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ABSTRACT OF DISSERTATION 

 
 
 

THE USE OF 3-D HIGHWAY DIFFERENTIAL GEOMETRY IN CRASH 

PREDICTION MODELING 

 

The objective of this research is to evaluate and introduce a new methodology 

regarding rural highway safety. Current practices rely on crash prediction models that 

utilize specific explanatory variables, whereas the depository of knowledge for past 

research is the Highway Safety Manual (HSM). Most of the prediction models in the HSM 

identify the effect of individual geometric elements on crash occurrence and consider their 

combination in a multiplicative manner, where each effect is multiplied with others to 

determine their combined influence. The concepts of 3-dimesnional (3-D) representation 

of the roadway surface have also been explored in the past aiming to model the highway 

structure and optimize the roadway alignment. The use of differential geometry on utilizing 

the 3-D roadway surface in order to understand how new metrics can be used to identify 

and express roadway geometric elements has been recently utilized and indicated that this 

may be a new approach in representing the combined effects of all geometry features into 

single variables. This research will further explore this potential and examine the 

possibility to utilize 3-D differential geometry in representing the roadway surface and 

utilize its associated metrics to consider the combined effect of roadway features on 

crashes. It is anticipated that a series of single metrics could be used that would combine 

horizontal and vertical alignment features and eventually predict roadway crashes in a more 

robust manner.  

It should be also noted that that the main purpose of this research is not to simply 

suggest predictive crash models, but to prove in a statistically concrete manner that 3-D 

metrics of differential geometry, e.g. Gaussian Curvature and Mean Curvature can assist 

in analyzing highway design and safety. Therefore, the value of this research is oriented 

towards the proof of concept of the link between 3-D geometry in highway design and 

safety. This thesis presents the steps and rationale of the procedure that is followed in order 

to complete the proposed research. Finally, the results of the suggested methodology are 

compared with the ones that would be derived from the, state-of-the-art, Interactive 

Highway Safety Design Model (IHSDM), which is essentially the software that is currently 

used and based on the findings of the HSM. 

 

KEYWORDS: 3-D Highway Geometric Design, Differential Geometry, Highway Safety 

& Crash Prediction Models, Gaussian Curvature, Mean Curvature, 

Generalized Linear Models. 
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1 INTRODUCTION 

 

Highway safety is a major health issue that requires continued efforts for effectively 

addressing it and developing sustainable preventive solutions. The roadway environment 

is a difficult and complex system that people have to deal with and is a major contributor 

to road traffic injuries and fatalities. In 2015, there were 32,166 fatalities and over 1.7 

million injuries (NHTSA n.d.). There is a systematic effort to improve roadway design to 

address these issues and identify roadway design elements that could contribute to 

designing roadways having the potential to improve safety by creating an environment that 

drivers can easily understand. The objective of this research is to contribute to the 

enhancement of road safety through the development of a 3-dimensional (3-D) model for 

rural highways that would allow for a more accurate correlation of design elements to their 

potential crash contribution. The road surface will be modeled as a 3-D surface through 

differential geometry and B-spline surfaces, leading to a more realistic, complete, and 

accurate representation of the actual roadway geometry that explicitly or implicitly affects 

the crash occurrence probability.  

 

Current highway safety research has developed crash prediction models that quantify the 

impact of single geometric elements on crash occurrence. For example, in the Highway 

Safety Manual (HSM) there are models that predict the effect of lane width, shoulder width, 

presence of median, etc. on crashes but each of them defines it singularly without 

considering their potential interactions (AASHTO 2010). The highway safety community 

has recognized the need to estimate these interactions and the recent approach to address it 

is to either estimate the contribution of each geometric element on the crash occurrence 

alone or use a set of crash modification factors to adjust the estimate for a base condition 

to the existing features estimating their effect through multiplication of these factors 

(Washington et al. 2010; Hanno 2004). The number of variable interactions can increase 

exponentially even when a few are considered, e.g. five variables can produce 27 

interactions, resulting in a drastically reduced statistical power of the analysis and a higher 

probability of not producing statistically significant models. Although there are statistical 

techniques in theory that may address this issue, practically the problem is still apparent 
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and indicates the need for a much more integrated and coherent modeling approach of the 

roadway elements.  

 

Another issue that is relevant and underscores the importance of this research effort is the 

fact that to date highway safety research is based on a 2-dimensional (2-D) approach, i.e., 

horizontal and vertical alignment, whose principles were initially established in the 1940’s 

and have not drastically changed since then. Over the years, although there have been 

changes in terms of adjusting minimum values and thresholds of various design elements, 

the overall methodology regarding highway safety estimation remains intact. Even though 

the roadway is a 3-D structure, the simplification of its projection in two planes, i.e., 

horizontal and vertical, has served well in the past when it was adequate to do so. However, 

given the computational power that is available nowadays one can argue that the geometric 

design process can be further improved in terms of incorporating a 3-D approach and 

metrics to express the roadway alignment. Moreover, this approach could be carried 

forward to safety evaluation and possibly enhance the ability to examine simultaneously 

the potential contribution of more than a single geometric element on crash occurrence. 

Today, 3-D geometric interactions are not reported in a quantifiable form in any highway 

design or safety manual. The coordination between the horizontal and vertical alignment 

is limited to earthwork estimation or optimization, but not during the design process 

because the 3-D design incorporation has traditionally been a mathematically and 

computationally demanding procedure. Therefore, the true extent of the design interactions 

and implications are not taken into consideration in terms of a holistic 3-D approach 

(Hassan and Easa 1998a, 2000; Hassan et al. 1996a, 2000; Hanno 2004). Others have noted 

that improper horizontal and vertical alignment coordination play a crucial role in crash 

frequency occurrence (Lamm and Smith 1999; Biduka et al. 2002) and could also confuse 

the driver in terms of selecting an appropriate operating speed (Lamm et al. 1999). Lamm 

and Choueri (1987) provide a very enlightening description of improper as well as desirable 

horizontal and vertical combinations that affect the driver’s perception and expectation of 

the roadway. Easa et al. (1999, 2001, 2002) have also highlighted the horizontal and 

vertical coordination problem and its implications, which could result in sudden 

fluctuations in operating speed, and underestimation of horizontal element lengths for sight 
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distance calculation. Moreover, the AASHTO Policy of Geometric Design for Highways 

and Streets (aka Green Book) offers some, qualitative in essence, guidance for horizontal 

and vertical coordination, indicating the fact that the need for 3-D solutions has been 

acknowledged from the scientific community as a concept meriting further development 

and research (AASHTO 2011).  Therefore, the development of 3-D models could possibly 

enhance roadway safety estimation, allowing for the identification, calculation, and 

incorporation of a plethora of 3-D explanatory variables, well known from differential 

geometry, into new, more sophisticated and integrated statistical safety models. This 

integrated approach has the potential to change the entire perspective on roadway safety 

research and identify the synergistic contribution of roadway design elements on crashes 

as well as those that are more critical to be addressed. The research to be completed here 

will examine roadways as surfaces. As such, Differential Geometry will play a prevalent 

role because it is by definition the field of mathematics that studies the principles of curves 

and surfaces. Indeed, in the suggested methodology, the roadway surface will be modeled 

as a 3-D surface in a strict mathematical form. 

 

This research intends to shed more light on the correlation between road safety in rural 

highways and the effects of combined, 3-D geometric design characteristics. Although 

crash models can be developed according to the guidelines of the HSM (AASHTO 2010), 

this research aims to improve the existing models, or even develop new ones, in which the 

3-D information will be included. To date, 3-D design elements have not been used as 

explanatory variables in crash prediction models because of the manner in which roadways 

are designed, i.e., as a process based on 2-D metrics and elements. Therefore, the novel 

aspect that this research intends to add to the current literature is the incorporation of 3-D 

metrics as explanatory variables in crash prediction models. At this point, no specific 

metrics have been identified but the research proposed here will examine well-known 

metrics and elements from differential geometry and identify those that have the greatest 

potential to explain crash occurrence. The use of 3-D metrics could allow for the 

identification of design errors that are not apparent when one considers and studies in a 

separate manner the two 2-D alignments, i.e., horizontal alignment and vertical profile. 

This lack of analytical coordination in 3-D space has often resulted in design errors that 
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had to be addressed after construction. The research proposed here aims to address such 

errors through the incorporation of 3-D metrics and controls during the design phase and 

utilizing a 3-D design.  It is anticipated that the introduction of 3-D surface metrics will not 

only address design phase issues, but it could also enhance other applications, e.g. highway 

safety, and thus could offer the highway engineer a more holistic approach to roadway 

designers. A discussion of potential metrics is presented in the Methodology section. 

 

It is critical to state that this methodology does not intend to question the validity of safety 

research findings up to date; it rather suggests a more robust and realistic approach to 

develop roadway safety models by taking advantage of the 3-D mathematically defined 

roadway surface that would allow the development of 3-D crash prediction models. In fact, 

Amiridis and Psarianos (2015a) have demonstrated the similarities and analogies between 

the 3-D and 2-D traditional approach through an approach they developed named “3-D 

Differential Road Surface” (3DDRS). In the 3DDRS model, the natural way in which 

current 2-D guidelines and thresholds could be converted and integrated into 3-D metrics 

has been demonstrated. Once a 3-D curve has been developed, it can be used to obtain the 

equivalent 2-D curves that are currently used in the development of alignments. There are 

two curves that can be used in this manner and those are the 3-D pseudo-geodesic curvature 

which is equivalent to the horizontal alignment and the 3-D pseudo-normal curvature 

which is equivalent to the vertical profile. Therefore, the research findings, minimum 

criteria, and thresholds that are used today will be incorporated in the preliminary models 

as the starting values, allowing for a direct comparison between the existing predictive 

models, e.g. HSM regression equations, and the 3-D safety models that will be developed. 

It is noted that the concepts of pseudo-geodesic and pseudo-normal curvatures were 

introduced in the highway engineering literature for the first time with the 3DDRS 

approach and a brief definition and description of these essential concepts are presented in 

the following chapters. 

 

It is worth mentioning that these 3-D metrics can be calculated only if 3-D curves or 

surfaces are defined, and therefore the question that may naturally emerge is how can road 

safety be associated with differential geometry or, in other words, how can the principles 
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of differential geometry be applied on highway design and safety estimation. The idea 

begins with the simple observation that the roadway surface is indeed a 3-D surface and 

therefore it should be treated and, most importantly, modeled in this way. Nowadays, the 

road surface is not viewed as an integrated mathematical structure, but as the byproduct 

that results from a number of intermediate steps. In a general roadway design process, the 

centerline is initially defined and then the lane and shoulder widths, combined with their 

respective cross slopes and superelevation rates, form the roadway surface. Therefore, the 

roadway surface is not viewed as a separate concept in the design process: it simply occurs. 

This research aims to change this practice and potentially prove the invaluable advantage 

of obtaining holistic metrics from an integrated and unified 3-D mathematical surface, 

compared to metrics that are obtained as pieces of information and do not consider the 

interactive effects of other variables on them.   
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2 LITERATURE REVIEW 

 

The scientific community acknowledges that the 3-D coordination of the roadway is 

essential in highway safety but such an approach has not yet been explored, quantified or 

implemented in a systematic way (Lamm et al. 1999). The purpose of this thesis is to 

examine the use of 3-D models in safety prediction and suggest appropriate 3-D geometric 

metrics that can predict crash frequency. A literature review including prior 3-D attempts 

and approaches to highway engineering is first presented. However, it must be emphasized 

that these attempts were mostly related to the 3-D modeling of the roadway and not so 

much to linking 3-D design and highway safety. Additional efforts that have investigated 

a more accurate calculation of essential roadway design metrics utilizing a 3-D theory are 

also presented. Finally, a review of highway safety approaches as they are applied today is 

also given.   

 

2.1 3-D Highway Design Approach 

It can be stated that until World War 2, there were three main concerns when a roadway 

was constructed: the width, which had to be such in order to accommodate the dimensions 

of the vehicles, the structural ability of the pavements, which had to satisfy the forces that 

are imposed from the vehicles, and the grades, which had to be such in order to 

accommodate drainage runoff issues and not be too steep in order to allow vehicles to 

actually travel on the roadway (Hanno 2004). It was only after the 40’s when geometric 

design came into play in order to accommodate the increasing speed of vehicles; it is no 

coincidence that the spiral curve for highway designs was introduced around that time in 

order to exactly ensure a smooth transition when entering a curve from a tangent. The fact 

that highways were initially tightly viewed as a military associated asset can be verified by 

the fact that when President Eisenhower was in office in the USA during the 1953-1961 

period, the largest interstate system was designed at that time with military needs in mind. 

For example, it was advised to design large tangents in length in multiple parts around the 

USA in order to accommodate the landing or takeoff of airplanes in case needed in a period 

of war (FHWA n.d.a). Therefore, the current interstate system was not initially designed 

with a focus on sophisticated geometric design principles. However, at that time and for 
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the scope of needs that the roadway system had to serve, the geometric design that was 

applied and based on the 2-D traditional design approach, i.e., horizontal and vertical 

alignment, was adequate. 

 

However, recognizing the deficiencies of the conventional 2-D road design approach a 

number of researchers tried in the past to address the problem by introducing 3-D modeling 

approaches.  Brauer (1942) was the first who identified the physical properties and meaning 

of the 3-D road curves and referred to their real differential geometric principles and 

mathematical functions through the necessity of examining the moving Frenet trihedron. 

Lorenz (1943) in another effort suggested a cylindrical barrel approach for obtaining the 

3-D road axis within a 3-D route planning process. Many years later and in an effort to 

introduce a 3-D design process Freising (1949) suggested a geometric design system using 

the curve as the 3-D element for the route planning. Later, Scheck’s approach (1973) 

involved a gradual dynamic optimization of the route plan in the horizontal and vertical 

alignment plans. Borgmann (1976) examined an interpolation of 3-D fixed points, where 

the hyperbolic transition curve was used as a flexible 3-D curve resulting from the static 

properties of continuous slab. Psarianos (1982) carried out extensive research into 

developing a model representation using the 3-D design elements of a 3-D tangent, a helix 

and a choroclothoid, which is actually a 3-D spiral curve. In the latter application, the 

choroclothoid was used as a transition bend between the straight segment and the helix. All 

of these methodologies were, in fact, 3-D modeling methodologies that proposed 

techniques of roadway design by incorporating entirely or partially 3-D metrics during the 

design process. These researchers were the first that tried to view the separate horizontal 

and vertical alignments into one holistic 3-D approach and essentially encouraged the 

highway design community and other researchers to start thinking along the same lines. 

The results of these findings cannot be evaluated or compared to the traditional 2-D 

approach in the sense of which methodology is better: the final outcome of both the 2-D 

and 3-D approaches is a roadway.  Although one may agree that designing in 3-D is the 

natural way to design a 3-D infrastructure system as in the case of a roadway, the error 

incorporated in designing in 2-D compared to 3-D has not been actually quantified, since 

it is somewhat difficult to convince the highway engineering community to move towards 
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a holistic 3-D design approach without having an absolutely quantifiable justification. 

However, the 3-D approach can indeed be compared to the 2-D approach when specific 

applications, such as sight distance, hydroplaning speed, and crash predictions, are 

calculated or analyzed with both methodologies and then compared to the actual values. In 

this case and only through the use of specific applications that would eventually produce 

quantifiable and comparable numerical results one can indeed verify the potential 

superiority of 3-D methodologies. 

 

More recently, Kühn (2002, 2012) provided an extensive analytical formulation of the 3-

D geometric design methodology of a roadway based on fixed, coupling, and dialogue 

elements. Zuo et al. (2007) also developed a 3-D road calculation methodology based on 

computer virtual simulation technology in order to solve the 3-D sight distance problem. 

Hao et al. (2007) integrated visualization in the highway alignment design process in an 

effort to efficiently address the 3-D road design problem. Makanae (2000) developed a 3-

D alignment design system in the virtual space recreated by stereoscopy of aerial 

photographs. Other 3-D highway design methodologies based on various mathematical 

functions have been presented by Makanae (2002, 2007), Karri and Jha (2007), Kim and 

Lovell (2010), Jha et al. (2010), Kühn and Jha (2012), Karri, et al. (2012). All of these  

methodologies have mostly focused on visualization and optimization techniques basically 

in terms of the roadway aligment in space in order to eventually improve the highway 

design process. The visualization techniques are particularly helpful since they allow to 

design in 3-D space even if 2-D guidelines are used providing invaluable insight of the 

whole area topography; an aspect that is perhaps the most contributing and crucial factor 

in highway design. The optimization techniques are very interesting, since their ultimate 

goal is the automation of the highway  design process or at least the suggestion of a 

satisfactory alignment to start with. Optimization is a rather specialized and unexplored 

field in highway design, but its ultimate success is questionable given the vast number of 

competing variables and constraints that come into play as well as the highly non-linear 

nature of the initial poblem. For example, there are techniques that can optimize the vertical 

alignment in order to produce the most cost-effective earthwork scheme, but this does not 

ensure that other especially competing factors such as safety, comfort, operational speed, 



 

9 

 

and appearance among others will be satisfied in an adequate manner as well. Therefore, 

optimization techniques are very important and further research should be conducted on 

this field, but it should be viewed as a procedure of suggesting alignment alternatives and 

not a procedure that can be blindly trusted given also the uniqueness of each project whose 

parameters cannot be parametrized in a single objective function. 

 

The application that has been mostly analyzed in terms of 3-D calculation is probably 

roadway sight distance. An interesting aspect of 3-D sight distance calculation is that its 

results can be compared to the traditional 2-D approach and therefore indicate whether the 

calculation with a 3-D modeling basis is more accurate. Hassan et al. (1996a) introduced 

an analytical 3-D model using the finite element method (FEM) whose elements are 

rectangular (4-node, 6-node, and 8-node) and triangular. Their sight distance model is 

advanced because it combines horizontal and vertical alignments and accommodates cross 

slopes and superelevation. Its primary contribution is in the mathematical expression of the 

roadway geometry, but the sight distance computation is a cumbersome numerical 

procedure. Nehate et al. (2006) described a methodology to find the available sight distance 

using Global Positioning System (GPS) data by examining the intersection of line of sight 

with the elements representing the road surface. Ismail (2007) expanded the 2-D models in 

Lovell et al. (1999, 2001) to include a 3-D component. This was accomplished using 

piecewise linear approximations to all of the curvature elements. 

 

In the past, in order to evaluate the actual sight distance in real driving conditions, a number 

of 3-D models are found in the literature aiming to optimize the available sight distance 

(Garcia 2004; Zimmermann 2005; Romero and Garcia 2007; Yan et al. 2008; DiVito and 

Cantisani 2010; Moreno et al. 2010)  Kim and Lovell (2010) presented another 3-D sight 

distance evaluation procedure using thin plate splines where an algorithm is used to 

determine the maximum available sight distance using computational geometry and thin 

plate spline interpolation to represent the surface of the road. The available sight distance 

is measured by finding the shortest line that does not intersect any obstacle. Jha et al. (2001) 

proposed a 3-D methodology for measuring sight distance, utilizing triangulation methods 

via an algorithm that was introduced for this purpose consisting of three stages, namely: 
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road surface development, virtual field of view surface development, and virtual line of 

sight plane development. However, the process involved multiple software platforms, thus 

delivering an accurate but non-flexible outcome. All of these sight distance related 

methodologies highlighted the need to incorporate 3-D methodologies during the design 

process. However, none of these methodologies quantifies the effect of 3-D metrics on 

crash occurrence. 

 

Recently, Amiridis and Psarianos (2015a) have developed a 3-D roadway representation 

methodology developed named “3-D Differential Road Surface” (3DDRS) that allows for 

utilizing 3-D metrics to define the roadway surface. The proposed method outlined in the 

3DDRS approach is a further advancement of the previously mentioned 3-D methods. Its 

main advantage lies in the fact that the entire roadway is treated as a 3-D mathematical 

surface, whereas the other methodologies are mostly concerned with the roadway 

centerline. In addition, the roadway surface is a mathematical 3-D surface in the sense that 

it is parametrically defined through an interpolation spline function. This is an additional 

advantage of the 3DDRS methodology because it is now feasible to derive from differential 

geometry any mathematical calculation of any 3-D metric that requires a mathematically 

defined surface through a parametric representation. Other 3-D methodologies cannot 

accomplish the latter because they simply do not parametrize the roadway surface as a, 

strictly speaking, mathematical surface. Moreover, in the 3DDRS methodology, the 

resultant 3-D curvature values are strictly controlled in order to belong within a given 

domain that the user defines based on current highway engineering policies and regulations 

according to the Green Book (AASHTO 2011). The latter statement is feasible because, in 

the 3DDRS methodology, once a 3-D curve, i.e. 3-D roadway centerline, is developed, it 

can be utilized in order to obtain the 2-D curvatures that are currently used in the 

development of the horizontal alignment and vertical profile. This transition from 3-D to 

2-D is achieved via two metrics as described in the 3DDRS: the 3-D pseudo-geodesic 

curvature that is equivalent to the curvature of the horizontal alignment and the 3-D 

pseudo-normal curvature that is equivalent to the curvature of the vertical profile. 
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The 3DDRS methodology has been successfully utilized for a more accurate calculation of 

the hydroplaning speed directly in 3-D space (Amiridis and Psarianos 2015b). The 

methodology allows for an easy and automated calculation of geometric parameters of 

segments, such as segments in which the superelevation rate changes, that could not be 

calculated before given the available/pre-existing hydroplaning models. Amiridis and 

Psarianos (2016) also used this methodology to calculate the available sight distance of a 

roadway directly in 3-D space and in a fully automated and accurate manner. The presented 

methodology overcomes the conventional 2-D approach of studying the actually 3-D 

roadway configuration separately and sequentially in its horizontal and vertical alignments. 

The road surface was simulated as a 3-D B-spline surface with continuous side barriers 

whose road centerline has been in turn, modeled as a 3-D B-spline curve. Through this 

approach, the road centerline as well as the right and left edge lines which play a crucial 

role in the sight distance calculation are mathematically defined both geometrically and 

analytically through explicit equations. 

 

2.2 Highway Safety Approaches 

The purpose of any highway safety model is the accurate prediction of crashes through 

statistical modeling. Given the fact that the dependent variable is the number of crashes, 

i.e., discrete counts, specialized regression models and theoretical statistical knowledge is 

absolutely necessary in order to analyze the data in a proper manner. It is no coincidence 

that the modeling of crash data is a field in which a number of statisticians conduct a large 

portion of their research and are fully devoted to. The list of models that have been 

proposed with their advantages, disadvantages, and implications is extensive and cannot 

be fully included in this literature review because it would exceed its scope. However, the 

basic types of statistical processes will be described but in a more informational/tabulated 

rather than detailed fashion. A very thorough literature review regarding statistical 

techniques with their associated theoretical background can be found in Lord and 

Mannering (2010). A concept that should be defined from the outset since it relates to the 

type of approach to be taken deals with the issue of whether the variance of a dataset is 

greater than (over-dispersion) or less (under-dispersion) than the mean.  
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Crashes are positive integers and therefore count models should be utilized in order to 

model them. The most basic regression model in safety analysis is the Poisson regression. 

However, the basic assumption of this model is that the variance is equal to the mean and 

that makes the Poisson model rather inflexible. In crash datasets, the common scenario is 

the presence of over-dispersion due to the excess of zeros in the dataset. The most basic 

model that accommodates over-dispersion is the Negative Binomial regression and this is 

why this regression type is the most commonly used in the literature (Maycock and Hall 

1984; Hauer et al. 1988; Miaou 1994; Maher and Summersgill1996; Karlaftis and Tarko 

1998; Hirst et al. 2004; Lord and Bonneson 2007; Daniels et al. 2010). Other models that 

have been tried with varied success include Zero Inflated Negative Binomial regression 

that attempts to address the presence of a large number of zero crashes. Zero Inflated 

Models are also an option when dealing with crash data, but this is not applicable here.  

Zero inflated models, such as Zero Inflated Poisson (ZIP) or Zero Inflated Negative 

Binomial (ZINB), should only be used when systematic zeros are present. Systematic zeros 

are zeros that are present not because of a stochastic process, but because of a deterministic 

one. However, in this research, a crash can occur in any location via the random process 

imposed by the nature of the problem, and therefore this is why the zero inflated models 

are not appropriate in this case.  In addition, the Gamma Regression Model can be used to 

account for under-dispersion, but under-dispersion is not the typical situation as noted 

above. The Bivariate/Multivariate Model can also be utilized for a number of scenarios, 

such as to handle different types of crashes or to predict the probability, not absolute 

number, of crash occurrence; it is noted that the Bivariate Model is essentially the Logistic 

Regression model. A more specialized model is the Random Effects Model that can 

account for temporal and spatial correlation. 

 

Another model that is widely used nowadays, especially in the HSM, is the Bayesian model 

that can be applied as both a parametric or non-parametric model. In other words, a 

distribution may be assumed or not for the data. However, the latter is not the biggest 

strength of the Bayesian model in crash analysis since the distribution of crashes can be 

assumed with an adequate enough confidence as Poisson distribution anyway. The biggest 

strength of the Bayesian model is that the opinion of the analyst/expert plays a role in the 
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statistical analysis process. Nonetheless, it must be emphasized that the HSM does not 

exactly utilize the Bayesian model, but the Empirical Bayesian model. The Empirical 

Bayesian approach is something between the Frequentist and Pure Bayesian approach in 

the sense that researchers first examine the data and then provide their expectations, 

whereas in the Pure Bayesian case, the researcher is “not permitted” to look at the data; the 

latter is a critique towards the Empirical Bayesian approach in general. 

