26,343 research outputs found

    The laboratory telerobotic manipulator program

    Get PDF
    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research

    Achieving fast and exact hazard-free logic minimization of extended burst-mode gC finite state machines

    Get PDF
    Journal ArticleAbstract This paper presents a new approach to two-level hazard-free logic minimization in the context of extended burst-mode finite state machine synthesis targeting generalized C-elements (gC). No currently available minimizers for literal-exact two-level hazard-free logic minimization of extended burst-mode gC controllers can handle large circuits without synthesis times ranging up over thousands of seconds. Even existing heuristic approaches take too much time when iterative exploration over a large design space is required and do not yield minimum results. The logic minimization approach presented in this paper is based on state graph exploration in conjunction with single-cube cover algorithms, an approach that has not been considered for minimization of extended burst-mode finite state machines previously. Our algorithm achieves very fast logic minimization by introducing compacted state graphs and cover tables and an efficient single-cube cover algorithm for single-output minimization. Our exact logic minimizer finds minimal number of literal solutions to all currently available benchmarks, in less than one second on a 333 MHz microprocessor - more than three orders of magnitude faster than existing literal exact methods, and over an order of magnitude faster than existing heuristic methods for the largest benchmarks. This includes a benchmark that has never been possible to solve exactly in number of literals before

    Safety and Security Analysis of AEB for L4 Autonomous Vehicle Using STPA

    Get PDF
    Autonomous vehicles (AVs) are coming to our streets. Due to the presence of highly complex software systems in AVs, there is a need for a new hazard analysis technique to meet stringent safety standards. System Theoretic Process Analysis (STPA), based on Systems Theoretic Accident Modeling and Processes (STAMP), is a powerful tool that can identify, define, analyze and mitigate hazards from the earliest conceptual stage deployment to the operation of a system. Applying STPA to autonomous vehicles demonstrates STPA\u27s applicability to preliminary hazard analysis, alternative available, developmental tests, organizational design, and functional design of each unique safety operation. This paper describes the STPA process used to generate system design requirements for an Autonomous Emergency Braking (AEB) system using a top-down analysis approach to system safety. The paper makes the following contributions to practicing STPA for safety and security: 1) It describes the incorporation of safety and security analysis in one process and discusses the benefits of this; 2) It provides an improved, structural approach for scenario analysis, concentrating on safety and security; 3) It demonstrates the utility of STPA for gap analysis of existing designs in the automotive domain; 4) It provides lessons learned throughout the process of applying STPA and STPA-Sec

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details

    Exploring the impact of different cost heuristics in the allocation of safety integrity levels

    Get PDF
    Contemporary safety standards prescribe processes in which system safety requirements, captured early and expressed in the form of Safety Integrity Levels (SILs), are iteratively allocated to architectural elements. Different SILs reflect different requirements stringencies and consequently different development costs. Therefore, the allocation of safety requirements is not a simple problem of applying an allocation "algebra" as treated by most standards; it is a complex optimisation problem, one of finding a strategy that minimises cost whilst meeting safety requirements. One difficulty is the lack of a commonly agreed heuristic for how costs increase between SILs. In this paper, we define this important problem; then we take the example of an automotive system and using an automated approach show that different cost heuristics lead to different optimal SIL allocations. Without automation it would have been impossible to explore the vast space of allocations and to discuss the subtleties involved in this problem

    To boldly go:an occam-Ļ€ mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time
    • ā€¦
    corecore