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Abstract

This work addresses the inverse kinematic problem for redundant serial manip-
ulators. Its importance relies on its effect in the programming and control of re-
dundant robots. Besides, no general closed-form techniques have been developed
so far. In this paper, redundant manipulators are reduced to non-redundant
ones by selecting a set of joints, denoted redundant joints, and parametrizing
its joint variables. This selection is made through a workspace analysis which
also provides an upper bound for the number of different closed-form solutions
for a given pose. Once these joints have been identified several closed-form
methods developed for non-redundant manipulators can be applied for obtain-
ing the analytical solutions. Finally, particular instances for the parametrized
joints variables are determined depending on the task to be executed. Different
criteria and optimization functions can be defined for that purpose.

Keywords: Inverse kinematics, robotics, redundant manipulators, workspace
analysis

1. Introduction

A serial robot manipulator is an open kinematic chain made up of a sequence
of rigid bodies, called links, connected by means of kinematic pairs, called joints,
that provide relative motion between consecutive links. At the end of the last
link, there is a tool or device, called end-effector.5

From a kinematic point of view, the end-effector position and orientation
(pose) of a manipulator can be expressed as a differentiable function f : C → X
that relates the space of joint variables, denoted configuration space C, with
the space of all positions and orientations of the end-effector with respect to
a reference frame, known as the operational space X. For serial manipulators,
a frame used to describe the relative position and orientation is attached to
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each joint of the manipulator. The relations between consecutive joint frames
can be expressed by homogeneous matrices based in the D-H parameters [1, 2,
3, 4]. Therefore, each joint i has associated, together with the corresponding
orthonormal frame {oi,xi,yi, zi}, a homogeneous matrix that relates this frame
to the precedent one (the first joint frame is related to the world frame). The
function f , known as the kinematic function, can be represented with these
homogeneous matrices. Deriving the kinematic function f with respect to time,
a relation in the rate domain is obtained:

ẋ = J(q)q̇ (1)

where ẋ denotes the velocity vector of the end-effector; q̇, the vector of the
joint velocities; and J , the Jacobian matrix associated to the manipulator. A
manipulator is said to have n degrees of freedom (DOF) if its configuration can
be minimally specified by n variables. For a serial manipulator, the number and
nature of the joints determine the number of DOF. For the task of positioning10

and orientating its end-effector in the space, the manipulators with more than
6 DOF are called redundant while the rest are non-redundant. Redundant
manipulators have m = n− 6 degrees of redundancy.

There are two types of Jacobian matrix: the geometric Jacobian JG(q) and
the analytical Jacobian JA(q), depending if the last three components of ẋ in (1)
represent the angular or the rotational velocity of the end effector, respectively.
If Ji denotes the ith column of JG(q),

Ji =


[

zi × (on − oi)
zi

]
if i is revolute[

zi

0

]
if i is prismatic

where × denotes the cross product of two vectors in R3.
One of the most important kinematic problems for serial manipulators is15

the inverse kinematic problem. This problem consists of obtaining the joint
variables, i.e. the configuration, associated to a particular pose. This configura-
tion may not be unique, since non-redundant manipulators have up to sixteen
different configurations for the same particular pose [5], while for redundant ma-
nipulators this number is unbounded [3, 4]. The methods to solve the inverse20

kinematics problem for serial manipulators are categorized into two groups:

a) Analytical or closed-form methods: All the solutions are expressed as
functions in terms of the pose.

b) Numerical methods: Starting with an initial configuration q0, an iterative
process returns a good approximation q̃ of one of the solutions.25

The closed-form methods strongly depend on the geometry of the manipulator
and, therefore, are not general enough. However, they are computationally
efficient and give all the solutions for a given pose. In his PhD thesis, Pieper
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[5] develops a procedure for obtaining the closed-form solutions for a class of
serial manipulators, i.e., the manipulators with three consecutive joints whose30

axes are either parallel or intersect at a single point (if these three consecutive
joints are the last three, the robot is said to have spherical wrist). Later, Paul
[6] establishes a more rigorous and generic method based on the handling of
the homogeneous matrices that can be applied to manipulators of other kind.
The main recent contributions include the use of Lagrange multipliers [7], the35

definition of imaginary links for redundant manipulators [8, 9], the definition of
the arm angle parameter [10, 11, 12] and different geometric methods [13, 14,
15, 16].

On the other hand, numerical methods usually work with any manipulator,
but they suffer from several drawbacks like high computational cost and exe-40

cution time, existence of local minima and numerical errors. Moreover, only
one of the sixteen (infinite) possible solutions is obtained for non-redundant
(redundant) manipulators. The most extended numerical approaches are the
Jacobian-based methods, in which the relation (1) is inverted and solved iter-
atively. Inverting the Jacobian matrix is not always possible. For redundant45

manipulators, J(q) is not a square matrix while for non-redundant manipulators
det(J(q)) vanishes at singularities [3, 4]. To handle with these situations, al-
ternative methods are used like pseudoinverse, transpose, damped least-squares
and local optimization [3, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Other
numerical methods include the use of augmented Jacobian [29], conformal ge-50

ometry algebra [30, 31], Crank-Nicholson methods [32] and reachability maps
[33].