 

Issues that could affect the development of crash models include, but are not limited to: 

time-varying explanatory variables, temporal and spatial correlation, data under-reporting, 

small sample size, and injury severity and crash type correlation, leading to wrong 

parameter estimates. In addition, omitted-variable bias and endogenous variables may 

result in a distorted form of the explanatory variables. The resultant impact of all of these 

problematic issues is essentially the production of inflated or reduced variable coefficients. 

 

Lord and Mannering (2010) have underscored the complexity of contributing factors 

incorporated in crash data as well the advanced statistical tools that are necessary to be 

accounted in order to correctly model crash data.  Although there is a vast amount of 

research pertaining to the optimal statistical model that should be used, these statistical 

techniques are useful when a new model is intended to be created. Practically, the 

prediction of crashes are currently carried out with the guidelines of the HSM in which all 

regression equations are readily applied and no specialized statistical knowledge is 

essentially needed. The accepted way in which crash predictions are practically performed 

nowadays is described in the discussion that follows.   

 

2.2.1 Highway Safety Manual 

All scientific, observational or empirical research pertaining to highway safety was 

included for the first time in a manual in 2010 with the publication of the HSM. The core 

of the HSM approach lies in three main pillars: Safety Performance Functions (SPFs), 

Crash Modifications Factors (CMFs), and the Empirical Bayes (EB) Statistical Approach, 

which are briefly described below. 
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SPFs are defined as “equations used to predict the average number of crashes per year at a 

location as a function of exposure and, in some cases, roadway or intersection 

characteristics (e.g., number of lanes, traffic control, or median type)” (HSM 2010). The 

most common exposure factors that are utilized in highway segments, which are the 

segment types of interest in this thesis, are the AADT and the segment length. It is 

expected, in general, that both the AADT and the segment length have a positive 

relationship with the number of crashes. Equation 1 presents a generalized SPF which is 

typically developed based on base conditions, i.e., those that are most frequently 

encountered in the system analyzed.  However, besides these basic exposure factors, SPFs 

can account for site-specific conditions. Historical crashes can be incorporated in the 

prediction analysis and in this case, the Empirical Bayes model is utilized by calculating a 

weighted average of observed, i.e., actual, and predicted crashes that were derived from an 

SPF (Hauer 1997). 

 

 Predicted Crashes=exp[a+β ∙LN(AADT)+LN(Segment 

Length)] 
(1) 

 

As the FHWA indicates (FHWA, n.d.b), SPFs have three basic functions in the highway 

safety evaluation process: network screening, countermeasure comparison, and project 

evaluation.  

 

 Network Screening:  SPFs can be utilized in order to identify locations in which a safety 

improvement would be meaningful to consider. These segment locations are indicated 

by comparing the observed crashes with the predicted segment crashes from other sites 

with similar roadway characteristics, AADT, and segment length (Part B, HSM). 

 

 Countermeasure Comparison: SPFs can be utilized in order to evaluate in a quantifiable 

manner the impact of treatments and/or countermeasures on specific site locations, 

which function as base conditions, in terms of crash frequency increase or decrease. 

This is achieved by first predicting the number of crashes with an SPF for the so-called 

baseline condition, in which no treatment has been applied, and then applying, i.e., 
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multiplying, a Crash Modification Factor (CMF) to the predicted crashes derived from 

the baseline SPF. Crash predictions derived from SPFs can be adjusted accordingly with 

the Empirical Bayes method if historical crashes are available (Part B, HSM).  

 

A CMF is a multiplication factor that essentially indicates the percentage increase or 

decrease of predicted crashes for a specific element that could be either a geometric 

design component or a safety treatment in order to calculate the highway safety effect, 

i.e. improvement or not, of the element or treatment (FHWA, n.d.b). A CMF less than 

1.0 has a positive impact on highway safety, whereas a CMF greater than 1.0 has a 

negative impact on highway safety. For example, a CMF for total crashes for installing 

centerline rumble strips on rural major collector roads is 0.86, i.e., 14 percent% 

reduction in crash frequency, whereas a CMF for converting an urban 4-lane cross 

section to a 5-lane cross section is 1.11, i.e., 11 percent increase in crash frequency 

(HSM 2010; FHWA, n.d.b). 

 

 Project Evaluation: The prevailing process is to utilize the Empirical Bayes method in 

order to develop CMFs. The basis of the Empirical Bayes method is associated with the 

SPF combined with historical crashes. The SPFs are essentially calibrated to optimally 

capture the specific characteristics of a location for a specific time period which is 

explicitly described in the HSM. Finally, the output of this calibration process is in the 

form of CMFs (HSM, 2010; Hauer, 1997).  

 

2.3 Summary 

The literature review conducted here focused on two elements: 3-D highway geometric 

design and highway safety modeling. The intent of this thesis is to provide the link between 

these two fields in a scientific, but also practical manner providing ready-to-use models 

backed up by a thoroughly described methodology.  

 

Although a number of attempts have been completed starting from the 40’s to develop a 3-

D implementation of roadway design, they have not been formally implemented in an 

explicit quantifiable manner in terms of crash prediction models. The objective of most of 
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these attempts was how to model the roadway, more specifically the roadway centerline, 

in 3-D space, and not to conduct highway engineering-oriented applications based on this 

3-D modeling approach. Extensive research has been conducted acknowledging the fact 

that the separate coordination of the horizontal and vertical alignment is problematic, but 

this acknowledgment is not provided in a quantifiable or systematic manner. This is why 

perhaps, the process of incorporating 3-D metrics in the highway design process has been 

relatively slow and, in many cases, non-existent. Although interesting 3-D models may 

have been developed, their potential value cannot be verified because they cannot be 

compared in a one-to-one and quantifiable manner with current, 2-D procedures because 

there are no applications that can support their potential advantage. Therefore, the missing 

part of these 3-D methodological approaches is their practical implementation on 

applications that can produce quantifiable results by utilizing 3-D metrics as the basis of 

the analysis, and then comparing these results with the 2-D approach. Only then will 3-D 

metrics become acceptable and be included in the design process via their explicit 

integration in manuals and guidelines. 

 

An extensive and very scientifically challenging research, mostly in terms of theoretical 

and applied statistical methodologies, has been conducted for addressing safety modeling 

and prediction. All of this knowledge that started compiling from the 70’s, mostly in 

observational and empirical terms at that point, was organized and published in the first 

edition of the HSM, rather recently, in 2010. The lateness of the HSM as a knowledge 

compilation underscores the complexity of the crash modeling procedure and mostly the 

lack of required data in order to quantify the results even though highway safety is a major 

societal issue in terms of death and serious injure rates. The lack of data is an issue that has 

been vastly improved in the recent years and will continue to improve in an even more 

rapid trend. On the other hand, highway safety techniques lack in the incorporation of 3-D 

metrics as explanatory variables that would potentially assist in a more accurate prediction 

of crashes. At this point, the state-of-the-art process in crash prediction is the utilization of 

SPFs. The next step would therefore be the creation of 3-D SPFs in which the desired gap 

between 3-D design and highway safety would be bridged; this is in fact the objective of 

this doctoral thesis. 
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A new 3-D roadway modeling methodology, i.e., 3DDRS, has been developed that can 

represent the roadway as a 3-D mathematical surface expressing it as a single equation 

(Amiridis and Psarianos 2015a). A number of applications have been developed based on 

this prior work, such as sight distance calculation, hydroplaning speed calculation, and 

incorporation of the cut and fill slopes in the roadway surface itself. The use of this 

methodology will be investigated and form the basis of this research in order to introduce 

3-D metrics whose effect could be quantified in terms of crash frequency occurrence. 

Another objective of this research is to introduce 3-D metrics in highway design per se in 

addition to the potential development of statistical models that can predict the number of 

crashes utilizing the 3-D geometric characteristics of a roadway. The application of the 

methodology to road safety could significantly strengthen the hypothesis that there is added 

value in incorporating 3-D metrics in the design process and to show that the highway 

design community needs to increase its efforts in understanding the 3-D geometric effects 

of a roadway. The need to consider the roadway design in the 3-D space has been in the 

forefront of recent research and it may be time to replace the traditional 2-D design 

approach with a more robust 3-D approach.  
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3 METHODOLOGY 

 

This chapter describes the main steps of the suggested methodology and clarifies the 

sequence of tasks to be carried out. The final output of this research attempt will be the 

suggestion of a crash prediction model/process that utilizes a 3-D highway model in order 

to ultimately incorporated 3-D geometric metrics derived from differential geometry theory 

that will function as explanatory variables into regression models. The type of the statistical 

model and its relevant specifications that will be utilized is discussed in the following 

sections. The 3-D highway model that will be applied will be the 3DDRS methodology 

(Amiridis and Psarianos 2015a.). 

 

3.1 3-D Surface Modeling Approach 

The 3DDRS methodology to be used in the proposed research should not be compared to 

the other suggested 3-D approaches in terms of the geometric design or optimization 

process, but mostly in terms of how it models the roadway surface. In contrast to the 

3DDRS, all existing 3-D approaches focus on the development of the road centerline and 

not on the road surface as a whole. This difference in how the roadway is viewed might 

turn out to be the most crucial contributing factor in road safety. Additionally, in the 

proposed methodology not only is the road surface modeled as a 3-D surface, but as noted 

above this 3-D surface is governed by an explicit mathematical equation: a fact not present 

in any of the 3-D approaches discussed above. For example, just as a sphere or cone has its 

own vector form, so does each unique roadway surface that is modeled through this 

methodology/technique. This allows for various geometric calculations and manipulations 

that could produce useable metrics for safety estimations. All of the geometric information 

incorporated in the roadway surface is integrated in a substantially robust mathematical 

equation and any application, not only for road safety, can be built based on this equation. 

This equation allows mathematical operations, such as differentiation and integration, to 

be easily applied on it with considerable computational speed. With this approach, any 

differential 3-D geometric metric can indeed be calculated based on this interpolation 

equation. Given the information provided in the literature, it is highly unlikely that the 

Gaussian curvature, for example, or any other 3-D geometric metric can be calculated 
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based on any of the other 3-D approaches. If a surface is not defined in a strict mathematical 

formulation as in the 3DDRS methodology, then the Gaussian curvature, and many other 

significant 3-D metrics that govern the properties of surfaces as indicated by differential 

geometry theory, cannot be calculated by definition; it is like trying to define a tangent on 

a non-existent circle. Therefore, the whole goal of this thesis would be clearly unfeasible 

if any 3-D approaches are used other than the 3DDRS. Hence, the use of the 3DDRS does 

not imply that it is, in general, better than other 3-D methodologies, but it is the optimal 

for the specific scope and needs of this research. Since the objective of this research is to 

address the effects of combined 3-D geometric metrics of a roadway on highway safety, 3-

D metrics must be able to be calculated in the first place and therefore the 3DDRS 

methodology is considered appropriate for utilization here.  Current 3-D methods mainly 

focus on how to optimize the road centerline either purely theoretically or computationally 

and do not represent realistically the roadway surface itself. In essence, the other models 

consider that the task is accomplished once the centerline alignment is defined. These 

methodologies cannot consider an existing roadway and then run applications, e.g. road 

safety, based on it; this is simply not what they are created for. Finally, the 3DDRS 

methodology introduced is not useful only for geometric design, but for a large variety of 

applications because of its flexibility and robustness since all of the geometric information 

can be derived from a single equation.  

 

The two most critical elements that make the 3-D design process feasible in the 3DDRS 

approach are the pseudo-geodesic and pseudo-normal curvature. The pseudo-geodesic 

curvature vector is a generalization of the curvature vector of a curve in the plane and is 

defined as the arithmetic projection of the 3-D curvature vector of a point to the horizontal 

plane. In particular, positive values of the pseudo-geodesic curvature correspond to a right 

turn of the steering wheel as the length, i.e., stationing, of the 3-D road centerline increases, 

whereas negative values of pseudo-geodesic curvature correspond to a left turn. 

Equivalently, when the road centerline becomes a straight line, i.e., tangent, then the 

pseudo-geodesic curvature approaches zero. Equivalently, the pseudo-normal curvature is 

a generalization of the curvature of the vertical alignment and is defined as the arithmetic 

projection of the 3-D curvature vector of a point to the vertical plane. Positive values of 
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the pseudo-normal curvature correspond to the curvature of 3-D sag curves, whereas 

negative values of the curvature correspond to the curvature of 3-D crest curves. This 

means that the user can impose different limits, explicitly presented in the guidelines of the 

Green Book, in an algorithm that utilizes a user-friendly manner, depending on the type of 

vertical curve, i.e., crest or sag.  

This approach underscores the correspondence between the values of pseudo-geodesic and 

pseudo-normal curvature to the well-known horizontal and vertical curvatures of the 

conventional horizontal and vertical alignment, respectively. The highway designer can 

then readily associate limiting values based on design policies and guides with the proposed 

3-D methodology. Implementing the 3DDRS methodology, the final road design outcome 

can conform totally to the current, or future, accepted design policies. Therefore, the 

proposed methodology could be considered as an advancement of current practices and not 

as an approach that calls them into question. The pseudo-geodesic and pseudo-normal 

vectors were defined in 3DDRS especially to incorporate the transition from the 

conventional 2-D approach to the suggested 3-D approach and show that all existing 

knowledge and guidelines can be incorporated into 3-D design with respective adjustments. 

Their implementation in this research is original, as this technique is being implemented 

for the first time.  

 

Given the fact that the roadway is modeled in 3-D space, it can be rationally argued that all 

further calculations and controls, e.g. sight distance calculation, hydroplaning speed 

estimation etc., based on the modeling of the roadway surface as a 3-D mathematical 

surface will be more accurate and precise. In fact, three crucial applications have been 

directly based on the 3DDRS approach proving that the 3-D realization of the roadway can 

lead to significant conclusions and provide a general framework based on which essential 

highway engineering metrics can be evaluated, and, most importantly, calculated with 

robust algorithms on a universal basis by taking into consideration any possible geometric 

combinations.  

 

Amiridis and Psarianos (2015b) developed a mathematical methodology that allows a more 

accurate calculation of the hydroplaning speed directly in space. Currently, the calculation 
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of the water flow path is based on a Digital Terrain Model (DTM) that is constructed based 

on the horizontal and vertical alignments and cross-section superelevation runoff design. 

Along this DTM, water flow paths have to be calculated from points on the pavement edge 

lines along which the water film depth will result based on a rainfall intensity. With the 

proposed methodology, the water film calculation is implemented in an integrated and fully 

automated way without having to account the specific location of a point on the edge lines. 

In addition, with this methodology, all calculations are solely based on the geometry of the 

surface, which has been modeled as a 3-D B-spline surface.  

 

The advantage of this approach is that the geometric parameters of certain segments, such 

as segments in which the superelevation rate changes that could not be calculated in an 

analytical manner with current models, can now be calculated easily, automatically, and 

with no limits regarding specific conditions, e.g. certain geometric combinations, that must 

be met in order to yield the application of the methodology feasible. For example, the sight 

distance equation in the Green Book does not address sight distance on spirals. The 3-D B-

spline surface approach allows for the calculation of the sight distance at any point 

regardless of the type of the curve. In this manner, the 3-D representation allows for the 

development of universal equations and algorithms that could be used for any type of 

vertical and horizontal alignment components. Moreover, since the 3-D nature of the road 

surface is incorporated in this methodology, there is no need of a separate consideration of 

the horizontal alignment, the vertical alignment and the cross-section design in order to 

calculate the geometric parameters; an approach necessary in the current conventional 

models. Finally, the geometric calculations are anticipated to be more reliable since they 

apply to a 3-D surface, the drainage paths are modeled as geodesic curves, and the 

calculations can be applied to any type of segment with no restrictions whatsoever.  

 

The fact that the 3DDRS methodology utilizes the concept of geodesic curves, which can 

only be defined in 3-D surfaces, as it is introduced in Einstein’s theory of general relativity 

makes this research highly unique and pioneering in the field of highway design. In 

addition, the introduction of the idea of “surface patches”, an idea which will also be 

implemented in this dissertation as discussed later in this chapter, has already been 
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successfully applied in Amiridis and Psarianos (2015b) in order to assess in the 

hydroplaning speed calculations. The computational part of this approach is attained by 

expressing the functions in code through the programming language offered by the 

software Mathematica (Wolfram Research 2018), whereas the whole process is 

demonstrated as a case study. The same 3-D modeling approach was also utilized in 

Amiridis and Psarianos (2016) that allowed the calculation of the available sight distance 

of a roadway directly in 3-D space and in a fully automated and accurate manner. The 

presented methodology overcomes the conventional 2-D approach of studying the actual 

3-D roadway configuration separately and sequentially in its horizontal and vertical 

alignments. The road surface is simulated as a 3-D B-spline surface with continuous side 

barriers whose road centerline has been in turn, modeled as a 3-D B-spline curve. Through 

this approach, the road centerline as well as the right and left edge lines which play a crucial 

role in the sight distance calculation are mathematically defined both geometrically and 

analytically through explicit interpolation equations. The sight distance calculation can be 

made at each point of the road surface because of the integrated information existing in the 

model through its 3-D character. These calculations are theoretically more reliable, since 

they are applied on a realistically modeled 3-D roadway surface. It is worth mentioning 

that this methodology can be applied on existing roadways as well as during the design 

process by modifying the pseudo-geodesic and/or pseudo-normal curvature of the roadway 

in order to obtain the desired available 3-D sight distance. Finally, the introduction of the 

idea of the Point-In-Polygon (PIP) algorithm, an idea which will also be implemented in 

this dissertation as discussed in this section in order to link the crashes to their respective 

locations, has already been successfully applied in Amiridis and Psarianos (2016) in order 

to assess in the 3-D sight distance calculations. A significant extension of this work is found 

at Amiridis et al. (2016) in which a generic mathematical methodology was developed in 

order to account the effect of the cross slopes, i.e., cuts and fills, when calculating the 3-D 

available sight distance. 

 

3.2 General Approach 

The first step in the process is to obtain the XYZ coordinates of the roadway centerline and 

right and left edge lines. In fact, it is relatively easy and straightforward to model a roadway 
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surface nowadays in an accurate manner with all the available technology such as laser 

scanners, Light Detection and Ranging (LiDAR) technology, and Unmanned Aerial 

Vehicles (UAV). The second step in this process will be the modeling of the road surface 

as a 3-D mathematical surface, i.e., 3-D B-spline surface, through an interpolation utilizing 

the XYZ coordinates of the roadway centerline and respective edge lines. An interpolation 

surface, just as an interpolation curve, is simply a surface that is forced to pass through 

specific predefined points, i.e., interpolation points. There are a number of ways, e.g. 

polynomials, splines etc., in which the interpolation points can be connected with each 

other. Splines are piecewise polynomials that have significant properties in the points of 

intersection; for example, the first and second derivatives are equal. The interpolation 

method that will be utilized in this research is indeed spline interpolation and more 

specifically B-spline cubic interpolation because of its robust properties. A more detailed 

discussion regarding B-splines, their properties, and the reason for selecting this specific 

class of splines is included later in this chapter.  

 

The second step defines the points that will function as interpolation points and these 

correspond to points on the road centerline and the respective points on the right and left 

edge lines of the roadway surface for each predefined cross section. At this stage, the road 

surface will be accurately modeled as a 3-D B-spline surface through an interpolation 

process which will be applied in the Mathematica platform (Wolfram Research 2018).  This 

3-D B-spline roadway surface will be further divided into “3-D surface patches”, which 

are smaller sections of the roadway surface and which be eventually used as the basis of 

the statistical analysis.  In differential geometry, a surface patch is simply a portion of a 

surface. In this research, various lengths of 3-D surface patches will be examined in order 

to determine the most appropriate patch length for crash prediction.  The 3-D patches that 

will be created are essentially 3-D quadrilateral surfaces whose two opposite sides are the 

left and right roadway edge lines and whose two other opposite sides, which are 

perpendicular to former left and right edge line pair, correspond to two cross sections of 

the roadway surface whose distance is exactly the constant length of the patch under study. 

Once the 3-D surface patches are created, crashes can be linked to each patch according to 
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the coordinates of each crash and the PIP computational geometry algorithm, as mentioned 

above. 

 

The third step involves the collection of the crashes occurred along the roadway to be 

studied. For this thesis, a 14-year period was utilized consisting of data from 2004 to 2017.  

Depending on the length of the period, one needs to ensure that there were no interventions 

or changes along the roadway during the study period to confirm that the roadway 

geometry remained unchanged throughout the study period. The crash data for the state of 

Kentucky can be easily downloaded from the website of the Kentucky State Police 

(Kentucky State Police n.d), which also has very useful filters to personalize the search. 

Here, the geographic link of the crashes with the specific road segments will be conducted 

with the software ArcGIS (ESRI 2017), which is a GIS (Geographic Information System) 

platform. 

 

The fourth step is to define the Annual Average Daily Traffic (AADT) for the roadway for 

each year, since the AADT will be incorporated in the regression models as an explanatory 

variable. The AADT should essentially be viewed as an exposure metric since changes in 

AADT could have an impact on crashes. The inclusion of the AADT increases the 

predictive power of the models and agrees with current safety prediction practices, i.e., 

HSM. The AADT data were retrieved from the website of the Kentucky Transportation 

Cabinet (KYTC n.d.). 

 

The fifth step involves the statistical analysis and evaluation of the potential to predict 

crashes utilizing the metrics from the 3-D models developed. The explanatory variables 

must be initially defined. This research is based on the hypothesis that the differential 

element that will have the most crucial effect on roadway safety will be a 3-D geometric 

metric that is called Gaussian curvature. Therefore, the statistical model to be developed 

will be, at least initially, based on the Gaussian curvature itself, which is considered the 

cornerstone of the study of surfaces. It is so powerful that the field of Geometry as a whole, 

either Euclidean or non-Euclidean spaces, can be classified according to the sign of the 

Gaussian curvature (Gray 1998; Lipschutz 1981). For example, the properties of Euclidean 
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Geometry hold true only in spaces where the Gaussian curvature is zero; the properties of 

Spherical/Elliptic Geometry govern spaces with positive Gaussian curvature; and the 

properties of Hyperbolic Geometry apply to spaces with negative Gaussian curvature. This 

observation reinforces the need of the inclusion of the Gaussian curvature in highway 

geometric design and, more generally, integrate a holistic differential geometry approach 

in highway design. 

 

In addition to the Gaussian curvature, there are several other differential elements such as 

3-D curvature, torsion, geodesic curvature, normal curvature, and mean curvature that 

contain rich geometric information and whose potential of functioning as explanatory 

variables could be examined. All of these metrics can be easily calculated because of the 

3-D realization of the roadway surface. There are automated statistical methods such as 

“forward”, “backward”, and “stepwise” selection procedures that can assist in this selection 

procedure according to a specific criterion, e.g. minimization of p-value, AIC (Akaike’s 

Information Criterion), etc. In this case, the AIC will most likely be used because it also 

indicates the most parsimonious model, meaning that the models can be compared in an 

objective manner. However, these automated procedures will not be applied blindly; they 

will only be applied in order to identify which variables seem to be the critical ones in order 

to prioritize the search of the best model, a procedure that will mainly be conducted 

manually through a trial and error procedure. Therefore, the final model is intended to 

include the most appropriate variables by entering and removing variables in a systematic 

way until it can be reasonably argued that the final model is likely to be best for the given 

data. As far as the overall statistical model is concerned, the response variable will be the 

number of crashes and therefore the Negative Binomial Regression is preliminary 

considered the most appropriate type of regression analysis to be utilized.  

 

Once the suggested statistical model is finalized, the final step is to compare the findings 

with current crash prediction practices and more specifically with the Interactive Highway 

Safety Design Model (IHSDM) developed by the Federal Highway Administration 

(IHSDM n.d.). The IHSDM can provide a crash prediction for roadway segments based on 

the current HSM procedures and thus could be used to evaluate and directly compare the 
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predictive power of the proposed model with the HSM. This comparison will actually 

evaluate the findings of this research and indicate whether future research would be 

pertinent on this specific subject. The purpose of this thesis is to try to enhance the 

geometric features that come into play in the HSM and not to question it.  At this point it 

should be mentioned that in contrast to the ISHDM model, which requires the data in the 

conventional 2-D approach, i.e., horizontal and vertical alignment, a procedure very 

tedious and subjective in nature, the proposed methodology derives all its required 

geometric data in an absolutely automated and objective manner; this fact by itself 

demonstrates the power of this methodology and the 3-D approach in general, but this will 

be further discussed in more detail in the following sections. 

 

After the regression models have been finalized, the predictive power of the models will 

be examined. To achieve this, a year of the crashes will be used as the training data set. 

There are 14 years of data in total and therefore this implies that 14 3-D models will be 

developed each using a 13-year database and the 14th year will be used for the evaluation 

of the process in each case. A final report will summarize the findings and will actually 

serve as the basic evaluation criterion regarding the level of contribution of the dissertation 

to current research results and practices. The final task of the dissertation will focus on the 

evaluation of the proposed approach by comparing the crash predictions produced from the 

suggested model with the ones produced from the IHSDM. In addition, the benefit in crash 

cost prediction will also be calculated in monetary values. . In both cases, i.e., suggested 

model and IHSDM, the exact same historical crashes are integrated in the prediction 

process. 

 

3.3 Geometric Data 

The data needs for completing this research include roadway segments and their associated 

crashes.  For the roadway segments, the required data are in fact available and have been 

acquired from the KYTC. At this point, data from three road segments were utilized: KY 

420, KY 152, and US 68. This data is available through “mobile mapping technology” 

through a system that was placed on a vehicle for roadway-based collection. The data that 

are utilized essentially consist of the GPS data of the vehicle, i.e. latitude and longitude 
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coordinates and altitude, and the superelevation rate data through an inertial navigation 

system. The GPS data are collected every 5 ft along the roadway path trajectory. Also, it is 

worth mentioning that this particular technology is vastly used nowadays for a number of 

applications such as LiDAR point cloud collection and total asset management solution 

purposes, e.g. bridge and utility record registration. 

