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Left-invariant evolutions of wavelet transforms on the Similitude

Group

Upanshu Sharma and Remco Duits

June 7, 2013

Abstract

Enhancement of multiple-scale elongated structures in noisy image data is relevant for many biomed-
ical applications but commonly used PDE-based enhancement techniques often fail at crossings in an
image. To get an overview of how an image is composed of local multiple-scale elongated structures we
construct a multiple scale orientation score, which is a continuous wavelet transform on the similitude
group, SIM(2). Our unitary transform maps the space of images onto a reproducing kernel space de-
fined on SIM(2), allowing us to robustly relate Euclidean (and scaling) invariant operators on images
to left-invariant operators on multiple-scale orientation scores. Rather than often used wavelet (soft-
)thresholding techniques, we employ the group structure in the wavelet domain to arrive at left-invariant
evolutions and flows (diffusion), for contextual crossing preserving enhancement of multiple scale elon-
gated structures in noisy images. We present experiments that display benefits of our work compared to
recent PDE techniques acting directly on the images and to our previous work on left-invariant diffusions
on orientation scores defined on Euclidean motion group.

Keywords: Continuous wavelet transform, Left-invariant vector fields, Similitude group, Orientation scores,
Evolution equations, Diffusions on Lie groups, Medical imaging

1 Introduction

Elongated structures in the human body such as fibres and blood vessels often require analysis for diagnostic
purposes. A wide variety of medical imaging techniques such as magnetic resonance imaging (MRI), mi-
croscopy, X-ray flouroscopy, fundus imaging etc. exist to achieve this. Many (bio)medical questions related
to such images require detection and tracking of the elongated structures present therein. Due to the desire
to reduce acquisition time and radiation dosage the acquired medical images are often noisy, of low contrast
and suffer from occlusions and incomplete data. Furthermore multiple-scale elongated structures exhibit
crossings and bifurcations which is a notorious problem in (medical) imaging. Hence crossing-preserving
enhancement of these structures is an important preprocessing step for subsequent detection.
In recent years PDE based techniques have gained popularity in the field of image processing. Due to well
posed mathematical results these techniques lend themselves to stable algorithms and also allow mathemat-
ical and geometrical interpretation of classical methods such as Gaussian filtering, dilation or erosion etc.
on Rd.
These techniques typically regard the original image, f ∈ R2 → R, as an initial state of a parabolic (diffusion
like) evolution process yielding filtered versions, uf : R2 × R+ → R. Here uf is called the scale space
representation of image f . The domain of uf is scale space R2 × R+. A typical scale space evolution is of
the form {

∂suf (x, s) = ∇x · (C(uf (·, s))(x)∇xuf )(x, s)

uf (x, 0) = f(x),
(1)
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where C(uf (·, s))(x) models the diffusivity depending on the differential structure at (x, s, uf (x, s)). For
C = 1, (1) is the usual heat equation. The corresponding evolution is known in image processing as a
Gaussian Scale Space [1, 2]. In their seminal paper [3], Perona and Malik proposed nonlinear filters to
bridge scale space and restoration ideas. Based on the observation that diffusion should not occur when
the (local) gradient value is large (to avoid blurring the edges), they pointed out that nonlinear adaptive
isotropic diffusion is achieved by replacing C = 1 by C(uf (·, s))(x) = c(‖∇xuf (x, s)‖), where c : R+ → R+ is
some smooth strictly decaying positive function vanishing at infinity. An improvement of the Perona-Malik
scheme is the “coherence-enhancing diffusion” (CED) introduced by Weickert [4] which additionally uses the
direction of the gradient ∇xuf leading to diffusion constant c being replaced by a diffusion matrix.
However these methods often fail in image analysis applications with crossing or bifurcating curves as the
direction of gradient at these structures is ill-defined, see [5] for more details. In [6] the authors present
techniques which effectively deal with the particular case of X-junctions by relying on the 2-nd order jet
of Gaussian derivatives in the image domain. Passing through higher order jets of Gaussian derivatives
and induced Euclidean invariant differential operators does not allow one to generically deal with complex
crossings and/or bifurcating structures. Instead we need differential frames in higher dimensional affine Lie
groups such as done for G = SE(d) where d = 2, 3, see [5, 7]. This framework known as Orientation Scores
(OS) for the case of G = SE(2) will be explained later in this section.

1.1 Why incorporate Scale?

In this paper we wish to extend the aforementioned orientation score framework to the case of the Similitude
group (group of planar translations, rotations and scaling), for the following reasons:

• Adapting the diffusivity via local frames based on Gaussian derivatives is effective [6, 8] to enhance
images without crossings. However these gauge frames are aligned for instance with a single Gaussian
gradient direction, which is unstable in the vicinity of complex structures such as generic crossings
and/or bifurcations. At these complex structures one needs multiple spatial frames per position.
Therefore following the general idea of Scale spaces on affine Lie groups [9, 10, 11, 12], a natural next
step would be to extend the domain of images to the affine Lie group SIM(2) = R2 o (R+ × SO(2))
in order to have well posed gauge frames at crossing structures (adapted to multiple orientations and
scales that are locally present).

• In the primary visual cortex both multiple scales and orientations are encoded per position. It is
generally believed that receptive field profiles in neurophysiological experiments can be modelled by
Gaussian derivatives [13, 14, 15, 16] and this provides a biological motivation to incorporate scales.

• Elongated (possibly crossing) structures often exhibit multiple scales. Earlier work by one of the
authors [5, 7] proposes generic crossing preserving flows via invertible orientation scores (employing
differential gauge frames within the scores). However, this approach treats all scales in the same
way. As a result these flows do not adequately deal with images containing elongated structures with
strongly varying widths (scales). Therefore we must encode and process multiple scales in the scores.

1.2 Our main results

There are two main motivating questions (see Figure 1) for the work presented in this article.

1. Can we design a well-posed invertible score, which is a complex-valued function on a Lie group SIM(2),
combining the strengths of directional wavelets [17, 18, 19], curvelets [20, 21, 22] and also allow for
accurate and efficient implementation of subsequent contextual-enhancement operators?

2. Can we construct contextual flows in the wavelet domain, in order to ensure that only the wavelet
coefficients that are coherent (from both probabilistic and group theoretical perspective, [23]) with the
surrounding coefficients become dominant?
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Figure 1: A schematic view on process-
ing images f : R2 → R via invertible
scores Wψf : G → C defined on Lie
group G = R2 oT . Design of well posed
transform Wψ and of appropriate oper-
ators Φ is the main objective of this ar-
ticle. Note that Υ = W∗ψ ◦ Φ ◦ Wψ, i.e.
spatial processes are realized via invert-
ible scores akin to cortical columns in
the visual brain [24].

Our answer to both these questions is indeed affirmative. The first question is answered in two parts. In
Theorem 7 a unitarity result for scores on algebraic affine Lie groups, G = Rd o T , is presented wherein
we provide an explicit description for the range of the wavelet transform. This result is then applied to the
particular case of G = SE(2) and G = SIM(2) in Corollary 10. In practice there are upper/lower bounds on
scaling and so in Theorem 13 we provide stability analysis and condition number of a modified continuous
wavelet transform on SIM(2) which can be used for practical applications. Figure 2 depicts the use of this
wavelet transform in practice.
The second half of this article is dedicated to answering the second question. Theorem 17 proves that only left-
invariant operators in the score domain correspond to Euclidean (and scaling) invariant operators on images.
Therefore in this article we restrict ourselves to left-invariant PDEs on SIM(2). Theorem 19 provides a
stochastic connection to our left-invariant flows in the wavelet domain, as these PDEs are forward Kolmogorov
equations corresponding to stochastic processes for multiple-scale contour enhancement on SIM(2). Using
the general theory of coercive operators on Lie groups, in Eq.(69) Gaussian estimates for the Green’s function
of linear diffusion on SIM(2) are derived. Finally in Eq.(72) we present a nonlinear left-invariant adaptive
diffusion on multiple scale orientation scores and provide experiments to validate it’s practical advantages.

1.3 Invertible Orientation Scores

Based on the early work by Kalitzin [25], Duits et al. [7, 12] introduced the framework of invertible orien-
tation score (OS) to effectively handle the problem of generic crossing curves in the context of bio-medical
applications. In this subsection we briefly explain the concept of invertible OS developed in [7, 12] since our
work builds on this theory.
The Euclidean motion group (i.e. the group of planar rotations and translations) SE(2) is defined as SE(2) =
R2 o SO(2) where SO(2) is the group of planar rotations. An OS, Uf : SE(2)→ C of an image f : R2 → R
is obtained by means of an anisotropic convolution kernel ψ̌ : R2 → C via

Uf (g) =

∫
R2

ψ̌(R−1
θ (y − x))f(y)dy, g = (x, θ) ∈ SE(2),

where ψ(−x) = ψ̌(x) and Rθ ∈ SO(2) is the 2D counter-clockwise rotation matrix. Assume ψ ∈ L2(R2),
then the transform Wψ which maps images f ∈ L2(R2) can be rewritten as

Uf (g) = (Wψf)(g) = (Ugψ, f)L2(R2),

where g 7→ Ug is a unitary (group-)representation of the Euclidean motion group SE(2) into L2(R2) given by
Ugf(y) = f(R−1

θ (y−x)) for all g = (x,Rθ) ∈ SE(2) and for all f ∈ L2(R2). With this wavelet transform the
OS, Uf : SE(2)→ C is constructed by means of an admissible vector ψ ∈ L(R2) such that the transformWψ
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Figure 2: Top row: original image, the real-part of the orientation score reflects the centerlines, the imag-
inary part of the orientation reflects the edges of the bloodvessels, the orientation score (color represents
phase direction and intensity represents the absolute value). Bottom row: visualizations of multiple scale
orientation scores that allow us to include scale adaptation in our enhancement and detection.

is unitary onto the unique reproducing kernel Hilbert space CSE(2)
K of functions on SE(2) with reproducing

kernel K(g, h) = (Ugψ,Uhψ), which is a closed vector subspace of L2(SE(2)). Note that,

(Wψf)(x, θ) = (Ux,θψ, f)L2(R2) = (FTxRθψ,Ff)L2(R2) = F−1(RθFψ · Ff)

where F denotes the Fourier transform and the rotation and translation operators on L2(R2) are defined by
Rθf(y) = f(R−1

θ y) and Txf(y) = f(y − x). This leads to the essential Plancherel formula,

‖Wψf‖2CSE(2)
K

=

∫
R2

2π∫
0

|(FWψf)(ω, θ)|2 1

Mψ(ω)
dωdθ

=

∫
R2

2π∫
0

|(Ff)(ω)|2|Fψ(RT
θ ω)|2 1

Mψ(ω)
dωdθ

=

∫
R2

|(Ff)(ω)|2dω = ‖f‖L2(R2),

where Mψ ∈ C(R2,R) is given by Mψ(ω) =
2π∫
0

|Fψ(RT
θ ω)|2dθ. If ψ is chosen such that Mψ = 1 then we

gain L2 norm preservation. But this is not possible as ψ ∈ L2(R2)∩L1(R2) implies that Mψ is a continuous
function vanishing at infinity. In practice, however, because of finite grid sampling, U is restricted to the
space of disc limited images,

L%2(R2) = {f ∈ L2(R2)| supp(Ff) ⊂ B0,%}.

Since the wavelet transform Wψ maps the space of images L2(R2) unitarily onto the space of orientation
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Figure 3: Illustration of the orientation score construction for a crossing and a circle. This framework
unwraps a crossing in the orientation score domain. In the case of the circle, the resulting response in a
3D orientation score is a spiral as the orientation changes linearly as one traverses the circle. Note that the
orientation dimension (displayed vertically) is 2π periodic.

scores CSE(2)
K (provided Mψ > 0) the original image f : R2 → R can be reconstructed from it’s orientation

score Uf : SE(2)→ C by using the adjoint of the wavelet transform,

f =W∗ψWψ[f ] = F−1

ω 7→ 2π∫
0

F [Uf (·, θ)](ω)M−1
ψ (ω)dθ

 .
The ideas presented here are a special case of the general results shown in Section 2. For examples of wavelets
ψ for which Mψ = 1|B0,% and details on fast approximative reconstruction by integration over angles only,
see [12]. For details on image processing (particularly enhancement and completion of crossing elongated
structures) via orientation scores, see [5, 26, 27, 28]. An intuitive illustration of the relation between an
elongated structure in a 2D image and the corresponding elongated structure in an orientation score is given
in Figure 3. In top row of Figure 2 we also depict a practical example of an invertible orientation score.

1.4 Structure of the article

This article is structured as follows.

• (Section 2) Unitary operators between images and scores: An abstract unitarity result is
presented and used to arrive at a wavelet transform on the Similitude group, SIM(2). Stability of this
transform is then discussed followed by an explicit construction of so called proper wavelets that allow
a stable (re)construction of the transformed image.

• (Section 3) Operators on scores: Employing the group structure in the wavelet domain a general
framework for operators on the scores, which involves left-invariant evolutions is discussed. These
operators are interpreted in a differential geometric (and probabilistic) setting to provides a strong
intuitive rationale for their choice.

• (Section 4) Left-invariant diffusions: Gaussian estimates for the Green’s function of linear diffusion
on SIM(2) are derived followed by a discussion of non-linear adaptive diffusion.

• (Section 5) Practical results: In this section experiments that show the advantages of adaptive
non-linear diffusion on multi-scale orientation scores in comparison to PDE techniques and previous
work on orientation scores are presented.

1.5 Preliminaries and Notations

Let T and S be locally compact groups and let τ : T → Aut(S) be a group homomorphism. The semi-
direct product Sd oτ T is defined to be the group (which is again locally compact) with underlying group
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{(s, t)|s ∈ S, t ∈ T} and group operation

(s, t)(s′, t′) = (sτ(t)s′, tt′). (2)

In this work we mainly consider the the 2D-Similitude group (group of rotations, translations and dilations)
SIM(2) = R2 o (R+ × SO(2)), where SO(2) is the group of planar rotations. The group product given by

gg′ = (b, a, θ)(b′, a′, θ′) = (b + aRθb
′, aa′, θ + θ′), g = (b, a, θ), g′ = (b′, a′, θ′) ∈ R2 o (R+ × SO(2)).

A representation R of a group G into a Hilbert space H is a homomorphism R between G and B(H), the
space of bounded linear operators on H, i.e. Rgh = RgRh for all g, h ∈ G and Re = I. A representation R
is irreducible if the only invariant closed subspaces of H are {0} and H, else reducible. We consider unitary
representations, i.e, U∗g = U−1

g = Ug−1 for all g ∈ G and ψ ∈ H), which will be denoted by U rather than R.

