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Abstract—We propose a novel method for constructing Hilbert
transform (HT) pairs of wavelet bases based on a fundamental ap-
proximation-theoretic characterization of scaling functions—the
B-spline factorization theorem. In particular, starting from well-lo-
calized scaling functions, we construct HT pairs of biorthogonal
wavelet bases of by relating the corresponding wavelet fil-
ters via a discrete form of the continuous HT filter. As a concrete
application of this methodology, we identify HT pairs of spline
wavelets of a specific flavor, which are then combined to realize
a family of complex wavelets that resemble the optimally-local-
ized Gabor function for sufficiently large orders. Analytic wavelets,
derived from the complexification of HT wavelet pairs, exhibit a
one-sided spectrum. Based on the tensor-product of such analytic
wavelets, and, in effect, by appropriately combining four separable
biorthogonal wavelet bases of , we then discuss a method-
ology for constructing 2-D directional-selective complex wavelets.
In particular, analogous to the HT correspondence between the
components of the 1-D counterpart, we relate the real and imag-
inary components of these complex wavelets using a multidimen-
sional extension of the HT—the directional HT. Next, we construct
a family of complex spline wavelets that resemble the directional
Gabor functions proposed by Daugman. Finally, we present an ef-
ficient fast Fourier transform (FFT)-based filterbank algorithm for
implementing the associated complex wavelet transform.

Index Terms—Analytic signal, biorthogonal wavelet basis,
B-spline multiresolution, directional Hilbert transform, dual-tree
complex wavelet transform, Gabor function, Hilbert transform,
time-frequency localization.

I. INTRODUCTION

T HE dual-tree complex wavelet transform (DT- WT) is a
recent enhancement of the conventional discrete wavelet

transform (DWT) that has gained increasing popularity as a
signal processing tool. The transform was originally introduced
by Kingsbury [1], [2] to circumvent the shift-variance of the dec-
imated DWT, and involved two DWT channels in parallel with
the corresponding wavelets forming a quadrature pair. In par-
ticular, Kingsbury realized the quadrature relation by interpo-
lating the lowpass filters of one DWT “mid-way” between the
lowpass filters of the other DWT. Moreover, based on appro-
priate combinations of separable wavelets, he extended the dual-
tree construction to two-dimensions, where the corresponding

Manuscript received May 23, 2008; accepted March 14, 2009. First published
April 10, 2009; current version published August 12, 2009. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Patrick Flandrin. This work was supported by the Swiss National Science
Foundation under Grant 200020-109415.

The authors are with the Biomedical Imaging Group, Ecole Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne VD, Switzerland (e-mail:
kunal.chaudhury@epfl.ch; michael.unser@epfl.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2020767

transform, besides improving on the shift-invariance of the 2-D
DWT, exhibits better direction selectivity as well. There is now
good evidence that the transform tends to perform better than
its real counterpart in a variety of applications such as such as
deconvolution [3], denoising [4], and texture analysis [5].

The crucial observation that the dual-tree wavelets involved
in Kingsbury’s construction form an approximate HT pair was
made by Selesnick [6], [7]. He also demonstrated that a par-
ticular phase relation between the lowpass (refinement) filters
of the two channels resulted in the desired HT correspondence.
This link consequently transposed the problem of designing dif-
ferent flavors of dual-tree wavelets to that of identifying new HT
pairs of wavelets. Indeed, following this remarkable connection,
several new paradigms and extensions have been proposed: de-
sign of HT pairs of biorthogonal wavelet bases [8], alternative
frameworks for complex nonredundant transforms [9], and the
M-band extension [10], to name a few.

A. Motivation

The deployment of complex signal representations for the
determination of instantaneous amplitude and frequency is
classical [11], [12]. Gabor and Ville [11], [13] proposed to
unambiguously define them using the concept of the ana-
lytic signal—a unique complex-valued signal representation
specified using the HT. Specifically, the analytic signal

corresponding to a real-valued
signal ( denotes the HT operator) was used to stip-
ulate the instantaneous amplitude and phase via the polar
representation . In particular, this repre-
sentation allows one to retrieve the time-varying amplitude
and frequency of an AM–FM signal of the form

via the estimates
and , assuming

to be slowly-varying compared to . The analytic signal
has become an important complex-valued representation in
signal processing, especially in applications such as phase and
frequency modulation, speech recognition and processing of
seismic data. These concepts have also been transposed to the
multidimensional setting: the local frequency has been used
as a measure of local signal scale; structures such as lines and
edges have been distinguished using the local phase; and the
local amplitude and phase have been used for edge detection
and for texture and fingerprint analysis [14].

The advantage of viewing the dual-tree wavelets as a HT pair
is that we can make a direct connection with the formalism of
analytic signals. Indeed, if we transpose the above concept to
the wavelet domain and consider the input signal to be locally
of the AM–FM form, we obtain a response where the local en-
ergy of the signal is encoded in the magnitude of the wavelet
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coefficients, while the relative displacement is captured by the
phase. In fact, this turns out to be the fundamental reason for
the superiority of the DT- WT over conventional real-valued
transforms whose response is necessarily oscillating.

B. Our Contribution

In this contribution, we invoke the B-spline factorization the-
orem [15]—a fundamental spectral factorization result—along
with certain fractional B-spline calculus [16], to construct HT
pairs of biorthogonal wavelets from well-localized scaling
functions. In particular, we do so by relating the corresponding
wavelets filters via a discrete version of the continuous HT
filter.

Next, we identify a family of analytic spline wavelets, of in-
creasing vanishing moments and regularity, that asymptotically
converge to Gabor-like functions [11]. As far as the implementa-
tion is concerned, unlike Kingsbury’s scheme that uses different
filters for different stages (often with filter-swapping between
the dual-trees), our implementation uses the same set of filters
at all stages of the filterbank decomposition. Notably, we use an
appropriate pair of projection filters for coherent signal analysis
which, in turn, allows us to identify a discrete counterpart of the
analytic wavelet—the so-called analytic wavelet filter that ex-
hibits a one-sided spectrum.

