(√
Eb
N0

)
= 1

2 erfc

√SNR
2

 (5.49)

up to an SNR of ca. 15 dB. On the other hand, oversampled 8-CPFSK is very sensitive
to noise and the BER only decreases slowly over the SNR. The performance of uncoded
FTN 2-CPFSK lies in-between these two up to ca. 15 dB SNR after which it begins to
outperform the coded FTN 2-CPFSK example. This is due to the fact that the coded
FTN 2-CPFSK uses 3.33-fold FTN while the uncoded example uses only 2-fold FTN. It
is, thus, less affected by the ISI introduced by the channel filters, which is the reason
for the superior performance in the high-SNR regime. All results given have a spectral
efficiency in the noise and distortion free limit of SEmax = 2 bit/s/Hz and a roll-off
factor αRC = 1/2 was used.
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Fig. 5.12. Uncoded and coded BER results for configurations providing spectral efficiencies of SEmax =
2 bit/s/Hz and SEmax = 3 bit/s/Hz, respectively, for nIF = nIF,min

Fig. 5.12 shows the uncoded and coded BERs for configurations yielding at most
2 and 3 bit/s/Hz spectral efficiency, respectively, for different amounts of excess
bandwidth given by αRC = {0, 0.5, 1}. We use a rate one-half convolutional code
with memory 5 and generator polynomial (62, 57) in octal notation. This code was
found to perform well for iterative decoding of ISI for FTN signals in [AZ12]. Note
that the notion of SEmax always refers to the transmitted and not to the information
bits. As expected, the BER performance improves with increasing excess bandwidth.3

Furthermore, coded and uncoded FTN 2-CPFSK provide a significant gain in BER
compared to oversampled CPFSK, due to the advantage of larger distance to the
quantization thresholds and only one constellation point per quadrant. Depending on
the (excess) bandwidth available, i.e., 2WTsymb and αRC, the relative performance
of coded and uncoded FTN 2-CPFSK varies. If sufficient bandwidth is available (cf.

3A slight deviation from this is observed in Fig. 5.12a) for oversampled CPFSK. Since 2WTs = 1.5 there
is sufficient bandwidth available and the distortion of the main lobe due to αRC = 1 is more severe
than what is gained by the excess bandwidth.
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Fig. 5.12a) or Fig. 5.12b) αRC = 1), uncoded FTN gains on coded FTN in the high-SNR
regime due to the lower MFTN and, thus, lower ISI. For comparison, in Fig. 5.12a) the
QPSK bit error probability in (5.49) is shown and in Fig. 5.12b) an approximation of
the bit error probability of unquantized 8-PSK Nyquist-signaling using Gray mapping
is given as [PS08, Chapter 4.3-2]

pb,McpmPSK ≈
1

log2Mcpm
erfc


√√√√2 log2(Mcpm) sin2

(
π

Mcpm

)
2

Eb
N0

 (5.50)

= 1
log2Mcpm

erfc


√√√√sin2

(
π

Mcpm

)
SNR

 . (5.51)

It can be observed that, using uncoded or coded FTN 2-CPFSK, for a given BER the
SNR difference between 1-bit quantized and unquantized schemes can be significantly
reduced compared to temporally oversampled CPFSK – especially if excess bandwidth
is tolerable (αRC = {0.5, 1}). It is not surprising that for SEmax = 2 bit/s/Hz it is of
little benefit to go through the trouble of FTN signaling since this spectral efficiency can
be easily achieved with Nyquist-QPSK under 1-bit quantization yielding an even better
BER performance. In Fig. 5.12a) we see that for coded FTN 2-CPFSK with αRC = 0.5
(50 % excess bandwidth), there is approximately 10 dB loss in the SNR required to
reach a BER of 10−3 compared to the unquantized case. The SNR needed to achieve
a BER of 10−3 can be reduced with the applied code by ca. 6 dB, cf. Fig. 5.12c).
Increasing αRC to 1 allows BERs close to the theoretical results for unquantized QPSK
transmission at the expense of bandwidth. For uncoded FTN 2-CPFSK, we have only
6 dB and 4 dB gaps in the SNR for the uncoded BER for αRC = {0.5, 1}.

Note that we have not carried out an investigation w.r.t. to the best convolutional
codes for this transmission scenario. In [AZ12] only a subset of codes was found
suitable for the faster-than-Nyquist ISI in the considered transmission scenario and
decoder architecture, which differs from the one considered here. Thus, there is
potential for improvement if the codes are adapted to the CPM-signal. For example,
in [GBSS08] gains were reported when using the Gram-Schmidt orthogonalization
transform on CPM-signals in order investigate good codes for the transmission with
space time convolutional codes.

When higher spectral efficiencies are needed, FTN signaling provides gains w.r.t.
the BER performance. The price to pay for the increased spectral efficiency is SNR
as in the best case there is still around 7 and 4 dB more SNR required compared to
unquantized 8-PSK in the uncoded and coded cases, respectively, to achieve a BER of
10−3, cf. Fig. 5.12b) and d). However, the FTN CPFSK system can be used with a 1-bit
quantizer, which is not the case for classic 8-PSK.
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Tab. 5.1. Parameter Configuration of the Simulation

oversampled CPFSK coded FTN 2-CPFSK uncoded FTN 2-CPFSK
Mosr,t 5 5 1
Mcpm 8 2 2
nIF,min 9/16 0 0
2WTsymb 1 1.5 1 1.5 1/3 1/2

2WT ′symb 1 1.5 1/5 3/10 1/3 1/2

MFTN 1 2/3 5 10/3 3 2
SEmax 3 2 3 2 3 2

Furthermore, the BERs of the simple differential decoder from [dAL19] are given
for uncoded FTN 2-CPFSK. For this low complexity modulation it was seen in Fig. 5.11
that the results of the Viterbi decoder coincide with the BCJR decoder results. As
observed in [dAL19] their differential decoder performance also matches the BCJR
results since there is no temporal oversampling and no information in the sequence of
the symbols to be exploited. Consequently, the performance of the differential decoder
equals the one of the Viterbi decoder with almost negligible performance loss in the
low-SNR domain. However, the decoding rule is specifically designed for 2-CPFSK
and could not be applied to coded FTN 2-CPFSK or oversampled CPFSK. Table 5.1
summarizes the parameters used for the different setups in Fig. 5.12. Note that coded
FTN 2-CPFSK is the only case where T ′symb 6= Tsymb.

Lastly, we compare the BER of the Viterbi decoder of temporally oversampled CPFSK
and temporally oversampled PSK in Fig. 5.13. In Section 5.3 we saw that PSK ideally
requires a smaller OSR than CPFSK, which we seek to investigate for noisy scenarios
as well. It can be observed that given the same OSR, indeed the discontinuities of
PSK improve the BER performance despite the increased spectral side lobes. The gain
is even larger for the narrower filters in Fig. 5.13b), however, it does not match the
improvements achieved by coded and uncoded FTN 2-CPFSK. Furthermore, decreasing
the temporal OSR for PSK to Mosr,min does increase the BER compared to CPFSK at
its respective Mosr,min. Thus, temporally oversampled PSK can enable a reduction in
sampling rate compared to temporally oversampled CPFSK but not without a BER
degradation.

5.7 Summary
In this chapter the advantage of sampling a phase modulated signal at an IF has been
demonstrated given a 1-bit quantizer at the receiver. The IF can be used to manipulate
the phase trajectories associated with the transmit symbols in a way that makes them
distinguishable even under 1-bit quantization if a sufficiently high oversampling ratio
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Fig. 5.13. BER results for oversampled 8-CPFSK and 8-PSK providing spectral efficiencies of a) SEmax =
2 bit/s/Hz, 2WTsymb = 1.5 and b) SEmax = 3 bit/s/Hz, , 2WTsymb = 1 for nIF = nIF,min

can be applied. Even for the non-continuous PSK modulation, the IF creates linear
phase trajectories that can be resolved by temporal oversampling.