Within the class of unitary representations we consider the representations of Rd o T in L2(Rd) which are
given by

(Ugψ)(x) =
1√

det(τ(t))
ψ((τ−1(t))(x− b)), with g = (b, τ(t)) ∈ Rd o T. (3)

These representations are called left-regular actions of G = Rd o T in L2(Rd).
Let b ∈ Rd, a > 0 and g ∈ G with corresponding τ(g) ∈ Aut(Rd). Then the unitary operators f 7→ f̌ , Tb,Da
and Rg on L2(Rd) are defined by

f̌(x) = f(−x) Tbψ(x) = ψ(x− b)

Daψ(x) =
1

a
d
2

ψ
(x

a

)
Rgψ(x) =

1√
detτ(g)

ψ((τ(g))−1x). (4)

The mappings b 7→ Tb, g 7→ Rg, a 7→ Da are respectively left regular actions of Rd, D(d), G into L2Rd.
A functional Hilbert space1 is a Hilbert space consisting of complex valued functions on an index set I on
which the point evaluation δa, is a continuous/bounded linear functional for all a ∈ I. Consequently, it has
a Riesz representant Ka ∈ H

f(a) = 〈δa, f〉 = (Ka, f)H .

The function K : I× I→ C given by K(a,b)H = (Ka,Kb)H = Kb(a) is called reproducing kernel.

2 Unitary operators between images and scores

In this section we present an abstract wavelet transform from a Hilbert space to a functional Hilbert space
and use it to arrive at a wavelet transform on the Similitude group, SIM(2). Stability of this transform
is then discussed followed by an explicit construction of so called proper wavelets. The continuous wavelet
transform constructed by unitary irreducible representations of locally compact groups was first formulated
by Grossman et al. [29]. Given a Hilbert space H and a unitary irreducible representation g 7→ Ug of any
locally compact group G in H, a nonzero vector ψ ∈ H is called admissible if

Cψ :=

∫
G

|Ugψ,ψ|2

(ψ,ψ)H
dµG(g) <∞, (5)

where µG denotes the left invariant Haar measure on G. Given an admissible vector ψ and a unitary
representation of a a locally compact group G in a Hilbert space H, the wavelet transform W̃ψ : H → L2(G)
is defined by

(W̃[f ])(g) = (Ugψ, f)H .

The next result is well known in mathematical physics [23].

1Also known as reproducing kernel Hilbert space.
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Theorem 1. The wavelet transform (Wψ) is a linear isometry (up to a constant) from the Hilbert space H
onto a closed subspace CGKψ of L2(G, dµ):

‖Wψ[f ]‖2L2(G) = Cψ‖f‖2H ,

where the space CGKψ is the unique functional Hilbert space with reproducing kernel

Kψ(g, g′) =
1

Cψ
(Ugψ,Ug′ψ)H .

We are interested in the 2D-Similitude group, SIM(2) = R2 o (R+ × SO(2)) which is the group of planar
translations, rotations and scaling, and the left regular action U of SIM(2) in L2(R2) given by

(Ub,eiθ,aψ)(x) =
1

a
ψ

(
R−1
θ (x− b)

a

)
, a > 0, θ ∈ [0, 2π], b ∈ R2. (6)

which is an irreducible unitary representation, for proof see [30, P.51]. Though the results in [29] are
applicable to our context, we now present a more general theory for wavelets which avoids the condition
of irreducible representations and allows for construction of (admissible wavelets) suited to our application
area of image processing. First we construct unitary maps from a Hilbert space H into a functional Hilbert
space CI

K , which is a vector subspace of CI, the vector space of complex valued functions on a set I (not
necessarily a group). Following which we consider the special case of affine groups and obtain a unitary
operator Wψ : H → CGK .
Subsequently we apply these results to the case SE(2) and SIM(2). This produces invertible orientation
scores and invertible multiple scale orientation scores respectively. However if we insist on (ψ-independent)
L2-norm preservation as presented in [29] problems arise at the origin and/or at infinity in the frequency
domain2.

2.1 Construction of a Unitary Map from a H to a CI
K

A functional Hilbert space is a Hilbert space such that point evaluation is continuous, so that by Reisz
representation theorem there exists a set {Km|m ∈ I} with

(Km, f)H = f(m), for all m ∈ I and f ∈ H. (7)

Define K(m,m′) = Km′(m) = (Km,Km′)H for m,m′ ∈ I. K is called reproducing kernel and it is a function
of positive type on I i.e.

n∑
i=1

n∑
j=1

K(mi,mj)c̄icj ≥ 0, for all n ∈ N, c1, . . . , cn ∈ C, m1, . . . ,mn ∈ I.

Therefore to every functional Hilbert space there belongs a reproducing kernel, which is a function of positive
type. Conversely as mentioned by Aronszajn [31], a function K of positive type on set I, induces a unique
functional Hilbert space consisting of functions on I with reproducing kernel K.
The span of the set {Km|m ∈ I} is dense in the functional Hilbert space. Indeed if f ∈ H is orthogonal
to all Km then f = 0 on I. Let V = {φm|m ∈ I} be a subset of H. Define function K : I × I → C by
K(m,m′) = (φm, φm′). Given such a function, we define Km : I → C as Km(m′) = K(m,m′). Then since

WV := span{Km(·)|m ∈ I} is dense in H and since ‖φ‖CI
K

= ‖φ̂‖(CI
K)∗ = sup

g∈WV

|φ̂(g)|
‖g‖ with dual φ̂ ∈ (CI

K)∗

determined by φ̂(Km) = (Km, φ)CI
K

= φ(m), we obtain the following fundamental result:

2In case of SE(2) it is or and in case of SIM(2) it is and.
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Theorem 2. If the span of V = {φm|m ∈ I} is dense in H, then the transform W : H → CI
K defined by

(W[f ])(m) = (φm, f)H (8)

is a unitary mapping, i.e. ‖W[f ]‖CI
K

= ‖f‖H .

Proof. See [12, Ch:7.2] and [32] for details.

When I = G, for some locally compact group G, the norm on CG
K has a simpler explicit form compared to

description given in [12, Ch:7.2] and [33, Lemma 1.7]. In what follows, we give an explicit characterization
of CG

K , in the case G = Rd o T , with T a linear algebraic Lie-group, U the left-regular action of G onto
H = L2(R2) and thereby formulate a wavelet reconstruction theorem for affine groups.
Define the set Ω = {ω ∈ Rd| Stab(ω) is compact}, where Stab(ω) = {t ∈ T | τ(t)Tω = ω}. This set is
measurable [34, Ch 5.1]. We define,

H = {f ∈ L2(Rd) ∩ L1(Rd)| supp(Ff) ⊂ Ω}. (9)

Remark 3. For matrix groups other than ones considered in this article Ω can be an empty set. For e.g.
R4 o SO(2, 2), for all ω ∈ R4, ω 6= 0, Stab(ω) ≡ SO(2, 1) or SO(1, 2) and these groups are not compact.
Hence in this case Ω = φ.

We call ψ ∈ L2(Rd) an admissible wavelet if

0 < Mψ(ω) := (2π)

∫
T

∣∣∣∣∣F [Rtψ(ω)]√
detτ(t)

∣∣∣∣∣
2

dµT (t) <∞ for almost every ω ∈ Ω, (10)

where we recall that Rt is given by (4).

Remark 4. In (10) we do not assume uniform bounds as for the unitarity result of Wψ we do not need
uniform bounds. However when quantifying stability w.r.t. L2-norms on input and output uniform bounds
will become crucial.

We define ψ̃ almost everywhere on Rd by

ψ̃(x) =

∫
T

1

detτ(t)
(Rtψ̌ ∗ Rtψ)(x)dµT (t), (11)

where ψ̌ is defined in (4). Note that ψ̃ is the inverse Fourier transform of Mψ.

Lemma 5. Let ψ ∈ H be an admissible wavelet. Then the span of Vψ = {Ugψ|g ∈ G}, is dense in H, i.e.

〈Vψ〉 = H.

Proof. This follows from the general results in [34]. For details see Appendix.

Corollary 6. Set G = Rd o T . If the wavelet ψ is admissible, then the corresponding wavelet transform
Wψ : H → CGK is unitary.

Proof. Follows from Theorem 2 and Lemma 5.

Theorem 7. Let G = RdoT and ψ be an admissible wavelet. Then TMψ
Φ ∈ L2(G, dµG(g)) for all Φ ∈ CGK ,

where

[TMψ
[φ]](b, t) = F−1

[
ω 7→ (2π)−d/4M

−1/2
ψ (ω)F [φ(·, t)](ω)

]
(b).

8



Therefore (·, ·)TMψ : CGK × CGK → C defined by

(Φ,Ψ)Mψ
= (TMψ

[Φ], TMψ
[Ψ])L2(G), (12)

is an explicit characterization of the inner product on CGK , which is the unique functional Hilbert space with
reproducing kernel K : G×G→ C given by

K(g, h) = (Ugψ,Uhψ)L2(Rd) = (Uh−1gψ,ψ)L2(Rd), g, h ∈ G. (13)

The wavelet transformation Wψ : H → CGK given by

Wψ[f ](b, t) = (Ugψ, f)L2(Rd), f ∈ L2(Rd), g = (b, t) ∈ Rd o T, (14)

is a unitary mapping from H to CGK . The space CGK is a closed subspace of the Hilbert space Hψ ⊗
L2(T ; dµT (t)

det(τ(t)) ), where

Hψ = {f ∈ H| M−
1
2

ψ F [f ] ∈ L2(Rd)}

is equipped with the inner product

(f1, f2) = (M
− 1

2

ψ F [f1],M
− 1

2

ψ F [f2])L2(Rd;(2π)−d/2dx), for all f1, f2 ∈ H.

The orthogonal projection Pψ of Hψ ⊗ L2(T ; dµT (t)
det(τ(t)) ) onto CGK is given by (Pψ[Φ])(g) = (K(·, g),Φ))Mφ

.

Proof. See B for proof.

Remark 8. Since Wψ : H → CGK is unitary, the inverse equals the adjoint and thus the image f can be
reconstructed from it’s orientation score Wψ[f ] by

f =W∗ψ[Wψ[f ]] = F−1

[
ω 7→ 1

(2π)d/2

∫
T

F [Wψ[f ](·, t)](ω)F [Rtψ](ω)
dµT

|det(τ(t))|
M−1
ψ (ω)

]
.

Definition 9. The inner product on Hψ ⊗L2(T ; dµT (t)
det(τ(t)) ) induces a norm ‖.‖Mψ

: Hψ ⊗L2

(
T ; dµT (t)

det(τ(t))

)
→

R+, which is given by

‖Φ‖Mψ
=
√

(Φ,Φ)Mψ
=

∫
R2

∫
T

|F [Φ(·, t)](ω)|2(2π)−d/2M−1
ψ (ω)

dµT (t)

det(τ(t))
dω,

which is called the Mψ-norm.

2.2 Orientation Scores

In this case G = SE(2), (Ug=(b,θ)ψ)(x) = ψ
(
R−1
θ (x− b)

)
, Ω = R2 and H = L2(R2) ∩ L1(R2) leading

to [7, Thm 1]. For more details on construction as well operators on Orientation Scores see [27, 28]. For
ψ ∈ L2(R2) ∩ L1(R2), Mψ is a continuous function vanishing at infinity. Quadratic norm preservation i.e.
Mψ = 1 and a unitary operator Wψ : L2(R2) → L2(SE(2)) cannot be obtained and one can rely on either
distributions ψ ∈ H−s(R2) with s > 1 and distributional wavelet transforms or restrict to disc-limited images,
which is appropriate for imaging applications.
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2.3 Multiple Scale Orientation Scores

Consider the case T := SO(2) × R+, G := SIM(2) = R2 oτ (SO(2) × R+) where3 the semi-direct product
is defined to be the group with underlying set R2 × (SO(2)× R+) equipped with the group product

(x, a, θ)(x′, a′, θ′) = (x + τ(a, θ)x′, aa′, θ + θ′), ∀(x, a, θ), (x′, a′, θ′) ∈ SIM(2), (15)

where4 τ(a, θ) = aRθ.
Since both R2 and SO(2)×R+ are locally compact groups, SIM(2) is a locally compact group as well and
thus has a left-invariant Haar measure defined on it. Consider the unitary representation of SIM(2) in
L2(R2) given by,

Ug=(b,a,θ)ψ(x) =
1

a
ψ

(
R−1
θ (x− b)

a

)
, a > 0, θ ∈ [0, 2π], b ∈ R2, (16)

We denote U : (x, t) = (x, a, θ) 7→ U(x,t) as

Ux,tf = TxRtf, t = (a, θ) ∈ R+ × SO(2) (17)

where (Txf)(x′) = f(x′ − x) and (Rtf)(x′) = 1
af( 1

aRθx
′) for all x, x′ ∈ R2.

Theorem 7 has the following important consequence for our application of (multiple-scale) orientation scores
in image analysis.

Corollary 10. The space of multiple scale orientation scores is a reproducing kernel Hilbert space CSIM(2)
K

which is a closed subspace of Hψ⊗L2(SO(2)×R+; dµT (t)
det(τ(t)) ) which is a vector subspace5 of L2(G). The inner

product on CR2o(SO(2)×R+)
K is given by (12) and is explicitly characterized by means of the function Mψ given

by,

Mψ(ω) = (2π)

∫
T=SO(2)×R+

∣∣∣∣ (F [Rtψ])(ω)√
detτ(t)

∣∣∣∣2dµT (t). (18)

The wavelet transform which maps an image f ∈ L2(R2) ∩ L1(R2) onto its orientation score Uf ∈ CSIM(2)
K

is a unitary mapping: ‖f‖2L2(R2) = ‖Wψ[f ]‖2Mψ
. Thus the image f can be reconstructed from its orientation

score Uf :=Wψ[f ] by means of the adjoint wavelet transformation W∗ψ:

f =W∗ψ[Wψ[f ]] = F−1

[
ω 7→ 1

(2π)

∫
R+

2π∫
0

F [Uf (·, a, eiθ)](ω)F [Ra,eiθψ](ω)dθ
da

a
M−1
ψ (ω)

]
. (19)

Proof. Follows by Theorem 7 and Ω = R2\{0} such that Ω = R2 and H = L2(R2) ∩ L1(R2).

Explicitly Mψ as defined in (18) can be written as,

Mψ(ω) = (2π)

∫
T

∣∣∣∣F [Rtψ](ω)√
detτ(t)

∣∣∣∣2dµT (t) = (2π)

2π∫
0

∫
R+

∣∣∣∣F [R(a,θ)ψ](ω)

a

∣∣∣∣2 daa dθ = 2π

2π∫
0

∫
R

|ψ̂(eτR−1
θ ω)|2dτdθ

(20)

for all t = (a, θ) ∈ SO(2) × R+. Note that in the last equality we have made use of the substitution
τ = loge(a).

3We drop the subscript τ from the semi-direct product hereon for the ease of notation.
4Rθ is the standard counter-clockwise rotation matrix.
5i.e. is a subspace as a vector space, but is equipped with a different norm
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2.4 The Discrete Analogue

Hereon in this section we deal with the practical aspects of the implementation of the continuous wavelet
transform discussed in the previous sections.
Recall that SIM(2) = R2 o (SO(2) × R+) where T = (SO(2) × R+) is a locally compact group, but not a
compact group. We can choose SO(2) to be finite rotation group, denoted by TN (equipped with discrete
topology) which is locally compact 6 i.e.

TN = {eik∆T |k ∈ {0, 1, . . . , N − 1},∆T =
2π

N
}, for N ∈ N. (21)

On the other hand the scaling group R+ cannot be written in terms of a finite scaling group due to the
following well known result from group theory that

Lemma 11. Every finite subgroup of the multiplicative group of a field is a cyclic subgroup.

