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Chapter 1

Introduction

“The whole is more than the sum

of its parts”

Aristotle

Interchangeable parts have revolutionized modern manufacturing. Before the indus-

trial revolution, products were made one-by-one as a whole in workshops by craftsmen.

After the industrial revolution and up until today, most products are assembled

from interchangeable parts. Recent research identifies the French General Jean-

Baptiste de Gribeauval as the principal originator of working with interchangeable

parts (Hounshell, 1984). He introduced a system for constructing French artillery from

interchangeable parts in 1765. His system became known as “le système Gribeauval”.

Thomas Jefferson1 was introduced to le système Gribeauval in 1785 when he was in

France as a diplomat, and visited the weapon workshop of Honeré Blanc who was

a gunsmith implementing le système Gribeauval. In a letter to John Jay2, Thomas

Jefferson wrote about this visit:

An improvement is made here in the construction of the musket which it

may be interesting to Congress to know, should they at any time propose

to procure any. It consists in the making every part of them so exactly

alike that what belongs to any one may be used for any other musket

in the magazine. The government here has examined and approved the

1Thomas Jefferson (1743-1826) is a founding father of the United States of America, its third

president, and one of the principal authors of the declaration of independence.
2John Jay (1745-1829) is a founding father of the United States of America and the first Chief

Justice of the United States



2 Chapter 1. Introduction

method, and is establishing a large manufactory for this purpose. As yet

the inventor3 has only completed the lock of the musket on this plan. He

will proceed immediately to have the barrel, stock and their parts executed

in the same way. Supposing it might be useful to the U.S. I went to the

workman. He presented me with the parts of 50 locks taken to pieces and

arranged in compartments. I put several together myself taking pieces at

hazard as they came to hand, and they fitted in the most perfect manner.

The advantages of this, when arms need repair, are evident.4

Interchangeable parts enabled the industrial revolution in large measure because they

enabled the division of labor (Smith, 1776) and therefore raised productivity. In

the time of Thomas Jefferson however, producing muskets with interchangeable parts

lowered productivity because it required resolving several metrological issues in order

to make the parts truly interchangeable. Jefferson was aware of this; the advantage

he saw, as is evident in his last sentence above, was in the repair and maintenance of

the muskets after production on the battlefield. In fact, years later, Thomas Jefferson

wrote to the secretary of war, Henry Knox5, that Blanc’s:

...method of forming the firearms appears to me so advantageous, when

repairs become necessary, that I have thought it my duty not only to

mention to you the progress of this artist6, but to purchase and send you

half a dozen of his officers fusils.7

The use of interchangeable parts and the division of labor continued to enable the

mass production that has shaped modern society. It appears that the main reason to

pursue the use of interchangeable parts, at least for Thomas Jefferson, was to facilitate

maintenance operations. This was despite the fact that in the short run, producing

with interchangeable parts was more expensive because the industrial metrology

technology needed to make truly interchangeable parts had not yet been developed.

This is striking: One of the most revolutionary ideas of modern manufacturing started

out as a maintenance innovation!

This maintenance innovation also changed maintenance operations. Rather than

performing maintenance or repair on equipment in its entirety, parts of equipment

that require maintenance or repair are interchanged with ready-for-use spare parts.

3Thomas Jefferson here refers to Honoré Blanc
4Papers of Thomas Jefferson, 8:455, August 30 1785
5 Henry Knox (1750-1806) was an officer, initially in the continental army during the American

revolutionary war, and later in the United States army. Under the US presidency of George

Washington, he was the secretary of war.
6Thomas Jefferson is again referring to Honoré Blanc
7Papers of Thomas Jefferson, 15:422, September 12 1789
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After this, the equipment returns to serviceable condition immediately, while repair

and maintenance is conducted on the replaced parts. This method for maintaining

equipment greatly increases the availability of equipment. Since equipment often

represents substantial financial investments (just think of aircraft, rolling stock,

MRI-scanners and military equipment) achieving a high availability of equipment

is important. Spare parts are essential in ensuring proper operation of this system

of maintenance by replacing parts, and so they also affect daily services provided by

equipment such as public transportation (rolling stock, aircraft) health care (MRI-

scanners), and military operations (military equipment and weapon systems). The

planning and control of spare parts for the support of maintenance operations is the

topic of this thesis.

Maintenance spare parts planning and control also has a significant financial impact.

Some impressive statistics that illustrate this are:

• In 2003, spare parts sales and services (mostly maintenance) accounted for 8%

of the gross domestic product in the United States (AberdeenGroup, 2003).

• More recently, US bancorp estimated that the yearly expenditure in the US on

spare parts amounts to 700 billion dollars which is 8% of the US gross domestic

product (Jasper, 2006).

• A study by Deloitte (2006) among 120 large manufacturing companies in North

America, Asia Pacific and Europe shows that service revenues represent more

than 25% of total business.

• According to the same study by Deloitte (2006), aftermarket service and spare

part sales account for 40% of profits for these 120 manufacturing companies.

Another indicator of the importance of spare parts and after sales services and

maintenance is that original equipment manufacturers (OEMs) are increasingly

realizing the potential, and are making a business model out of providing after sales

services (Oliva and Kallenberg, 2003; Wise and Baumgartner, 1999). Nevertheless, in

this thesis, we take the perspective of the owner of equipment that decides to keep

maintenance and spare parts planning in house.

In the remainder of this introductory chapter, we discuss the industrial setting for

which the models in this thesis have been developed. We start by giving a brief

overview of maintenance operations and the supply chain of maintenance spare

parts in §1.1 and §1.2. Here and throughout the thesis, we take the perspective of

owner/maintainer of equipment rather than that of an OEM providing maintenance

for its customers. We identify several issues that arise in the planning and control of

maintenance spare parts and formulate the research objectives of this thesis in §1.3.

We conclude this chapter by giving an outline of the thesis in §1.5.
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1.1. Maintenance operations

Different from regular production operations, maintenance operations are not insti-

gated by demand from an outside customer, but by the need for maintenance of

equipment. To perform maintenance, typically several resources are needed, the most

important of which are:

• a specialist, mechanic, engineer or other trained professional

• tools and equipment

• spare parts.

In §1.1.1, we discuss different maintenance strategies and how they instigate the need

for maintenance operations (and therefore also the resources mentioned above). The

planning difficulties that arise in maintenance operations are discussed in §1.1.2. The

role of spare parts in maintenance operations is discussed in §1.1.3. By way of example,

we conclude with a brief description of actual maintenance operations at NedTrain.

1.1.1 Maintenance strategies

For the purpose of describing maintenance operations, it is convenient to think of

equipment as a collection of interrelated parts. Maintenance operations consist largely

(but not solely) in replacing parts of equipment. Maintenance strategies determine

when parts or equipment need to be replaced or maintained. Throughout this

subsection, we focus on the decision to maintain/replace a part, but our discussion also

applies to the decision to maintain/replace equipment. Figure 1.18 gives an overview

of maintenance strategies. In this subsection, we follow Figure 1.1 in discussing

different maintenance strategies.

Modificative maintenance concerns interchanging a part with a technically more

advanced part in order to make the equipment perform better9. This form of

maintenance is usually project based and non-recurring. The maintenance strategies

that occur most often are preventive and breakdown corrective maintenance. Under

a breakdown corrective maintenance strategy, a part is not replaced until it has

failed, while under a preventive maintenance strategy, the aim is to replace parts

before failure occurs. (Off course, this aim may not always be achieved: A part can

break down before its replacement occurs.) Breakdown corrective maintenance is an

8Figure 1.1 was inspired by Figure 4.1 of Coetzee (1997), but has been significantly altered by

the author.
9Sometimes maintenance is defined as any action that restores equipment to some previous state.

Under this definition, modificative maintenance is an oxymoron.
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Figure 1.1 Maintenance strategies

attractive option for parts that do not wear, such as electronics. For parts that do

wear, it can be beneficial to follow a preventive maintenance strategy.

Preventive maintenance strategies can be further divided into usage and condition

based maintenance. Under usage based maintenance, the total usage of a part is

measured and maintenance is conducted when a certain threshold level has been

reached. The usage of parts can be measured in many ways depending on the nature of

the equipment. Time in the field is perhaps the most common mean to measure usage.

For vehicles (e.g., rolling stock), mileage is a common measure of usage. The number

of on-off cycles is a measure of usage for equipment that is mainly loaded at the end or

beginning of on-off cycles. For example, the number of landings is a measure of usage

for the landing gear of an aircraft. Since the usage of equipment is usually scheduled,

the moment that maintenance is performed can also be scheduled. If there is a large

set-up cost associated with maintenance, it can be beneficial to interchange several

parts simultaneously (Block replacement and/or overhaul). Otherwise, maintenance

can be performed on a single component (Component replacement and/or overhaul).

In condition based maintenance, the actual condition of a part is gauged and

maintenance is conducted based on this. The condition of a part can be measured
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either periodically during inspections (Periodic inspections) or continuously through a

sensor (Condition monitoring). How the condition of equipment is measured depends

on the nature of equipment. Below are some examples of how the condition of

equipment can be measured:

• The condition of ball-bearings can be measured via the amplitude of vibrations

around the bearing (Elwany and Gebraeel, 2008).

• The condition of a metal part can be determined by visually inspecting the

number and length of cracks.

• For metal systems with moving parts, the concentration of ferrous parts in

the lubrication fluid is measured as an indication of the wear and need for

lubrication.

• The condition of a car engine is monitored continuously while driving by the

engine-oil temperature gauge.

The need for maintenance can be ascertained periodically during an inspection or at

any time in case of condition monitoring.

Which types of maintenance are prevalent for a given piece of equipment depend very

much on the technical nature of the equipment involved. For electronics and high-tech

equipment, breakdown corrective maintenance is prevalent. For aircraft, rolling stock

and other heavy machinery with moving parts, the prevalent maintenance strategies

are preventive (both usage and condition based).

1.1.2 Uncertainty in maintenance operations

Maintenance operations are subject to considerable uncertainty. There is uncertainty

both with respect to timing (When will maintenance/replacement be needed?) and

content (What parts need maintenance/replacement?). The different maintenance

strategies discussed in the previous subsection are organized according to these two

uncertainty dimensions in Table 1.110

Usage based and modificative maintenance can be planned for ahead of time, whereas

breakdown corrective maintenance cannot be planned for at all. As a consequence

of this, the resources needed for usage based and modificative maintenance can be

utilized more fully than resources needed for breakdown corrective maintenance.

10Table 1.1 has been inspired by the maintenance box of Stoneham (1998) but has been altered

significantly by the author.



1.1 Maintenance operations 7

Table 1.1 Maintenance strategies organized by timing and content uncertainty.

Timing

known unknown

C
on

ten
t

known
Usage based or Condition based maintenance

modificative maintenance (Condition monitoring)

unknown
Condition based maintenance Breakdown corrective

(Periodic inspections) maintenance

Condition based maintenance is a hybrid form, in which some but not all uncertainty

is taken away relative to breakdown corrective maintenance. Periodic inspections can

be planned, and if they lead to maintenance, you know when the maintenance needs

to be conducted (right after the inspection). However, the content of the maintenance

depends on what is found during the inspection. Under condition monitoring, sensors

provide realtime information about the degradation of equipment. The parts that

need replacement can then be inferred from the sensor signal. However, degradation

usually remains an uncertain process, so that the exact time that maintenance is

needed remains unknown.

Remark 1.1 Sometimes the distinction between preventive and corrective mainte-

nance is interpreted as being synonymous to planned and unplanned maintenance.

This oversimplification only captures the upper left and lower right boxes of Table

1.1. Condition based maintenance is a hybrid form between planned and unplanned

maintenance that deserves separate attention. �

1.1.3 Spare parts in maintenance operations

In this thesis, we distinguish three different types of maintenance spare parts:

• Rotables - These are items that constitute a sufficiently large subsystem of the

original equipment to warrant a separate usage based maintenance strategy.

Rotables are individually tracked and traced so that the correct usage can be

ascribed to each rotable individually. Usually, there are dedicated resources for

the maintenance and overhaul of rotables. Examples include aircraft engines,

rolling stock bogies (see Figure 1.2a), and elaborate weapon or radar systems

on frigates.

• Repairables - These are items that are repaired after replacement after which

they are ready-for-use (RFU) again. Contrary to rotables, repairables do
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(a) A bogie is an example

of a rotable.

(b) A compressor is an example

of a repairable.

(c) A gasket is an example

of a consumable.

Figure 1.2 Examples of different types of spare parts.

not have their own usage based maintenance strategy, and are not usually

individually tracked and traced. A repair shop handles the repair of many

different types of repairables. Examples of repairables include compressors (see

Figure 1.2b) and pumps.

• Consumables - These are items that are discarded after replacement and bought

new from a supplier. Generally these are relatively cheap items such as gaskets

(see Figure 1.2c).

These different part types generally are also connected to different maintenance

strategies as shown in Table 1.2. Demand for spare parts inherits the uncertainty

characteristics of the type of maintenance for which they are used; see Table 1.1.

For example, there is almost no demand uncertainty for rotables, while demand

uncertainty for consumables subject to breakdown corrective maintenance is high.

Table 1.2 The role of different part types in maintenance operations.

Type of spare part

Maintenance strategy Rotable Repairable Consumable

Usage based x

Condtion based x x

Modificative x

Breakdown corrective x x

As a note on terminology, we mention that spare parts used to maintain equipment

are called line replaceable units (LRUs). (LRUs can be either rotable, repairable or

consumable.) We will use the abbreviations LRU and RFU extensively in §1.2.
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1.1.4 Maintenance operations at NedTrain

As indicated at the beginning of §1.1, we conclude this section with a brief description

of maintenance operations at NedTrain. NedTrain is a division of the Dutch railways

(NS, Nederlandse Spoorwegen) that is responsible for the servicing and maintenance

of all rolling stock of the NS. NedTrain operates four large maintenance depots

throughout the Netherlands11. The fleet of trains they maintain has around 2800

coaches. Each rolling stock unit (which consists of several coaches) visits one of the

maintenance depots approximately every three months. Such a visit lasts one to

several days. Most of the maintenance at NedTrain is condition based. During a

visit to the maintenance depot, inspections are performed on the rolling stock and

maintenance is done according to the outcome of these inspections.

Certain new rolling stock units have sensors on board that enable condition

monitoring. Currently, the output of these sensors is primarily used to quickly identify

the culprit after breakdown. It is expected that in time, condition monitoring can be

used to assess the condition of rolling stock before entrance into the depot, and can

even influence the moment of depot entrance.

NedTrain applies usage based maintenance for several rotables and has dedicated

repair and overhaul facilities for these rotables. The rotables are replaced in the

maintenance depot and receive thorough revision and overhaul in a specialized shop.

1.2. Spare part supply chains

Figure 1.3 gives an overview of a typical spare part supply chain. Demand for LRUs

occurs at one or more maintenance depots where equipment is maintained. There

are stock points incident to the maintenance depots where ready-for-use spare parts

are kept. These stock points are supplied from a central stock point which in turn

is supplied by external suppliers (in case of consumables), and internal and external

spare part repair shops (for repairables and rotables). There is a return flow of

repairable and rotable LRUs that require either repair or maintenance and overhaul.

Stock is also kept for modificative maintenance. This stock point may be physically

located at one of the other RFU-LRU stock points, but it is typically controlled

separately.

If the shipment time of a part from one RFU-LRU stock point to another is small

compared to the replenishment lead time of the central warehouse, the entire network

11NedTrain also operates several other locations called service depots or technical centers where

daily services, cleaning and small repairs are conducted. Since these maintenance operations are

small compared to the maintenance in maintenance depots, we do not discuss them in detail here.
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Figure 1.3 Typical example of a maintenance spare parts supply chain.

of RFU-LRU stock points can be considered as one big virtual stock point. In the

remainder of this section, we discuss repair and overhaul shops (§1.2.1), performance

measures (§1.2.2) and conclude with a brief description of an actual spare part supply

chain as found at NedTrain.

1.2.1 Repair and overhaul shops

A crucial role in the spare parts supply chain is played by the repair and overhaul

shops. Since the equipment is mostly maintained by interchanging parts, the actual

repair and maintenance occurs mostly at the part level and is done in repair and

overhaul shops. Performing the repair of parts is usually not a very standardized

process because different parts of the same type may fail for widely varying reasons.

Furthermore, repair shops often perform repairs for many different repairable types.

Consequently, repair and overhaul of spare parts is usually a labor intensive process

(Paz and Leigh, 1994). Shops that deal with repairables are usually referred to as

repair shops, whereas the shops deal with rotables are usually referred to as overhaul

shops.
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1.2.2 Performance measures

The whole spare parts supply chain exists solely to make maintenance operations run

smoothly, such that equipment is down for maintenance no longer than necessary. The

performance of a spare parts supply chain with respect to maintenance operations is

commonly measured by several performance measures such as:

• The total expected number of backorders

• The waiting time for an arbitrary request for a part

• The fraction of part requests that can be met immediately (fill-rate)

For a more thorough discussion of performance measures in spare part supply

chains and their relations to each other, we refer the reader to Vliegen (2009) and

Dinesh Kumar et al. (2000). In this thesis, we focus on the total expected number of

backorders. If we neglect the possibility that a single piece of equipment is waiting

for more than one part on backorder, the expected number of backorders corresponds

(approximately) to the number of pieces of equipment that is down waiting for a

spare part to become available. Note that the expected number of backorders for

some specific spare part is not directly of interest; rather we are interested in the

total number of backorders for types of spare parts together.

The obvious other performance measure of a spare parts supply chain are the costs

it incurs. These costs depend on many things but the two main cost drivers are the

number of spare parts and the capacity available in repair shops.