Under the assumption of a time-invariant trellis and a symmetric constellation
diagram, the requirements for resolving all possible transmit symbols in an ideal, i.e.,
noise and distortion free, setup have been derived. This includes analytical expressions
for the minimum IF required for resolving all symbols for CPM and the minimum
OSR for resolving all symbols for CPFSK. For other modulation schemes than CPFSK,
namely PSK and a sine-wave phase transition, the minimum OSR for resolving all
symbols has been found by a simple search. While the results for the two continuous-
phase scheme, CPFSK and sine, barely differ, the discontinuous PSK modulation could
potentially require lower OSRs.

Two trellis-based decoder architectures have been presented in order to evaluate
the BER performance of 1-bit quantized phase modulation: a BCJR decoder based on
the conditional probabilities between channel input and output and a Viterbi decoder
based on a Hamming-distance like decision metric. All results consider bandlimited
channels with RRC transmit and receive filters. It results that temporally oversampled
CPFSK is very sensitive to noise and filter distortion since the samples distinguishing
between two symbols can be arbitrary close to the transition threshold. This can be
mitigated by using PSK modulation. However, if PSK modulation is used to reduce the
oversampling ratio, a penalty w.r.t. the BER is incurred.

Another option to improve the BER performance is applying CPFSK with a low
modulation order jointly with FTN signaling. In this context, the notion of coded and
uncoded FTN signaling has been introduced using 2-CPFSK with modulation index
hcpm = 1/4. Comparing these two, uncoded FTN-CPFSK has shown to perform better
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in the high-SNR domain while coded FTN-CPFSK provides lower BERs in the low-to-
mid SNR domain. The gain in SNR required for achieving a given BER compared to
temporally oversampled CPFSK exceeds the improvements obtained by PSK and can
in extreme cases be up to 15 or 20 dB. The price for boosting the spectral efficiency
by applying FTN signaling to CPFSK is an amount of excess bandwidth as well as
an increased SNR to achieve a certain BER. However, the resulting system can be
implemented using 1-bit quantizer and highly efficient non-linear PAs. For example,
the PA in [GURP16] provides when used between 71 to 95 GHz a peak power added
efficiency of 40 % while at the 1 dB compression point this reduces to 10 %. Roughly,
this corresponds to a factor of four – or 6 dB – in power required at the PA, which can
compensate for the larger SNR required compared to traditional schemes. Additional
power savings are achieved by using the 1-bit quantizers.
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Conclusions and Future Work 6
Based on a bottom-up approach where hardware restrictions imply system design
choices in order to increase the energy efficiency of the communications system, the
performance of a bandlimited 1-bit quantized wireless communication system has
been investigated. Here, 1-bit quantization is applied to reduce the analog-to-digital
converter (ADC) power consumption at the receiver. Using performance metrics like
the achievable rate or mutual information rate and the bit error rate (BER), we studied

• the hard bandlimited continuous-time 1-bit quantized additive white Gaussian
noise (AWGN) channel,

• the oversampled discrete-time bandlimited 1-bit quantized channel with and
without excess bandwidth,

• the oversampled discrete- and continuous-time 1-bit quantized multiple-input
multiple-output (MIMO) channels, and

• temporally oversampled and faster-than-Nyquist (FTN) phase modulated com-
munication over bandlimited channels.

The continuous-time 1-bit quantized channel was studied as a limiting case represent-
ing an infinitely oversampled system, i.e., Mosr →∞. We derived analytic expressions
for bounds on the mutual information rate when transmitting over an AWGN chan-
nel in the mid-to-high signal-to-noise ratio (SNR) regime. The two lower bounds,
one considering intersymbol interference (ISI) due to hard bandlimitation and one
neglecting the ISI, are based on real and runlength encoded input signals with an
exponentially distributed runlength. An upper bound on the ISI-free channel – and,
thus, implicitly also on the ISI channel – for the specific signaling scheme shows that
the mathematical bounding steps applied besides treating the ISI as noise do not have
a significant impact on the tightness of the bounds. Comparing the two lower bounds
on the mutual information rate, however, shows that modeling the ISI as noise has a
crucial impact: the lower bound on the mutual information rate saturates over the SNR
only if a hard bandlimitation is considered. In this case, we observed that the lower
and the upper bound are close to each other in the mid-to-high SNR regime as long
as the impact of the hard bandlimitation does not dominate, i.e., in the SNR range of
approximately 10 to 20 dB. In general, for a given SNR the spectral efficiencies solely
depend on the ratio of channel bandwidth and the rate parameter of the exponential
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distribution at the channel input. For real signals the maximum value of the lower
bound on the spectral efficiency in the high-SNR limit was found to be approximately
1.63 bit/s/Hz in the bandlimited case while in the ISI-free case it grows without limit.
In order to obtain analytical results, assumptions and approximations were required
based on which the bounds are valid in the mid-to-high SNR domain above 10 dB.

In a practical scenario, however, the oversampling ratio remains finite. Therefore,
lower bounds on the achievable rate of the runlength modulated 1-bit quantized
discrete time AWGN channel using FTN signaling have been derived. Here, FTN
signaling corresponds to oversampling w.r.t. the channel bandwidth. Two lower
bounds are derived, one is based on an analytical expression and one is simulation-
aided in the sense that it requires a sufficiently long realization of the filtered transmit
signal. With increasing intersymbol interference, the bounds diverge until a point
where the analytical bound collapses. However, for low to moderate ISI both bounds
are close to each other. Given a hard bandlimited channel, the achievable rates derived
match the results of the continuous-time channel well and achieve up to approximately
1.53 bit/s/Hz in th high-SNR limit. When excess bandwidth is tolerable, e.g., for raised
cosine-filters with roll-offs larger than zero, spectral efficiencies up to 2.23 bit/s/Hz in
the real domain are achievable w.r.t. the 95 %-power containment bandwidth. For a
root raised cosine-filter with roll-off αRC = 1 even 2.47 bit/s/Hz have been observed.
We show that these bounds as well as the ones for the continuous-time scenario can be
applied to the oversampled 1-bit quantized MIMO channel using appropriate power
allocation schemes. Especially in the high-SNR regime the gain by oversampling or
FTN signaling is significant.

In both scenarios, discrete-time and continuous-time, we demonstrated that ap-
plying the concepts of FTN signaling and oversampling, which are closely related,
can significantly improve the achievable rates of the bandlimited 1-bit quantized
channel compared to Nyquist-sampling and -signaling. The bounds on the achievable
rate in the discrete-time case match the corresponding mutual information rates in
the coninuous-time case remarkably well, which indicates that the mutual informa-
tion rates derived in Chapter 3 can be achievable. Furthermore, the actual gain in
achievable rates depends strongly on the type of bandlimitation considered. In the
discrete-time model, the relative difference between the maximum spectral efficiencies
of the hard bandlimited channel and the channel with excess bandwidth reported
above is significant. We therefore conclude that knowing the restrictions on spectral
characteristics is crucial for predicting the achievable data rates when designing a
high-speed 1-bit quantized transmission system. If the assumed spectral constraints
are too strict, potential is wasted while the achievable rates are overestimated if the
spectral constraints are underestimated.

