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This paper extends the concept of availability equivalence from general binary system to discrete multistate system with different
performance rates. It considers a repairable discrete multistate parallel-series system with different performance rates. The system
availability is defined as the ability of the system to satisfy consumer demand.Theuniversal generating function technique is adopted
to derive the availability of both original and improved systems according to factor method and standby redundancy method. Two
types of availability equivalence factors of the system are analyzed. A numerical example is presented to illustrate the theoretical
results obtained in this paper.

1. Introduction

Thereliability and availability of systemdepend on the system
structure as well as on the reliability and availability of
its components. Their values can be increased by different
improvement methods, for example, using more reliable
components and adding redundant components to the sys-
tem. Sometimes thesemeasures can be equivalent as they will
have the same effect on the reliability and availability of the
system.

The equivalence concept of different system designs with
respect to a reliability characteristic was first introduced in
[1]. Råde [2, 3], Sarhan [4–7], and Montaser and Sarhan [8]
applied such concept to discuss various systems with expo-
nential distribution in the case of no repairs. Xia and Zhang
[9] investigated the reliability equivalence of a parallel system
with Gamma life time distribution. Mustafa [10] studied the
reliability equivalence of some systems with mixture Weibull
distribution. Pogány et al. [11] derived reliability equivalence
factors of composite system with Gamma-Weibull distribu-
tion. Shawky et al. [12] analyzed the reliability equivalence
problem of a parallel system with exponentiated exponential
distribution.

For repairable systems, Hu et al. [13] analyzed the avail-
ability equivalence of different designs for a repairable series-
parallel systemwith identical components in each subsystem.
Sarhan and Mustafa [14] investigated the availability equiv-
alence factors of a general repairable series-parallel system
and assumed that the system components are repairable and
independent but not identical. Recently, Mustafa and Sarhan
[15] studied the availability equivalence factors for a general
repairable parallel-series system.

In the real world, many systems are designed to perform
their intended tasks in a given environment. Multistate sys-
tem is one type of these systems.Themultistate systemwidely
exists in industrial engineering [16, 17], for example, power
generation system, computing systems, and transportation
systems. However, in the previous literatures for reliabil-
ity/availability equivalence design, the reportedworksmainly
focus on the issues of the systems with two possible states
(completely working and totally failed). Comparable work
on repairable multistate systems with availability equivalence
design is rarely found in the literature. This motivates us
to develop the availability equivalence design of multistate
system.
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In this paper, we consider a repairable discrete multi-
state parallel-series system with different performance rates.
Assume that the performance rate of each series subsystem
is the minimum of the performance rates of all of its
components and the performance rate of the system is the
sum of the performance rates of all series subsystems. The
purpose of this paper is to accomplish two objectives.Thefirst
one is to derive the availability of the original and improved
systems according to different improvement methods by
using universal generating function (UGF) technique [18].
The second one is to analyze the availability equivalence
factors of the system.

The structure of this paper is organized as follows. The
availability of the original repairablemultistate parallel-series
system is provided in Section 2. Section 3 derives the avail-
ability of the systems improved according to factor method
and standby redundancy method. Two types of availability
equivalence factors of the system are investigated in Section 4.
A numerical example is presented to illustrate the analysis
method for availability equivalence factors of the system in
Section 5. Finally, conclusion is given in Section 6.

2. Availability of Repairable Multistate
Parallel-Series System

A repairable discrete multistate parallel-series system is com-
posed of 𝑛 subsystems connected in parallel, and subsystem
𝑖 consists of 𝑚

𝑖
different components connected in series, as

depicted in Figure 1. The component 𝑗 with two states (failed
or operating) in the subsystem 𝑖 is sorted by performance
rates g

𝑖𝑗
= {0, 𝜔

𝑖𝑗
}, constant failure rate 𝜆

𝑖𝑗
, and constant

repair rate 𝜇
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚

𝑖
.

The state probability distributions of the repairable com-
ponent 𝑗 in the subsystem 𝑖 corresponding to performance
rates g

𝑖𝑗
= {0, 𝜔

𝑖𝑗
} are

𝑃 {𝑤 = 0} =

𝜆
𝑖𝑗

𝜇
𝑖𝑗
+ 𝜆
𝑖𝑗

=

𝜂
𝑖𝑗

1 + 𝜂
𝑖𝑗

,

𝑃 {𝑤 = 𝜔
𝑖𝑗
} =

𝜇
𝑖𝑗

𝜇
𝑖𝑗
+ 𝜆
𝑖𝑗

=

1

1 + 𝜂
𝑖𝑗

,

(1)

where performance rate 𝑤 is a random variable, taking value
from g

𝑖𝑗
: 𝑤 ∈ g

𝑖𝑗
, 𝜂
𝑖𝑗
= 𝜆
𝑖𝑗
/𝜇
𝑖𝑗
. The UGF of the component 𝑗

in the subsystem 𝑖 is defined as follows [16]:

𝑢
𝑖𝑗 (
𝑧) = 𝑃 {𝑤 = 0} 𝑧

0
+ 𝑃 {𝑤 = 𝜔

𝑖𝑗
} 𝑧
𝜔𝑖𝑗

=

𝜂
𝑖𝑗

1 + 𝜂
𝑖𝑗

𝑧
0
+

1

1 + 𝜂
𝑖𝑗

𝑧
𝜔𝑖𝑗
.