The importance of the inverse kinematic problem relies on its role in the
programming and control of serial robots. Besides, this problem becomes of
great significance for redundant manipulators because, existing an infinite num-55

ber of solutions for a particular pose, manipulability measures can be defined
for selecting a particular solution. Among all the methods presented in this
section, closed-form ones are the most suitable for redundant manipulators as
they allow to obtain the set of all solutions with a small computational cost.
This paper proposes a novel method for deriving closed-form solutions for the60

inverse kinematics of redundant serial manipulators. These solutions are given
as m-parameter famiies of functions depending on the end-effector’ pose. Re-
dundant manipulators are reduced into non-redundant ones by parametrization
of a set of joint variables. These joints will be denoted as redundant joints.
The selection of such joints is crucial and it is done using global rank defi-65

ciency conditions of the Jacobian matrix and workspace’s volume analysis. An
upper bound for the number of different m-parameter families of closed-form
solutions is given. This number depends on the degrees of redundancy. Once
the redundant joints are selected, the inverse kinematics of the non-redundant
manipulator is solved analytically using either Pieper, Paul or other geometric70

methods. Finally, the particular values of the parametrized joint variables can
be determined using manipulability measures or optimization criteria. The rest
of the paper is organized as follows: Section 2 reviews the related work. In Sec-
tion 3, the methodology is presented. This section is divided into three parts:
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in Section 3.1 an upper bound for the number of different closed-form solutions75

associated to a particular pose is given; Section 3.2 displays the different crite-
ria for the selection of redundant joints, while in Section 3.3 several closed-form
methods are used for the non-redundant reduced manipulator. Examples of
two different redundant manipulators are given in Section 4. Finally, Section 5
presents the conclusions.80

2. Related Work

First mentions of redundant joints are found in [34, 35, 36]. In these papers
a redundant manipulator is designed from a known non-redundant one. In this
context, the authors assume that the added joint is the redundant one. Later,
in [37] several closed-form solutions for an anthropomorphic manipulator are85

derived by fixing the different joint variables at an arbitrary value. Following
that idea, in [38, 39] the authors develop a criterion for discarding some of these
joints as redundant ones. This criterion is based on a geometric characterization
proposed by Heiss [40]. Heiss defines a class of 6 DOF manipulators, called
globally degenerated manipulators, that have limited its motion in the whole90

workspace, i.e., they cannot translate or rotate its end-effector through an axis
for any given configuration. In [38, 39] the characterization given by Heiss is
resumed in the following theorem:

Theorem 2.1. A serial manipulator of 6 DOF is globally degenerated if, and
only if, det(JG(q)) = 0 for all q ∈ C.95

The criterion proposed in [38] consist on discarding as redundant those joints
that, once their joint variables are fixed at some value, leave a globally degen-
erated non-redundant manipulator. Applied to anthropomorphic manipulators,
it is shown that just the fourth joint should be discarded as an option for being
the redundant joint. Then, the idea collected in [37] is applied for obtaining100

different closed-form solutions for the anthropomorphic manipulator. The main
drawback of these approaches relies on the number of closed-form solutions ob-
tained for each pose. While in [37] four one-parameter families of solutions are
developed for a 7 DOF anthropomorphic manipulator, in [38] up to six one-
parameter families of solutions are developed for the same manipulator. The105

use of either of the closed-form solutions depends on the task executed. If,
instead of considering a 7 DOF redundant manipulator, a 8 DOF robot is con-
sidered there will be up to C(8, 2) = 28 2-parameter families of solutions. In
general, for an n DOF redundant manipulator there will be up to C(n, n − 6)
(n− 6)-parameter families of solutions. This large set of solutions increases the110

difficulties for selecting one of them for each particular pose.
On the other hand, in [41] a selection of redundant joints based on the null

space range of each joint is proposed, while in [42] the authors base their se-
lection on the null space of the Jacobian matrix. These approaches turn to
be impractical due to their computational cost. Besides, their implementation115

become extremely difficult for more than one degree of redundancy. The ap-
proaches collected in [22, 43, 44, 45, 46] are focused on developing strong and
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general closed-form methods for non-redundant manipulators. In these works
redundant joints are selected arbitrarily. Finally, [10, 11, 12, 47] are recent ex-
amples of the arm angle parameter use. This parameter, usually denoted by ϕ,120

is defined for anthropomorphic manipulators attending to the relation between
shoulder (three first joints), elbow (fourth joint) and wrist (three last joints).
Therefore, ϕ can be regarded as a joint variable, and thus, it can be considered
as defining the redundant joint.

The approach given in [38, 39] is the most interesting and easy to implement.125

However, as it has been shown above, this approach is not easily generalized
for n DOF redundant manipulators. Besides, it does not represent a method
for selecting redundant joints but to discard some of them as candidates. The
procedure proposed in the present paper includes such criterion but also uses
a workspace’s analysis to prove that it is enough with a maximum of 2m m-130

parameter families of closed-form solutions. This number is always much smaller
than C(n, n− 6). Besides, a criterion for selecting, given a particular pose, one
of these 2m closed-form solutions is provided.

