4,727 research outputs found

    Facial Expression Recognition

    Get PDF

    Integrated modeling and analysis methodologies for architecture-level vehicle design.

    Get PDF
    In order to satisfy customer expectations, a ground vehicle must be designed to meet a broad range of performance requirements. A satisfactory vehicle design process implements a set of requirements reflecting necessary, but perhaps not sufficient conditions for assuring success in a highly competitive market. An optimal architecture-level vehicle design configuration is one of the most important of these requirements. A basic layout that is efficient and flexible permits significant reductions in the time needed to complete the product development cycle, with commensurate reductions in cost. Unfortunately, architecture-level design is the most abstract phase of the design process. The high-level concepts that characterize these designs do not lend themselves to traditional analyses normally used to characterize, assess, and optimize designs later in the development cycle. This research addresses the need for architecture-level design abstractions that can be used to support ground vehicle development. The work begins with a rigorous description of hierarchical function-based abstractions representing not the physical configuration of the elements of a vehicle, but their function within the design space. The hierarchical nature of the abstractions lends itself to object orientation - convenient for software implementation purposes - as well as description of components, assemblies, feature groupings based on non-structural interactions, and eventually, full vehicles. Unlike the traditional early-design abstractions, the completeness of our function-based hierarchical abstractions, including their interactions, allows their use as a starting point for the derivation of analysis models. The scope of the research in this dissertation includes development of meshing algorithms for abstract structural models, a rigid-body analysis engine, and a fatigue analysis module. It is expected that the results obtained in this study will move systematic design and analysis to the earliest phases of the vehicle development process, leading to more highly optimized architectures, and eventually, better ground vehicles. This work shows that architecture level abstractions in many cases are better suited for life cycle support than geometric CAD models. Finally, substituting modeling, simulation, and optimization for intuition and guesswork will do much to mitigate the risk inherent in large projects by minimizing the possibility of incorporating irrevocably compromised architecture elements into a vehicle design that no amount of detail-level reengineering can undo

    Combining spatial information sources while accounting for systematic errors in proxies

    Full text link
    Environmental research increasingly uses high-dimensional remote sensing and numerical model output to help fill space-time gaps between traditional observations. Such output is often a noisy proxy for the process of interest. Thus one needs to separate and assess the signal and noise (often called discrepancy) in the proxy given complicated spatio-temporal dependencies. Here I extend a popular two-likelihood hierarchical model using a more flexible representation for the discrepancy. I employ the little-used Markov random field approximation to a thin plate spline, which can capture small-scale discrepancy in a computationally efficient manner while better modeling smooth processes than standard conditional auto-regressive models. The increased flexibility reduces identifiability, but the lack of identifiability is inherent in the scientific context. I model particulate matter air pollution using satellite aerosol and atmospheric model output proxies. The estimated discrepancies occur at a variety of spatial scales, with small-scale discrepancy particularly important. The examples indicate little predictive improvement over modeling the observations alone. Similarly, in simulations with an informative proxy, the presence of discrepancy and resulting identifiability issues prevent improvement in prediction. The results highlight but do not resolve the critical question of how best to use proxy information while minimizing the potential for proxy-induced error.Comment: 5 figures, 2 table

    Street Surfaces and Boundaries from Depth Image Sequences Using Probabilistic Models