  

The acquired data for each segment will have to be manipulated in order to allow for the 

development of the 3-D models. The Cartesian coordinates, i.e., X, Y, and Z, of the 

centerline and right and left edge lines must be calculated. The coordinates of the centerline 

are in the form of geographic coordinates, i.e., latitude and longitude and therefore an 

appropriate geographic transformation must be applied, which is easily conducted in 

ArcGIS in an automatic manner. As far as the Cartesian coordinates of the right and left 

edge lines are concerned, they will be implicitly calculated from the given data: the 

altitudes of the roadway centerline, as well as the lane width and superelevation rate are 

calculated along all measured. Therefore, the Cartesian coordinates of the right and left 

edge lines can be ultimately calculated through a 3-D geometric transformation based on 

the Cartesian coordinates of the centerline, which have been calculated in the previous step 

and will function as reference points. 

 

3.4 Crash Data 

The crash data that the Kentucky State Police collects, offers numerous categories and 

filters based on which one can customize the search. It is intended not only to obtain crashes 

according to categories that are considered critical in addressing the geometric effects on 

crash occurrence, but also remove potential bias in crash occurrence such as driving under 

the influence of alcohol, fatigue, distraction from cell phone etc. In addition, the filters 

intend to separate conditions that although are not directly related to the roadway geometry, 

e.g. clear weather vs. rain, passenger car vs truck etc., most likely affect the probability of 

crash.  

 

However, in this dissertation, all crashes will be considered. This decision is based on the 

fact that the sample size is limited and that the purpose of the statistical model is to prove 
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the correlation between crashes and 3-D geometric metrics and not to suggest an absolutely 

accurate predictive model. This means that if the model proves the statement above for 

these datasets, then one could anticipate that accuracy will be improved even more with a 

more refined crash dataset. Moreover, the HSM software predicts total crashes which 

means that all categories are included; therefore, the comparison with the results from the 

HSM software can be conducted in a much more straightforward, pertinent and fair 

manner. 

 

3.5 AADT Data 

One variable that is essential to crash frequency is the AADT, which denotes the average 

number of vehicles along a roadway segment per day. It is absolutely pertinent to include 

the AADT as an explanatory variable in the statistical models to be developed since it 

functions as an exposure factor in crash occurrence and it is also included in the HSM 

models. Data is collected from traffic counters that the state places on a periodic basis to 

estimate AADT. These data can then be extrapolated to determine the average AADT to 

be used in the crash modeling.   

 

3.6 3-D B-Spline Surfaces 

 There is more than one way to mathematically define a surface; however, here all curves 

and surfaces are defined according to the “parametric-vector” approach, which is based on 

vector theory. The essential advantage of the “parametric-vector” approach is simply that 

it defines curves and surfaces via a vector representation in a rather flexible way. Other 

approaches require equations to be solved at each point that is intended to be modeled, 

which drastically reduces the computational speed, and in many cases the system of 

equations may be unsolvable especially when these equations are in an implicit form (Gray 

1998). These equations might even be differential in nature making the production of 

results practically unfeasible.  Moreover, the parameters of the vector representation form 

usually have a physical meaning and not simply some “dry” mathematical variables. For 

example, the parameters of the parametric-vector form of the sphere or an ellipsoid are 

their longitude and latitude angles. The theory behind this approach is not essential in order 
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to understand the procedure, but what is important to understand is the geometric 

interpretation of the theory as it applies in modeling a roadway surface. 

 

The “parametric-vector” equation of a curve, either 2-D or 3-D, is defined by one variable: 

t. For example, the “parametric-vector” equation of the circular helix, a random 3-D curve, 

of radius a and slant b is expressed in Equation 2. Equivalently, the “parametric-vector” 

equation of a surface is expressed by two variables, e.g. u and v, defining a whole family 

of curves. The curves defined by the u variable family are called u-parametric curves, 

whereas the curves defined by the v variable family are called v-parametric curves. For 

example, the “parametric-vector” equation of the circular helicoid, a random 3-D surface, 

of radius a and slant b is expressed in Equation 3. Equations 2 and 3 are examples of the 

approach to be used and are provided to lay the groundwork for a more thorough 

understanding of the methodology to be used. 

 

 ℎ⃗ (𝑡) = (𝑎 𝑐𝑜𝑠𝑡, 𝑎 𝑠𝑖𝑛𝑡, 𝑏 𝑡) (2) 

 

 
ℎ⃗ (𝑢, 𝑣)

= (𝑎 𝑣 𝑐𝑜𝑠𝑢, 𝑎 𝑣 𝑠𝑖𝑛𝑢, 𝑏 𝑡) 
(3) 

 

where 𝑎 and 𝑏 are constants.  

 

These equations are translated into road surface terms in the following way. The 3-D B-

spline surface that has been created is indeed accurately defined by two variables, i.e., u 

and v, since it is a 3-D surface. In the case of the roadway surface, one should imagine the 

u-parametric curves as the 3-D road centerline and all other curves parallel to it and imagine 

the v-parametric curves as lines perpendicular to the centerline. In other words, the u-

parametric curves are the centerline, the right edge line, the left edge line, and all the other 

parallel curves between them, whereas the v-parametric curves are in fact the cross sections 

of the road surface.  
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3.6.1 Road Surface 

To enable the modeling of the surface of the road as an integrated mathematical surface, 

an interpolation B-spline surface must be applied. The required interpolation points are the 

roadway centerline and right and left edge lines of the roadway surface.  

 

To carry out this task, the coordinates corresponding to the left edge line are calculated 

initially. Afterwards, the coordinates that are calculated are those that correspond to the u-

parametric curve translated to the right by a fixed number in relation to the left edge line. 

This process is repeated until the u parametric curve corresponds to the right edge line. The 

step of the discretization of the u-parametric curves is advisable to be applied in such a way 

in order for the u parametric curves to pass successively from the left edge line, the roadway 

centerline and the right edge line. Eventually, these 3-D coordinates correspond to the 

control points of the 3-D B-spline surface. In this way, the 3-D XYZ coordinates of each 

point of the surface of the road can be calculated as a function of the curvilinear coordinates 

u and v. 

 

The superelevation of the roadway is calculated through a geometric transformation 

utilizing the geometric data that are available from the data collection process. Once the 

superelevation function of the road is calculated, the road surface can easily be modeled 

through Mathematica (Wolfram Research 2018). Specifically, the road surface is rotated 

around the road centerline by an angle which essentially corresponds to the superelevation 

rate at each point along the roadway centerline. This process for the 3-D B-spline surface 

creation it has been previously validated both visually and numerically (Amiridis and 

Psarianos 2015a). 

 

In order for the methodology to be usable and therefore effective and applicable it must be 

implemented in a computational system. All the commands (e.g. mathematical functions, 

geometric restrictions, and data) should be written in a programming language so that the 

methodology is applied in a fully automated manner. This has been achieved in this case 

through the software Mathematica in which given the XYZ data of the roadway centerline 
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and right and left edge lines at a minimum, the required 3-D surface can be automatically 

created.  

 

3.6.2 3D Surface Patches and Crash Allocation 

After the 3-D B-spline is defined, it must be divided into sub-surfaces which, in line with 

differential geometry terminology, are called surface “patches”. Patches are simply 

curvilinear polygons on a 3-D surface, but in this case these curvilinear polygons are more 

explicitly and specifically defined as curvilinear rectangles because the u- and v-parametric 

curves will be defined in such a way that they will be perpendicular to each other. The 

division of the road surface into patches has a basic advantage in terms of creating unique 

small areas of the roadway surface where each crash could be allocated and thus allow for 

the correlation of the parameters in the model estimation. In addition, the areas where zero 

crashes have occurred will also be analyzed, i.e., the crash frequency will not be inflated. 

The latter rationale is in fact the basic logic that spatial statistics are based upon. As a final 

note, the number of patches will directly define the sample size of the dataset through a 

one-to-one relationship. An example of surface patches is presented in Figure 3.1. 

 

 
Figure 3.1: Example of 3-D Surface Patches on a Roadway Segment 
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The 3-D geometric metrics for each patch will be calculated as the arithmetic average of 

the respective 3-D metrics of nine points: the four vertices which define each particular 

patch, the four median points between the four patch vertices, and the point in the center 

of the patch. For example, the Gaussian curvature of a patch will be calculated as the 

average Gaussian curvatures corresponding to these points. However, for each crash in 

addition to considering the Gaussian curvature, or any other 3-D metric that will be 

examined, of the specific patch where the crash occurred, the values of the surrounding 

patches will also be considered. 

 

When a crash occurs, it can be reasonably argued that not only does the specific geographic 

point where the crash occurred matter, but the preceding and following geometry of the 

roadway could also have an effect. It would be therefore somewhat simplistic not to 

consider the geometric characteristics of the roadway before and after the crash occurrence 

location. For this reason, the 3-D metrics of the surrounding patches will also be considered 

as contributing in the final calculation of the 3-D metrics of the each patch with associated 

weights. The patch where the crash occurred will be called the “principal patch”. A 

question that arises is how the 3-D metrics will be finally calculated. The weight allocation 

for the final averaged 3-D metrics will be made as follows: the principal patch will have a 

weight of 2, whereas the patches exactly before and after the “principal patch” will have a 

weight of 1. Therefore, the 3-D geometric metrics corresponding to each patch will be 

calculated based on a weighted average of the principal and surrounding, i.e., preceding 

and following, patches. 

 

At this point, all patches have a value for each 3-D metric that will be examined in the 

statistical analysis, i.e. Gaussian curvature, mean curvature, 3-D curvature, torsion, 

geodesic curvature, normal curvature, etc. The next step will allocate the crashes to their 

corresponding patches. Initially, the coordinates of the crashes, which are downloaded 

from the Kentucky State Police website in the form of geographic coordinates, are 

converted to Cartesian coordinates. The problem of checking whether a point lies inside a 

polygon is a classical problem in the field of computational geometry and is called the 

Point-In-Polygon (PIP) problem. The solution to this is achieved with the use of the Jordan 
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Curve Theorem. The algorithm has been developed and applied in Mathematica in previous 

research (Amiridis and Psarianos 2016) and it is readily available. By applying the PIP 

algorithm, all crashes will be linked to their respective patch and after the crashes have 

been allocated accordingly, the sum of crashes for each patch will be calculated. The sum 

of crashes for each patch will finally be the response variable in the statistical model 

development.  

 

3.7 Model Development 

The model development lies in the core of this research since its objective is to suggest 

robust statistical models that can predict the number of crashes in a given roadway segment 

with specific geometric characteristics using 3-D model metrics. The response variable will 

be the total number of crashes in each patch.  The patch length will affect the sample size 

for the analysis and a thorough analysis will be undertaken to determine the optimum 

length for prediction. A count regression model will be developed since the response 

variable, i.e. crashes, is such.  As noted in the previous chapter, the most common count 

models used in road safety research are the Poisson and Negative Binomial regression 

models. In crash data there is, almost always, an issue of over-dispersion: the variance is 

statistically larger than the mean. The issue of over-dispersion often appears when there is 

a large number of zeros in the dataset, a case that is prevalent when dealing with crash data. 

The Negative Binomial distribution can account the over-dispersion in a dataset since it 

has an additional parameter, i.e., dispersion parameter, which is used to model the variance. 

The Negative Binomial regression can be viewed as an alternative strategy of modeling 

over-dispersed data that follow a Poisson distribution. The latter observation means that a 

very important underlying assumption regarding the errors, produced from the Negative 

Binomial regression, is that they must follow the Poisson distribution. Alternatively, the 

conditional distribution of the response variable must follow the Poisson distribution, but 

this assumption is practically impossible to be tested since the probability distributions of 

the explanatory variables are unknown. In this case, the error/residual approach is the most 

pertinent method, since the effect of the explanatory variables is “filtered out”, in order to 

assess one of the most essential underlying assumptions of the Negative Binomial 

Regression model. Although there are a number of other approaches to deal with over-
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dispersed data, such as the quasi Poisson and Gamma regression models, the Negative 

Binomial regression will most likely be the final type of regression to be used since it is 

the most commonly used and accepted model for crash data analysis in the road safety 

research community as previously noted. In fact, the assessment of the underlying 

assumptions of the Negative Binomial Regression model, which is an essential task in any 

statistical analysis, has been extensively studied in prior research aiming to predict the 

number of crashes at signalized intersections with permitted, protected, and 

permitted/protected left-turn phasing schemes (Amiridis 2016; Amiridis et al. 2017a).   

 

There are several 3-D metrics that could be tested as explanatory variables such as: 

1. Gaussian curvature 

2. Mean curvature 

3. Length of geodesic curves 

4. Metrics of the First Fundamental Form 

5. Metrics of the Second Fundamental Form 

6. 3-D curvature 

7. Torsion 

8. Geodesic curvature 

9. Normal curvature 

10. Pseudo-geodesic curvature 

11. Pseudo-normal curvature 

12. Darboux vector metric, i.e., vector of angular velocity 

 

These variables are well known metrics and thoroughly described in any typical differential 

geometry textbook. However, the interesting aspect here is to emphasize their equivalence 

to roadway geometric elements such as the radius, grade, superelevation etc.  Two 

examples of the analogy/equivalence between 2-D and 3-D metrics have already been 

discussed above regarding the 2-D analogy of pseudo-geodesic and pseudo-normal 

curvature (Amiridis and Psarianos 2015a). In addition, some of these 3-D metrics have the 

potential to allow for incorporating more than one geometric traditional element and this 

will be explored and presented in this research. For example, the Gaussian curvature can 
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capture the three-way interaction of the horizontal, vertical alignment, and the 

superelevation in one single value. 

 

One of the goals of this research is to develop models that are surface-based, i.e., not only 

curve -based. The analysis here is not intended to simply analyze 3-D metrics, but rather 

to analyze 3-D surface oriented metrics, which can be calculated only on a 3-D surface, 

and then be used as crash predictors. In this way, all geometric combinations that may be 

produced by the interaction among the horizontal alignment, vertical alignment, and cross 

slopes including superelevation rate, will be implicitly expressed by single variables. 

Considering this concept, the potential 3-D surface variables that could be analyzed are the 

following: 

 

1. Gaussian curvature 

2. Mean curvature 

3. Metrics of the First Fundamental Form 

4. Metrics of the Second Fundamental Form 

5. Geodesic curvature 

6. Normal curvature 

 

It is noted that the geodesic and normal curvatures can resemble, in a not strictly accurate 

but adequate enough manner, the horizontal and vertical curvatures, respectively. 

However, the intent with this research is to move away from anything that may be linked 

to the 2-D conventional approach and investigate metrics in which more rich geometric 

information is hidden. Therefore, the last two variables will not be considered, since they 

are essentially 2-D variables that are calculated planes that are tangent on 3-D surfaces. In 

addition, the Gaussian and Mean Curvatures are explicitly defined by the metrics of the 

First and Second Fundamental Forms where the effect of the metrics of the First and 

Second Fundamental Forms is “nested” into the Gaussian and Mean Curvature (Lipschutz 

1981). Therefore, the potential explanatory variables that will be used are the Gaussian 

Curvature and the Mean Curvature. An overview, i.e., definition and properties, of the 
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Gaussian and Mean curvature is briefly presented, without the inclusion of strict 

mathematical proofs, in Appendix A.  

 

The entire analysis is “patch-based” and therefore a crucial task is the determination of the 

patch length. In order to address this question, six patch lengths will be tested: 1,500 ft, 

1,000 ft, 400ft, 200ft, 100 ft, and 50 ft. Each statistical analysis will be conducted six times 

and the criterion according to which the “optimal” patch length will be selected is the 

predictive power of each model. The closer the predicted crashes are to the actual/observed 

crashes, the higher the predictive power of the model The comparison between predicted 

and observed crashes is achieved by developing models using 13 years of the crash data 

and then comparing their prediction to the crashes of  the 14th remainder year. However, 

the final proposed model and the final explanatory variables that will enter the model will 

be based on all 14 years. As a final note, the scale of the covariates, i.e., whether the 

explanatory variable should be raised to a power or an exponential transformation would 

be more pertinent, will be determined according to their respective “grouped” frequency 

tables. The rational of this approach is discussed in the next chapter in more detail.  

 

3.8 Comparison to Current Safety Estimations  

The final task of the dissertation is to compare the suggested prediction models with the 

crash prediction results that would be produced from the existing models presented in the 

HSM (AASHTO 2010). In fact, the results will be compared to the predicted crashes from 

the IHSDM software, which can also utilize the historical crashes that are available from 

2004-2017. The comparison will be conducted with training data: for each roadway, one 

year at a time will be kept outside of the analysis and then the crashes for that year, whose 

actual/observed crashes are known, will be predicted based on the data of the remaining 

years. For example, for a given roadway segment, in order to evaluate the predictive 

accuracy for 2017, the crashes of this year will be removed from the model development 

that will utilize only the crashes in the 2004-2016 period. Since there are seven roadway 

segments and 14 years of available crash data, 98 prediction evaluations will be essentially 

developed. Finally, this procedure allows for comparing the predictive power and accuracy 

of the proposed modelling approach with the current practices as described in the HSM.  
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3.9 Approach Summary 

This section summarizes the basic methodology and required steps to be followed 

throughout this research process. Initially, each roadway will be modeled as a 3-D B-spline 

surface and it will be divided into patches accordingly representing a smaller roadway 

segment. After the patches have been determined, all corresponding crashes will be 

selected based on the relevant filters to be used and downloaded from the Kentucky State 

Police Collision Wizard. Each crash will be allocated to its appropriate patch based on its 

geographic coordinates. Next, the model development will take place aiming to develop 

predictive negative binomial crash models in which the number of crashes will be the 

response variable and 3-D differential geometry metrics will function as the explanatory 

variables.  Once statistical models have been developed, their results will be statistically 

compared, through real crash data, to those derived from the existing guidelines in the HSM 

in order to evaluate the reliability, usefulness, and predictive power of the suggested 

statistical models in this research. 
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4 CRASH PREDICTION MODEL 

 

This chapter presents the development of the models for crash predictions utilizing the 3-

D B-spline roadway surface. To achieve this, three roadway segments are utilized. The 

following sections present the data used and the analysis undertaken to develop the 3-D 

SPF models.  

   

4.1 Model Data 

4.1.1 Geometric Data 

The ArcGIS platform will be used to display the three roadway segments used in order to 

determine the rural sections for the analysis. The urban (built-up) sections of the roadways 

selected were visually identified and excluded from the analysis. Specifically, an additional 

length of 400 ft was excluded from the beginning and end of each urban section in order to 

filter out the potential “urban effect”. Finally, a 400 ft radius was used to exclude major 

intersections to obtain only continuous roadway segments. The roadway segments are also 

shown in Google Earth as .kmz files in Appendix B. 

 

An example of the process undertaken to develop the sections for study is shown here. 

Figure 4.1, shows the data for KY 420 indicating the rural and urban sections of the 

roadway. The urban and rural sections of all roadway segments under study are shown in 

Appendix C. Each of the roadway segments considered was evaluated to determine 

whether there have been any geometric alterations during the study period. The review 

identified that there were no changes in the alignments over the 2004-2017 period. This 

allows for an accurate comparison throughout the entire period of the study. If geometric 

changes were present, then separate 3-D roadway models would have to be developed in 

order to capture these changes. 
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Figure 4.1: Example of Rural/Urban Distinction (KY 420) 

 

The next step involved the development of the 3-D B-spline centerline of the first section 

(Figure 4.2) and the corresponding 3-D B-spline surface of the roadway segment (Figure 

4.3) while considering the superelevation rate of the curves. This process resulted in seven 

separate roadway segments that were geometrically modeled and statistically analyzed. 

The 3-D representations of the roadway centerlines and surfaces, as modeled in the 

Mathematica platform, for all seven segments are also shown in Appendix C. The travel 

lane width is assumed to be 11 ft according to multiple measurements along the roadway 

segments, whereas the centerline lengths of these sections are shown in Table 4.1. 
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Figure 4.2: 3-D B-Spline Roadway Centerline (KY420-1) 

 

Figure 4.3: 3-D B-Spline Roadway Surface (KY420-1) 

 

 

Table 4.1: Roadway Segment Lengths 

Roadway Roadway Segment Length (miles) 

KY 420 
KY420-1 1.4119 

KY420-2 0.8783 

KY 152 

KY152-1 8.6922 

KY152-2 2.2392 

KY152-3 3.3862 

US 68 
US68-1 5.7450 

US68-2 11.5097 

Total  33.8625 
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4.1.2 Crash Data 

The crash data for each section for the 2004 to 2017 period were retrieved from the 

Kentucky State Police Wizard.  The crashes were plotted with ArcGIS and an example is 

shown in Figure 4.4.  

 

 
Figure 4.4: Example of Crash Data Plots (KY 420) 

 

The crash plots for all the other segments are presented in Appendix D.  Table 4.2 presents 

a summary of the crash data by type and other characteristics 
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Table 4.2: Crash Summary (Percentages) 
 Roadway Segment 

 KY420-1 KY420-2 KY152-1 KY152-2 KY152-3 US68-1 US68-2 

 Crash Type 

Single 

Vehicle 
73 60 76 61 77 80 75 

Rear End 10 8 5 18 2 3 4 

Angle 6 16 4 5 2 6 5 

Sideswipe 

Opp. Dir. 
6 3 10 12 11 6 8 

Head On 4 0 1 0 4 2 4 

Sideswipe 

Same Dir. 
1 11 3 4 2 2 2 

Other 0 2 1 0 2 1 2 

 Number of Motor Vehicles 

Single 73 60 76 56 77 80 74 

Two 26 35 23 39 22 20 24 

Multi 1 5 1 5 1 0 2 

 Crash Severity 

PDO 77.0 83.8 74.5 68.2 67.0 74.7 75.7 

Injury 22.7 13.5 22.2 31.8 30.9 24.2 24.0 

Fatal 0.3 2.7 3.3 0.0 2.1 1.1 0.3 

 Roadway Alignment 

Curve & 

Grade 
46 11 32 23 31 50 45 

Curve & 

Hill Crest 
6 0 4 14 6 5 5 

Curve & 

Level 
35 14 20 5 33 26 20 

Straight & 

Grade 
10 5 20 25 14 8 10 

Straight & 

Hill Crest 
1 0 6 25 3 0 3 

Straight & 

Level 
2 70 19 8 13 11 17 

 

The data in Table 4.2 indicate that the majority of crashes are “Single Vehicle”. This fact 

is advantageous for the intended analysis and overall research because this specific crash 

type is mostly related to the geometric characteristics of a roadway. Table 4.2 also shows 

that approximately 85 percent of the crashes were related to some combination of the 

horizontal and vertical alignment. This verifies once again the need, as emphasized also in 

previous research, of investigating the effects of horizontal and vertical coordination in a 

more systematic manner to address safety concerns.  This further supports the need for 

considering 3-D solutions and the value of this research proposal. Finally, in terms of 

severity level, it is worth mentioning that from the total crashes that occurred, 75 percent 



 

43 

 

are property damage only, 24 percent resulted in some kind of injury, whereas only a small 

percentage (1 percent) resulted in fatalities. 

4.1.3 AADT Data Needs 

The AADT for each section was obtained from the KYTC. Initially, the corresponding 

AADT stations for each roadway had to be identified through the interactive map provided 

by KYTC and the starting longitude and latitude coordinates in order to retrieve the 

corresponding AADT values. The AADT values were linked to each segment separately; 

an example of the AADT data is shown in Table 4.3 for a specific station for KY 420. It 

should be noted that the AADT was not available for all years, i.e. 2004-2017 and that the 

missing data were estimated by applying piecewise polynomial cubic spline interpolations 

between known values. The AADT data that were retrieved from all associated stations 

and for all roadway segments are shown in Appendix E. 

 

Table 4.3: AADT Data for Station ID# 037553; KY 420-1 

Year AADT 

2004 5051 

2005 5220 

2006 5262 

2007 5214 

2008 5110 

2009 4988 

2010 4882 

2011 4830 

2012 4962 

2013 5147 

2014 5351 

2015 5537 

2016 5671 

2017 5716 

Note: Bold numbers are actual AADT counts 

 

In Table 4.4, the AADT stations for each roadway segment are shown. 
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Table 4.4: Corresponding AADT Stations to Each Roadway Segment 

Roadway Segment Station ID Route Begin MP End MP 

KY 420 
1 037553 037_KY_0420_000 0.6 2.145 

2 037A20 037_KY_0420_000 2.145 3.753 

KY 152 

1 

084507 084_KY_0152_000 0 0.232 

084507 084_KY_0152_000 0.232 1.961 

084570 084_KY_0152_000 1.961 6.044 

084569 084_KY_0152_000 6.044 8.605 

2 084A45 084_KY_0152_000 10.976 14.419 

3 084252 084_KY_0152_000 14.419 17.116 

US 68 

1 
084505 084_US_0068_000 0 3.927 

084556 084_US_0068_000 3.927 5.517 

2 

084A50 084_US_0068_000 8.391 10.214 

084256 084_US_0068_000 10.214 14.452 

084001 084_US_0068_000 14.452 20.058 

 

 

As it can be observed from Table 4.4, multiple AADT stations are associated to each 

roadway segment. The way in which the AADT values were linked to each patch was based 

on the respective Begin Mile Point (BMP) and End Mile Point (EMP) of each AADT 

station. For example, two AADT stations are associated with roadway KY 420, i.e., 037553 

and 037A20. The BMP and EMP of station 037553 are 0.6 and 2.145 respectively. 