See [35] for proof. The only finite subgroups of the group R∗ = (R/{0}, ∗) are {1} and Z2 = {−1, 1}.
The scaling group R+ is a subgroup of R∗ and therefore it does not have any finite subgroups other than
the trivial subgroup. So it is important to note that, we loose the inherent group structure in the discrete
version, unlike in the case of orientation score over the Euclidean motion group SE(2), see [12, Sec 4.4].
Consider the scaling group R+; this group consists of all positive reals greater than zero. In the discrete
case we need to have a lower and an upper bound on the choice of the scales. We assume that a ∈ [a−, a+]
where 0 < a− < a+. We have the following discretization for scales,

DM =

{
e(τ−+k∆D)|k ∈ {0, 1, . . . M − 1},∆D =

eτ
+ − eτ−

M

}
, for M ∈ N, (22)

where τ− = log(a−) and τ+ = log(a+).
Using the notation, tkl = (al, θk), k ∈ {0, 1, . . . , N − 1}, l ∈ {0, 1, . . . ,M − 1} where al = τ− + k∆D and
θk = k∆T, we write the discrete version of (17)

UN,Mf (b, al, θk) = (TbR(al,θk)ψ, f)L2(R2), (23)

which is the discrete orientation score of an image f ∈ L2(R2). We emphasize that we do not consider
a wavelet transform on a discrete subgroup of SIM(2) group (due to Lemma 11) but rather a discretized
version of the continuous wavelet transform. The discrete version of Mψ is,

MD
ψ (ω) =

1

N

1

M

N−1∑
k=0

M−1∑
l=0

∣∣∣∣F(R(al,θk)ψ)(ω)

al

∣∣∣∣2 . (24)

2.5 Stable reconstruction of an image from OS

In Corollary 10 we have a unitarity result where CSIM(2)
K ⊂ Hψ ⊗ L2(SO(2)× R+; dµT (t)

det(τ(t)) ) depends on the

wavelet ψ. For stability estimates one requires L2-norms on both the domain and the range. This means we
must impose uniform lower and upper bounds in (10), which is possible only when we restrict the space of
images to functions in L2(R2) ∩ L1(R2) whose Fourier transform is contained in an annulus. The space of
these images is a Hilbert space given by,

L%
−,%+

2 (R2) = {f ∈ L2(R2)| supp(F [f ]) ⊂ B0,%+\B0,%−}, %+ > %− > 0. (25)

A practical motivation for the assumption of an upper bound (%+) on the support of the Fourier transform of
the images is the Nyquist theorem, which states that every band-limited function is determined by its values

6Topological spaces with a discrete topology are locally compact.

11



on a discrete grid. E.g. if uB : R2 → C is band-limited on a square: supp(F [uB ]) ⊂ [−l/2, l/2]× [−l/2, l/2],
then

uB(x, y) =
∑

(k1,k1)∈Z2

uB

(
2πk1

l
,

2πk2

l

)
sinc

(
lx

2
− k1π

)
sinc

(
ly

2
− k2π

)
,

where the cutoff frequency % = l/2 is called the Nyquist frequency.
The value for %− directly relates to the coarsest scale we wish to detect in the spatial domain. Therefore the
removal of extremely low frequencies from the image essentially corresponds to background removal in the
image which is often an essential pre-processing step in medical image processing, see [36, 37].
We wish to construct a wavelet transform

W%−,%+

ψ : L%
−,%+

2 (R2)→ L2(SIM(2)) (26)

which requires that (recall Eq.25),

Ux,a,θψ ∈ L%
−,%+

2 (R2), where a ∈ [a−, a+] and θ ∈ [0, 2π], with a+ > 1 > a− such that
ρ−

a−
<
ρ+

a+
.

Therefore we choose

ψ ∈ L1(R2) ∩ L2(R2) with supp(F [ψ]) ⊂ B0,%+/a+\B0,%−/a− (27)

and therefore we satisfy supp(F [Ux,a,θψ]) ⊂ B0,%+\B0,%− , where a ∈ [a−, a+] and θ ∈ [0, 2π].

Note that in our current context, ψ ∈ L%
−,%+

2 (R2) is called an admissible wavelet if

0 < Mψ = (2π)

2π∫
0

a+∫
a−

∣∣∣∣F [Ra,θψ]√
detτ(t)

∣∣∣∣2 daa dθ <∞ on B0,%+\B0,%− , (28)

where Rt is given by (4). Corresponding to (11) we can define ψ̃ as,

ψ̃(x) =

2π∫
0

a+∫
a−

(Ra,θψ̌ ∗ Ra,θψ)(x)
da

a
dθ. (29)

By the compactness of the set [−π, π]× [a−, a+] and since the convolution of two L1(R2) functions is again in
L1(R2), we have that ψ̃ ∈ L1(R2), and so its Fourier transform Mψ = F ψ̃ is a bounded continuous function
on B0,%+\B0,%− . We define, SIM−+ := R2 × [−π, π]× [a−, a+].

Definition 12. Let ψ be an admissible wavelet in the sense of (28). Then the wavelet transform W%−,%+

ψ :

L%
−,%+

2 (R2)→ L2(SIM−+ ) is given by

(W%−,%+

ψ [f ])(g) =
1

a

∫
R2

ψ

(
R−1
θ

(
y − x

a

))
f(y)dy, f ∈ L%

−,%+

2 (R2),

for almost every g = (x, a, θ) ∈ SIM−+ .

Quantification of Stability The usual way to quantify well-posedness/stability of an invertible linear
transformation A : V →W from a Banach space (V, ‖ · ‖V ) to a Banach space (W, ‖ · ‖W ) is by means of the
condition number

cond(A) = ‖A−1‖‖A‖ =

(
sup
x∈V

‖x‖V
‖Ax‖W

)(
sup
x∈V

‖Ax‖W
‖x‖V

)
≥ 1. (30)
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The closer it approximates 1, the more stable the operator and its inverse is. The condition number depends
on the norms imposed on V and W . We wish to apply this general concept to the wavelet transformation
which maps image f to its scale orientation score Uf . Recall from Corollary 10 that the wavelet transform

is a unitary mapping from the space L2(R2) to the space CSIM(2)
K respectively equipped with the L2-norm

and the Mψ-norm. Thus choosing these norms the condition number becomes 1. However from a practical
point of view it is more appropriate to impose the L2(SIM(2))-norm on the score since it does not depend
on the choice of the wavelet ψ and we also use a L2-norm on the space of images.

Theorem 13. Let ψ be an admissible wavelet, with Mψ(ω) > 0 for all ω ∈ B0,%+\B0,%− . Then the condition

number cond(W%−,%+

ψ ) of the wavelet transformation W%−,%+

ψ : L%
−,%+

2 (R2) → L2(G), (G = SIM−+ ) is7

defined by

cond(W%−,%+

ψ ) = ‖(W%−,%+

ψ )−1‖‖(W%−,%+

ψ )‖ =

(
sup

f∈L%
−,%+

2 (R2)

‖f‖L2(R2)

‖Uf‖L2(G)

)(
sup

f∈L%
−,%+

2 (R2)

‖Uf‖L2(G)

‖f‖L2(R2)

)

and satisfies

1 ≤ (cond(W%−,%+

ψ ))2 ≤
(

sup
%−≤‖ω‖≤%+

M−1
ψ (ω)

)(
sup

%−≤‖ω‖≤%+
Mψ(ω)

)
.

Proof. Since Mψ > 0 and is continuous on the compact set B0,%+\B0,%− = {ω ∈ R2|%− < ‖ω‖ < %+},
sup

%−<‖ω‖<%+
Mψ(ω) = max

%−<‖ω‖<%+
Mψ(ω) do exist. The same holds for M−1

ψ . Furthermore for all f ∈

L%
−,%+

2 (R2), the restriction of the corresponding orientation scores, to fixed orientations and scales also

belong to the same space, i.e. Uf (·, a, eiθ) ∈ L%
−,%+

2 (R2), where θ ∈ [0, 2π], a ∈ [a−, a+]. This follows from

(Wψf)(x, t) =

∫
R2

Rtψ̌(x− x′)f(x′)dx′ = (Rtψ̌ ∗R2 f)(x) =
(
F−1(FRtψFf)

)
(x), (31)

which gives, F [Uf ](ω) = F [Rtψ̌](ω)F [f ](ω). By Corollary 10 we have ‖f‖2L2(R2) = ‖Uf‖2Mψ
and

(cond(W%−,%+

ψ ))2 =

(
sup

f∈L%
−,%+

2 (R2)

‖Uf‖Mψ

‖Uf‖L2(G)

)(
sup

f∈L%
−,%+

2 (R2)

‖Uf‖L2(G)

‖Uf‖Mψ

)

≤
(

sup
%−≤‖ω‖≤%+

M−1
ψ (ω)

)(
sup

%−≤‖ω‖≤%+
Mψ(ω)

)
.

Further we have, 1 = ‖(W%−,%+

ψ )−1(W%−,%+

ψ )‖ ≤ ‖(W%−,%+

ψ )−1‖‖(W%−,%+

ψ )‖. �

Corollary 14. The stability of the (inverse) wavelet transformation W%−,%+

ψ : L%
−,%+

2 (R2)→ L2(SIM−+ ) is

optimal if M%
ψ(ω) = constant for all ω ∈ R, with %− ≤ ‖ω‖ ≤ %+.

Thus, in general, the closer the function Mψ approximates the constant function, say 1B0,%+\B0,%−
, the better

the Mψ norm on CSIM(2)
K approximates the L2(SIM−+ ) norm, the better the stability of reconstruction. In

case of a good approximation, i.e. Mψ ≈ 1B0,%+\B0,%−
, the reconstruction formula in Corollary 10 can be

simplified to,

f ≈ F−1

[
ω 7→ 1

(2π)

a+∫
a−

2π∫
0

F [Uf (·, a, eiθ)](ω)F [Ra,eiθψ](ω)dθ
da

a

]
. (32)

7Note that while the norm is L2(SIM(2))-norm we only consider an interval in the scaling group.
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2.6 Design of Proper Wavelets

In this sequel a wavelet ψ ∈ L2(R2) ∩ L1(R2) with Mψ smoothly approximating 1B0,%+\B0,%−
, is called a

proper wavelet. The entire class of proper wavelets allows for a lot of freedom in the choice of ψ. In
practice it is mostly sufficient to consider wavelets that are similar to the long elongated patch one would
like to detect and orthogonal to structures of local patches which should not be detected, in other words
employing the basic principle of template matching. We restrict the possible choices by listing below certain
practical requirements to be fulfilled by our transform.

1. The wavelet transform should yield a finite number of orientations (N0) and scales (M0).

2. The wavelet should be strongly directional, in order to obtain sharp responses on oriented structures.

3. The transformation should handle lines, contours and oriented patters. Thus the wavelet should pick
up edge, ridge and periodic profiles.

4. In order to pick up local structures, the wavelet should be localized in spatial domain.

To ensure that the wavelet is strongly directional and minimize uncertainty in SIM(2), we require that the
support of the wavelet be contained in a convex cone in the Fourier domain, [17].
The following lemma gives a simple but practical approach to obtain proper wavelets ψ, with Mψ =
1B0,%+\B0,%−

. Note that we make use of polar coordinates (ρ, ϕ), ρ = ‖ω‖, ω = (ρ cosϕ, ρ cosϕ).

Lemma 15. Let τ−, τ+ be chosen such that τ− = log(a−) and τ+ = log(a+), where 0 < a ∈ [a−, a+] is the
finite interval of scaling. Let A : SO(2)→ C\R− and B : [τ−, τ+]→ C\R− such that

2π

2π∫
0

|A(ϕ)|dϕ = 1,

τ+∫
τ−

|B(ρ)|dρ = 1, (33)

then the wavelet ψ = F−1[ω →
√
A(ϕ)B(ρ)] with ω = (ρ cosϕ, ρ cosϕ) has Mψ(ω) = 1 for all ω ∈

B0,%+\B0,%− .

Proof. From (20) and (28), for all ω ∈ B0,%+\B0,%− we have,

Mψ(ω) = 2π

2π∫
0

%+∫
%−

|ψ̂(eτR−1
θ ω)|2dτdθ = 2π

2π∫
0

%+∫
%−

|
√
A(ϕ− θ)B(eτρ)|2dτdθ = 1.

�

Lemma 15 can be translated into discrete framework R2 o (TN ×DM ), recall (21) and (22), where condition
(33) is replaced respectively by,

1

N

N−1∑
k=0

|A(ϕ− θk)| = 1 and
1

M

M−1∑
l=0

|B(ealρ)| = 1. (34)

where we have made use of discrete notations introduced in (23).

If moreover 2π
2π∫
0

√
|A(ϕ)|dϕ ≈ 1 and

τ+∫
τ−
|
√
B(ρ)|dρ ≈ 1, we have a fast and simple approximation for the

reconstruction:

f̃(x) = 2π

2π∫
0

τ+∫
τ−

(Wψf)(x, τ, θ)dτdθ ≈ F−1[ω 7→ (
√
Mψ ∗ F [f ](ω))](x), for a.e. ω ∈ B0,%+\B0,%− .

Mψ ≈ 1B0,%+\B0,%−
⇒ f̃ ≈ f ∈ L%

−,%+

2 (R2) (35)
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Figure 4: Plot for the B-splines in (39). Values chosen: a− = %− = 10−8, a+ = %+ = 50, Ns = 7.

From Left to Right: Plot of each B-spline, Bk
(

log[ρ]
sρ
− l
)

. The B-splines are skewed because of non lin-

ear sampling in the scale dimension;
Ns−1∑
l=0

Bk
(

log[ρ]
sρ
− l
)

= 1; plot of square root of the B-spline, i.e.√
Bk
(

log[ρ]
sρ
− l
)

;
Ns−1∑
l=0

√
Bk
(

log[ρ]
sρ
− l
)
≈ 1.

We have made use of the description of (Wψf) given in (31). We need to fulfil the requirement Mψ(ω) ≈ 1
with an appropriate choice of kernel satisfying the condition given above, to achieve this simple reconstruc-
tion.
The idea is to “fill the cake by pieces of the cake” in the Fourier domain. In order to avoid high frequencies
in the spatial domain, these pieces must be smooth and thereby must overlap. A choice of B-spline based
functions in the angular and the log-radial direction is an appropriate choice for such a wavelet kernel.
This design of wavelets in the Fourier domain is similar to the framework of curvelets [21, 22]. However,
our decomposition of unity in the Fourier domain is more suited for the subsequent design of left-invariant
diffusions in the wavelet domain.
The kth order B-spline denoted by Bk is defined as,

Bk(x) = (Bk−1 ∗B0)(x), B0(x) =

{
1 if − 1/2 < x < +1/2
0 otherwise

(36)

with the property that B-splines add up to 1. For more details see [38].
Based on the requirements and considerations above we propose the following kernel

ψ(x) = F−1
R2 [ω →

√
A(ϕ)B(ρ)](x)Gσs(x), (37)

where Gσs is a Gaussian window that enforces spatial locality cf. requirement 5. Note that such window
relates to a diffusion in the Fourier domain and does not affect the reconstruction properties (Mψ).
A : T→ R+, is defined by,

A(ϕ) = Bk
(

(ϕ mod2π)− π/2
sϕ

)
, (38)

where sϕ = 2π
Nθ

(Nθ denotes the number of orientations chosen) and Bk denotes the kth order B-spline.