    Get PDF
    This thesis presents an approach for the detection and reconstruction of street surfaces and boundaries from depth image sequences. Active driver assistance systems which monitor and interpret the environment based on vehicle mounted sensors to support the driver embody a current research focus of the automotive industry. An essential task of these systems is the modeling of the vehicle's static environment. This comprises the determination of the vertical slope and curvature characteristics of the street surface as well as the robust detection of obstacles and, thus, the free drivable space (alias free-space). In this regard, obstacles of low height, e.g. curbs, are of special interest since they often embody the first geometric delimiter of the free-space. The usage of depth images acquired from stereo camera systems becomes more important in this context due to the high data rate and affordable price of the sensor. However, recent approaches for object detection are often limited to the detection of objects which are distinctive in height, such as cars and guardrails, or explicitly address the detection of particular object classes. These approaches are usually based on extremely restrictive assumptions, such as planar street surfaces, in order to deal with the high measurement noise. The main contribution of this thesis is the development, analysis and evaluation of an approach which detects the free-space in the immediate maneuvering area in front of the vehicle and explicitly models the free-space boundary by means of a spline curve. The approach considers in particular obstacles of low height (higher than 10 cm) without limitation on particular object classes. Furthermore, the approach has the ability to cope with various slope and curvature characteristics of the observed street surface and is able to reconstruct this surface by means of a flexible spline model. In order to allow for robust results despite the flexibility of the model and the high measurement noise, the approach employs probabilistic models for the preprocessing of the depth map data as well as for the detection of the drivable free-space. An elevation model is computed from the depth map considering the paths of the optical rays and the uncertainty of the depth measurements. Based on this elevation model, an iterative two step approach is performed which determines the drivable free-space by means of a Markov Random Field and estimates the spline parameters of the free-space boundary curve and the street surface. Outliers in the elevation data are explicitly modeled. The performance of the overall approach and the influence of key components are systematically evaluated within experiments on synthetic and real world test scenarios. The results demonstrate the ability of the approach to accurately model the boundary of the drivable free-space as well as the street surface even in complex scenarios with multiple obstacles or strong curvature of the street surface. The experiments further reveal the limitations of the approach, which are discussed in detail.Schätzung von Straßenoberflächen und -begrenzungen aus Sequenzen von Tiefenkarten unter Verwendung probabilistischer Modelle Diese Arbeit präsentiert ein Verfahren zur Detektion und Rekonstruktion von Straßenoberflächen und -begrenzungen auf der Basis von Tiefenkarten. Aktive Fahrerassistenzsysteme, welche mit der im Fahrzeug verbauten Sensorik die Umgebung erfassen, interpretieren und den Fahrer unterstützen, sind ein aktueller Forschungsschwerpunkt der Fahrzeugindustrie. Eine wesentliche Aufgabe dieser Systeme ist die Modellierung der statischen Fahrzeugumgebung. Dies beinhaltet die Bestimmung der vertikalen Neigungs- und Krümmungseigenschaften der Fahrbahn, sowie die robuste Detektion von Hindernissen und somit des befahrbaren Freiraumes. Hindernisse von geringer Höhe, wie z.B. Bordsteine, sind in diesem Zusammenhang von besonderem Interesse, da sie häufig die erste geometrische Begrenzung des Fahrbahnbereiches darstellen. In diesem Kontext gewinnt die Verwendung von Tiefenkarten aus Stereo-Kamera-Systemen wegen der hohen Datenrate und relativ geringen Kosten des Sensors zunehmend an Bedeutung. Aufgrund des starken Messrauschens beschränken sich herkömmliche Verfahren zur Hinderniserkennung jedoch meist auf erhabene Objekte wie Fahrzeuge oder Leitplanken, oder aber adressieren einzelne Objektklassen wie Bordsteine explizit. Dazu werden häufig extrem restriktive Annahmen verwendet wie z.B. planare Straßenoberflächen. Der Hauptbeitrag dieser Arbeit besteht in der Entwicklung, Analyse und Evaluation eines Verfahrens, welches den befahrbaren Freiraum im Nahbereich des Fahrzeugs detektiert und dessen Begrenzung mit Hilfe einer Spline-Kurve explizit modelliert. Das Verfahren berücksichtigt insbesondere Hindernisse geringer Höhe (größer als 10 cm) ohne Beschränkung auf bestimmte Objektklassen. Weiterhin ist das Verfahren in der Lage, mit verschiedenartigen Neigungs- und Krümmungseigenschaften der vor dem Fahrzeug liegenden Fahrbahnoberfläche umzugehen und diese durch Verwendung eines flexiblen Spline-Modells zu rekonstruieren. Um trotz der hohen Flexibilität des Modells und des hohen Messrauschens robuste Ergebnisse zu erzielen, verwendet das Verfahren probabilistische Modelle zur Vorverarbeitung der Eingabedaten und zur Detektion des befahrbaren Freiraumes. Aus den Tiefenkarten wird unter Berücksichtigung der Strahlengänge und Unsicherheiten der Tiefenmessungen ein Höhenmodell berechnet. In einem iterativen Zwei-Schritt-Verfahren werden anhand dieses Höhenmodells der befahrbare Freiraum mit Hilfe eines Markov-Zufallsfeldes bestimmt sowie die Parameter der begrenzenden Spline-Kurve und Straßenoberfläche geschätzt. Ausreißer in den Höhendaten werden dabei explizit modelliert. Die Leistungsfähigkeit des Gesamtverfahrens sowie der Einfluss zentraler Komponenten, wird im Rahmen von Experimenten auf synthetischen und realen Testszenen systematisch analysiert. Die Ergebnisse demonstrieren die Fähigkeit des Verfahrens, die Begrenzung des befahrbaren Freiraumes sowie die Fahrbahnoberfläche selbst in komplexen Szenarien mit multiplen Hindernissen oder starker Fahrbahnkrümmung akkurat zu modellieren. Weiterhin werden die Grenzen des Verfahrens aufgezeigt und detailliert untersucht