Many authors have dealt with the problem of representing effectively the
serial manipulators workspace: in [48] an strategy for the identification of the135

workspace area of planar serial manipulators is developed, while in [49, 50, 51] an
iterative process that only works for serial manipulators with revolute joints is
defined. This method attains the analytical equations of the workspace defining
the end-effector as a three dimensional point that is rotated from the n-th joint
to the first one. Then, a cross section is obtained by taking q1 = 0. On the140

other hand, in [52, 53] the authors define the interior and exterior boundaries
of serial manipulators workspace using the singular surfaces achieved from the
Jacobian matrix. Then, the total volume of the workspace is calculated using
the Divergence Theorem.

Next section focuses on how to exploit the shape and quantitative proper-145

ties, such as area and volume, of serial manipulators workspace and how these
properties can be used in the identification of redundant joints.

3. Closed-form Solutions through Workspace Analysis

3.1. Closed-form Solutions Upper Bound
As it has been mentioned in the preceding section, some authors develop up150

to four or six families of solutions for a 7 DOF manipulator. In this section an
upper bound for the number of different closed-form solutions for a particular
pose is given. It will be proven that is enough with a maximum of 2m m-
parameter families of solutions for a n DOF manipulator.

For simplicity, the following notation will be used:155

• R denotes a serial manipulator of n DOF.

• p denotes the number of prismatic joints of R.

• W denotes the workspace of R, generated by its revolute joints.
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Figure 1: (a) Cross section SWi of W for a given value of qi where an arbitrary point x ∈ SWi

under the action of zj is transformed into x′ /∈ SWi; (b) Schematic representation of a planar
manipulator; (c) Workspace of the three-link manipulator and (d) Workspaces regions after
fixing the first and the second joints respectively

• Wi denotes the volume of W once the joint i is fixed at some value.

The idea is to prove that, given W, one of the two following statement holds:

There exists 2 ≤ i ≤ n such that Wi =W (2)
There exist 2 ≤ j 6= k ≤ n such that Wj ∪Wk =W (3)

For n = 7 (or, equivalently, m = 1), if statement (2) holds, as Wi is obtained160

when the joint i is fixed, the redundant manipulator R has been reduced into
a non-redundant one. The closed-form solutions for the inverse kinematics will
form a single one-parameter family of solutions depending on qi. However, if
statement (3) holds, there will be two different non-redundant reduced manip-
ulators. Therefore, two different one-parameter families of solutions will be165

obtained (one depending on qj and the other on qk).
If, conversely, n > 7 (or, equivalently m > 1) the process is repeated with

Wi or with Wj ,Wk. The reasoning is exactly the same, since Wi,Wj and Wk
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can be seen as the workspace of a manipulator of n − 1 DOF. The maximum
number of subregions of the original workspace that can be obtained for each
degree of redundancy is two. So, given the recursiveness of the procedure, the
maximum number of subregions will be 2m. As each one generates a family of
solutions, there will be up to 2m m-parameter families of closed-form solutions.
By the same reason, the minimum number of m-parameter families of solutions
will be one. Therefore, for any given manipulator R with n DOF and m degrees
of redundancy the number r of different solution families verifies:

1 ≤ r ≤ 2m.

It only remains to prove that, for any redundant manipulator R, either
statement (2) or statement (3) holds.

First of all, since the effect of the prismatic joints in the workspace of R is
just the translation of the volume generated by the following joints and since,170

given a pose, it is easy to obtain the values of the prismatic joint variables, i.e.,
the solution of the inverse kinematics for these joints, their joint variables can
be fixed at particular instances for allowing the study of W.

Let denote byRj1 ,Rj2 , . . . ,Rjp
the prismatic joints ofR. Then, each of their

joint variables dj1 , dj2 , . . . , djp moves within [djiLow , djiUp ]. As W is generated175

only by the revolute joints of R, each dji can be fixed at a particular value,
selected, for instance, to make W as compact as possible. Although the values
of the prismatic joint variables are, in general, positive, depending on where
the world frame is placed, different cases can arise. Such cases are treated as
follows:180

• 0 ∈ [djiLow , djiUp ] =⇒ dji
= 0.

• [djiLow , djiUp ] ⊂ R+ \ {0} =⇒ dji
= djiLow .

• [djiLow , djiUp ] ⊂ R− \ {0} =⇒ dji
= djiUp .

As only the revolute joints of R are going to be considered, let zi be the
first revolute joint of R. Then, W is of revolution around zi and, as a result,
the study of W can be performed over a xi-zi cross section of it. For a re-
dundant manipulator, such cross section is obtained by fixing qi at a particular
value. Besides, it is also necessary to fix other joints like, in particular, all the
rotational joints whose axes are not orthogonal to zi. To prove this remark let
suppose that there exists zj such that zj and zi are not mutually orthogonal.
If zj is not fixed, then its rotational action generates a volume that escapes
from the section obtained by setting qi = k (figure 1a). Thus, the cross section
area is generated by the joints whose axes are orthogonal to zi while the rest
are fixed at particular values. Let s denote the number of joints whose axes are
orthogonal to zi. Different cases should be treated:

s = {0, 1, 2}

There are no joint axes, one joint axis or two joint axes orthogonal to zi. Since
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R is redundant, at least there are three, two or one more joints whose variables
are fixed - as they are not orthogonal to zi. Two different situations arise: one of
the other joint axes is contained in the cross section plane or intersects it. Both
cases are treated analogously. Let denote by SW the cross section area obtained
by setting qi = k. As it has been commented before and since s < 3, this cross
section is generated by fixing also the joints whose axes are not orthogonal to zi.
Let suppose that there is at least one joint whose axis, zj , either is contained
in SW or intersects SW (not orthogonally). Then, SW ⊂ Wj . Moreover, if the
same cross section is taken from Wj , SWj , then

SWj = SW (4)

As W is of revolution around zi, rotating qi turns (4) into Wj =W which gives
the desirable result.185

s ≥ 3

From s = 3, induction over s can be used for completing the proof. Again,
two different situations can arise:190

• There exists a joint whose axis, zk, is contained in the cross section ob-
tained by setting qi = k or intersects it (not orthogonally).