(2)

The performance rate of the series subsystem 𝑖 we
consider here is assumed to be equal to the minimum
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Figure 1: General structure of a repairable multistate parallel-series
system.

of the performance rates of individual components in the
subsystem. According to the following operator Θ

𝑠
[18],

Θ
𝑠
(𝑢
1 (
𝑧) , 𝑢2 (

𝑧))

= Θ
𝑠
(

𝑀1

∑

𝑘1=1

𝑝
1𝑘1
⋅ 𝑧
𝜔1𝑘1 ,

𝑀2

∑

𝑘2=1

𝑝
2𝑘2
⋅ 𝑧
𝜔2𝑘2)

=

𝑀1

∑

𝑘1=1

𝑀2

∑

𝑘2=1

𝑝
1𝑘1
𝑝
2𝑘2
⋅ 𝑧

min{𝜔1𝑘1 ,𝜔2𝑘2 },

(3)

where𝑀
𝑗
is the number of possible states of the component

𝑗, 𝜔
𝑗𝑘𝑗

is the performance rate in state 𝑘
𝑗
, and 𝑝

𝑗𝑘𝑗
is the

corresponding state probability, 𝑗 = 1, 2. We can obtain the
UGF of the series subsystem 𝑖:

𝑈
𝑖 (
𝑧) = Θ𝑠

(𝑢
𝑖1 (
𝑧) , 𝑢𝑖2 (

𝑧) , . . . , 𝑢𝑖𝑚𝑖
(𝑧))

= Θ
𝑠
(

𝜂
𝑖1

1 + 𝜂
𝑖1

𝑧
0
+

1

1 + 𝜂
𝑖1

𝑧
𝜔𝑖1
,

𝜂
𝑖2

1 + 𝜂
𝑖2

𝑧
0

+

1

1 + 𝜂
𝑖2

𝑧
𝜔𝑖2
, . . . ,

𝜂
𝑖𝑚𝑖

1 + 𝜂
𝑖𝑚𝑖

𝑧
0
+

1

1 + 𝜂
𝑖𝑚𝑖

𝑧
𝜔𝑖𝑚𝑖)

= (1 −

𝑚𝑖

∏

𝑗=1

1

1 + 𝜂
𝑖𝑗

)𝑧
0
+ (

𝑚𝑖

∏

𝑗=1

1

1 + 𝜂
𝑖𝑗

)

⋅ 𝑧
min{𝜔𝑖1 ,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 }.

(4)

Theperformance rate of the repairablemultistate parallel-
series system is assumed to be equal to the sum of the
performance rates of individual series subsystems. According
to the following operator Θ

𝑝
[18],

Θ
𝑝
(𝑢
1 (
𝑧) , 𝑢2 (

𝑧))

= Θ
𝑝
(

𝑀1

∑

𝑘1=1

𝑝
1𝑘1
⋅ 𝑧
𝜔1𝑘1 ,

𝑀2

∑

𝑘2=1

𝑝
2𝑘2
⋅ 𝑧
𝜔2𝑘2)

=

𝑀1

∑

𝑘1=1

𝑀2

∑

𝑘2=1

𝑝
1𝑘1
𝑝
2𝑘2
⋅ 𝑧
𝜔1𝑘1
+𝜔2𝑘2 = 𝑢

1 (
𝑧) ⋅ 𝑢2 (

𝑧) .

(5)
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The UGF of the entire system can be obtained as follows:

𝑈 (𝑧) = Θ𝑝
(𝑈
1 (
𝑧) , 𝑈2 (

𝑧) , . . . , 𝑈𝑛 (
𝑧)) =

𝑛

∏

𝑖=1

𝑈
𝑖 (
𝑧)

=

𝑛

∏

𝑖=1

((1 −

𝑚𝑖

∏

𝑗=1

1

1 + 𝜂
𝑖𝑗

)𝑧
0

+ (

𝑚𝑖

∏

𝑗=1

1

1 + 𝜂
𝑖𝑗

)𝑧
min{𝜔𝑖1 ,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 }) =

𝑀

∑

𝑘=1

𝑝
𝑘
⋅ 𝑧
𝜔𝑘
,

(6)

where 𝑀 is the number of possible states of the system,
𝜔
𝑘
is the state performance rate in state 𝑘, and 𝑝

𝑘
=

𝑝
𝑘
(𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑛
) is the corresponding state probability, 𝜂

𝑖
=

(𝜂
𝑖1
, 𝜂
𝑖2
, . . . , 𝜂

𝑖𝑚𝑖
), 𝑖 = 1, 2, . . . , 𝑛.

For a given demand performance rate 𝜔, the system
availability 𝐴(𝜔) is

𝐴 (𝜔) =

𝑀

∑

𝑘=1

𝑝
𝑘
⋅ 1 (𝜔
𝑘
≥ 𝜔) , (7)

where the function 1(𝜔
𝑘
≥ 𝜔) = 1 if 𝜔

𝑘
≥ 𝜔, and 1(𝜔

𝑘
≥ 𝜔) =

0 if 𝜔
𝑘
< 𝜔.

3. Availability of Improved Systems

In this section, we present the availability of the improved
systems according to factor method and standby redundancy
method.

3.1. The Factor Method. In the factor method, it is assumed
that the system can be improved by reducing failure rates of
some components by a factor 𝜌 (0 < 𝜌 < 1) or increasing
repair rates of some components by a factor 𝜎 (𝜎 > 1). The
two methods will be referred to as reduction and increase
methods, respectively.

Let 𝑅
𝑖
and 𝑆
𝑖
be the sets of the components for which the

failure rates are reduced and the repair rates are increased in
the series subsystem 𝑖, respectively, and 𝑅

𝑖
= 𝑀
𝑖
\ 𝑅
𝑖
and

𝑆
𝑖
= 𝑀
𝑖
\ 𝑆
𝑖
, where𝑀

𝑖
= {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑚𝑖
} denotes a set of all

components in the subsystem 𝑖.
For the reduction method, the state probability distribu-

tions of the component 𝑗 in the subsystem 𝑖 after reducing its
failure rate 𝜆

𝑖𝑗
by the factor 𝜌 corresponding to performance

rates g
𝑖𝑗
= {0, 𝜔

𝑖𝑗
} are

𝑃 {𝑤 = 0} =

𝜌𝜆
𝑖𝑗

𝜇
𝑖𝑗
+ 𝜌𝜆
𝑖𝑗

=

𝜌𝜂
𝑖𝑗

1 + 𝜌𝜂
𝑖𝑗

,

𝑃 {𝑤 = 𝜔
𝑖𝑗
} =

𝜇
𝑖𝑗

𝜇
𝑖𝑗
+ 𝜌𝜆
𝑖𝑗

=

1

1 + 𝜌𝜂
𝑖𝑗

,

𝑗 ∈ 𝑅
𝑖
,

(8)

where 𝜂
𝑖𝑗
= 𝜆
𝑖𝑗
/𝜇
𝑖𝑗
.