The construction is then extended to two-dimensions through
appropriate tensor-products of the one-dimensional analytic
wavelets. In particular, we construct a family of directional
complex wavelets that resemble the directional Gabor func-
tions proposed by Daugman [17] for sufficiently large orders.
Moreover, we also relate the real and imaginary components of
the complex wavelets using the directional HT—a multidimen-
sional extension of the HT—that provides further insight into
the directional-selectivity of the dual-tree wavelets.

C. Organization of the Paper

We begin by recalling certain fundamental definitions and
properties pertaining to the HT and the fractional B-splines in
Section II. We characterize the action of the HT operator on
B-splines in Section III, which, along with the B-spline factor-
ization theorem, is used to propose a formalism for constructing
HT pairs of biorthogonal wavelet bases in Section IV. The im-
plementation aspects are discussed in Section V. As a concrete
application, we construct the Gabor-like wavelets in Section VI.
In Section VII, directional complex wavelets are constructed
by appropriately combining the wavelets corresponding to cer-
tain separable multiresolution analyses; the highlight of this sec-
tion is the construction of 2-D Gabor-like spline wavelets. The
implementation aspects of the corresponding 2-D Gabor-like
transform are provided in Section VIII, before concluding with
Section IX.

II. PRELIMINARIES

We begin by introducing specific operators and functions
that play a major role in the sequel followed by a discus-
sion of their relevant properties. In what follows, we use

to denote the Fourier transform

of a function on , with being the usual
inner-product on . We also frequently use the notations

and , corresponding to some in and ,
to denote the function obtained by translating (respectively,
dilating) by (respectively, ). We denote the Kro-
necker-delta sequence by : its value is 1 at , and is
zero at all other integers.

A. Hilbert Transform and Wavelets

The Hilbert transform, that generalizes the notion of the
quadrature transformation beyond pure
sinusoids [18], forms the cornerstone of this paper. From a
signal-processing perspective, the HT can be interpreted as
a filtering operation in which the amplitude of the frequency
components is left unchanged, while their phase is altered by

depending on the sign of the frequency.
Mathematically, the HT of a sufficiently well-behaved func-

tion is defined using a singular integral transform [19], [20].
However, in the context of finite-energy signals, it admits a par-
ticularly straightforward formulation based on the Fourier trans-
form on . In particular, the Hilbert transform on is
characterized by the equivalence

(1)

where the multiplier is defined as for nonzero ,
and as zero at .

Based on the above definition,1 and the properties of the
Fourier transform on , the following properties of the HT
can be readily derived.

• Linearity and Translation-Invariance: It is a linear and
translation-invariant operator; that is, it acts as a convolu-
tion operator.

• Dilation-Invariance: It commutes with dilations:
for all .

• Anti-Symmetry: It anti-commutes with the flip operation
, so that ; thus

the HT of a symmetric function is necessarily anti-sym-
metric.

• Unitary (Isometric) Nature: It acts as a unitary operator on
, so that for all and , where

denotes the usual inner-product on . Equiva-
lently, this means that the inverse HT operator is given by
its adjoint: .

It is well-known that HT of a wavelet is also a wavelet.
The implication of the simultaneous invariance to dilations
and translations is that the HT of a dilated-translated wavelet
is a wavelet, dilated and translated by the same amount:

. Moreover, an immediate
consequence of the unitary property is that the HT operator
maps a basis into a basis: if form a (Riesz) wavelet basis
of , then so does . It even preserves biorthogonal
wavelet bases of : if and form a biorthog-
onal wavelet basis of , satisfying the duality criteria

1The definition can also be extended to tempered distributions such as the
Dirac delta and the sinusoid [19, Sec. 2.5].
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, then using the same unitary property,
we have

(2)

so that and form a biorthogonal wavelet basis
of as well. It is exactly the above invariance properties
that make the construction of HT pair of wavelet bases of
feasible.

Unfortunately, the HT exhibits certain inherent pathologies
in the context of multiresolution analyses and wavelets. The
impulse response of the HT, (in the sense of
distributions), clearly indicates the nonlocal nature of the op-
erator. This has two serious implications: i) the HT of a com-
pactly-supported scaling function/wavelet is no longer of finite
support; ii) the HT-transformed function has a -decay
in general, and hence is not integrable; and iii) the (anti-sym-
metric) HT suppresses the dc-component of symmetric scaling
functions that is essential for fulfilling the partition-of-unity cri-
terion. Therefore, the HT of a scaling function is not a valid
scaling function, and cannot be used to specify a multiresolu-
tion analysis in the sense of Mallat and Meyer [21], [22].

Next, we recall the notion of an analytic signal that gener-
alizes the phasor transformation to
finite-energy signals using the HT as the quadrature transfor-
mation. In general, the analytic signal associated with a
real-valued signal is defined as the complex-valued signal

In particular, when . Im-
portantly, note that the Fourier transform of the analytic signal
evaluates to , so that vanishes
for all negative frequencies. It is exactly this one-sided spectrum
that makes the analytic signal particularly interesting in signal
processing [11]; we exploit this property for constructing direc-
tional wavelets in Section VII.

B. Fractional B-Spline Multiresolution

The family of fractional B-splines [23]—fractional exten-
sions of the polynomial B-splines—will play a key role in
the sequel. In particular, we recall that the fractional B-spline

, corresponding to a degree and a shift , is
specified by its Fourier transform

(3)

The parameters and control the width and the average group
delay of the scaling function respectively. In particular, when

, the fractional B-spline corresponds to the
causal B-spline defined in [16]. The fractional B-splines,
in general, do not have a compact support (except for integer
degrees); however, their decay ensures their inclu-
sion in . Another relevant property that will be
invoked frequently is that the shift influences only the phase
of the Fourier transform; that is, is independent of .