• The only revolute joints contributing to position the end-effector are i and
the s joints whose axes are orthogonal to zi.

For the first situation, the previous reasoning can be used to prove thatWk =W.
For the second, it is clear that SW is generated by the s joints whose axes are
orthogonal to zi (and, as a result, normal to SW). In particular, if i1, . . . , is
denote these joints and SWij

denote the plane section of SW obtained when
the joint ij is fixed, then

SWi1 ∪ SWi2 ∪ · · · ∪ SWis
= SW (5)

It is sufficient with proving that:

∃ij , ik : SWij
∪ SWik

= SW (6)

If so, rotating qi gives that
Wj ∪Wk =W,

which would complete the proof.195

To prove it, let notice that SW can be seen as the workspace of a s-link planar
manipulator (figure 1b). Thus, (6) is equivalent to prove that the workspace of
a s-link planar manipulator can be split in two subregions associated with two
fixed joints. This proof will be performed using induction over s.

For s = 3, a 3-link planar manipulator is obtained. Figure 1c depicts the
workspace of an example of a manipulator of this kind. In general, the end
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effector position vector of a 3-link planar manipulator is:

p =

a1c1 + a2c12 + a3c123
a1s1 + a2s12 + a3s123

0

 ,

where ai is the length of link i and c1 = cos(qi1), s1 = sin(qi1), c12 = cos(qi1 +
qi2), s12 = sin(qi1 + qi2), c123 = cos(qi1 + qi2 + qi3) and s123 = sin(qi1 + qi2 + qi3).
Figure 1d shows that it is enough with taking SWi1 ,SWi2 for obtaining SW.
To prove that this is a general result let suppose, by contradiction, that

SWi1 ∪ SWi2 6= SW

for all the constant values qi1 = k1 and qi2 = k2 of joints i1 and i2. Then, there200

exists x ∈ SW such that x /∈ SWi1 and x /∈ SWi2 for all qi1 = k1 and qi2 = k2.
Now, by (5) x ∈ SWi3 for some constant value qi3 = k3. Since the position
vector for the 3-link planar manipulator depends on qi1 , qi2 and qi3 , if qi1 (or
qi2) is considered as a parameter, i.e., its value varies in its range, then qi2 (or
qi1) has a particular value for x. Then, x ∈ SWi2 (or x ∈ SWi1), which is a205

contradiction.
Now, let suppose that the statement holds for s. As in the case of s = 3 it

is enough to prove that

SWi1(s+ 1) ∪ SWi2(s+ 1) = SW(s+ 1)

where the notation (s+ 1) highlights that the sections belong to the (s+ 1)-link
manipulator. Let suppose, again by contradiction, that

SWi1(s+ 1) ∪ SWi2(s+ 1) 6= SW(s+ 1)

for all the constant values qi1 = k1 and qi2 = k2. Then, there exists x ∈
SW(s+ 1) such that x /∈ SWi1(s+ 1) and x /∈ SWi2(s+ 1) for all qi1 = k1 and
qi2 = k2. Now, again by (5), x ∈ SWi`

(s+ 1) for some 3 ≤ ` ≤ s+ 1 and some
constant value qi`

= k`. Since SWi`
(s + 1) can be seen as the workspace of a

s-link planar manipulator, the hypothesis of induction implies that x ∈ SWi1(s)
or x ∈ SWi2(s) for some constant values qi1 = k1 and qi2 = k2. But now, it is
clear that, for the same constant values k1, k2:

SWi1(s) ⊂ SWi1(s+ 1)
SWi2(s) ⊂ SWi2(s+ 1)

These relations are true for every extension of a s-link planar manipulator to
a (s + 1)-link planar manipulator. In particular, they are true if the extension
of the s-link planar manipulator is made to obtain the (s + 1)-link planar ma-
nipulator of the beginning of this part of the proof. Then, x ∈ SWi1(s+ 1) or210

x ∈ SWi2(s + 1) for the constant values qi1 = k1 and qi2 = k2. This gives the
desirable contradiction.

Given that there could be many other joints fixed at some value, this result
is not useful for the identification of the redundant joints but to prove the upper
bound in the number of different families of closed-form solutions. Next section215

displays the criteria for efficiently selecting the redundant joints.
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Algorithm 1 Globally Degeneracy Criterion
Require: 6× n Jacobian matrix J
Ensure: Integers i1, . . . , im

1: procedure Globally Degeneracy Test
2: for 1 ≤ i ≤ n do
3: M ← J [1 : 6; 1 : (i− 1), (i+ 1) : n]
4: if M square then
5: det ← det(M)
6: if det == 0 then
7: return i
8: else go to step 2
9: else Globally Degeneracy Test←M

3.2. Identification of Redundant Joints
Once it has been proven that there is a maximum of 2m closed-form families

of solutions, the criteria for the identification of which joints are the redundant
ones are presented. These criteria are based on the global rank deficiency of the220

Jacobian matrix and on a workspace analysis.
If R1, . . . ,Rn denote the joints of a redundant manipulator R with n DOF,

then not every Ri is candidate for being the redundant joint. First, a list of
discarding conditions is shown. If Ri meets any condition of the list it will be
discarded as candidate. The workspace analysis is performed over the remaining225

joints.

