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i tion and ortfnuf%n of the end-cffector necessary for a given task in a givea workspace. The technological developments
| described in‘this/paper deal with:

; #. Kinematic programming techniques for automatically generating joint-space trajectorics to execute prescribed tasks;
li fe.- Control of redundant manipulators to optimize dynamic criteria (c.g., applications of forces and moments at the end-

| effector that optimally distribute the loading of actuators); .~ .=
! /e Design of KRRMs to optimize functionality in congested work environments cr to achieve other goals unattainable
\ with non-redundant manipulators. Ve A R Ll

We~disouss kinematic programming tcchniquuM that some psecudo-inverse techniques that have been proposed
for redundant manipulator control fail to achicve the goals of avoiding kinematic singularitics and also generating closed ‘

\ joint-space paths corresponding; to’close paths of the end effector in the workspace. The cxtended Jacobian is proposed as an

alternative to pseudo-inverse techniques. It incorporates functional constraints in a straightforward way to resolve redun-

| dancy, and can meet a varicty of spatially-varying optimality criteria. This method can generate manipulator trajectories that

_ automatically avoid obstacles provided suitable distance functions are defined, and if the intersections of the constraint sur-

faces are characterized in a sufficiently simple way.

2.0 Design Issues N
A six degree-of-freedom geometry can, no longer be considered a general purpose manipulator. This geometry has fatal
kinematic flaws that arise from singularitiel\ d restrictions on the workspace. The major flaw of six degrec-of-freedom
manipulators is the presence of singularities 1:{& interior of the workspace. It is exceedingly difficult to plan trajectories
that do not pass through or near singularitics, giv‘e}dlc complex transformation between end cffector locations and joint
angles. An extra degree of freedom makes functional interior workspace points in the sense that a noalinear configuration
can be found that will correspond to a given workspace point. “Siggular configurations will still arise, but they can be avoided
through exercise of a scif-motion to arrive at a new configuration:“A_self-motion is created by a redundancy and is defined
as an internal motion of the linkage that does not move the endpoint:\The trajectory planner must still be wary of interior
singularities, but upon arriving at one, the motion can backtrack so as to’cyolve to a different configuration at the singular
point. Thus a seven degree-of-freedom represents a minimal configuration complex geometry) that makes available all
interior workspace points. _
Seven degree-of-freedom geometries are complex and costly. Most industry\cgg: have therefore focused on seeking

methods to mitigate the effects of singularities. Strict realization of the velocity requirements at the endpoint must be aban-
doned. Sometimes a self-motion at the singularity can be used to find an alternative confi tion for which the possibie end-
point velocities happen to coincide with the desired one (1], although the manipulator musteffectively come to 3 stop for this
self-motion to occur. o

3.0 Resolution of Redundancy AN

Redundancy resolution schemes fall into two broad categories: local optimization or global \bgtimization techniques.
Within cach category, the optimization may be done at the kinematic or at the dynamic level. Y
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Most research has involved the instantancous or local resolution c{ the redundancy through use of the pseudo-invers
These local techniques deal with the instantancous kinematics of motion, i.., motion which is locally optimized by increme
tal movement from the current arm state.

Global optimization minimizes some performance index across a whole trajectory, and hence should perform bett
than local optimization. Yet the complexity of problem formulation and the computational interactibility have restricted tl
use of global optimization schemes for redundant manipulatoss.

The advantages of the local optimization methods over global methods are twofold: the simplicity of problem formul
tion and the relatively small amount of computation required for the algorithm. The small amount of computation associat
with local methods offers the possibility of real-time controf of the manipulators. The local technique, however, may o
always be desirable for controlling redundant arms. {2] showed motions of a redundant manipulator following closed ba
trajectorics are generally not closed in joint space trajectories. (3] proved that, without a modification, the generalized inver
method need not cven avoid kinematically singular configurations. Since the local optimization method only instantancous
minimizez a given criterion, it docs not guarantee a global minimum and may even result in a disastrous manipulator moti
[4).

On the other hand, the global optimization technique cnsures a solution with a global minimum. Real-time cont
based on global techniques is problematic, due to the heavy computational requirements. The global technique may be
fectly adequate for commonly enccuntered industrial problems requiring repetitive motion, since a specific solution will
used over and over again.