1.2.3 Spare part supply chain at NedTrain

NedTrain has four stock points incident to their maintenance depots as well as a

central stock point. They have two repair shops, one of which mainly repairs and

overhauls rotables while the other mainly repairs repairables. External repair shops

are contracted for certain specialized types of repair. The repair lead time of the

repair shops is in the order of magnitude of several weeks. The replenishment lead

time of different consumables varies widely from several hours for very cheap parts to

several months for expensive consumables.

Shipment times from one RFU-LRU stock point to another are several hours up to a

day. This is very short compared to the replenishment lead times at the central

stock point (typically several weeks) and compared to the time equipment is in

the maintenance depot (one up to several days). Furthermore, emergency lateral

transshipments between stock points occur when needed and take no more than a few
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hours. Thus, it is reasonable to consider the entire network of RFU-LRU stock points

as one virtual RFU-LRU stock point.

The repair shop uses priority rules to schedule the repair of parts. These priority

rules are designed to keep the stock of each repairable item above agreed minimum

levels. These minimum levels are set such that priority is given to the repair of parts

for which there is little stock or for which a demand surge is expected to occur.

1.3. Research objectives

In the previous two subsections, we have briefly sketched the environment for which

the models in this thesis apply. Now we discuss the research objectives of this thesis.

At this stage of the thesis, we do not position our research objectives relative to

existing literature. This is done in more detail in each chapter individually.

1.3.1 Framework

Planning and controlling maintenance spare parts entails many different aspects.

Models in literature typically focus on one or a few of those aspects, as will most

models in this thesis. But before we focus on a few specific aspects, we would like

to gain a broader understanding of all the aspects and their interrelationships on a

qualitative level. This broad understanding should be helpful see the quantitative

models in this thesis within a broader perspective. It should also be helpful for

professionals in practice. We formulate the following research objective:

Research objective 1 Develop a framework for the planning and control of a spare

part supply chain in organizations that own and maintain equipment. This framework

should outline all relevant decisions that are made in such a supply chain and explain

how they relate to each other.

1.3.2 Rotables, usage based maintenance and efficient utilization
of resources

Rotables are spare parts, but because they have a usage based maintenance strategy,

demand for these items is predictable. After rotables are replaced, they are overhauled

in a repair shop. The resources needed for overhauling are expensive and so it

is important to make effective use of these resources. Therefore, we formulate the

following research objectives:
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Research objective 2 Develop a planning algorithm that makes efficient use of the

resources needed for rotable replacement and overhaul. This algorithm should exploit

the fact that demand for rotables is predictable.

Research objective 3 Investigate the value of using the predictability of demand

for rotables in making efficient use of resources.

1.3.3 Repairables, condition based maintenance, and repair lead
time flexibility

In §1.1.2, we observed that condition based maintenance is greatly affected by

uncertainty, but much less so than for breakdown corrective maintenance. This

should naturally translate into a better understanding of the demand process of

repairables. Empirical evidence (e.g Slay and Sherbrooke, 1988) suggests that demand

is not stationary in these cases. In practice, this non-stationarity is buffered by both

inventory and smart scheduling in the repair shop. Smart scheduling in the repair

shop leads to dynamic lead time flexibility: Repairable parts for which demand is

momentarily high and RFU inventory is low are temporarily endowed with shorter

lead times, while other parts with sufficient on-hand inventory and momentarily

low demand will temporarily experience long lead times. The research objectives

below are aimed at understanding how lead time flexibility, repairable inventory and

non-stationary demand arising from condition based maintenance interact, and what

the value is of exploiting lead time flexibility and knowledge from condition based

maintenance about the non-stationarity of demand.

Research objective 4 Develop a model of repair lead time flexibility and non-

stationary demand due to condition based maintenance for a single-item and

investigate how information regarding demand non-stationarity from condition based

maintenance can be used to leverage repair lead time flexibility.

Research objective 5 Develop a model that can assess the interplay between

repairable inventory and lead time flexibility in buffering demand uncertainty and

non-stationarity.

Research objective 6 Investigate the value of explicitly modeling lead time flexi-

bility and demand information arising from condition based maintenance.

After we reach all the objectives above, the next step is to develop a model that can

aid decision making. In particular the initial supply decision is important. Along with

buying equipment, there usually is the possibility to purchase repairable spare parts
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at a reasonable price. This decision should reflect the fact that due to condition based

maintenance, demand will not be stationary and repair lead times can be influenced

to deal with these demand fluctuations.

Research objective 7 Develop a tractable multi-item optimization algorithm that

supports the initial supply decision and incorporates lead time flexibility, non-

stationary demand arising from condition based maintenance and performance

objectives on fleet level.

1.3.4 Consumables, emergency procedures

Consumables that wear out quickly are usually cheap compared to repairables.

Because they are replaced regularly, demand for such consumables is stationary.

However, when a consumable is out of stock, it is common practice to fulfill demand

for this consumable by an emergency procedure. For example, the consumable may

be picked up by a mechanic at a local hardware store. This emergency procedure

is expensive and causes the original stock point not to see this demand, which is

analogous to a lost sale in a retail environment and can be modeled the same way.

Unfortunately, lost sales inventory problems are known to be difficult, both to

optimize and to estimate the performance of. The optimal replenishment policy for

such inventory systems is not well understood or easy to compute. The periodic review

base-stock policy is commonly used in practice, but even this policy is difficult to

optimize and to evaluate the performance of. Our objective is therefore the following.

Research objective 8 Develop an algorithm for the optimization of the base-stock

level in a periodic review lost sales inventory system that is fast and provides accurate

estimates of performance measures.

1.4. Contributions of the thesis

In §1.1.3, we described three types of spare parts: rotables, repairables, and

consumables. The contributions we make in this thesis are best organized by these 3

spare part types.

1.4.1 Rotable overhaul planning

Chapter 3 studies the scheduled usage based maintenance of rotable parts. Usage

based maintenance policies stipulate that a rotable should not be used any longer
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that the maximum inter-overhaul time (MIOT). Traditional approaches to scheduling

usage based maintenance focus on postponing overhaul as long as possible to take

advantage of the technical life of the rotable. Models accomplish this by planning

only one overhaul instant into the future and artificially penalizing early overhaul of

a rotable. These penalty costs are really just a proxy for minimizing the amount

of maintenance conducted over the entire lifetime of a piece of equipment. The

underlying assumption is that this will also minimize the costs of materials and

required capacity in the overhaul workshop.

Our approach in Chapter 3 is more direct because we consider the costs of material

and overhaul capacity over the entire lifetime of the equipment directly, rather than

indirectly via an artificial penalty parameter. This approach can exploit opportunities

for cost savings that the traditional approach cannot. We illustrate this with the

following example from NedTrain.

The typical lifetime of a rolling stock unit is 30 years. Bogies are important rotables

in a train, with MIOTs that range from 4 to 10 years. Suppose the MIOT of two

types of bogies is 7 years, and both types of bogies belong to the same type of train.

Then, if replacements are planned to occur just in time, bogie replacements occur 4

times during the life cycle of this train type, namely in years 7, 14, 21, and 28. This

plan can be modified without changing either the amount of material needed over the

lifetime of the train, or the overhaul capacity: Overhaul rotables in years 6, 12, 19,

and 25. By sticking to the original plan for one type of rotable and changing to the

other plan for the other type, we can reduce peak overhaul capacity needed, and,

therefore, we can reduce overhaul capacity levels and costs.

In effect, we are not, and should not, be concerned with minimizing the amount of

useful lifetime on rotables that is wasted in the short run. Rather, we should minimize

the cost of overhaul that rotables incur over the entire lifetime of the equipment they

serve, which is finite.

The difficulty in formulating the planning problem above is the propagation of

overhaul deadlines over a long planning horizon. (Recall that traditional models

only plan one overhaul into the future.) With some auxiliary variables, we formulate

this planning problem as a mixed integer linear programming problem (MIP). We

show that this problem is strongly NP-hard, but also provide computational evidence

that our MIP formulation can be used to solve real life instances. We also provide

computational evidence that the linear programming relaxation of the the MIP

formulation is quite tight and can be used for sensitivity analyses.
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1.4.2 Repairable stocking and expediting under fluctuating demand

Repairable spare parts are expensive and in many practical situations, it is not possible

to buy new repairables at will. The best time for companies to buy repairables

is at the same time as when the original equipment is purchased. Nevertheless,

demand for repairable items typically fluctuates over time, reflecting the fluctuating

need for maintenance over time. Companies anticipate these demand fluctuations

by leveraging the possibility of expediting the repair of defective parts, rather than

buying new parts. Expedited repairs have a shorter lead time but incur additional

costs per repair job.

Chapter 4 studies the situation described above and supports two decisions at the

tactical and operational level respectively:

1. How many repairable spare parts should we buy? (tactical)

2. When should we request that the repair of a part is expedited? (operational)

We study this decision problem via a stochastic inventory model for repairable items.

In this model, a defective item is replaced with a ready-for-use item and sent to a

repair shop immediately after the defect occurs. At this point in time, the inventory

manager is faced with the decision to either expedite or not expedite the repair of

the part. This expediting decision is informed by knowledge about the fluctuation of

demand intensity over time. The fluctuation of demand over time is modeled by a

Markov modulated Poisson process. The state of the Markov chain that drives the

demand process can be observed directly and is used to inform the expediting decision.

We assume that repairable item inventory is replenished by a lot-for-lot policy (as is

common in practice). We model the expedited lead time as being deterministic and

the regular lead time as being the convolution of the expedited lead time and several

exponential phases, the passing of which is monitored. Many lead time distributions

can be modeled quite closely by this device and in particular deterministic lead times

can be approximated arbitrarily closely by letting the number of exponential phases

approach infinity.

The main contributions of chapter 4 are as follows. For the described setting, we

characterize the optimal repair expediting policy for the infinite horizon average and

discounted cost criteria by formulating the problem as a Markov decision process.

We find that the optimal policy may take two forms. The first form is simply to

never expedite repair. The second form is a state dependent threshold policy, where

the threshold depends on both the state of the modulating chain of demand and

the pipeline of repair orders. We also provide monotonicity results for the threshold

as a function of the pipeline of repair orders. We give closed-form conditions that

determine which of the two forms is optimal. In analyzing the optimal policy, we
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also confirm a conjecture of Song and Zipkin (2009) that the expediting policy they

propose is optimal for some special cases.

Secondly, we show how to optimally solve the joint problem of determining the turn-

around stock and the expediting policy.

Thirdly, we propose a heuristic that is computationally efficient, and is shown to

perform well compared to the optimal solution. In this heuristic, we replace the

optimal expediting policy with a parameterized threshold policy that shares important

monotony properties with the optimal expediting policy. The thresholds depend on

the available knowledge about the fluctuation of demand. Borrowing the terminology

of Zipkin (2000), we call this policy the world driven threshold (WDT) policy. In a

numerical study involving a large test bed, this heuristic has an average and maximum

optimality gap of 0.15% and 0.76% respectively.

Finally, we investigate the value of anticipating demand fluctuations by comparing

optimal joint stocking and expediting policy optimization against naive heuristics

that do not explicitly model demand fluctuations, or that separate the stocking and

expediting policy decisions. These naive heuristics have optimality gaps of 11.85% on

average and range up to 63.67% in our numerical work. The comparison with these

naive heuristics show that

1. There is great value in leveraging knowledge about demand fluctuations, in

making repair expediting decisions.

2. Fluctuations of demand and the possibility to anticipate these through expedit-

ing repairs should be considered explicitly in sizing the turn-around stock and

can lead to substantial savings.

In Chapter 5, we extend the model of Chapter 4 to a multi-item multi-fleet multi-repair

shop setting. The scheduling of repair jobs in the repair shop has long been known to

have a significant effect on the inventory investment required to meet several common

service levels. (Hausman and Scudder, 1982; Tiemessen and Van Houtum, 2012, e.g.).

Optimal scheduling rules for capacitated repair shops are quite intractable and even

the evaluation of simple priority rules suffers heavily from the curse of dimensionality.

For this reason, simulation optimization with local search are the techniques most

commonly used to determine good repair scheduling and repairable stocking policies.

Our model also considers the situation where scheduling in the repair shop can affect

the repair lead time of parts, but we refrain from explicitly modeling the dynamics

that occur on the shop floor. We assume that it is possible to expedite the repair of a

limited number of repair jobs per time unit on average. This allows us to model the

essential characteristics of smart scheduling policies, namely that the repair lead time

can be shortened for parts that are in short supply and lengthened for parts that are in



18 Chapter 1. Introduction

ample supply. The merit of the model in chapter 5 is that it can do this in a tractable

manner. Even so, our final model is non-linear non-convex integer programming

problem. We show how to find lower bounds for this problem via a column generations

algorithm in which the pricing problem is exactly the problem studied in Chapter 4.

We also show how to obtain a good feasible solution within reasonable time using

binary programming techniques. In extensive numerical experiments, the feasible

solution we found had an optimality gap of 0.67% on average and 6.76% at most.

We also quantify the effect of considering repair shop flexibility through expediting

compared to models in which stocking decisions are based on a single mean lead time.

Explicitly considering these flexible lead times through expediting leads to an average

reduction in repairable spare parts investment of 25% compared to the approach based

on a single lead time for a large test-bed.

1.4.3 Consumable stocking with emergency shipments

Chapter 6 studies base-stock policies for consumables that are reviewed periodically.

When the stock for consumables is depleted, it is a common procedure to use

an emergency supply source to replenish the part almost instantaneously so that

maintenance is not halted for lack of a part. All items that are replenished by the

emergency procedure are lost to the normal mode of replenishment. This problem

is mathematically equivalent to the classical lost sales inventory problem that has

been studied by Karlin and Scarf (1958), Janakiraman et al. (2007), Zipkin (2008b),

Zipkin (2008a), Levi et al. (2008), and Huh et al. (2009b). This system consists of a

periodically reviewed stock point which faces stochastic i.i.d. demand. When demand

in a period exceeds the on hand inventory, the excess is lost. Replenishment orders

arrive after a lead time τ . At the end of each period, costs for lost sales and holding

inventory are charged. For such systems, we are interested in minimizing the long

run average cost per period.

The structure of the optimal policy for lost sales inventory systems with a positive

replenishment lead time is still not completely understood, and the computation of

optimal policies suffers from the curse of dimensionality as the state space is τ -

dimensional. Huh et al. (2009b) show that base-stock policies are asymptotically

optimal as the lost sales penalty costs approach infinity. However, computing the best

base-stock policy for a lost-sales inventory problem efficiently remains a challenge.

Huh et al. (2009a), p. 398, observe that: “Although base-stock policies have

been shown to perform reasonably well in lost sales systems, finding the best base-

stock policy, in general, cannot be accomplished analytically and involves simulation

optimization techniques”. Although the burden of optimization is alleviated by the

fact that the average cost under a base-stock policy is convex in the base-stock level

(Downs et al., 2001; Janakiraman and Roundy, 2004), evaluating the performance of
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any given base-stock policy requires either value iteration or simulation.

Chapter 6 provides an efficient method to compute near optimal base-stock levels for

lost sales inventory models as well as accurate approximations for the costs of base-

stock policies. This method is based on a different view of the dynamics of a lost sales

inventory system, inspired by a relation to the dual sourcing inventory system. This

relation has been studied by Sheopuri et al. (2010), and allows us to use ideas similar

to those of Arts et al. (2011) for dual-sourcing inventory systems in the context of lost

sales inventory systems. Somewhat counter-intuitively, our approach involves moving

from a τ -dimensional state space description to a (τ + 1)-dimensional state space

description, where τ is the order replenishment lead time. This (τ + 1)-dimensional

state space is the pipeline of all outstanding orders, but not the on-hand inventory.

The next key idea to this approach is to aggregate this pipeline of outstanding orders

into a single state variable. This is essential to lending tractability as the size of

the original state space grows exponentially in both the lead time and the base-stock

level. By contrast, the aggregated state space grows linearly in the base-stock level

only.

From the distribution of this single aggregated state variable, all relevant performance

measures can be computed. The distribution of this single state variable can be

studied via a Markov chain. For the transition probabilities of this Markov chain,

we derive limiting results and show that for the most commonly used demand

distributions, the rate of convergence for these limits is at least exponential. We

also show that these limiting results satisfy a type of flow conservation property. This

flow conservation property relates the average size of an order entering or leaving

the pipeline to the total number of items in the pipeline. Based on these results,

evaluating a single base-stock policy approximately is as easy as solving S + 1 linear

equations, where S is the base-stock level. Numerical experiments indicate that this

approach yields excellent results. Across a test bed that is an extension of the test

beds considered by Huh et al. (2009b) and Zipkin (2008a), we find that our approach

has cost differences with the best base-stock policy of at most 1.30% and 0.01% on

average.

1.5. Outline of the thesis

Table 1.3 gives an overview of the thesis by the research objectives as stated in §1.3

and main methodology. Table 1.4 gives an overview of the material in this thesis

based on spare part type and maintenance type. Chapters 2, 3 and 5 are intended

to be accessible to a wide audience of both practitioners and academics interested in

maintenance and spare parts planning and control. Chapters 4 and 6 contain more
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specialized technical results that are mostly of interest for researchers in inventory

theory and stochastic operations management. The chapters have been set up such

that they can be read independently. A slight exception to this is chapter 5. For

the detailed analysis of the model in chapter 5, we refer to some results in chapter 4.

However, chapter 5 has been written such that the analysis section can be skipped by

readers that are not interested in the mathematical details.

The work in chapter 2 is based on Driessen et al. (2010) and chapter 3 is based on

Arts and Flapper (2013).

Table 1.3 Navigating the thesis by research objective and methodology.

Research objective

Chapter 1 2 3 4 5 6 7 8 9 Main methodology

2 x x Conceptual framework

3 x x Mixed integer programming

4 x x x Markov Decision Process

5 x x x Column generation

6 x Asymptotics

Table 1.4 Navigating the thesis by spare part and maintenance type.