As a constant envelope modulation scheme, continuous phase modulation (CPM)
provides the opportunity of using highly efficient non-linear, e.g., class-E, power ampli-
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fiers. Thus, synergies between CPM and oversampled 1-bit quantized communication
were investigated. Analysis of the limiting performance in terms of distinguishable
symbols in a noise-free scenario shows that processing the signal at an intermediate
frequency (IF) is advantageous under 1-bit quantization. We determined the minimum
IF for temporally oversampled CPM, for which all transmitted symbols can be resolved
given a sufficiently high oversampling ratio. Based on this, we quantified the minimum
required oversampling ratio for a special case of CPM, continuous phase frequency
shift keying (CPFSK), with an analytical expression. Since we found that temporally
oversampled CPFSK is very sensitive to noisy transmission, we investigated FTN signal-
ing for CPFSK in order to increase the robustness w.r.t. noise without compromising on
the spectral efficiency. We introduced the notions of uncoded and coded FTN signaling
for CPFSK where in the latter case the message is encoded into a subsequence of
symbols. We found that both approaches can greatly improve the BER performance
for a given spectral efficiency. For example, with coded FTN 2-CPFSK, the gain in SNR
required for achieving an uncoded BER of 10−2 compared to temporally oversampled
CPFSK is approximately 12 dB (19 dB) for a roll-off factor of 0.5 (1) at 2 bit/s/Hz with
a Viterbi decoder using a simplified distance metric.

Future Work
There are several topics remaining that are useful extensions to this work or were
beyond the scope. These are summarized in the following:

• So far, only AWGN channels with ISI have been analyzed in this work. This was
reasonable given the scenario of ultra-short range high data rate communication
between printed circuit boards, which motivated this work. With communication
moving to ever higher frequency bands with ever higher bandwidths, it is of
interest if 1-bit quantization, FTN signaling and oversampling are also useful
tools to achieve energy efficient communication in time or frequency selective
channels.

• Designing an energy-efficient communication system requires an end-to-end
approach. A first step has been taken in this work, e.g., by considering constant-
envelope modulation schemes and aiming to simplify the decoder architecture.
However, in order to fully consider the impact of modulation and coding on
the energy consumption, the power consumption of encoder, decoder, power
amplifier etc. would need to be included in further analysis. A simple modulation
scheme does not help if it requires a complex decoder or complex channel codes
in order to provide acceptable BERs. This holds especially true when considering
time or frequency selective channels as suggested above such that co-design of
modulation and coding is necessary.
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• Modeling ISI as noise, as for example in Chapter 3, is clearly sub-optimal.
Other imperfections which have not been considered include phase and timing
offsets. Channel estimation and equalization under 1-bit quantization is already
a topic under investigation, e.g., [SDF19a; SDF19b]. These insights need to
be considered in order to quantify the impact of imperfect channel knowledge
on the achievable rate and BER such that performance predictions of realistic
systems are possible.

• Regarding the characterization of the mutual information rate of the continuous-
time bandlimited 1-bit quantized channel, the proof of Shannon’s coding theorem
for insertion and deletion channels with continuous and potentially infinite
random variables was beyond of the scope of this work and remains an open
topic.

• The systematic design of codes for coded FTN for CPM has not yet been addressed
and offers the potential of further performance improvements.
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Appendix Chapter 3 A
A.1 Spectrum of the Continuous-Time Signal x(t)
The definition of the power spectral density (PSD) of a random process is

SX(ω) = lim
K→∞

E
[
|X(ω)|2

]
KTavg

(A.1)

where the spectrum X(ω) of x(t) is given by

X(ω) =
√
P̂

(
K∑
k=1

(−1)kG(ω) e−jωTk

)
+ 2πδ(ω). (A.2)

It holds that G(ω), cf. (3.13), can be expressed as

G(ω) = −j
[

1 + e−jωβ

ω
+ e−jω

β
2 a(ω)

]
(A.3)

where a(ω) is a real function in R given as

a(ω) = −1
j

∫ β
2

−β2
ζ(t)e−jωtdt. (A.4)

The squared magnitude of (A.2) becomes
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(A.5)

where third term on the right-hand side of (A.5) can be written as

|G(ω)|2
K∑
k=1

K∑
v=1

(−1)k+v cos(ω(Tk − Tv)). (A.6)

Here, we have

|G(ω)|2 = 2(1 + cos(ωβ))
1
2ω

2 + a2(ω) +
4a(ω) cos

(
ωβ
2

)
ω

. (A.7)
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Fig. A.1. Numerical evaluation of the infinite sum in (A.8) for K = 104 as well as the bounds from (A.9)
and (A.11)

In (A.5) the first two terms correspond to a DC-component, which is not relevant for
further calculations. Since the cosine is an even function, the PSD of x(t) for |ω| > 0
in (A.1) is given by

SX(ω) = P̂ |G(ω)|2

Tavg

(
1 + lim

K→∞
2
K−1∑
n=1

(−1)n
(

1− n

K

)
E [cos(ωLn)]

)
. (A.8)

Here, n = k − v describes the distance between two arbitrary zero-crossing (ZC)
instants in terms of the number of symbols Ak and Ln = Tk − Tv =

∑n
i=1 Ak+i denotes

the corresponding random variable. As given in (3.8), Ln follows an Erlang-distribution
since it is a sum of exponentially distributed random variables. Therefore, we can
write for the expectation in (A.8)

E [cos(ωLn)]=
(

λ√
λ2 + ω2

)n
cos

(
n

(
ωβ + arctan

(
ω

λ

)))
≤
(

λ√
λ2 + ω2

)n
(A.9)

with q = λ√
λ2+ω2 . For the upper bound of the infinite sum in (A.8) we have

lim
K→∞

K−1∑
n=1

(
1− n

K

)(
λ√

λ2 + ω2

)n
= λ√

λ2 + ω2 − λ
= c(ω) (A.10)

yielding the upper bound in (3.21). Furthermore, we find that the infinite sum in
(A.8) has periodic minima, cf. Fig. A.1, which always occur if ωβ + arctan

(
ω
λ

)
= 2mπ,

m ∈ Z. In this case the cosine in (A.8) is always one such that it remains

lim
K→∞

K−1∑
n=1

(−1)n
(

1− n

K

)(
λ√

λ2 + ω2

)n
= − λ√

λ2 + ω2 + λ
. (A.11)

With (A.11) we can lower-bound SX(ω) in (A.8) by (3.21). Here, we have used that
1− 2 λ√

λ2+ω2+λ = 1
1+2c(ω) with c(ω) given in (A.10).
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A.2 Occurrence of Zero-Crossing Deletions and
Insertions

We assumed a fixed relation of bandwidth W and transition time β in (3.9), i.e.,
W = 1/2β. Removing this restriction and allowing β to take on any value, augments
the design space and potentially increases the spectral efficiency of the communication
system. However, this also means that the minimum distance between two ZCs β is no
longer linked to the coherence time of the noise, which was the reason for excluding
deletion errors in the analysis. In this section, we aim to verify this connection by
simulation.

We generate x(t) for a given signal-to-noise ratio (SNR) ρ, λ, and β. We assume a
long sequence of K = 103 symbols and a time resolution ∆t = 10−3λ−1, for which we
analyze the received signal r(t) after the receive filter. The locations of insertions and
deletions can be identified by matching every received upcrossing in r(t) to the closest
upcrossing in x(t), likewise for the downcrossings. Then, the inserted and deleted
symbols are counted.