3.1 Local Kinematic Resolution of Redundancy
Most local kinematic techniques resolve redundancy at the velocity level by using the pscudo-inverse J7 (also known
the Moore Penrose generalized inverse) of the Jacobian J:
x= Jé '
0 =J*itI-I'D b .
1" =@yt
where
x= 6 dimensional velocity vector of the manipulator end
8=  n> 6 dimensional joint angle vector
&= arbitrary joint vector
-1y é is the projection of 4 into the null space of jacob and corresponds to self-motion of the linkage that does 1
move the end effector.

This approach is attractive in two ways. First, the pscudo-inverse has a least squares property that can minimize exc
sive joint velocities and make smoother motion. Second, the redundancy that is available is succinctly characterized by 1
null-space of the Jacobian. Mcasures related to this formulation can be used to achieve some objective, iz., to avoid o
limits, singularitics and obstacles (5,6,7]. A weighied pscudo-inverse (different from the null-space vector) can be used
angers high and low priority of variables [8].

The Moore-Penrose generalized invoice is probiematic, however, in that it is nonconservative [2}. Repetitive motic
planned with the pscudo-inverse alone need not follow a repetitive path in joint-space.

3.2 Gilobal Xinematic Resolution of Redundancy

Nakamura [11] presented a method based on Pontryagin’s Maximum Principle for globally optimizing a given cost fu
tion for problems involving both kinematics and dynamics. An integral performance index of the following type is minimi
over a desired trajectory:

1
[ p(8,0)dr

where ¢, and ¢, are the initial and final time respeciively. For example, p =00+kw, where k is a constant and w is the m3
pulatability index, was used by [11]. Pontryagin’s Maximum Principle is then applied to Equation 4 and Equation 2 whict
treated as an ordinary optimal control problem of a dynamic system with 9 as an input vector. The Hamiltonian according
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a fixed time probiem with a fixed time problem with a fixed left hand end-point and a free right hand endpoint is given by
”(!!*9;“&)"‘"‘"*!!&‘ )

where ¢ is an auxiliary variable vector. The global solution is then given by choosing a Q that maximizes the Hamiltonian at
every instant and solving the following 2n differential equations:

;- [2H

i-[21): o
T

s l}.l.

-2 o

where Equation 6 is the same as Equation 2.

3.3 Global Kinetic Resolution of Redundancy

For problems including dynamics, a state vector v =@T§T]" was introduced in [11}. Using the inverse kinematics at the
acceleration level, the kinematics equations are rewritten in the following form:

¥=Q(y,¢)+R(x)& ®)
8
2‘!")=[n(;m-jg)] @
(1]

‘R(x) = [ 1 _-Jﬂ] (10)
Joint torques can now be written in terms.of v, é, and t as ‘

s =UED+V(v)é ' (1)

U, (1) =HIHGEWD -8 +8.C.0 +¢ (12)

V(v) = H(1-Jt]) | (13)
An integral performance index of the following typc is then minimized:

£ G,y + £ | | (14

where k is a non-negative scalar. For example, setting k to 0 minimizes the joint torques in a least squares sense. The optimi-
zation problem can be solved through Pontryagin‘s Maximum Principle. The solution requires solving 4n differential equa-
tions. The algorithms used in Nakamura's dynamic method and the global algorithm presented in this paper are theoretically
equivalent, but different methods are used in the formulation.

4.9 Kinematic Programming Techniques -

4.1 Pseudo-Inverse Techniques for Redundancy Resolutioa

The practical problem associated with planning joint-space motions for kinematically redundant manipulators is that of
producing an arbitrary prescribed cnd-effector movement. To do so, the controller must choose among infinitely many
corresponding joint space movements.