For increasemethod, the state probability distributions of
the component 𝑗 in the subsystem 𝑖 after increasing its repair

rate 𝜇
𝑖𝑗
by the factor 𝜎 corresponding to performance rates

g
𝑖𝑗
= {0, 𝜔

𝑖𝑗
} are

𝑃 {𝑤 = 0} =

𝜆
𝑖𝑗

𝜎𝜇
𝑖𝑗
+ 𝜆
𝑖𝑗

=

𝜂
𝑖𝑗

𝜎 + 𝜂
𝑖𝑗

,

𝑃 {𝑤 = 𝜔
𝑖𝑗
} =

𝜎𝜇
𝑖𝑗

𝜎𝜇
𝑖𝑗
+ 𝜆
𝑖𝑗

=

𝜎

𝜎 + 𝜂
𝑖𝑗

,

𝑗 ∈ 𝑆
𝑖
,

(9)

where 𝜂
𝑖𝑗
= 𝜆
𝑖𝑗
/𝜇
𝑖𝑗
. The UGFs of the component 𝑗 with

reduced failure rate or increased repair rate are

𝑢
𝑖𝑗𝑟 (
𝑧) =

𝜌𝜂
𝑖𝑗

1 + 𝜌𝜂
𝑖𝑗

𝑧
0
+

1

1 + 𝜌𝜂
𝑖𝑗

𝑧
𝜔𝑖𝑗
, 𝑗 ∈ 𝑅

𝑖
,

𝑢
𝑖𝑗𝑠 (
𝑧) =

𝜂
𝑖𝑗

𝜎 + 𝜂
𝑖𝑗

𝑧
0
+

𝜎

𝜎 + 𝜂
𝑖𝑗

𝑧
𝜔𝑖𝑗
, 𝑗 ∈ 𝑆

𝑖
.

(10)

The UGFs of the rest of the components in the subsystem 𝑖
are still determined by (2).

According to the operatorΘ
𝑠
, the UGFs of the subsystem

𝑖 improved by the reduction method or the increase method
can be obtained as follows:

𝑈
𝑖𝑟 (
𝑧) = Θ𝑠

(

𝑟𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑘1𝑟
(𝑧) , 𝑢𝑖𝑘2𝑟

(𝑧) , . . . , 𝑢𝑖𝑘𝑟𝑖
𝑟 (
𝑧),

(𝑚𝑖−𝑟𝑖)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑘𝑟𝑖+1
(𝑧) , 𝑢𝑖𝑘𝑟𝑖+2

(𝑧) , . . . , 𝑢𝑖𝑘𝑚𝑖
(𝑧)) ,

𝑈
𝑖𝑠 (
𝑧) = Θ𝑠

(

𝑠𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑙1𝑠
(𝑧) , 𝑢𝑖𝑙2𝑠

(𝑧) , . . . , 𝑢𝑖𝑙𝑠𝑖
𝑠 (
𝑧),

(𝑚𝑖−𝑠𝑖)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑙𝑠𝑖+1
(𝑧) , 𝑢𝑖𝑙𝑠𝑖+2

(𝑧) , . . . , 𝑢𝑖𝑙𝑚𝑖
(𝑧)) ,

(11)

where 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑟𝑖
∈ 𝑅

𝑖
, 𝑘
𝑟𝑖+1
, 𝑘
𝑟𝑖+2
, . . . , 𝑘

𝑚𝑖
∈ 𝑅

𝑖
,

𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑠𝑖
∈ 𝑆
𝑖
, and 𝑙

𝑠𝑖+1
, 𝑙
𝑠𝑖+2
, . . . , 𝑙
𝑚𝑖
∈ 𝑆
𝑖
. Using (2), (10),

and (11), 𝑈
𝑖𝑟
(𝑧) and 𝑈

𝑖𝑠
(𝑧) can be written as

𝑈
𝑖𝑟 (
𝑧)

= (1 − ∏

𝑗∈𝑅𝑖

1

1 + 𝜌𝜂
𝑖𝑗

∏

𝑗∈𝑅𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
0

+ (∏

𝑗∈𝑅𝑖

1

1 + 𝜌𝜂
𝑖𝑗

∏

𝑗∈𝑅𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
min{𝜔𝑖1 ,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 },
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𝑈
𝑖𝑠 (
𝑧)

= (1 −∏

𝑗∈𝑆𝑖

𝜎

𝜎 + 𝜂
𝑖𝑗

∏

𝑗∈𝑆𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
0

+ (∏

𝑗∈𝑆𝑖

𝜎

𝜎 + 𝜂
𝑖𝑗

∏

𝑗∈𝑆𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
min{𝜔𝑖1,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 }.