The fundamental role played by fractional B-splines in this
paper is, however, based on the fact they satisfy certain admis-
sibility criteria [16], [23] needed to generate a valid multireso-
lution of .

C1) The approximation space
admits a stable Riesz basis.

C2) There exists an integrable sequence (refinement
filter) such that the two-scale relation

holds. In particular, the transfer function of the refine-
ment filter is specified by

C3) Partition of unity: The integer-translates of can
reproduce the unity function.

We briefly discuss the significance of these admissibility con-
ditions. The criterion C1) ensures a stable and unique represen-
tation of functions in using coefficients from ; equiv-
alently, this also signifies that the transfer function of the auto-
correlation (Gram) filter, , is
uniformly bounded from above, and away from zero [24]. On
the other hand, C2) implies the inclusion of in ,
which, in turn, allows one to define a hierarchical embedding
of approximation spaces that is key to the multireso-
lution structure of the associated wavelet transform. Finally, the
technical condition C3) ensures that the multiresolution is
dense in : arbitrarily close approximations of functions in

can be achieved using elements from .

III. HILBERT TRANSFORM AND B-SPLINES

It turns out that the action of the HT on B-splines can be ef-
fectively characterized in terms of certain fractional finite-dif-
ference (FD) operators. In particular, corresponding to an order

and shift , we consider the operator defined
on by

where .
One recovers the conventional th order FD operator by set-

ting and . Since the operator has a periodic
frequency response, one can associate with it a digital filter

through the correspondence .
The FD operator that is especially relevant for our purpose is
the zeroth-order operator (henceforth, we simply de-
note it by ). The corresponding frequency response

reduces2 to

2We specify the fractional power of a complex number by
corresponding to the principal argument .

On this principal branch, the identity holds only if
[25, Ch. 3].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 19, 2009 at 08:46 from IEEE Xplore.  Restrictions apply. 



3414 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 9, SEPTEMBER 2009

signifying that is in ; thecorrespondingfilter
coefficients in are then specified3 by

Thus, similar to the HT operator, is also unitary, and the cor-
responding filter can be interpreted as a discrete form of
the continuous HT filter . In particular, we can relate the
action of the HT on the B-splines solely in terms of this filter.
Indeed, it can easily be seen that the Fourier transform of the
B-spline can be factorized as

which, along with the identity
, results in the equivalence

that establishes the desired result as follows.
Proposition 3.1: The HT of a fractional B-spline can be ex-

pressed as

(4)

In particular, the digital filter acts as a unitary convolution
operator on when applied to functions, and as a discrete
filter on when applied to sequences. The theoretical dif-
ficulty with the HT stems from the fact that its frequency re-
sponse has a singularity at , which results in a poor decay
of the transformed output. The remarkable feature of (4) is that
we have been able to express the slowly decaying HT as a linear
combination of the better-behaved B-splines. Specifically, the
sequence decays only as , whereas de-
cays as .

Thus, by expressing the HT using shifted B-splines as in (4),
we have, in effect, moved the singularity onto the digital filter. In
thesequel,weshall apply thisfilter to thewaveletswhere its effect
is much more innocuous since around the origin.

Half-Delay Filters: As remarked earlier, the shift parameter
only affects the phase of the Fourier transform of the frac-

tional B-spline and the corresponding refinement filter [23]. In
particular, based on the factorization

we arrive at the following result.

3The inverse Fourier transform over the principal period is invoked.

Proposition 3.2: The spline refinement filters and
are “half-sample” shifted versions of one another in

the sense that

(5)

for all in .
Indeed, if we consider the bandlimited function

that satisfies the constraint
, then we have, as a consequence of (5), the relation

: each filter provides the bandlimited
interpolation of the other midway between its samples.

Finally, we make a note of the fact that the above refinement
filters can also be related through a conjugate-mirrored version
of the FD filter:

(6)

IV. HT PAIR OF WAVELET BASES

Before stating the main results, we recall the approxima-
tion-theoretic notion of approximation order, and a fundamental
spectral factorization result involving B-splines.

Approximation Order: Scaling functions play a fundamental
role in wavelet theory. The technical criteria for a valid scaling
function was discussed earlier in the context of B-splines (cf.
Section II-B). Next we recall the fundamental notion of order
for a scaling function that characterizes its approximation power
[15]. A scaling function is said to have an approximation
order if and only if there exists a positive constant such that
for all elements of the Sobolev space , of order , we
have the estimate

Here denotes the projection operator from onto the
approximation subspace , and de-
notes the (distributional) derivative of order . In other words,
the approximation order provides a characterization of the rate
of decay of the approximation error for sufficiently regular func-
tions as a function of the scale.

It turns out that, akin to their polynomial counterparts, the
order of fractional B-splines is entirely controlled by their de-
gree [16], [23]; in particular, we have . Equivalently,
this signifies that any polynomial of degree can be repro-
duced by the set , which is crucial for capturing the
lowpass information in images is concerned.

Characterization of Scaling Functions: A fundamental re-
sult in wavelet theory is that it is always possible to express a
valid scaling function as a convolution between an fractional
B-spline and a distribution [15]. The original result in [15] in-
volves causal B-splines; however, the result can readily be ex-
tended to the more general fractional B-splines since the shift
parameter does not influence the order of the scaling func-
tion. Indeed, note the theorem in [15] asserts that is the
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refinement filter of a valid scaling function (cf. Section II-B) of
order if and only if it can be factorized as

(7)

where is stable: for all .
Rewriting (7) in terms of a B-spline refinement filter, we
then have the following equivalent representation:

(8)

with for .
Note that is stable, with for all .
That is, is the refinement filter of a valid scaling function
of order if and only if it admits a stable factorization as in
(8). We then arrives at the following extension.

Theorem 4.1 (B-Spline Factorization): A valid scaling func-
tion is of order if and only if its Fourier transform
can be factorized as

for some , where is a function of that is bounded
on every compact interval, and equals unity at the origin.