Therefore, the AADT values from station 037553 correspond to the beginning of the 

roadway KY 420 until the length of 8,158 ft (2.145-0.6). Now, by definition, the parameter 

t of any B-spline curve “runs” from 0 to 1. Therefore, in this case, the “breakpoint” of 8,158 

ft is converted in terms of the parameter t, e.g. 0.42. In addition, the beginning and end 

points of all the patches of the roadway are known in terms of the parameter t. Finally, the 

midpoint of each patch, i.e., average of the beginning and end t variable, is compared to 

the breakpoint of each AADT station, e.g. 0.42. If the midpoint of the patch is less than 

0.42 then the AADT value of the patch is the one retrieved from Sta 037553; if the midpoint 

of the patch is greater than 0.42 then the AADT value of the patch is the one retrieved from 

Sta 037A20. This rationale is applied for all patches and AADT stations and this logic 

describes the way in which all patches are linked to a specific AADT value for each year. 
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4.2 Statistical Analysis 

This section describes the way in which the final crash prediction models are developed. 

As noted above, six patch lengths, i.e. 1,500 ft, 1,000 ft, 400 ft, 200 ft, 100 ft, and 50 ft 

were considered. The length of the patch length denoted the way in which the 3-D roadway 

surface is spatially divided. However, no matter the patch length, in each patch there are 

four explanatory variables linked to it, namely: Number of crashes that occurred, AADT 

value, Gaussian Curvature (GC), and Mean Curvature (MC). In addition to the initial 

values of these variables, transformations were also considered, e.g. AADT2, GC2 MC3 in 

order to identify the optimal scale and combination of these variables. All of these 

transformations and the justification of the optimal scale are presented in Appendix F. 

Moreover, statistical interactions of the explanatory variables, e.g. Gaussian*Mean, are 

also considered. Finally, it should be noted here that the statistical regression model that 

was utilized is the Negative Binomial Regression because over-dispersion is present in the 

data and because it was intended to keep the statistics rather simple in order to retain the 

focus of the thesis on the use of 3-D geometric explanatory variables in highway safety 

rather than the statistical methods utilized per se. After all, the typical regression model 

that is utilized for crash prediction modeling is indeed the Negative Binomial Regression. 

 

The analysis to be conducted will serve a dual purpose: 1) demonstrate the proof-of-

concept of the proposed 3-D approach; and 2) evaluate the predictive power of the model.  

These two objectives can be viewed as independent, i.e., failure in demonstrating predictive 

power of the model does not mean that the proof-of-concept is violated. For example, 3-D 

metrics may be proven to have a statistically significant effect in crash modeling, but the 

reason for potential failure in adequately predicting actual crashes may simply rest on the 

fact that more explanatory variables are required in the model. The proof-of-concept relies 

on the verification that the 3-D differential geometry metrics of Gaussian and Mean 

curvature are statistically significant crash predictors. This can be successfully 

demonstrated if it is proven that the coefficients of the metrics are indeed statistically 

significant. It should be also noted that depending on whether historical crashes are 

available, two strategies come into play in order to predict crashes in the most effective 

way.   
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4.2.1 Proof-of-Concept 

In order to provide the proof-of-concept in the most concrete way, all years, i.e. 2004-2017, 

and all seven roadways entered the same model which will be called “Integrated Model” 

(IM) to be distinguished from the models that will be developed for the second objective, 

i.e., prediction evaluation. The objective of this effort was to establish that it is meaningful 

to incorporate 3-D highway geometry in crash prediction models. Although the predictive 

power of the model was not evaluated at this point, this step was crucial because failure to 

address the statistical significance of the 3-D metrics in crash prediction, would yield any 

further discussion of prediction power evaluation meaningless. Moreover, the type of the 

final explanatory variables that will enter this model will function as the basis of the 

predictive power evaluation of the model. For example, if the variables, AADT, Gaussian2, 

and Mean3 are proven to be the finalists, then these exact variables would be considered in 

order to evaluate the predictive power of the model; a logic that holds true in most 

predictive models. For example, even for the variables than come into play in the SPFs in 

the HSM with a specific transformation, e.g., exp(AADT), does not mean that this 

particular transformation is the optimal in all cases; it simply means that this transformation 

is on average adequate.  

 

Although not explicitly stated, a part of the statistical analysis essentially touches the field 

of spatial statistics since the selection of an acceptable patch length is of utmost importance 

because it functions as the basis of all further (traditional) statistical analysis.  To proceed 

with this effort, a two-stage simultaneous testing was undertaken that would define the 

optimal patch length and model to be used. First, for each patch length considered, models 

with the variables of interest were developed and the most appropriate was selected in 

terms of statistical significance and the Akaike Information Criterion (AIC) evaluation 

criterion. Second, these models were then compared to identify the most appropriate patch 

for analysis and power of prediction evaluation. Since there are six patch lengths tested, 

six “final models” will eventually be compared to each other. 
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All of the combinations of the explanatory variables that were utilized until the final model 

was decided, for all patch length combinations, are presented in Appendix G. The criterion 

according to which the models were compared was the AIC; the lower the AIC, the more 

informationally rich the model is. The AIC also functions as an adjusted R-square in the 

sense that it penalizes the number of variables that enter the model. Furthermore, in order 

for a model to be further considered as a finalist for additional evaluation, all of the 

coefficients of the explanatory variables that enter the model must be statistically 

significant, i.e., p-value<0.05. The demand of p-value<0.05 is associated with the fact that 

a significance level of 5% is considered; in fact, each p-value, depending on the number of 

explanatory variables that enter the model, must be less than the predefined “familywise” 

p-value, which in this case is set to 0.05, according to the Bonferroni, or any other type, 

correction (Myers et al. 2010). Roughly speaking, this means that if two explanatory 

variables are considered then the p-value of the coefficient of each variable must be less 

than approximately 0.025 (= 1 − √0.95) assuming that the two explanatory variables are 

independent in order for the “overall p-value” to be less than 0.05. 

 

More generally, the Bonferroni correction, or any other type of correction, should be 

applied when explanatory variables are simultaneously inserted in a statistical model. More 

specifically, the significance level has been assumed to be 5 percent, i.e., there is a 95 

percent confidence that the true parameters belong in the constructed confidence interval. 

However, the significance level of 5% should not be applied to each coefficient, but to the 

model as a whole; therefore, in order for the significance level of the whole model to be 

kept at the 5 percent significance level, the p-value of each coefficient should be less than 

5 percent. The value of each p-value in order to achieve a “family-wise” error of 5 percent 

is imposed by the pertinent correction method used, e.g. Bonferroni, Tukey, and by the 

number of variables; the more variables, the stricter, i.e. less, the p-value must be. 

 

It should be noted here that the AADT, GC and MC are to be used as explanatory variables, 

i.e. main effects, in the statistical analysis through a multivariate regression analysis. 

However, even when multiple explanatory variables are intended to enter the model, the 

analysis should always begin by visualizing the explanatory variables vs. the dependent 
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variable. The Negative Binomial Regression, which is the regression type that will be 

applied here is a member of the family of Generalized Linear Models (GLMs). Each 

regression member of the GLMs is associated with a function that is called the “canonical 

link function”, which actually represents the optimal transformation that should be applied 

to the dependent variable in order to satisfy desirable statistical properties such as unbiased 

parameters (Hardin and Hilbe 2012).  In the case of the Poisson and Negative Binomial 

Regression, the aforementioned function is indeed the “log-link function”. If the 

logarithmic transformation is not applied to the dependent variable, then the so-called 

“identity link function” is applied, meaning that the dependent variable is simply the 

variable “Crashes”. Results will be produced even if the log-link function is not applied 

but the reliability of the results is weakened because the log-link function is the “canonical” 

link function for the Negative Binomial Regression. This is why the Poisson and Negative 

Binomial regression models are also often called log-linear models, meaning that the 

explanatory variables have a linear relationship with the logarithm of the dependent 

variable. Therefore, in this case the dependent variable will be LN(crashes). 

 

The typical visualization process in order to identify the optimal transformation of each 

explanatory variables is via scatterplots. The scatterplots for the explanatory variables 

AADT, GC, and MC are shown in Figures 4.7-4.9 respectively for the 100 ft patch.  Typical 

scatterplots are a great way to identify trends when the dependent variable is continuous, 

e.g. in the linear regression models. However, in this case the dependent variable, i.e. 

crashes, is a discrete positive variable; therefore, the creation of typical scatterplots does 

not produce valuable information. An example of a scatterplot when the dependent variable 

is discrete is shown in Figure 4.5; in the example, the dependent variable is whether a 

patient has coronary disease, whereas the explanatory variable is Age.   

 



 

49 

 

 
Figure 4.5: Scatterplot of Presence or Absence of Coronary Heart Disease (CHD) by 

Age for 100 Subjects    

Source: (Hosmer et. al., 2013) 

 

According to Figure 4.5, no trend can be conveyed between CHD and Age. This problem 

can be addressed by the creation of a cumulative frequency distribution (Figure 4.6) 

 

Figure 4.6: Plot of the percentage of subjects with CHD in each Age group 

Source: (Hosmer et. al., 2013) 
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According to the scatterplot presented in Figure 4.6, the determination of a trend between 

the explanatory and dependent variable is now feasible; in fact, the relationship seems to 

be linear. 

 

The exact same rational is applied for the needs of this research for all explanatory 

variables. Each explanatory variable is divided into 10 groups/bins in which 10 percent of 

the data is present in each bin. Although the selection of 10 bins is arbitrary, it is the most 

common practice. These bins are then plotted in the scatterplots in Figures 4.7-4.9. This 

division into bins is only applied for the purposes of the scatterplot creation and no further 

utilization of these bins is required. It is noted that there are other more sophisticated 

processes that can be applied to address the scatterplot issue in GLMs in order to decide 

which transformation of the explanatory variable is pertinent (Hosmer et. al. 2013), but for 

the needs and scope of this research, the technique described above, i.e. frequency table 

creation, is adequate. 

 

 
Figure 4.7: Scatterplot LN(Crashes) vs. AADT_Binned  
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Figure 4.8: Scatterplot LN(Crashes) vs. Average GC- Binned  

 

 
Figure 4.9: Scatterplot LN(Crashes) vs. Average MC _Binned  

 

According to Figure 4.7Figure 4.7, the AADT seems to have a rather linear relationship 

with LN(crashes), whereas the Gaussian curvature (Figure 4.8) seems to have a cubic 
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relationship with LN(crashes) and the  Mean curvature (Figure 4.9) has an essentially 

quadratic relationship with  LN(crashes). However, these observations hold true only when 

the explanatory variables are plotted one by one against the dependent variable; in other 

words, there is no guarantee that the nature of these relationships will remain the same 

when all the explanatory variables enter the model. However, this procedure has revealed 

that, especially for the Mean and Gaussian curvature, there is some indication that their 

relationship may not be linear in nature with LN(crashes) and therefore quadratic and cubic 

transformations may be appropriate for testing. 

 

For each patch, 38 variable combinations were tested until the analysis was finalized. The 

models considered each variable alone and in a variety of combinations in order to 

determine the most appropriate and meaningful combination. All these combinations for 

each patch length are presented in Appendix G. The process for determining whether a 

model was appropriate was based on an initial determination of whether all the coefficients 

of the model were statistically significant and accounting for the Bonferroni correction. 

Then the statistically significant models were compared with the AIC criterion. It is noted 

that, as a rule of thumb, when two models are compared and their AICs difference is greater 

than 10, then this difference is “significant”, meaning that the model with the lowest AIC 

should be kept instead (Hardin and Hilbe 2012). Finally, the assumptions according to 

which the model is based, e.g., normality of deviance residual distribution, must also be 

satisfied. 

 

A summary of the variables used in the best models for each patch length are summarized 

in Table 4.5. The final suggested models as shown in Table 4.5 indicate that the Gaussian 

Curvature (GC) and Mean Curvature (MC) of 3-D surfaces play a crucial role in crash 

prediction since they are statistically significant in all models, in which the Bonferroni 

correction has also been accounted for. In fact, not only are the Gaussian and Mean 

Curvature statistically significant in all models, but their p-values are also less than 0.001 

in all models. The insertion of these two differential geometry metrics it is actually the new 

aspect that this research introduces to the literature. The use of these metrics can be 

considered promising because the Gaussian and Mean curvatures are the cornerstones of 
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the study of 3-D mathematical surfaces as a whole in differential geometry. Moreover, the 

fact that transformed geometric metric, e.g. GC3 and MC2, and that the 2-way interaction 

term GC*MC insert the model, in the 100 ft patch length model, emphasizes the complexity 

by which roadway geometry affects crash occurrence, a fact that cannot be revealed in such 

an explicit manner through conventional 2-D geometric metrics. Finally, in terms of 

computational statistics stability, when a variable is entered in a model with a power, e.g., 

quadratic, it is beneficial if the “lower power terms” are also included in the model, e.g. 

linear, for computational reasons. Fortunately, this is the case for both the GC3 and MC2 

variables since the variables GC2 and GC, as well as MC are also included in the model 

with p-values<0.001, meaning that even the Bonferroni correction is amply satisfied.  

 

Table 4.5: Variables Present in Final Best Models for Each Patch Length 

Patch 

length 
Explanatory Variables 

 AADT GC MC GC2 GC3 MC2 MC3 AADT*MC GC*MC 

1500 X X X X X     

1000 X X  X X  X   

400 X X X X X X    

200 X X X X X   X  

100 X X X X X X   X 

50 X X X X X X   X 

 

The criterion used in order to select the most appropriate patch length was based on the 

overall error prediction which is estimated as the difference between the observed and 

model-predicted number of crashes. A summary of the predictive ability of each patch 

length, i.e., the associated error percentage to each, is shown in Table 4.6; it is noted that 

1,534 crashes occurred during the 2004-2017 period. Although it may be considered 

adequate on a practical basis to conclude that the 100 ft patch is the most pertinent patch 

length for the analysis, an additional statistical metric will also be considered to further 

validate this assertion, for the comparison among the different patch lengths. The additional 

statistical measurement used is the Predicted Error Sum of Squares or the so-called PRESS 

(Caroni and Oikonomou 2017). PRESS is used in order to compare regression models in 

terms of their ability to predict new values; the model preferred is the one with the smallest 

value of PRESS (Table 4.6). 
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Table 4.6: Patch Length Comparison in Terms of Predictive Ability 

Patch Length (ft) Predicted Crashes 

Error Percentage of 

Total Crashes 

Predicted 

PRESS 

1,500 1,295 -15.6% 81.94 

1,000 1,342 -12.5% 51.63 

400 1,582 3.1% 47.40 

200 1,546 0.8% 20.90 

100 1,532 -0.1% 15.93 

50 1,532 -0.1% 15.76 

 

The selected patch length for the final model corresponds to a length of 100 ft because it 

was observed that this patch length provides the best modeling ability.  Even though a 

smaller patch length leads to an increase in the predictive power of the model, this was true 

up to a “cut-off” patch length, which in this case was estimated to be 50 ft. In this case, 

“cut-off” indicates that after a certain point the overall error is not practically improved 

with the reduction of the patch length.  

 

The results of the model corresponding to the 50 ft patch were identical to the ones derived 

from the 100 ft patch (Table 4.6). Moreover, a 100 ft patch may be considered more 

appropriate for transportation related applications because vehicles that have a length over 

50 ft such as combination trucks, recreational cars, and buses can be analyzed in a more 

reliable manner by incorporating a larger surrounding roadway geometry. Therefore, for 

transportation related consistency, practical effect of overall error reduction as well as 

computational speed purposes it was decided to utilize the 100 ft patch for the crash 

modeling process.  

 

The final model corresponding to the 100 ft patch length is summarized in Table 4.7, 

whereas the regression model is presented in Equation 4. The AIC for the models 

considered ranged from 11,183 to 11,803. The final model that was kept was indeed the 

one with the lowest AIC of 11,183 while the second-best model had an AIC of 11,232. It 

is noted that all of the explanatory variables of the final have a p-value<0.001, a fact that 

essentially demonstrates the proof-of-concept of this research: 3-D geometric roadway 

metrics can successfully function as explanatory variables in crash predictive models.   
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Table 4.7: Coefficient Values of Final Model (E35) for Patch Length = 100 ft 

Variable Coefficient p-value 

(Intercept) -4.2701 0.000 

AADT 0.00037 0.000 

GC -797,670.9567 0.000 

GC2  -62,371,846,845.508 0.000 

GC3 -101,722,389,759,530.720 0.000 

MC 347.8188 0.000 

MC2 209,377.3293 0.000 

GC*MC 166,612,202.0693 0.000 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶

+ 𝑏6 ∙ 𝑀𝐶2 + 𝑏7 ∙ (𝐺𝐶 ∗ 𝑀𝐶) 
(4) 

 

 

As noted above, the presence of the Gaussian Curvature and Mean Curvature of 3-D 

surfaces supports the significance of these variables as crash predictors and the potential 

interaction with other variables; interactions that can by no means be captured in the 2-D 

analysis.  

 

At this point, the “Integrated Model” in which all years and roadways are included has 

been finalized and presented in Equation 4 above. The IM essentially functions as a proof-

of-concept for the inclusion of the 3-D metrics in crash prediction models and can, at least 

theoretically, be used for crash prediction purposes in other roadways. However, the latter 

is not recommended, especially in areas not in Kentucky in which even driver behavior 

may be different; hence, more roadways should be analyzed in order to increase the 

predictive power and representativeness of the model. Nonetheless, this model may be 

particularly useful when the purpose of an analysis is not the prediction of crashes in 

absolute numbers, but the comparison of alternatives, e.g. different alignments, in terms of 

estimating which alternative reduces crash frequency. In addition, it is suggested that the 

specific coefficient values (Table 4.7) be used for crash prediction purposes only when no 

historical crash data are available; if crash data are available for a specific roadway segment 

they should be certainly used in order to incorporate the “special crash pattern” in the 

adjusted model to be discussed in the next section. Finally, when several years of crash 

data are available, it is advised that, for crash prediction purposes, the years enter the model 
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as dummy variables. The latter is suggested in order to account for seasonal and time 

effects. This is further discussed in the next section in which the predictive power of the 

model is evaluated. 

 

4.2.2 Model Structure and Predictive Ability Evaluation 

The ultimate objective of this research is the determination of the predictive ability of the 

proposed model based on 3-D metrics on safety predictions. The comparison is based on 

the crash predictions as estimated from the model and the IHSDM. The IHSDM predicts 

crashes per year for a given roadway through the Empirical Bayes model. To account for 

the differences that arise throughout the years such as the number of crashes and AADT, 

IHSDM needs to develop a separate prediction for each year and this approach was 

considered and applied in the suggested model to obtain an accurate and fair comparison. 

It is therefore important to consider this in the model developed here and determine how 

to best approach it. There are two options for incorporating the “year effect” in this 

analysis: 1) use a separate model for each year developing predictions one year at a time; 

and 2) insert dummy variables for years to account for the different AADT for each year. 

The following presents this analysis and the determination of which approach is more 

appropriate. It should be also noted that there is no concern whether the dummy variables 

are statistically significant or not at this point; their purpose is to simply increase the 

predictive ability of the model by accounting for the yearly variation of AADT and random 

effects in general. 

 

The evaluation will be accomplished by creating training data, i.e., assuming that a certain 

year is not included in the dataset, running the analysis, and then predicting the crashes of 

that year and reporting the residuals. For example, the way in which the predictive power 

of the model will be evaluated for year 2017 is as follows. Suppose that crash data are 

available for years 2004-2016 and that the intention is to predict the crashes for year 2017.  

The predictive model will include the explanatory variables of the IM, i.e. AADT, GC, 

GC2, GC3, MC, MC2, and GC*MC.  For the use of the dummy variable approach, in 

addition to the explanatory variables, a number of dummy variables equal to the number 

of years of crashes minus 1 is used. In this case, for the 13 years of available date (2004-
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2016 period) 12 (=13-1) dummy variables will be used. The crash predictions for year 2017 

will be calculated in the following form (Equation 5): 

 

𝐿𝑁(13 ∗ 𝐶𝑟𝑎𝑠ℎ𝑒𝑠)

= 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶

+ 𝑏6 ∙ 𝑀𝐶2 + 𝑏7 ∙ (𝐺𝐶 ∗ 𝑀𝐶)  +  𝑑1 ∙ 𝐷2004 + ⋯+ 𝑑12 

∙ 𝐷2015 

(5) 

or finally: 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶

+ 𝑏6 ∙ 𝑀𝐶2 + 𝑏7 ∙ (𝐺𝐶 ∗ 𝑀𝐶) +  𝑑1 ∙ 𝐷2004 + ⋯+ 𝑑12 ∙ 𝐷2015

− 𝐿𝑁(13) 

(6) 

 

The term “-LN(13)” is present in Equation 6 in order to convert the prediction model on a 

per year basis since the model is based on 13 years of data. In statistical terminology, 

especially for GLM, this “-LN(13)” term is the so-called offset in the Negative Binomial 

Regression (Hardin and Hilbe 2012).  The crash predictions for any other year will be 

calculated with the same exact procedure and rationale.  The model structure is evaluated 

using both approaches, with and without dummy variables, and then comparing the 

predictions to the actual number of crashes. The approach that results in a prediction closer 

to the actual crashes would be the one to be used.  

 

In Table 4.8 the crashes prediction breakdown per year and roadway segment is presented 

in which there are three columns for each roadway segment: 1) Actual Crashes (AC), 2) 

Predicted Crashes Without the Utilization of the Dummy Variables Approach (W/O), and 

3) Predicted Crashes Without the Utilization of the Dummy Variables Approach (W/). In 

addition, Table 4.9 presents the errors/residuals corresponding to the models with and 

without the dummy variable approach, as well as the corresponding Crash Improvement 

(CI) that has been achieved with the dummy variable approach.  
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Table 4.8: Crash Predictions Estimates 

  KY420-1 KY420-2 KY152-1 KY152-2 KY152-3 US68-1 US68-2 

 Year AC W/O  W/  AC W/O  W/ AC W/O  W/ AC W/O  W/ A W/O  W/ AC W/O  W/ AC W/O  W/ 

2004 29 12 21 3 5 2 12 34 12 2 11 4 10 7 6 9 13 12 34 38 40 

2005 15 12 15 0 4 2 8 34 9 4 11 3 8 7 5 6 12 9 30 38 30 

2006 20 11 18 2 4 2 9 33 10 2 10 4 4 7 5 17 13 10 29 38 34 

2007 21 11 14 3 4 2 3 31 8 1 10 3 3 7 4 6 13 8 30 38 27 

2008 26 11 24 3 4 3 13 31 14 2 10 5 7 7 7 12 13 14 50 37 47 

2009 33 11 23 3 4 3 8 31 13 6 10 5 5 7 7 17 13 14 38 37 45 

2010 34 10 32 3 3 4 25 31 18 7 10 7 7 7 10 22 12 19 51 38 63 

2011 30 10 35 0 3 4 21 30 20 8 9 7 8 7 10 26 12 20 72 38 68 

2012 48 10 35 7 3 4 17 28 20 5 8 7 5 7 10 16 12 21 71 39 69 

2013 28 11 29 2 3 3 10 26 16 10 8 6 4 7 8 13 12 17 68 39 56 

2014 5 12 19 0 4 2 13 24 11 1 7 4 10 7 6 7 12 11 53 39 37 

2015 12 13 23 3 5 3 17 23 13 5 6 5 7 7 7 18 12 13 42 37 45 

2016 12 14 22 3 5 2 21 22 12 8 6 4 13 6 7 9 12 13 33 37 43 

2017 12 14 15 4 5 2 7 22 9 5 6 3 6 6 5 12 12 9 24 36 30 

Total 325 162 327 36 56 36 184 399 185 66 120 66 97 97 97 190 172 190 625 530 634 

 

Note: AC: Actual Crashes; W/O: Without Dummy Variables; W: With Dummy Variables 
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Table 4.9: Error Comparison in Crashes 

  KY420-1 KY420-2 KY152-1 KY152-2 KY152-3 US68-1 US68-2 

  
AC-

W/O 

AC-

W/ 

AC-

W/O 

AC-

W/ 

AC-

W/O 

AC-

W/ 

AC-

W/O 

AC-

W/ 

AC-

W/O 

AC-

W/ 

AC-

W/O 

AC-

W/ 

AC-

W/O 

AC-

W/ 

2004 17 8 -2 1 -22 0 -9 -2 3 4 -4 -3 -4 -6 

2005 3 0 -4 -2 -26 -1 -7 1 1 3 -6 -3 -8 0 

2006 9 2 -2 0 -24 -1 -8 -2 -3 -1 4 7 -9 -5 

2007 10 7 -1 1 -28 -5 -9 -2 -4 -1 -7 -2 -8 3 

2008 15 2 -1 0 -18 -1 -8 -3 0 0 -1 -2 13 3 

2009 22 10 -1 0 -23 -5 -4 1 -2 -2 4 3 1 -7 

2010 24 2 0 -1 -6 7 -3 0 0 -3 10 3 13 -12 

2011 20 -5 -3 -4 -9 1 -1 1 1 -2 14 6 34 4 

2012 38 13 4 3 -11 -3 -3 -2 -2 -5 4 -5 32 2 

2013 17 -1 -1 -1 -16 -6 2 4 -3 -4 1 -4 29 12 

2014 -7 -14 -4 -2 -11 2 -6 -3 3 4 -5 -4 14 16 

2015 -1 -11 -2 0 -6 4 -1 0 0 0 6 5 5 -3 

2016 -2 -10 -2 1 -1 9 2 4 7 6 -3 -4 -4 -10 

2017 -2 -3 -1 2 -15 -2 -1 2 0 1 0 3 -12 -6 

Total 163 -2 -20 0 -215 -1 -54 0 0 0 18 0 95 -9 

CI* 161 20 214 54 0 18 86 

 

*CI: Crash Improvement Per Roadway Segment with the Dummy Variables Approach  
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The summary row in Table 4.9 denotes that the inclusion of dummy variables results in 

predictions that are closer to the actual crashes than the without using them. Moreover, the 

insertion of dummy variables is preferred, in general, over the creation of separate models 

for each year because it is statistically more appropriate: the Bonferroni correction can be 

applied in a much more robust manner, since the familywise error is explicitly defined, and 

small sample size issues, which are in general present in crash datasets, are alleviated with 

the dummy variable approach.  