B : [%−, %+]→ R+, is defined as,

B(%) =

Ns−1∑
l=0

Bk
(

log[ρ]

sρ
− l
)
, (39)

where sρ = (log[a+]− log[a−])/Ns , with Ns equals the number of chosen scales and a−, a+ are predefined
scales, based on %−, %+ respectively. See Figure 4 for a plot of these B-splines. Note that,

Ns−1∑
l=0

Bk
(

log[ρ]

sρ
− l
)

= 1 and

Ns−1∑
l=0

√
Bk
(

log[ρ]

sρ
− l
)
≈ 1.
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Figure 5: Scale-OS of a retinal image. As shown, Scale-OS can be used to create the Orientation Score and
Gaussian-Scale Space of the image.

3 Operators on Scores

There exists exists a 1-to-1 correspondence between bounded operators Φ ∈ B(CGK) on orientation scores
and bounded operators Υ ∈ B(L2(Rd)):

Υ[f ] = (W∗ψ ◦ Φ ◦Wψ)[f ], f ∈ L2(Rd), (40)

which allows us to relate operations on orientation scores to operations on images in a robust manner. To
get a schematic view of the operations see Figure 1.
Recall from Corollary 10 that the range of the unitary wavelet transform Wψ : L2(R2) → CGK is the space
of orientation scores as a closed linear subspace of Hψ, which is a vector subspace of L2(G). For proper
wavelets we have (approximative) L2-norm preservation and therefore L2(G) ∼= Hψ (with L2(G) = Hψ if
Mψ = 1).
In general if, Φ : L2(G) → L2(G) is a bounded operator on L2(G), then the range of restriction of this
operator to the subspace CGK of orientation scores need not be contained in CGK , i.e. Φ(Uf ) need not be the

orientation score of an image. To this end we also consider W̃ψ : L2(Rd) → L2(G) given by W̃ψf = Wψf .
It’s adjoint is given by,

(W̃ψ)∗(V ) =

∫
G

Ugψ V (g)dµG(g), V ∈ L2(G).

The operator Pψ = W̃ψ(W̃ψ)∗ is the orthogonal projection on the space of orientation scores CGK . This
projection can be used to decompose the manipulated orientation score:

Φ(Uf ) = Pψ(Φ(Uf )) + (I − Pψ)(Φ(Uf )).

Notice that the orthogonal complement (CGK)⊥, which equals R(I − Pψ), is exactly the null-space of (W̃ψ)∗

as N ((W̃ψ)∗) = N ((Wψ)∗) = (R(Wψ))⊥ = (CKG )⊥ and so

[(W̃ψ)∗ ◦ Φ ◦ W̃ψ][f ] = [(W̃ψ)∗ ◦ Pψ ◦ Φ ◦ W̃ψ][f ], (41)

for all f ∈ L2(R2) and all Φ ∈ B(L2(G)), so we see that the net operator on scores associated to Φ : L2(G)→
L2(G) is given by Pψ ◦ Φ : L2(G)→ CGK .
In the reminder of this section we present design principles for Υ followed by a detailed theoretical discussion
on them.
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3.1 Design Principles

We now formulate a few desirable properties of Υ, and sufficient conditions for Φ that guarantee that Υ
meets these requirements.

1. Covariance with respect to rotation and translation:

Υ ◦ USIM(2)
g = USIM(2)

g ◦Υ, ∀g = (x, y, τ, θ). (42)

This is an important requirement because the net operations on images should not be affected by
rotation and translation of the original image. Typically, this is achieved by restricting one self to
left-invariant operators Φ. Covariance with respect to scaling can be achieved as well, but is not an
important requirement.

2. Left invariant vector fields: In order to achieve the Euclidean invariance mentioned above, we need to
employ left invariant vector fields (/differential operators ) on SIM(2) as a moving frame of reference.

3. Nonlinearity : The requirement that Υ commute with U immediately rules out linear operators Φ.
Recall that U is irreducible, and by Schur’s lemma [39], any linear intertwining operator is a scalar
multiple of the identity operator.

4. Left-invariant parabolic evolutions on the Similitude group: We consider the following two types of
evolutions which include the wavelet transform as a initial condition.

• Combine linear diffusions with monotone operations on the co-domain (i.e. scattering operators
[40] in the wavelet domain)

• Non linear adaptive diffusion

5. Probabilistic models for contextual multi-scale feature propagation in the wavelet domain: Instead of
uncorrelated soft-thresholding of wavelet coefficients we aim for PDE flows that amplify the wavelet
coefficients which are probabilistically coherent w.r.t. neighbouring coefficients. This coherence w.r.t.
neighbouring coefficients is based on underlying stochastic processes (random walks) for multiple-scale
contour enhancement.

In Subsections 3.2-3.5 we will elaborate on these design principles.

3.2 Covariance with respect to Rotations and Translations

Let G = Rd o T denote an arbitrary affine Lie-group.

Definition 16. An operator Φ : L2(G)→ L2(G) is left invariant iff

Φ[Lhf ] = Lh[Φf ], for all h ∈ G, f ∈ L2(R2), (43)

where the left regular action Lg of g ∈ G onto L2(G) is given by

Lgψ(h) = ψ(g−1h). (44)

Recall the definition of Hilbert space H from (9).

Theorem 17. Let Φ be a bounded operator on CGK , Φ : CGK → L2(G). Then the unique corresponding

operator Υ on H, which is given by Υ[f ] = (W̃ψ)∗ ◦ Φ ◦ W̃ψ[f ] is Euclidean (and scaling) invariant, i.e.
UgΥ = ΥUg for all g ∈ G if and only if Pψ ◦Φ is left invariant, i.e. Lg(Pψ ◦Φ) = (Pψ ◦Φ)Lg, for all g ∈ G.
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Proof. As,
W̃ψ[Ug[f ]](h) = (Uhψ,Ugf)L2(Rd) = (Ug−1hψ, f)L2(Rd) = Lg[W̃ψ[f ]](h)

we conclude that,
W̃ψUg = LgW̃ψ, for all g ∈ G. (45)

Moreover,

(W̃ψUgf, U)L2(G) = (LgW̃ψ, U)L2(G) ⇔ (f,Ug−1(W̃ψ)∗U)L2(G) = (f, (W̃ψ)∗Lg−1U)L2(G)

for all U ∈ L2(G), f ∈ L2(Rd), g ∈ G and therefore we have,

Ug(W̃ψ)∗ = Lg(W̃ψ)∗, for all g ∈ G. (46)

(Necessary condition) Assuming that (Pψ ◦ Φ) is left invariant it follows from (41), (45) and (46) that

Υ[Ugf ] = (W̃ψ)∗ ◦ Φ ◦ W̃ψ ◦ Ug[f ]

= (W̃ψ)∗ ◦ (Pψ ◦ Φ) ◦ W̃ψ ◦ Ug[f ]

= (W̃ψ)∗ ◦ (Pψ ◦ Φ) ◦ Lg ◦ W̃%
ψ[f ] (47)

= (W̃ψ)∗ ◦ Lg ◦ (Pψ ◦ Φ) ◦ W̃ψ[f ]

= Ug ◦ (W̃ψ)∗ ◦ (Pψ ◦ Φ) ◦ W̃ψ[f ]

= Ug ◦ (W̃ψ)∗ ◦ Φ ◦ W̃ψ[f ] = Ug[Υ[f ]]

for all f ∈ L2(R2) and g ∈ G. Thus we have ΥUg = UgΥ for all g ∈ G.
(Sufficient condition) Now suppose Υ is Euclidean invariant. Then again by (45) and (46) we have that,

(W̃ψ)∗ ◦ Φ ◦ Lg ◦ W̃ψ[f ] = (W̃ψ)∗ ◦ Lg ◦ Φ ◦ W̃ψ[f ],

for all f ∈ L2(R2) and g ∈ G. Since the range of Lg
∣∣
CGK

and the range of (Pψ ◦ Φ) is contained in CGK and

since (W̃ψ)∗
∣∣
CGK

= (Wψ)−1, we have (Pψ ◦ Φ) ◦ Lg ◦ W̃ψ = Lg ◦ (Pψ ◦ Φ) ◦ W̃ψ. As the range of W̃ψ equals

CGK , we have, Lg ◦ (Pψ ◦ Φ) = (Pψ ◦ Φ) ◦ Lg for all g ∈ G.

Practical Consequence: Now let us return to our case of interest G = SIM(2). Euclidean invariance of Υ
is of great practical importance, since the result of operators on scores should not be essentially different if
the original image is rotated or translated. In addition in our construction scaling the image also does not
affect the outcome of the operation which may not always be desirable.

3.3 Left Invariant Vector fields (differential operators) on SIM(2)

Left invariant differential operators are crucial in the construction of appropriate left-invariant evolutions on
G = SIM(2). Similar to Definition 16, the right regular action Rg of g ∈ G onto L2(G) is defined by

Rgψ(h) = ψ(hg), ∀g, h ∈ G, ψ ∈ L2(G). (48)

A vector field (now considered as a differential operator8) A on a group G is called left-invariant if it satisfies

Agφ = Ae(φ ◦ Lg) = Ae(h 7→ φ(gh)),

8Any tangent vector X ∈ T (G) can be considered as a differential operator acting on a function U : G→ R. So, for instance,
if we are using Xe ∈ Te(G) in the context of differential operators, all occurrences of ei will be replaced by ∂i, which is the
short-hand notation for ∂

∂xi
. See [41] for the equivalence between these two viewpoints.
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for all smooth functions φ ∈ C∞c (Ωg) where Ωg is an open set around g ∈ G and with the left multiplication
Lg : G→ G as defined in the previous section. The linear space of left-invariant vector fields L(G) equipped
with the Lie product [A,B] = AB −AB is isomorphic to Te(G) by means of the isomorphism,

Te(G) 3 A↔ A ∈ L(G)⇔ Ag(φ) = A(φ ◦ Lg) = A(h 7→ φ(gh)) = (Lg)∗A(φ)

for all smooth φ : G ⊃ Ωg → R.
We define an operator dR : Te(G)→ L(G),

(dR(A)φ)(g) := lim
t↓0

(Rexp(tA)φ)(g)− φ(g)

t
, A ∈ Te(G), φ ∈ L2(G), g ∈ G, (49)

and where R and exp are the right regular representation and the exponential map respectively. Using dR
we obtain the corresponding basis for left-invariant vector fields on G:

{A1,A2,A3,A4} := {dR(A1), dR(A2), dR(A3, dR(A4)}, (50)

or explicitly in coordinates

{A1,A2,A3,A4} = {∂θ, ∂ξ, ∂η, ∂β} = {∂θ, a(cos θ∂x + sin θ∂y), a(− sin θ∂x + cos θ∂y), a∂a}, (51)

where we use the short notation ∂a := ∂
∂a for the partial derivatives and where,

{A1

∣∣
e
,A2

∣∣
e
,A3

∣∣
e
,A4

∣∣
e
} = {A1, A2, A3, A4} = {∂θ, ∂x, ∂y, ∂a}.

To simplify the scale related left invariant differential operator, we introduce a new variable, τ = loge a,
which leads to the following change in left invariant derivatives

{A1,A2,A3,A4} = {∂θ, eτ (cos θ∂x + sin θ∂y), eτ (− sin θ∂x + cos θ∂y), ∂τ}. (52)

The set of differential operators {A1,A2,A3,A4} = {∂θ, ∂ξ, ∂η, ∂τ} is the appropriate set of differential
operators to be used in orientation scores because all SIM(2)-coordinate independent linear and nonlinear
combinations of these operators are left invariant. Further at each scale ∂ξ is always the spatial derivative
tangent to the orientation θ and ∂η is always orthogonal to this orientation. Figure 6 illustrates this for ∂η
versus ∂y. It is important to note that unlike derivatives {∂x, ∂y, ∂a, ∂θ} which commute, the left-invariant
derivatives {∂ξ, ∂η, ∂τ , ∂θ} do not commute. However these operators satisfy the same commutator relations
as their Lie algebra counterparts as dR generates a Lie-algebra isomorphism

[Ai, Aj ] =

4∑
k=1

ckijAk ↔ [Ai,Aj ] = AiAj −AjAi =

4∑
k=1

ckijAk, (53)

where ckij are the structure constants.
An exponential curve is obtained by using the exp mapping of the Lie algebra elements, i.e an exponential
curve passing through the identity element e ∈ SIM(2) at t = 0 can be written as

γc(t) = exp

(
t

4∑
i=1

ciAi
∣∣∣∣
g=e

)
= exp

(
t

4∑
i=1

ciAi

)
, (54)

and an exponential curve passing through g0 ∈ SIM(2) can be obtained by left multiplication with g0 =
(x0, y0, e

τ0 , θ0), i.e. g0γc(t). The following theorem applies the method of characteristics (for PDEs) to
transport along exponential curves. The explicit formulation is important because left-invariant convection-
diffusion on SIM(2) takes place only along exponential curves, see Theorem 30.

Theorem 18. Let A ∈ Te(SIM(2)). Then the following holds.
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Figure 6: The difference between cartesian derivatives and left-invariant derivatives, shown on a scale-OS
(at a fixed scale) of an image with a single circle. From left to right, several orientations are shown. Row 1:
Scale-OS of a circle image at a fixed scale; Row 2: Cartesian derivative ∂y; Row 3 : Left-invariant derivative
∂η. Comparing the derivatives ∂y and ∂η (Column 4) we observe that ∂η is invariant under rotation, i.e. the
interpretation of ∂η stays the same.

1. U ∈ D(dR(A))⇒ RetAU ∈ D(dR(A)), where D(X) denotes the domain of operator X.

2. etdR(A) = RetA , ∀t > 0 where dR is defined in (49).

3. γc(t) = g0 exp

(
t

4∑
i=1

ciAi

)
are the characteristics for the following PDE,

∂W

∂t
= −

4∑
i=1

ciAiW, W (g, 0) = U. (55)

Proof. See D for proof.

The exponential map defined on Te(SIM(2)) is surjective, and so we can define the logarithm mapping,
log = (exp)−1 : SIM(2) → Te(SIM(2)). For proof see [19, Chap. 4]. For the explicit formulation of
the exponential and logarithm curves in our case see C. The explicit form of the log map will be used to
approximate the solution for linear evolutions on SIM(2) in Section 4.1.