    THE USE OF 3-D HIGHWAY DIFFERENTIAL GEOMETRY IN CRASH PREDICTION MODELING

    Get PDF
    The objective of this research is to evaluate and introduce a new methodology regarding rural highway safety. Current practices rely on crash prediction models that utilize specific explanatory variables, whereas the depository of knowledge for past research is the Highway Safety Manual (HSM). Most of the prediction models in the HSM identify the effect of individual geometric elements on crash occurrence and consider their combination in a multiplicative manner, where each effect is multiplied with others to determine their combined influence. The concepts of 3-dimesnional (3-D) representation of the roadway surface have also been explored in the past aiming to model the highway structure and optimize the roadway alignment. The use of differential geometry on utilizing the 3-D roadway surface in order to understand how new metrics can be used to identify and express roadway geometric elements has been recently utilized and indicated that this may be a new approach in representing the combined effects of all geometry features into single variables. This research will further explore this potential and examine the possibility to utilize 3-D differential geometry in representing the roadway surface and utilize its associated metrics to consider the combined effect of roadway features on crashes. It is anticipated that a series of single metrics could be used that would combine horizontal and vertical alignment features and eventually predict roadway crashes in a more robust manner. It should be also noted that that the main purpose of this research is not to simply suggest predictive crash models, but to prove in a statistically concrete manner that 3-D metrics of differential geometry, e.g. Gaussian Curvature and Mean Curvature can assist in analyzing highway design and safety. Therefore, the value of this research is oriented towards the proof of concept of the link between 3-D geometry in highway design and safety. This thesis presents the steps and rationale of the procedure that is followed in order to complete the proposed research. Finally, the results of the suggested methodology are compared with the ones that would be derived from the, state-of-the-art, Interactive Highway Safety Design Model (IHSDM), which is essentially the software that is currently used and based on the findings of the HSM

    Fast 3D Extended Target Tracking using NURBS Surfaces

    Full text link
    This paper proposes fast and novel methods to jointly estimate the target's unknown 3D shape and dynamics. Measurements are noisy and sparsely distributed 3D points from a light detection and ranging (LiDAR) sensor. The methods utilize non-uniform rational B-splines (NURBS) surfaces to approximate the target's shape. One method estimates Cartesian scaling parameters of a NURBS surface, whereas the second method estimates the corresponding NURBS weights, too. Major advantages are the capability of estimating a fully 3D shape as well as the fast processing time. Real-world evaluations with a static and dynamic vehicle show promising results compared to state-of-the-art 3D extended target tracking algorithms.Comment: In Proceedings of IEEE Intelligent Transportation Systems Conference (ITSC), 201

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented
    corecore