 

Therefore, at this point it is decided to utilize the dummy variable approach in order to 

compare the crash predictions of the suggested model with those derived from the IHSDM. 

The comparison follows in the next section.  

 

The next step involves the evaluation of the assumptions of the model developed, since 

every regression model is based on some statistical, mostly distribution related, 

assumptions. This applies in this case as well, and therefore these assumptions must be 

checked in order to validate the reliability of the model. In practical/applied terms, failure 

in assessing these assumptions would mean that the coefficients of the model are not 

reliable, i.e., the coefficients are inflated or deflated compared to the true parameters. 

Moreover, the defined confidence levels of the coefficients may not hold true, a fact that 

means that the exported p-values from the models may be highly distorted, which, in turn, 

means that although the model may be considered statistically significant based on the 

explanatory variables p-values, it may in fact not be statistically significant since the results 

may just be artificially in favor of rejecting the null hypotheses.  

 

There are many techniques that have been suggested for the assumption assessment of 

regression models, but especially in the case of GLMs, this matter remains an open research 

problem. Therefore, for the scope of this research, the basic assumptions assessment 

techniques will be checked for which there is a general agreement in terms of their 

effectiveness and pertinence from the scientific community. More specifically, the 

assumption assessment will be based on two elements: 1) Residuals Analysis, and 2) 

Influential Points Identification. 
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4.2.3 Residuals Analysis 

There are two types of residuals that typically come into play in GLMs: Standardized 

Pearson Residuals and Standardized Deviance Residuals. The terms “standardized” is 

incorporated in these residuals because the initial Pearson and Deviance residuals have to 

be standardized in order to account for altering variance among the observations in GLMs 

and therefore be comparable (Caroni and Oikonomou 2017). Besides these two residual 

types, other residuals are mentioned in the literature such as Likelihood Residuals 

(McCullagh and Nelder 1989) and Anscombe Residuals (Hardin and Hilbe 2012). 

However, there is a general agreement that the standardized deviance residuals are the most 

pertinent and useful residuals to be utilized. However, the truth of this latter fact also 

greatly depends on the nature of the application itself.  

 

Although, in theoretical statistics terms, the deviance residuals do not have to follow a 

normal distribution, the pertinence of the model can be assessed if these residuals indeed 

follow a normal distribution. Therefore, the demand for normally distributed deviance 

residuals is imposed by logic rather than theoretical statistics. The normality of these 

residuals indicates that there is no systematic effect in the data and that the errors/residuals 

are random; the randomness of observations is a fact highly desired in any regression 

model. If a systematic effect is present, i.e., the residuals follow a pattern, then this 

systematic error can be, in general, filtered out with the inclusion of an additional 

explanatory variable that is meaningful. The Q-Q Plot of the Standardized Deviance 

Residuals for the developed model is shown in Figure 4.10, whereas the Standardized 

Deviance Residuals (SDR) for each observation/case is shown in Figure 4.11. 
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Figure 4.10: Q-Q Plot of Standardized Deviance Residual 

 

According to Figure 4.10, the observations seem to adequately lie on a line. This means 

that the standardized deviance residuals are also adequately normally distributed. This line 

represents the theoretical values of the Normal Distribution, meaning that the closer the 

SDRs are to the line, the more normally distributed they are. It is noted that in the case of 

GLMs, the normality check of the SDRs, it is not intended to check whether the SDRs are 

normally distributed, but it is a check in order to implicitly investigate the satisfactory level 

of fit of the model. 

 

It can be observed that the tails of the SDRs deviate from the theoretical values of the 

Normal Distribution. However, minor deviation should not be considered a factor that 

would render the SDRs problematic in terms of failure to view the SDRs as normally 

distributed. Therefore, it is concluded that the trend of the SDRs are linear, a conclusion 

that, in turns, implies that the fit of the model can be considered satisfactory at this point. 
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Figure 4.11: Standardized Deviance Residuals Plot 

 

Figure 4.11 investigates the randomness of the observations, which is a factor greatly 

desired in any regression model. After all, the purpose of a regression model is to exactly 

capture and absorb all systematic effects/variables and therefore only leave random effects; 

randomness will always be present in any model and cannot be avoided. The ideal scenario 

for SDRs vs. Observation scatterplots, i.e. Figure 4.11, is to produce “white noise”; in other 

words, no pattern should be present. As it can be observed, Figure 4.11 can be characterized 

by the term “white noise” indicating that the systematic effects have been account for in 

the model in an effective manner. 

 

4.2.4 Influential Points 

A point is characterized as “influential” if its exclusion would have the power to 

considerably change the coefficient values of the variables included in the model. Briefly 

speaking, an “outlier” is an observation that has an unusual y, i.e., prediction, value, 

whereas a “leverage point” is an observation that has an unusual x value. An influential 

point is essentially an observation that is both an outlier and a leverage point. The most 

common way to identify influential points is via Cook’s distance; this identification can be 

implemented either by comparing the values to some absolute cutoff or by simply seeking 
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for observation whose Cook’s distance is unusual in terms of the general trend. The latter 

technique has been proven to be more effective and therefore this approach will be utilized 

here (Dielmann 2005).  

 

 
Figure 4.12: Cook’s Distance 

 

According to Figure 4.12, there seem to be about 10 points that somehow deviate from the 

general trend of Cook’s distance. However, these minor deviations cannot by any means 

be considered influential points given the sample size of the dataset. Moreover, it is 

preferable to not delete observations from the analysis, but even if these observations were 

deleted, other influential points would appear in the Cook’s distance plot. The purpose of 

the Cook’s distance plot is mainly to identify observations with unusual values of Cook’s 

distance and further investigate them; it is true that these observations are in many cases 

the most interesting observations, containing substantially rich information regarding 

parameters that may affect the dependent variable or even suggest the inclusion of 

additional specific meaningful explanatory variables in the model. Finally, a typical 

absolute cutoff point for Cook’s distance is “one” and as indicated in Figure 4.12, the 

maximum Cook’s distance value, i.e., 0.042, is much less than one. Finally, it can be 
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concluded that influential points are not included in the model and no observations are 

excluded from the analysis; therefore, no further action is necessary to be taken in order to 

deleted them. 

 

4.3 Comparison to Current Guidelines  

This section evaluates the predictive ability of the suggested model with the current safety 

prediction methodology as utilized in the IHSDM. As described in the Methodology 

chapter, crash predictions are derived through SPFs, which are the building blocks of the 

HSM. The equations of the HSM have been incorporated into the IHSDM which makes 

the calculations automatic. Moreover, the IHSDM can account for historical crash data and 

essentially adjust the crash prediction results through the Empirical Bayes model. 

Therefore, the results of the suggested model will be compared to the ones that would be 

obtained through the IHSDM. The comparison results are based on the prediction models 

obtained by applying a 100 ft patch for the 3-D roadway surface. 

 

Table 4.10 presents the crashes prediction breakdown per year and roadway segment. 

There are three columns for each roadway segment: 1) Actual Crashes (AC), 2) Predicted 

Crashes produced by the IHSDM software (IH), and 3) Predicted Crashes produced by the 

Suggested Model (SU). In addition, Table 4.11 presents the errors/residuals comparison 

between the suggested model and the IHSDM, as well as the corresponding Crash 

Prediction Improvement (CI) that has been achieved with the suggested model. The crash 

prediction differences will also be presented per mile as well, since this is another unit that 

the IHSDM utilizes. 
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Table 4.10: Crash Predictions Estimates Comparison 

  KY420-1 KY420-2 KY152-1 KY152-2 KY152-3 US68-1 US68-2 

  AC IH SU AC IH SU AC IH SU AC IH SU AC IH SU AC IH SU AC IH SU 

2004 29 25 21 3 8 2 12 21 12 2 7 4 10 11 6 9 18 12 34 49 40 

2005 15 25 15 0 8 2 8 21 9 4 8 3 8 11 5 6 18 9 30 49 30 

2006 20 25 18 2 8 2 9 22 10 2 8 4 4 12 5 17 18 10 29 51 34 

2007 21 25 14 3 8 2 3 22 8 1 8 3 3 12 4 6 19 8 30 51 27 

2008 26 25 24 3 8 3 13 21 14 2 8 5 7 11 7 12 19 14 50 49 47 

2009 33 24 23 3 8 3 8 21 13 6 8 5 5 11 7 17 18 14 38 50 45 

2010 34 24 32 3 9 4 25 21 18 7 7 7 7 11 10 22 18 19 51 49 63 

2011 30 24 35 0 9 4 21 21 20 8 8 7 8 11 10 26 18 20 72 48 68 

2012 48 23 35 7 8 4 17 21 20 5 8 7 5 11 10 16 18 21 71 47 69 

2013 28 26 29 2 8 3 10 21 16 10 8 6 4 11 8 13 19 17 68 47 56 

2014 5 27 19 0 9 2 13 21 11 1 8 4 10 11 6 7 19 11 53 49 37 

2015 12 26 23 3 8 3 17 22 13 5 8 5 7 11 7 18 18 13 42 50 45 

2016 12 26 22 3 8 2 21 21 12 8 7 4 13 11 7 9 19 13 33 51 43 

2017 12 25 15 4 8 2 7 21 9 5 8 3 6 11 5 12 18 9 24 49 30 

Total 325 351 327 36 116 36 184 296 185 66 106 66 97 156 97 190 257 190 625 691 634 

 

Note: AC: Actual Crashes; IH: IHSDM prediction; SU: Suggested model prediction 
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Table 4.11: Error Comparison in Crashes 

  KY420-1 KY420-2 KY152-1 KY152-2 KY152-3 US68-1 US68-2 

  AC-IH AC-SU AC-IH AC-SU AC-IH AC-SU AC-IH AC-SU AC-IH AC-SU AC-IH AC-SU AC-IH AC-SU 

2004 4 8 -5 1 -9 0 -5 -2 -1 4 -9 -3 -15 -6 

2005 -10 0 -8 -2 -13 -1 -4 1 -3 3 -12 -3 -19 0 

2006 -5 2 -6 0 -13 -1 -6 -2 -8 -1 -1 7 -22 -5 

2007 -4 7 -5 1 -19 -5 -7 -2 -9 -1 -13 -2 -21 3 

2008 1 2 -5 0 -8 -1 -6 -3 -4 0 -7 -2 1 3 

2009 9 10 -5 0 -13 -5 -2 1 -6 -2 -1 3 -12 -7 

2010 10 2 -6 -1 4 7 0 0 -4 -3 4 3 2 -12 

2011 6 -5 -9 -4 0 1 0 1 -3 -2 9 6 24 4 

2012 26 13 -1 3 -4 -3 -3 -2 -6 -5 -2 -5 24 2 

2013 2 -1 -6 -1 -11 -6 2 4 -7 -4 -6 -4 21 12 

2014 -22 -14 -9 -2 -8 2 -7 -3 -1 4 -12 -4 4 16 

2015 -14 -11 -5 0 -5 4 -3 0 -4 0 0 5 -8 -3 

2016 -14 -10 -5 1 0 9 1 4 2 6 -10 -4 -18 -10 

2017 -13 -3 -4 2 -14 -2 -3 2 -5 1 -6 3 -25 -6 

Total -26 -2 -80 0 -112 -1 -40 0 -59 0 -67 0 -66 -9 

CI* 24 80 111 40 59 67 57 

CI PM* 17 91 13 18 17 12 5 

CI PY* 2 6 8 3 4 5 4 

CI PM PY* 1.2 6.5 0.9 1.3 1.2 0.8 0.4 

*CI: Crash Improvement Per Roadway Segment with the Suggested Model Compared to the IHSDM 

*CI PM: Crash Improvement Per Roadway Segment Per Mile with the Suggested Model Compared to the IHSDM 

*CI PY: Crash Improvement Per Roadway Segment Per Year with the Suggested Model Compared to the IHSDM 

*CI PM PY: Crash Improvement Per Roadway Segment Per Mile Per Year with the Suggested Model Compared to the IHSDM 
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Tables 4.10 and 4.11 show that the crash prediction results produced by the suggested 

model are more comparable to the actual crashes than those obtained from the IHSDM, 

which is the current crash prediction practice. The best Crash Prediction Improvement, i.e., 

CI, in absolute numbers for the 14-year period is observed for the roadway segment KY 

152-1 (Table 4.11). The aggregated (i.e., sum) error of the suggested model is only -1, 

whereas the respective error obtained from the IHSDM model is -112. This means that the 

suggested 3-D geometric safety model has a prediction that is closer to the actual number 

of crashes compared to the IHSDM model, by 111 crashes. Similarly, the best Crash 

Prediction Improvement Per Mile Per Year (CI PM PY) is observed for the roadway 

segment KY 420-2; specifically, the suggested 3-D geometric safety model prediction is 

closer to the actual crashes compared to the IHSDM model, by 6.5 crashes per year for 

every mile of highway. These observations and general results could be seen as an 

indication of the beneficial effects that 3-D geometric metrics can offer to highway safety 

and can be considered a practical proof-of-concept of this research itself. Another fact that 

makes this research promising is that the comparison is conducted in a quantifiable manner. 

However, although the improvement in crash prediction is an important issue on its own, 

this improvement should be demonstrated not only in crash units, but also in monetary 

values. Although one may argue, on a philosophical level, that the human life is priceless, 

this approach does not convey the whole truth as implemented in practice. It is true that 

even fatalities, injuries, and property damage are incorporated into an optimization scheme 

in order to reach decisions during the planning/budgeting phase of a project that would 

eventually have the optimal effect to society as a whole. For example, although it may be 

observed that the crash occurrence on a particular roadway is problematic, a cost-benefit 

analysis is typically conducted to determine how to best allocate limited resources to 

increase their effectiveness. Such improvements are then compared to other competing 

projects and needs and decisions are reached based on optimizing the available funds for 

the greater good of the system.  

 

Varying crash predictions can lead to vastly different decisions because they are essentially 

tightly linked to the cost estimation of a project, new or existing that is considered to be 

modified. It is therefore imperative that predictions are accurate to avoid assigning 
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incorrect priorities while addressing needs. Although crash costs are just a portion of the 

total project cost, there are substantial in both economic and societal terms. Crash over 

prediction may yield a project too expensive, leading to its rejection, whereas crash under 

prediction will lead to under design problematic issues and inflated crash occurrence. 

 

Considering the potential impact of the overestimation of the IHSDM as compares to the 

suggested model, one can surmise that when cost-benefit estimates are required for projects 

those could be grossly miscalculated and thus potentially result in addressing the wrong 

projects. More accurate cost estimation procedures can greatly benefit both public agencies 

and private companies during the biding phase of a highway engineering project because 

their estimations will be in line with reality in a more reliable manner. Moreover, tax payers 

can feel more confident that their contribution is invested in a better way and in the long 

run public agencies could potentially design and construct additional infrastructure 

projects, such as schools and parks, with the same initial budget.  

 

Thus, at this point, the intended proof-of-concept of the research, i.e., 3-D differential 

geometry metrics have a crash prediction value, has been established and the final model 

has been compared to the current practices through the use of the IHSDM. The latter 

comparison verified that the results derived from the suggested model, containing 3-D 

explanatory variables derived from differential geometry, are closer to the actual/observed 

crashes, compared to the SPFs of the HSM.  

 

An advantage of the proposed model is that it only requires XYZ data of the roadway 

instead of the detailed geometric data input of the IHSDM which requires as input the 

horizontal and vertical alignment information. Therefore, the proposed model is more 

flexible than the IHSDM. In addition, if the horizontal and vertical alignment plans are not 

available, then it is difficult, if not impossible, to utilize the IHSDM, since these are 

essential inputs for the calculation process. The data entry in the IHSDM is also a tedious 

process and demand a manual entry. The proposed model takes advantage of the automated 

conversion from the 3-D XYZ data to the horizontal and vertical alignment via the FM-17 

software offered by the National Technical University of Athens, Department of Civil 
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Engineering. The FM-17 offers some semi-automatic tools that assist in the 3-D to 2-D 

conversion, but the procedure remains subjective and demand manual correction at the end 

of the process. 
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5 CONCLUSIONS AND FUTURE RESEARCH 

 

Highway design is an engineering principle that combines various aspects and 

specializations from the engineering spectrum. However, highway design can be also 

considered a form of “engineering art” in the sense that every project is different and there 

is not only one solution to each problem. There are many competing parameters embedded 

in the design process and therefore, engineering judgement is actively present in almost all 

steps of the design process. The latter fact justifies the need of evaluating several alternative 

design options before concluding to the final one in order to analyze and approach the 

problem from different angles. However, even when the final design has been decided, it 

does not mean that it is the optimal design solution; it simply means that the suggested 

solution complies in an acceptable manner with the needs, e.g. safety, comfort, and 

guidelines set forth, environmental, historical and budget constraints, and community 

needs, imposed by the problem itself. 

 

Highways are large scale 3-D infrastructure systems but unfortunately, they are not treated 

in that way.  The traditional 2-D approach is applied in order to design these 3-D structures. 

A number of research reports focus on the need of shifting the perceptive of the design 

analysis from 2-D to 3-D, which would potentially offer a much more holistic approach to 

roadway design. Although various attempts have been to incorporated or, at least, generate 

the discussion in a more active manner for the inclusion of 3-D metric in the design process, 

it can be stated that these attempts have not been accepted as something practical in the 

sense that they could be readily applied in the near future. In order to convince the scientific 

community that more research should be conducted towards the 3-D direction, these 3-D 

suggested models should be compared in a quantifiable manner to the traditional 2-D 

approaches in order for the potential advantages of the 3-D solutions to be proven in an 

undisputed manner through practical applications and numerical comparisons. This was 

indeed the objective of this research: the use of 3-D metrics in crash prediction models and 

their comparison to results derived from current, 2-D-based practices. The results of this 

research are very promising since they have demonstrated an improvement in crash 

predictions compared to the current practice and therefore demand for further research.  
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The basic 3-D differential geometry metrics that were used were the Gaussian Curvature 

and the Mean Curvature. These two metrics are very important in differential geometry 

and especially for the study of 3-D surface properties. Therefore, what has been achieved 

here is the incorporation of 3-D metrics that essentially govern universal properties of 3-D 

surfaces, as in this case in which the roadway is treated as a 3-D mathematical surface, in 

highway safety predictive models. The incorporation of these metrics offers accuracy and 

flexibility in the suggested 3-D safety models since the roadway is modeled exactly as it is 

designed and, more importantly, constructed in the field. In addition, the crash predictions 

can be produced from the suggested model in an absolutely automated procedure, meaning 

no conversion into the horizontal and vertical alignment is required. Therefore, the 

evaluation of a project itself or multiple alternatives can be conducted much faster, saving 

numerous work hours and productivity in general. Another presumably important fact of 

this research is that the comparison between the suggested model and the IHSDM has 

shown that the IHSDM tends to overestimate the number of crashes and thus could result 

in inappropriate cost-benefit evaluations that could distort the project priorities and 

comparisons.  This could help public agencies to better allocate their available funds. 

Finally, the power of utilizing a 3-D model for interpreting the 3-D roadway surface as the 

basis of all further analysis, which in this case is crash prediction models development, has 

been justified in a rather concrete manner; according to the results (see Table 4.11), the 

incorporation of 3-D analysis substantially improves the prediction of safety models. As 

far as applicability is concerned, it can be stated that the suggested methodology is rather 

practical since the only required input data are, at a minimum, the XYZ coordinates of the 

roadway centerline and edge lines. Given the contemporary surveying technology that is 

available, e.g. laser scanning, the input data for an existing roadway is relatively easy to be 

retrieved.  For new highway design, the required input data are already available even in 

the case of the traditional 2-D design approach.  

 

It is emphasized once again that models require further evaluation, since they were 

developed based on a small sample size of rural roadways. The purpose of this analysis 

was to demonstrate that the 3-D generated variables have the ability to capture the 
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interactions of the various roadway geometry elements and prove that they could have a 

better predictive ability than the current practices.  The data needs for the proposed model 

are less demanding than those required for the IHSDM and all current safety prediction 

practices rely on geometry information for estimating the number of crashes. Finally, it is 

stressed that the proposed regression equations apply to the specific roadway segments that 

were examined in this thesis. The models can be further improved with the addition of 

more roadway segments in order to allow for a more robust statistical evaluation of the 

coefficients estimated and permit a more accurate and wider-accepted implementation.    

 

Nonetheless, the proposed methodology is easier to implement and less demanding, in 

terms of data manipulation and subjective decision-making, compared to the IHSDM 

implementation because segments with homogeneous geometry, e.g., segment constant 

horizontal radius and vertical grade are not required to be identified, in the suggested 

methodology, when 3-D data are available. Moreover, there is no need to find a way to 

convert the 3-D information, i.e., XYZ data of the roadway centerline and edge lines, into 

a horizontal and vertical alignment; a process that is, in general, subjective. An integrated 

highway model/system can increase the speed in which roadway related infrastructure is 

designed and constructed, leading to reduced costs throughout all the design and 

construction phases of the project. Therefore, this superiority is not necessary to be solely 

restricted to the comparison of 2-D and 3-D results in terms of design accuracy, precision, 

or crash prediction but it could be also beneficial in terms of cost reduction such as man-

hours that are necessary to conduct the highway design or construction process or take-off 

estimating accuracy.  

 

Finally, it is advised that crash data be utilized when they are available; if they are not 

available, then one can use the general regression equation but only to compare between 

different alignments. In the latter case, the crash predictions will most likely be erroneous 

in terms of absolute numbers, but the difference in crashes predictions between alternative 

alignments will be more reliable. This is also the case with the IHSDM tool. 
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5.1 Future Research Recommendations 

Many recommendations for future research can be made since the incorporation of 3-D 

metric in the highway design process is a rather unexplored field. Some suggestions are 

presented in this section.  

 

A major concern of this research was the determination of the patch length according to 

which the statistical analysis was based upon. A future step would be to create a mesh on 

the roadway surface whose patches would not necessarily have equal lengths, but would 

alter depending on the special geometric properties of the surface each time. This mesh 

would look like the meshes that are utilized in the Finite Element Method (FEM). The 

meshing criteria would be related to the Gaussian and Mean curvature values of the 3-D 

B-Spline roadway surface. In practical terms, this means that the mesh would be denser in 

surface areas, i.e., on the roadway surface, that have larger values of Gaussian and Mean 

Curvatures and sparser in surface areas that are more “flat”. It is anticipated that this may 

increase the predictive ability of the model as well as the computational speed of the 

procedure. Moreover, it may be easier to identify problematic roadway segments in terms 

of highway safety due to the more accurate construction of the underlying mesh, which 

would be purely based on the differential geometry properties of the roadway surface and 

implemented with computational geometry techniques.  

 

In this research attempt the shoulder width is not included as an explanatory variable 

because all roadway segments have the same shoulder width and therefore no 

differentiation is possible in the statistical analysis. The shoulder is not modeled as part of 

the 3-D B-spline surface because the driver does not, at least typically, travel on the 

shoulder. However, the intension is to include additional metrics, directly related to 

highway design, such as shoulder widths and lane widths in the regression models in the 

future. This task can be accomplished with the inclusion of dummy variables: for example, 

dummy variables pertaining to shoulder widths of 4 ft, 6 ft, 8 ft, and 10 ft, as well as dummy 

variables corresponding to lane widths of 10 ft, 11 ft, and 12 ft. However, in order for this 

to be feasible, sample roadway segments containing all these combinations of shoulder and 

lane widths, as well any other highway design characteristic desired, should be retrieved 
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and included in the statistical analysis. Nonetheless, at this point CMFs can be incorporated 

in the suggested 3-D models, creating hybrid 3-D SPFs. For example, since this research 

was conducted for 11 ft lane width roadways, CMFs can be utilized in order to adjust the 

crash predictions for different lane widths accordingly; in other words, at this point, 11 ft 

lane widths function as the baseline conditions, as defined in the HSM terminology, of the 

analysis. . In general, more explanatory variables of both highway design, e.g. roadside 

characteristics, and 3-D geometry oriented, e.g., length of geodesic curves, 3-D stopping 

sight distance, should enter the model. Finally, the rationale, results, and findings of this 

research can be integrated in the current highway design practices, e.g. IHSDM software, 

in order to enhance them, by adding/incorporating the 3-D metrics used here into existing 

SPFs. 

 

The severity type of the crash should be incorporated in the regression models. In this case, 

small sample size related issues will surely arise, but research should move towards this 

direction even if it requires waiting some years in order for more crash data to be 

accumulated. A more detailed breakdown in terms of crash severity type, would eventually 

allow for a more detailed crash cost estimation since, as one would expect, different crash 

costs are associated to different crash types (FHWA, n.d.d). 