Spare part type Maintenance strategy

Chapter Rotables Repairables Consumables Breakdown Usage Condition

corrective based based

2 x x x x

3 x x

4 x x x

5 x x x

6 x x x



Chapter 2

Maintenance spare parts

planning framework

“Every theory is a self-fulfilling

prophecy that orders experience

into the framework it provides.”

Ruth Hubbard

2.1. Introduction

Many industries depend on the availability of high-value capital assets to provide

their services or to manufacture their products. Companies in these industries use

capital assets in their primary processes and hence downtime can among others result

in (i) lost revenues (e.g., standstill of machines in a production environment), (ii)

customer dissatisfaction and possible associated claims (e.g., for airlines and public

transportation) or (iii) public safety hazard (e.g., military settings and power plants).

Usually the consequences of downtime are very costly.

A substantial group of companies in these industries both use and maintain their

own high-value capital assets. Examples include airlines, public transportation and

military organizations. Within these companies, a Maintenance Organization (MO) is

responsible for maintaining the capital assets. Besides maintenance activities, supply

and planning of resources, such as technicians, tools and spare parts, are required.

A Maintenance Logistics Organization (MLO) is responsible for matching the supply
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and demand of the spare parts required to conduct maintenance.

Because the capital assets are essential to the operational processes of the companies

involved, downtime of the assets needs to be minimized. Downtime of a system

is usually divided into (i) diagnosis and maintenance time; (ii) maintenance delay

caused by unavailability of the required resources for diagnosis and maintenance. A

high availability of spare parts is important as it influences the maintenance delay. In

this chapter, we focus on the responsibility of a MLO to minimize maintenance delay

due to unavailability of required spare parts.

Our main contribution is the development of a hierarchical framework for MLOs

as described above. This framework outlines the decisions that need to be made

to effectively control a spare parts supply chain. It also describes the interactions

and (hierarchical) relations between these decisions and provides an outline of how

these decisions can be decomposed. As such, the framework it is a type a taxonomy of

different decision functions and their interrelations; see Figure 2.3 for a quick graphical

overview of the framework. We also embed the framework in existing literature by

reviewing results and models that can be used to support most of the decisions in

the framework. In performing this review, we also highlight a few areas that deserve

additional research.

This framework also serves as a useful starting point in making specific designs of

maintenance spare part planning and control systems. For organizations with an

existing design, the framework has a mirror function. That is, it can be used to

compare the current design of the spare parts planning and control at a given company

to our framework. Such comparative studies, based on the framework in this chapter,

have successfully been conducted at different companies from different industries:

• Railway industry (Driessen and Arts, 2011, NedTrain)

• Airforce (Driessen, 2011, Royal Dutch Airforce)

• Aviation industry (Driessen, 2012a, Royal Dutch Airlines (KLM) Engineering

and Maintenance)

• Army (Driessen, 2012b, Royal Dutch Army)

• Navy (Driessen, 2012c, Royal Dutch Navy)

• Port industry (Driessen, 2013, Europe Container Terminals)

Practitioners in all these case studies found the framework particularly useful to to

increase the efficiency, consistency and sustainability of decisions on how to plan and

control the spare parts supply chain.
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To decompose decisions in a hierarchical framework is a well established approach

in operations management. Initial models consider especially the production

environment (Hax and Meal, 1975; Bitran and Hax, 1977; Hax, 1978; Bitran et al.,

1981, 1982) and were motivated by the fact that it is computationally infeasible to

solve one single all encompassing model. Later it was recognized that the hierarchy

in such models is also useful because

(i) In reality the power to make decisions is distributed over several managers or

agents;

(ii) The information available for different decisions has varying levels of detail

(Dempster et al., 1981; Meal, 1984; Schneeweiss and Schröder, 1992; Schneeweiss,

1998, 2003; Schneeweiss and Zimmer, 2004).

For the production environment, hierarchical frameworks are now part of standard

textbooks (Silver et al., 1998; Hopp and Spearman, 2001). Other successful

applications include traffic control (Head et al., 1992) and supply chain management

(Schneeweiss and Zimmer, 2004; Ivanov, 2010). Practitioners within the general

discipline of supply chain management have also created a framework to facilitate

their work (Council, 2010).

For spare parts specifically, such frameworks/guidelines and standards exist within

the United States department of defense (US-DoD); see MIL-HDBK-965 (1996); MIL-

PRF-49506 (1996); MIL-STD-1390D (1993); MIL-STD-3018 (2011). The standards

and handbooks of the US-DoD focus primarily on setting up contracts with suppliers

to make sure that there is an acquisition contract for each relevant type of spare

part. These standards also adres quality and reliability standard for spare parts as

well as standardization guidelines. Our framework takes a broader perspective by

also considering the logistical control of the spare parts supply chain. We adres such

issues as inventory control policies , repair shop control (for repairable spare parts),

and spare part demand forecasting.

This chapter is organized as follows. §2.2 describes the environment we investigate

and the positioning of MLOs. §2.3 presents the framework and describes the decisions

in the framework. §2.4 provides relevant references for each part of the decision

framework to aid in decision making and discusses open research topics. In §2.5, we

give concluding remarks.
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2.2. Characterization of the environment

In the primary processes of the companies we consider, a substantial set of capital

assets (installed base) is used for multiple purposes. Because of strategic decisions,

new systems phase in and other systems phase out of the installed base. Maintaining

this set of assets is an important task because downtime of assets immediately affects

the primary processes. A capital asset is (partially) operational in case it is available

for (a part of) all its assigned purposes and a capital asset is down whenever it is

in maintenance or waiting for maintenance to be conducted. Maintenance conducted

within the constraints of the maintenance policy/concept can fall in any of the four

categories of the maintenance box in Table 1.1.

To reduce the time an asset spends in maintenance, it is common practice to maintain

parts of the asset rather than the asset itself. When an asset is maintained, parts

that require repair are taken out and replaced by ready-for-use (RFU) parts. Spare

parts used at the first level maintenance are also called Line Replaceable Units (LRUs)

(Muckstadt, 1973, 2005). The decision to designate a part as a LRU lies with the

maintenance organization. LRUs that are taken out are either scrapped or sent to a

repair shop for repair. Repaired parts are sent back to a ready-for-use LRU stocking

location where they can be used again to replace a part. This principle is called

‘repair-by-replacement’ (Muckstadt, 2005) and makes the control of the spare parts

supply chain a paramount task for the MLO.

MLOs try to find the optimal balance between spare parts availability, working capital

and operational costs, within their span of control. Several tasks need to be conducted

and decisions need to be taken in order to achieve the desired spare parts availability,

possibly under constraints of working capital and/or operational costs.

In this section, an outline is given of the environment in which MLOs operate. First,

we characterize the process of maintaining the capital assets, second we discuss the

spare parts supply chain and we end with the characterization of spare parts demand.

2.2.1 Characterization of system maintenance

The MOs we consider maintain a fleet of high-value capital assets. The installed

base is sufficiently large to generate a reasonably constant demand for maintenance

activities. Examples of such installed bases include fleets of airplanes, trains, weapon

systems, or manufacturing equipment in a large manufacturing facility. Maintenance

on a capital asset is conducted according to a maintenance policy/program, or a

modification plan. We distinguish three types of maintenance from the engineering

perspective:
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• Preventive maintenance: maintenance that is conducted in order to prevent

failure. Usually this maintenance is planned some time in advance and has

to be conducted within a registered time frame during which the asset is in

non-operating condition.

• Corrective maintenance: maintenance that is conducted after a failure has

occurred. Corrective maintenance can be partially planned when it involves

a non-critical part whose maintenance can be delayed.

• Modificative maintenance: maintenance conducted to improve the performance

of the capital asset. This maintenance can usually be delayed until all resources

are available.

With regard to the logistics of maintenance, we distinguish four types that do not

always map directly to the three engineering types of maintenance. These four types

are best understood by adapting the maintenance box in Table 1.1 to the present

context; see Table 2.1.

Table 2.1 Different maintenance types organized by timing and content uncertainty.

Timing

known unknown

C
on

ten
t

known
Preplanned modificative Condition based maintenance

maintenance (condition monitoring)

unknown
Condition based maintenance Breakdown

(periodic inspections) maintenance

Modificative maintenance can be planned carefully to take away any uncertainty with

respect to the maintenance work and maps directly to modificative maintenance in

the engineering sense. The other types of maintenance in Table 2.1 do not map so

neatly into the engineering types of maintenance. While breakdown maintenance is

always corrective maintenance, condition based maintenance can be either preventive

or corrective. From a logistics point of view, breakdown maintenance is unpredictable,

while condition based maintenance can be predicted to varying degrees.

The MO has to plan all the types of maintenance shown in Table 2.1. Figure 2.1

presents a hierarchical planning framework for maintenance of capital assets. The

figure is to be read top-down. Work orders generate demand for LRUs and other

resources (technicians, tools, equipment) needed to conduct the maintenance. A work

order is released as soon as all resources and all required LRUs to start the work order

are available. Unreleased work orders are queued, until they are released. The MLO
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Working place 
capacity planning

Resources 
capacity planning

Work order release

job 1 job n...

Working place 
capacity planning

Resources 
capacity planning

Work order release

job 1 job n...

1 2

Work orders 
maintenance depot 1

Spare parts 
planning

Work orders 
maintenance depot 2

Figure 2.1 Hierarchical planning framework for maintenance of high-value capital assets.

is responsible for the availability of LRUs needed to conduct system maintenance, the

MO is responsible for all other resources.

2.2.2 Maintenance spare parts supply chain overview

We consider organizations in which the supply chain already exists, i.e., location and

size of warehouses are predetermined. The spare parts supply chain is in general a

multi-echelon system. We distinguish two types of spare parts:

1. Repairable parts: parts that are repaired rather than procured, i.e. parts that

are technically and economically repairable. After repair the part becomes

ready-for-use again.

2. Non-repairable parts or consumables: parts which are scrapped after replace-

ment.

In §1.1.3, we discussed rotables1 as a third type of spare part. The control of rotables

is out of scope for the present chapter, but their planning and control is addressed in

Chapter 3. Consumable LRUs need to be replenished from outside suppliers, whereas

repairable LRUs are sent to a repair shop. In the repair shop, LRUs are repaired by

replacing parts that we refer to as Shop Replaceable Units (SRUs). SRUs, like LRUs,

can be either consumable or repairable and need to be replenished from external

suppliers/repair shops or an internal repair shop, respectively.

1 Rotables are repairable parts of a system that have their own maintenance program and

dedicated maintenance/overhaul capacity. Examples include aircraft engines, rolling stock bogies

and weapon systems on frigates.
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Figure 2.2 Example of a maintenance spare parts supply chain.

In general, there are multiple first level maintenance sites where assets are maintained.

Associated with each site is a spare part stock point. The spare parts supply chain is

a multi-echelon divergent supply chain with one or more repair shops. Furthermore,

the supply chain of repairables is a closed loop system. When demand for a LRU

cannot be met from local stock, emergency procedures such as lateral transshipments

or emergency shipments from upstream stocking locations may be applied.

Figure 2.2 presents a typical example of a spare parts supply chain within companies

that both use and maintain high value capital assets. In this and other figures

throughout the thesis, upside down triangles represent stock points. A central stock

point of spare parts supplies several local stock points that are incident to the first

level maintenance sites. There is also a stock point of parts that still need to go to

repair and a stock point of parts required for new projects and modifications that

occur during the life cycle of a capital asset. In practice, these stock points are often

in one and the same warehouse. For controlling the supply chain, it is convenient to

consider these as separate stock points.
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2.2.3 Demand characteristics of maintenance spare parts

As mentioned in §2.2.1, maintenance on a capital asset generates demand for LRUs.

The MO requests the required LRUs at the MLO by creating spare parts orders. The

LRUs are delivered from the stock point incident to the requesting maintenance depot.

Each type of maintenance in Table 2.1 generates demand for LRUs in a different way.

Preplanned modificative maintenance generates spare parts orders some time before

the planned start of the maintenance. These spare parts requirements are known and

fixed ahead of time. The required LRUs are requested by the MO with a due date.

Breakdown maintenance generates demand in a unpredictable fashion. This is best

modeled by stochastic models.

Demand arising from condition based maintenance is still unpredictable but only with

respect to either timing (when will part demand arise?) or with respect to content

(for which parts will demand arise?), but not both.

Typically, maintenance depots and MLOs make agreements on specified upper/lower

bounds for key performance indicators such as

(i) The average work order delay due to unavailability of spare parts;

(ii) the percentage of work orders without delay (caused by unavailability of spare

parts);

(iii) The maximum “number of unfinished work orders” due to unavailability of spare

parts at any given time. Separate agreements are made on the availability of

spare parts that do not cause immediate system downtime.

2.3. Framework for maintenance spare parts planning

and control

In this section, we present the framework for maintenance spare parts planning and

control. In Figure 2.3, an overview of processes and decisions in MLOs is presented,

including their mutual connections. We separate eight different processes, which

are numbered one up to eight in the figure. Within each process, we distinguish

different decision levels. Decisions that are not made very frequently, i.e., once a year,

are marked ‘S/T’ (strategic/tactical decisions); decisions made regularly, i.e. once a

month or quarter, are marked ‘T’ (tactical decisions) and decisions made frequently,

i.e., once a day/week, are marked ‘O’ (operational decisions).
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4. Supply management 5. Repair shop control

Manage supplier availability 
and characteristics 

Select supply source(s) and 
contract(s)

Control supply lead time 
and supply parameters

T

1. Assortment management

2. Demand forecasting

Classify parts with respect 
to demand forecasting

Characterize demand 
process

S/T

T

Define spare parts 
assortment

Gather parts (technical) 
information

S/T

O

6. Inventory control

Classify parts and 
determine stocking strategy 

Determine replenishment 
policy parameters

Select replenishment policyT

S/T

8. Deployment

Define preconditions order 
process

Manage procurement and 
repair orders 

O

S/T

7. Spare parts order handling

Define preconditions order 
handling process

Manage spare parts ordersO

S/T

3. Parts returns forecasting

Classify parts with respect 
to returns forecasting

Forecast part return rates 
and return time

S/T

T

T

S/T

T

Determine repair shop 
resource capacities

Schedule repair jobsO

S/T

Figure 2.3 Overview of processes and decisions in maintenance logistics control.

An arc illustrates that information, e.g., data or outcomes of decisions, flows

from one process to another. This information is needed to make decisions in

subsequent processes. We emphasize that there are many feedback loops between

the various processes. For readability, these feedback loops are left out of the figure.

The framework we provide will need refinement and alterations for any particular

organization and is by no means a one size fits all solution. It does however serve as

a useful starting point in making specific designs of maintenance spare part planning

and control systems.

2.3.1 Assortment management

Assortment management is concerned with the decision to include a spare part in

the assortment and to maintain technical information of the included spare parts.

We emphasize that the decision whether or not to include a part in the assortment is

independent of the decision to stock the part. The process of managing the assortment
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1. Assortment management

Gather parts 
(technical) information

Technical information 
from supplier:

Recommended Spare 
Parts List (RSPL), MTBF

Maintenance policy
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Define spare parts 
assortment

Assortment of parts 
stored in a database used 

for logistic purpose

Active assortment 
including technical 

information

Engineering information:
Capability list internal 

repair shop, 
commonality, substitution 
of parts, redundancy, etc.  

Figure 2.4 Process of managing a spare parts assortment.

can be found in Figure 2.4.

2.3.1.1 Define spare parts assortment

The decision to include (exclude) a part in (from) the assortment is usually taken

shortly after procurement (phase out) of a (sub)system and strongly depends on

the maintenance policy/program. Obsolete parts are excluded from the assortment.

There are two options when to include a part in the assortment: before or after the

first need for the part.

In case a part is included in the assortment, there is a possibility that the part is

never needed during its lifecycle. In this case the time spent on collecting information,

finding suppliers etc. results in unnecessary operational costs.

However, in case a part is not included in the assortment, there are two possible

adverse consequences. First, when the part fails and a supplier is still available, the

lead time of the part is higher due to data collection and negotiation actions. Second,

when the part is needed, there may not exist any suppliers for it anymore. In this

case, the part may have to be custom made. In many cases, this requires specialized

technical information regarding the form, fit and function. If a part is not included

in the assortment, this information is not available.

2.3.1.2 Gather parts (technical) information

Once a part is included in the assortment, (technical) information of the part is

gathered and updated when necessary. The MLO needs to decide whether or not

to gather and maintain parts technical information that is important for spare

parts planning and control: (i) criticality, (ii) redundancy, (iii) commonality, (iv)
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specificity, (v) substitution, (vi) shelf life, (vii) position in the configuration2 and (viii)

repairability. Additionally technical information regarding form, fit and function may

be gathered. We also distinguish so called ‘insurance’ spare parts.

Parts criticality is concerned with the consequence(s) of a part failure on the asset

level. Full (partial) asset breakdown means that the asset is non-operational for (a

part of) all assigned use purposes. Parts that cause (partial) asset breakdown are

denoted (partially) critical. Parts that cause no asset breakdown, i.e. the system can

be used for all assigned use purposes, are denoted ‘non-critical’.

Parts redundancy is the duplication of components (parts) with the intention to

increase the reliability of the system. Information on parts redundancy decreases

the number of stocked spare parts as it is known in advance that part failure does not

cause immediate asset breakdown.

Parts commonality concerns parts that occur in the configuration of multiple assets

that are maintained by the MO. For each system, the MLO needs to meet a certain

service level. Information on parts commonality is needed for customer (system)

service differentiation in spare parts planning as well as for the decision where to

stock parts, i.e. locally or centrally.