For any robot, cach possible joint angle configuration defines a unique position of the end effector of the robot arm.
This is expressed mathematically by an cquation of the form f(6) = x, where x is a vector (typically six dimensional) defining
the position and oricmaiiour of th? rnd cffector, and 8 is a vector defining the joint angle configuration. By differentiating
both sides of the equation xkl} =f lek ], we obtain the kinematic relation

. of :
i) = -5 (8)) &Y _ (15
from which we can compute 8(t) in terms of the prescribed end effector trajectory x(t). One way to uniquely specify a joint

velocity vector for cach x(t) is to use the Moore-Penrose. inverse givea by
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The joint velocities are minimized by this technique. But since joint velocities can become arbitrarily large near singular
configurations [13], this technique appears to show promise for gencratiag joint angle trajectorics that automatically avoid
singular configurations. However, analysis shows the Moore-Penrose inverse technique, without further restrictions, may gen-
erate trajectories which pass arbitrarily close to singular points in joint angle space. Thus singularities are not avoided in any
practical sense. This result is in contrast to some claims that have becn made in literature 2

Modifications to the Moore-Penrose pscudo-inverse technique can be made to avoid singularitics. An aiternative to
Equation 16 for defining joint angle trajectories uses a projection operator onto the null space:

0 += -g{;(o)* i +[x-3—°;-(0)+ %(o)] v an

v is a (time varying) vector of the same dimension as 8 which remains to be specified. This modification of the Moore-
Penrose pscudo-inverse technique can generate trajectories which avoid singular configurations by appropriate choice of ()
in Equation (6).

4.1.1 Fanctional Constraints for Redundancy Resolutions

A second class of methods for resolving redundancy, quite distinct from the generalized inverse mecthods, is that of
imposing differentiable (for smooth motion) functional constraint relationships on the joint angles:

b, (0, 8, ..., 9‘) =0

$.(61, 8, .. ) =0 (18)

 In general, however, it might not be possible to choose ¢ so that (9y, 8,, 8,) satisfy the redundancy condition
&(8,, 8;, 8,) = 0-and depend continuously on the coordinates (x, y) of the end effector (a 2-d example of the method using a
3-bar resolute joint, linkage in the plane). It is possible to find  if some arbitrarily small area A of the workspace is excluded
from the conditicas, hence resolving the redundarcy in a continuous way. '

4.1.2 Obstacle Avoldance

Aa optimality criterion defined in terms of a distance function will depend on how obstacles are represented. A simple
way of representing manipulator links is to model them as live scgments between adjacent joint coordinate systems. Obstruc-
tions in the workspace (modeled as, eg., primitives) can then be classified according to how and which links in the mechan-
ism can be impeded. Analysis of various gcometries will then indicate the cases in which the relative dimensions of the links
represent undesirable designs. ' '

There are two major issues in incorporating considerations of obstacle avoidance into the design of kinematically
redundant manipulators. First, the basic geometry of the mechanism must be specified. Then, dimensions of the manipulator
must be chosen to maximize some measure of its capacity to function in a congested workspace.

Each basic manipulator geometry will require specification of a figure-of-merit. One exampie of such a figure of ment
could be the distance a manipulator could reach behind an obstacle in the workspace, or the arca excluded from the
workspace because of the obstacle. These figures can be based on manipulator characteristics, workspace and obstacle dimea-
sions, or, if this is not known at the design stage, probabilistic models or parametric analyses.

4.2 Global Optimization Techniques

Our research developed practical numerical methods for resolving redundancy and solving the inverse kinematics prob-
lem, by minimizing a global (path integral) velocity criterion. These techniques are of interest because of the form in which
the solutions are expressed is similar to that of the pseudo-inverse or Extended Jacobian techniques. This can be contrasted
with other numerical techniques in which a repetitive and computationally costly process is used until the solution converges:

248



A"

-
lnominalaolutionhmmed.theprobkmhﬁnurbed.ﬁeﬁmopﬁmﬂnluﬁmhhmdhyahukwudmdfwud
wecp,mdtheﬁnmopﬁmtlmﬁon'hwdtoupdncthemindwhﬁm.

Our method differs from these other numerical techniques:

(1) No approximations or lincarizations are required;

(2) The solution is always in the form of a differential equation whose solution is always a feasible joint space trajectory;

(3) The “optimal® solution is found by searching over a relatively small number of parameters comprising the initial condi-
tions of the differential equation; and.

(4) The computational requirements of the solution for 8 particular set of initial conditions are comparable to thase of the
pscudo-inverse or Extended Jacobian techniques.
Ournpprmchiatovicwthhyrob!emuabonnduyvalmproblem(thcthmticalbui:fo:thisapprmchhducto

Nakamura [11]. We choose to use the additional freedom to minimize an integral of the joint velocitics aver the path:

T .
Minimize L | ot) P dt (19)
subject to the constraint ;
x(t) = £ (8(t)). ~ (192)

The constraint cxpresses the requirement the end effector follow a prescribed path in space. It is also possible to express the
constraints in terms of velocities:

i) = %é(:) = J&(t) {20)

Solutions to the problem Equation 19 are obtained from use of undetermined Lagrange multiplicrs and the Euler-
Lagrange equations, and Equation 19 becomes

T .