In the signal domain, this corresponds to a well-defined con-
volution between a B-spline and the tem-
pered distribution . The crux of the above result is that it is
the constituent B-spline that is solely responsible for the ap-
proximation property, and other desirable features of the scaling
function [15].

A. Construction of HT Pairs of Wavelets

In what follows, we use the notation , corresponding to
a function , and integers and , to denote the (normalized)
dilated-translated function . The HT of a wavelet
is also a wavelet in a well-defined sense. In particular, if
is a wavelet whose dilations-translations form a Riesz
basis of , then is also a valid wavelet with
constituting a Riesz basis of . As remarked earlier, this
follows from the fundamental invariance properties of the HT.

We now establish a formalism for constructing the HT of
a given wavelet . In particular, if be the associated
scaling function, say of order , and be the generating
wavelet filter, then we have the relation

Following Theorem 4.1, let us factorize as

corresponding to some real . Then, consider the scaling func-
tion , of the same order, specified by

. Let be any arbitrary wavelet, corresponding to the
multiresolution analysis associated with , that is specified
by . We then have the following
necessary and sufficient condition for the desired HT correspon-
dence in terms of the discrete HT filter (see Section XI-A
for a proof).

Theorem 4.2 (HT Pair of Wavelets): The wavelets and
have the correspondence if and only if

.
Moreover, the construction has the following characteristics:
• both and have the same Riesz bounds and the

same decay;
• the refinement filters and corresponding

to and respectively, are related as

for all in .
The equality of the Riesz bounds follows from the observation
that the autocorrelation filters of and are identical.
Indeed, we have

The assertion regarding the decay is based on the observation
that both and have the same decay. Finally,
using (5) and (8), we can relate the transfer functions on
as follows

where denotes the transfer function of the filter associ-
ated with the distribution .

Remark: Note that although is unique, the scaling
function and the corresponding filter generating

are by no means unique. For instance, the particular
choice and is sufficient to ensure
that . Moreover, if and gen-
erate the wavelet such that

, then so do
and . Here, the filter is such that

for all so that the convolutional
inverse is well-defined.

The condition is both necessary and
sufficient only for our preferred choice of the scaling function

. This particular choice of the scaling
function against the more direct choice is justified on
the following grounds.

• The function is well-localized with better decay
properties than ; the latter is not even integrable in
general (e.g., the Harr scaling function).

• The scaling function satisfies the partition-of-unity
requirement, whereas is not a valid scaling func-
tion since is not necessarily unity. For example, if

is symmetric and is integrable, then we have
following the fact that

is anti-symmetric.
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B. HT Pairs of Biorthogonal Wavelets

A biorthogonal wavelet basis of , corresponding to the
dual-primal scaling function pair of order ,
involves the nested multiresolution

and its dual

where the approximation subspace (respectively, ) is gen-
erated by the translations of (respectively, ) [24].
Let be the wavelets associated with these multiresolu-
tions, which, along with their dilated-translated copies, encode
the residual signal—the difference of the signal approximations
in successive subspaces. In particular, the wavelet (re-
spectively, ) and its translates span the complementary
space (respectively, ). The
crucial aspect of the construction is that the dilated-translated
ensemble and form a dual basis of ,
i.e., they satisfy the biorthogonality criteria

. The expansion of a finite-energy signal
in terms of this biorthogonal basis is then given by

In other words, the wavelets and , inter-
preted as the analysis and synthesis wavelets respectively, to-
gether constitute a biorthognal wavelet basis of .

In particular, let and be the scaling functions, of
order and respectively, associated with a given
biorthogonal wavelet basis, with associated wavelets

Now, let and be the
respective factorizations of and . Consider the scaling
functions and

, with associated wavelets specified by

Then the following result comes as a direct consequence of The-
orem (4.2).

Corollary 4.3: (HT Pair of Biorthogonal Wavelets): The fol-
lowing are equivalent:

• the primal and dual wavelets form HT pairs,
and , and and

together constitute a biorthogonal wavelet
basis of ;

• the discrete HT correspondences and
hold.

The above construction also exhibits the following properties.
• The two biorthogonal systems have the same order and the

same Riesz bounds.
• If the pair satisfy the biorthogonality relation, then

so do . Indeed, using the identity

, we can express the inner-product
as

which establishes the assertion.
• The lowpass filters on both the analysis and synthesis side

are “half-sample” shifted versions of one another, and are
related via the modulation of the discrete HT filter:

In particular, the filter is “half-sample” delayed on the anal-
ysis side, whereas on the synthesis side the filter has a
“half-sample” advance.

• The highpass filters on both the analysis and synthesis side
are related through the FD filter as

• If the analysis and synthesis filters of the original biorthog-
onal system satisfy the PR conditions

then so do the filters of the HT pair. Indeed, since
, we have

Similarly, .
Note that above properties relate to a common theme: the unitary
nature of the operators and involved in the wavelet and the
filterbank construction, respectively.

V. 1-D IMPLEMENTATION

Signal Prefiltering: In order to implement the DT- WT,
we need to employ two parallel wavelet decompositions corre-
sponding to the wavelets and . Moreover, to have a
coherent signal analysis—same input applied to both wavelet
branches—we need to project the input signal separately
onto and before applying the respective DWTs. In
particular, given a finite-energy input signal , we consider
its orthogonal projection onto the
space . The -level wavelet decomposition of the signal

is subsequently given by
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where the wavelet coefficients , and the coarse approxima-
tion coefficients are recursively derived from the projec-
tion coefficients using Mallat’s filterbank algorithm [21].

However, in practice one has access only to the discrete sam-
ples of the input signal ; let be such (uniform)
signal samples. It turns out that by assuming the input signal

to bandlimited, a particularly simple digital filtering algo-
rithm for computing the projection coefficients is obtained:

(9)

where the frequency response of the digital filter is
uniquely specified by the restriction for

(derivation details in Section XI-C).
As for the second branch, the input signal is projected onto

the corresponding approximation space : the same type
of prefiltering is applied with an appropriate modification of the
frequency response, i.e., is used instead of . To im-
plement the filters for finite input signals, we use a FFT-based
algorithm, similar to the one used in [26] for implementing the
DWT filters.