The number of deletions and insertions are depicted in Fig. A.2 and Fig. A.3 exem-
plarily for a sine-based and a linear transition waveform as well as for three different
SNR values of 5 dB, 10 dB and 15 dB. Here, we defined κ̃ = 1/(2βλ). It can be seen in
parts a) to c) of the figures, that the SNR has a rather small impact on the number
of deletions occurring in the mid-to-high SNR regime. The black line represents the
case W = 1/2β. We observe that the number of deletions is negligible for bandwidths
W ≥ 1/2β, i.e., above the black line. This is due to the fact that the dynamics of the
noise are high compared to the minimum symbol duration β. However, for bandwidths
W < 1/2β deletions are possible and have to be included in the system model as
otherwise the spectral efficiency of the system will be overestimated. The validity of
this observations is not affected by the choice of the waveform. Given that this error
event mainly occurs in the hold period (HP), i.e., when x(t) = ±

√
P̂ , this was to be

expected.
On the other hand, we see in part d) to f) of Fig. A.2 and Fig. A.3 that insertions

are to be considered as possible error event for small to medium SNR and that they
occur much more frequently than deletions. Intuitively in contrast to the deletions, the
occurrence of insertions is particularly frequent when the dynamics of the noise are
high compared to the minimum symbol duration β, i.e., W > 1

2β . Even for W = 1/2β

the number of insertions is non-zero for small to medium SNR and only in the high
SNR domain they disappear. This observations coincide with the results of our analysis
presented in Section 3.4.
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Fig. A.2. Number of deletions (part a) to c)) and insertions (part d) to f)) over normalized bandwidth
κ = W/λ and over κ̃ for different ρ given a linear transition waveform
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κ = W/λ and over κ̃ for different ρ given a sine-shaped transition waveform
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A.3 Number of Zero-Crossings within a Transition
Interval

Obtaining the expected number of ZCs in the transition interval (TI) [Tk,Tk + β]
is a curve crossing problem. It depends on the deterministic transmit waveform as
well as the random process z(t), cf. (3.19). In Section 3.1.5 it was shown that x̃(t)
and, thus, z(t) can be approximated to be Gaussian, see also (3.54). Therefore, this
problem can be analyzed by studying the ZCs of a non-stationary Gaussian process
q(t) = z(t) − ψ(t). Here, ψ(t) is the deterministic curve to be crossed by z(t). We
thus define the TI Y = [0, β] with the time variable y ∈ Y. Then ψ(y) depends on the
filtered transmit pulse ĝ(y) as

ψ(y) = ĝ (y)− 1. (A.12)

If z(y) = ψ(y), the process q(t) has a ZC in Y. It is known that the number of crossings
NT (ψ) of a curve ψ by a stationary Gaussian process in a time interval of length T is
given by [Kra06]

E[NT (ψ)]=
√
−s′′(0)

∫ T

0
ϕ(ψ(y))

[
2ϕ
(

ψ′(y)√
−s′′(0)

)
+ ψ′(y)√

−s′′(0)

(
2Φ
(

ψ′(y)√
−s′′(0)

)
−1
)]
dy.

(A.13)

Here, s(τ) denotes the auto-correlation function (ACF) of the Gaussian Process and
′ is the derivative in time, i.e., w.r.t. y. Moreover, ϕ and Φ are the zero-mean Gaussian
density and distribution functions with variance σ2

z , respectively. It then results for the
variance of the number of ZCs [Kra06]

Var(NT (ψ))=E[NT (ψ)]−E2[NT (ψ)]+
T∫

0

T∫
0

∫
R

|q′t1−ψ
′
t1 |

· |q′t2−ψ
′
t2 |φt1,t2(ψt1 , q′t1 , ψt2 , q

′
t2)dq′t1dq′t2dt1dt2 (A.14)

where the subscripts t1 and t2 denote the time instants. Furthermore, φ is the multi-
variate zero-mean normal distribution of q(t1), q′(t1), q(t2), and q′(t2) with covariance
matrix

Σ =


s(0) 0 s(τ) s′(τ)

0 −s′′(0) −s′(τ) −s′′(τ)
s(τ) −s′(τ) s(0) 0
s′(τ) −s′′(τ) 0 −s′′(0)


. (A.15)

We evaluate the equations (A.13) and (A.14) exemplarily for a sine-shaped and a
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Fig. A.4. Expectation and variance of the number of ZCs in the TI [Tk − β/2, Tk + β/2] for a) sine-shaped
and b) linear transition

linear transition, which is depicted in Fig. A.4. We observe that the expectation of the
number of ZCs converges to one for SNR & 5 dB and κ = W/λ ≥ 0.5. At the same time,
the variance converges to zero. Thus, there exists with high probability only one ZC in
every TI for an SNR & 5 dB and, therefore, there are no insertions in the TI. For κ� 1
the validity of the assumption is not relevant since the lower bound on the mutual
information rate in (3.85) becomes zero.

A.4 Mid-to-high SNR Assumption Sk � β

We aim to quantify the SNR regions for which

(a) Sk <
∣∣∣β2 ∣∣∣ with high probability, which is required for the temporal separation of

the error events (ZC shifts and insertions) and

(b) the linearization in (3.53) is valid.

Therefore, the variances of both densities, (3.56) and (3.57), have been evaluated
and compared numerically. Fig. A.5a) and b) depict the normalized variances W 2σ2

S
exemplarily for a linear and a sine-shaped transition waveform. Thereby, the variance
of the original probability density function (pdf) in (3.56) is only plotted if

Pr(|Sk| < β/2) =
∫ β/2

−β/2
pS(s)ds ≥ 0.95 (A.16)

i.e., with large probability |Sk| < β/2, cf. Fig. A.5c) and d). We observe that in the
relevant regime of κ = W/λ ≥ 0.5, the variances σ2

S,orig and σ2
S are very close when

ρ & 10 dB, for which Pr(|Sk| < β/2) > 0.99. Again, due to filtering, the impact of
the waveform is negligible, cf. Section 3.3. We thus conclude that for a sufficiently
high SNR, for which the ZC is not shifted out of the TI with high probability, the
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Fig. A.5. Properties of the original distribution pS(s) (3.56) and the Gaussian approximation pS,Gauss(s)
(3.57), with a), b) normalized variances σ2
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S of pS,Gauss(s) and c), d) Pr(|Sk| <

β/2) =
∫ β/2

−β/2
pS(s)ds for pS(s) and pS,Gauss(s).

linearization holds as well. Again, for κ � 1 the validity of the assumption is not
relevant since the lower bound on the mutual information rate in (3.85) becomes zero.
It furthermore is sufficient to compare the variances since all further bounding steps of
I ′(A; D,V) are solely based on the variance of a Gaussian random process with equal
covariance matrix.

A.5 Assumption of Independence of z(t)
In order to analyze the relation between Qerr and Rerr, cf. (3.68) and (3.71), we
require an expression for QA∆ and Q∆. In what follows, we will use the short notation
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Tab. A.1. Weights for computing the entries of cross-covariance matrix QA∆

·(−1)i . . . ν3 ν2 ν1 ξ1 ξ2 ξ3 . . .
j = i . . . 0 0 0 0 0 0 . . .

j = i+ 1 . . . 2 -2 1 -1 2 -2 . . .
j = i+ 2 . . . -2 1 0 0 -1 2 . . .
j = i+ 3 . . . 1 0 0 0 0 -1 . . .

zj = z(Tj) for all random processes at time Tj . Thus, we write for the respective
entries qA∆,(i,j) = E[Ai∆j ] and q∆,(i,j) = E[∆i∆j ]

qA∆,(i,j) =E
[

Ai −
(√

P̂ ζ̂0

)−1
(zj−zj−1)

]
=−

(√
P̂ ζ̂0

)−1
E[Ai (x̃j−x̃j−1)] (A.17)

q∆,(i,j) =
(√

P̂ ζ̂0

)−2
E[(zi−zi−1)(zj−zj−1)]

=
(√

P̂ ζ̂0

)−2 {
E[(n̂i−n̂i−1)(n̂j−n̂j−1)]+ E[(x̃i−x̃i−1)(x̃j−x̃j−1)]

}
. (A.18)

Here, (A.17) stems from the fact that the Gaussian noise n̂(t) is independent of the
signal such that only x̃(t) contributes to a correlation between A and D. We can write
for the intersymbol interference (ISI) at time Tj

x̃j = (−1)j
[
...−g̃(Ljj−2)+g̃(Ljj−1)−g̃(Ljj) + g̃(Lj+1

j+1)−g̃(Lj+2
j+1)+g̃(Lj+3

j+1)...
]