Discarding List 3.1.

• Ri is a prismatic joint.

• Ri is one of the three joints that conforms a spherical wrist.

• Ri, if it is fixed at some value, leaves a globally degenerated manipulator.230

Theorem 2.1 provides a simple and easy to implement way of testing the
third condition of 3.1. Algorithm 1 returns, given the Jacobian matrix of a ma-
nipulator R, the joints Ri1 , . . . ,Rim

that leave a globally degenerated subchain.
Once the joints meeting any condition of 3.1 are discarded, a workspace

analysis is performed over the remaining joints in order to choose the redundant235

ones. For the sake of simplicity, the analysis is described in detail for the case
of one degree of redundancy. After that, it is generalized. This analysis consists
of two main steps:

I As explained before, the prismatic joint variables are fixed - they cannot
be the redundant joints and their effect in W is just the translation of the240

volume generated by the following joints. Once dj1 , dj2 , . . . , djp have been
fixed, the manipulator is made up of revolute joints. Now, Algorithm 2
generates the swept volume of W and W1, . . . ,Wm. As it has been shown
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Algorithm 2 3D Workspace Generation
Require: D-H parameters DH, Forward Kinematics function FK
Ensure: Workspaces W,W1, . . . ,Wm

1: procedure Workspace Generation
2: cont← 0
3: for 1 ≤ i ≤ #DOF do
4: if joint i is revolute then
5: ∆i ← discretization qi

6: cont ← cont+1
7: if joint i does not meet 3.1 then
8: I ← i
9: else di ← 0

10: T ←FK(DH)
11: P ← Position vector(T)
12: W ← P(∆1, . . . ,∆cont)
13: for i ∈ I do
14: qi ← 0
15: Ti ←FK(DH)
16: Pi ← Position vector(Ti)
17: Wi ← P(∆1, . . . ,∆i−1,∆i+1, . . . ,∆cont)

in the precedent section, either there exists i such that Wi = W or there
exist i 6= j such that Wi ∪Wj =W. Direct visualization allows to deduce245

which one of these situations happen for every redundant manipulator R.
If it seems that the two situations hold with different joints, then only the
case Wi = W will be considered since it is simpler and leads to a single
family of solutions.

II To confirm what it has been observed through direct visualization, the x-z
cross section of W is compared with the cross sections of either Wi or Wi

andWj . AsW is of revolution around its first revolute joint, the x-z cross
section can be obtained by setting q = 0 where q is the first revolute joint
variable of R. This cross section can be obtained through a discretization
of the joint variables that generate it. Apart from comparing the cross
sections, a quantitative analysis based on the area can be performed. As
R is made up of revolute joints the cross sections are composed of circle
sectors. Therefore, for a given cross section the area can be obtained
analytically using the expression:

A =
∑

i

πr2
i

αi

360◦ (7)

where ri denotes the radius of each circle sector and αi denotes its angle.
For some geometric structures it could be difficult to find out the radius or
angle of a particular circle sector. For those cases, given a discretization
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of the cross section, the following numerical expression for the area can
be used [50]:

A =
xmax∑
xmin

(zmax(x)− zmin(x))∆x (8)

where xmin and xmax denote the extreme values of the cross section ab-
scissa while zmin and zmax denote the extreme values of the ordinate. How-
ever, (8) works only for convex cross sections without voids. Otherwise,
(8) changes into the following one:

A =
xmax∑
xmin

(zmax(x)− z1max(x)− · · ·+ zLmax(x)− zmin(x))∆x (9)

where z1max(x), . . . , zLmax(x) denote the local extreme values of z for each250

x. When, from the direct visualization, some Wi looks equal to W, the
areas of both cross sections have to match. On the other hand, if it looks
that Wi ∪ Wj = W, then the addition of the area of each cross section
have to match the area of SW. As it could happen that Wi ∩ Wj 6= ∅,
the addition of both areas might not match the area of SW. In this case,255

given a discretization of each cross section, the area – obtained using either
(7),(8) or (9) – of the region conformed by the points that belong to both
cross sections has to be subtracted from the addition of the cross sections
area of Wi,Wj . This value has to match the area of SW.

If Wi = W for some i, there is only one family of solutions. Besides, the260

redundant joint is the i-th joint. If, however,Wi∪Wj =W for some i 6= j, then
there are two families of solutions: one with the i-th joint as the redundant joint
and the other with the j-th. Therefore, they are two one-parameter families of
solutions.

Finally, for the case m > 1 degrees of redundancy, the procedure for obtain-265

ing the 2m m-parameter families of solutions is the following:

• First, one or two joint are selected as redundant through the workspace
analysis explained before.