(12)

Using the operatorΘ
𝑝
, the UGFs of the improved system

by the reduction method𝑈
𝑟
(𝑧) or the increase method𝑈

𝑠
(𝑧)

can be obtained as follows:

𝑈
𝑟 (
𝑧) = Θ𝑝

(𝑈
1𝑟 (
𝑧) , 𝑈2𝑟 (

𝑧) , . . . , 𝑈𝑛𝑟 (
𝑧))

=

𝑛

∏

𝑖=1

((1 − ∏

𝑗∈𝑅𝑖

1

1 + 𝜌𝜂
𝑖𝑗

∏

𝑗∈𝑅𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
0

+ (∏

𝑗∈𝑅𝑖

1

1 + 𝜌𝜂
𝑖𝑗

∏

𝑗∈𝑅𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
min{𝜔𝑖1 ,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 })

=

𝑀

∑

𝑘=1

𝑝
𝑘𝑟
⋅ 𝑧
𝜔𝑘
,

𝑈
𝑠 (
𝑧) = Θ𝑝

(𝑈
1𝑠 (
𝑧) , 𝑈2𝑠 (

𝑧) , . . . , 𝑈𝑛𝑠 (
𝑧))

=

𝑛

∏

𝑖=1

((1 −∏

𝑗∈𝑆𝑖

𝜎

𝜎 + 𝜂
𝑖𝑗

∏

𝑗∈𝑆𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
0

+ (∏

𝑗∈𝑆𝑖

𝜎

𝜎 + 𝜂
𝑖𝑗

∏

𝑗∈𝑆𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
min{𝜔𝑖1,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 })

=

𝑀

∑

𝑘=1

𝑝
𝑘𝑠
⋅ 𝑧
𝜔𝑘
,

(13)

where 𝑝
𝑘𝑟
= 𝑝
𝑘𝑟
(𝜌, 𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑛
) and 𝑝

𝑘𝑠
= 𝑝
𝑘𝑠
(𝜎, 𝜂
1
,

𝜂
2
, . . . , 𝜂

𝑛
) denote the state probabilities of the improved

entire system according to the reduction method and the
increase method in state 𝑘 (𝑘 = 1, 2, . . . ,𝑀), respectively,
𝜂
𝑖
= (𝜂
𝑖1
, 𝜂
𝑖2
, . . . , 𝜂

𝑖𝑚𝑖
), 𝑖 = 1, 2, . . . , 𝑛.

For a given demand performance rate𝜔, the availability of
the system improved by the reductionmethod or the increase
method can be determined in the following forms:

𝐴
𝑟,𝜌 (
𝜔) =

𝑀

∑

𝑘=1

𝑝
𝑘𝑟
⋅ 1 (𝜔
𝑘
≥ 𝜔) , (14)

𝐴
𝑠,𝜎 (
𝜔) =

𝑀

∑

𝑘=1

𝑝
𝑘𝑠
⋅ 1 (𝜔
𝑘
≥ 𝜔) . (15)

3.2. The Standby Redundancy Method. In reliability theory,
standby redundancy is a technique widely used to improve
system availability and reliability [19]. In our work, the

standby redundancymethod contains warm standbymethod
and cold standby method. It is assumed that some compo-
nents of the system are connected with some warm or cold
standby components via perfect switches.

Let𝑊
𝑖
and 𝐶

𝑖
be the sets of the components with warm

standby components and cold standby components in the
series subsystem 𝑖, respectively, and 𝑊

𝑖
= 𝑀

𝑖
\ 𝑊
𝑖
and

𝐶
𝑖
= 𝑀
𝑖
\ 𝐶
𝑖
, where𝑀

𝑖
= {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑚𝑖
} denotes a set of all

components in the subsystem 𝑖.
It is assumed that each warm standby component in the

subsystem 𝑖 has constant standby failure rate 𝜐
𝑖𝑗
and constant

repair rate 𝜇
𝑖𝑗
. According to [20], the state probability distri-

butions of the component 𝑗 with a warm standby component
corresponding to performance rates g

𝑖𝑗
= {0, 𝜔

𝑖𝑗
} are

𝑃 {𝑤 = 0}

=

(1/2) 𝜆
2

𝑖𝑗
+ (1/2) 𝜆𝑖𝑗

𝜐
𝑖𝑗

𝜇
2

𝑖𝑗
+ 𝜆
𝑖𝑗
𝜇
𝑖𝑗
+ 𝜐
𝑖𝑗
𝜇
𝑖𝑗
+ (1/2) 𝜆

2

𝑖𝑗
+ (1/2) 𝜆𝑖𝑗

𝜐
𝑖𝑗

=

(1/2) 𝜂
2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

,

𝑃 {𝑤 = 𝜔
𝑖𝑗
}

=

𝜇
2

𝑖𝑗
+ 𝜆
𝑖𝑗
𝜇
𝑖𝑗
+ 𝜐
𝑖𝑗
𝜇
𝑖𝑗

𝜇
2

𝑖𝑗
+ 𝜆
𝑖𝑗
𝜇
𝑖𝑗
+ 𝜐
𝑖𝑗
𝜇
𝑖𝑗
+ (1/2) 𝜆

2

𝑖𝑗
+ (1/2) 𝜆𝑖𝑗

𝜐
𝑖𝑗

=

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

,

(16)

where 𝜂
𝑖𝑗
= 𝜆
𝑖𝑗
/𝜇
𝑖𝑗
and 𝜉
𝑖𝑗
= 𝜐
𝑖𝑗
/𝜇
𝑖𝑗
, 𝑗 ∈ 𝑊

𝑖
.