(A.19)

where Lj+mj+l =
∑j+m
k=j+l Ak. For obtaining QA∆ we introduce with n = m− l + 1 and

m ≥ l

ξn = E[Ai]E
[
g̃
(

Lj+mj+l

)]
, i /∈ [j + l, j +m] (A.20)

νn = E
[
Aig̃

(
Lj+mj+l

)]
, j+l ≤ i≤ j+m (A.21)

which we use to express the (i, j)th entries of QA∆ by

qA∆,(i,i) =(−1)i [...−ν3−ξ3+ν2+ξ2−ξ1 + ξ1−ξ2−ν2+ξ3+ν3...] = q1 = 0 (A.22)

qA∆,(i,i+1) =(−1)i+1 [...−2ν3+2ν2−ν1 + ξ1−2ξ2+2ξ3...] = (−1)i+1q2 (A.23)

qA∆,(i,i−1) =(−1)i−1 [...−2ξ3+2ξ2−ξ1 + ν1−2ν2+2ν3...] = (−1)i−1(−q2). (A.24)

Table A.1 summarizes the weights of νn and ξn for some values of j. Exploiting the
symmetry in (A.22) to (A.24) as well as in Table A.1, we obtain

QA∆ =


0 q2 q3 ... qK
q2 0 −q2 ... −qK−1
−q3 −q2 0 ... qK−2

...
. . .

...
(−1)KqK (−1)KqK−1 (−1)KqK−2 ... 0

 (A.25)
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which can be evaluated by numerically solving the integrals in (A.20) and (A.21) using
the probability distributions of Ai and Lj+mj+l , cf. (3.5) and (3.8). From (A.18) we
obtain Q∆ as

Q∆ = a2σ
2
n̂
σ2

S
R∆ +

(√
P̂ ζ̂0

)−2
Rx̃ (A.26)

where R∆ is given in (3.61). The elements of Rx̃ are given by

rx̃,(i,j) = 2E[x̃ix̃j ]− E[x̃ix̃j−1]− E[x̃i−1x̃j ]. (A.27)

We see from (A.19) that E[x̃ix̃j ] yields sums of expectations E
[
g̃
(

Li+m1
i+l1

)
g̃
(

Lj+m2
j+l2

)]
.

Within this expression a number n of the Ak in the two sums Li+m1
i+l1 and Lj+m2

j+l2 coincide
whereas w and p summands Ak are unique to the first and the second sum, respectively.
Which Ak coincide and which not depends on the choice of i − j, m1/2, and l1/2.
Therefore, we define three random variables Wn, Xw, and Yp. Each of these random
variables is the sum over disjoint sets of summands Ak of cardinality n, w, and p,
respectively. This yields for the expectation above E [g̃ (Wn + Xw) g̃ (Wn + Yp)] where
p(Wn,Xw,Yp) = p(Wn)p(Xw)p(Yp) as the Ak are independent. Using (3.8), we now
can numerically evaluate E [g̃ (Wn + Xm) g̃ (Wn + Yp)], which yields E[x̃ix̃j ], rx̃,(i,j),
and eventually Q∆.

Finally, Qerr can be computed with QA∆, Q∆, and QA. Fig. A.6 depicts the difference
between the two bounds in (3.69) and (3.70), i.e., 1

2(log det Rerr− log det Qerr). It can
be seen that it is always positive, which indicates that the inequality in (3.70) holds.
The bounds are tighter for low SNR values and larger κ. This can be attributed to
the fact that setting QA∆ = 0 as done for obtaining (3.70) is equivalent to neglecting
the ISI, which is less dominant at low SNR and large κ. The non-smootheness of the
curves in Fig. A.6b) can be attributed to inaccuracies in the numerical integration. In
contrary to the sine-shaped transition waveform, the error pulse g̃(t) for the linear
transition is much less smooth, cf. Fig. 3.6a), leading to an increasing integration error,
which dominates for high ρ and large κ.

A.6 Analytical Expression for the Signal Parameters
Depending on the Transition Waveform

In the following, the full analytical expressions of the model parameters Γ0, Γ2, u,
and ζ̂0 for the sine, linear, and polynomial waveforms are listed. Where compactly
expressable, also G(ω) and ĝ(t) or g̃(t) are given. Hereby, γ ≈ 0.5772 is the Euler-
Mascheroni constant.
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different κ = W/λ and K for a) sine-shaped and b) linear transition waveforms

a) sine-shaped transition

G(ω) = −j
π2
(
1 + e−jωβ

)
ω(π2 − ω2β2) (A.28)

ĝ(t) = 1 + 1
π

Si
(
πt

β

)
+Si

(
πt

β
− π

)
−

cos
(
πt
β

)
2

[
Si
(2πt
β

)
−Si

(2πt
β
− 2π

)
)
]

+
sin
(
πt
β

)
2

[
Ci
(2πt
β

)
−Ci

(2πt
β
− 2π

)
−ln

(
πt

β

)
+ln

(
πt

β
− π

)] (A.29)

Γ0 = −3γ − 3 log(2π) + 3 Ci(2π)− π2 + 4πSi(π)− πSi(2π)
2π β ≈ 0.2601β (A.30)

Γ2 = π

2β
(
π2 − γ − log(2π)− πSi(2π) + Ci(2π)

)
≈ 1.1689

β
(A.31)

u = 2Si(π) + Si(2π)
2π

√
P̂ ≈ 0.81

√
P̂ (A.32)

ζ̂0 = Si(π)
β
≈ 1.8519

β
(A.33)

b) linear transition

G(ω) = 2
ω2β

(
1− e−jωβ

)
(A.34)

g̃(t) =
2
(
tSi
(
πt
β

)
− (t− β)Si

(
πt
β − π

)
+ π

2 (|t− β| − |t|) + 2β
π cos

(
πt
β

))
βπ

(A.35)

Γ0 = 2β
3π3

(
8 + 2π3Si(π)− π2(π2 + 2)

)
≈ 0.1224β (A.36)

Γ2 = 4
βπ

(
4 + π2 − 2πSi(π)

)
≈ 2.8438

β
(A.37)

A.6 Analytical Expression for the Signal Parameters Depending on the
Transition Waveform
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u = 2
π

(
Si(π)− 2

π

)√
P̂ ≈ 0.77

√
P̂ (A.38)

ζ̂0 = 4
πβ

Si
(
π

2

)
≈ 1.7453

β
(A.39)

c) polynomial transition 2B + 1 = 3

ĝ(t) = 2
π4

[
π3
(
t2

β2

(
3− 2t

β

)
Si
(
πt

β

)
−
(
t

β
− 1

)2 (2t
β

+ 1
)

Si
(
π − πt

β

))

+2π
(

1− 2t
β

)
sin
(
πt

β

)
+
(
π2
(

1− 4t
β

(
t

β
− 1

))
+ 8

)
cos

(
πt

β

)]
(A.40)

Γ0 = −18β
(
−2π7Si(π) + π8 + 2π6 − 4π4 − 64π2 − 640

)
35π7 ≈ 0.2446β (A.41)

Γ2 = 24
(
−2π5Si(π) + π6 + 2π4 + 16π2 + 96

)
5π5β

≈ 4.3395
β

(A.42)

u√
P̂

= 2
(
π3Si(π)− π2 − 8

)
π4 ≈ 0.8121 (A.43)

ζ̂0 = 1
β

12
(

1
2π

2Si
(
π
2
)
− 2

)
π3 ≈ 1.8439

β
(A.44)

d) polynomial transition 2B + 1 = 5

Γ0 = − 100β
231π11 (−2π11Si(π) + π12 + 2π10 − 4π8 + 48π6 − 10944π4

+ 258048π2 − 1741824) ≈ 0.3399β (A.45)