Analysis and Reconstruction: To simplify the notation, we
shall henceforth use matrix notation to represent the linear trans-
formations associated with the discrete DT- WT. For instance,
corresponding to an input signal , the least-square pro-
jections are specified by and , where and

are the circulant matrices corresponding to the two
prefilters.

Let and be the set of perfect-re-
construction filters associated with the biorthogonal systems

and , respectively. The lowpass
and the highpass subbands at suc-

cessive levels are then given by the recursive
filterbank decompositions

(10)

where and (respectively, and ) denote the com-
position of the downsampling matrix and the DWT matrix rep-
resenting the lowpass and highpass analysis filters of the first
(respectively, second) channel. The complex wavelet subbands

are then specified by . In fact, the
analysis can be summarized by the single frame operation

from a lower-dimensional space to a higher-dimensional space:
.

In several signal processing applications (e.g., denoising) one
also needs to perform an inverse transform, that is, reconstruct
the denoised signal from the processed complex wavelet coef-
ficients. Since is realized through the concatenation of bases,
it is injective: only if ; however, as result of the
redundancy, exhibits nonunique left-inverses. In our case, we
use a simple left-inverse:

Fig. 1. Transfer function of the analytic wavelet filter .

where are obtained via the recursion

(11)

for ( and denote the real and
imaginary components of , respectively). Here, and (re-
spectively, and ) represent the composition of the DWT
matrix corresponding to the lowpass and highpass synthesis fil-
ters of the first (respectively, second) channel and the upsam-
pling matrix. In short, the above inversion operation essentially
amounts to inverting the two parallel transforms and averaging
the inverses.

Remark: The role played by the two projection fil-
ters and is critical as far as the issue
of analyticity is concerned. Note that, while the analytic
wavelet has an exact one-sided Fourier transform (by
construction), the corresponding complex wavelet filter

does not inherit this property naturally; it
is only the combination of the projection and wavelet filters,

that exhibits
this property: for . Fig. 1 shows the
one-sided magnitude response of the filter.

VI. GABOR-LIKE WAVELETS

The “quantum law” for information—the principle that the
joint time-frequency domain of signals is quantized, and that
the joint time-frequency support of signals always exceed a cer-
tain minimal area—was enunciated in signal theory by Gabor
[11]. He also identified the fact that the family of Gaussian-mod-
ulated complex exponentials (and their translates) provide the
best tradeoff in the sense of Heisenberg’s uncertainty principle.
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The canonical Gabor transform analyzes a signal using the
set of “optimally-localized” Gabor atoms:

(12)

generated via the modulations-translations of a Gaussian-mod-
ulated complex exponential pulse [11], [27]. In particular, this
paradigm involves the analysis of a finite-energy signal
using the discrete sequence of projections cor-
responding to different modulations and translations

.
Note that the Gabor atoms have a fixed size (specified by

the width of the Gaussian window), and hence the associ-
ated transform essentially results in a “fixed-window” analysis
of the signal. Moreover, the analysis functions form
a frame [24] and not a basis of ; consequently, the recon-
struction process involving the dual frame is often computation-
ally expensive and/or unstable [27].

A. Analytic Gabor-Like Wavelets

As a concrete application of the ideas developed in
Section IV, we now construct a family of analytic spline
wavelets that asymptotically converge to Gabor-like func-
tions. In particular, we consider the family of semi-orthogonal
B-spline wavelets that are better localized in space than their
orthonormal counterparts, and that exhibit remarkable joint
time-frequency localization properties [28].

In particular, consider the multiresolution in Section II-B,
generated by the fractional B-spline . The transfer func-
tion of the wavelet filter that generates the so-called B-spline
wavelet [29] associated with this multiresolution is specified by

(13)

We denote the wavelet by . The dual multiresolution (re-
spectively, wavelet) is specified by the unique dual-spline func-
tion (respectively, dual wavelet, denoted by ).

Following Corollary 4.3, it can be shown (proof provided in
Section XI-B) that the family of B-spline wavelets ,
of a fixed order , and their duals are closed with respect to the
HT.

Proposition 6.1 (HT Pair of B-Spline Wavelets): The HT of
a B-spline (respectively, dual-spline) wavelet is a B-spline (re-
spectively, dual-spline) wavelet of same order, but with a dif-
ferent shift:

(14)

The importance of this result is that it allows us to identify
the analytic B-spline wavelet of degree and shift

In the sequel (cf. Section VII-C), we shall make particular
use of this analytic spline wavelet. We would, however, like
to highlight a different aspect: the remarkable fact that the
wavelet resembles the celebrated Gabor functions for

Fig. 2. HT pairs of B-spline wavelets. In either case, Blue (solid line): ,
Red (broken line): , Black (solid line): .

sufficiently large . Indeed, it was shown in [28] that the
B-spline wavelets asymptotically converge to the real part of
the Gabor function; by appropriately modifying the proof in
[28], the following asymptotic convergence can established:

(15)

where ,
with and . We re-
call that the asymptotic notation signifies that

as for all . Immediately, we have
the following result:

Proposition 6.2 (Gabor-Like Wavelet): The complex
B-spline wavelet resembles the Gabor function for
sufficiently large

(16)

The above convergence happens quite rapidly. For instance,
we have observed that the joint time-frequency resolution of the
complex cubic B-spline wavelet is already within 3%
of the limit specified by the uncertainty principle. Fig. 2 de-
picts the complex wavelets generated using HT pair of B-spline
wavelets; the wavelets becomes more Gabor-like as the degree
increases. Also shown in the figure is the magnitude envelope

of the complex wavelet which closely resembles the
well-localized Gaussian window of the Gabor function. From a
practical viewpoint, this means that one could use the nonredun-
dant and numerically stable multiresolution spline transforms to
approximate the Gabor analysis.