The specificity of a part concerns the extent to which a part is tailored for and used

by a customer. Parts availability at suppliers is usually low, if not zero, for specific

parts and hence this might affect the size of the buffer stock needed.

Parts are substitutional in case different parts have the same form, fit and function.

This means that requests for one part can be met by a substitute part. Information

on parts substitution is used to prevent stocking parts for which requests can also be

met by a substitute part.

The shelf life of a part is the recommended time period during which products can be

stored and the quality of the parts remains acceptable for usage. This information is

used to prevent stocking too many parts that are scrapped or revised after the shelf

life of the part has expired.

The configuration is a list of raw materials, sub-components, components, parts and

the quantities of each that are currently in an asset. Hence this list contains all the

SRUs and LRUs in the system that may require maintenance during its use. The

position of a part in the configuration is needed to determine at which level parts

(SRUs) can be replaced, in order to repair an LRU, and what quantity of each SRU

is needed. These different levels in the configuration are also called indenture levels.

The initial configuration is usually provided by or available at the original equipment

2The configuration is similar to the Bill of Materials. However the configuration changes

throughout the lifetime of an asset due to modificative maintenance whereas the bill of materials is

a snapshot of the configuration at the time of initial manufacture.
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2. Demand forecasting
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Figure 2.5 Overview of the demand forecasting process.

manufacturer (OEM) and coincides with the bill of materials.

Parts repairability concerns the identification whether a part is technically repairable

and if so, whether or not the internal repair shop has the authorization (from the

OEM) and the capability to repair the part. This information is needed to determine

the parts’ supply structure.

Technical information on form, fit and function comes in many forms depending on

the technological nature of the part involved. Sometimes this information is of a

sensitive nature and the OEM may charge extra for this information and/or requires

non-disclosure type contracts.

‘Insurance’ spare parts are parts that are very reliable, highly ‘critical’ to asset

availability and not readily available in case of failure. Often these parts are far more

expensive to procure after the initial buy of the asset, compared to buying at the

moment of initial asset purchase. Because of their high reliability, these spare parts

often will not be used during the lifetime of the system. Example of an ‘insurance’

part is the propeller of a ship.

Parts (technical) information is sometimes provided by the OEM. However, it is also

possible that the MLO needs to determine this technical information. All the technical

information is used to improve stocking decisions and manage supply risks.

2.3.2 Demand forecasting

Demand forecasting concerns the estimation of demand for parts in the (near) future.

Future demand for spare parts is either (partially) planned or unplanned and is

characterized in §2.2.3. MLOs need to decide whether to use information about

planned demand. The demand forecasting process is visualized in Figure 2.5.
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2.3.2.1 Classify parts with respect to demand forecasting

Two types of spare parts are considered: parts for which advance demand information

(ADI) is used and parts for which is it not used. Using ADI usually decreases the

overall forecast error. On the other hand, it is clear that using ADI increases the

difficulty, the effort and hence the operational costs to forecast demand. In case

there is no information available or it is decided not to use it, then all demand is

accumulated and one single demand stream is considered. Otherwise, two demand

streams (planned and unplanned) are separated.

Within unplanned demand, another classification is made to aid the decision of using

a particular forecasting technique. Two factors that determine what methods are

appropriate are the interarrival time of demand moments and the variability of

demand size. When time between demand moments is very long, then demand is

said to be intermittent. When intermittence is combined with variable demand sizes,

demand is said to be lumpy.

Technical information about substitution is used in forecasting to determine demand

for new parts that substitute old parts. Combining demand streams, for different

parts that can be met by the same spare part (i.e. substitutes), increases the overall

demand forecast reliability. Technical information on commonality of new parts is

used to determine how usage in different capital assets affects demand. Information

on parts redundancy is used to correct the demand forecast as well.

After deciding whether or not to separate demand streams, the demand process needs

to be characterized on behalf of the following three purposes: (i) to determine the

number of parts to stock, (ii) to determine the repair shop capacity and (iii) to provide

the necessary input for updating and characterizing supply contracts.

2.3.2.2 Characterize (partially) planned demand

Planned demand is known deterministically for the length of planning horizon. After

this horizon, planned demand is unknown and has to be forecasted.

Demand for spare parts can also be partially planned in advance. Consider for

example parts for which condition based maintenance using periodic inspections are

applied. Parts that are needed in about x% of some types of periodic inspections are

termed x%-parts. Combining these percentages (x) with the information on planned

inspections, a forecast for this planned demand stream can be made.

Partially planned demand also occurs when condition based maintenance is applied

through continuous condition monitoring. Since this is usually a rather expensive

option, this is mostly only applied for a select group of expensive parts. Information
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from the sensors can be used to estimate the remaining lifetime of a part and based

on this the moment in time when maintenance should be conducted can be estimated

with considerable more accuracy than it can be without information from sensors.

2.3.2.3 Characterize unplanned demand

Several methods are applicable to forecast unplanned demand. The first method to

forecast unplanned demand is reliability based forecasting. The goal of this method

is to forecast parts requirements based on part failure rates, a given installed base

and operating conditions. This method determines the failure rate of one part and

extrapolates the failure rate to the installed base and varying operating conditions.

The second method to forecast unplanned demand is time series based forecasting.

Based on known historic requirements, extrapolations are made using statistical

techniques. Examples of well-known time series based forecasting techniques are

Moving averages, Smoothing methods, Croston’s method and bootstrapping. The

advantage of time series based forecasting is that only historical demand data is

needed to forecast demand. Disadvantage is that manual changes to the demand

forecasts need to be made in case the installed base or operating conditions change.

The result of characterizing demand is a demand distribution per part per period.

2.3.3 Parts returns forecasting

Parts requested by the MO are sometimes returned in RFU condition. In case it is

not known which part causes system breakdown, sometimes all parts that may be the

cause are requested. After it is found out which part caused the breakdown, unused

RFU parts are returned to the original stock point within an agreed hand in time.

If the requested part is a repairable, a part is always returned that either (i) needs

repair, (ii) is ready-for-use or (iii) is beyond repair and will be scrapped. The MLO

needs to account for return rates and hand in times in their planning and control.

Consider the case of consumables. Here parts are either returned ready-for-use (with

probability pRFU ) or not returned at all (with probability pcon), see also Figure 2.6.

The question is now whether a part request should be considered a part demand where

only part demand influences replenishment decisions. If a procurement order is placed

and the part is handed in afterwards, the inventory levels grow unnecessarily.

The case of repairables is different, because replenishment orders cannot be released

until a failed item is sent to the MLO. Let pRFU denote the probability that a returned

part is ready-for-use, prep denote the probability that a returned part needs repair

and pcon denote the probability that a returned part will be condemned (see Figure
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Figure 2.6 Overview of different part return streams.

2.6). These return fractions are used by inventory control in this manner: Requests

for parts can be considered as demand but the lead time is altered as follows: With

probability pRFU the lead time is equal to the hand in time; with probability prep
the lead time is the convolution of hand in time, return lead time and the repair lead

time; and with probability pcon the lead time is the convolution of the hand in time

and the procurement lead time.

The most straightforward technique to forecast return rates is to use historic return

rates, possibly corrected for special events such as unusual accidents. For most parts,

this technique is sufficiently accurate. For some parts, different failure modes often

correspond to different types of returns. Techniques from reliability engineering can

be used to estimate these return rates.

2.3.4 Supply management

Supply management concerns the process of ensuring that one or multiple supply

sources are available to supply ready-for-use LRUs, as well as SRUs, at any given

moment in time with predetermined supplier characteristics, such as lead time and

underlying procurement contracts (price structure and order quantities). A process

overview of supply management can be found in Figure 2.7.

2.3.4.1 Manage supplier availability and characteristics

The process of managing supplier availability and characteristics within MLOs is

concerned with having one or more supply sources available for each spare part in

the assortment, including supply characteristics. MLOs have several possible supply

types: (i) internal repair shop, (ii) external repair shops, (iii) external suppliers and

(iv) re-use of parts. Reuse of parts is possible by taking them out of a system at its
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Figure 2.7 Process of managing the supply structure.

end-of-life. Within each supply type, it is possible to have multiple supply sources.

Each part has either: (i) one or more supply sources, (ii) one supply source that is

known to disappear within a certain time period or (iii) no available supply source at

all. In the latter case, the MLO needs to find an alternative supply source for all parts

that need future resupply. Alternative supply sources are e.g. a new supplier/repair

shop, a substitute part or changing the status of part from consumable to repairable

(if technically possible) and contracting a repair shop to do the repair.

When the only supply source of a part is known to disappear, the MLO needs to

decide whether to search for an alternative supply source or to place a final order at

the current supply source. The final order decision concerns the determination of a

final order quantity that should cover demand during the time no supply source will be

available. The supply availability for these parts is guaranteed through the available

inventory. Managing supply availability is also concerned with timely updating and

maintaining current contracts with external suppliers.

MLOs also need to gather and maintain information on supply characteristics.

Information concerning the following matters is needed to determine the supply

lead time (distribution) and to select a (preferred) supply source and contract: (i)

contractual or historical repair/new buy price(s) of the part, (ii) quantity discounts

(iii) contractual lead and/or repair lead time, (iv) minimum order quantities and (v)

multiples.

2.3.4.2 Control supply lead time and supply parameters

The supply lead time consists of: (i) repair or supplier lead time, (ii) procurement

time, (iii) picking, transport and storage time of parts and, in case of repairables, (iv)

hand in times of failed repairables. For all these components of the supply lead time,
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agreements are made on planned lead times.

Using planned lead times for internal repair is justified because: (i) MLOs make

agreements with the internal repair shop on planned repair lead times and (ii) the

repair shop capacity is dimensioned in such a way that internal due dates are met

with high reliability. Using planned lead times for external supply is justified because

MLOs agree on contractual lead times with their external suppliers.

The supply lead time is determined for each part/supply source combination

separately. We distinguish two types of supply lead times: (i) repair lead time and

(ii) procurement lead time. For all parts that are known to be ‘technically repairable’,

the MLO gauges the procurement lead time, the external repair lead time and the

internal repair lead time, in case internal repair is possible. For consumables, only

the procurement lead time needs to be gauged.

2.3.4.3 Select supply source and contracts

The MLO needs to make sure that spare parts can be replenished at any given

time. For this purpose, the MLO needs to set up contracts with one or multiple

supply sources in a cost efficient way. The decision is based on the following costs

incurred while selecting a supply source: (i) setup and variable costs of the repair

shop capability and resources, (ii) setup costs of the contract, (iii) procurement or

repair costs and (iv) inventory holding costs.

The MLO uses information on supply characteristics and supply lead times to select

one or more supply sources out of all possible part/supply source combinations.

Important in selecting a supply source is the decision whether to designate a spare

part as repairable or consumable. Alfredsson (1997) states: “The task of determining

whether an item should be treated as a discardable (consumable) or repairable item

is called level-of-repair-analysis (LORA). If the item is to be treated as a repairable

item, the objective is also to determine where it should be repaired”. See also Basten

et al. (2009) and MIL (1993) for analogous definitions of LORA.

The MLOs should conduct a LORA that covers characteristics such as: (i)

unsuccessful repairs, (ii) no-fault-found, (iii) finite resource capacities, (iv) the

possibility of having multiple failure modes in one type of component, (v) the option

to outsource repairs, and (vi) the possibility of pooling parts sourcing in framework

agreements.

The LORA is reconsidered each year or in case of substantial changes in the asset

base. The outcome of the LORA is used to reconsider the internal repair shop resource

capabilities. Note that MLOs need to set up a contract for repair as well as for new

buy of repairables.
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Figure 2.8 Overview of repair shop control process.

2.3.5 Repair shop control

The repair shop in the spare parts supply chain functions much like a production

unit in a regular supply chain. At the interface with supply structure management,

agreements are made on lead times for the repair of each LRU. Also agreements are

made on the load imposed on the repair shop so that these lead times can be realized.

For example, it is agreed to release no more than y parts for repair during any week.

To comply with these lead time agreements, decisions are made at a tactical and

operational level. At the tactical level the capacity of the repair shop is determined

and at the operational level, repair jobs are scheduled to meet their due dates. A

schematic overview of repair shop control is given in Figure 2.8.

2.3.5.1 Determine repair shop resource capacities

When a repair job enters the repair shop, the sojourn time in the repair shop consists

mostly of waiting time for resources such as specialists, tools and SRUs to become

available. The amount of resources that are available in the repair shop determines

the waiting times. These resource capacities need to be dimensioned in such a way

that most repair jobs are completed within the agreed planned lead times.

Decisions need to be taken on the amount of engineers and specialists to hire, the

number of shifts and the number of tools of various types to acquire. In some

instances, these tools are themselves major capital investments. The SRU stocking

decision lies outside the responsibility of the repair shop and is part of the total

inventory control decision; see §2.3.6 for the reasoning behind this.

The resource capacity dimensioning decisions are based on the estimated repair

workload, the repair workload variability (which follows from demand forecasting and

parts returns forecasting) and the estimated repair time (and variability) required for
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Figure 2.9 Process overview of controlling inventories.

a LRU when all resources are available. In making this decision, congestion effects

need to be incorporated explicitly.

Since the costs of internal repair are mostly the result of the resources required

for repair, the dimensioning decision together with the offered repair load can be

combined to estimate the repair lead time and the cost of performing an internal

repair. This information is used by supply structure management to periodically

reconsider the LORA decision.

2.3.5.2 Schedule repair jobs

During operations, LRUs that need repair are released to the repair shop and need to

be repaired within the agreed planned lead time. This naturally leads to due-dates for

repair jobs. The repair job scheduling function is to schedule the repair jobs subject

to the resource constraints which are a consequence of the capacity dimensioning

decision. Within these constraints, specific resources are assigned to specific repair

jobs for specific periods in time so as to minimize the repair job tardiness. Additionally

the repair shop may batch repair jobs to use resources more efficiently by reducing

set-up time and costs associated with using certain resources.

2.3.6 Inventory control

The inventory control process is concerned with the decision which spare parts to

stock, at which stocking location and in what quantities. Thus, inventory planning

is done centrally for all locations (multi-echelon approach). The inventory control

process is visualized in Figure 2.9.

A MLO stocks LRUs in order to meet certain service levels, agreed upon with the
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MO. Both the LRU and SRU inventories are centrally controlled, that is, control of

SRU and LRU inventories are integrated. In this way, the multi-indenture structure

of spare parts within an asset can be used in inventory control.

LRUs required for new projects and modifications are planned separately because

uncertainty plays no significant role here. We will not discuss the inventory control

of LRUs needed for modification in detail here.

2.3.6.1 Classify parts and determine stocking strategy

The MLO has several stocking strategies and classifies the spare parts assortment

into different subsets: (i) (partially) critical spare parts and (ii) non-critical spare

parts. Insurance parts are a specific subset of critical parts. The decision to stock

insurance parts is not based on demand forecasts or on the contribution to a certain

service level, but is based on other criteria such as supply availability, failure impact

or initial versus future procurement price.

The availability of (partially) critical parts is needed to reduce system downtime. The

stocking decision of (partially) critical spare parts depends on the contribution of a

part to the overall service level of all (partially) critical parts. The availability of

non-critical parts is needed for supporting an efficient flow of system maintenance,

non-availability however does not cause immediate system downtime. Separate service

level agreements are made for non-critical parts.

2.3.6.2 Select replenishment policy

The MLO is responsible for inventory replenishment of spare parts at all stocking

points. To enable economies of scale in replenishment, the central warehouse

replenishes the local stock points only once during a fixed period (typically a couple

of days or one week). This results in a (R,S)-policy for all parts at the local stocking

locations. The length of the review period is set such that internal transport of parts

is set up efficiently. In order to reduce system downtime costs, it may be beneficial to

use emergency shipments from the central warehouse or lateral transshipments from

other local stocking locations to deliver critical parts required at a local stock point.

The MLO determines the timing and frequency of placing replenishment orders for

the central stock based on supply characteristics. Spare parts for which framework-

contracts are set up are usually delivered only once during a fixed period. Hence

the stock level needs to be reviewed only once during this period, which results in a

(R,S)-policy for these parts. The stock level of other parts is reviewed daily, resulting

in an (R, s, S) or (R, s,Q)-policy for these parts.
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Figure 2.10 Process of handling spare parts orders.

2.3.6.3 Determine replenishment policy parameters

The MLO uses different methods to determine replenishment policy parameters for

non-critical parts and (partially) critical parts. For (partially) critical parts one all

encompassing model should be used to aim at a system (multi-item) service level.

Optimizing policy parameters to satisfy a system service level is called the system

approach. In maintenance logistics, this is particularly useful, because MLOs are

not interested in the service level of any one part but in the amount of delay they

experience in waiting for parts, regardless of which part it is specifically.

The model should contain the following characteristics: (i) multi-echelon, (ii) multi-

item, (iii) multi-indenture structure, (iv) emergency shipments from central depot, (v)

lateral transshipments and (vi) multiple service level criteria. Input for this model are

demand forecasts and information from supply structure management (supply lead

times, parts prices), parts returns forecasts and information on the current inventory

positions and replenishment policies of the spare parts.

2.3.7 Spare parts order handling

As discussed in §2.2, system maintenance work order planning and release is done

locally by the MOs. Each MO plans its work orders based on their available resource

capacities. Resources that MOs share are spare parts. Spare parts order handling is

assigned centrally to the MLO and consists of the following steps: (i) accept, adjust

or reject the order, (ii) release spare parts on the order and (iii) handle return order

of failed repairable(s). For each of these steps, preconditions need to be defined as

well as rules to manage these steps. A process overview of handling spare parts orders

is found in Figure 2.10.
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2.3.7.1 Determine preconditions of the order handling process

The first decision in handling spare parts orders is to accept, adjust or reject the

order. The advantage of checking spare parts orders is that unrealistic or unusual

orders can be adjusted or, in case of incorrect orders, rejected. On the other hand,

checking spare part orders is time consuming and increases the operational costs.