Γ2 = 40
7π9β

(
−2π9Si(π)+π10+2π8 − 4π6+1056π4 − 23040π2+161280

)
≈ 6.7321

β

(A.46)

u√
P̂

= 2
(
π5Si(π)− π2 (π2 − 22

)
− 288

)
π6 ≈ 0.8289 (A.47)

ζ̂0 = 1
β

60
(

1
8π

4Si
(
π
2
)
+ π2

2 − 12
)

π5 ≈ 1.88721
β

(A.48)

e) polynomial transition 2B + 1 = 7

Γ0 = − 490β
1287π15 (−2π15Si(π) + π16 + 2π14 − 4π12 + 48π10 − 1440π8 − 1566720π6

− 247173120π4 + 5474304000π2 − 28466380800) ≈ 0.4123β ≈ (A.49)

Γ2 = 2800
429π13β

(−2π13Si(π) + π14 + 2π12 − 4π10 + 48π8 + 122112π6 + 16224768π4

− 365783040π2 + 1916006400) ≈ 9.0052
β

(A.50)

u√
P̂

= 2π7Si(π)− 2
(
28800− 2832π2 − 2π4 + π6)

π8 ≈ 0.8384 (A.51)
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ζ̂0 = 1
β

280
(

1
32π

6Si
(
π
2
)

+ π4

8 + 21π2 − 240
)

π7 ≈ 1.9116
β

(A.52)

A.6 Analytical Expression for the Signal Parameters Depending on the
Transition Waveform
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Appendix Chapter 4 B
B.1 Maximizing the Average Sample Flipping

Probability
Our goal is to maximize (4.38) given the partly non-linear conditions in (4.35). In
what follows, we will abbreviate the condition xn = 1 with x1,n. Since we use a
probability density function (pdf) with two mass points at z1 and z2 with weights pz1

and pz2 , we have

pz1 + pz2 = 1 → pz2 = 1− pz1 (B.1)

pz1z1 + pz2z2 = E[zISI|x1,n] → z2 = E[zISI|x1,n]− pz1z1
1− pz1

(B.2)

pz1z
2
1 + pz2z

2
2 = E[z2

ISI|x1,n] → z2
2 = E[z2

ISI|x1,n]− pz1z
2
1

1− pz1
. (B.3)

Combining (B.2) and (B.3) yields

z2
1 − 2E[zISI|x1,n]z1 + E[z2

ISI|x1,n]− Var(zISI|x1,n)
pz1

= 0 (B.4)

where Var(zISI|x1,n) = E[z2
ISI|x1,n]− E[zISI|x1,n]2. Solving (B.4) yields

z1 = E[zISI|x1,n]±
√

Var(zISI|x1,n)
( 1
pz1
− 1

)
(B.5)

z2 = E[zISI|x1,n]∓ pz1

1− pz1

√
Var(zISI|x1,n)

( 1
pz1
− 1

)
. (B.6)

The resulting cost function becomes a function solely of pz1

pb,UB(pz1) = 1
2

pz1 erfc

h0 + E[zISI|x1,n]−
√

Var(zISI|x1,n)
(

1
pz1
− 1

)
√

2σn̂



+(1− pz1) erfc

h0 + E[zISI|x1,n] + pz1
1−pz1

√
Var(zISI|x1,n)

(
1
pz1
− 1

)
√

2σn̂


 (B.7)
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where we assumed without implying an additional restriction the order z1 < z2. Then,
p∗z1 can be determined by numerically searching for the maximum of (B.7) or by taking
the derivative and solving ∂pb,UB(pz1 )

∂pz1
= 0 numerically. If the latter yields that z∗1 < Z1,

we have to se z∗1 = Z1 in order to comply with (4.35) since erfc(x) is monotonically
decreasing in x. From (B.4) we then have

p∗z1 = Var(zISI|x1,n)
Z2

1 − 2E[zISI|x1,n]Z1 + E[z2
ISI|x1,n]

. (B.8)
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Appendix Chapter 5 C
C.1 Minimum Intermediate Frequency
From the observations made w.r.t. Fig. 5.5 it can be deduced that in order to resolve
all ambiguities given a sufficiently high oversampling factor, it must be avoided that
more than one transition starts and ends in the same quadrant. In what follows we
consider phase changes counterclockwise, i.e., nIF > 0, since ∆f is already positive.
However, the setup is symmetric w.r.t. −∆f , i.e., the same results that are obtained
for fIF,1 = ∆f + nIF

Tsymb
occur for fIF,2 = −2∆f − nIF

Tsymb
.

According to the definitions in (5.2), (5.3), (5.6), (5.23), and (5.24) the phase
changes introduced by the first and second symbol in A, α0 = −(Mcpm − 1) and
α1 = α0 + 2, are

∆ψ0 = πhcpmα0 + 2πfIFTsymb = 2πhcpmc2 (C.1)

∆ψ1 = πhcpmα1 + 2πfIFTsymb = 2πhcpm(1 + c2). (C.2)

Given that 0 ≤ φ0 ≤ π/4, cf. (5.19), and with nIF > 0 the constellation point φ0 + ∆ψ0

can remain in the first quadrant while φ0 + ∆ψ1 has to be in the second quadrant.
Thus

π

2 < φ0 + 2πhcpm(1 + c2) (C.3)

= π

4d2c1−2e
+ 2π2−c1(1 + c2) (C.4)

c2 >
1− 1

2d2c1−2e
22−c1

− 1 =


1

23−c1 − 1, c1 = {0, 1}

2c1−2 − 3
2 c1 ≥ 2

. (C.5)

Since c2 is an integer number

c2,min =


⌈

1
2 22−c1

⌉
− 1, c1 = {0, 1}⌈

2c1−2 − 1
2

⌉
− 1, c1 ≥ 2

(C.6)

where 2c1−2 is already an integer number for c1 ≥ 2, such that⌈
2c1−2 − 1

2

⌉
= 2c1−2 = 1

4hcpm
. (C.7)
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For c1 < 2, we have ⌈
1

2 22−c1

⌉
=
⌈

1
2

1
4hcpm

⌉
=
⌈

1
4hcpm

⌉
(C.8)

since for c1 = {0, 1} we have 1
4hcpm

< 1 such that the factor 1/2 does not change the
result of the ceiling function. Therefore, (C.6) can be simplified to

c2,min =
⌈

1
4hcpm

⌉
− 1 (C.9)

which yields

nIF,min = hcpm

(⌈
1

4hcpm

⌉
− 1

)
. (C.10)

C.2 Maximum Intermediate Frequency
In order to determine when the phase rotation induced by the intermediate frequency
(IF) is too fast for a given oversampling ratio (OSR) assuming a 1-bit quantizer
and continuous phase frequency shift keying (CPFSK), we consider the frequency
associated with the ith symbol in A

fi = hcpmαi
2Tsymb

+ ∆f + nIF
Tsymb

= hcpm
Tsymb

(
αi +Mcpm − 1

2 + c2

)
. (C.11)

Since failing to generate a sample while traversing a quadrant represents a loss of
information, it is clearly undesirable if a quadrant is passed without sampling. For the
minimum and maximum values of αi in A, cf. (5.3), this yields upper bounds on nIF as

∆ψ = 2πfi
Tsymb
Mosr

<
π

2 (C.12)

nIF <
Mosr

4 − hcpm

(
αi +Mcpm − 1

2

)

=


Mosr

4 = nIF,max,1, αi = −(Mcpm − 1)
Mosr

4 − hcpm(Mcpm−1)
2 = nIF,max,2, αi = Mcpm − 1

. (C.13)

We evaluated the above expression for different OSRs and compared the results to the
number of resolvable bits log2Nd for different Mosr and nIF for Mcpm = {4, 8, 16}. The
results are depicted in Fig. C.1 to C.3. Hereby, the cases Mcpm = 4, Mcpmhcpm = {1, 2}
and Mcpm = 8, Mcpmhcpm = 2 are somewhat trivial. We will see in Fig. 5.7 that in
these cases the minimum required OSR is constant and as soon as it is reached, all
symbols can be always resolved independently of nIF.

