645 research outputs found

    Availability Equivalence Analysis of a Repairable Multistate Parallel-Series System with Different Performance Rates

    Get PDF
    This paper extends the concept of availability equivalence from general binary system to discrete multistate system with different performance rates. It considers a repairable discrete multistate parallel-series system with different performance rates. The system availability is defined as the ability of the system to satisfy consumer demand. The universal generating function technique is adopted to derive the availability of both original and improved systems according to factor method and standby redundancy method. Two types of availability equivalence factors of the system are analyzed. A numerical example is presented to illustrate the theoretical results obtained in this paper

    Modelo para un sistema multi estado reparable con tasas de reparación y fallas variables en el tiempo utilizando modelos de dinámica de sistemas equivalente

    Get PDF
    This paper treats with the reliability assessment of a Repairable Multi-State System (RMSS) by means of a Nonhomogeneous Continuous-Time Markov Chain (NH-CTMC). A RMSS run on different operating conditions that may be considered acceptable or unacceptable according to a defined demand level. In these cases, the commonly used technique is Homogeneous Continuous-Time Markov Chain (H-CTMC), since its solution is mathematically tractable. However, the H-CMTC involve that the time between state transitions is exponentially distributed, and the failure and repair rates are constants. It's certainly not true if the system components age with the operation or if the repair activities depend on the instant of time when the failure occurred. In these cases, the failure and repair rates are time-varying and the NH-CTMC is needed to be considered. Nevertheless, for these models the analytical solution may not exist and the use of others techniques is required. This paper proposes the use of an Equivalent Systems Dynamics Model (ESDM) to model a NH-CTMC. A ESDM represent the Markov Model (MM) by means of the language and the tools of the Systems Dynamics (SD), and the results are obtained by simulation. As an example, an RMSS with three components, failure rates associated with the Weibull distribution and repair rates associated with the Log-logistic distribution is developed. This example serves to identify the advantages and disadvantages of a ESDM to make model a RMSS and evaluate some reliability measures.This paper treats with the reliability assessment of a Repairable Multi-State System (RMSS) by means of a Nonhomogeneous Continuous-Time Markov Chain (NH-CTMC). A RMSS run on different operating conditions that may be considered acceptable or unacceptable according to a defined demand level. In these cases, the commonly used technique is Homogeneous Continuous-Time Markov Chain (H-CTMC), since its solution is mathematically tractable. However, the H-CMTC involve that the time between state transitions is exponentially distributed, and the failure and repair rates are constants. It's certainly not true if the system components age with the operation or if the repair activities depend on the instant of time when the failure occurred. In these cases, the failure and repair rates are time-varying and the NH-CTMC is needed to be considered. Nevertheless, for these models the analytical solution may not exist and the use of others techniques is required. This paper proposes the use of an Equivalent Systems Dynamics Model (ESDM) to model a NH-CTMC. A ESDM represent the Markov Model (MM) by means of the language and the tools of the Systems Dynamics (SD), and the results are obtained by simulation. As an example, an RMSS with three components, failure rates associated with the Weibull distribution and repair rates associated with the Log-logistic distribution is developed. This example serves to identify the advantages and disadvantages of a ESDM to make model a RMSS and evaluate some reliability measures

    Methods of fault tree analysis and their limits

    Get PDF

    Power System Reliability: Mathematical Models and Applications

    Get PDF
    This chapter deals with power systems reliability including technical, economical, and decisional aspects. Knowing that almost 90% of failures occur in the distribution systems, great interest was dedicated to this part of the system, and the first work was oriented to reliability indices defined as objectives to attempt and as performance measures in the electricity market. Some works deal with the managers’ behavior, and the customers reactions are modeled using economic criteria in uncertain future and inspired from game theory. When studying components, degradation models were introduced and combined with the effects of socks to study the reliability changing during system operation. In some works, the correlation between maintenance policies and reliability aspects was highlighted. In a recent work, considering the importance of new technologies integration and renewable energy insertion to power systems, it was revealed that reliability aspects and energy sustainability are two fundamental issues of progress in a given society

    Spare parts planning and control for maintenance operations

    Get PDF
    This paper presents a framework for planning and control of the spare parts supply chain inorganizations that use and maintain high-value capital assets. Decisions in the framework aredecomposed hierarchically and interfaces are described. We provide relevant literature to aiddecision making and identify open research topics. The framework can be used to increasethe e¿ciency, consistency and sustainability of decisions on how to plan and control a spareparts supply chain. This point is illustrated by applying it in a case-study. Applicability of theframework in di¿erent environments is also investigated

    Product forms for availability

    Get PDF
    This paper shows and illustrates that product form expressions for the steady state distribution, as known for queueing networks, can also be extended to a class of availability models. This class allows breakdown and repair rates from one component to depend on the status of other components. Common resource capacities and repair priorities, for example, are included. Conditions for the models to have a product form are stated explicitly. This product form is shown to be insensitive to the distributions of the underlying random variables, i.e. to depend only on their means. Further it is briefly indicated how queueing for repair can be incorporated. Novel product form examples are presented of a simple series/parallel configuration, a fault tolerant database system and a multi-stage interconnection network

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Multi-state reliability analysis of rotor system using Semi-Markov model and UGF

    Get PDF
    In order to accurately reflect the performance degradation law of the aero-engine rotor system during its life span, a novel multi-state reliability analysis method for rotor system is proposed. The method is based on the combination of the Semi-Markov model with UGF technique. The Semi-Markov model is used to describe the performance degradation process of the components of the rotor system. The UGF technique is utilized to exhibit the relationship between the state performance and the performance probability of the components. Furthermore, the UGF of the entire rotor system is obtained by simplifying the system structure with the modularized method. Therefore, the reliability of the rotor system at different task performance levels can be evaluated easily. A practical case study based on a turboprop engine rotor system is performed to illustrate the implementation and efficiency of the proposed reliability analysis method. Meanwhile, compared with the conventional method, the analysis results indicate that the proposed method can reflect the performance degradation process of the rotor system more veritably and effectively

    Reasoning about property preservation in adaptive case management

    Get PDF
    corecore