 

The ultimate objective of this research would be to develop a user friendly and interactive 

software/tools that would be able to be incorporated in highway design software programs, 

e.g., Autocad Civil 3D, Microstation, in order to assist in the design process. This tool 

would be particularly useful for the evaluation and comparison of alternative/competing 

highway geometric alignments. In addition, this tool would be able to express the 

evaluation of alternative alignments not only in terms of increase/decrease of crashes, but 

also in terms of the associated crash cost. Finally, this system could be integrated in the 

GPS screen of vehicles in order to warn driving when driving on roadway segments in 

which the crash occurrence probability calls for proportionally more attention. 
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APPENDIX  A: Gaussian & Mean Curvature 

 

A surface 𝑆 can be defined by the two parameters 𝑢, 𝑣, in the following format: 

 

𝑆(𝑢, 𝑣) = (𝑆1(𝑢, 𝑣), 𝑆2(𝑢, 𝑣), 𝑆3(𝑢, 𝑣) ) 

 

Partial derivatives are developed in terms of u and v, since they are the two parameters that 

define a surface. These derivatives are defined below: 

 

𝑆𝑢 = (
𝜕𝑆1(𝑢, 𝑣)

𝜕𝑢
,
𝜕𝑆2(𝑢, 𝑣)

𝜕𝑢
,
𝜕𝑆3(𝑢, 𝑣)

𝜕𝑢
) = (𝑆𝑢

1(𝑢, 𝑣), 𝑆𝑢
2(𝑢, 𝑣), 𝑆𝑢

3(𝑢, 𝑣)) 

 

𝑆𝑣 = (
𝜕𝑆1(𝑢, 𝑣)

𝜕𝑣
,
𝜕𝑆2(𝑢, 𝑣)

𝜕𝑣
,
𝜕𝑆3(𝑢, 𝑣)

𝜕𝑣
) = (𝑆𝑣

1(𝑢, 𝑣), 𝑆𝑣
2(𝑢, 𝑣), 𝑆𝑣

3(𝑢, 𝑣)) 

 

𝑆𝑢𝑢 = (
𝜕2𝑆1(𝑢, 𝑣)

𝜕𝑢2
,
𝜕2𝑆2(𝑢, 𝑣)

𝜕𝑢2
,
𝜕2𝑆3(𝑢, 𝑣)

𝜕𝑢2
) = (𝑆𝑢𝑢

1 (𝑢, 𝑣), 𝑆𝑢𝑢
2 (𝑢, 𝑣), 𝑆𝑢𝑢

3 (𝑢, 𝑣)) 

 

𝑆𝑢𝑣 = (
𝜕2𝑆1(𝑢, 𝑣)

𝜕𝑢 𝜕𝑣
,
𝜕2𝑆2(𝑢, 𝑣)

𝜕𝑢 𝜕𝑣
,
𝜕2𝑆3(𝑢, 𝑣)

𝜕𝑢 𝜕𝑣
) = (𝑆𝑢𝑣

1 (𝑢, 𝑣), 𝑆𝑢𝑣
2 (𝑢, 𝑣), 𝑆𝑢𝑣

3 (𝑢, 𝑣)) 

 

𝑆𝑣𝑣 = (
𝜕2𝑆1(𝑢, 𝑣)

𝜕𝑣2
,
𝜕2𝑆2(𝑢, 𝑣)

𝜕𝑣2
,
𝜕2𝑆3(𝑢, 𝑣)

𝜕𝑣2
) = (𝑆𝑣𝑣

1 (𝑢, 𝑣), 𝑆𝑣𝑣
2 (𝑢, 𝑣), 𝑆𝑣𝑣

3 (𝑢, 𝑣)) 

 

The building blocks in order to define the Gaussian and Mean Curvature are the metrics of 

the so-called First and Second Fundamental Form; each form consists of three metrics. The 

three metrics, namely: 𝐸, 𝐹, 𝐺, of the First Fundamental Form are defined in Equations 7-

9: 

 

 𝐸 = 𝑆𝑢 ∙ 𝑆𝑢 (7) 

 𝐹 = 𝑆𝑢 ∙ 𝑆𝑣 (8) 
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 𝐺 = 𝑆𝑣 ∙ 𝑆𝑣 (9) 

It should be noted that the dot symbol " ∙ " indicates the vector inner product.  

 

In order to define the metrics of the Second Fundamental Form, the unit normal vector 𝑁 

must be initially defined (Equation 10): 

 

 �⃗⃗� =
𝑆𝑢 × 𝑆𝑣

|𝑆𝑢 × 𝑆𝑣|
 (10) 

 

where the  symbol " × " indicates the vector cross product.  

 

The three metrics, namely: 𝐿,𝑀,𝑁, of the Second Fundamental Form are defined in 

Equations 11-13: 

 

 𝐿 = 𝑆𝑢𝑢 ∙ �⃗⃗�  (11) 

 𝑀 = 𝑆𝑢𝑣 ∙ �⃗⃗�  (12) 

 𝑁 = 𝑆𝑣𝑣 ∙ �⃗⃗�  (13) 

 

After the metrics of the First and Second Fundamental Form have been defined, the 

Gaussian Curvature 𝐾 and Mean Curvature 𝐻 can be in turn defined (Equations 14 & 15): 

 

 𝐾 =
𝐿 𝑁 − 𝑀2

𝐸 𝐺 − 𝐹2
 (14) 

 𝐻 =
𝐺 𝐿 + 𝐸 𝑁 − 2 𝐹 𝑀

2 (𝐸 𝐺 − 𝐹2)
 (15) 

 

Finally, the natural meaning of the Gaussian and Mean Curvature is briefly described. 

 

At each point on a surface there are infinite possible directions that correspond to it. 

Loosely speaking, each direction corresponds to a specific surface curvature. However 

there are two special curvatures that are called principle curvatures and corresponds to the 
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maximum 𝑘1 and minimum 𝑘2 curvature of a point on the surface. The Gaussian and Mean 

curvature are defined through these principles curvatures in a straightforward manner 

(Equations 16 and 17): 

 

 𝐾 = 𝑘1 𝑘2 (16) 

 𝐻 =
𝑘1 + 𝑘2

2
 (17) 

 

Therefore, the Gaussian curvature is essentially the interaction, i.e., product, of the 

principles curvatures whereas the Mean curvature is the average (this is why it is called 

Mean) of the principle curvatures. 
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APPENDIX B: Google Earth Images of Roadway Segments 

 

 
Figure B.1: Google Earth Image of KY 420 
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Figure B.2: Google Earth Image of KY 152 

 

 

 
Figure B.3: Google Earth Image of US 68 
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APPENDIX C: Geometric Roadway Data & Modeling 

 

KY 420 Roadway 

 

 
Figure C.1: Rural/Urban Distinction (KY 420) 

 



 

82 

 

 
Figure C.2: 3-D B-Spline Road Centerline (KY 420-1) 

 

 
Figure C.3: 3-D B-Spline Road Surface (KY 420-1) 
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Figure C.4: 3-D B-Spline Road Centerline (KY 420-2) 

 

 
Figure C.5: 3-D B-Spline Road Surface (KY 420-2) 
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KY 152 Roadway 

 

 
Figure C.6: Rural/Urban Distinction (KY 152) 
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Figure C.7: 3-D B-Spline Road Centerline (KY 152-1) 

 

 
Figure C.8: 3-D B-Spline Road Surface (KY 152-1) 
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Figure C.9: 3-D B-Spline Road Centerline (KY 152-2) 

 

 
Figure C.10: 3-D B-Spline Road Surface (KY 152-2) 
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Figure C.11: 3-D B-Spline Road Centerline (KY 152-3) 

 

 
Figure C.12: 3-D B-Spline Road Surface (KY 152-3) 
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US 68 Roadway 

 

 
Figure C.13: Rural/Urban Distinction (US 68) 
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Figure C.14: 3-D B-Spline Road Centerline (US 68-1) 

 

 
Figure C.15: 3-D B-Spline Road Surface (US 68-2) 
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Figure C.16: 3-D B-Spline Road Centerline (US 68-2) 

 

 
Figure C.17: 3-D B-Spline Road Surface (US 68-2) 

 

  



 

91 

 

APPENDIX D: Crash Data Plots 

 

 
Figure D.1: Crash Plots, KY 420, 2004 to 2017 
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Figure D.2: Crash Plots for years 2004 to 2017 (KY 152) 
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Figure D.3: Crash Plots for years 2004 to 2017 (US 68) 
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APPENDIX E: AADT Stations and Data 

 

The starting latitude and longitude coordinates to which the interactive map should be 

zoomed to are presented in Table E.1 for each roadway, whereas the specific AADT data 

from each station are shown in Figures E.1-E.12. It is worth mentioning that 12 AADT 

stations come into play in total for the three roadways under study. 

 

Table E.1: Starting Latitude and Longitude Coordinates for All Roadways 

 Starting Coordinates 

Roadway Latitude Longitude 

KY 420 38.1480066 -84.8972377 

KY 152 37.73623318 -85.0163928 

US 68 37.6899154 -84.91889505 

 

 

 
Figure E.1: AADT Data for Station ID# 037553, KY 420-1 

 

 
Figure E.2: AADT Data for Station ID# 037A20,KY 420-2 
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Figure E.3: AADT Data for Station ID# 084507, KY 152-1 

 

 

 
Figure E.4: AADT Data for Station ID# 084570,KY 152-1 

 

 

 
Figure E.5: AADT Data for Station ID# 084569,KY 152-1 
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Figure E.6: AADT Data for Station ID# 084A45,KY 152-2 

 

 

 
Figure E.7: AADT Data for Station ID# 084252, KY 152-3 

 

 

 
Figure E.8: AADT Data for Station ID# 084505, US 68-1 
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Figure E.9: AADT Data for Station ID# 084556, US 68-1 

 

 

 

 

 
Figure E.10: AADT Data for Station ID# 084A50US 68-2 

 

 

 
Figure E.11: AADT Data for Station ID# 084256, US 68-2 
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Figure E.12: AADT Data for Station ID# 084001,US 68-2 
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APPENDIX F: Statistical Analysis for Covariance Scale Determination 

 

Patch Length = 1,500 ft 

 

AADT for Patch Length = 1,500 ft 

 

 
Figure F.1: AADT Histogram for Patch Length=1,500 ft 

 

Table F.1: Descriptive Statistics of AADT for Patch Length=1,500 ft 

Variable Descriptives Statistic Std. Error 

AADT N 1,274  

 Mean 2,665  

 95% CI for Mean [2,610 ÷ 2,719]  

 5% Trimmed Mean 2,595  

 Median 2,365  

 Variance 981,995  

 Std. Deviation 991  

 Minimum 1,270  

 Maximum 5,716  

 Range 4,446  

 Interquartile Range 907  

 Skewness 1.052 0.069 

 Kurtosis 0.691 0.137 
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Table F.2: Mean AADT_Binned vs. LN(Number of Crashes) 

Group ID# Number of Crashes LN (Number of Crashes) 
Mean 

AADT_Binned 

1 84 4.43081680 1,420 

2 71 4.26267988 1,668 

3 60 4.09434456 1,989 

4 82 4.40671925 2,174 

5 88 4.47733681 2,287 

6 144 4.96981330 2,710 

7 166 5.11198779 2,852 

8 258 5.55295958 2,955 

9 181 5.19849703 3,726 

10 375 5.92692603 4,878 

 

 

 
Figure F.2: Scatterplot LN_Crashes vs. AADT_Binned for Covariance Scale 

Determination 
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Gaussian Curvature for Patch Length = 1,500 ft 

 

 
Figure F.3: Gaussian Curvature Histogram for Patch Length=1,500 ft 

 

Table F.3: Descriptive Statistics of Gaussian Curvature for Patch Length=1,500 ft 

Variable Descriptives Statistic 
Std. 

Error 

Gaussian Curvature N 1,274  

 Mean 2,665  

 95% CI for Mean 
[-2.143604E-7 ÷ -

1.974639E-7] 
 

 5% Trimmed Mean -1.93910583E-7  

 Median -1.72806000E-7  

 Variance 2.31052338E-14  

 Std. Deviation 1.52004058E-7  

 Minimum -7.81167000E-7  

 Maximum -3.59207000E-9  

 Range 7.77574930E-7  

 Interquartile Range 1.94057000E-7  

 Skewness -1.211 0.069 

 Kurtosis 1.749 0.139 
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Table F.4: Mean Gaussian_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean Gaussian_Binned 

1 466 6.14418563 -0.000000531546888888888800 

2 117 4.76217393 -0.000000356968444444444450 

3 192 5.25749537 -0.000000292121111111111200 

4 158 5.06259503 -0.000000224066555555555500 

5 95 4.55387689 -0.000000181643111111111120 

6 105 4.65396035 -0.000000160482444444444450 

7 84 4.43081680 -0.000000128305333333333350 

8 118 4.77068462 -0.000000091919155555555570 

9 83 4.41884061 -0.000000053352277777777790 

10 61 4.11087386 -0.000000017816168749999992 

 

 

 
Figure F.4: Scatterplot LN_Crashes vs. Gaussian_Binned for Covariance Scale 

Determination 
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Mean Curvature for Patch Length = 1,500 ft 

 

 
Figure F.5: Mean Curvature Histogram for Patch Length=1,500 ft 

 

Table F.5: Descriptive Statistics of Mean Curvature for Patch Length=1,500 ft 

Variable Descriptives Statistic 
Std. 

Error 

Mean 

Curvature 
N 1,274  

 Mean 2,665  

 95% CI for Mean 
[-0.000033462152 ÷ 

0.000726867890] 
 

 
5% Trimmed 

Mean 

0.000085686688 
 

 Median 0.000029762700  

 Variance 0.000042  

 Std. Deviation 0.0064842996496  

 Minimum -0.0168194980  

 Maximum 0.0196401340  

 Range 0.0364596320  

 
Interquartile 

Range 

0.0049812948 
 

 Skewness 0.733 0.073 

 Kurtosis 1.965 0.146 
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Table F.6: Average Mean_Curvature_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) 

Average 

Mean_Curvature_Binned 

1 74 4.30406509 -0.010582349625 

2 136 4.91265489 -0.005152978000 

3 89 4.48863637 -0.002833302875 

4 90 4.49980967 -0.000425863638 

5 226 5.42053500 0.000000024941 

6 271 5.60211882 0.000065651263 

7 142 4.95582706 0.000816421125 

8 125 4.82831374 0.002343737125 

9 52 3.95124372 0.004393670625 

10 70 4.24849524 0.014842017750 

 

 

 
Figure F.6: Scatterplot LN_Crashes vs. Average_Mean_Binned for Covariance 

Scale Determination 
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AADT for Patch Length = 1,000 ft 

 

 
Figure F.7: AADT Histogram for Patch Length=1,000 ft 

 

Table F.7: Descriptive Statistics of AADT for Patch Length=1,000 ft 

Variable Descriptives Statistic 
Std. 

Error 

AADT N 2,534  

 Mean 2,668 21.296 

 95% CI for Mean [2,626 ÷ 2,710]  

 
5% Trimmed 

Mean 

2,655 
 

 Median 2,741  

 Variance 1,149,224  

 Std. Deviation 1,072.0  

 Minimum 439  

 Maximum 5,716  

 Range 5,277  

 
Interquartile 

Range 

983.3 
 

 Skewness 0.325 0.049 

 Kurtosis 0.126 0.097 
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Table F.8: Mean AADT_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean AADT_Binned 

1 93 4.53259949 915 

2  89 4.48863637 1,628 

3 85 4.44265126 2,032 

4 120 4.78749174 2,221 

5 196 5.27811466 2,555 

6 133 4.89034913 2,815 

7 230 5.43807931 2,885 

8 146 4.98360662 3,174 

9 73 4.29045944 4,024 

10 335 5.81413053 4,740 

 

 
Figure F.8: Scatterplot LN_Crashes vs. Mean_AADT_Binned for Covariance Scale 

Determination 
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Gaussian Curvature for Patch Length = 1,000 ft 

 

 
Figure F.9: Gaussian Curvature Histogram for Patch Length=1,000 ft 

 

Table F.9: Descriptive Statistics of Gaussian Curvature for Patch Length=1,000 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 2,534  

 Mean -0.00000030277559 0.000000006180665 

 
95% CI for 

Mean 
[-0.00000031490÷ -

0.0000002907] 
 

 
5% Trimmed 

Mean 

-0.00000026431226 
 

 Median -0.00000020122400  

 Variance 9.2522 E-14  

 Std. Deviation 0.000000304174139  

 Minimum -0.000001481470  

 Maximum -0.000000005126  

 Range 0.000001476344  

 IR 0.000000266544  

 Skewness -1.985 0.050 

 Kurtosis 3.948 0.099 
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Table F.10: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean Gauss_Binned 

1 221 5.39816270 -0.00000103979039 

2 95 4.55387689 -0.00000054602082 

3 288 5.66296048 -0.00000036871653 

4 107 4.67282883 -0.00000029260972 

5 180 5.19295685 -0.00000023383324 

6 137 4.91998093 -0.00000017567712 

7 144 4.96981330 -0.00000013440056 

8 94 4.54329478 -0.00000009873428 

9 93 4.53259949 -0.00000006970611 

10 69 4.23410650 -0.00000003541577 

 

 

 
Figure F.10: Scatterplot LN_Crashes vs. Mean_Gauss_Binned for Covariance Scale 

Determination 
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Mean Curvature for Patch Length = 1,000 ft 

 

 
Figure F.11: Mean Curvature Histogram for Patch Length=1,000 ft 

 

Table F.11: Descriptive Statistics of Mean Curvature for Patch Length=1,000 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 2,534  

 Mean -0.00030684538 0.000106358119 

 
95% CI for 

Mean 
[-0.00051541020 ÷ -

0.00009828056] 
 

 
5% Trimmed 

Mean 
-0.00030654358  

 Median 0.00000812248  

 Variance 0.000027  

 Std. Deviation 0.005173423337  

 Minimum -0.016932469  

 Maximum 0.024773028  

 Range 0.041705497  

 IR 0.000865688  

 Skewness 0.359 0.050 

 Kurtosis 5.529 0.101 
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Table F.12: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) 

Average 

Mean_Curvature_Binned 

1 206 5.32787617 -0.01086230388 

2 94 4.54329478 -0.00322423465 

3 165 5.10594547 -0.00073866941 

4 246 5.50533154 -0.00014510209 

5 133 4.89034913 -0.00002475845 

6 107 4.67282883 0.00003989204 

7 87 4.46590812 0.00011895493 

8 121 4.79579055 0.00036983082 

9 157 5.05624581 0.00223817847 

10 77 4.34380542 0.00975142119 

 

 
Figure F.12: Scatterplot LN_Crashes vs. Average Mean_Curvature_Binned for 

Covariance Scale Determination 
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AADT for Patch Length = 400 ft 

 

 
Figure F.13: AADT Histogram for Patch Length=400 ft 

 

Table F.13: Descriptive Statistics of AADT for Patch Length=400 ft 

Variable Descriptives Statistic Std. Error 

AADT N 6,370  

 Mean 2,673 13.573 

 95% CI for Mean [2,647 ÷ 2,700]  

 
5% Trimmed 

Mean 

2,659 
 

 Median 2,741  

 Variance 1,173,537.858  

 Std. Deviation 1,084.000  

 Minimum 439  

 Maximum 5,716  

 Range 5,277  

 
Interquartile 

Range 

983 
 

 Skewness 0.329 0.031 

 Kurtosis 0.114 0.061 
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Table F.14: Mean AADT_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean AADT_Binned 

1 91 4.51085951 904 

2 88 4.47733681 1,628 

3 88 4.47733681 2,045 

4 117 4.76217393 2,227 

5 199 5.29330482 2,551 

6 117 4.76217393 2,809 

7 248 5.51342875 2,881 

8 144 4.96981330 3,175 

9 74 4.30406509 4,026 

10 356 5.87493073 4,755 

 

 

 
Figure F.14: Scatterplot LN_Crashes vs. Mean_AADT_Binned for Covariance Scale 

Determination 
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Gaussian Curvature for Patch Length = 400 ft 

 

 
Figure F.15: Gaussian Curvature Histogram for Patch Length=400 ft 

 

Table F.15: Descriptive Statistics of Gaussian Curvature for Patch Length=400 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 6,370  

 Mean -0.00000027413524 0.000000003623714 

 
95% CI for 

Mean 
[-0.00000028124÷ -

0.00000026703] 
 

 
5% Trimmed 

Mean 

-0.00000024046902 
 

 Median -0.00000018110200  

 Variance 7.8867 E-14  

 Std. Deviation 0.000000280832027  

 Minimum -0.000001411250  

 Maximum -0.000000000634  

 Range 0.000001410616  

 IR 0.000000287902  

 Skewness -1.764 0.032 

 Kurtosis 3.066 0.063 
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Table F.16: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean Gauss_Binned 

1 273 5.60947180 -0.00000094563551 

2 160 5.07517382 -0.00000053546207 

3 133 4.89034913 -0.00000036520777 

4 123 4.81218436 -0.00000027691260 

5 139 4.93447393 -0.00000020441570 

6 128 4.85203026 -0.00000015786567 

7 64 4.15888308 -0.00000011656382 

8 101 4.61512052 -0.00000007460986 

9 115 4.74493213 -0.00000004227309 

10 116 4.75359019 -0.00000001641273 

 

 

 
Figure F.16: Scatterplot LN_Crashes vs. Mean_Gauss_Binned for Covariance Scale 

Determination 
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Mean Curvature for Patch Length = 400 ft 

 

 
Figure F.17: Mean Curvature Histogram for Patch Length=400 ft 

 

Table F.17: Descriptive Statistics of Mean Curvature for Patch Length=400 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 6,370  

 Mean -0.0000570858762 0.00001990445335 

 
95% CI for 

Mean 
[-0.00009610557 ÷ -

0.00001806618] 
 

 
5% Trimmed 

Mean 
-0.0000125035190  

 Median 0.0000099411600  

 Variance 0.000002  

 Std. Deviation 0.00156043805370  

 Minimum -0.00848872100  

 Maximum 0.00932665900  

 Range 0.01781538000  

 IR 0.00034459100  

 Skewness -0.315 0.031 

 Kurtosis 10.871 0.062 
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Table F.18: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) 

Average 

Mean_Curvature_Binned 

1 256 5.54517744 -0.0031591563636 

2 129 4.85981240 -0.0006234931818 

3 61 4.11087386 -0.0001758359773 

4 122 4.80402104 -0.0000830496136 

5 89 4.48863637 -0.0000178042651 

6 203 5.31320598 0.0000376824250 

7 163 5.09375020 0.0000982906659 

8 169 5.12989871 0.0001916438864 

9 97 4.57471098 0.0006045017955 

10 122 4.80402104 0.0026171397209 

 

 

 
Figure F.18: Scatterplot LN_Crashes vs. Average Mean_Curvature_Binned for 

Covariance Scale Determination 
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 AADT for Patch Length = 200 ft 

 

 
Figure F.19: AADT Histogram for Patch Length=200 ft 

 

Table F.19: Descriptive Statistics of AADT for Patch Length=200 ft 

Variable Descriptives Statistic 
Std. 

Error 

AADT N 12,936  

 Mean 2,674 9.541 

 95% CI for Mean [2,655 ÷ 2,692]  

 
5% Trimmed 

Mean 

2,659 
 

 Median 2,741  

 Variance 1,177,449.690  

 Std. Deviation 1,085  

 Minimum 439  

 Maximum 5716  

 Range 5277  

 
Interquartile 

Range 

983 
 

 Skewness 0.329 0.022 

 Kurtosis 0.109 0.043 
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Table F.20: Mean AADT_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean AADT_Binned 

1 91 4.51085951 904 

2 89 4.48863637 1,627 

3 88 4.47733681 2,045 

4 117 4.76217393 2,226 

5 197 5.28320373 2,552 

6 134 4.89783980 2,815 

7 231 5.44241771 2,885 

8 145 4.97673374 3,175 

9 74 4.30406509 4,026 

10 358 5.88053299 4,757 

 

 

 
Figure F.20: Scatterplot LN_Crashes vs. Mean_AADT_Binned for Covariance Scale 

Determination 
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Gaussian Curvature for Patch Length = 200 ft 

 

 
Figure F.21: Gaussian Curvature Histogram for Patch Length=200 ft 

 

Table F.21: Descriptive Statistics of Gaussian Curvature for Patch Length=200 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 12,936  

 Mean -0.00000028490972 0.000000002588443 

 
95% CI for 

Mean 
[-0.00000028998÷ -

0.00000027984] 
 

 
5% Trimmed 

Mean 

-0.00000025208400 
 

 Median -0.00000018741150  

 Variance 8.367 E-14  

 Std. Deviation 0.000000289257738  

 Minimum -0.000001489390  

 Maximum -0.000000002114  

 Range 0.000001487276  

 IR 0.000000312415  

 Skewness -1.729 0.022 

 Kurtosis 2.943 0.044 
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Table F.22: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean Gauss_Binned 

1 256 5.54517744 -0.00000097265249 

2 168 5.12396398 -0.00000056326313 

3 153 5.03043792 -0.00000038583212 

4 131 4.87519732 -0.00000027637992 

5 104 4.64439090 -0.00000021458764 

6 88 4.47733681 -0.00000016207796 

7 103 4.63472899 -0.00000011778496 

8 85 4.44265126 -0.00000008104400 

9 124 4.82028157 -0.00000004917910 

10 92 4.52178858 -0.00000001994857 

 

 

 
Figure F.22: Scatterplot LN_Crashes vs. Mean_Gauss_Binned for Covariance Scale 

Determination 
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Mean Curvature for Patch Length = 200 ft 

 

 

 
Figure F.23: Mean Curvature Histogram for Patch Length=200 ft 

 

Table F.23: Descriptive Statistics of Mean Curvature for Patch Length=200 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 12,936  

 Mean 0.000017925168 0.0000046855096 

 
95% CI for 

Mean 

[0.000008740865 

÷0.000027109472] 
 

 
5% Trimmed 

Mean 

0.000025887112 
 

 Median 0.000019587600  

 Variance 2.7939 E-7  

 Std. Deviation 0.0005285703409  

 Minimum -0.0042198760  

 Maximum 0.0029446240  

 Range 0.0071645000  

 IR 0.0002185762  

 Skewness -1.015 0.022 

 Kurtosis 16.501 0.043 
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Table F.24: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) 

Average 

Mean_Curvature_Binned 

1 171 5.14166356 -0.000895598011 

2 141 4.94875989 -0.000172234791 

3 73 4.29045944 -0.000085944705 

4 98 4.58496748 -0.000040076424 

5 82 4.40671925 0.000000399880 

6 142 4.95582706 0.000037650820 

7 138 4.92725369 0.000081904573 

8 130 4.86753445 0.000132273418 

9 188 5.23644196 0.000245237989 

10 200 5.29831737 0.000885169089 

 

 

 
Figure F.24: Scatterplot LN_Crashes vs. Average Mean_Curvature_Binned for 

Covariance Scale Determination 
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AADT for Patch Length = 100 ft 

 

 
Figure F.25: AADT Histogram for Patch Length=100 ft 

 

Table F.25: Descriptive Statistics of AADT for Patch Length=100 ft 

Variable Descriptives Statistic 
Std. 

