976 research outputs found

    Constrained trajectory optimization for kinematically redundant arms

    Get PDF
    Two velocity optimization schemes for resolving redundant joint configurations are compared. The Extended Moore-Penrose Technique minimizes the joint velocities and avoids obstacles indirectly by adjoining a cost gradient to the solution. A new method can incorporate inequality constraints directly to avoid obstacles and singularities in the workspace. A four-link arm example is used to illustrate singularity avoidance while tracking desired end-effector paths

    Kinematically redundant robot manipulators

    Get PDF
    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques

    Optimal control of redundant robots in human-like fashion

    Get PDF
    U ovom radu je predložen jedan novi vid upravljanja redundantnim robotskim sistemom. To je ostvareno primenom pogodnog kinematičkog i dinamičkog kriterijuma zasnovanim na biološkim principima tj. na načinu koji je sličan i svojstven čoveku. Ovde je dinamički model robotskog sistema dat u formi Langranžeovih jednačina druge vrste u kovarijatnom obliku.Nekoliko kriterijuma je uvedeno koji su funkcija generalisanih koordinata, brzina vektora ubrzanja kao i vektora upravljanja respektivno. Konačno, efikasnost predloženog optimalnog upravljanja na način sličan čoveku je demonstrirana na robotu sa četiri stepena slobode.This paper suggests a new optimal control of a redundant robotic system. It is achieved using suitable kinematic and dynamic criteria based on biological principles, i.e. in human-like fashion. Here, a dynamical model of robotic system is given in the form of Langrange's equations of second kind in covariant form. Several criteria are introduced which are the function of generalized coordinates, velocities, accelerations and control vectors, respectively. Finally, the effectiveness of suggested optimal control in human-like fashion is demonstrated with a robot with four degrees of freedom as the illustrative example

    Optimal control of redundant robots in human-like fashion

    Get PDF
    U ovom radu je predložen jedan novi vid upravljanja redundantnim robotskim sistemom. To je ostvareno primenom pogodnog kinematičkog i dinamičkog kriterijuma zasnovanim na biološkim principima tj. na načinu koji je sličan i svojstven čoveku. Ovde je dinamički model robotskog sistema dat u formi Langranžeovih jednačina druge vrste u kovarijatnom obliku.Nekoliko kriterijuma je uvedeno koji su funkcija generalisanih koordinata, brzina vektora ubrzanja kao i vektora upravljanja respektivno. Konačno, efikasnost predloženog optimalnog upravljanja na način sličan čoveku je demonstrirana na robotu sa četiri stepena slobode.This paper suggests a new optimal control of a redundant robotic system. It is achieved using suitable kinematic and dynamic criteria based on biological principles, i.e. in human-like fashion. Here, a dynamical model of robotic system is given in the form of Langrange's equations of second kind in covariant form. Several criteria are introduced which are the function of generalized coordinates, velocities, accelerations and control vectors, respectively. Finally, the effectiveness of suggested optimal control in human-like fashion is demonstrated with a robot with four degrees of freedom as the illustrative example

    Method and apparatus for configuration control of redundant robots

    Get PDF
    A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space

    Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints

    Get PDF
    In this paper, we propose a solution to compute full-dynamic motions for a humanoid robot, accounting for various kinds of constraints such as dynamic balance or joint limits. As a first step, we propose a unification of task-based control schemes, in inverse kinematics or inverse dynamics. Based on this unification, we generalize the cascade of quadratic programs that were developed for inverse kinematics only. Then, we apply the solution to generate, in simulation, wholebody motions for a humanoid robot in unilateral contact with the ground, while ensuring the dynamic balance on a non horizontal surface

    A novel closed-form solution for the inverse kinematics of redundant manipulators through workspace analysis

    Get PDF
    © 2017 Elsevier Ltd This work addresses the inverse kinematic problem for redundant serial manipulators. Its importance relies on its effect in the programming and control of redundant robots. Besides, no general closed-form techniques have been developed so far. In this paper, redundant manipulators are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and parametrizing its joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions for a given pose. Once these joints have been identified several closed-form methods developed for non-redundant manipulators can be applied for obtaining the analytical solutions. Finally, particular instances for the parametrized joints variables are determined depending on the task to be executed. Different criteria and optimization functions can be defined for that purpose.Peer ReviewedPostprint (author's final draft

    Cartesian control of redundant robots

    Get PDF
    A Cartesian-space position/force controller is presented for redundant robots. The proposed control structure partitions the control problem into a nonredundant position/force trajectory tracking problem and a redundant mapping problem between Cartesian control input F is a set member of the set R(sup m) and robot actuator torque T is a set member of the set R(sup n) (for redundant robots, m is less than n). The underdetermined nature of the F yields T map is exploited so that the robot redundancy is utilized to improve the dynamic response of the robot. This dynamically optimal F yields T map is implemented locally (in time) so that it is computationally efficient for on-line control; however, it is shown that the map possesses globally optimal characteristics. Additionally, it is demonstrated that the dynamically optimal F yields T map can be modified so that the robot redundancy is used to simultaneously improve the dynamic response and realize any specified kinematic performance objective (e.g., manipulability maximization or obstacle avoidance). Computer simulation results are given for a four degree of freedom planar redundant robot under Cartesian control, and demonstrate that position/force trajectory tracking and effective redundancy utilization can be achieved simultaneously with the proposed controller

    A lightweight, high strength dexterous manipulator for commercial applications

    Get PDF
    The concept, design, and features are described of a lightweight, high strength, modular robot manipulator being developed for space and commercial applications. The manipulator has seven fully active degrees of freedom and is fully operational in 1 G. Each of the seven joints incorporates a unique drivetrain design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. Feedback sensors provide position, velocity, torque, and motor winding temperature information at each joint. This sensing system is also designed to be single fault tolerant. The manipulator consists of five modules (not including gripper). These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly and/or disassembly for reconfiguration, transport, or servicing. The manipulator is a completely enclosed assembly, with no exposed components or wires. Although the initial prototype will not be space qualified, the design is well suited to meeting space requirements. The control system provides dexterous motion by controlling the endpoint location and arm pose simultaneously. Potential applications are discussed
    corecore