3.4 Quadratic forms on Left Invariant vector fields

We apply the general theory of evolutions (convection-diffusion) on Lie groups, [9], to the SIM(2) group
and consider the following left-invariant second-order evolution equations,{

∂tW (g, t) = QD,a(A1,A2,A3,A4)W (g, t),

W (·, t = 0) =Wψf(·),
(56)

where W : SIM(2)× R+ → C and QD,a is the following quadratic form on L(SIM(2)),

QD,a(A1,A2,A3,A4) =

4∑
i=1

−aiAi +

4∑
j=1

DijAiAj

 , ai, Dij ∈ R, D := [Dij ] ≥ 0, DT = D. (57)
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Throughout this article we restrict ourselves to the diagonal case with a1 = a2 = a4 = 0. This is a natural
choice when ai and Dij are constant, as we do not want to impose a-priori curvature and a-priori scaling
drifts in our flows. However, when adapting D and a to the initial condition (i.e. wavelet transform data)
such restrictions are not necessary. In fact, practical advantages can be obtained when choosing D diagonal
w.r.t. optimal gauge frame, [5, 28]. Choosing Dij = Diiδij , i, j ∈ {1, 2, 3, 4}, the quadratic form becomes,

QD,a(A1,A2,A3,A4) = [−a1∂θ − a2∂ξ − a3∂η − a4∂τ +D11(∂θ)
2 +D22(∂ξ)

2 +D33(∂η)2 +D44(∂τ )2]. (58)

The first order part of (58) takes care of transport (convection) along the exponential curves, deduced in
Section 3.3. The second order part takes care of diffusion in the SIM(2) group. Also note that these
evolution equations are left-invariant as they are constructed by linear combinations of left-invariant vector
fields.
Hörmander in [42] gave necessary and sufficient conditions on the convection and diffusion parameters, re-
spectively a = (a1, a2, a3, a4) and D = Dij , in order to get smooth Green’s functions of the left-invariant
convection-diffusion equation (56) with generator (58). By these conditions the non-commutative na-
ture of SIM(2) in certain cases takes care of missing directions in the diffusion tensor. Applying the
Hörmander’s theorem [42] produces necessary and sufficient conditions for smooth (resolvent) Green’s func-
tions on SIM(2)\{e} on the diffusion and convection parameters (D, a) in the generator (58) of (56) for
diagonal D:

{1, 2, 4} ⊂ {i| ai 6= 0 ∨Dii 6= 0} ∨ {1, 3, 4} ⊂ {i| ai 6= 0 ∨Dii 6= 0}. (59)

A covariant derivative of a co-vector field a on the manifold (SIM(2),G) is a (0, 2)-tensor field with compo-
nents ∇jai = Ajai − Γkijak, whereas the covariant derivative of a vector field v on SIM(2) is a (1, 1)-tensor

field with components ∇j′vi = Aj′vi + Γij′k′v
k′ , where we have made use of the notation ∇j := DAj , when

imposing the Cartan connection (tangential to the SE(2)-case in [28], SE(3)-case in [43] and the H(2d+ 1)-
case in [11]) .The Christoffel symbols equal minus the structure constants of the Lie algebra L(SIM(2)), i.e.
Γkij = −ckij . The Christoffel symbols are anti-symmetric as the underlying Cartan connection D has constant
torsion. The left-invariant equations (56) with a diagonal diffusion tensor (58) can be rewritten in covariant
derivatives as ∂sW (g, s) =

4∑
i,j=1

Ai((Dij(W ))(g, s)AjW )(g, s) =
4∑

i,j=1

∇i((Dij(W ))(g, s)∇jW )(g, s),

W (g, 0) =Wψf(g), for all g ∈ SIM(2), s > 0.

(60)

Both convection and diffusion in the left-invariant evolution equations (56) take place along the exponential
curves in SIM(2) which are covariantly constant curves with respect to the Cartan connection. For proof
and various details see F.

3.5 Probabilistic models for contextual feature propagation

Section 3.4 described the general form of convection-diffusion operators on the SIM(2) group. For the
particular case of contour enhancement i.e. diffusion on the SIM(2) group, which corresponds to the choice
Dij = Diiδij , i, j ∈ {1, 2, 3, 4}, D33 = 0 and a = 0, we have the following result.

Theorem 19. The evolution on SIM(2) given by{
∂tW (g, t) = [D11(∂θ)

2 +D22(∂ξ)
2 +D44(∂τ )2]W (g, t),

W (·, t = 0) =Wψf(·),
(61)

is the forward Kolmogorov (Fokker-Planck) equation of the following stochastic process for multi-scale contour
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enhancement 
X(s) = X(0) +

√
2D22ε2

s∫
0

(
cos(Θ(t))ex + sin(Θ(t)ey)eT(t)d(

√
t
)

Θ(s) = Θ(0) +
√
s
√

2D11ε1

T(s) = T(0) +
√
s
√

2D44ε4,

(62)

where e1, e2, e4 ∼ N (0, 1) are the standard random variables and D11, D22, D44 > 0.

In order to avoid technicalities regarding probability measures on Lie groups, see [44] for details, we only
provide a short and basic explanation which covers the essential idea of the proof.
The stochastic differential equation in (62) can be considered as limiting case of the following discrete
stochastic processes on SIM(2):Gn+1 := (Xn+1,Θn+1,Tn+1) = Gn +

√
∆s

∑
i=1,2,4

∑
j=1,2,4

εi,n+1√
N

√
2Dii ei

∣∣
GN

,

G0 = (X0,Θ0,T0),
(63)

where n = 1, · · · , N − 1, N ∈ N denotes the number of steps with step-size ∆s > 0, {εi,n+1}i=1,2,4 are
independent normally distributed εi,n+1 ∼ (0, 1) and ej

∣∣
Gn
≡ Aj

∣∣
Gn

, i.e.

e1

∣∣
Gn

=


0
0
0
1

 , e2

∣∣
Gn

=


eT cos Θ
eT sin Θ

0
0

 , e3

∣∣
Gn

=


−eT sin Θ
eT cos Θ

0
0

 , e4

∣∣
Gn

=


0
0
1
0

 .

Note that the continuous process (62) directly arises from the discrete process (63) by recursion and taking
the limit N →∞.

4 Left-invariant Diffusions on SIM(2)

Following our framework of stochastic left-invariant evolutions on SIM(2) we will restrict ourselves to
contour enhancement, where the Forward-Kolmogorov equation is essentially a hypo-elliptic9 diffusion on
the SIM(2) group and therefore we recall (61){

∂tW (g, t) = [D11(∂θ)
2 +D22(∂ξ)

2 +D44(∂τ )2]W (g, t),

W (·, t = 0) =Wψf(·).
(64)

In the remainder of this paper we study linear diffusion (combined with monotone operations on the co-
domain) and non-linear diffusion on the SIM(2) group in the context of our imaging application.

4.1 Approximate Contour Enhancement Kernels for Linear Diffusion on Scale-
OS

In [26, 27], the authors derive the exact Green’s function of (56) for the SE(2) case. To our knowledge explicit
and exact formulae for heat kernels of linear diffusion on SIM(2) do not exist in the literature. However
using the general theory in [45, 46] one can compute Gaussian estimates for Green’s function of left-invariant
diffusions on Lie groups. As a first step this involves approximating SIM(2) by a parametrized class of
groups (SIM(2))q, q ∈ [0, 1] in between SIM(2) and the nilpotent Heisenberg approximation SIM(2)0.
This idea of contraction has been explained in E.

9Eq. (64) is not elliptic as the direction ∂η is missing, but it’s called hypo-elliptic as it satisfies the Hörmander condition
[42].
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Figure 7: Plots of enhancement kernels generated on a 41 × 41 grid at different scales and orientations.
Parameters chosen: D11 = 0.05, D22 = 1, D44 = 0.01, t = 0.7.

According to the general theory in [46], the heat-kernels Kq,D
t : (SIM(2))q → R+ (i.e. kernels for con-

tour enhancement whose convolution yields diffusion on SIM(2))q) on the parametrized class of groups
(SIM(2))q, q ∈ [0, 1] in between SIM(2) and (SIM(2))0 satisfy the Gaussian estimates

|Kq,D
t (g)| ≤ Ct− 5

2 exp

(
−b‖g‖2q

4t

)
, with C, b > 0 (constant), g ∈ (SIM(2))q , (65)

where the norm ‖ · ‖q : (SIM(2))q → R+ is given by ‖g‖q = | log(SIM(2))q (g)|q. log(SIM(2))q : (SIM(2))q →
Te((SIM(2))q), is the logarithmic mapping on (SIM(2))q, which is computed explicitly for the case of
(SIM(2))q=1 = SIM(2) in C, and where the weighted modulus, see [46, Prop 6.1], in our special case of
interest is given by, ∣∣∣∣ 4∑

i=1

ciqA
q
i

∣∣∣∣
q

=
√
|c1q|2/w1 + |c2q|2/w2 + |c3q|2/w3 + |c4q|2/w4

=
√

((c1q)
2 + (c2q)

2 + (c4q)
2) + |c3q|, (66)

where recall the weightings from (81).

Remark 20. The constants b, C in (65) can be taken into account by the transformations t 7→ t
b , f 7→ Cf

respectively.

A sharp estimate for the front factor constant C in (65) is given by

C =
1

4πD11D22

1√
D44

. (67)

This follows from the general theory in [46] where the choice of constant C is uniform for all groups
(SIM(2))q, q ∈ [0, 1]. Thus to determine C we need to determine the front factor constant for the green’s
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function G of the following resolvent equation(
(D11(A0

1)2 +D22(A0
2)2 +D44(A0

4)2)
)
G(x, y, τ, θ) = +δe

where A0 denote the basis for L(H) (recall H = (SIM(2))q↓0) and e is the identity of H. Since {A0
i }i=1,2

are independent of τ the Green’s function in our case is separable, i.e.

G(x, y, τ, θ) = GD11,D22

(SE(2))q=0
(x, y, θ) ·GD44

R (τ)

where GD11,D22

(SE(2))q=0
(x, y, θ) and GD44

R (τ) are Green’s function for linear diffusion on SE(2) and R respectively.

The Green’s function for the Heisenberg case of SE(2) has been derived explicitly in [27] with the front

factor 1
4πD11D22t2

and the Green’s function of diffusion on R is GD44

R (τ) = |τ |√
tD44

.

Using this theory we arrive at the Gaussian estimates for the case SIM(2) = (SIM(2))q=1. Applying the
definition of ci, i ∈ {1, 2, 3, 4} from C we arrive at,

|Kq=1,D
t (g)| ≤ 1

4πt
5
2D11D22

√
D44

exp

(
−1

4t

(
θ2

D11
+

(c2)2

D22
+

τ2

D44
+

|c3|√
D11D22D44

))
(68)

where,

c2 =
(yθ − xτ) + (−θη + τξ)

t (1 + e2τ − 2eτ cosθ)
, c3 =

−(xθ + yτ) + (θξ + τη)

t (1 + e2τ − 2eτ cosθ)
.

A problem with these estimates is that they are not differentiable everywhere. This problem can be solved
by using the estimate

|a|+ |b| ≥
√
a2 + b2 ≥ 1√

2
(|a|+ |b|),

which holds for all a, b ∈ R, to the exponents of our Gaussian estimates. Thus we estimate the weighted

modulus by the equivalent (for all q > 0) weighted modulus | · |q : Te((SIM(2))q) → R+ by

∣∣∣∣ 4∑
i=1

ciqA
q
i

∣∣∣∣
q

:=

4

√
((c1q)

2 + (c2q)
2 + (c4q)

2)2 + |c3q|2, yielding the Gaussian estimate,

|Kq=1,D
t (g)| ≤ 1

4πt
5
2D11D22

√
D44

exp

(
−1

4t

([
θ2

D11
+

(c2)2

D22
+

τ2

D44

]2

+
|c3|2

D11D22D44

))
. (69)

Figure 7 shows the typical structure of these enhancement kernels.

Remark 21. When cascading group convolutions and transformations in the co-domain of the scores one
can generalize the scattering operators by Mallat on Rn, see [40], to left-invariant scattering operators on
affine Lie groups such as SIM(2) which would provide us with stability under local deformations.

In practice, medical images exhibit complicated structures which require local adaptivity per group location
via gauge frames. This brings us to non-linear diffusions that we will solve numerically in the next section.

4.2 Nonlinear Left Invariant Diffusions on SIM(2)

Adaptive nonlinear diffusion on the 2D Euclidean motion group SE(2) called coherence enhancing diffusion
on orientation scores (CED-OS) was introduced in [5, 27]. We wish apply this adaptive SE(2) diffusion to
each scale in our scale-OS, which is possible because at a fixed scale the scale-OS is a function on the SE(2)
group. In this section we present a brief outline of the CED-OS algorithm and then apply it to our case of
interest.
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(a) Noisy input image (b) SE(2) Linear Diffusion (c) SIM(2) Linear Diffusion

Figure 8: Comparison of enhancement via linear diffusion using Gaussian estimates for heat kernels on
SE(2) and SIM(2). Left:Original image, Center: Enhancement via Linear diffusion on SE(2) group using
Gaussian estimates in [27], Right: Enhancement via Linear diffusion on SIM(2) group using estimate in
(69). Parameters- OS: Nθ = 20, Ns = 5; SE(2) estimate: D11 = 0.05, D22 = 1, t = 3 ;SIM(2) estimate:
D11 = 0.05, D22 = 1, D44 = 0.01, t = 0.7.

4.2.1 CED-OS - Brief Outline

CED-OS involves the following two steps:

• Curvature Estimation. Curvature estimation of a spatial curve is based on the optimal exponential
curve fit at each point. We find the best exponential curve fit (and the corresponding curvature) to
the data (x, y, θ) 7→ |(Wψf)(x, y, θ)| by using the exponential map,

t 7→ exp
(
t(c1∗A1 + c2∗A2 + c3∗A3)

)
with (c1∗)

2 + β2(c2∗)
2 + β2(c3∗)

2 = 1,

via the techniques explained in [5, 28] and summarized in G.

• Adaptive curvatures based diusion scheme using gauge coordinates. The best exponential curve fit
mentioned above is parametrized by c∗ = (c1∗, c

2
∗, c

3
∗) ∈ R3 which provides us the curvature κ (and

deviation from horizontality dH if we do not impose c3∗ = 0). In fact it furnishes a whole set of gauge
frames {∂a, ∂b, ∂c} as can be seen in Figure 9. The gauge frames in spherical coordinates read

∂a = − cosα cos dH∂ξ − cosα sin dH∂η + β sinα∂θ,

∂b = sinα cos dH∂ξ + sinα sin dH∂η + β cosα∂θ, (70)

∂a = − sin dH∂ξ + cos dH∂η.

The resulting nonlinear evolution equations on orientation scores is
∂tU(g, t) =

(
β∂θ ∂ξ ∂η

)
MT
α,dH

Daa 0 0

0 Dbb 0

0 0 Dcc

Mα,dH

β∂θ∂ξ
∂η

U(g, t), t > 0,

U(g, t = 0) =Wψ[f ](g) for all g ∈ SE(2),

(71)

where we use the shorthand notation Dii = (Dii(U))(g, t), for i = a, b, c. The matrix

Mα,dH =

sinα − cosα cos dH − cosα sin dH
cosα cos dH sinα sinα sin dH

0 − sin dH cos dH


is the rotation matrix in SO(2) that maps the left-invariant vector fields {β∂θ, ∂ξ, ∂η} onto the gauge
frames {∂a, ∂b, ∂c}.
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Figure 9: Illustration of curvature κ and deviation from horizontality dH and the gauge frame (70). Note
that eθ ↔ ∂θ, eξ ↔ ∂ξ, eη ↔ ∂η.