Remark: While the B-spline wavelets tend to be optimally
localized in space, we have already observed that they are not
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Fig. 3. HT pairs of dual-spline wavelets. In either case, Blue (solid line):
, Red (broken line): .

orthogonal to their translates. The reconstruction therefore re-
quires the use of some complementary dual functions. The flip
side is that these dual-spline wavelets have a comparatively poor
spatial localization, that deteriorates as the degree increases.
This is evident in Fig. 3, which shows quadrature pairs of such
wavelets of different degrees. However, we should emphasize
that the dual (synthesis) wavelets have the same mathematical
rate of decay as their analysis counterpart, and that the associ-
ated reconstruction algorithm is fast and numerically stable.

B. Gabor-Like Transform

The dual-tree Gabor-like transform is based on the analytic
B-spline wavelet , where the de-
gree is sufficiently large (the choice is arbitrary). The
analysis and synthesis filters for the first and second channel are
as specified below [29]:

• First channel:

(17)

• Second channel:

(18)

The DT- WT corresponding to this Gabor-like wavelet
would then result in the analysis of the input signal in terms
of the sequence of multiscale projections
onto the (normalized) dilated-translated templates of the
Gabor-like wavelet . Note that here the Gabor-like
wavelet is used for analysis, whereas its dual is used for
synthesis. The corresponding DWTs and

are efficiently implemented using a prac-
tical FFT-based algorithm, outlined in [26]. This method is

Fig. 4. Wavelets associated with the separable basis. The figure shows the LH,
HL, and HH wavelets in the space domain.

exact despite the infinite support of the underlying wavelets,
and achieves perfect-reconstruction up to a very high accuracy.
The prefilters, and , are also implemented in a similar
fashion. An added advantage of the frequency domain imple-
mentation is that the execution time is independent of the order
of the spatial filters. Moreover, the filters in (17) need to be
precomputed once and for all in order to apply the transform to
different signals (of a fixed length).

VII. BIVARIATE EXTENSION

Next, based on ideas similar to those of Kingsbury [30], we
construct 2-D complex wavelets, and 2-D Gabor-like wavelets
in particular, using a tensor-product approach. Moreover, we
also relate the real and imaginary components of the complex
wavelets using a multidimensional extension of the HT.

Separable Biorthogonal Wavelet Basis: Biorthogonal
wavelet bases of can be combined to construct a
biorthogonal wavelet basis of . The underlying principle
used to construct such a basis using tensor-products is as
follows [24]:

Theorem 7.1: Let be the primal and dual wavelets
of a biorthogonal wavelet basis of , with corresponding
scaling functions . Similarly, let constitute
another biorthogonal wavelet basis with corresponding scaling
functions . Consider the following separable wavelets
and their duals

Then the dilation-translations of and
together constitute a biorthogonal

wavelet basis of .
The functions and are popularly referred

to as the “low–high” (LH), “high–low” (HL), and “high–high”
(HH) wavelets, respectively, to emphasize the directions along
which the lowpass scaling function and the highpass wavelet
operate (here denote the spatial coordinates). Note
that the primal and dual approximation spaces for the above
construction are and , respec-
tively, where denotes the subspace

.

A. Wavelet Construction

A drawback of 2-D separable wavelets is their preferential re-
sponse to horizontal and vertical features. Fig. 4 shows the three
separable wavelets arising from the separable construction. The
pulsation of the LH and HL wavelets are oriented along the
directions along which the constituent 1-D wavelets operate.
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However, the HH wavelet, with its constituent 1-D wavelets op-
erating along orthogonal directions, does not exhibit orientation
purely along one direction; instead it shows a checkerboard ap-
pearance with simultaneous pulsation along the diagonal direc-
tions.

This is exactly where the analytic wavelet ,
with its one-sided frequency spectrum comes to the rescue: if
instead of employing separable wavelets of the form ,
complex wavelets of the form are used, then the
corresponding spectrum will have only one
passband, and consequently the real wavelets
and will indeed be oriented.

The motivation then is to use HT pairs of 1-D biorthogonal
wavelets to construct oriented 2-D wavelets. In particular, we
do so by appropriately combining four separable biorthogonal
wavelet bases using Theorem (7.1). To begin with, we imme-
diately identify the two scaling functions and

, associated with the analytic wavelet
, where . This naturally leads

to the possibility of four separable biorthogonal wavelet bases
corresponding to the following possible choices of approxima-
tion spaces: , and

. In fact, as will be demonstrated shortly, we will
employ all of these to obtain a balanced construction.

First, we identify the separable wavelets corresponding to the
four scaling spaces:

(19)

The corresponding dual wavelets are specified identically
except that the dual wavelets are used instead of the primal ones.
Finally, by judiciously using the one-sided spectrum of the an-
alytic wavelet , and by combining the
four separable wavelet bases (19), we arrive at the following
wavelet specifications:

(20)

The dual complex wavelets, , are specified in an iden-
tical fashion using the dual wavelets . Importantly, the
above construction is complete in the sense that it involves all
the separable wavelets of the four parallel mul-
tiresolutions. The factor ensures normalization: the real
and imaginary components of the six complex wavelets have
the same norm.

B. Directional Selectivity and Shift-Invariance

A real wavelet has a bandpass spectrum that is symmetric
w.r.t. to the origin. As a result, for the wavelet to be oriented, it
is necessary that its spectrum be bandpass only along one pref-
erential direction. We claim that the real and imaginary com-
ponents of the above complex wavelets are oriented along the
primal directions

, and , respectively. Indeed, it is easily seen that
the support of and is restricted to the half-plane

, since their Fourier transform can be
written as . As it is neces-
sary for the real functions and to have sym-
metric passbands, the claim about their orientation along the
horizontal direction then follows immediately. The orientation
of the components of the wavelets and along the
vertical direction follows from a similar argument.