Error 

AADT N 26,236  

 Mean 2,676 6.723 

 95% CI for Mean [2,663 ÷ 2,690]  

 
5% Trimmed 

Mean 

2,661 
 

 Median 2,741  

 Variance 1,185,841.067  

 Std. Deviation 1,088.963  

 Minimum 439  

 Maximum 5,716  

 Range 5,277  

 
Interquartile 

Range 

1,041 
 

 Skewness 0.320 0.015 

 Kurtosis 0.083 0.030 
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Table F.26: Mean AADT_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean AADT_Binned 

1 92 4.52178858 900 

2 88 4.47733681 1,628 

3 87 4.46590812 2,044 

4 118 4.77068462 2,227 

5 197 5.28320373 2,551 

6 133 4.89034913 2,815 

7 231 5.44241771 2,885 

8 145 4.97673374 3,176 

9 74 4.30406509 4,027 

10 358 5.88053299 4,753 

 

 

 
Figure F.26: Scatterplot LN_Crashes vs. Mean_AADT_Binned for Covariance Scale 

Determination 
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Gaussian Curvature for Patch Length = 100 ft 

 

 
Figure F.27: Gaussian Curvature Histogram for Patch Length=100 ft 

 

Table F.27: Descriptive Statistics of Gaussian Curvature for Patch Length=100 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 26,236  

 Mean -0.00000025667396 0.000000001674374 

 
95% CI for 

Mean 
[-0.00000025996÷ -

0.00000025339] 
 

 
5% Trimmed 

Mean 

-0.00000022407771 
 

 Median -0.00000016332100  

 Variance 7.1709 E-14  

 Std. Deviation 0.000000267784719  

 Minimum -0.000001499280  

 Maximum -0.000000000102  

 Range 0.000001499178  

 IR 0.000000280156  

 Skewness -1.907 0.015 

 Kurtosis 3.990 0.031 
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Table F.28: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) Mean Gauss_Binned 

1 204 5.31811999 -0.00000089661451 

2 175 5.16478597 -0.00000049491986 

3 174 5.15905530 -0.00000034748993 

4 125 4.82831374 -0.00000025845153 

5 109 4.69134788 -0.00000019293687 

6 148 4.99721227 -0.00000013994380 

7 88 4.47733681 -0.00000010231440 

8 135 4.90527478 -0.00000006999132 

9 119 4.77912349 -0.00000004442034 

10 81 4.39444915 -0.00000001765684 

 

 

 
Figure F.28: Scatterplot LN_Crashes vs. Mean_Gauss_Binned for Covariance Scale 

Determination 
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Mean Curvature for Patch Length = 100 ft 

 

 

 
Figure F.29: Mean Curvature Histogram for Patch Length=100 ft 

 

Table F.29: Descriptive Statistics of Mean Curvature for Patch Length=100 ft 

Variable Descriptives Statistic Std. Error 

Gaussian N 26,236  

 Mean 0.000015722922 0.0000009823179 

 
95% CI for 

Mean 
[0.000013797525÷0.000017648319]  

 
5% Trimmed 

Mean 

0.000013514588 
 

 Median 0.000011795600  

 Variance 2.5087 E-8  

 
Std. 

Deviation 

0.0001583879164 
 

 Minimum -0.0009058790  

 Maximum 0.0009737290  

 Range 0.0018796080  

 IR 0.0001475257  

 Skewness 0.283 0.015 

 Kurtosis 5.636 0.030 
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Table F.30: Mean Gauss_Binned vs. LN(Number of Crashes) 

Group ID# 
Number of 

Crashes 
LN (Number of Crashes) 

Average 

Mean_Curvature_Binned 

1 206 5.32787617 -0.000256756763 

2 133 4.89034913 -0.000109274836 

3 119 4.77912349 -0.000062272385 

4 89 4.48863637 -0.000029809969 

5 117 4.76217393 -0.000002843858 

6 135 4.90527478 0.000024523926 

7 106 4.66343909 0.000052397901 

8 100 4.60517019 0.000087679790 

9 124 4.82028157 0.000141670839 

10 305 5.72031178 0.000313467730 

 

 

 
Figure F.30: Scatterplot LN_Crashes vs. Average Mean_Curvature_Binned for 

Covariance Scale Determination 
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APPENDIX G: Negative Binomial Regression Analysis 

 

Patch Length = 1,500 ft 

 

Table G.1: Model Testing for Patch Length = 1,500 ft 

Model ID# Number of Explanatory Variables Variables p-value AIC 

A1 1 AADT 0.000 3,592 

A2 1 GC 0.204   

A3 1 GC2 0.659   

A4 1 GC3 0.677   

A5 1 MC 0.542   

A6 1 MC2 0.682   

A7 1 MC3 0.677   

A8 2 
GC 0.000 

3,613 
GC2 0.000 

A9 2 
GC 0.000 

3,615 
GC3 0.000 

A10 2 
GC2 0.000 

3,672 
GC3 0.000 

A11 3 

GC 0.000 

3,586 GC2 0.000 

GC3 0.000 

A12 2 
MC 0.000 

3,717 
MC2 0.001 

A13 2 
MC 0.001 

3,717 
MC3 0.001 

A14 2 
MC2 0.001 

3,717 
MC3 0.001 

A14 3 

MC 0.057 

  MC2 0.051 

MC3 0.062 

A15 4 

AADT 0.000 

3,526 
GC 0.000 

GC2 0.000 

GC3 0.000 

A16 3 

AADT 0.000 

3,577 MC 0.000 

MC2 0.000 

A17 6 
AADT 0.000 

  
GC 0.000 
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Model ID# Number of Explanatory Variables Variables p-value AIC 

GC2 0.000 

GC3 0.000 

MC 0.006 

MC2 0.195 

A18 5 

AADT 0.000 

3,514 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

A19 1 AADT* GC 0.046 3,722 

A20 1 AADT*( GC2) 0.656   

A21 1 AADT*( GC3) 0.689   

A22 1 AADT* MC 0.549   

A23 1 GC * MC 0.676   

A24 1 (GC2)* MC 0.677   

A25 1 (GC3)* MC 0.677   

A26 6 

AADT 0.000 

3,511 

GC 0.029 

GC2 0.004 

GC3 0.010 

MC 0.000 

AADT* GC 0.020 

 

Table G.2: Coefficients of Best Model (A18) for Patch Length = 1,500 ft 

Variable Coefficient Beta p-value 

(Intercept) -1.6158898868991447 b0 0.000 

AADT 0.0003748640404988 b1 0.000 

GC -3,258,298.6756452790 b2 0.000 

GC2 -1,686,373,311,528.25340 b3 0.000 

GC3 -62,891,518,782,965,160.0 b4 0.000 

MC -7.8095296091680980 b5 0.000 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶 

 

The equation above corresponds to a 14-year period. In order to convert it to a yearly base, 

the value LN(14) should be subtracted from the right hand side of the equation: 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶

− 𝐿𝑁(14) 



 

131 

 

Patch Length = 1,000 ft 

 

Table G.3: Model Testing for Patch Length = 1,000 ft 

Model ID# Number of Explanatory Variables Variables p-value AIC 

B1 1 AADT 0.000 5,103 

B2 1 GC 0.008 5,193 

B3 1 GC2 0.064   

B4 1 GC3 0.071   

B5 1 MC 0.067   

B6 1 MC2 0.050 5,196 

B7 1 MC3 0.021 5,194 

B8 2 
GC 0.008 

  
GC2 0.068 

B9 2 
GC 0.017 

  
GC3 0.191 

B10 2 
GC2 0.621 

  
GC3 0.784 

B11 3 

GC 0.000 

5,183 GC2 0.000 

GC3 0.001 

B12 2 
MC 0.575 

  
MC2 0.325 

B13 2 
MC 0.691 

  
MC3 0.105 

B14 2 
MC2 0.509 

  
MC3 0.122 

B15 3 

MC 0.554 

  MC2 0.427 

MC3 0.123 

B16 4 

AADT 0.000 

5,087 
GC 0.000 

GC2 0.004 

GC3 0.010 

B17 2 
AADT 0.000 

  
MC 0.069 

B18 2 
AADT 0.000 

5,099 
MC2 0.017 

B19 2 
AADT 0.000 

5,099 
MC3 0.016 

B20 5 
AADT 0.000 

  
GC 0.000 



 

132 

 

Model ID# Number of Explanatory Variables Variables p-value AIC 

GC2 0.001 

GC3 0.002 

MC2 0.091 

B21 5 

AADT 0.000 

5,077 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC3 0.001 

B22 1 AADT* GC 0.000 5,179 

B23 1 AADT*( GC2) 0.048 5,196 

B24 1 AADT*( GC3) 0.070   

B25 1 AADT* MC3 0.022 5,194 

B26 1 GC * MC3 0.077   

B27 1 (GC2)* MC3 0.086   

B28 1 (GC3)* MC3 0.080   

B29 6 

AADT 0.000 

  

GC 0.004 

GC2 0.000 

GC3 0.000 

MC3 0.002 

AADT* GC 0.809 

B30 6 

AADT 0.000 

  

GC 0.000 

GC2 0.005 

GC3 0.000 

MC3 0.000 

AADT* GC2 0.163 

B31 6 

AADT 0.000 

  

GC 0.000 

GC2 0.000 

GC3 0.000 

MC3 0.948 

AADT* MC3 0.806 
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Table G.4: Coefficients of Best Model (B21) for Patch Length = 1,000 ft 

Variable Coefficient Beta p-value 

(Intercept) -1.7903675709256780 b0 0.000 

AADT 0.00032774854461651990 b1 0.000 

GC -1,360,470.8069780 b2 0.000 

GC2 -786,107,324,922.35850 b3 0.000 

GC3 -84,173,585,329,077,552.0 b4 0.000 

MC3 2,350.7997806946120 b5 0.001 

 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶3 

 

The equation above corresponds to a 14-year period. In order to convert it to a yearly base, 

the value LN(14) should be subtracted from the right hand side of the equation: 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶3

− 𝐿𝑁(14) 
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Patch Length = 400 ft 

 

Table G.5: Model Testing for Patch Length = 400 ft 

Model ID# Number of Explanatory Variables Variables p-value AIC 

C1 1 AADT 0.000 7,345 

C2 1 GC 0.012 7,475 

C3 1 GC2 0.564   

C4 1 GC3 0.303   

C5 1 MC 0.000 7,464 

C6 1 MC2 0.002 7,471 

C7 1 MC3 0.002 7,471 

C8 2 
GC 0.000 

7,419 
GC2 0.000 

C9 2 
GC 0.000 

7,429 
GC3 0.000 

C10 2 
GC2 0.001 

7,469 
GC3 0.001 

C11 3 

GC 0.000 

7,401 GC2 0.000 

GC3 0.000 

C12 2 
MC 0.000 

7,454 
MC2 0.001 

C13 2 
MC 0.000 

7,458 
MC3 0.006 

C14 2 
MC2 0.675 

  
MC3 0.817 

C15 3 

MC 0.000 

7,437 MC2 0.000 

MC3 0.000 

C16 4 

AADT 0.000 

7,235 
GC 0.000 

GC2 0.000 

GC3 0.000 

C17 4 

AADT 0.000 

7,286 
MC 0.000 

MC2 0.000 

MC3 0.000 

C18 7 

AADT 0.000 

7,193  
GC 0.000 

GC2 0.000 

GC3 0.000 
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Model ID# Number of Explanatory Variables Variables p-value AIC 

MC 0.000 

MC2 0.001 

MC3 0.029 

C19 6 

AADT 0.000 

7,196 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

MC2 0.000 

C20 6 

AADT 0.000 

7,201 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

MC3 0.000 

C21 6 

AADT 0.000 

  

GC 0.000 

GC2 0.000 

GC3 0.000 

MC2 0.523 

MC3 0.563 

C22 1 AADT* GC 0.000 7,454 

C23 1 AADT*( GC2) 0.735   

C24 1 AADT*( GC3) 0.382   

C25 1 AADT* MC 0.000 7,458 

C26 1 AADT*( MC2) 0.002 7,471 

C28 1 GC * MC 0.133   

C29 1 GC *( MC2) 0.007 7,474 

C31 1 (GC2)* MC 0.518   

C32 1 (GC2)*( MC2) 0.968   

C34 1 (GC3)* MC 0.293   

C35 1 (GC3)*( MC2) 0.329   

C37 8 

AADT 0.000 

  

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

MC2 0.002 

AADT* GC 0.342 

C38 8 
AADT 0.000 

  
GC 0.000 
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Model ID# Number of Explanatory Variables Variables p-value AIC 

GC2 0.000 

GC3 0.000 

MC 0.059 

MC2 0.005 

AADT* MC 0.217 

 

 

 

Table G.6: Coefficients of Best Model (C19) for Patch Length = 400 ft 

Variable Coefficient Beta p-value 

(Intercept) -2.8918361742282155 b0 0.000 

AADT 0.0003887444745069 b1 0.000 

GC -742510.43231766640 b2 0.000 

GC2 -98032335528.572170 b3 0.000 

GC3 -2377047982728732.50 b4 0.000 

MC -65.268028106678460 b5 0.000 

MC2 -264.955793826649260 b6 0.000 

 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶 + 𝑏6

∙ 𝑀𝐶2 

 

The equation above corresponds to a 14-year period. In order to convert it to a yearly base, 

the value LN(14) should be subtracted from the right hand side of the equation: 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶 + 𝑏6

∙ 𝑀𝐶2 − 𝐿𝑁(14) 
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Patch Length = 200 ft 

 

Table G.7: Model Testing for Patch Length = 200 ft 

Model ID# Number of Explanatory Variables Variables p-value AIC 

D1 1 AADT 0.000 9,504 

D2 1 GC 0.000 9,671 

D3 1 GC2 0.000 9,711 

D4 1 GC3 0.000 9,721 

D5 1 MC 0.000 9,581 

D6 1 MC2 0.000 9,562 

D7 1 MC3 0.000 9,642 

D8 2 
GC 0.000 

9,592 
GC2 0.000 

D9 2 
GC 0.000 

9,617 
GC3 0.000 

D10 2 
GC2 0.000 

9,674 
GC3 0.000 

D11 3 

GC 0.000 

9,530 GC2 0.000 

GC3 0.000 

D12 2 
MC 0.590 

  
MC2 0.000 

D13 2 
MC 0.000 

9,575 
MC3 0.003 

D14 2 
MC2 0.000 

9,448 
MC3 0.000 

D15 3 

MC 0.015 

9,444 MC2 0.000 

MC3 0.000 

D16 4 

AADT 0.000 

9,288 
GC 0.000 

GC2 0.000 

GC3 0.000 

D17 4 

AADT 0.000 

9,202 
MC 0.041 

MC2 0.000 

MC3 0.000 

D18 3 

AADT 0.000 

9,204 MC2 0.000 

MC3 0.000 

D19 7 AADT 0.000   



 

138 

 

Model ID# Number of Explanatory Variables Variables p-value AIC 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.005 

MC2 0.000 

MC3 0.160 

D20 6 

AADT 0.000 

9,072 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.014 

MC2 0.000 

D21 5 

AADT 0.000 

9,096 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

D22   

AADT 0.000 

9,077 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC2 0.000 

D23 1 AADT* GC 0.000 9,668 

D24 1 AADT*( GC2) 0.000 9,710 

D25 1 AADT*( GC3) 0.000 9,721 

D26 1 AADT* MC 0.000 9,572 

D27 1 AADT*( MC2) 0.000 9,559 

D28 1 GC * MC 0.000 9,718 

D29 1 GC*( MC2) 0.000 9,721 

D30 1 (GC2)* MC 0.000 9,723 

D31 1 (GC2)*( MC2) 0.000 9,726 

D32 1 (GC3)* MC 0.000 9,726 

D33 1 (GC3)*( MC2) 0.000 9,728 

D34 7 

AADT 0.000 

9,063 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.036 

MC2 0.006 

AADT*( MC2) 0.002 

D35 5 AADT 0.000 9,066 
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Model ID# Number of Explanatory Variables Variables p-value AIC 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC2 0.004 

AADT*( MC2) 0.001 

D36 6 

AADT 0.000 

9,053 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

AADT* MC 0.000 

D37 7 

AADT 0.000 

  

GC 0.179 

GC2 0.000 

GC3 0.000 

MC 0.000 

AADT* MC 0.000 

AADT* GC 0.279 

 

Table G.8: Coefficients of Best Model (D36) for Patch Length = 200 ft 

Variable Coefficient Beta p-value 

(Intercept) -3.4119717970228263 b0 0.000 

AADT 0.0003807129832082 b1 0.000 

GC -103,839.17070852222 b2 0.000 

GC2 -827,114,066.97211050 b3 0.000 

GC3 -1,452,870,025,381.10280 b4 0.000 

MC -285.1232582655780 b5 0.000 

AADT* MC 0.1166615708100217 b6 0.000 

 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ GC + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶 + 𝑏6

∙ (𝐴𝐴𝐷𝑇 ∗ 𝑀𝐶) 

 

The equation above corresponds to a 14-year period. In order to convert it to a yearly base, 

the value LN(14) should be subtracted from the right hand side of the equation: 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶 + 𝑏6

∙ (𝐴𝐴𝐷𝑇 ∗ 𝑀𝐶) − 𝐿𝑁(14) 
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Patch Length = 100 ft 

 

Table G.9: Model Testing for Patch Length = 100 ft 

Model ID# Number of Explanatory Variables Variables p-value AIC 

E1 1 AADT 0.000 11,554 

E2 1 GC 0.008 11,802 

E3 1 GC2 0.020 11,803 

E4 1 GC3 0.020 11,803 

E5 1 MC 0.017 11,803 

E6 1 MC2 0.021 11,803 

E7 1 MC3 0.022 11,803 

E8 2 
GC 0.000 

11,609 
GC2 0.000 

E9 2 
GC 0.000 

11,629 
GC3 0.000 

E10 2 
GC2 0.389 

  
GC3 0.385 

E11 3 

GC 0.000 

11,595 GC2 0.000 

GC3 0.001 

E12 2 
MC 0.000 

11,778 
MC2 0.000 

E13 2 
MC 0.000 

11,780 
MC3 0.000 

E14 2 
MC2 0.184 

  
MC3 0.187 

E15 3 

MC 0.000 

  MC2 0.123 

MC3 0.812 

E16 4 

AADT 0.000 

11,329 
GC 0.000 

GC2 0.000 

GC3 0.000 

E17 3 

AADT 0.000 

11,527 MC 0.000 

MC2 0.000 

E18 4 

AADT 0.000 

  
MC 0.000 

MC2 0.112 

MC3 0.789 

E19 6 AADT 0.000 11,232 
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Model ID# Number of Explanatory Variables Variables p-value AIC 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

MC2 0.000 

E20 5 

AADT 0.000 

11,304 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

E21 5 

AADT 0.000 

11,242 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC2 0.000 

E22 1 AADT* GC 0.006 11,801 

E23 1 AADT*( GC2) 0.018 11,803 

E24 1 AADT*( GC3) 0.017 11,803 

E25 1 AADT* MC 0.015 11,802 

E26 1 AADT*( MC2) 0.019 11,803 

E27 1 Gauss* MC 0.021 11,803 

E28 1 Gauss*( MC2) 0.021 11,803 

E29 1 (GC2)* MC 0.020 11,803 

E30 1 (GC2)*( MC2) 0.021 11,803 

E31 1 (GC3)* MC 0.020 11,803 

E32 1 (GC3)*( MC2) 0.020 11,803 

E33 7 

AADT 0.000 

  

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

MC2 0.000 

AADT* GC 0.085 

E34 7 

AADT 0.000 

  

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.091 

MC2 0.000 

AADT* MC 0.098 

E35 7 AADT 0.000 11,183 
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Model ID# Number of Explanatory Variables Variables p-value AIC 

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.000 

MC2 0.000 

GC * MC 0.000 

E36 8 

AADT 0.000 

  

GC 0.000 

GC2 0.000 

GC3 0.000 

MC 0.067 

MC2 0.000 

GC * MC 0.025 

GC * MC2 0.130 

 

 

Table G.10: Coefficients of Best Model (E35) for Patch Length = 100 ft 

Variable Coefficient Beta p-value 

(Intercept) -4.2701400273420520 b0 0.000 

AADT 0.0003759391060294 b1 0.000 

GC -797,670.95662878790 b2 0.000 

GC2 -62,371,846,845.5081250 b3 0.000 

GC3 -101,722,389,759,530.720 b4 0.000 

MC 347.81884723986360 b5 0.000 

MC2 209,377.329346756570 b6 0.000 

GC * MC 166,612,202.069389050 b7 0.000 

 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ GC + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶 + 𝑏6

∙ 𝑀𝐶2 + 𝑏7 ∙ (𝐺𝐶 ∗ 𝑀𝐶) 

 

The equation above corresponds to a 14-year period. In order to convert it to a yearly base, 

the value LN(14) should be subtracted from the right hand side of the equation: 

 

𝐿𝑁(𝐶𝑟𝑎𝑠ℎ𝑒𝑠) = 𝑏0 + 𝑏1 ∙ 𝐴𝐴𝐷𝑇 + 𝑏2 ∙ 𝐺𝐶 + 𝑏3 ∙ 𝐺𝐶2 + 𝑏4 ∙ 𝐺𝐶3 + 𝑏5 ∙ 𝑀𝐶 + 𝑏6

∙ 𝑀𝐶2 + 𝑏7 ∙ (𝐺𝐶 ∗ 𝑀𝐶) − 𝐿𝑁(14) 

 



 

143 

 

REFERENCES 

 

AASHTO (2010). The Highway Safety Manual, American Association of State Highway           

Transportation Officials, Washington D.C. 

AASHTO (2011). A Policy on Geometric Design of Highways and Streets, The Green 

Book, 6th Edition, Washington D.C. 

Amiridis, K. (2014). 3-D Road Alignment By Applying Differential Geometry and B-Spline 

Interpolation Curves, Diploma Thesis, National Technical University of Athens, 

Athens, Greece. 

Amiridis, K. and Psarianos, B. (2015a). Three Dimensional Road Design By Applying 

Differential Geometry and Conventional Design Approach Criteria, 94th Annual 

Transportation Research Board Meeting (TRB). 

Amiridis, K. and Psarianos, B. (2015b). Direct Calculation of Water Film Paths as 

Geodesic Curves on a Three-Dimensional Road Surface to Address Hydroplaning 

Phenomena, 5th International Symposium of Highway Geometric Design (ISHGD), 

June 2015. 

Amiridis, K. (2016). Safety-Based Guidelines for Left-Turn Phasing Decisions with 

Negative Binomial Regression, Master’s Thesis, University of Kentucky, 

Lexington, KY, USA. 

Amiridis, K. and Psarianos, B. (2016). Calculation of the available 3-d sight distance by 

modeling the roadway as a 3-d B-spline surface, Advances in Transportation 

Studies an International Journal, 2016 Special Issue, Vol. 2. 

Amiridis, K., Psarianos, B. and Stamatiadis, N. (2016). Generic Methodology for 3-D 

Available Sight Distance Calculation, ASCE International Conference on 

Transportation & Development (ICTD), June 2016. 

Amiridis, K., Stamatiadis, N., Kirk, A. (2017a). Safety-Based Signalized Intersection Left 

Turn Phasing Decisions, Journal of the Transportation Research Board, TRR, 2017. 

Amiridis, K., Stamatiadis, N., Kirk, A. (2017b). Simulated Traffic Conflicts and Crashes 

for Developing Left Turn Phasing Decisions, Transportation Research Board, 2017. 

Bidulka, S., Sayed, T., Hassan, Y., (2002). Influence of Vertical Alignment on Horizontal 

Curve Perception: Phase II Modeling Perceived Radius, Transportation Research 



 

144 

 

Record 1796, Transportation Research Board, National Research Council, 

Washington DC, pp. 24-34.  

Borgmann, H. (1976). Zur Trassierung mit Hilfe von Biege-(Spline-) Linien statisch 

bestimmt gelagerter Elementarst�̈�be, Zeitschrift für Vermessungstechnik 101, 3. 

[In German] 

Brauer, P. (1942). Zur r�̈�umlichen Theorie der Strabe, Ingenieur Archiv Band XIII. [In 

German] 

Caroni, C., Oikonomou, P. (2017). Statistical Regression Models, 2nd Edition. Symeon 

Editions, Athens, Greece. [In Greek] 

Daniels, S., Brijs, T., Nuyts, E., Wets, G. 2010. Explaining variation in safety performance 

of roundabouts. Accident Analysis and Prevention. 

Dielmann, T.E. (2005). Applied Regression Analysis: A Second Course in Business and 

Economic Statistics, 4th Edition. Belmont, CA: Brooks/Cole Thomson Learning. 

