8,034 research outputs found

    ISDN at NASA Lewis Research Center

    Get PDF
    An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Satellites and the BISDN: An overview of NASA R/D

    Get PDF
    NASA is currently the only U.S. government agency developing advanced technology on behalf of the commercial communications satellite industry. The Agency's commercial communications program includes several activities which are either directly or indirectly related to the potential use of satellites within a broadband integrated services digital network (BISDN). Lewis Research Center's Space Electronics Division is actively pursuing a number of thrusts aimed at the integration of satellites into the BISDN through the development of high-risk and proof-of-concept technology

    Design mobile satellite system architecture as an integral part of the cellular access digital network

    Get PDF
    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols

    A review of personal communications services

    Get PDF
    This article can be accessed from the link below - Copyright @ 2009 Nova Science Publishers, LtdPCS is an acronym for Personal Communications Service. PCS has two layers of meaning. At the low layer, from the technical perspective, PCS is a 2G mobile communication technology operating at the 1900 MHz frequency range. At the upper layer, PCS is often used as an umbrella term that includes various wireless access and personal mobility services with the ultimate goal of enabling users to freely communicate with anyone at anytime and anywhere according to their demand. Ubiquitous PCS can be implemented by integrating the wireless and wireline systems on the basis of intelligent network (IN), which provides network functions of terminal and personal mobility. In this chapter, we focus on various aspects of PCS except location management. First we describe the motivation and technological evolution for personal communications. Then we introduce three key issues related to PCS: spectrum allocation, mobility, and standardization efforts. Since PCS involves several different communication technologies, we introduce its heterogeneous and distributed system architecture. IN is also described in detail because it plays a critical role in the development of PCS. Finally, we introduce the application of PCS and its deployment status since the mid-term of 1990’s.This work was supported in part by the National Natural Science Foundation of China under Grant No. 60673159 and 70671020; the National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z214, and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Telematics programme (1991-1994). EUR 15402 EN

    Get PDF

    Desktop multimedia environments to support collaborative distance learning

    Get PDF
    Desktop multimedia conferencing, when two or more persons can communicate among themselves via personal computers with the opportunity to see and hear one another as well as communicate via text messages while working with commonly available stored resources, appears to have important applications to the support of collaborative learning. In this paper we explore this potential in three ways: (a) through an analysis of particular learner needs when learning and working collaboratively with others outside of face-to-face situations; (b) through an analysis of different forms of conferencing environments, including desktop multimedia environments, relative to their effectiveness in terms of meeting learner needs for distributed collaboration; and (c) through reporting the results of a formative evaluation of a prototype desktop multimedia conferencing system developed especially for the support of collaborative learning. Via these analyses, suggestions are offered relating to the functionalities of desktop multimedia conferencing systems for the support of collaborative learning, reflecting new developments in both the technologies available for such systems and in our awareness of learner needs when working collaboratively with one other outside of face-to-face situations
    corecore