• The process is repeated for both Wi and Wj , obtaining one or two new
redundant joints for each new workspace. There are up to four sets of two270

redundant joints each one of them leading to a two-parameter family of
solutions.

• Again, the process is repeated in the same way until each set of redundant
joints have m joints. There are up to 2m of these sets and each one of
them leads to a m-parameter family of solutions.275

3.3. Closed-Form Solution for the IK
Once the redundant joints have been identified and parametrized, a non-

redundant reduced manipulator is achieved. If m denotes the number of degrees
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of redundancy, a maximum of 2m sets of m redundant joints can be obtained
and, therefore, there exists a partition of W in a maximum of 2m parts where
each one of them has associated one of these 2m sets of redundant joints. Denote
the elements of such partition by W1, . . . ,W2m . For every given pose T ∈ W
there exists 1 ≤ i ≤ 2m such that T ∈ Wi. Thus, the non-redundant reduced
manipulator is the one obtained after parametrizing the joints of the i-th set.
Therefore, this criterion allows to decide which solution family should be used for
any given pose T . Now, several closed-form methods can be applied attending
to the different classes of robots. For manipulators with three consecutive joints
whose axes are either parallel or intersect at a single point, Pieper method
[5] works properly. For the rest of manipulators, different approaches can be
followed: Paul method [6] is the most formal and generic one. It consists of the
manipulation of a set of equations obtained from the coefficients of the following
set of matrix identities(

Ai−2
i−1

)−1
· · ·
(
A0

1

)−1
T 0

n = Ai−1
i · · ·An−1

n (10)

for i = 2, . . . , n. Here, Ai−1
i denotes the homogeneous matrix that relates the

frames attached to joints i − 1 and i, while T 0
n denotes the end-effector pose

matrix. The objective is to isolate the joint variables in some of the equations
in order to solve them. Its only drawback is the huge number of combinations280

required for obtaining a solution. Besides, there exists no guarantee that Paul
method can solve the inverse kinematics for all manipulators. For un-resoluble
manipulators, different geometric approaches have been developed in literature.
One interesting technique, based on the works presented in [54, 55, 56, 57,
58, 59], considers a variation of the original manipulator with three joint axes285

intersecting at a single point. Then, Pieper closed-form method can be employed
for solving the inverse kinematics of that modified manipulator. The solution
for the original manipulator is obtained numerically using as initial condition
one of the closed-form solutions. Rather than a numerical method, a geometric
procedure might be designed for obtaining a closed-form solution based on the290

obtained one.
The instances for the parametrized joint variables depend on the imposed

constraints. From avoiding obstacles, singularities or joint limits to obtaining
the most efficient solution in terms of velocity or energy, the different constraints
are usually modeling with cost functions trough an optimization process. In
particular, given the kinematic relation x = f(q) where x denotes the target
pose expressed in the operational space X, the optimization can be defined as:

maximize
q

g(q)

subject to f(q) = x

}
(11)

More precisely, since only the redundant joints acts as variables in the optimiza-
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tion process, (11) turns to:

maximize
q0

g(q0)

subject to f(q) = x

}
(12)

where q0 = (q01, . . . , q0m) is the vector of redundant joint variables.
Examples of cost functions g(q) are [3]:

• For avoiding singularities:

g(q) =
√

det(JG(q)JT
G(q))

• For avoiding joint limits:

g(q) = − 1
2n

n∑
i=1

(
qi − qi

qiM − qim

)
where qiM (qim) denotes the maximum (minimum) joint limit and qi the
middle value of the joint range.295

• For avoiding obstacles:
g(q) = ‖p(q)− o‖

where p(q) denotes the position vector of the end-effector and o is a suit-
able point on the obstacle.

4. Examples

To show the advantages of the proposed method, two examples are developed
in this section. One of them is a 7 DOF manipulator while the other is a 8 DOF300

manipulator. Besides, the second example contains a prismatic joint at the
beginning of the kinematic chain. Both have a single one-parameter family of
solutions. The different computations have been carried out using MATLAB
R2015a.

4.1. Kuka LWR 4+305

Kuka LWR 4+ is an anthropomorphic arm with seven degrees of freedom
(figure 2) and, as a consequence, it has just one degree of redundancy. To
identify the redundant joint, the joints meeting the criteria 3.1 are discarded as
candidates. For Kuka LWR 4+, the last three joints conform a spherical wrist.
Therefore, these joints are discarded. The application of theorem 2.1 through310

Algorithm 1 gives that the fourth joint leaves a globally degenerated subchain if
it is fixed. Then, it cannot be the redundant joint and, therefore, the candidates
are the first, the second and the third joint.

For these joints the workspace analysis presented in the preceding section
is performed. Without loss of generality, the fixed values assigned to the joint315
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Figure 2: Schematic representation of Kuka LWR 4+

variables are zero. A discretization of the workspace volume for each subchain
is generated using Algorithm 2. The volume of the Kuka LWR 4+ is depicted in
figure 3a while the rest (figures 3b, 3c and 3d) show the workspace volume of each
subchain. From direct visualization it is evident that the workspace shape of
the subchain resulting from fixing the third joint (W3) coincides with the Kuka320

LWR 4+ whole workspace (W). As W and W3 are symmetric with respect to
z1, the x-z cross section of both workspaces made by setting q1 = 0 can be
compared. The area of each cross section is obtained through (9): 0.3101 m2

for W and 0.3100 m2 for W3. Although the discretization affects the accuracy
of the area computation, the results are obviously the same. This confirms325

that the workspace remains invariant if the third joint is fixed. Therefore, the
redundant joint for the Kuka LWR 4+ is the third one.