Figure 10 depicts the dependence of the corresponding local linear diffusion kernel on curvature and orienta-
tion strengths. Eq.(71) is implemented by a Euler forward finite difference scheme involving the parameters
(ρ̃, ρs, c, β),

Un+1 = ∆t(QUn) + Un,

where Un = U(·, ·, tn) with discrete time steps and the generator is given by,

(QU)(·, ·, t) =
(
β∂Dθ ∂Dξ ∂Dη

)
MT
α,dH

Gρs,ρs,ρsβ2 ∗

Daa(U(·, ·, t)) 0 0
0 Dbb(U(·, ·, t)) 0
0 0 Dcc(U(·, ·, t))

Mα,dH

β∂Dθ∂Dξ
∂Dη

 ,

where Gρs,ρs,ρsβ2(x, y, θ) denotes a Gaussian kernel, which is isotropic on each spatial plane with spatial scale
ρs = 1

2σ
2
s and anisotropic with scale ρsβ

2 in orientation. Here ∂Dj denotes the left-invariant finite difference

operator in the jth direction implemented via B-spline interpolation [5]. Further Dbb = 0, (DaaU)(·, ·, t) =

(DccU)(·, ·, t) = e
−(s(|U|)(·,·,t))2

c , c > 0, with the orientation confidence s(U(·, ·, t)) = (∂2
a + ∂2

b )U(·, ·, t). The
derivatives ∂a, ∂b are Gaussian derivatives, computed with scales (ρ̃, ρ̃, ρ̃β2), orthogonal to locally optimal
direction with c being the eigenvector of the Hessian matrix corresponding to best exponential curve fit
where we enforce horizontality by setting dH = 0 (see Figure 10).

4.2.2 CED-OS on Scale-OS (CED-SOS)

For an image f ∈ L2(R2) the corresponding scale-OS Wψ(f) ∈ CSIM(2)
K ⊂ L2(SIM(2)) and for any fixed

a ∈ (0,∞), Wψ(f)(·, ·, a, ·) ∈ L2(SE(2)). Let Φt : L2(SE(2)) → L2(SE(2)) denote nonlinear adaptive
diffusion (CED-OS) on the SE(2) group which is the solution operator of (71) at stopping time t. We
propose the operator Λ on scale-OS defined as

(Λ[(Wψf ])(x, y, ai, θ) =

m∑
i=1

(Φtai [Wψf(·, ·, ai, ·)])(x, y, θ), (72)

where g ∈ R2 × [0, 2π) × [a−, a+] and {ai}mi=1 is the discretization of [a−, a+]. Recall the defintion of
0 < a− < a+ < ∞ from Section 2.4. Here we make the specific choice of tai with tai ≤ tak where
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1 

     

Figure 10: Illustration of heat kernels KD
t : SE(2)→ R+ on SE(2) corresponding to varying curvature and

orientation strengths. Note that as orientation strength decreases the kernels become more isotropic (which
is required for noise reduction). Furthermore, as curvature increases the diffusion kernels in SE(2) bend
accordingly.

1 ≤ i < k ≤ m. The idea here is that on lower scales we have to diffuse more as noise is typically dominant
at lower scales and therefore lower scales need higher diffusion time.

5 Results

Parameters are used for creating the scale orientation score: No. of scales = 4, No. of orientations = 20.
The parameters that we used for CED are (see[4]): σ = 0.5, ρ = 4, C = 1 and α = 0.001. The non-linear
diffusion parameters for CED-OS and CED-SOS for each scale are: ρs = 12, ρ̃ = 1.5, β = 0.058 and c = 0.08.
All the experiments in this section use these parameters and the varying end times are indicated below the
images. We have enforced horizontality in the experiments involving CED-OS, see [5] for more details.
Figure 11 compares the effect of CED, CED-OS and CED-SOS on an artificial image containing additive
superimposition of two images with concentric circles of varying widths. The new proposed method yields
visually better results compared to both CED and CED-OS.
Figure 12 shows the results on a microscopy image of collagen fibres. These kind of images are acquired in
tissue engineering research where often the goal is to create artificial heart valves, [47].
Figure 13 shows the results on an image from the Brodatz texture dataset. The top row of Figure 14 shows
the loss of small-scale data in CED-OS compared to CED-SOS. The bottom row compares the result of a
basic tracking algorithm on these enhanced images. Clearly tracking on CED-SOS outperforms tracking on
CED-OS.
Although CED-SOS is clearly advantageous for handling multi-scale complex structures and crossings, CED-
OS has the advantage that it is considerable faster as it’s implementation consumes far less memory.
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(a) Noisy image (b) CED t = 15 (c) CED-OS t = 6 (d) CED-SOS, ti = 0, 2, 6, 12

Figure 11: Comparison of CED, CED-OS and our proposed method CED-SOS. In CED-SOS multi-scale
crossing stuctures are better preserved. Observe that CED-OS and CED-SOS deal appropriately with
crossings, unlike CED

(a) Noisy image (b) CED t = 4 (c) CED-OS t = 4 (d) CED-SOS, ti = 0, 1, 3, 16

(e) CED t = 10 (f) CED-OS t = 10

Figure 12: Results of CED, CED-OS and CED-SOS on a microscopy image of a Collagen tissue. CED-OS
exhibits artefacts for small end time, see (c), which vanish if the algorithm is allowed to run longer at the
cost of small-scale information, see (f). Therefore best visual results are obtained with CED-SOS.

6 Conclusions

There are two different tasks achieved in this article.

1. Designing an invertible score on SIM(2), which also allows for accurate and efficient implementation
of subsequent enhancement by contextual flows.

2. Construction of contextual flows in the wavelet domain for the enhancement of elongated multi-scale
crossing/bifurcating structures, via left-invariant PDEs on SIM(2).
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(a) Noisy image (b) CED t = 6 (c) CED-OS t = 7 (d) CED-SOS, ti = 0, 1, 6, 10

Figure 13: Results of enhancement via of CED, CED-OS and CED-OS on Scale-OS on a Brodatz image.

(a) CED-OS (b) CED-SOS

(c) Vessel tracking on CED-OS (d) Vessel tracking on CED-SOS

Figure 14: Top: Comparison of CED-OS and CED-SOS. Regions circled show loss of small-scale information
in CED compared CED-SOS. Bottom: Results of a simple vessel tracking method on the images enhanced
by CED-OS and CED-SOS. As expected tracking on CED-SOS enhanced images give better results.

Regarding the first task we have presented a generalized unitarity result for algebraic affine Lie groups. This
result is then used to design a multi-scale orientation score appropriate for subsequent left-invariant flows.
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For the second task we have shown that only left-invariant flows on multi-scale orientation scores (defined
on SIM(2)) robustly relate to Euclidean invariant operations on images. Furthermore we have provided a
differential-geometric and probabilistic interpretation of left-invariant PDEs on SIM(2) which provides a
strong intuitive rationale for the choice of left-invariant PDEs and involved diffusion parameters.
We have also derived analytic approximations of Green’s function of linear diffusion on SIM(2). Finally,
we have presented crossing multiple-scale (curvature adaptive) flows via non-linear left-invariant diffusions
on invertible scores. Our preliminary results indicate that including the notion of scale in the framework of
invertible orientation scores indeed has advantages over existing PDE techniques (CED, CED-OS).
An interesting next step would be to include scale interactions in numerical implementation of non-linear
diffusion on SIM(2). Extending the framework of Scattering operators (Mallat [40]) to Lie groups would
also be an interesting theoretical problem for future work.

Acknowledgements The authors wish to thank Erik Bekkers (Technische Universiteit Eindhoven) for
fruitful discussions, ideas regarding numerical implementation of scale orientation score and the tracking
algorithm to create Figure 14.

A Proof of Lemma 5

Proof. Let f ∈ 〈Vψ〉⊥. Thus
∀b∈Rd∀t∈T (Ub,tψ, f)L2(Rd) = 0. (73)

We know that,
(Ub,tψ, f)L2(Rd) = (FRtTψ,Ff)L2(Rd) = (F−1[FRtψFf ])(b).

Thus Equation(73) implies

∀b∈Rd∀t∈T
(

(b, t) 7→ F−1[FRtψFf ])(b)

)
= 0

⇒
(

(ω, t) 7→ FRtψ(ω)Ff(ω)

)
= 0 a.e. on Rd o T

⇒
(

(ω, t) 7→ |FRtψ(ω)Ff(ω)|2
)

= 0 a.e. on Rd o T.

Therefore,

Mψ(ω)|(Ff)(ω)| = (2π)d/2
∫
T

∣∣∣∣FRtψ(ω)Ff(ω)√
detτ(t)

∣∣∣∣2dµT (t) = 0 a.e. on Rd.

Since Mψ 6= 0 a.e. as ψ is an admissible wavelet, this implies that |Ff |2 = 0 which implies f = 0. �

B Proof of Theorem 7

Proof. By Theorem 2, every Φ ∈ CGK has a Wψ pre-image f ∈ L2(Rd), i.e. f = (Wψ)−1[Φ] with

‖Φ‖2CGK = (Φ,Φ)CGK
= (f, f)L2(Rd) = ‖f‖2L2(Rd).

We need to show that ‖Φ‖2CGK = ‖Φ‖2Mψ
:= (Φ,Φ)

1
2

Mψ
, where we recall (12) for the definition of the Mψ-inner

product. We have,∫
Rd

|f(y)|2 dy =

∫
Rd

|f̂(ω)|2dω =

∫
Ω

|f̂(ω)|2Mψ(ω)

Mψ(ω)
dω =

∫
Ω

|f̂(ω)|2Mψ(ω)

Mψ(ω)
dω. (74)
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The second equality follows from from (9). Recall that T is assumed to be a linear algebraic Lie group and
therefore it has locally closed (dual) orbits. This leads to Ωc = Ωcr in [34, Ch 5] and since Ωcr is open,
[34, Prop 5.7], we have that µ(Ω\Ω) = 0, where µ is the usual Lebesgue measure on Rd, giving us the final
equality in (74). We can further write (74) as,∫
Rd

|f(y)|2 dy =

∫
Ω

|f̂(ω)|2 1

Mψ(ω)

∫
T

|(FRtψ)(ω)|2

det(τ(t))
dµT (t)dω =

∫
Ω

{∫
T

f̂(ω) (FRtψ(ω))f̂(ω) (FRtψ(ω))

det(τ(t))

}
dω

Mψ(ω)

=

∫
Ω

∫
T

(FΦ(·, t)) (ω) (FΦ(·, t)) (ω)dµT (t)
dω

Mψ(ω)
=

∫
Ω

(∫
T

|FΦ(·, t)(ω)|2 dµT (t)

)
M−1
ψ (ω)dω.

As a result Φ ∈ Hψ ⊗ L2(T ; dµT (t)
det(τ(t)) ) and we have,

(f, f)L2(Rd) = (Wψf,Wψf)CGK =

∫
T

(
M
− 1

2

ψ FΦ(·, t),M−
1
2

ψ FΦ(·, t)
)
dµT (t),

from which the result follows. �

C Explicit formulation of exponential and logarithm curves

The exponential curves g0γc(t) = (x(t), y(t), τ(t), θ(t)) passing through g0 = {x0, y0, e
τ0 , θ0} at t = 0 is,

x(t) =
1

c21 + c24
[eτ0c1

((
− sin [θ0] + etc4 sin [tc1 + θ0]

)
c2 +

(
− cos [θ0] + etc4 cos [tc1 + θ0]

)
c3
)

+ c21x0 +

c4
(
eτ0
(
− cos [θ0] + etc4 cos [tc1 + θ0]

)
c2 + eτ0

(
sin [θ0]− etc4 sin [tc1 + θ0]

)
c3 + c4x0

)
]

y(t) =
1

c21 + c24
[eτ0c1

((
cos [θ0]− etc4 cos [tc1 + θ0]

)
c2 +

(
− sin [θ0] + etc4 sin [tc1 + θ0]

)
c3
)

+ c21y0 +

c4
(
eτ0
(
− sin [θ0] + etc4 sin [tc1 + θ0]

)
c2 + eτ0

(
− cos [θ0] + etc4 cos [tc1 + θ0]

)
c3 + c4y0

)
]

τ(t) = tc4 + τ0

θ(t) = tc1 + θ0. (75)

To explicitly determine the log map, we solve for {c1, c2, c3, c4} from the equality, g = exp

(
t

4∑
i=1

ciAi

)
, where

g ∈ SIM(2) and ci’s are as defined earlier. This is achieved by substituting g0 = e, i.e. x0 = y0 = θ0 = τ0 = 0,
in (75) yielding,

c1 = θ/t

c2 =
yθ − xτ − eτ (yθ − xτ) cos θ + eτ (xθ + yτ) sin θ

t (1 + e2τ − 2eτ cos θ)

c3 =
−xθ − yτ + eτ (xθ + yτ) cos θ + eτ (yθ − xτ) sin θ

t (1 + e2τ − 2eτ cos θ)

c4 = τ/t, (76)

where recall that g = (x, y, eτ , θ) ∈ SIM(2). The formulae in (76) can be written in a simplified form,

c1 = θ/t

c2 =
(yθ − xτ) + (−θη + τξ)

t (1 + e2τ − 2eτ cos θ)

c3 =
−(xθ + yτ) + (θξ + τη)

t (1 + e2τ − 2eτ cos θ)

c4 = τ/t, (77)
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where we have made use of the definition of ξ and η,

ξ = eτ (x cos θ + y sin θ), η = eτ (−x sin θ + y cos θ).

D Proof of Theorem 18

Proof. We first note that, U ∈ D(dR(A)) ⇒ (dR(A)U) ∈ H, where H = L2(SIM(2)). Then, RetAU ∈
D(dR(A)) follows as [dR(A)RetA ](U) = [RetAdR(A)](U), for all U ∈ D(dR(A)).

[dR(A)RetA ](U)(g) =

[
lim
h→0

RehA − I
h

]
(RetAU)(g)

= lim
h→0

RehARetA(U(g))−RetA(U(g))

h

= lim
h→0

RetARehA(U(g))−RetA(U(g))

h

= [RetAdR(A)](U)(g),

where we have used Rh(U(g)) = U(gh) and etAehA = e(t+h)A = ehAetA. This proves (1). We need to prove
that etdR(A)U = RetAU , where10 U ∈ D(dR(A)), for all A ∈ Te(G), for all t > 0. By definition etdR(A)U

is the (strong) solution for ∂W
∂t (·, t) = dR(A)W (·, t) with W (g, 0) = U . Now

∂(RetAU)

∂t = dR(A)(RetAU),
follows from,

∂(RetAU)

∂t
= lim
h→0

Re(t+h)AU − RetAU
h

= lim
h→0

RehARetAU − RetAU
h

= lim
h→0

[(
RehA − I

h

)
RetAU

]
= dR(A)(RetAU). (78)

Note that the limit used above is defined on the space H = L2(SIM(2)).