Minimize 0 = { L (0,9, x)%'-,x @)
with

s dfa) _, oL _

0 dt[aé] 0. o =0 @
Thisleadsto

I'A-0=0 -— (Ba)
and

f@-x=0 , (23v)

For a kinematically redundant manipulator, the dimensions of J as such Equation 23 overdetermines X in terms of 8. A
direct consequence of this is the relation v

T8 =0 ‘ (24)

where », is any nullspace vector of J(ie., Jny =0, afn; # 0). Equation 24 is the necessary condition that was sought for joint
space trajectorics that extremize the integral of Equation (18). A solution for )\ that is consistent with Equation 24 it
A = (JJTY!J 6. When we substitute this solution back into Equation 20, we have

QT -6 =0 25

or, equivalently, -P,a =0 where P, is the nullspace projection operator for J. Equations 24 and 25 are equivalent when
A7) exists.

Equation 24 provides a second order differential equation that requires two boundary conditions to provide a particular
solution. ) :

Analysis of this casc where $(0) and 6(t) can vary, but are subject to kincmatic constraints at the endpoints, leads to
the consequence
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0,(8(0))78(0) =0
“J(B(T)Té('r) =0 (26)

This is the simple statement that, whea the only boundary condition on 8 is the kinematic relationship, j'(O) = x, thea
a necessary condition for the cost to be at mextremuminhecomponcntofinitillandlindvelocityintheuuﬂspmo!lb
2cr0.

4.2.1 Differential Equations Describing Optimal Solations

The equations of constraint, together with the results of the Euler-Lagrange equations just presented, can be used 1o
derive differential cquations for propagating the optimal &(t). Such solutions must simultancously satisty Equation 21 and the
kinematic constraint, f (8) = x. We have cvaluated three ways to obtain differential equations for 0 that meet these condi-
tions. They differ in the implied computational requirements and some of the techniques introduce “removable” singularitics
to the computation of the solution. When singular behavior is not evideat, all of the techniques provide the same solution 1o
equivalent boundary value problems. Finally, it should be emphasized these differential equations are nccessary but not suffi-
cicat for an optimal value of @ in Equation 18.

4.2.2 Direct Solution

The most direct way to obtain a second order differential equation meeting the criteria listed above is to differentiste
the constraint equations twice with respect to time, to obtain

When the pseudo-inverse solution for 0 in terms of x and 9 is examined,
6 = s1{i-id 7 | @

where Jt = JTJJT)!, can one observe that this solution to Equation (27) aiso satisfies Equation (24), since afJt = 0. This
means a joint space trajectory integrsted from Equation (28) and appropriate boundary conditions will meet the necessary
condition for optimality. Note that, for this resolution to exist, (JJT)! must exist everywhere along the trajectory. This is the
equivalent to the requircmeat there be no kinematic singularities on the trajectory. This does not mean optimal trajectoties
do not include singularitics; it is possible to specify boundary conditions, for example, that are ‘kinematically singular.
*Optimal” solutions for such problems exist, but they are not a consequence of Equation (24) or @@n.

423 Reduced Order Solutions

In order to obtain solutions to Equation (28) onc must integratc a second order differential equation in a number of
variables equal to the dimension of the joint angle vector. In principle, not all of these quantities need to be intcgrated, =
some of them are already determined by the restraint of the kinematic relationship. There are two approaches thay iake
advantage of this situation. The first approach introduces a parameter used to resolve the redundancy explicitly. The secoad
approach uses the nullspace velocity as its parameter. In the latter case, the parameter is not obviously related to the coefi-
guration of the manipulator at a particular time, but offers the advantage of introducing no removable or extrancous singu-
larities in the differential equation. In the manipulators examined so far, the number of redundant degrees of freedom &
one, but all methods presented can be extended to the case of multiple degrees if freedom. .