When checking spare part orders, the MLO obtains a trigger to contact the MO and

adjust the order lead times and/or quantities. In this manner, MOs can reschedule

certain tasks of their system maintenance work orders and adjust their spare parts

orders based on the new system maintenance schedule. This might decrease system

downtime (costs) caused by unavailability of spare parts.

Prioritization amongst spare parts orders while releasing spare parts is not easy in

case the available stock is insufficient to meet all demand for that spare part. This

is caused by the fact that the required spare parts are (i) part of a set of spare parts

needed to start a maintenance task and (ii) are needed to start a different type of

maintenance including different levels of criticality. Thus to fill orders, spare parts

order handling faces an allocation problem similar to that found in assemble-to-order

systems. The optimal solution to this problem is not generally known.

Once spare parts are released on a work order, the return process for failed repairables

starts. For this purpose, the MLO creates a return order to hand in the failed

repairable by the MO within the agreed hand in time.

2.3.7.2 Manage spare parts orders

Incoming spare parts orders are either automatically accepted or not, based on the

preconditions set in the previous section. There might be several good reasons

for unusual or unrealistic orders, hence there are no standard rules for accepting,

adjusting or rejecting spare parts orders. This task lies with the MLO, who needs to

consult with the MO on this.

2.3.8 Deployment

Deployment concerns the process of replenishing spare parts inventories. The

deployment process consists of the following steps: (i) define preconditions of the

order process and (ii) manage procurement and repair orders. A process overview of

the deployment process can be found in Figure 2.11.
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2.3.8.1 Define preconditions of the order process

The replenishment policy parameters set by inventory control implicitly determine

when to replenish spare parts inventories and what quantities to repair or procure.

Deployment may deviate from this based on new (daily) information not known at

the time the replenishment policy parameters were set, or when exceptional repair

or procure orders arise from exceptional inventory levels. Deployment then starts

a feedback loop to reconsider e.g. the demand forecast or supply lead times that

led to this exceptional inventory level. Hence, deployment sets rules for exception

management. The MLO should set a precondition on whether to replenish inventories

with or without interference of deployment.

2.3.8.2 Manage procurement and repair orders

The process of managing procurement and repair orders consists of the following

steps: (i) procure or request the repair of parts with the right quantity and priority,

(ii) check the quality of the received spare parts and (iii) monitor supply lead times.

The MLO needs to determine which quantity of each part to order and with what

priority, for parts for which the procurement or repair order is checked upon release.

The quantity that deployment actually orders may deviate from the order quantity

set by inventory control, based on newly obtained information. When an order is

received, the MLO needs to check the quality of the received parts. When orders do

not arrive within the agreed lead time, deployment takes necessary recourse actions.
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2.4. Framework related literature and open research

topics

In this section we provide available literature that provides support for making

decisions in the framework. We do this per part in the framework and in the same

order as in §2.3. When discussing the literature we also identify areas that require

additional research. The intention is not to provide a comprehensive or exhaustive

review of the literature. Though the references we provide are a good starting point

to investigate specific areas of literature in more depth and find models to support

decisions that need to be made.

2.4.1 Assortment management literature

The first decision in assortment management is whether or not to include a part in

the assortment. Even when no inventory will be held for a part it may be beneficial

to include it in the assortment so that technical information and supply contracts are

taken care of in case of a failure. For this decision we have been unable to find any

literature. We propose to use simple rules of thumb based on cost and failure rates.

Most of the information gathered on parts included in the assortment has a technical

character. For example the criticality of a part can be determined through a failure

mode effect and criticality analysis (Stamatis, 1995; Ebeling, 2001). We agree with

Huiskonen (2001) that these type of analyses depend on technical and not logistical

part behavior.

Parts technical information can be used to decrease stock levels or manage supply

risks. We have been unable to find literature that supports the decision to gather

parts technical information or not. We propose to use simple rules of thumb based

on cost and failure rates.

Another decision that may occur in assortment management is the decision of whether

or not to include parts that can be used to serve multiple asset types, but that may be

more expensive than dedicated parts. Kranenburg and Van Houtum (2007) provide

a model that can serve in making this decision. Note that in making this decision the

quality of parts supplied by different suppliers (in terms of reliability) should also be

accounted for. If this is an important issue the model of Öner et al. (2010) can be

used.
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2.4.2 Demand forecasting literature

To forecast demand for spare parts traditionally two families of techniques are used,

namely (i) reliability based forecasting and (ii) time series based forecasting. We

would like to add a third category which we shall label (iii) maintenance planning

based forecasting.

Since demand for LRUs in many cases arises due to some kind of failure of equipment,

forecasting demand is equivalent to forecasting failures. A recognition of this fact

leads to reliability based forecasting. The techniques from reliability engineering can

be used to deal with issues such as censoring and changing operating conditions.

Furthermore the forecasts obtained are related to the installed base of equipment.

Thus when the installed base changes the demand forecasts can easily be updated

accordingly without the need for new data. Important references for these techniques

are Nelson (1982, 1990) and Ebeling (2001). More recently, reliability literature has

also addressed the real time forecasting of failures using some form of degradation

data from sensors. We term this prognostics and refer the reader to Heng et al.

(2009) for a recent survey.

Time series based forecasting is the traditional technique for demand forecasting in

inventory control and also finds applicability in spare part inventory control. Its

use is most suited when only historic demand data is available. Many common

techniques such as exponential smoothing are part of standard textbook literature on

inventory control (Silver et al., 1998; Hopp and Spearman, 2001). More sophisticated

techniques such as autoregressive integrated moving averages (ARIMA) can be found

in the seminal work of Box and Jenkins (1970). A somewhat separate stream of

literature that is especially useful in forecasting demand for spare parts was started

by Croston (1972). Croston observed that demand for certain items was intermittent

and spare parts typically fall into this category. To increase forecast accuracy, Croston

proposes to forecast interarrival time and order quantities of demand separately.

Many contributions have been made based on this idea. Teunter and Duncan (2009)

benchmark many of these contributions and provide relevant references. Another

technique in time series based forecasting is bootstrapping. Willemain et al. (2004)

adapt this technique specifically to forecast spare part demand.

A third family of techniques that we advocate has received relatively little attention

in the literature. This family of techniques bases the forecast of spare parts demand

on maintenance planning information. In this manner, some demand is known exactly

ahead of time. Demand for other parts may occur as a result of planned inspections.

When these inspections are part of the maintenance planning, they can be used to

forecast demand more accurately. As Hua et al. (2007) put it: “demand of spare

part at any time is a function of equipment maintenance operations and dependent
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on some explanatory variables”. In particular, maintenance planning can be used

to accurately forecast demand for x%-parts. This idea has found recent following in

Romeijnders et al. (2012) and Wang and Syntetos (2011).

2.4.3 Parts returns forecasting literature

Parts return forecasting can be done using historic return rates. Here the methods

from time series based forecasting as outlined in §2.4.2 can be used. The return rate

of repairable parts that need to be scrapped can also be estimated using techniques

from reliability engineering. Typically a part has several failure modes and a failure

rate is associated with each failure mode. Some failure modes render the part no

longer repairable while other types of failure can be repaired easily. Using models

from reliability engineering (Nelson, 1982; Ebeling, 2001) these different failure rates

can be estimated. Scrap rates can be determined from these estimates as the fraction

of non-repairable failure rates and total failure rate. These techniques can also cope

with issues such as censoring and varying operating conditions.

2.4.4 Supply management literature

When a new capital good is taken into service, supply structure planning is primarily

concerned with the question which parts to designate as repairables and when an

item is designated as repairable whether or not we should outsource repair. These

questions are answered by a level of repair analysis (Basten et al., 2009; Barros and

Riley, 2001; Alfredsson, 1997; Basten et al., 2011).

An important part in supply structure planning is setting up and maintaining relations

with outside suppliers and repair shops. These issues are addressed in purchasing

literature, for example the book by Van Weele (2010) covers these topics.

Another important task concerns dealing with final orders when a supplier indicates

that a part will become unavailable and a final order can be placed. In case the item

under consideration is a repairable handled by our own repair shop Van Kooten and

Tan (2009) provide a model for decision support. Teunter and Klein Haneveld (1998)

and Teunter and Fortuin (1999) provide models for decision support if it concerns

consumable spare parts.

2.4.5 Repair shop control literature

In our framework we decomposed inventory control from repair shop control.

Consequently the only responsibility of the repair shop is to realize certain lead times,
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while inventory control is responsible to balance the workload offered to the repair

shop. As such the repair shop functions much like a production unit in a conventional

supply chain for which many models are available (Bertrand et al., 1990).

At the tactical level the capacity of the repair shop needs to be dimensioned. This

is a machine repair problem from queueing theory (Iglehart, 1965). However it may

be convenient to not directly consider the number of spare parts in the dimensioning

decision in which case more general dimensioning methods may be used, e.g. from

call center literature (Borst et al., 2004) or general manufacturing literature Hopp

and Spearman (2001).

We note that making lead time and work load control agreements is not a simple

matter. Repair capacity and inventory can both serve to buffer spare part demand

variability. To find the most cost effective way to do this requires an integrated

approach. To setup control and responsibilities in an organization integrating this

control is not convenient. However results from models that integrate these decisions

can be used to make judicious choices on lead-time agreements and work-load control.

Examples include Adan et al. (2009) who show how static priorities can be used to

reduce the lead times and required spare part investments for expensive parts and

Hausman and Scudder (1982) who show the same result via simulation for dynamic

priorities. However much useful research on this interface can still be done, and we

shall return to this issue in Chapter 5 of this thesis.

For the daily scheduling of jobs many models are available (Pinedo, 2009). Also

Caggiano et al. (2006) provide a model to allocate repair capacity in real time to

different repair jobs based on current inventory levels. Priority schedules and use

of flexible capacity in the form of overtime are discussed by Guide Jr et al. (2000),

Hausman and Scudder (1982) and Tiemessen and Van Houtum (2012).

2.4.6 Inventory control literature

For parts that are not critical, usually ‘regular’ inventory control models can be used

as they are found in standard textbooks (Silver et al., 1998; Hopp and Spearman,

2001; Zipkin, 2000). Such models include classification of parts using ABC-analysis,

lot-sizing using economic order quantity (EOQ) type models and statistical inventory

control.

The unavailability of a critical part leads to system downtime. Control for these

parts thus becomes a paramount task. The seminal contribution in (critical) spare

parts inventory control is the Multi-Echelon Technique for Recoverable Item Control

(METRIC) model of Sherbrooke (1968). This model uses a multi-item approach

and is valuable for controlling expensive critical parts that are replaced (mostly)
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correctively. The most noteworthy contributions since METRIC are the MOD-

METRIC (Muckstadt, 1973) and VARI-METRIC (Sherbrooke, 1986) extensions, that

find approximate means to relax the assumptions underlying the METRIC model.

MOD-METRIC and VARI-METRIC have the attractive feature of including SRUs

into the analysis. The most important models in spare parts inventory control have

been consolidated in the books by Sherbrooke (2004) and Muckstadt (2005). Guide Jr.

and Srivastava (1997) and Kennedy et al. (2002) provide literature overviews on

spare part inventories and issues surrounding them such as emergency procedures

(Alfredsson and Verrijdt, 1999; Song and Zipkin, 2009), lateral transshipments

(Paterson et al., 2011), interaction with finite repair capacity (Sleptchenko et al.,

2005), interaction with maintenance policies and obsolescence.

A new aspect in spare parts inventory control that literature has not yet addressed

is advance demand information through prognostics, maintenance planning or a

combination of these two. Most of the literature on spare parts inventory control

assumes demand for parts arises from corrective maintenance, i.e. failures of parts.

In the environment we consider, most maintenance is either condition or usage based.

Thus more sophisticated demand models that leverage the availability of information

regarding maintenance are of interest.

While inventory models with more sophisticated demand models have been studied

for regular supply chains, this knowledge is not immediately transferable to spare part

supply chains. The main reason for this is that repairables have a closed loop supply

chain such that the repair of a part cannot start before its replacement.

2.4.7 Spare parts order handling literature

When a spare part order has been accepted, the part may not be on stock locally. The

priority that one may give to alternate sources such as other local stock-points or the

central warehouse is an important issue. Current literature (Alfredsson and Verrijdt,

1999) usually assumes local transshipments are favored over emergency shipments

from the central warehouse. In the present context this assumption is often violated,

probably with good reason. Literature has yet to investigate this.

The second issue concerns allocation of spare parts to work orders. We already pointed

out that this allocation problem is similar to the one found in assemble-to-order (ATO)

systems. This problem is known in general to be NP-hard (Akçay and Xu, 2004) even

without the stochasticity involved in demand. Also in the present context the question

of when, whether and how to hold back spare parts in order to fill complete work orders

is still an open question for which only limited results are available (Lu et al., 2010).

These limited results suggest that it can be beneficial to hold back inventory to fill

complete work-orders. We note also that it has been pointed out that this allocation
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decision should be jointly optimized with the inventory control decision (Akçay and

Xu, 2004).

2.4.8 Literature overview

Table 2.2 gives a brief overview of the literature we have discussed in this section.

The first column of Table 2.2 contains the processes in the framework. The second

and third column contain the specific topic related to the decision function and the

relevant references respectively.

Two review papers have been written on spare part management (Kennedy et al.,

2002; Guide Jr. and Srivastava, 1997). These papers provide an enumerative review

of the state-of-the-art at the time of writing. In this section, we do not attempt

to provide an exhaustive review of contributions on these subjects. Rather, we

provide relevant references for each part of the decision framework to facilitate decision

making.

Within the literature some interesting topics remain. Here we describe two topics

that we shall return to in Chapters 4 and 5.

Most forecasting methods, also for spare parts, are solely based on analyzing past

observations. Demand for maintenance spare parts arises out of maintenance. Recent

developments in condition based maintenance (CBM) and remote monitoring (e.g.

Wang and Syntetos, 2011; Heng et al., 2009) enable us to predict the need for

maintenance more carefully and in realtime. The ramifications for spare parts demand

modeling are not fully understood and deserve further investigation.

On the inventory control side, there are also challenges associated with this. Most

spare parts inventory models assume Poisson demand. When forecasts evolve in

realtime based on sensor information, this assumption is not tenable. In essence,

the information from prognostics offer some kind of advance demand information.

Leveraging this information in inventory control is not straightforward. Consider

repairables; it is usually not possible to react to this realtime information by changing

the number of spare repairables. The repair lead time of different repairable items

perhaps can be influenced more or less in realtime, thus leveraging advance demand

information from prognostics. How to organize this efficiently is an open research

topic.
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Table 2.2 Literature on different decision functions in the framework.

Process Topic(s) Literature

1. Assortment Management

FME(C)A (failure mode Stamatis (1995)

effects (criticality) analysis ) Ebeling (2001)

Criticality, specificity, value Huiskonen (2001)

Commonality Kranenburg and Van Houtum (2007)

Reliability and quality Öner et al. (2010)

2. Demand forecasting

Overview Altay and Litteral (2011)

Time series analysis Box and Jenkins (1970)

Chatfield (2004)

Bootstrapping Willemain et al. (2004)

Croston methods Croston (1972)

Teunter and Duncan (2009)

Life data analysis of equipment Nelson (1982); Ebeling (2001)

Prognostics Heng et al. (2009)

Linking forecasting to Wang and Syntetos (2011)

maintenance planning Hua et al. (2007)

Romeijnders et al. (2012)

3. Parts return forecasting Scrap rates/Reliability engineering Nelson (1982); Ebeling (2001)

4. Supply management

LORA (level of repair analysis) Basten et al. (2009, 2011)

Alfredsson (1997)

Barros and Riley (2001)

Contract management Van Weele (2010)

Last buy Van Kooten and Tan (2009)

Bradley and Guerrero (2009)

Teunter and Klein Haneveld (1998)

Teunter and Fortuin (1999)

5. Repair shop control

Capacity dimensioning and Iglehart (1965); Borst et al. (2004)

machine repairman models Chakravarthy and Agarwal (2003)

Scheduling / Capacity assignment Caggiano et al. (2006); Pinedo (2009)

Overtime usage Scudder (1985)

Scudder and Chua (1987)

Priority assignment to jobs Scudder (1986); Guide Jr et al. (2000)

Adan et al. (2009)

Tiemessen and Van Houtum (2012)

Hausman and Scudder (1982)

6. Inventory control

Review articles and books Sherbrooke (2004); Muckstadt (2005)

Kennedy et al. (2002)

Guide Jr. and Srivastava (1997)

METRIC-type models (multi-echelon Sherbrooke (1968, 1986)

technique for recoverable item control) Muckstadt (1973); Graves (1985)

Lateral transshipments Lee (1987); Paterson et al. (2011)

Kranenburg and Van Houtum (2009)

Emergency procedures Alfredsson and Verrijdt (1999)

Verrijdt et al. (1998)

Finite repair capacity Sleptchenko et al. (2002)

Dı́az and Fu (1997); Adan et al. (2009)

Caggiano et al. (2006)

7. Spare parts order handling Allocation policies Akçay and Xu (2004); Lu et al. (2010)

8. Deployment literature
Behavioral aspects of planning Fransoo and Wiers (2006); Wiers (2009)

Fransoo and Wiers (2008)
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2.5. Concluding remarks

In this chapter, we presented a framework for maintenance spare parts planning

and control for organizations that use and maintain high-value capital assets. This

framework can be used to increase the efficiency, consistency and sustainability of

decisions on how to plan and control a spare parts supply chain. The applicability

and benefits of our framework are demonstrated through a case study at NedTrain, a

company that maintains rolling stock. We also provided literature to assist in decision

making for different parts of the framework and identified open research topics.