Let dR(A) = A =
4∑
i=1

ciAi. Then the solution for (55) is, W (·, t) = e−tdR(A)U = Re−tAU , where the second

equality follows from (2). Thus we have,

W (g, t) = U(ge−tA) ∀g ∈ SIM(2), ∀t > 0⇒W (g0e
tA, t) = U(g0) ∀t > 0. (79)

From which the result follows. �

E Approximation of SIM(2) by a Nilpotent Group via Contraction

Following the general framework by ter Elst and Robinson [46], which involves semigroups on Lie groups gen-
erated by subcoercive operators, we consider a particular case by setting the Hilbert space H = L2(SIM(2)),
the group G = SIM(2) and the right-regular representation R. Furthermore we consider the algebraic basis
{A1 = ∂θ,A2 = ∂ξ,A4 = ∂τ} leading to the following filtration of the Lie algebra

g1 := span{A1,A2,A4} ⊂ g2 = [g1, g1] = span{A1,A2,A3,A4} = L(SIM(2)). (80)

Based on this filtration we assign the following weights to the generators:

w1 = w2 = w4 = 1 and w3 = 2. (81)

10D(A) denotes the domain of the operator A.
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For e.g. w2 = 1 since A2 occurs first in g1, while w(3) = 2 since A3 occurs in g2 and not g1. Based on these
weights we define the following dilations on the Lie algebra Te(SIM(2)) (recall Ai = Ai|e),

γq

(
4∑
i=1

ciAi

)
=

4∑
i=1

qwiciAi, ∀ci ∈ R,

γ̃q(x, y, τ, θ) =

(
x

qw2
,
y

qw3
,
τ

qw4
, ei

θ
qw1

)
,

with the weights wi defined in (81), and for 0 < q ≤ 1 we define the Lie product [A,B]q = γ−1
q [γq(A), γq(B)].

Let (SIM(2))t be the simply connected Lie group generated by the Lie algebra11 (Te(SIM(2)), [·, ·]q). The
group products on these intermediate groups (SIM(2))q∈(0,1] are given by,

(x, y, τ, θ) ·q (x′, y′, τ ′, θ′) = (x+eτq[cos(qθ)x′−q sin(qθ)y′], y+eτq[
sin(qθ)

q
x′+cos(qθ)y′], τ+τ ′, θ+θ′). (82)

The dilation on the Lie algebra coincides with the pushforward of the dilation on the group γq = (γ̃q)∗ and
therefore the left-invariant vector fields on (SIM(2))t are given by

Aqi |g = (γ̃−1
q ◦ Lg ◦ γ̃q)∗Ai,

for all q ∈ (0, 1] which leads to,

Aqi |gφ = (γ̃−1
q ◦ Lg)∗(γ̃q)∗Aiφ = (γ̃−1

q ◦ Lg)∗(γq)(Ai)φ = twi(γ̃−1
q ◦ Lg)∗(Ai)φ

= qwi(γ̃−1
q )∗Ai|gφ = qwiAi|γ̃−1

q g(φ ◦ γ̃q),

for all smooth complex valued functions φ defined on a open neighbourhood around g ∈ SIM(2). So for all
g = (x, y, τ, θ) ∈ SIM(3) we have,

At1|g = q(
1

q
∂θ) = ∂θ

Aq2|g = q

[
eτq
(

cos(qθ)

q
∂x +

sin(qθ)

q2
∂y

)]
= eτq

(
cos(qθ)∂x +

sin(qθ)

q
∂y

)
(83)

Aq3|g = q2

[
eτq
(
− sin(qθ)

q
∂x +

cos(qθ)

q2
∂y

)]
= eτq (−q sin(qθ)∂x + cos(qθ)∂y)

Aq4|g = ∂τ .

For example,

Aq3|g = (γ̃−1
q ◦ Lg ◦ γ̃q)∗A3 = (γ̃−1

q ◦ Lg)∗(γ̃q)∗A3 = (γ̃−1
q ◦ Lg)∗(q2∂y)

= q2(γ̃−1
q )∗(∂η) = q2eτq(γ̃−1

q )∗(− sin(qθ)∂x + cos(qθ)∂y)

= q2eτq(− sin(qθ)γ−1
q (∂x) + cos(qθ)γ−1

q (∂y)) = q2eτq(
− sin(qθ)

q
∂x +

cos(qθ)

q2
∂y).

Further, [Ai, Aj ]q = γ−1
q [γq(Ai), γq(Aj)] = γ−1

q qwi+wj [Ai, Aj ] =
4∑
k=1

qwi+wj−wkckijAk and therefore

[A1, A2]q = A3, [A1, A3]q = −q2A2, [A4, A2]q = qA2, [A4, A3]q = qA3. (84)

Analogously to the case q = 1, (SIM(2))q=1 = SIM(2), there exists an isomorphism of the Lie algebra at
the unity element Te((SIM(2))q) and the left-invariant vector fields on the group L((SIM(2))q):

(Ai ↔ Aqi and Aj ↔ Aqj)⇒ [Ai, Aj ]q ↔ [Aqi ,A
q
j ]. (85)

11Note that (SIM(2))q = expq(Te(SIM(2))).
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It can be verified that the left invariant vector fields Aqi satisfy the same commutation relations as (84). In
the case H ≡ lim

q↓0
(SIM(2))q the left-invariant vector fields are given by

A0
1 = ∂θ, A0

2 = ∂x + θ∂y, A0
3 = ∂y, A0

4 = ∂τ . (86)

So, the homogeneous nilpotent contraction Lie group equals

H3 = lim
q↓0

(SIM(2))q and SIM(2) = (SIM(2))q=1/({0} × {0} × {0} × 2πZ), (87)

with the Lie algebra L(H) = span{∂θ, ∂x + θ∂y, ∂y, ∂τ} and L(SIM(2)) = span{∂θ, ∂ξ, ∂η, ∂τ}.

F Differential-geometric interpretation of Left-invariant Evolutions

In order to keep track of orthogonality and parallel transport in such diffusions we need an invariant first
fundamental form G on SIM(2), rather than the trivial, bi-invariant (i.e. left and right invariant), first
fundamental form on (R4, T (R4)), where each tangent space Tx(R4) is identified with T0(R4) by standard
parallel transport on R4, i.e. GR4(x,y) = x · y = x1y1 + x2y2 + x3y3 + x4y4.
Recall Theorem 17 which essentially states that operators Φ on scale-OS should be left-invariant (i.e. Lg ◦
Φ = Φ ◦ Lg) and not right-invariant in order to ensure that the effective operator Υψ on the image is a
Euclidean invariant operator. This suggests that the first fundamental form required for our diffusions on
SIM(2) should be left-invariant. The following theorem characterizes the formulation of a left-invariant first
fundamental form w.r.t the SIM(2) group.

Theorem 22. The only real valued left-invariant (symmetric, positive, semidefinite) first fundamental form
G : SIM(2)× T (SIM(2))× T (SIM(2)→ C on SIM(2) are given by,

G =

4∑
i=1

4∑
j=1

gij ω
i ⊗ ωj , gij ∈ R. (88)

where the dual basis {ω1, ω2, ω3, ω4} ⊂ (L(SIM(2)))∗ of the dual space (L(SIM(2)))∗ of the vector space
L(SIM(2)) of left-invariant vector fields spanned by

{A1,A2,A3,A4} = {∂θ, eτ (cos θ∂x + sin θ∂y), eτ (− sin θ∂x + cos θ∂y), ∂τ}, (89)

obtained by applying the operator dR : Te(G)→ L(G), defined as

(dR(A)φ)(g) = lim
t↓0

(Rexp(tA)φ)(g)− φ(g)

t
, A ∈ Te(G), φ ∈ L2(G), g ∈ G, (90)

to the standard basis in the Lie algebra

{A1, A2, A3, A4} = {∂θ, ∂x, ∂y, ∂a} ⊂ Te(SIM(2)), (91)

is given by

{ω1, ω2, ω3, ω4} = {dθ, 1

eτ
(cos θdx+ sin θdy),

1

eτ
(− sin θdx+ cos θdy), dτ}. (92)

Proof. Recall that dR yields the fundamental isomorphism between the Lie algebra Te(SIM(2)) and L(SIM(2)).
The dual basis (92) satisfy 〈Ai,Aj〉 = δij . A first fundamental form G : SIM(2)×T (SIM(2))×T (SIM(2)→
C on SIM(2) by definition is left invariant if for all h, g ∈ SIM(2), for all X,Y ∈ T (SIM(2)) : Gh(Xh, Yh) =
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Ggh((Lg)∗Xh, (Lg)∗Yh). The dual tangent space (Tg(SIM(2))∗, g ∈ SIM(2) is spanned by {ω1|g, ω2|g, ω3|g, ω4}|g.
Thus for all g ∈ SIM(2) there exist numbers gij ∈ R, i, j ∈ {1, 2, 3, 4} such that

Gg =

4∑
i=1

4∑
j=1

gij(g) ωi
∣∣
g ⊗ ωj

∣∣
g
. (93)

G is left-invariant iff Gg(Ai|g,Aj |g) = Ge((Lg−1)∗Ai|g, (Lg−1)∗Aj |g) = Ge(Ai, Aj), ∀i, j ∈ {1, 2, 3, 4} ∀g ∈
SIM(2) which implies that ∀i, j ∈ {1, 2, 3, 4}, gij(g) = gij . �

We consider the Maurer-Cartan form on SIM(2) (discussed in the remainder of the subsection) and impose
the following left-invariant, first fundamental form Gβ : SIM(2)×T (SIM(2))×T (SIM(2))→ C on SIM(2),

G =

4∑
i=1

4∑
j=1

gij ω
i ⊗ ωj = α2ω1 ⊗ ω1 + β2ω2 ⊗ ω2 + β2ω3 ⊗ ω3 + σ2ω4 ⊗ ω4. (94)

Here σ tunes the cost of changing scale, β the cost of moving spatially and α the cost of moving angularly.
By homogeneity we set α = 1, as it is only β

α , σ
α that matter. In order to understand the meaning of the

next two theorems we need some definitions from differential geometry. See [48] for more details on these
concepts.

Definition 23. Let M be a smooth manifold and G be a Lie group. A principle fiber bundle PG :=
(P,M, π,R) above a manifold M with structure group G is a tuple (P,M, π,R) such that P is a smooth
manifold (called the total space of the principle bundle), π : P → M is a smooth projection map with
π(P ) = M and π(u · a) = π(a), ∀u ∈ P, a ∈ G, R a smooth right action Rgp = p · g, p ∈ P, g, h ∈ G.
Finally it should satisfy the ”local triviality” condition: For each p ∈M there is a neighbourhood U of p and
a diffeomorphism t : π−1(U) → U × G of the form t(u) = (π(u), φ(u)) where φ satisfies φ(u · a) = φ(u)a
where the latter product is in G.

Definition 24. A principle fiber bundle PG := (P,M, π,R) is commonly equipped with a Cartan-Ehresmann
connection form ω. This by definition is a Lie algebra Te(G)-valued 1-form ω : P × T (P ) → Te(G) on P
such that

ω(dR(A)) = A for all A ∈ Te(G)

ω((Rh)∗A) = Ad(h−1)ω(A) for all vector fields A in G. (95)

It is also common practice to relate principle fiber bundles to vector bundles. Here one uses an external
representation ρ : G→ F into a finite-dimensional vector space F of the structure group to put an appropriate
vector space structure on the fibers {π−1(m)| m ∈M} in the principle fiber bundles.

Definition 25. Let P be a principle fiber bundle with finite dimensional structure group G. Let ρ : G→ F
be a representation in a finite-dimensional vector space F . Then the associated vector bundle is denoted by
P ×ρ F and equals the orbit space under the right action

(P × F )×G→ P × F given by ((u,X), g) 7→ (ug, ρ(g)X),

for all g ∈ G, X ∈ F and u ∈ P .

Remark 26. GL(Te(SIM(2))) denotes the collection of linear operators on the Lie algebra Te(SIM(2)).
Note that each linear operator Q ∈ GL(Te(SIM(2))) on Te(SIM(2)) is 1-to-1 related to bilinear form Q on
(Te(SIM(2)))∗ × Te(SIM(2)) by means of

〈B,QA〉 = Q(B,A), for all B ∈ (Te(SIM(2)))∗, A ∈ Te(SIM(2)) and Q =

4∑
i=1

Q(ωi|e, ·)Ai.

So a basis for GL(Te(SIM(2))) is given by {ωi|e⊗Aj | i, j ∈ {1, 2, 3, 4}}. For the simplicity of notation we
omit the overline and write ωi|e⊗Aj as it is clear from context whether we mean the bilinear form or the
linear mapping.
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Theorem 27. The Maurer-Cartan form ω on SIM(2) can be formulated as

ωg(Xg) =

4∑
i=1

〈ωi|g, Xg〉Ai, Xg ∈ Tg(SIM(2)), (96)

where {ωi}4i=1 is given by (92) and Ai = Ai|e; recall (89). It is a Cartan-Ehresmann connection form on the
principle fiber bundle P = (SIM(2), e, SIM(2),L(SIM(2))), where π(g) = e, Rgu = ug, u, g ∈ SIM(2).
Let Ad denote the adjoint action of SIM(2) on its own Lie algebra Te(SIM(2)), i.e. Ad(g) = (Rg−1Lg)∗, i.e.
the push-forward of conjugation. Then the adjoint representation of SIM(2) on the vector space L(SIM(2))
of left-invariant vector-fields is given by

Ãd(g) = dR ◦Ad(g) ◦ ω. (97)

The adjoint representation gives rise to the associated vector bundle SIM(2) ×
Ãd
L(SIM(2)). The corre-

sponding connecting form on this vector bundle is given by

ω̃ = A2 ⊗ ω3 ∧ ω1 +A3 ⊗ ω1 ∧ ω2 +A2 ⊗ ω4 ∧ ω2 +A3 ⊗ ω4 ∧ ω3. (98)

Then ω̃ yields the following 4× 4 matrix-valued 1-form:

ω̃kj (·) := −ω̃(ωk, ·,Aj), k, j ∈ {1, 2, 3, 4} (99)

on the frame bundle, where the sections are moving frames12. Let {µk}4k=1 denote the sections in the tangent
bundle E := (SIM(2), T (SIM(2))) which coincides with the left-invariant vector fields {Ak}4k=1. Then the
matrix-valued 1-form (89) yields the Cartan connection 13 D on the tangent bundle (SIM(2), T (SIM(2)))
given by the covariant derivatives

DX|γ(t)(µ(γ(t))) := D(µ(γ(t)))(X|γ(t))

=

4∑
k=1

ȧkµk(γ(t)) +

4∑
k=1

ak(γ(t))

4∑
k=1

ω̃jk(X|γ(t))µj(γ(t)) (100)

=

4∑
k=1

ȧkµk(γ(t)) +

4∑
k=1

˙γi(t)ak(γ(t))Γjikµj(γ(t)),

with ȧk = γ̇i(t)(Ai|γ(t)a
k), for all tangent vectors X|γ(t)= γ̇i(t)Ai|γ(t) along a curve t 7→ γ(t) ∈ SIM(2) and

all sections µ(γ(t)) =
4∑
k=1

ak(γ(t))µk(γ(t)). The Christoffel symbols in (100) are constant Γjik = −cjik, with

cjik the structure constants of the Lie algebra Te(SIM(2)).