Both techniques can be derived in preciscly the same way, and differ only in the particular functional relationship used
to resolve the redundancy. ‘ )

42.3.1 The Reduction Resolution Technique

In the reduudancy.rmlulion (RR) technique, a redundancy resolution: parameter, & = 1(0), is introduced to resolve
the ambiguity remaining after the constraint f (6) = x is met.

Specifying both x and ¢ should provide enough information to compute 8. A velocity relationship can be obtained by
differentiation: .

b= olos s | @
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In the null space velocity approach, the additional equation is defined directly in terms of the nullspace velocity com-
ponent, ,

G =T | ()
These two equations have the same form, and the analysis of cach is similar, with substitution of appropriate parameters as
required. ,

Applying kinematic constraints on joint velocity, and solving the resulting set of equations, we obtain a sccond-order
diffcrential equation in a scalar perameter that represents cither ¢ or a. The inverse of Extended Jacobian can provide an
explicit relationship for 0 in terms of x mdthhscdupunmetetwthttbemotomherpmvidememducedordet.unis
the dimension of 6, and n-1 the dimension of , the two relationships comprise a +2 coupled, first order noalinear differential
equations that must be integrated. This can be compared with Equation (28), which is equivalent to 2a differential equa-

The principle advantage of the RR approsch is that ¢ is simply related to the configuration of the manipulator, and
can be found directly. The principle disadvantage of the RR approsch is that many optimal® trajectories, depending on the
particular conditions or boundary values, encounter singularitics under certain conditions of the parameters. The Extended
Jacobian technique removes this singularity algebraically and there is, then, the possibility further work with the RR tech-
nique can climinate this disadvantage.

4232 The Nullspace Velocity (NV) Techniqee

The alternative technique to the RR technique just described is the resolution of the redundancy by 8 velocity con-
straint, in particular, the specification of the velocity compooent in null space. An advantage to this approach is the lack of
the "removable” singular points associsted with the RR technique. The NV technique uses the same basic information used
in the RR technique, rather than ¢ and % The computational cost of integrating a particular solution from specified initial

conditions using the NV formulation requires an amount of computation that is at least comparable to the pseudo-inverse
and Extended Jacobian techniques. :

The disadvantage of the NV technique, relative to the RR technique, is the parameter a has little to do with the confi-
guration of the manipulator at any given time. Its first derivative, a, is related to the nullspace velocity. By implication, one
might assume a is related to the nullspace velocity. By implication, onc might assume a is reiated to some distance traveled |
in the nullspace direction, but this is a path dependent integral, 0 a necd not necessarily take on the same value for the
same manipulator configuration if the trajectories are not identical. One available opticn is to integrate a subsidiary equation,
such as & = m70, rather then integrating a to obtain a, since a is not required in the formulation. This would provide a his-
tory of the sclf-motion of the manipulator over the trajectory.

4.3 Boandary Value Probiems

With the computationally cfficient methods for obtaining solutions to Problem (15) in hand, the next issue is that of
obtaining particular solutions associated with given initial conditions or boundary values. The sections that follow will pose
cach type of boundary problem in turn, and provide a numerical method for obtaining solutions to the probicm.

4.1 Initial Boundary Vaioe Problem (IBVP)

The initial boundary value problem is the simplest problem. The initial oricntation and velocity of the manipulator is
specified by the user, subject to the kinematic constraists. It is useful to specify the initial joint angles with a redundancy
resolution parameter or parameters to avoid imposing a requircinent on the user to specify a full joint angle sct consistent
with the kinematic restraint. This allows the user to specify the workspace position and manipulator oricntation in its sclf-
motion at that position independently, rather than forcing the user to compute a joint angle sct corresponding to the desired
configuration. The initial position, then, is specified by the kincmatic constraint in conjunction with a uscr-specificd initial
value of 0. )