Chapter 3

Rotable overhaul and supply

chain planning

“In preparing for battle I have

always found that plans are useless,

but planning is indispensable.”

Dwight E. Eisenhower

3.1. Introduction

The availability of capital assets is crucial to keep the primary processes of their

owners up and running. While the acquisition cost of capital assets is substantial,

the costs associated with maintenance and downtime over the lifetime of the asset is

typically 3 to 4 times the acquisition price, even when the future costs of maintenance

and downtime are discounted (Öner et al., 2007). Accordingly, there has been much

focus and research on what is called life cycle costing (lcc), see Gupta and Chow

(1985) and Asiedu and Gu (1998). The lcc approach to decision making in asset

acquisition, maintenance, and disposal stipulates that the consequences of decisions

should be accounted for over the entire lifetime of the asset in question.

Another factor influencing maintenance is the modular design of many technical

systems. Usually, a capital asset is not maintained in its entirety at any one time.

Instead, different modules of the system are dismounted from the asset and replaced

by ready-for-use modules. After replacement, the module can be overhauled while the
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capital asset is up and running again. Exchanging modules, rather than maintaining

them on the spot, increases the availability of capital assets, as assets are only down

for the time it takes to replace a module. After overhaul, the module is ready-for-

use again and can be used in a similar replacement procedure for another asset. To

make this system work, some spare modules are needed, and they form a so called

turn-around stock.

In this chapter, we consider the replacement of modules that have their own

maintenance program. The maintenance program stipulates a maximum amount

of time/usage a module is allowed to be operational before it needs to be overhauled.

We refer to this time allowance as the maximum inter overhaul time (MIOT), and we

assume that there is a direct relation between the time a module has been in the field

and its usage. Due to safety regulations, or contracts with the original equipment

manufacturer (OEM), the MIOT is usually quite conservative and so most modules

are almost exclusively maintained preventively. We call the practice described in

the previous paragraph as maintenance-by-replacement. Note that this is similar

to, but different from repair-by-replacement wherein components are replaced for

unplanned corrective or condition based maintenance, as opposed to planned usage-

based preventive maintenance. We refer to the modules involved as rotables, because

they rotate through a closed-loop supply chain. At this point, we emphasize that

rotables differ from repairables as they are studied in much of the spare parts inventory

control literature (e.g., Sherbrooke, 2004). Repairables do not have a maintenance

program of their own, and consequently, the need for replacement of repairables

is usually characterized by stochastic models such as the (compound or Markov

modulated) Poisson process. By contrast, rotables do have their own maintenance

program, and so replacements and overhauls of rotables are planned explicitly by a

decision maker.

This chapter is motivated by a maintenance-by-replacement system in place at

NedTrain, a Dutch company that performs maintenance of rolling stock for several

operators on the Dutch railway network. However, the model is generic for companies

with a maintenance-by-replacement system such as airlines that maintain engines

by replacement. Below, we describe several characteristics and constraints of

maintenance-by-replacement systems and their implications for planning.

In a maintenance-by-replacement system, replacements and overhauls are subject to

the following two constraints. A replacement may not occur, unless a ready-for-use

rotable is available to replace the rotable that requires overhaul, so that the asset can

immediately return to operational condition. An overhaul cannot occur, unless there

is available capacity in the overhaul workshop. Since the result of an overhaul is a

ready-for-use rotable, these constraints are connected.

The maintenance programs of rotables also impose constraints on a maintenance-by-
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replacement system. For each rotable type, the maintenance program stipulates a

MIOT, the maximum amount of time a rotable is allowed to be operational before it

needs to be overhauled. Note that the decision to replace a rotable in some period t

directly implies that the replacing rotable needs to be replaced before time t + MIOT.

With respect to the timing of rotable overhauls and replacements, the lcc perspective

offers opportunities. In traditional maintenance models, the focus is on postponing

maintenance as long as possible, thereby taking advantage of the technical life of the

unit to be maintained. This approach does not necessarily lead to optimal decisions

over finite lifetimes of assets. To see why, consider the following example based on

practice at NedTrain. The typical lifetime of a rolling stock unit is 30 years. Bogies

are important rotables in a train, with MIOTs that range from 4 to 10 years. Suppose

the MIOT of two types of bogies is 7 years, and both types of bogies belong to the

same type of train. Then, if replacements are planned to occur just in time, bogie

replacements occur 4 times during the life cycle of this train type, namely in years 7,

14, 21, and 28. Another plan, that is feasible with respect to overhaul-deadlines, is to

replace in years 6, 12, 19, and 25. Note that it is possible to replace rotables earlier

than technically necessary, i.e. throwing away some of the useful life of the equipment,

without increasing the number of replacements (and overhauls) that are needed during

the lifetime of an asset. To smoothen the workload of the overhaul workshop, it may

be possible to overhaul the first type of rotable according to the first schedule, and

the second type of rotable according the second. In general, the flexibility in the

exact timing of replacements and overhauls can be used to smoothen the workload

of the overhaul workshop and utilize other resources more efficiently without losing

efficiency by throwing away remaining useful life of rotables. In effect, we are not and

should not be concerned with minimizing the amount of useful lifetime on rotables

that is wasted in the short run. Rather, we should minimize the cost of maintenance

and overhaul that rotables incur over the lifetime of the asset they serve, which is

finite. The renewal reward theorem (e.g. Ross, 1996) that has proven beneficial in

many reliability and maintenance engineering applications (e.g. Ebeling, 2001) cannot

be applied in this setting. The reason for this is that the horizon we consider is not

infinite (not even by approximation). To see this, consider again the example above.

Only a few renewals (4 in the example) occur during the time a rotable is in the field,

and the last renewal has very different characteristics from the other renewals in that

the last renewal ends with replacing the asset for which the rotable is used, rather

than overhauling the rotable itself.

In this chapter, we study a periodic planning model for the aggregate planning

of rotable replacements and overhaul for multiple rotable types that use the same

resources in an overhaul workshop. In each period, decisions need to be made

regarding:
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• How many rotables of each type to replace;

• How many replaced rotables of each type to release to the revision work shop;

• How many rotables to buy for new assets entering the field.

• How to change the capacity levels in the revision work shop.

Replacement decisions are subject to the availability of ready-for-use rotables to

complete the replacement. The release of replaced rotables to the revision work

shop is subject to capacity constraints. Finally, changing capacity levels in the work

shop is constrained relative to current capacity levels. We take the lcc perspective

by taking the finite life cycle of assets into consideration. The model we present

should be implemented in a rolling horizon, i.e., the model generates decisions for

the next 30 or so years, but only the decisions for the coming few months say should

be implemented. As time progresses, estimates of input parameters for our model

become more accurate, and the model should be solved again to generate decisions

that are based on these more accurate estimates.

This chapter is structured as follows. In §3.2, we review the literature on maintenance

and aggregate supply chain planning. We provide and analyze our model in §3.3.

Computational results based on a real life case are presented in §3.4. In §3.5, we

present computational results for a large test bed of randomly generated instances.

Finally, conclusions are offered in §3.6.

3.2. Literature review and contribution

Aggregate planning is performed in many contexts and businesses. We review the

literature on maintenance planning in §3.2.1. Since our model also deals with

the rotable supply chain, we review aggregate planning models in the context of

production and supply chain in §3.2.2. In §3.2.3, we explain our contribution relative

to the literature discussed.

3.2.1 Preventive maintenance and capacity planning

Wagner et al. (1964) are among the first to consider the joint problem of preventive

maintenance and capacity planning. They consider a setting where a set of preventive

maintenance tasks is to be planned, while fluctuations in work-force utilization are

to be kept at a minimum. The objective is approximately met by formulating the

problem as a binary integer program and using rounding procedures to find feasible

solutions. Paz and Leigh (1994) give an overview of many different issues involved
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with maintenance planning and review much of the literature from before 1993. They

identify manpower as the critical resource that has to be reckoned with in maintenance

planning.

More recent research on maintenance planning includes Charest and Ferland (1993),

Chen et al. (2010), Safaei et al. (2011), and Cho (2011). Cho (2011) formulate

a mixed-integer program (MIP) to schedule both the usage and maintenance of

individual aircraft in a military application. The objective in their model is to

smooth the workload for maintenance personnel as much as possible. Safaei et al.

(2011) consider short term maintenance scheduling to maximize the availability of

military aircraft for the required flying program. The problem is cast as a (MIP) in

which the required workforce is the most important constraint. Chen et al. (2010)

study short-term manpower planning using stochastic programming techniques and

apply their model to carriage maintenance at the mass rapid transit system of Taipei.

The horizon they consider is around a week and their model allows for random

maintenance requirements due to break-down-maintenance (as opposed to planned

preventive maintenance). Charest and Ferland (1993) study preventive maintenance

scheduling where each unit that is to be maintained is fixed to a rigid maintenance

schedule with fixed inter-maintenance intervals. They model the problem as a MIP

and solve this MIP with various heuristic methods such as exchange procedures and

tabu search.

A closely related problem is the clustering of frequency constrained maintenance

activities when a set-up cost is associated with performing maintenance. Van Di-

jkhuizen and Van Harten (1997) study a model where a fixed set-up cost can be

shared by clustering maintenance activities. Under this assumption they provide

a polynomial time dynamic programming algorithm. Zarybnisky (2011) consider a

richer cost structure in which the set-up cost of clustering maintenance depends on

the disassembly sequence needed to perform all the maintenance activities. They

provide two approximation algorithms that compute cyclic maintenance schedules

with guaranteed performance factors of 2 and 1/ ln(2) = 1.4427 respectively.

Recently, some attention has also been paid to the availability of ready-for-use rotables

as a critical constraint in maintenance planning. Joo (2009) explicitly considers

the availability of ready-for-use rotables as an essential constraint in their overhaul

planning model. Joo (2009) considers a set of rotables of a single type that has

to meet an overhaul deadline in the (near) future. The model is set up such that

overhaul is performed as late as possible, but before the deadline and within capacity

constraints. The key idea is that the useful life of a rotable must be used to the fullest

extent possible. Joo (2009) uses a recursive scheme to plan rotable overhaul that is

very much akin to dynamic programming.
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3.2.2 Aggregate production and supply chain planning

Aggregate planning in production environments was first proposed by Bitran and

Hax (1977), and has been expanded upon by many authors (e.g. Bitran et al. (1981,

1982)). Today, aggregate production planning models have found their way into

standard textbooks in operations and production management (e.g. Silver et al.

(1998), Hopp and Spearman (2001), Nahmias (2009)). These aggregate production

planning (APP) models are used to plan workforce capacity and production quantities

of product families over several periods. Similar models are also used in supply

chain planning. These models are described and reviewed in Billington et al. (1983),

Erengüç et al. (1999), De Kok and Fransoo (2003) and Spitter et al. (2005). Although

all these models generate a production plan for several periods into the future, it is

understood, that only the decisions for the upcoming period should be implemented.

After this period lapses, new information becomes available and existing information

becomes known more accurately. In this new situation the model is rerun to generate

decisions for the next period. The reason to include many periods in the model is to

be able to evaluate the impact of the decision in the current period further into the

future. This way of working is called rolling horizon planning.

Aggregate maintenance planning differs from aggregate production planning in two

fundamental ways. First, while in APP exogenous demand triggers the use of

production capacity either implicitly or explicitly, maintenance requirements are

necessarily endogenous to the modeling approach. The reason for this is that

preventive maintenance needs to be performed within limited time intervals due to

safety and/or other reasons. Thus, a decision to maintain a rotable at some time t

also dictates that the replacing rotable itself be replaced before time t+MIOT. Here

too, the lcc perspective has an added value. While MIOTs have to be respected,

there is considerable freedom in the exact timing of performing maintenance without

increasing the number of times that preventive maintenance is performed during the

life cycle of an asset. This flexibility however, can only be leveraged by considering

the entire life cycle in the planning process. When this is done, flexibility can be used

to utilize resources such as workforce and turn-around stock efficiently. We already

noted that rolling horizon planning considers the impact of decisions in the current

period to costs in future periods. In the case of maintenance planning, the relevant

planning horizon is the lifetime of the assets that are to be maintained.

Second, maintenance has a fundamentally different capacity restriction in the

availability of rotables for replacement actions. While production capacity levels

are not directly influenced by earlier production quantities, the availability of ready-

for-use rotables depends on the number of rotables that have undergone overhaul in

previous periods. Thus the number of rotables in the closed-loop supply chain form a

special type of capacity constraint. For a recent literature review on closed-loop supply
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chains, see Ilgin and Gupta (2010). A fundamental difference between the closed-loop

supply chain studied in this paper and other closed-loop supply chains studied in

literature so far, is that in this case a return (replacement) automatically generates

another return within some preset fixed maximum period of time, the MIOT.

3.2.3 Contribution

In the field of planned preventive maintenance, our model has several contributions

to existing literature that we summarize below:

(a) Our model can be used for tactical decision making in which the effects of

decisions over long horizons need to be considered. These long horizons explicitly

incorporate lcc considerations into decision making and utilize the flexibility

there is with respect to the exact timing of overhauls over the whole life cycle of

an asset. However, we do not propose to fix a plan for very long horizons; we do

propose accounting for consequences of decisions over long horizons.

(b) Our model makes the constraints imposed by a finite rotable turn-around stock

explicit by modeling the rotable supply chain. It also supports the decisions

regarding the size of rotable turn-around-stocks.

(c) Our model considers multiple rotable types that utilize the same overhaul

capacity. For each rotable type, the model plans multiple overhauls into the

future.

(d) We perform a case study, and show that a linear programming relaxation of

our optimization problem yields sufficiently accurate results to aid in decision

making. We also provide useful insights about planning for NedTrain, the

company involved in the case study. In a numerical experiment where instances

are generated randomly, we show that the solution to the LP relaxation is usually

sufficiently accurate to aid decision making.

3.3. Model

We consider an installed base of capital assets and a supply chain of rotables in a

maintenance-by-replacement system. The rotables in this supply chain go through

the same overhaul workshop and their overhaul requires the availability of a fixed

amount of resources in the overhaul workshop. Each asset consists of several rotables

of possibly different type. For each rotable type, there is a population of this rotable

type in the field. Each rotable in the population of a type requires overhaul before
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Table 3.1 Example of regular and aggregated time periods and the set TYy

Time in aggregated periods (Y ) 1 2 3

TY1 TY2 TY3

Time in periods (T ) 1 2 3 4 5 6 7 8 9 10 11 12

its MIOT has lapsed since the rotable has gone into active use. For the aggregate

planning problem under consideration, we divide time in periods. We let T denote

the set of periods in the planning horizon, T = {1, . . . , |T |}. The length of a period

is typically one month while the length of the planning horizon should be at least

the length of the life cycle of the assets in which the rotables function. In this way,

the model can capture the entire lcc. For rolling stock and aircraft, this planning

horizon is about 25-35 years. We let I denote the set of different types of rotables.

The first (last) period in the planning horizon during which rotables of type i ∈ I,

are in the field is denoted ai (pi), ai < pi. For most types of rotables ai = 1, meaning

that rotables of type i are already in the field when a plan is generated. Rotables

always support assets and companies plan the disposal of these assets, as well as their

replacement with a newer version. When ai > 1, type i rotables support an asset

which the company plans to start using in period ai. Similarly, when pi < |T |, rotable

type i supports an asset that will be disposed of in period pi. We let T Ii = {ai, . . . , pi}
denote the set of periods in the planning horizon during which rotables of type i ∈ I
are active in the field. Furthermore, we let It denote the set of rotables that are active

in the field during period t ∈ T : It = {i ∈ I|ai ≤ t ≤ pi}.
We also define a set of aggregated periods, Y = {1, . . . , |Y |}. Typically an aggregated

period is a year. Furthermore, we let TYy denote the set of periods that are contained

in the aggregated period y ∈ Y . Table 3.1 shows an example of how T , Y and TYy
relate to each other. The example concerns a horizon of three aggregated periods (e.g.

years) and 12 regular periods (e.g. quarters). TY1 contains the periods contained in

the first aggregated period (e.g. the quarters of the first year).

In the rest of this section we will describe the equations that govern different parts of

the system under study.

3.3.1 Supply chain dynamics

The rotable supply chain is a two-level closed-loop supply chain as depicted in Figure

3.1. There are two stock-points where inventory of rotables that are ready-for-use

and rotables requiring overhaul, respectively, are kept.

We let the variablesBi,t (Hi,t) denote the number of ready-for-use (overhaul requiring)
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Overhaul workshop

Maintenance depot

Capital assets in operation

 Bi,tHi,t

ni,t

xi,t

ni,t-Li

xi,t

Flow of capital assets Flow of rotables requiring overhaul Flow of ready-for-use rotables

Figure 3.1 Rotable supply chain overview.

rotables of type i ∈ I in inventory at the beginning of period t ∈ T Ii . We let the decision

variable xi,t denote replacements of rotables of type i ∈ I during period t ∈ T Ii . We

assume that the time required to replace a rotable is negligible compared to the length

of a period. The overhaul workshop acts as a production unit as defined in supply

chain literature (De Kok and Fransoo, 2003). This means that when an overhaul order

is released at any time t, the rotable becomes available ready-for-use at time t + Li.

Thus, Li is the overhaul lead time and we assume it is an integer multiple of the

period length considered in the problem. We let the decision variable ni,t denote the

number of overhaul orders for rotables of type i ∈ I released in the course of period

t. The supply chain dynamics are described by the inventory balance equations:

Bi,t = Bi,t−1 − xi,t−1 + ni,t−Li−1, ∀i ∈ I, ∀t ∈ T Ii \ {ai} (3.1)

Hi,t = Hi,t−1 + xi,t−1 − ni,t−1, ∀i ∈ I, ∀t ∈ T Ii \ {ai}. (3.2)

Equations (3.1) and (3.2) require initial conditions. The stock levels for rotables

already in the field in the first planning period (ai = 1) are initialized by the

parameters Bd
i and Hd

i respectively; so Bi,ai = Bd
i and Hi,ai = Hd

i if ai = 1.