Proof. As in Theorem 22, we set {A1, A2, A3, A4} = {∂θ, ∂x, ∂y, ∂a} as a basis for the Lie algebra Te(SIM(2))
and {A1,A2,A3,A4} = {dR(A1), dR(A2), dR(A3), dR(A4)} = {∂θ, ∂ξ, ∂η, ∂τ} as the basis for the space
L(SIM(2)) of left-invariant vector fields with corresponding dual basis {ω1, ω2, ω3, ω4} ⊂ (L(SIM(2)))∗.
The Maurer-Cartan form ω : (SIM(2), T (SIM(2)))→ Te(SIM(2)) is defined as

ωg(Yg) = (Lg−1)∗Yg, (101)

where (Lg−1)∗ denotes the push- forward of the inverse left multiplication h 7→ Lgh = g−1h i.e. ωg(Yg)φ =
Yg(φ ◦ Lg−1) for all φ : Ωe → R smooth and defined on some open local set Ωe around the unity e. Recall

12See [48, Ch.8] for more details on frame bundles and moving frames.
13Following the definitions in [48], formally this is not a Cartan connection but a Koszul connection, see [48, Ch.6] , corre-

sponding to a Cartan connection, i.e. a associated differential operator corresponding to a Cartan connection. We avoid these
technicalities and use “Cartan connection” (a Koszul connection in [48]) and “Cartan-Ehresmann connection form” (Ehresmann
connection in [48]).
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that the left-invariant vector fields {Ai}4i=1 satisfy Ai|g= (Lg)∗Ai and therefore the dual elements (the
corresponding co-vector fields) are obtained by the pull-back from Te(SIM(2)), i.e. ωi|g= (Lg−1)∗ω

i|e since
〈(L−1

g )∗ω
i|e, (Lg)∗Aj〉 = 〈ωi|e, Aj〉 = δij . Now for any Xg ∈ Tg(SIM(2)), direct computation yields (96),

ωg(Xg) = (Lg−1)∗Xg =

4∑
i=1

〈ωi|e, (Lg−1)∗Xg〉Ai

=

4∑
i=1

〈(Lg)∗ωi|e, Xg〉Ai =

4∑
i=1

〈ωi, Xg〉Ai.

Now we show that the Maurer-Cartan form indeed forms a Cartan-Ehresmann connection form, recall Defi-
nition 24, on the principle fiber bundle, P = (SIM(2), e, SIM(2),L(SIM(2)). Now recall from Theorem 22
that the left invariant vector fields are obtained from the operator dR, i.e. Ai = dR(Ai). The Maurer-Cartan
form does the reverse in the sense that it connects each tangent space Tg(SIM(2)) to Te(SIM(2)). To this
end note that

lim
h↓0

φ(g · ehAi)− φ(g)

h
=: (dR(Ai))gφ = (Ai)gφ = (Lg)∗Aiφ = Ai(φ ◦ Lg) ∈ R

for all g ∈ SIM(2) and all smooth φ : Ωg → R. Therefore we have

∀i ∈ {1, 2, 3, 4} : ω ◦ dR(Ai) = ω(Ai) = Ai ⇔ ω ◦ dR = I.

The second requirement in Definition24 follows from the following computation,

ωgh((Rh)∗Yg) = (Lh−1 ◦ Lg−1)∗((Rh)∗Yg) = (Lh−1)∗ ◦ (Lg−1)∗ ◦ (Rh)∗Yg = Ad(h−1)ωgYg.

To show that equality (97) holds we note that the left multiplication Lg and the right multiplication Rg
commute and this leads to

(Rg−1Lg)∗ = (LgRg−1)∗ = (Lg)∗(Rg−1)∗ = (Lg)∗(Rg−1Lg)∗(L
−1
g )∗,

which implies that Ãd(g) = dR ◦ Ad(g) ◦ ω. The adjoint representation Ad : SIM(2) → GL(Te(SIM(2)))
coincides with the derivative of the conjugate automorphism h 7→ conj(g)(h) = ghg−1 evaluated at e, i.e.
Ad(g) = Deconj(g) = (Rg−1Lg)∗. Recall Definition 25 of an associated vector bundle and set

P = SIM(2), M = e, G = SIM(2), F = L(SIM(2)), ρ = Ãd, π(g) = e, Rgu = ug, (102)

where L(SIM(2)) denotes the Lie algebra of left invariant vector fields on SIM(2) and Ãd the adjoint
representation of SIM(2) into GL(L(SIM(2)) given by

Ãd(g)X = (R−1
g Lg)∗X, X ∈ L(SIM(2)), g ∈ SIM(2).

A connection ω on a principle fiber bundle P is 1-to-1 related to a connection ω̃ on the vector bundle P ×ρF
by means of

ω =
∑
j

Aj ⊗ dxj ↔ ω̃ =
∑
j

ρ∗(Aj)⊗ dxj ,

where {dxj} are dual forms on F , see [49] for more details on this bijection. In our case we have F =
L(SIM(2)) and the corresponding dual forms {ωj}4j=1. Note that we applied the convention mentioned in

the remark. So in our case (102) the push-forward ρ∗ of ρ = Ãd equals

(Ãd)∗ = (dR ◦Ad∗)(Aj) = (dR ◦ ad ◦ ω)(Aj)

= ãd(Aj) = [·,Aj ]L(SIM(2)) =

4∑
i,j,k=1

ckijAk ⊗ ωi.
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Thereby the connection form on the vector bundle SIM(2)×
Ãd
L(SIM(2)) is given by

ω̃ =

4∑
j=1

ãd(Aj)⊗ ωi =

4∑
i,j,k=1

ckijAk ⊗ ωi ⊗ ωj (103)

where ckij are the structure constants of the Lie group SIM(2), so ãd(Aj)(Ai) = [Ai,Aj ] =
∑4
i,j,k=1 c

k
ijAk.

Using the nonzero structure constants c312 = −c321 = −c213 = c231 = −c334 = c343 = c242 = −c224 = 1 and by
using the definition anti-symmetric products da ∧ db = da⊗ db− db⊗ da in (103) we arrive at (98).
From ω̃ defined in (103) we can construct the 16-connection 1-form {ω̃kj (·)}4k,j=1 via (99) which together
form a 4× 4 matrix-valued 1-form on the frame bundle where the sections are moving frames.
Let {µk}4k=1 denote the sections in (SIM(2), T (SIM(2))) which coincide respectively with the left-invariant
vector fields {Ak}4k=1. Then the Cartan connection D on (the vector bundle SIM(2) ×

Ãd
L(SIM(2)) is

isomorphic to) the tangent bundle (SIM(2), T (SIM(2))) equals

D := d+ ω with ω(µk)(·) :=

4∑
j=1

ω̃jk(·)µj , (104)

or more precisely the covariant derivatives are given by

DX|γ(t)(µ(γ(t))) := (Dµ(γ(t)))(X|γ(t))

=

4∑
k=1

ȧkµk(γ(t)) +

4∑
k=1

ak(γ(t))

4∑
k=1

ω̃jk(X|γ(t))µj(γ(t))

=

4∑
k=1

ȧkµk(γ(t)) +

4∑
k=1

˙γi(t)ak(γ(t))Γjikµj(γ(t)),

with ȧk = γ̇i(t)(Ai|γ(t)a
k)(γ(t)), for all curves γ : R→ SIM(2) and tangent vectorsX|γ(t)=

∑4
i=1 γ̇

i(t)Ai|γ(t)∈
Tγ(t)(SIM(2)) and all sections

µ(γ(t)) =

4∑
k=1

ak(γ(t))µk(γ(t))

and where the Christoffel symbols Γkij are constant

Γkij = ω̃kj (Ai) = −ω̃(ωk,Ai,Aj) = −ckij = ckji.

�

As seen in the theorem above, we define the notion of covariant derivatives independent of the metric G on
SIM(2), which is the underlying principle behind the Cartan connection. Although in principle these two
entities need not be related, in Lemma 29 we show that the connection induced above is metric compatible.

Definition 28. Let (M,G) be a Riemannian manifold (or pseudo-Riemannian manifold) where M and G
denote the manifold and the metric defined on it respectively. Let ∇ denote a connection on (M,G). Then
∇ is called metric compatible with respect to G if

∇ZG(X,Y ) = G(∇ZX,Y ) + G(X,∇ZY ), (105)

for all X, Y, Z ∈ T (M).

Lemma 29. The Cartan connection D on (SIM(2), T (SIM(2))) is metric compatible with respect to Gβ :
SIM(2)× T (SIM(2))× T (SIM(2))→ C on SIM(2) defined in (94).
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Proof. We first note that DAiG(Aj ,Ak) = 0, i ∈ {1, 2, 3, 4} as the covariant derivative of a scalar field is
the same as partial derivative. Here {Ai}4i=1 denote the basis of the left invariant vector fields L(SIM(2)).
The following brief computation

G(DAiAj ,Ak) + G(Aj , DAiAk) = G(clijAl,Ak) + G(Aj , cmikAm) = −ckij − c
j
ik, (106)

where we have used the fact that Γkij = ckji along with non-zero structure constants c312 = −c321 = −c213 =

c231 = −c334 = c343 = c242 = −c224 = 1, leads to the result. �

The next theorem relates the previous results on Cartan connections and covariant derivatives to the non-
linear diffusion schemes on SIM(2).

Theorem 30. covariant derivative of a co-vector field a on the manifold (SIM(2),G) is a (0, 2)-tensor
field with components ∇jai = Ajai − Γkijak, whereas the covariant derivative of a vector field v on SIM(2)

is a (1, 1)-tensor field with components14 ∇j′vi = Aj′vi + Γij′k′v
k′ . The Christoffel symbols equal minus

the structure constants of the Lie algebra L(SIM(2)), i.e. Γkij = −ckij. The Christoffel symbols are anti-
symmetric as the underlying Cartan connection D has constant torsion. The left-invariant equations (56)
with a diagonal diffusion tensor (58) can be rewritten in covariant derivatives as ∂sW (g, s) =

4∑
i,j=1

Ai((Dij(W ))(g, s)AjW )(g, s) =
4∑

i,j=1

∇i((Dij(W ))(g, s)∇jW )(g, s),

W (g, 0) =Wψf(g), for all g ∈ SIM(2), s > 0.

(107)

Both convection and diffusion in the left-invariant evolution equations (56) take place along the exponential
curves in SIM(2) which are covariantly constant curves with respect to the Cartan connection.

Proof. The first part of the proof follows from Theorem 27. The torsion tensor T (X,Y ) = DXY −DYX −
[X,Y ] is constant follows from a simple computation

T (Ai,Aj) = DAiAj −DAjAi − [Ai,Aj ] =

4∑
k=1

(ΓkijAk − ΓkjiAk − ckijAk) = −3

4∑
k=1

ckijAk.

The covariant constant curves15 γ are by definition given byDγ̇ γ̇ = 0 on the tangent bundle (SIM(2), T (SIM(2)))

Dγ̇ γ̇ = Dγ̇iAi|γ(t) γ̇
iAi|γ(t)= γ̈iAi|γ(t)+γ̇

iγ̇kΓjikAj = γ̈iAi|γ(t)= 0, (108)

where we have made use of the Einstein’s summation convention and applied automatic summation over
double indices and where Γkij = −Γkji = ckji = −ckij . Note that the tangent vectors to these auto-parallel curves

have constant coefficients with respect to {A1,A2,A3,A4} as ∀t > 0, γ̇i(t) = 〈ωi|γ(t), γ̇(t)〉 = |γ(0), γ̇(0)〉 =
ci ∈ R, i ∈ {1, 2, 3, 4}. For smooth U : SIM(2)→ C one has

d

dt
U(γ(t)) = lim

h→0

U(γ(t+ h)− U(γ(t)))

h
= (dR(

4∑
i=1

ciAi)U)(γ(t))

=

4∑
i=1

ci(dR(Ai)U)(γ(t)) =

4∑
i=1

ciAiU |γ(t), (109)

where γ(t) = g0e
t
∑4
i=1 c

iAi . Therefore these curves γ(t) coincide with the exponential curves in SIM(2), see
(75). As mentioned earlier the connection D is a Koszul connection which has the property that ∇i(UAj)φ =
∇i(U∇j)φ = U∇i∇jφ + (∇iU)∇jφ for all U ∈ C1(SIM(2)) and all smooth φ ∈ C∞(SIM(2)). Set
U = Dij(W )(·, s) and φ = W (·, s) for all s > 0, use Dij = Dji and Γkij = −γkji, take the sum over both
indices i, j and (107) follows. �

14We have made use of the notation ∇j := DAj , when imposing the Cartan connection.
15Also called ”auto-parallel” curves.
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Remark 31. Though the connection D is G compatible (Lemma 29) , we have shown in the previous theorem
that our connection is not torsion free, i.e. the torsion tensor T (X,Y ) 6= 0 for all X,Y ∈ T (SIM(2)). As a
result minimum distance curves in the group SIM(2) are curves minimizing the induced Riemannian metric
and do not coincide with “straight curves” (auto-parallel curves) in the group SIM(2). The auto-parallel
curves are the exponential curves. A full analysis of the shortest distance curves in SIM(2) is beyond the
scope of this article.

G Curvature estimation via best Exponential Curve fit

Curvature estimation of a spatial curve using SE(2)-OS is based on the optimal exponential curve fit at
each point. In [5, 28] the authors suggest two methods for such best exponential curve fit. Below is a brief
summary.

• Compute the curvature of the projection x(s(t)) = PR2(g0 exp(t
∑3
i=1 c

i
∗Ai)) of the optimal exponen-

tial curve in SE(2) on the ground plane from an eigenvector c∗ = (cθ∗, c
ξ
∗, c

η
∗). This eigenvector of

(H̃β |U |)T (H̃β |U |), with a 3× 3 Hessian

H̃β |U | =

β2∂θ∂θ|U | β∂ξ∂θ|U | β∂η∂θ|U |
∂θ∂ξ|U | ∂ξ∂ξ|U | ∂η∂ξ|U |
∂θ∂η|U | ∂ξ∂η|U | ∂η∂η|U |

 , (110)

corresponds to the smallest eigenvalue. The curvature estimation is given by,

κest = ‖ẍ(s)‖sgn(ẍ(s) · eη) =
cθ∗sign(cξ∗)√
(cξ∗)2 + (cξ∗)2

.

Note that unlike the SIM(2) case curvature is constant in this case.

• In this method the choice of optimal exponential curve is restricted to horizontal exponential curves,
which are curves in the (SE(2), ω3) sub-Riemannian manifold. The idea is to diffuse along horizontal
curves because typically the mass of a SE(2)-OS is concentrated around a horizontal curve [5] and
therefore this is a fast curvature estimation method.

Compute the curvature of the projection x(s(t)) = PR2(g0 exp(t
∑3
i=1 c

i
∗Ai)) of the optimal expo-

nential curve in SE(2) on the ground plane from the eigenvector c∗ = (cθ∗, c
η
∗). This eigenvector of

(H̃hor
β |U |)T (H̃hor

β |U |), with a 3× 2 horizontal Hessian

H̃hor
β |U | =

β2∂θ∂θ|U | β∂ξ∂θ|U |
∂θ∂ξ|U | ∂ξ∂ξ|U |
∂θ∂η|U | ∂ξ∂η|U |

 , (111)

corresponds to the smallest eigenvalue. The curvature estimation given by,

κhorest = ‖ẍ(s)‖sgn(ẍ(s) · eη) =
cθ∗

cξ∗
.

For numerical experiments on these curvature estimates on orientation scores of noisy images, see [5].
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