For all other cases we observe a periodic behavior over nIF, which is not surprising
since the phase is periodic w.r.t. modulo two. The period increases with the OSR. Inter-
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estingly, we observe that the IFs between nIF,max,2 and nIF,max,1 perform particularly
bad in these cases. We therefore conclude that our initial assumption was correct and
that passing a quadrant without sampling – even for just one out of the Mcpm symbols,
i.e., max

αi
(2πfi Tsymb

Mosr
) ≥ π

2 – represents a significant loss of information. However, if

this is true for all symbols, i.e., min
αi

(2πfi Tsymb
Mosr

) ≥ π
2 , the IF is again large enough such

that distinction of all symbols can be possible.
We thus conclude that for CPFSK nIF,max,2 is a valid description for the IF beyond

which increasing nIF is not beneficial anymore – given that nIF,max,2 is larger or equal
nIF,min. Therefore, the domain to search in order to find a suitable nIF for CPFSK is

nIF,min ≤ nIF,CPFSK < nIF,max,2. (C.14)

Note that this does not mean that below nIF,max,2 all symbols can be resolved but that
there is an IF below nIF that achieves at least the same log2(Nd) bits as any IF above.
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Fig. C.1. Difference between log2(Mcpm) and log2(Nd) for Mcpm = 4 and different Mcpmhcpm
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Fig. C.2. Difference between log2(Mcpm) and log2(Nd) for Mcpm = 8 and different Mcpmhcpm
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Fig. C.3. Difference between log2(Mcpm) and log2(Nd) for Mcpm = 16 and different Mcpmhcpm
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C.3 Minimum Oversampling Ratio
For CPFSK, the phase changes linearly during a symbol, i.e., the instantaneous fre-
quency per symbol is constant. This can be used to obtain an expression for the
minimum OSR to distinguish all symbols. The incremental phase change ∆ψincr,i

during the sampling period Ts = Tsymb/Mosr caused by the ith symbol in A is

∆ψincr,i = 2πfi
Tsymb
Mosr

= 2πhcpm
Mosr

(
αi +Mcpm − 1

2 + c2

)
(C.15)

where the normalized frequency associated with the ith symbol is

f̃i = fiTsymb = hcpm

(
αi +Mcpm − 1

2 + c2

)
. (C.16)

There are dnconst/4e constellation points in the first quadrant, cf. (5.18), resulting in
that many possible starting points1

φ0,p = φ0 + 2π(p− 1)hcpm, p = 1, 2, ..., dnconst/4e (C.17)

for a phase trajectory. The time instant tp,k,n at which the phase trajectory corre-
sponding to the ith symbol in A starting at the pth constellation point equals nπ2
is

tp,k,n =
nπ2 − φ0,p

∆ψincr,i
= Mosr

n/2− φ0,p/π

2f̃i
(C.18)

where the tp,k,n represent non-integer multiples of Ts. Thus, assuming the ith sym-
bol started at t0, nπ2 is reached at time tp,k,nTs + t0. Consequently, if the OSR is
smaller/larger than

M̃osr = tp,k,n
2f̃i

n/2− φ0,p/π
(C.19)

the phase trajectory crosses the nth threshold before/after tp,k,n. We thus write for
the minimum OSR, for which a phase trajectory of symbol i starting at φ0,p crosses nπ2
after the sth sample, s ∈ N ⌈

s
2f̃i

n/2− φ0,p/π
+ ε

⌉
(C.20)

while the maximum OSR for symbol j to cross nπ2 before the sth sample is⌊
2sf̃j

n/2− φ0,p/π

⌋
. (C.21)

1Considering starting points in the first quadrant is sufficient due to the assumption of a symmetric
constellation diagram.
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We hereby assume that a threshold belongs to the quadrant, which follows the thresh-
old counterclockwise. The arbitrary small number ε in (C.20) avoids counting the
thresholds as also belonging to the previous quadrant. All integer numbers within these
boundaries are valid oversampling factors to distinguish the ith and the jth symbol at
the sth sample and the nth threshold when starting at φ0,p. They are contained in the
set

Bp,s,n,(i,j) =
{
m

∣∣∣∣∣m ∈ N ∧m ∈
[⌈

2sf̃i
n
2 −

φ0,p
π

+ ε

⌉
,

⌊
2sf̃j

n
2 −

φ0,p
π

⌋]
∧m ≥ s

}
. (C.22)

Hereby, i < j such that the symbols are ordered w.r.t. increasing frequency. Further-
more, m ≥ s since two symbols can only be distinguished by the sth sample if the
temporal OSR is at least s.

Now the union over all thresholds n has to be taken. The largest threshold nmax that
can be crossed is given by

nmax =
⌊ 1
π/2

(
φ0 + 2π (dnconst/4e − 1)hcpm + 2πfMcpmTsymb

)⌋
(C.23)

using the frequency fMcpm associated with the largest symbol in A. Thus,

Bp,s,(i,j) =
nmax⋃
n=1

Bp,s,n,(i,j). (C.24)

However, OSRs that distinguish at the sth sample at four (or 8, 12,...) consecutive
thresholds need to be excluded since this represents a phase change of multiples of 2π,
which cannot be resolved. Fortunately, one OSR m can only distinguish at consecutive
thresholds. Denoting as countm(·) the number of occurrences of element m in a set,
we thus can write

E =
{
m

∣∣∣∣∣countm
(
Bp,s,(i,j)

)
mod 4 = 0

}
(C.25)

for the set of OSRs that has to be excluded. Then the set

Bp,(i,j) =
∞⋃
s=1

(
Bp,s,(i,j)

∖
E
)

(C.26)

contains all OSRs that can distinguish between the ith and the jth symbol when
starting at φ0,p. The intersection over all symbols and all φ0,p then yields the set

B =
nconst/4⋂
p=1

 ⋂
(i,j),i<j

Bp,(i,j)

 (C.27)
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of all OSRs that allow distinction between all symbols starting from any constellation
point and

Mosr,min = minB (C.28)

is the corresponding minimum OSR. Note that nIF ≥ nIF,min is required for B to be
non-empty. Then for numerical evaluation of (C.28), the union over s in (C.26) has
not to be carried out until s→∞ but only until B is non-empty.
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List of Symbols

Constants and sets of numbers
0a all-zero row vector of length a
e Euler’s number
γ Euler-Mascheroni constant
I(K) identity matrix of size K ×K
j imaginary unit
kB Boltzmann constant
N space of natural numbers
N0 space of natural numbers including zero
π ratio of the circumference of a circle to the diameter
R space of real numbers
Z space of integer numbers

Functions and Operators
∗ convolution
b·c floor function
1[u,v](x) indicator function, one in the interval [u, v] and zero otherwise
d·e ceil function
Ci(·) cosine integral function
countx(X ) number of occurences of x in the set X
δ(·) Dirac delta function
d(x,y) distance metric between two vectors x and y

dH(x,y) hamming distance of two vectors x and y

E expectation
Hb(·) binary entropy function
=(·) imaginary part of a complex number
mina b(a) minimum of b over all a
mod modulo operator
Q1(x) binary quantization function with threshold zero
<(·) real part of a complex number
rect(t) rectangular function, rect(t) = 1[− 1

2 ,
1
2 ](t)