As far as the wavelet is concerned, note that
. As a consequence,

the support of is restricted to the quadrant
. The symmetry requirements on the spectrums

of and then establish their orientation
along . A similar argument establishes the orientation of the
real components and along .

The above-mentioned directional properties allude to some
kind of analytic characterization of the complex wavelets. In-
deed, akin to the 1-D counterpart, it turns out that the compo-
nents of the above complex wavelets can also be related via a
multidimensional extension of the HT that provides further in-
sights into the orientations of the wavelets. In particular, we con-
sider the following directional version of the HT [31]:

(21)

specified by the unit vector pointing in
the direction . That is, the directional HT is per-
formed with respect to the half-spaces and

specified by the vector , and it maps the
directional cosine into the directional sine .
Based on the wavelet definitions (20), the following correspon-
dences (for a proof see Section XI-D) can then be derived.

Proposition 7.2: The real and imaginary components of
the complex wavelets form directional HT pairs. In
particular

(22)

A significant problem with the decimated DWT is that the
critical down-sampling makes it shift-variant. The redundancy
of the dual-tree transform has been successfully exploited for
partially mitigating this shift-variance problem [1], [2]. Our de-
sign further mitigates this shift-variance problem by using a
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finer sub-sampling scheme in the 0 and 90 directions. Ob-
serve that owing to the fact that

. These wavelets provide a finer sam-
pling in the -direction. Similarly, the vertical wavelets give us
a finer sampling in the -direction.

C. Gabor-Like Wavelets

Daugman generalized the Gabor function to the following
2-D form

(23)

involving the modulation of an elliptic Gaussian using a direc-
tional plane-wave, to model the receptive fields of the orienta-
tion-selective simple cells in the visual cortex [17].

We are particularly interested in the dual-tree wavelets,
denoted by , derived from the
quadrature B-spline wavelets and

. These complex wavelets inherit the asymptotic
properties of the constituent spline functions. Indeed, by appro-
priately modifying the proof in [28], it can be shown that

(24)

for sufficiently large , where . This, com-
bined with (16), then results in the following asymptotic char-
acterization:

Proposition 7.3 (2-D Gabor-Like Wavelets): The complex
wavelets resemble the 2-D Gabor functions for suf-
ficiently large

where
; and

.
We call the wavelets “Gabor-like” since they form approx-

imates of 2-D Gabor functions similar to the ones proposed
by Daugman (23). The dual-tree transform (cf. Section VIII)
corresponding to a specific family of such Gabor-like wavelets
(fixed and ) results in a multiresolution, directional analysis
of the input image in terms of the sequence of projections

. Fig. 5 shows the 2-D Gabor wavelets
corresponding to and . The ensemble shows the
modulus and the real component
of the six complex wavelets; the former shows the pulsations of
the directional plane waves, whereas the latter shows the ellip-
tical Gaussian envelopes.

Fig. 5. 2-D Gabor-like wavelets. Left: Real component of the six complex
wavelets, Right: Magnitude envelope of the six complex wavelets. The diag-
onally placed wavelets are identical, they are used twice to balance the repre-
sentation.

D. Discussion

Before moving on to the implementation, we digress briefly
to discuss certain key aspects of our construction.

• Directionality: The six complex wavelets in Kingsbury’s
DT- WT scheme are oriented along the directions:

15 45 , and 75 [2]. Though we use similar sep-
arable building blocks in our approach, our wavelets are
oriented along the four principal directions:
and . The added redundancy along the horizontal
and vertical directions yields better shift-invariance along
these directions. Alternatively, we could also have applied
Kinsbury’s construction to obtain Gabor-like wavelets
orientated along 15 45 , and 75 .

• Localization Versus Frame Bounds: In this paper, we
placed emphasis on time-frequency localization, and were
able to construct new wavelets that converge to Gabor-like
functions. These basis functions should prove useful
for image analysis tasks such as extraction of AM–FM
information and texture analysis. However, the price to
pay for this improved localization is that the associated
transform—in contrast with the transforms constructed
by Kingsbury et al. [30], [32]—is no longer tight, and
consequently requires a different set of reconstruction
filters. Nevertheless, the tightness of the frame-bounds—a
desirable property for image processing applications such
as denoising and compression—can, in principle, also be
achieved within our proposed framework by replacing the
B-spline wavelets with the orthonormal ones (Battle–Lé-
marie wavelets).

• Analytic Properties: Our method of construction takes a
primary wavelet transform and obtains an exact HT pair
using a simple unitary mapping. The consequence is that
all fundamental approximation-theoretic properties of con-
tinuous-domain wavelets, such as vanishing moments and
regularity, are automatically preserved, and that the associ-
ated filters inherit an exact one-sided response. We also ob-
tain an explicit space-domain expression for the Gabor-like
wavelets.

• Multidimensional HT Properties: The directional HT cor-
respondences (22) for our complex wavelets follows as a
direct consequence of the tensor-product construction. We
would however like to note that there exist other multi-
dimensional extensions of the HT as well: the “single-or-
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thant” extension of Hahn [33] involving the boundary dis-
tribution of analytic functions; the “hypercomplex” exten-
sion due to Bülow et al. [34]; the “monogenic” signal due
to Felsberg et al. [35]; and the spiral-phase quadrature
transform of Larkin et al. [36]. The last two in the list
are closely related to the Riesz transform of classical har-
monic analysis [37]. Design of directional wavelets based
on these and other alternative extensions are a promising
topic of research [38], [39].

VIII. 2-D IMPLEMENTATION

Prefiltering: The input signal has to be projected onto each
of the four separable spaces of the form be-
fore initiating the multiresolution decompositions. As in the
1-D setting, the orthogonal projection is achieved in a separable
fashion using an appropriate prefilter along each dimension. In
particular, if be the uniform samples of a bandlim-
ited input signal , then the projection coefficients are given
by , where the separable prefilter is
specified by for

in .
In general, there would be four such projections

, corresponding to the 2-D prefilters
associated with the four approximation spaces. Note that the
filters can be implemented efficiently through successive 1-D
filtering along either dimension.