According to [21], the state probability distributions of the
component 𝑗 with a cold standby component corresponding
to performance rates g

𝑖𝑗
= {0, 𝜔

𝑖𝑗
} are

𝑃 {𝑤 = 0} =

(1/2) 𝜆
2

𝑖𝑗

𝜇
2

𝑖𝑗
+ 𝜆
𝑖𝑗
𝜇
𝑖𝑗
+ (1/2) 𝜆

2

𝑖𝑗

=

(1/2) 𝜂
2

𝑖𝑗

1 + 𝜂
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗

,

𝑃 {𝑤 = 𝜔
𝑖𝑗
} =

𝜇
2

𝑖𝑗
+ 𝜆
𝑖𝑗
𝜇
𝑖𝑗

𝜇
2

𝑖𝑗
+ 𝜆
𝑖𝑗
𝜇
𝑖𝑗
+ (1/2) 𝜆

2

𝑖𝑗

=

1 + 𝜂
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗

,

(17)

where 𝜂
𝑖𝑗
= 𝜆
𝑖𝑗
/𝜇
𝑖𝑗
, 𝑗 ∈ 𝐶

𝑖
.
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Let 𝑢
𝑖𝑗𝑤
(𝑧) and 𝑢

𝑖𝑗𝑐
(𝑧) denote the UGFs of the component

𝑗 with a warm standby component (𝑗 ∈ 𝑊
𝑖
) and a cold

standby component (𝑗 ∈ 𝐶
𝑖
), respectively; we have

𝑢
𝑖𝑗𝑤 (
𝑧) =

(1/2) 𝜂
2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

𝑧
0

+

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

𝑧
𝜔𝑖𝑗
,

𝑢
𝑖𝑗𝑐 (
𝑧) =

(1/2) 𝜂
2

𝑖𝑗

1 + 𝜂
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗

𝑧
0

+

1 + 𝜂
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗

𝑧
𝜔𝑖𝑗
.

(18)

The UGFs of the components belonging to the𝑊
𝑖
or 𝐶
𝑖
are

still determined by (2).
According to the operatorΘ

𝑠
, the UGFs of the subsystem

𝑖 improved by the warm standby method or the cold standby
method can be obtained as follows:

𝑈
𝑖𝑤 (
𝑧) = Θ𝑠

(

𝑤𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑘1𝑤
(𝑧) , 𝑢𝑖𝑘2𝑤

(𝑧) , . . . , 𝑢𝑖𝑘𝑤𝑖
𝑤 (
𝑧),

(𝑚𝑖−𝑤𝑖)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑘𝑤𝑖+1
(𝑧) , 𝑢𝑖𝑘𝑤𝑖+2

(𝑧) , . . . , 𝑢𝑖𝑘𝑚𝑖
(𝑧)) ,

𝑈
𝑖𝑐 (
𝑧) = Θ𝑠

(

𝑐𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑙1𝑐
(𝑧) , 𝑢𝑖𝑙2𝑐

(𝑧) , . . . , 𝑢𝑖𝑙𝑐𝑖
𝑐 (
𝑧),

(𝑚𝑖−𝑐𝑖)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢
𝑖𝑙𝑐𝑖+1
(𝑧) , 𝑢𝑖𝑙𝑐𝑖+2

(𝑧) , . . . , 𝑢𝑖𝑙𝑚𝑖
(𝑧)) ,

(19)

where 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑤𝑖
∈ 𝑊

𝑖
, 𝑘
𝑤𝑖+1
, 𝑘
𝑤𝑖+2
, . . . , 𝑘

𝑚𝑖
∈ 𝑊

𝑖
,

𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑐𝑖
∈ 𝐶
𝑖
, and 𝑙

𝑐𝑖+1
, 𝑙
𝑐𝑖+2
, . . . , 𝑙
𝑚𝑖
∈ 𝐶
𝑖
. Using (2), (18),

and (19), 𝑈
𝑖𝑤
(𝑧) and 𝑈

𝑖𝑐
(𝑧) can be written as

𝑈
𝑖𝑤 (
𝑧) = (1

− ∏

𝑗∈𝑊𝑖

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

∏

𝑗∈𝑊𝑖

1

1 + 𝜂
𝑖𝑗

)

⋅ 𝑧
0

+ (∏

𝑗∈𝑊𝑖

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ 𝜉
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗
+ (1/2) 𝜂𝑖𝑗

𝜉
𝑖𝑗

∏

𝑗∈𝑊𝑖

1

1 + 𝜂
𝑖𝑗

)

⋅ 𝑧
min{𝜔𝑖1 ,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 },

𝑈
𝑖𝑐 (
𝑧) = (1 − ∏

𝑗∈𝐶𝑖

1 + 𝜂
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗

∏

𝑗∈𝐶𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
0

+ (∏

𝑗∈𝐶𝑖

1 + 𝜂
𝑖𝑗

1 + 𝜂
𝑖𝑗
+ (1/2) 𝜂

2

𝑖𝑗

∏

𝑗∈𝐶𝑖

1

1 + 𝜂
𝑖𝑗

)𝑧
min{𝜔𝑖1 ,𝜔𝑖2,...,𝜔𝑖𝑚𝑖 }.

(20)

Using the operatorΘ
𝑝
, the UGFs of the improved system

by the warm standbymethod or the cold standbymethod can
be obtained in the following forms:

𝑈
𝑤 (
𝑧) = Θ𝑝

(𝑈
1𝑤 (
𝑧) , 𝑈2𝑤 (

𝑧) , . . . , 𝑈𝑛𝑤 (
𝑧))

=

𝑛

∏

𝑖=1

𝑈
𝑖𝑤 (
𝑧) =

𝑀

∑

𝑘=1

𝑝
𝑘𝑤
⋅ 𝑧
𝜔𝑘
,

𝑈
𝑐 (
𝑧) = Θ𝑝

(𝑈
1𝑐 (
𝑧) , 𝑈2𝑐 (

𝑧) , . . . , 𝑈𝑛𝑐 (
𝑧))

=

𝑛

∏

𝑖=1

𝑈
𝑖𝑐 (
𝑧) =

𝑀

∑

𝑘=1

𝑝
𝑘𝑐
⋅ 𝑧
𝜔𝑘
,

(21)

where 𝑈
𝑤
(𝑧) denotes the UGF of the improved system by

the warm standby method and 𝑈
𝑐
(𝑧) denotes the UGF of

the improved system by the cold standby method and 𝑝
𝑘𝑤
=

𝑝
𝑘𝑤
(𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑛
; 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) and 𝑝

𝑘𝑐
= 𝑝
𝑘𝑐
(𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑛
)

denote the probabilities of the improved entire system by
the warm standby method and the cold standby method in
state 𝑘 (𝑘 = 1, 2, . . . ,𝑀), respectively, 𝜂

𝑖
= (𝜂
𝑖1
, 𝜂
𝑖2
, . . . , 𝜂

𝑖𝑚𝑖
),

𝜉
𝑖
= (𝜉
𝑖1
, 𝜉
𝑖2
, . . . , 𝜉

𝑖𝑚𝑖
), 𝑖 = 1, 2, . . . , 𝑛.