The “optimality” of the solutions gencrated by all the initial value techniques presented must be verified. This is a-
direct consequence of the fact the Euler-Lagrange cquations {rom which they are derived are only necessary, but insuffi-
cient, conditions for optimality. A solution gencrated from an arbitrary set of initial conditions may well be a locally max-
imum cost solution, or may correspond to a solution that is first order stationary, but for which large changes in trajectory
produce lower cost solutions.
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432 Natursl Beandary Valse Problem
m'nawmmwoucmmwmmcmmmﬁunymmdiﬁmmmemﬁmﬁmdm
mniwhtorueitberendpdm,mdvewhhwfmdiniﬁalmdfmdwnﬁ‘mﬁommnyicldthcleumdudon.Amu—
urycondiﬁonforthenoluﬁonmthemmﬂbamdnryvﬂupro&emhthenulhpwejdmvcbdtybemumeiniﬁdmd
final coafigurations.
Theapprou:hdcvclopedtowlvemhbounduyvﬂnepmbkmmthcquﬁmmmemVP.TchVBPwluﬁon.thcn,
mberedmdmfmdh;mcmdnhmcﬁmmnimwwdbym;themw.mwpmviduaolutiomthn
utisfythenece.arycondiﬁmloroptimumsoluﬁomtotheNBVP.bmwﬁndthemmlopﬁmumaﬂmﬁommwbe
examined.
The computational requircments imposed by the requirement to cxamine the entire range of solutions to the IBVP is
obviom.‘l‘hcwomcmmwuﬁmcmdmcwluﬁmmbeimmeme.mlhminumﬁngtheNVequnion:onee,a
was required for the IBVP, the NBVP requires, in principle, infinitely many such evaluations. However, many practical
motionpm(ila;iverisetonreluivelynnoothfunctionlorthcnulhpwevebcitycomponcntdr,mdthemo(thiafunc-
tion can be isolated with a small number of evaluations of the [BVP.
Afindnpectdthhwlutiontechniqueispoapcdm.umi;htbcexpected.whentheinitial(orﬁnal)conﬁ-
guration is itsclf near a kinematic singular point.

433 Two Polat Boundary Valse Problem (TPBVP)

Solutiomtothctwopointbmndatyv-luepmblemcanbeobuinedbyamethodmalogmn!othnmedlortheNBVP.
In this ptoblem.¢,md#r,otequivalcminlormnionisgiven.'l‘he:olutiontoﬂqmtion(ﬂ)isrequimdmdmbefwndby
. making use of the IBVP solution. The TPBVP approach takes ¢, as the configuration initial condition and scarches for a
velocity initial condition, &, lcading to a solution with & as the final value of 4.

In general, it is likely that ¢ will completely resolve the redundancy. Specification of additional perameters should
allow 8 to be known unambiguously. :

4.3.4 Periodic Boupdery Value Problem (PYEP)

This is the problem of finding the least cost periodic motion for 6(¢) corresponding to a workspace motion x(¢) that is
also periodic, or cyclic. That is, we have a situation where x{0)=x(T), and we wish to tind 8(r) that is a solution to the prob-
lem of Equation (1), and meets the additional constraints 8(0)=8(T) and 8(0)=6(T). This results in a joint angle time history
that follows the desired trajectory, is periodic, and is low cost in the scnse of Equation 19.

This problem differs from the previous boundary problems as it requires a scarch in two variables, 4, and ay, for the
simultancous zeros of two cxpressions that specify the problem. Intersections of plots of solutions to these expressions will
correspond to solutions, but spurious solutions will have to be rejected.

4.4 Sommary

This section has presented a new technique for gencrating globally optimal solutions (in 3 velocity-magnitude squared
scnse) to the inverse kinematics of redundant manipulators, duc to Nakamura. The scction discussed the computational
requirements of the techniques and showed derivations of two reduced order methods. It presented solutions related four
different types of boundary problems. The techniques presented are a practical off-linec mecans of finding good solutions to
the inverse kinematics of redundant manipulators.

5.0 Dynamics and Coatrol ,

This section presents a local and a global optimization method for minirizing torque leading at the joints in the least-
squares sense. The local optimization technique minimizes torque by specifying a null space vecior using a gencralized
_ inverse applied to accelerations. The local method is compared to a straightforward pscudo-inverse and an incrtial-weighted
pscudo-inverse. The global optimization method is formulated through the use of calculus of variations, and is compared
with the local algorithms.
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$.1 Lecal Torque Opthmination
mmmummwhwmmmwumwmmdmmmm
taquemmhmhlwmmbyﬁdziutmm:mbhuamo(theupperliniuonhe
jdmmmmdthmdbw«ﬁdﬂ?«ﬁmpﬁdmmmmmmwm.mﬂcaddﬂ-
fmzmmmmhmmwmammmmmammwmu
ranges. '