Here, and throughout the remainder of this chapter, the superscript d is used for

parameters known from data that initialize variables. (Note that Bi,ai is a variable

and Bd
i is a parameter known from data.) For rotables that enter the field after
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the first period, the initial stock level conditions are to start with the entire turn-

around stock Si ∈ N consisting of ready-for-use repairables, and no rotables requiring

maintenance; so Bi,ai = Si and Hi,t = 0 if ai > 1. The initial turn-around stock

levels for rotables that are not yet in the field in period 1, Si, are decision variables.

For t = ai − Li + 1, . . . , ai − 1, ni,t also has initial conditions: ni,t = nd
i,t for

t ∈ {ai − Li + 1, . . . , ai − 1}. These initial conditions are known from data if ai = 1

and set to 0 if ai > 1. We assume that when ni,t overhaul orders are released during

period t, these releases occur uniformly during that period.

3.3.2 Workforce capacity and flexibility in the overhaul workshop

The workforce capacity in the workshop is flexible. Workforce is acquired or disposed

of at the ending of each aggregated time period y ∈ Y . We let the decision variable

Wy denote the available labor hours during aggregated period y ∈ Y . For example, if

the length of an aggregated period is a year, Wy represents the number of labor hours

to be worked during that year given the number of contracts with laborers. However,

there is flexibility as to when exactly these hours are to be used during the aggregated

period (year). If we let the decision variable wt denote the amount of labor hours

used during period t ∈ T , this flexibility can be expressed as follows:

Wy =
∑
t∈TYy

wt, ∀y ∈ Y. (3.3)

The average number of hours worked during any period t ∈ TYy is Wy/|TYy |. We let

the parameters δlt and δut denote lower and upper bounds on the fraction of Wy/|TYy |
that is utilized during period t ∈ TYy :

δltWy/|TYy | ≤ wt ≤ δutWy/|TYy |, ∀y ∈ Y, ∀t ∈ TYy . (3.4)

Thus the flexibility of manpower planning per period is also constrained by (3.4).

The labor allocated in any period t affects possible overhaul order releases as follows.

We let ri denote the amount of labor hours required to start overhaul of a type i ∈ I
rotable. Then overhaul order releases must satisfy:∑

i∈It rini,t ≤ wt, ∀t ∈ T. (3.5)

Finally, we note that Wy can be changed from one aggregated period to the next.

Such a change from aggregated period y to y + 1 is bounded from below and above

as a fraction of Wy by ∆l
y and ∆u

y respectively:

∆l
yWy ≤Wy+1 ≤ ∆u

yWy, ∀y ∈ {1, . . . , |Y | − 1}. (3.6)

Finally, we note that W1 is initialized by the parameter W d.
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3.3.3 Rotable availability

Since the asset from which the rotables are to be replaced requires high availability,

replacements may not occur unless there is a ready-for-use rotable available to

complete the replacement. Similarly, we require that the release of an overhaul order

must be accompanied immediately by a rotable in need of overhaul. Recalling our

assumption that the replacements and overhaul order releases during any period are

uniformly distributed over that period, rotable availability can be expressed as

ni,t ≤ Hi,t + xi,t, ∀i ∈ I, ∀t ∈ T Ii , (3.7)

xi,t ≤ Bi,t + ni,t−Li ∀i ∈ I, ∀t ∈ T Ii . (3.8)

3.3.4 Overhaul deadlines propagation

Due to safety and possibly other reasons, the maintenance program of rotables of

type i ∈ I stipulates that any rotable of type i has to be replaced before it has been

operational for qi periods. Thus for each period in the planning horizon, there are a

number of rotables of type i ∈ I that have to be replaced before or in that period and

we denote this quantity Di,t for rotables of type i ∈ I in period t ∈ T Ii . For a given

rotable type i ∈ I, these quantities are known for period ai up to min{ai + qi− 1, pi}
and given by Dd

i,t.

We assume that rotables of any type are replaced in an oldest rotable first fashion,

i.e., whenever a rotable of any type is to be overhauled, the specific rotable of that

type that has been in the field the longest is always chosen. Thus, from period ai+ qi
onwards

Di,t = xi,t−qi , ∀i ∈ I, ∀t ∈ {ai + qi, . . . , pi}. (3.9)

It is possible to replace rotables ahead of time, and we let Ud
i denote the number of

rotables of type i ∈ I that have been replaced ahead of time at time ai−1. To comply

with the maintenance program, the replacements have to satisfy:

Ud
i +

t∑
t′=ai

xi,t′ ≥
t∑

t′=ai

Di,t′ ∀i ∈ I, ∀t ∈ T Ii . (3.10)

This constraint can also be described using an auxiliary variable, Ui,t, that represents

the number of replacements of rotables of type i in excess of what is strictly necessary

by period t.
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Proposition 3.1 The set of inequalities (3.10) is equivalent to the set of constraints

xi,t ≥ Di,t − Ui,t−1, ∀i ∈ I, ∀t ∈ T Ii , (3.11)

Ui,t = xi,t −Di,t + Ui,t−1, ∀i ∈ I, ∀t ∈ T Ii \ {pi} (3.12)

Ui,ai−1 = Ud
i , ∀i ∈ I. (3.13)

Proof: We show that (3.12)-(3.13) imply that

Ui,t = Ud
i +

t∑
t′=ai

xi,t′ −
t∑

t′=ai

Di,t′ , ∀i ∈ I, ∀t ∈ {ai − 1, . . . , pi − 1}. (3.14)

Substituting (3.14) back into (3.11) yields (3.10). To verify that (3.14) and (3.12)-

(3.13) are equivalent, we use induction. First observe that (3.13) implies that (3.14)

holds for all i ∈ I and t = ai − 1. Now suppose that (3.14) holds for some i ∈ I and

t− 1 ∈ {ai − 1, . . . , pi − 1}. Then (3.12) implies that

Ui,t = xi,t −Di,t + Ui,t−1

= xi,t −Di,t + Ud
i +

t−1∑
t′=ai

xi,t′ −
t−1∑
t′=ai

Di,t′

= Ud
i +

t∑
t′=ai

xi,t′ −
t∑

t′=ai

Di,t′ , (3.15)

where the second equality holds because of the induction hypothesis. 2

The alternative way of writing (3.10) is useful because it leads to a sparser set of

equations that significantly improves the computational feasibility of the final model.

3.3.5 Cost factors

There are four cost factors in our model. Cost per labor hour during aggregated

period y ∈ Y is denoted cWy . For rotables not yet in the field in the first period of

the planning horizon, a turn-around stock of rotables needs to be acquired at the

price of cai per rotable of type i ∈ I. (cai may also include the expected inventory

holding cost over the relevant time horizon.) There are also material costs associated

with overhaul and these are denoted cmi,t for rotables of type i ∈ I when the overhaul

order was released during period t ∈ T Ii . Similarly, cri,t represent costs of replacing a

rotable of type i ∈ I during period t ∈ T Ii . Note that we do not explicitly model the

cost of replacing a rotable earlier than required; these costs can be modeled implicitly
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through the dependence on time included in all the cost factors. Adding all costs over

the relevant horizon, we find that the total relevant costs (TRC) satisfy

TRC =
∑
y∈Y

cWy Wy +
∑

i∈I|ai>1

cai Si +
∑
i∈I

∑
t∈T Ii

cmi,tni,t +
∑
i∈I

∑
t∈T Ii

cri,txi,t. (3.16)

3.3.6 Model remarks

In the above sections, we have given a mathematical description of the planning

problem. In this description there are some implicit assumptions that we will highlight

and justify in this section.

We assume many parameters to be deterministic and known, when in fact they are

either random variables whose exact value will only become known later. Consider for

example pi, the period in which type i rotables become obsolete. Period pi coincides

with the end-of-life of the asset in which rotable i occurs. Companies plan the end-of-

life of their assets, and so at least estimates of pi are available in practical situations.

We also note that these estimates typically become more accurate as the end-of-life

of an asset becomes more imminent. Similar arguments can be made for ai when

i ∈ I \ I1, ri, qi ∆l
y(∆u

y ) etc. In fact for the decisions that are actually made based

on the model, these parameters are known deterministically. Later into the future,

the values of these parameters becomes increasingly uncertain. Note however that

the decisions for these periods will not be implemented until the model is rerun after

these parameters become known deterministically. These parameters and decision

epochs are only included in the model to account for costs that are affected by current

decisions but will occur much later in the life cycle of the involved asset.

Furthermore, we note that our model can easily deal with non-stationarity in the

input over time, while stochastic models, generally cannot. As a final argument, we

would like to point out that Dzielinski et al. (1963) and Spitter (2005) (Chapter 6)

have tested deterministic rolling horizon models via simulation in dynamic and/or

stochastic environments and have shown that these models perform favorably, and

approach the performance of optimization models that do incorporate stochasticity.

Comparisons with stochastic optimization models however, are only possible in

relatively simple environments. In particular, it is usually assumed that stochastic

quantities have stationary distributions over time, which, in our setting, is unlikely

at best.
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Table 3.2 Overview of notation.

Sets

I : Set of all types of rotables (not the rotables themselves)

It : Set of all types of rotables in the field in period t ∈ T , It = {i ∈ I|ai ≤ t ≤ pi}
T : Set of all periods considered in the planning horizon (typically months)

T Ii : Set of periods during which rotable i ∈ I is active in the field (T Ii = {ai, . . . , pi})
Y : Set of aggregated periods (typically years)

TYy : Set of periods that are contained in a certain aggregated period y ∈ Y
Input Parameters

ai : First period in the planning horizon in which rotables of type i ∈ I are in the field

Bd
i : Number of ready-for-use rotables of type i ∈ I

available (on stock) at the beginning of period ai
cai : Acquisition cost of rotable i ∈ I \ I1
cmi,t : Material costs associated with releasing an overhaul order

for rotable type i ∈ I in period t ∈ T
cri,t : Costs of replacing a rotable i ∈ I during period t ∈ T Ii
cWy : Cost per labor hour during aggregated period y ∈ Y .

Dd
i,t : Number of rotables of type i ∈ I that require overhaul

in or before period t ∈ {ai, . . . , ai + qi}
Hd
i : Number of non-ready-for-use rotables of type i ∈ I

on stock at the beginning of period ai
Li : Overhaul lead time (in periods) for rotables of type i ∈ I
ndi,t : Number of overhaul order releases of rotables of type i ∈ I

in period t ∈ {ai − Li, . . . , ai − 1}
pi : Last period in which rotables of type i ∈ I are in the field

during the planning horizon (pi ∈ T )
qi : Inter-overhaul deadline for rotables of type i ∈ I
ri : Amount of labor hours required to start overhaul of a type i ∈ I rotable

Ud
i : Number of replacements of rotables of type i

in excess of what is strictly necessary by period ai − 1

Wd : Number of labor hours available in the first aggregate period

∆l
y(∆u

y ) : Lower (upper) bound on the change in number of labor

contracts from aggregated period y to y + 1, y ∈ {1, . . . , |Y | − 1}
δlt(δ

u
t ) : Lower (upper) bound on labor hours for rotable overhaul

made available in period t ∈ T expressed as a fraction of Wy/|TYy |, for t ∈ T .

(Auxiliary) variables

Bi,t : Number of ready-for-use rotables of type i ∈ I
available at the beginning of period t ∈ T Ii

Di,t : Number of rotables of type i ∈ I that require overhaul

in or before period t ∈ T Ii
Hi,t : Number of non-ready-for-use rotables of type i ∈ I

at the beginning of period t ∈ T Ii
Ui,t : Number of replacements of rotables of type i in excess of what is

strictly necessary by period t, i.e. Ui,t =
∑t
t′=ai

xi,t′ −
∑t
t′=ai

Di,t′

Decision variables

ni,t : Number of overhaul order releases of rotables of type i ∈ I
during period t ∈ {ai − Li + 1, . . . , pi}

Si : Turn-around stock of rotables of type i ∈ I
Wy : Number of labor hours available in aggregated period y ∈ Y
wt : Number of labor hours for overhaul that are allocated to period t ∈ T
xi,t : Number of rotable replacements of type i ∈ I during period t ∈ T
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3.3.7 Mixed integer programming formulation

The modeling results of the previous subsections lead to an optimization problem that

we shall call the aggregate rotable overhaul and supply chain planning (AROSCP)

problem. For convenience, all introduced notation is summarized in Table 3.2, where

also a distinction is made between sets, parameters, (auxiliary) variables and decision

variables. A natural formulation of AROSCP is a mixed integer program, as shown

below.

minimize TRC =
∑
y∈Y

cWy Wy +
∑

i∈I|ai>1

cai Si +
∑
i∈I

∑
t∈T Ii

cmi,tni,t +
∑
i∈I

∑
t∈T Ii

cri,txi,t

(3.17)

subject to

Bi,t = Bi,t−1 − xi,t−1 + ni,t−Li−1 ∀i ∈ I, ∀t ∈ T Ii \{ai} (3.18)

Hi,t = Hi,t−1 + xi,t−1 − ni,t−1 ∀i ∈ I, ∀t ∈ T Ii \{ai} (3.19)

Bi,ai = Si ∀i ∈ I \ I1 (3.20)

Bi,ai = Bd
i ∀i ∈ I1 (3.21)

Hi,ai = 0 ∀i ∈ I \ I1 (3.22)

Hi,ai = Hd
i ∀i ∈ I1 (3.23)

ni,t = nd
i,t ∀i ∈ I, t ∈ {ai − Li, . . . , ai − 1} (3.24)

Wy =
∑
t∈TYy

wt ∀y ∈ Y (3.25)

δltWy/|TYy | ≤ wt ≤ δutWy/|TYy | ∀y ∈ Y, ∀t ∈ TYy (3.26)

∆l
yWy ≤Wy+1 ≤ ∆u

yWy ∀y ∈ {1, . . . , |Y | − 1} (3.27)

W1 = W d (3.28)∑
i∈It rini,t ≤ wt ∀t ∈ T (3.29)

ni,t ≤ Hi,t + xi,t ∀i ∈ I, ∀t ∈ T Ii (3.30)

xi,t ≤ Bi,t + ni,t−Li ∀i ∈ I, ∀t ∈ T Ii (3.31)

xi,t ≥ Di,t − Ui,t−1 ∀i ∈ I, ∀t ∈ T Ii (3.32)

Ui,t = xi,t −Di,t + Ui,t−1 ∀i ∈ I, ∀t ∈ T Ii (3.33)

Ui,ai−1 = Ud
i ∀i ∈ I (3.34)

Di,t = Dd
i,t ∀i ∈ I, ∀t ∈ {ai, . . . ,min{ai + qi − 1, pi}}

(3.35)

Di,t = xi,t−qi ∀i ∈ I, ∀t ∈ {ai + qi, . . . , pi} (3.36)

xi,t, ni,t ∈ N0 ∀i ∈ I, ∀t ∈ T (3.37)
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Si ∈ N ∀i ∈ {i ∈ I|ai > 1} (3.38)

0 ≤ ni,t, xi,t, Bi,t, Hi,t, Ui,t ∀i ∈ I, ∀t ∈ T (3.39)

0 ≤Wy ∀y ∈ Y (3.40)

0 ≤ wt ∀t ∈ T. (3.41)

Here, N0 = N ∪ {0}. We remark that it is possible to choose parameter values such

that a feasible solution to this MIP does not exist. In particular, infeasibility can be

created by setting the parameters Dd
i,t to exceed the available capacity in terms of

either workforce or rotable availability.

Because MIPs are hard to solve in general, it is natural to question what the

complexity of AROSCP is. In this regard we offer the following proposition.

Proposition 3.2 The aggregate rotable overhaul and supply chain planning problem

(AROSCP) is strongly NP-hard.

The proof of Proposition 3.2 uses reduction from BIN-PACKING and is found

in Appendix 3.A. In §3.4, we provide computational evidence that, despite the

computational complexity of the problem, mixed integer programming can still be

used to find optimal or close to optimal solutions for instances of real-life size.

3.3.8 Modeling flexibility

The formulation presented in (3.17)-(3.41) still has significant modeling flexibility.

We shall illustrate this flexibility by several examples.

In many practical applications the availability of workforce fluctuates with the time

of year; particularly during holiday and summer season there is reduced workforce

availability. This can be modeled through the bounds on wt, δ
u
t and δlt.

The cost parameters in (3.17) depend on t. This dependence can be used to penalize

early overhaul of rotables and to discount future costs, e.g. by taking cmi,t = αtcmi
with α ∈ (0, 1].

Labor flexibility has taken a very specific form that is congruent with the setting we

will describe in §3.4. Traditionally, labor flexibility has been modeled by including

overtime at extra cost in the model, as has also been done in Bitran and Hax (1977)

and the related literature as reviewed in §3.2. These modeling constructs are easily

incorporated into our MIP formulation.

In our model, we assume capacity bounds to exist only on labor in the overhaul

workshop. The model can easily be extended with capacity constraints on the number
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Figure 3.2 An example of a bogie.

of replacements in the maintenance depot and capacity constraints of different types

(e.g. on equipment and tools) in both the overhaul workshop and the maintenance

depot. Note however that when these constraints are clearly not binding, it is best to

avoid the extra modeling and data collection efforts associated with such extensions.

3.4. Case study

In this section, we report on a case-study at NedTrain, a Dutch company that

maintains rolling stock. The fleet maintained by NedTrain consists of some 3000

carriages across 6 main train types. Almost all carriages rest on two bogies. Bogies

are rotables and there are about 30 different types of bogies in the fleet maintained by

NedTrain. In the city of Haarlem, NedTrain has a facility dedicated to the overhaul

of all types of bogies in the fleet. Bogies are considered important rotables and this

case study is about the overhaul and supply chain planning of rotables at NedTrain.