For a given demand performance rate 𝜔, the availability
of the system improved by the warm standby method or the
cold standby method can be determined as follows:

𝐴
𝑤 (
𝜔) =

𝑀

∑

𝑘=1

𝑝
𝑘𝑤
⋅ 1 (𝜔
𝑘
≥ 𝜔) , (22)

𝐴
𝑐 (
𝜔) =

𝑀

∑

𝑘=1

𝑝
𝑘𝑐
⋅ 1 (𝜔
𝑘
≥ 𝜔) . (23)

4. Availability Equivalence Factors

In this section, we analyze the availability equivalence factors
of the repairable multistate parallel-series system. The avail-
ability equivalence factor is defined as that factor by which
the failure rates (the repair rates) of some of the system’s
components should be reduced (increased) in order to reach
equality of the availability of another better system [13]. Two
types of availability equivalence factors will be discussed.
These types are called availability equivalence reduction and
increase factors, respectively, denoted by AERF and AEIF.

4.1. AERF. The AERF, say 𝜌
𝑑
, 𝑑 = 𝑤(𝑐), for warm (cold)

standbymethod is defined as that factor 𝜌 bywhich the failure
rates of some components of the system should be reduced so
that one could obtain an improved system with availability
that equals the availability of that system improved by
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using the warm standby method and cold standby method,
respectively.

That is, to obtain the AERF 𝜌
𝑑
, 𝑑 = 𝑤(𝑐), we have to solve

the following equation:

𝐴
𝑟,𝜌 (
𝜔) = 𝐴𝑑 (

𝜔) , 𝑑 = 𝑤, 𝑐, (24)

with respect to 𝜌. 𝐴
𝑟,𝜌
(𝜔) and 𝐴

𝑑
(𝜔) (𝑑 = 𝑤, 𝑐) can be

obtained by (14), (22), and (23), respectively. Equation (24)
never has closed-form solution; we have to use the numerical
technique method to obtain 𝜌.

4.2. AEIF. The AEIF, say 𝜎
𝑑
, 𝑑 = 𝑤(𝑐), for warm (cold)

standby method is defined as that factor 𝜎 by which the
repair rates of some components of the system should be
increased so that one could obtain an improved system
with availability that equals the availability of that system
improved by using the warm standby method and cold
standby method, respectively.

That is, to obtain the AEIF 𝜎
𝑑
, 𝑑 = 𝑤(𝑐), we have to solve

the following equation:

𝐴
𝑠,𝜎 (
𝜔) = 𝐴𝑑 (

𝜔) , 𝑑 = 𝑤, 𝑐, (25)

with respect to 𝜎. 𝐴
𝑠,𝜎
(𝜔) and 𝐴

𝑑
(𝜔) (𝑑 = 𝑤, 𝑐) can be

obtained by (15), (22), and (23), respectively. As it seems, (25)
has no closed-form solution. To find𝜎, a numerical technique
method can be used to solve the equation.

In the rest of the section, the main steps of computing
the availability equivalence factors of the repairablemultistate
parallel-series system are provided as follows.

Step 1. Give fixed 𝑛 (number of the subsystems) and 𝑚
𝑖

(number of components in the subsystem 𝑖), 𝑖 = 1, 2, . . . , 𝑛.

Step 2. Based on the available data, determine the parameters
𝜆
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝜐
𝑖𝑗
, and 𝜔

𝑖𝑗
of the component 𝑗 in the subsystem 𝑖,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚
𝑖
.

Step 3. Calculate the availability of the systems improved by
the standby method and the factor method.

Step 4. According to the results in Step 3 and (24)-(25),
calculate the availability equivalence factors 𝜌 and 𝜎.

5. Numerical Example

A repairable multistate parallel-series system with two sub-
systems is considered. The component 𝑗 of the subsystem 𝑖
(𝑖 = 1, 2) has two different performance rates: 0 and 𝜔

𝑖𝑗
. The

parameters 𝜆
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝜐
𝑖𝑗
, 𝜂
𝑖𝑗
, 𝜉
𝑖𝑗
, and 𝜔

𝑖𝑗
for each component are

presented in Table 1. Assume that the demand performance
rate of the system 𝜔 is 50.

According to (2), (4), (6), and (7), the availability of the
original system is 0.7586 when the demand performance rate
𝜔 = 50. By using (18) and (20)–(23), we can obtain the
availability of the improved systems according to the standby
method. Table 2 presents the availability of the improved
systems according to the warm and cold standbymethods for
different components sets.

Table 1: Parameters of components.

Component 𝑖
𝑗
𝜆
𝑖𝑗
𝜇
𝑖𝑗
𝜐
𝑖𝑗
𝜂
𝑖𝑗
= 𝜆
𝑖𝑗
/𝜇
𝑖𝑗
𝜉
𝑖𝑗
= 𝜐
𝑖𝑗
/𝜇
𝑖𝑗
𝜔
𝑖𝑗

1
1

0.014 0.2 0.004 0.07 0.02 25
1
2

0.012 0.10 0.002 0.12 0.02 30
2
1

0.015 0.15 0.0045 0.1 0.03 35

Table 2: The availability of the improved system according to the
warm and cold standby methods.