DiVito, M. and Cantisani G. (2010). D.I.T.S.: A Software for Sight Distance Verification 

and Optical Defectiveness Recognition, Proceedings of the 4th International 

Symposium on Highway Geometric Design, TRB, Valencia, Spain.  

Easa, S.M., Gibreel, G.M., El Dimeery, I.A. (1999). State of the Art of Highway Geometric 

Design Consistency, Journal of Transportation Engineering, Vol. 125, No. 4, pp. 

305-313.  

Easa, S.M., Gibreel, G.M., El Dimeery, I.A. (2001). Prediction of Operating Speed on 

Three Dimensional Highway Alignments, Journal of Transportation Engineering, 

Vol. 127, No. 1, pp. 21-30. 

Easa, S.M., Hassan, Y., Souleyrette, R. (2002). Three Dimensional Transportation 

Analysis: Planning and Design, Journal of Transportation Engineering, Vol. 128, 

No. 3, pp. 250-258. 

ESRI (2017). ArcGIS Desktop: Release 10.5.1. Environmental Systems Research Institute, 

Redlands, CA. 

FHWA. Federal Highway Administration (n.d.a). 

https://www.fhwa.dot.gov/interstate/history. cfm. 

FWHA. Federal Highway Administration (n.d.b). 

http://safety.fhwa.dot.gov/tools/crf/resources/ cmfs/. 

https://www.fhwa.dot.gov/interstate/history.%20cfm
http://safety.fhwa.dot.gov/tools/crf/resources/


 

145 

 

FHWA. Federal Highway Administration (n.d.c). 

https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_should

erwidth.cfm  

FHWA. Federal Highway Administration (n.d.d). 

https://safety.fhwa.dot.gov/hsip/ docs/fhwasa17071.pdf 

Freising, F. (1949). Folgerungen aus der Untersuchung des perspektivischen Bildes von 

Linienelementen der Strabe, Technische Hochschule Stuttgart, Dissertation. [In 

German] 

Gattis, J.L., Duncan, J. (1995). Geometric Design for Adequate Operational Preview of 

Road Ahead, Transportation Research Record, 1500, Transportation Research 

Board, National Research Council, Washington DC, pp. 139-145. 

Gray, Α. (1998). Modern Differential Geometry of Curves and Surfaces with 

MATHEMATICA, CRC Press, New York. 

García, A. (2004). Optimal Vertical Alignment Analysis for Highway design – Discussion, 

Journal of Transportation Engineering, Vol. 130, Issue 1, pp. 138.  

Hanno, D. (2004). Effect of the Combination of Horizontal and Vertical Alignments on 

Road Safety, M.Sc. Thesis, The University of British Columbia. 

Hao, P., S. Zhan-feng, and Teng-Feng, G. (2007). Integration and Visualization of 

Highway Alignment Design, J. Cent. South Univ. (Science and Technology), 35(5), 

830-835. [In Chinese] 

Hardin J. W., Hilbe J. M. (2012). Generalized Linear Models and Extensions, 3rd Edition, 

Stata Press, College Station, Texas. 

Hassan, Y., Easa, S. M. and Abd El Halim, A.O. (1996a). Analytical Model for Sight 

Distance analysis on three-dimensional highway alignments, Transportation 

Research Record, Vol. 1523. 

Hassan, Y., Easa, S.M., Abdelhalim, A.O. (1996b). Geometric Design Considerations of 

Combined Horizontal and Vertical Highway Alignments, Carleton University, 

Ottawa. 

Hassan, Y., Easa, S.M., Abdelhalim, A.O. (1997a). Design Considerations for Combined 

Highway Alignments, Journal of Transportation Engineering, Vol. 123, No. 1, pp. 

60-68. 

https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_shoulderwidth.cfm
https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_shoulderwidth.cfm
https://safety.fhwa.dot.gov/hsip/%20docs/fhwasa17071.pdf


 

146 

 

Hassan, Y., Easa, S.M., Abdelhalim, A.O. (1997b). Modeling Headlight Sight Distance on 

Three Dimensional Highway Alignments, Transportation Research Record 1579, 

Transportation Research Board, National Researh Council, Washington DC, pp. 

79-88. 

Hassan, Y., Easa, S.M. (1998a). Design for Sag Vertical Curves in Three Dimensional 

Alignments, Journal of Transportation Engineering, Vol. 124, No. 1, pp. 52-58. 

Hassan, Y., Easa, S.M. (1998b). Design Consideration of Sight Distance Red Zones on 

Crest Curves, Journal of Transportation Engineering, Vol. 124, No. 4, pp. 343-352. 

Hassan, Y., Gibreel, G., Easa, S.M. (2000). Evaluation of Highway Consistency and Safety: 

Practical Application, Journal of Transportation Engineering, Vol. 126, No. 3, pp. 

193-201. 

Hassan, Y., Easa, S.M. (2000). Modeling of required Preview Sight Distance, Journal of 

Transportation Engineering, Vol. 126, No. 1, pp. 1-20. 

Hassan, Y., Easa, S.M. (2003). Effect of Vertical Alignment on driver perception of 

horizontal curves, Journal of Transportation Engineering, Vol. 129, No. 4, pp. 399-

407. 

Hauer, E., Ng, J.C.N., Lovell, J. (1988). Estimation of safety at signalized intersections. 

Transportation Research Record 1185, 48–61. 

Hauer, E. (1997). Observational before-after studies in road safety, Pergamon Press, 

Elsevier Science Ltd., Oxford, England. 

Hirst, W.M., Mountain, L.J., Maher, M.J. 2004. Sources of error in road safety scheme 

evaluation: a method to deal with outdated accident prediction models. Accident 

Analysis and Prevention 36 (5), 717–727. 

Hosmer, D. W., Lemeshow, S., Sturdivant, R. X. (2013). Applied Logistic Regression, 3rd 

Edition, John Wiley & Sons, Inc., Hoboken, New Jersey.  

IHSDM. Interactive Highway Safety Design Model. 

https://highways.dot.gov/safety/interactive-highway-safety-design-

model/interactive-highway-safety-design-model-ihsdm 

Ismail, K. and Sayed, T. (2007). New algorithm for calculating 3D available sight distance, 

Journal of Transportation Engineering, 133(10), pp. 572-581. 

https://highways.dot.gov/safety/interactive-highway-safety-design-model/interactive-highway-safety-design-model-ihsdm
https://highways.dot.gov/safety/interactive-highway-safety-design-model/interactive-highway-safety-design-model-ihsdm


 

147 

 

Jha, M., Karri, G., and Kuhn, W. (2010). A New 3-Dimensional Highway Design 

Methodology for Sight Distance Measurement, TRB, Washington DC. 

Jha, M., Kumar Karri, G.A. and Kuhn W. (2011). A New 3-Dimensional Highway Design 

Methodology for Sight Distance Measurement, The 90th Annual Meeting of the 

Transportation Research Board, Washington, DC.  

Karlaftis, M., Tarko, A. (1998). Heterogeneity considerations in accident modeling. 

Accident Analysis and Prevention 30 (4), 425–433. 

Karri, G. and Jha, M.K. (2007).  A New Method for 3–Dimensional Roadway Design Using 

Visualization Techniques, Urban Transport XIII (Urban Transport 2007), C.A. 

Brebbia et al. (eds.), WIT Press, Southampton, U.K. 

Karri, K., Maji, A., and Jha, M. (2012). Optimizing geometric elements of a 3-dimensional 

alignment in a single stage highway design process. Washington DC, TRB. 

Kentucky State Police. http://crashinformationky.org/KCAP/KYOPS/SearchWizard.aspx 

Kim, D. G., and Lovell, D.J. (2010). A Procedure for 3-D Sight Distance Evaluation using 

Thin Plate Splines, proceedings of the 4th International Symposium on Highway 

Geometric Design, Valencia, Spain, June 2-5, 2010. 

Kühn, W. (2002). Neuartige Modellvorstellungen und Verfahren – Ein Beitrag zur 

Weiterentwicklung der Entwurfsmethodik für Straßen. Advanced model concepts 

and methods - A contribution to the development of design methodology for roads, 

Technische Universität Dresden, Habilitationsschrift [In German] 

Kühn, W. (2012). 3-D Methodology for the Design Process of Safe Rural Highways, TRB, 

Washington DC. 

Kühn, W. and Jha, M. (2012). Methodology for checking shortcomings in the three - 

dimensional alignment. Washington DC, TRB. 

Kentucky Transportation Cabinet. KYTC. https://transportation.ky.gov/Planning/Pages/ 

Traffic-Counts.aspx. 

Lamm, R., Choueiri, E. (1987). Recommendations for Evaluating Horizontal Design 

Consistency Based on Investigations in the State of New York. Transportation 

Research Record 1122, Transportation Research Board, National Research 

Council, Washington DC, pp. 68-78, Washington DC, TRB. 

http://crashinformationky.org/KCAP/KYOPS/SearchWizard.aspx
https://transportation.ky.gov/Planning/Pages/%20Traffic-Counts.aspx
https://transportation.ky.gov/Planning/Pages/%20Traffic-Counts.aspx


 

148 

 

Lamm, R., Psarianos, B., Mailander, T. (1999). Highway Design and Traffic Safety 

Engineering Handbook. Mc Graw-Hill, New York. 

Lamm, R., Smith, B.L. (2004). Coordination of Horizontal and Vertical Alignment with 

regard to Highway Esthetics. Transportation Research Record 1445, 

Transportation Research Board, National Research Council, Washington DC, pp. 

73-85, Washington DC, TRB. 

Lipschutz, M. (1981). Differential Geometry. Schaum’s Outline Series, McGraw-Hill, 

New York. 

Lorenz, H. (1943). R�̈�umliche Gestaltung von Raumkurven. Die Strabe Jahrgang 28, 1943. 

[In German] 

Lord, D., Bonneson, J.A. (2007). Development of accident modification factors for rural 

frontage road segments in Texas. Transportation Research Record 2023, 20–27. 

Lord, D., Mannering, F. (2010). The statistical analysis of crash-frequency data: A review 

ans assessment of methodological alternatives. Transportation Research Part A, 

Transportation Research Board, National Research Council, Washington DC. 

Lovell, D.J. (1999). Automated calculation of sight distance from horizontal geometry, 

Journal of Transportation Engineering 125(4), pp. 297-304. 

Lovell, D.J., Jong, J.-C., and Chang, P.C. (2001). Improvement to the Sight Distance 

Algorithm, Journal of Transportation Engineering, 127(4), 283-288. 

Maher, M.J., Summersgill, I. 1996. A comprehensive methodology for the fitting predictive 

accident models. Accident Analysis and Prevention 28 (3), 281–296. 

Makanae, K. (2000). Three-dimensional highway alignment design systems using 

stereoscopy of aerial photographs and computer graphics. Proceedings on the 

Eighth International Conference on: Computing in Civil and Building Engineering, 

Stanford CA, August 2000. 

Makanae, K. (2002). Functionalization of Highway Alignment for Computer-Based 

Design, Proceedings of the Ninth International Conference on Computing in Civil 

and Building Engineering, April 3-5, 2002, Taipei, Taiwan. 

Makanae, K. (2007). Development of a 3D Highway Modeler using a Driving Game 

Interface, Proceedings of the 7th International Conference on Construction 

Applications of Virtual Reality: October 22-23, 2007. 



 

149 

 

Maycock, G., Hall, R.D. (1984). Accidents at 4-Arm Roundabouts. TRRL Laboratory 

Report 1120, Transportation and Road Research Laboratory, Crowthorne, UK. 

McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. 2nd Edition, Chapman 

and Hall, London, UK. 

Miaou, S.-P. (1994). The relationship between truck accidents and geometric design of 

road sections: Poisson versus negative binomial regressions. Accident Analysis 

and Prevention 26 (4), 471–482. 

Moreno Chou, A., Perez, V., Garcia, A. and Rojas M. (2010). Optimal 3-D Coordination 

to Maximize the Available Stopping Sight Distance in Two – Lane Roads, 

Proceedings of the 4th International Symposium on Highway Geometric Design, 

TRB, Valencia Spain. 

Myers, J. L., Well, A. D., Lorch, R. F. (2010). Research Design and Statistical Analysis, 

3rd Edition, New York.  

Nehate, G. and M. Rys. (2006). 3D calculation of stopping-sight distance from gps data, 

Journal of Transportation Engineering, 132(6), Sep 2006, pp. 691-698. 

NHTSA. National Highway Traffic Safety Administration. https://one.nhtsa.gov 

Psarianos, B. (1982). Ein Beitrag zur Entwicklung des r�̈�umlichen Trassierungsprozesses 

von Verkehrswegen und insbesondere von Straben, Universität Hannover. [In 

German] 

Romero, M.A. and García A. (2007). Optimal Overlapping of Horizontal and Vertical 

Curves Maximizing Sight Distance by Genetic Algorithms, The 86th Annual 

Meeting of the Transportation Research Board, Washington, DC.  

Sayed, T., De Leur, P. (2004). Predicting the Safety Performance Associated with Highway 

Design Decisions: A case Study of the Sea to the Sky Highway, Proceedings of the 

2004 Annual Meeting of the Transportation Researh Board, Washington DC, 

January 2003. 

Scheck,H.J. (1973). Optimierungsberechnungen und Sensitiit�̈�tsanalyse als Hilfsmittel bei 

der Entwurfsbearbeitun von Straben, Strabenbau und Strabenverkehrstechnik, H. 

153. [In German] 

https://one.nhtsa.gov/


 

150 

 

Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2010. Statistical and Econometric 

Methods       for Transportation Data Analysis, second ed. Chapman Hall/CRC, 

Boca Raton, FL. 

Wolfram Research, Inc., (2018). Mathematica, Version 11.3, Champaign, IL. 

Yan, X., Radwan, E., Zhang, F. and Parker J.C. (2008). Evaluation of Dynamic Passing 

Sight Distance Problem Using a Finite - Element Model, Journal of Transportation 

Engineering, Vol. 134, No.6, pp. 225-235.  

Zimmermann, M. (2005). Increased Safety Resulting from Quantitative Evaluation of Sight 

Distances and Visibility Conditions of Two-Lane Rural Roads, Proceedings of the 

3rd International Symposium on Highway Geometric Design, TRB, Chicago, USA.  

Zuo, W., L. Jian-Pei, and Teng-Feng, G. (2007). Calculating Method and Appraising 

Technique of Highway 3-D View Sight Distance, Journal of Chang’an University 

(Natural Science Edition), 27(6), 44-48. [In Chinese] 

 

  



 

151 

 

VITA 

KIRIAKOS AMIRIDIS 

 

EDUCATION 

 

University of Kentucky: (August 2016 – May 2019 Expected) 

Ph.D. in Civil Engineering 

Specialization in Highway Geometric Design & Crash Regression Models 

PhD Dissertation: «The Use of 3-D Highway Differential Geometry in Crash 

Prediction Modeling» 

Advisor: Dr. Nikiforos Stamatiadis 

 

University of Kentucky: (August 2015 – May 2017) 

M.Sc. in Civil Engineering 

Specialization in Transportation Engineering 

GPA: 4.00/4.00 

Rank: #1 out of 60 

Master Thesis: «Safety-Based Guidelines for Left-Turn Phasing Decisions with 

Negative Binomial Regression» 

Advisor: Dr. Nikiforos Stamatiadis 

 

University of Kentucky: (August 2015 – May 2017) 

Graduate Certificate in Applied Statistics 

GPA: 4.00/4.00 (Excellent) 

 

National Technical University of Athens: Athens, Greece (October 2014–May 2015 & 

October 2017–May 2018) 

Department of Applied Mathematics & Physical Sciences 

M.Sc. in Applied Mathematics 

Major in Numerical Methods for Partial Differential Equations 



 

152 

 

 

National Technical University of Athens: Athens, Greece (September 2007- June 2014) 

Diploma in Rural & Surveying Engineering – 5 Year Curriculum 

Major in Transportation Engineering 

Minor in Water Resources 

GPA: 8.0/10.0 

Rank: #8 out of 100 

Diploma Thesis: «3-D Road Design By Applying Differential Geometry and B-

Spline Interpolation Curves» Grade: 10.00/10.00 (Excellent) 

Advisor: Dr. Basil Psarianos 

 

Apolytirion - 4th Unified Lyceum of Alimos, Alimos, Greece (June 2007) 

GPA: 19.0/20.0 (Excellent) 

 

PROFESSIONAL EXPERIENCE  

 

 Langan Engineering & Environmental Services, Manhattan, NY. Staff Engineer 

Level III; Design of Transportation Infrastructure Projects, Traffic Data Analytics, 

Traffic Planning & Operations (January 2019 – Present). 

 M&J Electrical Contractors, Astoria, NY. Construction Estimator; Quantity Take 

Offs & Cost Estimating (September 2018 – December 2018). 

 Graduate Research Assistant under Professor Nikiforos Stamatiadis at the 

University of Kentucky (August 2015 December 2018). 

 Graduate Research Assistant under Professor Nikiforos Stamatiadis; Project MRI2: 

Integrated Simulation and Safety for South-eastern Transportation Center, 

Knoxville, Tennessee (January 2016 – August 2016). 

 Teaching Assistant at the University of Kentucky at CE 531 Geometric Design of 

Roadways (Fall 2017 & Fall 2016). 

 Teaching Assistant at the University of Kentucky at CE 331 Transportation 

Engineering (Fall 2015). 



 

153 

 

 VTC Services LTD (May 2012 – August 2012); Land Surveying for Metallic 

Structures and Structures from Reinforced Concrete. 

 National Technical University of Athens (June 2011 – July 2011); Land Surveying 

Works for the Inclusion of a Section of the Nisyros Island in the National Cadastre. 

 Summer Internship at the National Bank of Greece (May 2008 – October 2008). 

 

AWARDS & DISTINCTIONS 

 

 Winner of the Southeastern Transportation Center (STC) Outstanding Student of 

the Year Award in 2017 out of 6 States (Kentucky, Tennessee, Alabama, North 

Carolina, South Carolina, Florida) across 12 Universities. 

 2nd Best Undergraduate Thesis Award out of all nine Engineering Departments of 

the National Technical University of Athens for the year 2014 (“Thomaidio Award 

of Best Undergraduate Thesis”). 

 Best Undergraduate Thesis Award from the Department of Rural and Surveying 

Engineering at the National Technical University of Athens for the year 2014. 

 Younger Member in the Street and Highway Operations Committee of the 

Transportation & Development Institute (T&DI) (August 2016 – Present). 

 Awarded a fellowship to obtain a Master’s in Civil Engineering Program at the 

University of Kentucky. 

 Traffic Bowl Contestant representing the University of Kentucky at the Annual 

Meeting of Southern District Institute of Transportation Engineers (SDITE) (2016), 

Nashville, Tennessee. 

 Awards of Excellence (over 92.5%) for exceptional student performance and 

Award of Highest Grade in Class throughout all the classes of Gymnasium (Junior 

High) and Lyceum (High School) (2002, 2003, 2004, 2005, 2006, 2007). 

 Selected from all over Greece to attend the 7th Summer School of Astronomy 

(August 2006). 

 Distinction in the Qualifying Competition “Euclid” of the Greek Mathematical 

Society for the International Mathematical Olympiad (February 2005). 

 



 

154 

 

PUBLICATIONS 

 

Amiridis, K., Stamatiadis, N., Kirk, A., Left-Turn Phasing Decisions Utilizing Simulated 

Traffic Conflicts and Historical Crashes, Advances in Transportation Studies an 

International Journal (ATS), 2018 Special Issue, Vol. 1., pp 71-82. 

Amiridis, K., Stamatiadis, N., Kirk, A., Safety-Based Signalized Intersection Left-Turn 

Phasing Decisions, Journal of the Transportation Research Board (TRR), 2017. 

Amiridis, K., Psarianos, B., Calculation of the available 3-d sight distance by modeling 

the roadway as a 3-d B-spline surface, Advances in Transportation Studies an International 

Journal (ATS), 2016 Special Issue, Vol. 2. 

Amiridis, K., Psarianos, B., Application of Differential Geometry to Solve the Highway 

Alignment Location Problem, Scientific Journal of the Orenburg State University (Vestnik 

OGU), 10(171), 262-270, 2014 Oct. 

Amiridis, K., Psarianos, B., Three Dimensional Road Design By Applying Differential 

Geometry and Conventional Design Approach Criteria, Mathematical Design & Technical 

Aesthetics, 2015, Vol. 3, No1, pp 46-75. 

Stamatiadis, N., Kirk, A., Hedges, A., Sallee, T., Amiridis, K., Left-Turn Guidance, 

Kentucky Transportation Center, 2017.  

 

CONFERENCE PROCEEDINGS 

 

Amiridis, K., Stamatiadis, N., Kirk, A. Development of Left-Turn Phasing Decisions 

Combining Simulated Traffic Conflicts and Historical Crashes, 97th Annual Transportation 

Research Board Meeting (TRB), 2018 

Amiridis, K., Stamatiadis, N., Kirk, A. Safety-Based Decisions for Left-Turn Phasing, 6th 

International Road Safety and Simulation Conference (RSS), 2017. 

Stamatiadis, N., Amiridis, K., Kirk, A. Left-Turn Phasing Simulation-Based Decisions, 6th 

International Road Safety and Simulation Conference (RSS), 2017. 

Stamatiadis, N., Sturgill, R., Amiridis, K., Taylor T. Estimating Constructability Review 

Benefits for Highway Projects, Lean and Computing in Construction Congress – Joint 

Conference on Computing in Construction, July 2017. 



 

155 

 

Stamatiadis, N., Sturgill, R., Amiridis, K. Benefits from Constructability Reviews, World 

Conference on Transportation Research (WCTR), July 2016. 

Amiridis, K., Psarianos, B. A Direct and Accurate Sight Distance Calculation by 

Simulating the Road as a Three-Dimensional B-Spline Surface, 5th International Road 

Safety and Simulation Conference (RSS), 2015. 

Amiridis, K., Psarianos, B. Direct Calculation of Water Film Paths as Geodesic Curves 

on a three-Dimensional Road Surface to address Hydroplaning Phenomena, 5th 

International Symposium of Highway Geometric Design (ISHGD), June 2015. 

Amiridis, K., Psarianos, B. Three Dimensional Road Design By Applying Differential 

Geometry and Conventional Design Approach Criteria, 94th Annual Transportation 

Research Board Meeting (TRB), 2015. 

Amiridis, K., Stamatiadis, N., Kirk, A. Safety-Based Signalized Intersection Left-Turn 

Phasing Decisions, 96th Annual Transportation Research Board Meeting (TRB), 2017. 

Amiridis, K., Psarianos, B., Stamatiadis, N. Generic Methodology for 3-D Available Sight 

Distance Calculation, ASCE International Conference on Transportation & Development 

(ICTD), June 2016. 

 

PROFESSIONAL AFFILIATIONS  

 

 Chartered Member of the Technical Chamber of Greece (October, 2018 Candidate). 

 Younger Member in the Street and Highway Operations Committee of the 

Transportation & Development Institute (T&DI) (August 2016 – Present) 

 Member of the American Society of Civil Engineers (ASCE) 

 Member of Chi Epsilon Civil Engineering Honor Society, Kentucky Chapter 

 Member of the Institute of Transportation Engineers (ITE), UK Student Chapter 

and International 

 Member of Engineers Without Borders, Kentucky Chapter 

 Friend of the AFB10 Geometric Design Committee of the Transportation Research 

Board (TRB) 

 

 



 

156 

 

VOLUNTEERING WORK 

 

Engineers Without Borders (August 2016). Design of a cacao processing plant, where 

cacao beans will be fermented and dried, community of Coaque, Pedernales, Ecuador. 

The required information and data were gathered in the assessment trip in August of 

2016. 

 

Urban Planning Committee of the Municipality of Alimos, Alimos, Greece (September 

2014 – August 2015). Involved in monitoring roadway drainage, pavement design, 

traffic signals and signs, markings, and lighting. 

 

 

 


	THE USE OF 3-D HIGHWAY DIFFERENTIAL GEOMETRY IN CRASH PREDICTION MODELING
	Recommended Citation

	THE USE OF 3-D HIGHWAY DIFFERENTIAL GEOMETRY IN CRASH PREDICTION MODELING
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 3-D Highway Design Approach
	2.2 Highway Safety Approaches
	2.2.1 Highway Safety Manual

	2.3 Summary

	3 METHODOLOGY
	3.1 3-D Surface Modeling Approach
	3.2 General Approach
	3.3 Geometric Data
	3.4 Crash Data
	3.5 AADT Data
	3.6 3-D B-Spline Surfaces
	3.6.1 Road Surface
	3.6.2 3D Surface Patches and Crash Allocation

	3.7 Model Development
	3.8 Comparison to Current Safety Estimations
	3.9 Approach Summary

	4 CRASH PREDICTION MODEL
	4.1 Model Data
	4.1.1 Geometric Data
	4.1.2 Crash Data
	4.1.3 AADT Data Needs

	4.2 Statistical Analysis
	4.2.1 Proof-of-Concept
	4.2.2 Model Structure and Predictive Ability Evaluation
	4.2.3 Residuals Analysis
	4.2.4 Influential Points

	4.3 Comparison to Current Guidelines

	5 CONCLUSIONS AND FUTURE RESEARCH
	5.1 Future Research Recommendations

	APPENDIX  A: Gaussian & Mean Curvature
	APPENDIX B: Google Earth Images of Roadway Segments
	APPENDIX C: Geometric Roadway Data & Modeling
	APPENDIX D: Crash Data Plots
	APPENDIX E: AADT Stations and Data
	APPENDIX F: Statistical Analysis for Covariance Scale Determination
	APPENDIX G: Negative Binomial Regression Analysis
	REFERENCES
	VITA

