2,021 research outputs found

    Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems

    Get PDF
    In this paper, the identification of a class of multiscale spatio-temporal dynamical sys-tems, which incorporate multiple spatial scales, from observations is studied. The proposed approach is a combination of Adams integration and an orthogonal least squares algorithm, in which the multiscale operators are expanded, using polynomials as basis functions, and the spatial derivatives are estimated by finite difference methods. The coefficients of the polynomials can vary with respect to the space domain to represent the feature of multiple scales involved in the system dynamics and are approximated using a B-spline wavelet multi-resolution analysis (MRA). The resulting identified models of the spatio-temporal evolution form a system of partial differential equations with different spatial scales. Examples are provided to demonstrate the efficiency of the proposed method

    Left-invariant evolutions of wavelet transforms on the Similitude Group

    Get PDF
    Enhancement of multiple-scale elongated structures in noisy image data is relevant for many biomedical applications but commonly used PDE-based enhancement techniques often fail at crossings in an image. To get an overview of how an image is composed of local multiple-scale elongated structures we construct a multiple scale orientation score, which is a continuous wavelet transform on the similitude group, SIM(2). Our unitary transform maps the space of images onto a reproducing kernel space defined on SIM(2), allowing us to robustly relate Euclidean (and scaling) invariant operators on images to left-invariant operators on the corresponding continuous wavelet transform. Rather than often used wavelet (soft-)thresholding techniques, we employ the group structure in the wavelet domain to arrive at left-invariant evolutions and flows (diffusion), for contextual crossing preserving enhancement of multiple scale elongated structures in noisy images. We present experiments that display benefits of our work compared to recent PDE techniques acting directly on the images and to our previous work on left-invariant diffusions on orientation scores defined on Euclidean motion group.Comment: 40 page

    Bits from Photons: Oversampled Image Acquisition Using Binary Poisson Statistics

    Get PDF
    We study a new image sensor that is reminiscent of traditional photographic film. Each pixel in the sensor has a binary response, giving only a one-bit quantized measurement of the local light intensity. To analyze its performance, we formulate the oversampled binary sensing scheme as a parameter estimation problem based on quantized Poisson statistics. We show that, with a single-photon quantization threshold and large oversampling factors, the Cram\'er-Rao lower bound (CRLB) of the estimation variance approaches that of an ideal unquantized sensor, that is, as if there were no quantization in the sensor measurements. Furthermore, the CRLB is shown to be asymptotically achievable by the maximum likelihood estimator (MLE). By showing that the log-likelihood function of our problem is concave, we guarantee the global optimality of iterative algorithms in finding the MLE. Numerical results on both synthetic data and images taken by a prototype sensor verify our theoretical analysis and demonstrate the effectiveness of our image reconstruction algorithm. They also suggest the potential application of the oversampled binary sensing scheme in high dynamic range photography

    Integrodifferential equations for multiscale wavelet shrinkage : the discrete case

    Get PDF
    We investigate the relations between wavelet shrinkage and integrodifferential equations for image simplification and denoising in the discrete case. Previous investigations in the continuous one-dimensional setting are transferred to the discrete multidimentional case. The key observation is that a wavelet transform can be understood as derivative operator in connection with convolution with a smoothing kernel. In this paper, we extend these ideas to the practically relevant discrete formulation with both orthogonal and biorthogonal wavelets. In the discrete setting, the behaviour of the smoothing kernels for different scales is more complicated than in the continuous setting and of special interest for the understanding of the filters. With the help of tensor product wavelets and special shrinkage rules, the approach is extended to more than one spatial dimension. The results of wavelet shrinkage and related integrodifferential equations are compared in terms of quality by numerical experiments

    Coronal Mass Ejection Detection using Wavelets, Curvelets and Ridgelets: Applications for Space Weather Monitoring

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic feld that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and supressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.Comment: Accepted for publication in Advances in Space Research (3 April 2010

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure
    • …
    corecore