𝑊
𝑖

𝐴
𝑤
(50) 𝐶

𝑖
𝐴
𝑐
(50)

𝑊
1
= {1
1
},𝑊
2
= 𝜙 0.8094 𝐶

1
= {1
1
}, 𝐶
2
= 𝜙 0.8099

𝑊
1
= {1
2
},𝑊
2
= 𝜙 0.8435 𝐶

1
= {1
2
}, 𝐶
2
= 𝜙 0.8442

𝑊
1
= {1
1
, 1
2
},𝑊
2
= 𝜙 0.8998 𝐶

1
= {1
1
, 1
2
}, 𝐶
2
= 𝜙 0.9012

𝑊
1
= 𝜙,𝑊

2
= {2
1
} 0.8297 𝐶

1
= 𝜙, 𝐶

2
= {2
1
} 0.8307

𝑊
1
= {1
1
},𝑊
2
= {2
1
} 0.8852 𝐶

1
= {1
1
}, 𝐶
2
= {2
1
} 0.8868

𝑊
1
= {1
2
},𝑊
2
= {2
1
} 0.9225 𝐶

1
= {1
2
}, 𝐶
2
= {2
1
} 0.9244

𝑊
1
= {1
1
, 1
2
},𝑊
2
= {2
1
} 0.9841 𝐶

1
= {1
1
, 1
2
}, 𝐶
2
= {2
1
} 0.9869

From the results presented in Table 2, we can see that (1)
in terms of one component improved improving component
2 in subsystem 1 according to the warm (cold) standby
method gives the highest availability, (2) in terms of two
components improved improving component 2 in subsystem
1 and component 1 in subsystem 2 according to the warm
(cold) standby method gives the highest availability, and
(3) improving all components of the system according to
the warm (cold) standby method gives the highest system
availability.

Tables 3–6 present the AERF 𝜌
𝑑
(𝑑 = 𝑤, 𝑐) and the AEIF

𝜎
𝑑
(𝑑 = 𝑤, 𝑐) for different components sets𝑊

𝑖
, 𝐶
𝑖
, 𝑅
𝑖
, and 𝑆

𝑖
,

𝑖 = 1, 2. The negative values (−Ve) in Tables 3–6 mean that
there is no equivalence between the two improved systems:
one obtained by the factor method and the other obtained by
the standby method.

According to the results presented in Tables 3–6, the
following can be seen:

(1) Improving components 1 and 2 in subsystem 1 accord-
ing to the warm standby method will increase the
system availability from 0.7586 to 0.8998; see Table 2.
The same increase can be obtained by the factor
method (reduction method and increase method).

(i) The Reduction Method. Reducing the failure
rates of (1) components 1 and 2 in subsystem 1
by the factor 𝜌

𝑤
= 0.0543, (2) component 2 in

subsystem 1 and component 1 in subsystem 2 by
the factor 𝜌

𝑤
= 0.1741, and (3) all components

of the system by the factor 𝜌
𝑤
= 0.3709, see

Table 3.
(ii) The Increase Method. Increasing the repair rates

of (1) components 1 and 2 in subsystem 1 by
the factor 𝜎

𝑤
= 18.4271, (2) component 2 in

subsystem 1 and component 1 in subsystem 2 by
the factor 𝜎

𝑤
= 5.7424, and (3) all components

of the system by the factor 𝜎
𝑤
= 2.6965, see

Table 4.
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Table 3: The AERF 𝜌
𝑤
for different components sets.

𝑊
𝑖

𝑅
𝑖

𝑅
1
= {1
1
}

𝑅
2
= 𝜙

𝑅
1
= {1
2
}

𝑅
2
= 𝜙

𝑅
1
= {1
1
, 1
2
}

𝑅
2
= 𝜙

𝑅
1
= 𝜙

𝑅
2
= {2
1
}

𝑅
1
= {1
1
}

𝑅
2
= {2
1
}

𝑅
1
= {1
2
}

𝑅
2
= {2
1
}

𝑅
1
= {1
1
, 1
2
}

𝑅
2
= {2
1
}

𝑊
1
= {1
1
}

𝑊
2
= 𝜙

0.0412 0.4143 0.6307 0.3101 0.5924 0.6780 0.7567

𝑊
1
= {1
2
}

𝑊
2
= 𝜙

−Ve 0.0607 0.4022 −Ve 0.3398 0.4784 0.6046

𝑊
1
= {1
1
, 1
2
}

𝑊
2
= 𝜙

−Ve −Ve 0.0543 −Ve −Ve 0.1741 0.3709

𝑊
1
= 𝜙

𝑊
2
= {2
1
}

−Ve 0.2003 0.4929 0.0579 0.4401 0.5577 0.6651

𝑊
1
= {1
1
}

𝑊
2
= {2
1
}

−Ve −Ve 0.1412 −Ve 0.0511 0.2503 0.4295

𝑊
1
= {1
2
}

𝑊
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve 0.0594 0.2821

𝑊
1
= {1
1
, 1
2
}

𝑊
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve −Ve 0.0554

Table 4: The AEIF 𝜎
𝑤
for different components sets.