Analysis: We consider the implementation aspects for a finite
input signal . The transform, corresponding to the
complex wavelets (20), involves four separable DWTs with dif-
ferent filters applied along the and directions (cf. Table VIII
for the list of filters), and result in four subbands at each decom-
position level. Specifically, let , and

, denote the low-low, low-high, high-low
and high-high subbands, respectively, of the four DWT decom-
positions at resolution . The low-low subbands

are identified as the four set of prefiltered signals
, with being the (block) circulant matrices

associated with the 2-D prefilters. The coarser subbands at
levels are then given by

(25)

where denotes the composition of the th DWT ma-
trix (employing analysis filters and in the -direction and

-direction), and the downsampling matrix.
The complex subbands are

specified by , where

(26)

Fig. 6. Block diagram of the 2-D complex wavelet transform.

are obtained through a particular permutation of the 12 highpass
subbands; and the block matrices and are specified as

(27)

In short, the transform can be formally summarized via the
frame operation

involving the sequence of transformations: projections
; discrete wavelet transforms ; per-

mutation , and orthonormal transformations and .
Fig. 6 provides a schematic of these sequence of transforma-
tions.

Reconstruction: Note that the permutation

(28)

involved in (26) is invertible, and that the matrices and
are orthonormal, with corresponding inverses given by

and respectively. Starting with the complex wavelet sub-
bands , the highpass subbands cor-
responding to the bands and , are then com-
puted from the vectors and ,
via the permutation at levels . These, along
with the lowpass subbands , are then used to
reconstruct the projected signals using the
recursion

(29)

for . Here, represents the compo-
sition of the upsampling matrix and the synthesis matrix cor-
responding to the th DWT, with filters and in the
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Fig. 7. Directional decomposition (one-level) of a synthetic image (Octagon)
and a natural image (Cameraman) using the Gabor-like transform. Ordering
of the subbands in either case: First column : ; Second column

; Third column and .

-direction and -direction, respectively, as specified in Table
VIII. The input signal samples are finally recovered as

.
2-D Gabor-Like Transform: The Gabor-like transform

is based on the analytic B-spline wavelets specified in
Section VII-C, where the complex subbands represent
the directional decompositions of the input image along the
four primal directions using the optimally-localized Gabor-like
wavelets at different resolutions. The filterbank
analysis (25) and synthesis (29) operations are implemented in
a separable fashion using the 1-D spline DWT filters specified
in (17) and (18).

Fig. 7 shows the magnitude response of the six complex
wavelet subbands obtained by applying our Gabor-like trans-
form to a synthetic and a natural image. In particular, the
wavelet subbands corresponding to the synthetic image, with
directional edges along and , highlight the
directional-selectivity of the transform. The simulation was
carried out in MATLAB 7.5 on a Macintosh 2.66 GHz Intel
dual-core system. The average execution time for one-level
wavelet analysis and reconstruction (including pre- and post-
filtering) of a 512 512 image is 1.2 s, and the reconstruction
error is of the order of .

IX. CONCLUDING REMARKS

The primary objective of this contribution was to combine
the attractive features of Gabor analyses and multiresolution
wavelet transforms into a single theoretical framework, and to
provide a fast algorithm for the same. Specifically, we proposed
a formalism for constructing exact HT pairs of biorthogonal
wavelets based on i) the B-spline factorization theorem and ii)
a natural discretization of the continuous HT filter identified
via the action of the HT on fractional B-splines. Based on this
methodology, analytic wavelets resembling the Gabor function
were then designed using HT pair of B-spline wavelets.

We then extended our scheme to 2-D: starting from HT pair
of 1-D biorthogonal wavelet basis, we constructed directional
complex wavelets by appropriately combining four separable
biorthogonal wavelet bases. In particular, we related the real and
imaginary components of the complex wavelets using a direc-
tional extension of the HT. The particular family of wavelets
constructed using B-splines was shown to resemble the direc-
tional Gabor function family proposed by Daugman. Finally, we
demonstrated how the discrete Gabor-like transforms could be
implemented using fast FFT-based filterbank algorithms.

APPENDIX

A. Proof of Theorem 4.2

We begin with the following sequence of equivalences:

based on (4), and the linearity, associativity, and commutativity
of the underlying convolution operators. The sufficiency part of
the theorem then follows immediately: if , then

.
Conversely, let , so that

. Now, since forms a Riesz
basis of the subspace , every el-
ement in necessarily has a unique representation. Hence,

.

B. Proof of Proposition 6.1

The primal scaling functions can be trivially factorized:
and , where

is the Dirac delta distribution. Similarly, the dual scaling
functions can be factorized as and

, where with
. Note that in the latter case we

have particularly used the fact that , and hence ,
are independent of .

The proposition then follows from Corollary (4.3) since the
wavelet filters satisfy the sufficiency conditions:

and , respectively. Indeed, from (6) and
(13), we have

The other condition can be similarly
derived.
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Fig. 8. Analysis and synthesis filters corresponding to the four multiresolutions.

C. Derivation of (9)

It is well-known that the least-square approximation operator
, defined by

gives the orthogonal projection of onto . The solu-
tion to the above problem is explicitly given by

where the coefficients are specified by
. Here denotes the dual of that satis-

fies the biorthogonality criterion . More-
over, under the constraint that , we recover a
unique dual that is specified by the Fourier transform

[40].
Next, using the Poisson summation formula, we derive

the expression for the
(discrete) Fourier transform of . The bandlimited model

finally results in the simplification

(30)

where equals on , and is the
Fourier transform of .

D. Proof of Proposition 7.2

We establish the correspondence for the wavelets and
(the rest can be derived similarly). The correspondence

for the former is direct:
.

Next, note that the Fourier transforms of and
can be written as

and

The correspondence then fol-
lows from the identity

.
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