Si(·) sine integral function
tri(t) triangular function, tri(t) = (1− |t|)1[−1,1(t)
Var(·) variance
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Units of measure
GHz Gigahertz, 109 Hz
Hz Hertz, unit of frequency
bit unit of information w.r.t base 2
dB Decibel
dBm Decibel w.r.t. 10−3 W
J Joule, unit of energy
s Second, unit of time
W Watt, unit of power

Variables, Signals, Sets and Parameters
A random process at the channel input
Ak runlength at input, i.e., distance between kth and (k − 1)th zero-crossing

of x(t)
α ratio of clippped energy contributing to ISI
amin minimum runlength of runlength-limited sequences
αRC rolloff of the raised cosine filter
ak runlength of the kth run of a runlength-limited sequence
α CPM-symbol
β transition duration
b quantizer resolution
Bx bandwidth w.r.t. to a bandwidth measure x, e.g., 90 % power containment

bandwidth
C channel capacity
C precoding operation for 1-bit MIMO channels
c1 parameter of SX(ω), c1 = c(2πW ), cf. A.10
∆k magnitude error of kth transmit symbol Ak
Dm distance between the mth and the (m− 1)th zero-crossing of r(t)
D random process at the channel output
D̂k distance between zero-crossings after applying the auxiliary information
dmin minimum distance
drll d-constraint of runlength-limited sequences
Eb bit energy
Es symbol energy
∆f intermediate frequency to obtain a time invariant trellis for CPM modula-

tion
f frequency
f0 carrier frequency
fIF intermediate frequency
fs sampling rate, fs = 1

Ts

138 List of Symbols



fsig signaling rate at the transmitter
g(t) transmit pulse
ĝ(t) filtered transmit pulse
ĝappr(t) approximation of the filtered transmit pulse
g̃(t) deviation between original and filtered transmit pulse, g̃(t) = ĝ(t)− g(t)
G(ω) spectrum of the transmit pulse g(t)
Γi parameter related to the transmit pulse spectrum, Γi =

∫∞
2πW ωi |G(ω)|2 dω

GPA gain of the power amplifier
H channel matrix
H(ω) channel transfer function
H Teoplitz matrix containing the sampled channel impulse response h

h0 maximum of the channel impulse response, ususally h0 = h(0)
h(t) channel impulse response
H entropy
hcpm modulation index fo the CPM-signal
h differential entropy
h sampled channel impulse response h(t)
H ′ entropy rate
I ′ mutual information rate
I mutual information
K number of input symbols
k discrete time index
κ normalized bandwidth κ = W/λ

krll k-constraint of runlength-limited sequences
Ln sum of n consecutive Ak
λ rate parameter of the exponential distribution
λrll parameter of the max-entropic RLL-sequences
(·)LB lower bound
Lcpm memory of the CPM-symbol in terms of the symbol duration
Lh length of the channel impulse response in multiples of Tsymb

Lv length of the receive filter in multiples of Tsymb

M number of output symbols
m contribution of the transition waveform to the average signal power,

m = 2W
∫ β

0 ζ
2
(
t− β

2

)
dt, cf. (3.15)

Mcpm Order of the CPM modulation alphabet
MFTN faster-than-Nyquist factor
Mosr oversampling ratio w.r.t. bandwidth or symbol duration
µ expectation of Vk related to the number of inserted symbols
N (µ, σ2) normal distribution with mean µ and variance σ2

Nr number of receive antennas
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Nt number of transmit antennas
n(t) noise signal
N0 noise power spectral density
nconst number of constellation points of the CPM-signal
Nd number of distinguishable CPM-symbols
n̂(t) filtered noise signal
nIF normalized additional intermediate frequency
Nsamp number of samples
P· power consumed by, emitted by or fed to a device
pX(·) probability density function of random variable X
P average signal power
pb sample or bit flipping probability
φ(t) phase trajectory of the CPM signal corresponding to a baseband signal
ψ(t) phase trajectory of the CPM signal including a frequency offset
φ0 initial signal phase, φ0 = φ(0)
P̂ peak power constraint
QXY cross-covariance matrix of X and Y (or covariance matrix QX if X = Y)
q(t) phase smoothing response
RXY cross-covariance matrix of X and Y (or covariance matrix RX if X = Y)
R data rate
r(t) analog output signal
ρ signal-to-noise ratio
Sx(ω) power spectral density of x(t)
Sk shift of kth zero-crossing due to distortion
sxx(τ) autocorrelation function of x(t)
ŝ(t) filtered bandpass signal
s(t) bandpass signal
σ2

x variance of the random variable or process x
T absolute temperature
T′k time instant of the kth zero-crossing
Tk time instant of the kth transition
τ delay or time difference
Tavg average symbol duration
θ phase of the sampled and 1-bit quantized received signal y
Ts sampling interval, Ts = 1

fs

TNyq time duration of a Nyquist interval
T ′symb reduced symbol duration due to FTN transmission
Tsymb symbol duration
u lowest value of ĝ(t)− 1 for t > β, cf. (3.29)
(·)UB upper bound
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V Teoplitz matrix containing the sampled IF receive filter vrx(t)
Vk auxiliary process for kth input symbol
vrx sampled receive filter
vrx(t) receive filter
vtx(t) transmit filter
W one-sided channel bandwdith
ω angular frequency
X(ω) spectrum of the signal x(t)
x̂(t) filtered transmit signal
x̃(t) filter distortion signal
x(t) analog input signal
y(t) 1-bit quantized received signal
y (over)sampled 1-bit quantized received sequence
zISI intersymbol interference
z(t) overall distortion
ζ̂0 slope of the filtered transition waveform ζ̂(t), ζ̂0 = dζ̂(t)

dt

ζ̂(t) filtered transition waveform
ζ(t) transition waveform
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ACF auto-correlation function

ADC analog-to-digital converter

AQNM additive quantization noise model

ASK amplitude shift keying

AGC automatic gain control

AWGN additive white Gaussian noise

BER bit error rate

BCJR Bahl-Cocke-Jelinek-Raviv-algorithm

bpcu bits per channel use

bpni bits per Nyquist interval

CI channel inversion

CMOS complementary metal–oxide–semiconductor

CPFSK continuous phase frequency shift keying

CPM continuous phase modulation

CSI channel state information

CSIT channel state information at the transmitter

DMC discrete memoryless channel

DTC digital-to-time converter

EHF extremely high frequency

ENOB effective number of bits

EP equal power allocation

FIR finite impulse response

FoM figure of merit

FSM finite state machine

FTN faster-than-Nyquist

GCC generalized concatenated code

GMI generalized mutual information

HP hold period

IF intermediate frequency

i.i.d. independent and identically distributed

IoT Internet of Things

ISI intersymbol interference

ISSCC International Solid-State Circuits Conference

i.u.d. independent and uniformly distributed
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LB lower bound
LDPC low density parity check
LMMSE linear minimum mean-squared error
LP lowpass
LOS line-of-sight
MIMO multiple-input multiple-output
ML maximum likelihood
mmWave millimeter wave
MSK minimum shift keying
NN neural network
NRZI non-return-to-zero inverse
OFDM orthogonal frequency-division multiplexing
OSR oversampling ratio
PA power amplifier
PAE power added efficiency
PAPR peak-to-average power ratio
PCBW power containment bandwidth
pdf probability density function
poly polynomial transition
PSD power spectral density
PSK phase shift keying
QAM quadrature amplitude modulation
QoS quality of service
QPSK quadrature phase-shift keying
RC raised cosine
RF radio frequency
RLL runlength limited
RRC root raised cosine
SE spectral efficiency
SHF super high frequency
SNDR signal-to-noise-and-distortion ratio
SNR signal-to-noise ratio
SRC squared raised cosine
SVD singular value decomposition
TI transition interval
TDC time domain converter
UB upper bound
UHF ultra high frequency
VLSI Symposium on VLSI Circuits
WF waterfilling
ZC zero-crossing
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