Once the redundant joint has been selected, and since the Kuka LWR 4+
possesses spherical wrist, Paul closed-form method can be applied for deriving
the analytical expressions of each qi in terms of the pose matrix coefficients.330

Given:

T =


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 ,

the resolution can be split in two different problems: the position problem,
in which from p = (px, py, pz) it is possible to obtain q1, q2 and q4 and the
orientation problem, in which from

R =


nx ox ax

ny oy ay

nz oz az

0 0 0


q5, q6 and q7 are obtained.
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(a) Kuka LWR 4+ (W) (b) With q1 fixed (W1)

(c) With q2 fixed (W2) (d) With q3 fixed (W3)

Figure 3: Kuka LWR 4+ worksapce

For the position problem, (10) is used for obtaining the following identity:(
A0

1

)−1
T 0

7 = A2 · · ·A7.

Now, the fourth column of each matrix is taken:
pxc1 + pys1 = c2(400 + 390c4) + 390s2c3s4

−pxs1 + pyc1 = 390s3s4

pz − 310 = −390c2c3s4 + s2(390c4 + 400)
(13)

where, from now on, ci = cos(qi) and si = sin(qi). Squaring and adding each
component gives:

p2
x + p2

y + (pz − 310)2 = 4002 + 3902 + 2 · 400 · 390c4

⇓

c4 =
p2

x + p2
y + (pz − 310)2 − 312100

312000
Therefore, through the prototype equation (A.2) of Appendix A, the analytical
expression for q4 is derived:

q4 = atan2(±
√

1− a2, a)
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where atan2(·, ·) is the quadrant corrected inverse tangent function and

a =
(
p2

x + p2
y + (pz − 310)2 − 312100

312000

)
.

Once the expression for q4 is known, the expression for q1 can be deduced from
the following identity:

−pxs1 + pyc1 = 390s3s4

⇓

q1 = atan2
(

390s3s4,±
√
p2

x + p2
y − 3902s2

3s
2
4

)
− atan2(py, px)

through the prototype equation (A.5). Now, the expression for q2 can be ob-
tained from the following identity using again the prototype equation (A.5):

pz − 310 = −390c2c3s4 + s2(390c4 + 400)

⇓

q2 = atan2
(
c,±

√
a2 + b2 − c2

)
− atan2(a, b)

with:
a = (390c4 + 400)
b = −390c3s4
c = pz − 310

Once the position problem has been solved, it is possible to solve the orien-
tation problem. If Ri denotes the matrix that defines the relative orientation of
Ai−1

i , then:
R1 ·R2 · · ·R7 = R

And, therefore,

R5 ·R6 ·R7 = R−1
4 ·R−1

3 ·R−1
2 ·R−1

1 ·R︸ ︷︷ ︸
Numerical matrix M

or, analogously: c5c6c7 − s5s7 −c7s5 − c5c6s7 −c5s6
c7s6 −s6s7 c6

−c5s7 − c6c7s5 c6s5s7 − c5c7 s5s6

 =

m11 m12 m13
m21 m22 m23
m31 m32 m33


From M , using the prototype equations (A.2) and (A.3), the following expres-
sions can be obtained:

q6 = atan2(±
√
m2

13 +m2
33,m23)

q5 = atan2(m33/ sin(q6),−m13/ sin(q6))
q7 = atan2(−m22/ sin(q6),m21/ sin(q6))
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Figure 4: Schematic representation of Stäubli TX90 mounted on a translational motion unit

4.2. Extended Stäubli TX90 mounted on a translational motion unit
Stäubli TX90 is an industrial manipulator with six degrees of freedom and

spherical wrist. This manipulator has been mounted on a linear track, that can335

be seen as an additional prismatic joint. Besides, it has been extended by adding
an extra revolute joint whose axis is parallel to the axes of the third and fourth
joints (figure 4). As in the precedent example, the three last joints are discarded
for being the redundant ones since they conform a spherical wrist. Once the
first joint – the prismatic one – is fixed, for testing if any other joint should340

be discarded according to the list 3.1, Algorithm 1 is applied in order to find
out the globally degenerated reduced manipulators. From the seven different
kinematic subchains, the one obtained after fixing the second joint – the first
revolute joint – is a globally degenerated subchain. Therefore, the third, the
fourth and the fifth joints are candidates for being redundant.345

For these joints the workspace analysis is performed using Algorithm 2. The
prismatic joint variable is set as zero (its motion lies within the range [0, 2]). The
extended Stäubli TX90 workspace is depicted in figure 5a while the workspaces
of the subchains are depicted in figures 5b, 5c and 5d. In this case, as in the
precedent example, there exists i such that Wi = W. It is clear, from direct350

visualization, that W5 = W. Furthermore, the workspaces dimensions also
show that W5 =W. Indeed, the dimensions of W are 3m× 4m× 3m, while the
dimensions fo the workspaces after the parametrization of the candidates are:

• W3: 1.8m× 2m× 2m (figure 5b).