𝑊
𝑖

𝑆
𝑖

𝑆
1
= {1
1
}

𝑆
2
= 𝜙

𝑆
1
= {1
2
}

𝑆
2
= 𝜙

𝑆
1
= {1
1
, 1
2
}

𝑆
2
= 𝜙

𝑆
1
= 𝜙

𝑆
2
= {2
1
}

𝑆
1
= {1
1
}

𝑆
2
= {2
1
}

𝑆
1
= {1
2
}

𝑆
2
= {2
1
}

𝑆
1
= {1
1
, 1
2
}

𝑆
2
= {2
1
}

𝑊
1
= {1
1
}

𝑊
2
= 𝜙

24.2606 2.4134 1.5855 3.2247 1.6881 1.4749 1.3216

𝑊
1
= {1
2
}

𝑊
2
= 𝜙

−Ve 16.4723 2.4865 −Ve 2.9433 2.0902 1.6540

𝑊
1
= {1
1
, 1
2
}

𝑊
2
= 𝜙

−Ve −Ve 18.4271 −Ve −Ve 5.7424 2.6965

𝑊
1
= 𝜙

𝑊
2
= {2
1
}

−Ve 4.9920 2.0287 17.2854 2.2722 1.7930 1.5035

𝑊
1
= {1
1
}

𝑊
2
= {2
1
}

−Ve −Ve 7.0811 −Ve 19.5845 3.9960 2.3281

𝑊
1
= {1
2
}

𝑊
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve 16.8271 3.5447

𝑊
1
= {1
1
, 1
2
}

𝑊
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve −Ve 18.0431

Table 5: The AERF 𝜌
𝑐
for different components sets.

𝐶
𝑖

𝑅
𝑖

𝑅
1
= {1
1
}

𝑅
2
= 𝜙

𝑅
1
= {1
2
}

𝑅
2
= 𝜙

𝑅
1
= {1
1
, 1
2
}

𝑅
2
= 𝜙

𝑅
1
= 𝜙

𝑅
2
= {2
1
}

𝑅
1
= {1
1
}

𝑅
2
= {2
1
}

𝑅
1
= {1
2
}

𝑅
2
= {2
1
}

𝑅
1
= {1
1
, 1
2
}

𝑅
2
= {2
1
}

𝐶
1
= {1
1
}

𝐶
2
= 𝜙

0.0324 0.4089 0.6273 0.3037 0.5886 0.6750 0.7544

𝐶
1
= {1
2
}

𝐶
2
= 𝜙

−Ve 0.0537 0.3976 −Ve 0.3347 0.4745 0.6016

𝐶
1
= {1
1
, 1
2
}

𝐶
2
= 𝜙

−Ve −Ve 0.0460 −Ve −Ve 0.1669 0.3653

𝐶
1
= 𝜙

𝐶
2
= {2
1
}

−Ve 0.1900 0.4863 0.0457 0.4327 0.5519 0.6607

𝐶
1
= {1
1
}

𝐶
2
= {2
1
}

−Ve −Ve 0.1316 −Ve 0.0404 0.2418 0.4230

𝐶
1
= {1
2
}

𝐶
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve 0.0500 0.2748

𝐶
1
= {1
1
, 1
2
}

𝐶
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve −Ve 0.0456
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Table 6: The AEIF 𝜎
𝑐
for different components sets.

𝐶
𝑖

𝑆
𝑖

𝑆
1
= {1
1
}

𝑆
2
= 𝜙

𝑆
1
= {1
2
}

𝑆
2
= 𝜙

𝑆
1
= {1
1
, 1
2
}

𝑆
2
= 𝜙

𝑆
1
= 𝜙

𝑆
2
= {2
1
}

𝑆
1
= {1
1
}

𝑆
2
= {2
1
}

𝑆
1
= {1
2
}

𝑆
2
= {2
1
}

𝑆
1
= {1
1
, 1
2
}

𝑆
2
= {2
1
}

𝐶
1
= {1
1
}

𝐶
2
= 𝜙

30.8888 2.4453 1.5942 3.2923 1.6990 1.4815 1.3256

𝐶
1
= {1
2
}

𝐶
2
= 𝜙

−Ve 18.6054 2.5149 −Ve 2.9875 2.1076 1.6623

𝐶
1
= {1
1
, 1
2
}

𝐶
2
= 𝜙

−Ve −Ve 21.7186 −Ve −Ve 5.9901 2.7375

𝐶
1
= 𝜙

𝐶
2
= {2
1
}

−Ve 5.2618 2.0565 21.8605 2.3109 1.8119 1.5136

𝐶
1
= {1
1
}

𝐶
2
= {2
1
}

−Ve −Ve 7.5997 −Ve 24.7552 4.1353 2.3638

𝐶
1
= {1
2
}

𝐶
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve 19.9924 3.6388

𝐶
1
= {1
1
, 1
2
}

𝐶
2
= {2
1
}

−Ve −Ve −Ve −Ve −Ve −Ve 21.9416

(2) Improving components 1 and 2 in subsystem 1 accord-
ing to the cold standby method will increase the
system availability from 0.7586 to 0.9012; see Table 2.
The same increase can be obtained by the factor
method (reduction method and increase method).

(i) The Reduction Method. Reducing the failure
rates of (1) components 1 and 2 in subsystem 1
by the factor 𝜌

𝑐
= 0.0460, (2) component 2 in

subsystem 1 and component 1 in subsystem 2 by
the factor 𝜌

𝑐
= 0.1669, and (3) all components of

the system by the factor 𝜌
𝑐
= 0.3653; see Table 5.

(ii) The Increase Method. Increasing the repair rates
of (1) components 1 and 2 in subsystem 1 by
the factor 𝜎

𝑐
= 21.7186, (2) component 2 in

subsystem 1 and component 1 in subsystem 2 by
the factor𝜎

𝑐
= 5.9901, and (3) all components of

the system by the factor 𝜎
𝑐
= 2.7375, see Table 6.

6. Conclusion

In this paper the extension of availability equivalence concept
is considered for a repairable discrete multistate parallel-
series system with different performance rates. The system
availability is defined as the ability of the system to satisfy
consumer demand. The quality of the system availability can
be improved by using the factor method and the standby
method of the system improvements. The UGF technique
is used to analyze the availability of both original and
improved systems according to different methods. Two types
of availability equivalence factors of the system are derived.
The results can be used to analyze the equivalence between
different designs of improving methods. In future research,
we will be concerned with the development of availability
equivalence design for repairable multistate system with
nonconstant failure rates, repair rates, and multiple failure
modes.
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