The algorithms we investigated are:
e  Unweighted pscudo-inverse algorithm (UPT)

1=HIG -39 +C +g on
o Inertia-weighted pscudo-inverse algorithm (TWPT)

1=HIL G -ID+C+g (6o
®  Unweighted null-epoce algorithm (UNS) ’

3_=H.|1'5'-jg +g+!+H[H(1—J?J)]T-(-I—2:Ej- (33)/

®  Weighted null-spece algorithm (WNS)
7-H.lf(g—lg)-O-g+!+H[W"H(I-J‘J)]‘?W‘(1’+1‘% 34

mmm@_mmnmmmmmmmmmmmmm:mpdw
tionvrithminimumo'o.hmmably.thhlhmldkeepjoinuhonmvin;too!mifmdnm.pn-iblyyicldin;lmote
wnnoﬂabkmodon.neinerﬁlweigbtedp-mdomulgnﬁthm[%lﬁ]yiel&.minimmkineﬁcencrnnluﬁon.m
md;hwdmdwdghmdnuﬂwﬂgai&mm&emdmﬁo&mtdhmmm.

5.1.1 Romnils :

m«mmaamm;hwdmmmam,wummwmmm"mhmm
invcm(lWPl’)dgoﬁ&mwmmgﬁfamnuﬁwmwmmwmalmmm-m

Foruhonmovcmcnt,mmmwymmmmmmml.ﬁmmmﬂmﬁngmhcm
between the two. A dramatic reduction in joint torque of the UNS is the main coatribution to the overall increase in perfor-
mm.l’-‘otamedimnIcngthmwemcnt,tbeUNScﬁﬂMadrmaﬁcredncdonover:heUSl,withthclWPhgainfalling
in between.

Thcsimtionchmgaconﬁdenblyfaak\n;mm.ﬂmhtheUNSthelWPldgaithm:howunupectedinnabﬂ-
i!yneartbecndo(thcmmt.mmmmwumwmmmtdmmmmﬁmmdme
hrgejeintvelociﬁuasochwdnlhcﬁmeo(:ﬁgnmcm.mredmdmcydthcamilpmiallylouintheﬁmjoimatthe
alignment, and the large joint velocities require extremely large joint torques to keep the manipulator on the desired trajec-
tory. Evidently, the UNS and IWPTI algorithms always show instablility for relatively long trajectories.

TbeUPlnlgorithmtppemtobememble.ﬁmwmafe'mjectaiuwbcnonlylbeWHMedtheinnabik
ity.TheUP]dgorithmgoelthm;hapnniallo-olredundancyinthethirdjoinlneuthcmovcmcmnidpoint.mdmothcr
loss of redundancy in the second joint ncar the end of the movement. These lomes of partial redundancy together with the
large joint velocitics scemed to have caused the instability of the UPI algorithm.

In the WNS for the same trajectorics, the third joint torque is pulled much closer to its midpoint at the expense of the
first and sccond joints. However, all the joint torques are well within their ranges. Unfortunately, the WNS also shows this
insubilityinlon;movcmenn.'l‘bcteweremmovemenuwbentheimnbiﬁtyithownonlybythewrts.ncchmeris-
tics of the instability in the weighted case were identical to those of unweighted cases.
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5.12 Discussien ) A

Local algorithms show dramatic improvement over the unweighted and pscudo-inverse algorithms in trajectories of
short length. However, for long trajectories, the null-space algorithms and the TWPI slgorithm all have stability problems.
Only the UPI algorithm was generally well-behaved, although it too showed instabilities.

It seems local tampering with the encrgetics of movement leads to global disaster. The instability shown by the IWPI
and the UNS and WNS scems to be caused by the line-up of links 2 and 3 together with high joint velocities at this confi-
guration. Since the use of the null-space vector adds to the joint acceleration vector, the joint torques are minimized at the
cost of large joint velocitics. These large joint velocities eventually caused the manipulator’s second and third links to line up,
resulting in a partial loss of redundancy with the inability of joint 1 torque to vary. The UPI the instabiility less often. Since
tthPlgivelaiolutionotminimumjoimmlentiominalcm-qumm.thejointwbciﬁamratninedfmam-
ing links 2 and 3 to line up. Nevertheless, the UPI can go through another type of manipulator configuration with partial loss
of redundancy and cventually go unstable.