• W4: 2m× 2m× 2m (figure 5c).355

• W5: 3m× 3m× 4m (figure 5d).

Again, setting q2 = 0 returns the x-z cross section. Moreover, if (9) is used for
calculating the cross section areas of W and W5, the resulting value is the same
(up to some discretization error) is the same:

AW = 2.560m2 AW5 = 2.555m2
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(a) Extended Stäubli TX90 (W) (b) With q3 fixed (W3)

(c) With q4 fixed (W4) (d) With q5 fixed (W5)

Figure 5: Extended Stäubli TX90 workspace

This confirms that the redundant joint for the extended Stäubli TX90 is the
fifth one from which it can be obtained the one-parameter family of solutions.

As in the case of the Kuka LWR 4+, the presence of spherical wrist allows
to use Paul method for obtaining the closed-form solutions. The decomposition360

into the position and orientation problems can be made. For this example, q5
will work as the parameter of the family of solutions.

For the position problem, a geometric method can be used to calculate d1.
The position vector p is projected onto the x-y plane. If the projection is
denoted π(p), then d1 is obtained so d1 = min{‖d1−π(p)‖}. For the remaining
joint variables, the following identity is used:(

A0
2

)−1
T 0

8 = A3 · · ·A8 (14)

The position vector from both sides of (14) is:

pxc2 + pys2 = 425s3 + 300c34 + 425c345 + 50 (15)
pyc2 − pxs2 = 50 (16)

pz − 478 = 425c3 + 300s34 + 425s345 (17)

Equation (16):
−pxs2 + pyc2 = 50
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can be solved using the prototype equation (A.5) of Appendix A. Thus, the
analytical expression for q2 is:

q2 = atan2
(

50,±
√
p2

x + p2
y − 502

)
− atan2(py, px)

Now, equations (15) and (17) are squared and added. Once the terms have been
regrouped, the expression obtained is:

α = 451250− 255000s4 − 361250s45 + 255000c5 (18)

where α = (pxc2 + pys2 − 50)2 + (pz − 478)2.
As q5 is the redundant joint and it is parametrized at some value, (18) is

simplified to:

451250 + 255000c5 − α = (255000 + 361250c5)s4 + 361250s5c4

Using the prototype equation (A.5) of Appendix A, the analytical expression
for q4 is:

q4 = atan2
(
c,±

√
a2 + b2 − c2

)
− atan2(a, b),

with:
a = 361250s5
b = (255000 + 361250c5)
c = 451250 + 255000c5 − α

Finally, as the expression for q4 is known and q5 is parametrized at some value,
(17) is equivalent to:

pz − 478 = (300 + 300s4 + 425s45)c3 + (300c4 + 425c45)s3

which can be solve using again the prototype equation (A.5):

q3 = atan2
(
c,±

√
a2 + b2 − c2

)
− atan2(a, b),

with:
a = 300 + 300s4 + 425s45
b = 300c4 + 425c45
c = pz − 478

The orientation problem is solved analogously as in the case of the Kuka LWR
4+.365

5. Conclusions

This work proposes a novel method to derive closed-form solutions for the
inverse kinematic problem of redundant serial manipulators. Unlike other meth-
ods found in literature, the method exposed in this work allows an efficient se-
lection of redundant joints, whose joint variables can be parametrized or fixed370
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at an arbitrary value. First, an upper bound for the number of different closed-
form solutions for a particular pose of the manipulator is given. If m denotes the
number of degrees of redundancy there are up to 2m families of closed-form solu-
tions. The selection of the sets of redundant joints that gives those closed-form
solutions is made based on the discarding criteria 3.1 and the workspace anal-375

ysis introduced in section 3.2. Once the redundant joints have been identified,
the inverse kinematics of the reduced non-redundant manipulator can be solved
using Pieper, Paul or particular geometric methods. As closed-form methods
are used for non-redundant reduced manipulators, the procedure proposed in
this work has clear advantages over the numerical methods designed for redun-380

dant manipulators. Besides, in comparison with other closed-form methods, the
simplicity of this strategy makes it suitable for general redundant manipulators.
In fact, for any given manipulator with three consecutive joints whose axes are
either parallel or intersects at a single point, the inverse kinematics problem is
completely solved analytically using Pieper’s theorem.385
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Appendix A. Prototype Trigonometric Equations390

The following list shows the main prototype trigonometric equations used
in this paper. A more complete list of such kind of equations can be found in
[6, 60]:

sin(θ) = a =⇒ θ = atan2
(
a,±

√
1− a2

)
(A.1)

cos(θ) = a =⇒ θ = atan2
(
±
√

1− a2, a

)
(A.2)

sin(θ) = a
cos(θ) = b

}
=⇒ θ = atan2(a, b) (A.3)

a cos(θ) + b sin(θ) = 0 =⇒

 θ = atan2(−a, b)
or
θ = atan2(a,−b)

(A.4)

a cos(θ) + b sin(θ) = c =⇒ θ = atan2(c,±α)− atan2(a, b)

where α =
√
a2 + b2 − c2

(A.5)

a cos(θ1) + b cos(θ2) = e
a sin(θ1) + b sin(θ2) = f

}
=⇒ θ1 = atan2

(
β,±

√
e2 + f2 − β2

)
where β = a2 + e2 + f2 − b2

2a

(A.6)
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