52 Global Optimization

The undesirable behavior of the local optimization techniques has led to development of a global method for optimizing
joint torques. The method parameterizes the redundancy of a manipulator and uses the calculus of variations. This formula-
tion requires explicit inverse Linematic solutions and extra time derivatives of the variables involved, as opposed to
Makamura’s [11] use of Lagrange multiplicrs and Pontryagin’s Maximum Principle. However, only a single fourth-order ordi-
nary differential equation nceds to be solved, instead of 4n clementary differential equations required by Pontryagin’s Princi-
ple for a manipulator with one degree of redundancy. The global optimization algorithm is formulated using a variable ¢ that
parameterizes the redundancy of the manipulator. The hand variables x with ¢ specifies a joint configuration. Therefore,
given a desired trajectory x(t), the corresponding trajectory of the manipulator can be solved in terms of x(t) and 4t).

The objective of this technique is to place the joint torques closest to the midpoint of the joint torquc movements over
the entire movement. This is done in a least squares scnse by minimizing an integral of joint torques over the entire trajec-
tory. The performance index to be optimized is expressed as a function of ¢ and its first two derivatives and t over the time
of movement. The probiem is to find a &t) that minimizes this performance index. This is a straight-forward problem in cal-
culus of variations whose solution is given by an Euler-Lagrange equation with appropriate boundary conditions.

The Euler-Lagrange cquation can be expressed as fourth-order ordinary differential equation in &, and four boundary
conditions are needed to solve for the optimal solution. Two of these are readily obtained from the initial manipulator confi-
guration, namely ¢(0) and &{0). The remaining two conditions are given by the transversality coundition at t = t,. The prob-
lem then becomes a two point boundary problem which can be solved numerically. However, since there are only two unk-
nown initial values, &(0) and d’%t’(O). the space of these two unknown values can be scarched for the optimal solution.

Various well-known initial value integration methods may then be used to search for the solution with the minimal perfor-
mance index.

$2.1 Resuits

As expected, the global solution of the short movement closcly resembles the UNS algorithm. However, for trajectories
where the UNS showed instability, global solutions more closely resemble the stable UP! solution.

522 Discumioa

The unacceptable performance of the local algorithm in minimizing actuator demands over the whole trajectory has led
to the development of a global algorithm formulated through the parameterization of the redundancy and the method of cal-
culus of variations. (Even though the global methods are computationally infeasible for real-time control, they could be used
in repetitive motions commonly found in industry.) Results of the global algorithms are very promising; a solution was found
that outperformed all the local algorithms in movements of all lengths, cven those long movements where the local algorithm
showed the instability.

Whether the local kinematic methods may be modified to avoid the instabilitics is not known. Cne possibility is to
weight the local optimization criterion with a kinematic term to avoid high velocity buildup. For staying within torque
bounds, lincar programming, rather than lcast squarcs, may be more satisfactory. The broader question is whether any iocal
algorithms can ever be completely successful, or whether ultimatcly only a global resolution of redundancy can be
guarantced problem-free.
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Morcqueuiomshmldbeaddxmdbefmihaedgoﬁmmmnmﬂybeappﬁedwmeconuddmdungmtmani-
pulators. First, the joint angle, velocity and torque limits cannot be enforced with the algorithms formulated. The global
algorithm may be formulated in terms of Poatryagain’s Maximum Principle to incorporate the joint torque limits; however,
thcjointmgkandvebcitylhninsﬁﬂmnotheaddrmd.sutemmbmyhve!obcmedfortheenforcememof
all manipulator constraints. Sccond, even though the manipulator starts are rest and ends at zero hand velocity, the resulting
jointvelocitiamynotbem;thnis,themmiptﬂltotconﬁnuatomoventheendolthemovemem.mdgoﬁthmmy
continucmlybeappliednthemmcntendtokeepthehmdfmmmving;howm,thhdounotguamwetheamwill
evcnmaﬂycometoreu.?ormymnblemh,mishhighlyundednble;thercfm.thenlgotithmshouldbc:nodifiedin >
aomewnyuothemanip\datorcomeitoawmpletenopotldedredeonﬁgmﬁonauhcmovementcnd.’ :
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