An example of a bogie is shown in Figure 3.2. The data set used for the case study

we present is outlined in considerable detail in the master thesis of Vernooij (2011).

Here, we present a high level description of the data. Rolling stock has a planned

life cycle of 30 years and our model uses this as the length of the planning horizon.

The period length we consider is a month, while the aggregated period length is a

year. The instance we study has 56 bogie types, i.e. |I| = 56, 30 bogie types of which

are currently in operation and 26 of which belong to new types of trains that will

enter the fleet some time in the next 30 years. The population size of any bogie type

ranges from 32 to 611 and depends on how many trains there are of a specific type in
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the fleet, and how often a bogie type appears in any specific trainset. (For instance,

bogies with traction engines appear less often than bogies without traction engines in

most trainsets.) The flexibility of changing capacity from one aggregated period to

the next is limited at 10%, i.e., ∆l
y = 0.9 and ∆u

y = 1.1 for all y ∈ {1, . . . , |Y |−1}. The

flexibility of allocating labor to specific periods is also limited to 10%, i.e., δlt = 0.9

and δut = 1.1 for all t ∈ T . The MIOTs, qi, range from 72 to 240 months. Overhaul

lead times are 1 period for all bogie types (Li = 1 for all i ∈ I). To start overhaul of

any bogie, 200 hours of labor need to be available, for any bogie type (ri = 200 for all

i ∈ I). For confidentiality reasons, we do not report any real cost figures. Under the

MIP formulation in this chapter, this instance has 64896 variables (42968 of which

are auxiliary variables) and 76378 constraints.

3.4.1 Computational feasibility

Seeing as the AROSCP is NP-hard, we first test the computational feasibility of the

model. To this end we propose 3 ways to (approximately) solve the problem:

(i) Solve the MIP formulation while allowing for an optimality gap of 1%

(ii) Relax the integrality constraints on ni,t and xi,t and solve the resulting MIP

while allowing for an optimality gap of 1%

(iii) Solve the linear programming relaxation of the MIP formulation.

All these three methods can be readily implemented using several MIP/LP solvers.

We did this for four well known solvers: CPLEX 12.5.0.01 , GUROBI 4.6.1.2 ,

CBC 2.7.53 , and GLPK 4.474. We solved the instance of AROSCP described above

5 times for each combination of solver and (approximate) solution method. The

average computational times and halfwidths of 95% confidence intervals based on the

t-distribution are shown in Table 3.3. All experiments were ran on a machine with

Intel Core Duo 2.93GHz processor and 4GB RAM. For the solvers, we used the ‘out

of the box’ settings.

1CPLEX is a commercial solver that can use multiple CPU cores in parallel. More information

on this solver can be found on http://www-01.ibm.com/software/integration/optimization/cplex-

optimizer/.
2GUROBI is a commercial solver that can use multiple CPU cores in parallel. More information

on this solver can be found on http://www.gurobi.com/.
3CBC stands for Coin Branch and Cut and is an open source solver associated with the COIN-OR

initiative. At present, CBC can only use one CPU core. More information on this solver can be

found on http://www.coin-or.org/Cbc/.
4GLPK stands for GNU linear programming kit and is an open source solver. GLPK can only use

one CPU core. More information on this solver can be found on http://www.gnu.org/software/glpk/.
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Table 3.3 Computational times in seconds for different solvers and solution methods using

‘out of the box’ settings.

Solver Solution Method Average Halfwidth of 95% CI

GUROBI 4.6.1

MIP (MIPGap 1%) 5128.0 27.83

Partial MIP relaxation 119.2 0.30

LP relaxation 85.6 0.60

CPLEX 12.5.0.0

MIP (MIPGap 1%) out of memory after 881 s

Partial MIP relaxation 186.9 0.12

LP relaxation 126.8 0.29

CBC 2.7.5

MIP (MIPGap 1%) infeasible after 43200 s

Partial MIP relaxation 207.4 0.49

LP relaxation 293.8 0.16

GLPK 4.47

MIP (MIPGap 1%) infeasible after 43200 s

Partial MIP relaxation 3031.8 2.40

LP relaxation 138.2 0.09

It is notable that only GUROBI can solve the MIP formulation; the other solvers

either run out of memory or time. The reason for this seems to be that GUROBI

generates more cuts, especially at the root node of the branch and bound tree. The

result of this is that the branch and bound tree grows much slower compared to the

other solvers. With a computational time of less than two hours, the performance of

GUROBI is quite good. All solvers can solve the Partial MIP relaxation and the LP

relaxation. The LP relaxation can be solved in a matter of minutes by any solver. In

the next section, we show that the results produced by both the partial MIP relaxation

and the LP relaxation are quite good in terms of both the estimated lcc and the

decisions that follow from the solution.

3.4.2 Sensitivity of result to integrality constraints

The important tactical decisions that the model supports are the dimensioning of

aggregate workforce capacity (Wy) and turn-around stocks (Si). Figure 3.3 shows the

aggregate capacity plan, Wy, for the planning horizon of 30 years as found by the three

(approximate) solution methods proposed in §3.4.1. From Figure 3.3, it is evident

that for tactical decision making, the results of both the Partial MIP relaxation and

the LP-relaxation are sufficiently accurate, although the results of the Partial MIP

relaxation are somewhat closer to the solution of the original MIP.

Results for the turn-around stock levels are also very close across different solution

methods, as shown in Figure 3.4. Here the turn-around-stocks of the LP-relaxation
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Figure 3.3 Aggregate capacity plan for case-study at NedTrain using different solution

methods.

are determined by rounding up to the nearest integer. We remark that rounding

the turn-around stock levels found by the LP-relaxation yields results that are closer

to the MIP solution than the Partial MIP solution that does not relax integrality

constraints on the turn-around stocks, Si.

Figure 3.5 shows the costs found by all three solution methods, normalized so that

the solution found by the MIP formulation is exactly 100. It is notable that estimated

lower bounds of TRC found by solving either relaxation are very tight. Also Figure

3.5 shows that the division of costs over labor, material, acquisition and replacement

costs are almost identical across solution methods, suggesting that the solution of the

LP-relaxation does not only provide a tight lower bound, but also a similar solution

that allocates costly resources in a similar manner. In conclusion, we observe that

for making good decisions and estimating costs accurately, it is sufficient to solve

relaxations of AROSCP. In particular the linear programming relaxation is a good

candidate given its computational tractability.
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Figure 3.4 Turn-around stock sizes as determined by different solution methods.

3.4.3 Insights from case-study

From Figure 3.5, we know that labor costs are the most dominant cost factor. Our

model allows for labor flexibility through the parameters ∆u
y , ∆l

y and δut , δlt. The first

two of these parameters control what we call long term labor flexibility, as they model

how the size of the workforce can be changed over a longer horizon. The second pair

of parameters, δut , δlt, models the flexibility to allocate labor of the current workforce

to different periods within the same aggregated period. For this reason, we say that

δut , δlt model short term labor flexibility. We performed a sensitivity analysis on long

term versus short term labor flexibility. In what follows, we say that long (short) term

labor flexibility is x% when ∆u
y = 1 +x/100 and ∆l

y = 1−x/100 (δut = 1 +x/100 and

δlt = 1−x/100) for all y ∈ Y (t ∈ T ). Figure 3.6 shows how TRC varies with different

percentages of long and short term labor flexibility. Here again, costs were normalized

to 100 for the MIP solution of the original instance with 10% labor flexibility in both

the short and long term. It appears that short term labor flexibility has relatively little

effect on costs over the horizon under consideration, while long term labor flexibility

can be leveraged quite effectively. An explanation for this is that the greatest gains in

planning rotable overhaul supply chains are often achieved by moving replacements

and overhauls more than a year backward in time. Thus, effective planning does not

rely on moving labor capacity around in the short term. Rather, gains can be made by
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Figure 3.5 Cost break down for different solution methods.

planning replacement and overhauls such that exercising short term labor flexibility

has only marginal impact. Overhauls and replacements interact with each other on

the time scale of the MIOT. Thus, taking the entire life cycle of an asset and not

artificially penalizing early overhaul and replacements really pays off.
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Figure 3.6 The value of long term versus short term labor flexibility
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At NedTrain, it is practice not to plan overhauls and replacements very far into the

future. The reason is that the MIOTs are subject to some uncertainty. The engineers

that fix the MIOTs try to fix them as late as possible in the hope that they may

stretch these MIOTs. The basic idea is that by stretching the MIOT, a rotable needs

to undergo overhaul less often per time unit and so associated material and labor

costs are incurred less often. While this is true for assets with an infinite life cycle

and overhaul shops that have capacity available when convenient and not otherwise, it

is not necessarily true for assets with a finite life cycle and overhaul shops that provide

specialized labor that has to be contracted ahead of time. A result of knowing the

MIOT late is that the overhaul workshop does not know how much work to expect,

so it plans for the worst case scenario. Dealing with the worst case scenario requires

keeping a large workforce for dealing with peak demand. If a large workforce is already

in place, it is in fact optimal to postpone replacement and overhaul of rotables as long

as possible. However, a better solution is to not focus on postponing overhaul, but

on smoothing the workload of the overhaul shop because this is where most costs are

incurred. Especially for the sake of labor costs and workload smoothing, it is much

more beneficial to fix MIOTs early and optimize the plan for overhaul and supply chain

operations. With low long term labor flexibility, the workforce remains dimensioned to

deal with peak demand for overhaul capacity. Therefore, an indication of the possible

cost savings of focussing on smoothing workload rather than postponing overhaul,

can be read from Figure 3.6. If we choose to keep our workforce dimensioned for peak

demand, costs increase by around 4%.

3.5. Numerical results for randomly generated instances

The results for the case study suggest that the LP-relaxation of our formulation yields

sufficiently accurate results to aid decision making and that computation times are still

practical. In this Section, we show that this behavior is typical by generating instances

of the planning problem randomly and verifying that similar results are found. In

§3.5.1, we give an overview of how instances are generated (pseudo) randomly and

in §3.5.2, we explain the metrics we use to compare the LP-relaxation to the MIP

optimum and discuss the numerical results.

3.5.1 Random instance generator

We generate instances randomly, but the orders of magnitude from which we generate

values for these instances are based on the orders of magnitude observed at NedTrain,

the company of the case study in §3.4. For a more detailed discussion of what

these orders of magnitude are and how they arise, we refer to Vernooij (2011).
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Table 3.4 shows how instances where generated (pseudo) randomly. A more detailed

explanation of how instances are generated randomly is provided in Appendix 3.B. In

Table 3.4 and Appendix 3.B, we use the notation UD(a, b) to denote a discrete uniform

random variable on the integers a, · · · , b and U(a, b) to denote the (continuous)

uniform random variable on the interval (a, b).

Table 3.4 Overview of how instances are generated randomly

Parameter Generation Index range

Sets

I1 {1, 2, 3, · · · ,UD(25, 40)} -

I \ I1 {|I1|+ 1, · · · , |I1|+ |{j ∈ I1 : pj < 360}|} -

I I1 ∪ I \ I1 -

T {1, 2, · · · , 360} -

Y {1, 2, · · · , 30} -

TYy {12 · (y − 1) + 1, · · · , 12 · (y − 1) + 12} y ∈ Y

Rotable characteristics

ai 1 i ∈ I1
pi min{360,UD(11, 460)} i ∈ I1
qi UD(72, 240) i ∈ I1
ri UD(180, 220) i ∈ I1
Li 1 i ∈ I
ai pmin{j∈I1:|{k∈{1,··· ,j}:pk<360}|=i−|I1|} + 1 i ∈ I \ I1
pi 360 i ∈ I \ I1
qi qmin{j∈I1:|{k∈{1,··· ,j}:pk<360}|=i−|I1|} i ∈ I \ I1
ri rmin{j∈I1:|{k∈{1,··· ,j}:pk<360}|=i−|I1|} i ∈ I \ I1

Initialization and flexibility

τi ai + UD(10, qi) i ∈ I
Dd
i,τi

UD(30, 600) i ∈ I
Dd
i,t 0 i ∈ I, t ∈ {ai, · · · , ai + qi} \ {ai + τi}

Ud
i 0 i ∈ I

nd
i,t 0 i ∈ I, t ∈ {ai − Li, · · · , ai − 1}
Hd
i 0 i ∈ I

Bd
i U(0.1, 0.3) ·Dd

i,τi
i ∈ I

Wd 150000 -

∆l(∆u) U(0.7, 0.95) (U(1.05, 1.3)) -

∆l
y(∆u

y ) ∆l(∆u) y ∈ {1, · · · 29}
δl(δu) U(0.7, 0.95) (U(1.05, 1.3)) -

δlt(δ
u
t ) δl(δu) t ∈ T

Cost parameters

α 0.95 -

cai UD(300000, 400000) · αai/12−1 i ∈ I \ I1
cmi,t UD(4000, 6000) · αdt/12e−1 i ∈ I, t ∈ T Ii
cri,t UD(30, 50) · αdt/12e−1 i ∈ I, t ∈ T Ii
cWy UD(60, 80) · αy−1 y ∈ Y
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3.5.2 Results

In §3.4, the results of the original MIP and LP-relaxation are quite close, as evidenced

by Figures 3.3-3.6. In the first experiment, we measure how ‘close’ the solutions of the

MIP and LP-relaxation are by eight metrics. In this section, we use the superscripts

LP and MIP on variables to denote that their values are obtained by solving the

LP-relaxation and MIP formulation respectively. The eight metrics we consider are:

∆TRC =
TRCMIP − TRCLP

TRCMIP
(3.42)

∆W =

∣∣CLPW − CMIP
W

∣∣
CMIP
W

· 100%, with CW =
∑
y∈Y

cWy Wy

(3.43)

∆a =

∣∣CLPa − CMIP
a

∣∣
CMIP
a

· 100%, with Ca =
∑

i∈I:ai>1

cai Si

(3.44)

∆m =

∣∣CLPm − CMIP
m

∣∣
CMIP
m

· 100%, with Cm =
∑
i∈I

∑
t∈T Ii

cmi,tni,t

(3.45)

∆r =

∣∣CLPr − CMIP
r

∣∣
CMIP
r

· 100%, with Cr =
∑
i∈I

∑
t∈T Ii

cri,txi,t

(3.46)

∆max
capacity = max

y∈Y

∣∣∣∣∣WLP
y −WMIP

y

WMIP
y

· 100%

∣∣∣∣∣ (3.47)

∆
max(5)
capacity = max

y∈{1,··· ,5}

∣∣∣∣∣WLP
y −WMIP

y

WMIP
y

· 100%

∣∣∣∣∣ (3.48)

∆S =

∑
i∈I\I1

∣∣⌈SLP ⌉− SMIP
∣∣

|I \ I1|
(3.49)

Metrics (3.42)-(3.46) measure the relative deviation of the objective function and the

different terms of the objective function; together they convey the same information

as Figure 3.5 does for the case study. Metrics (3.47)-(3.48) measure the relative

deviation of aggregate capacity decisions, for the long term and the short term. In

the case study, this information is conveyed by Figure 3.3. Finally, metric (3.49)

measures the average absolute deviation of sizing the turn-around stock and conveys

the information shown by Figure 3.4.
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In §4.3, we already noted that not every instance of AROSCP is feasible. This is

true in particular for instances generated randomly, as explained in §3.5.1. In this

experiment, we generated instances until 200 feasible instances were obtained. To

achieve this, a total of 280 instances were generated. For these 200 feasible instances,

we solved the MIP formulation (while allowing for an optimality gap of 1%), and the

LP-relaxation and computed metrics (3.42)-(3.49). Table 3.5 reports the results as

well as the computation times (in minutes) on a machine with Dual Core 2.9 GHz

processor with 4 GB of RAM and GUROBI 5.0 as solver.

Table 3.5 Accuracy of LP-relaxation in approximating an integer optimal solution. (N=200.)

∆TRC ∆W ∆a ∆m ∆r ∆max
capacity ∆

max(5)
capacity ∆S CompTime [min]

avg 0.73 0.23 5.78 0.15 0.14 7.54 2.11 0.19 39.4
min 0.33 0.00 0.48 0.00 0.00 1.93 0.02 0.00 1.3
max 1.37 1.27 16.57 0.49 0.44 20.17 9.44 0.50 334.0

stdev 0.23 0.21 2.46 0.11 0.10 3.39 1.63 0.11 61.7

First, we note that the relative deviation with respect to the optimal objective value

and its separate components is very small. Laying ∆a aside for a moment, we see that

∆TRC , ∆W , ∆m, ∆r are all well below 1.0% on average and well below 1.5% in the

worst case. This is remarkable, especially considering that the MIP solution still has

a remaining optimality gap somewhere below 1.0%. The odd one out is ∆a. We note

however, that, as in the case study, the acquisition costs are a relatively small part

of the total costs (as evidenced here by the fact that ∆TRC is considerably smaller

than ∆a). Furthermore, the direct comparison of turn-around-stocks provided by the

metric ∆S is again quite favorable, probably also because SLP is rounded up for the

purpose of comparison. All in all, these results indicate that the LP-relaxation can

be used to perform sensitivity analyses with respect to costs, thus saving considerable

computation time. Furthermore, it is possible to use the dual variables provided

by solving the LP-relaxation using the simplex method to streamline the sensitivity

analysis. Consider, for example, the sensitivity of the model with respect to the

bounds on capacity flexibility ∆l
y and ∆u

y . In the case study, the sensitivity to these

bounds was investigated by repeatedly solving the problem, but via dual variables,

it is possible to investigate the sensitivity of the optimal solution to these bounds

around some operating point via dual-variables.

The measures, ∆max
capacity and ∆

max(5)
capacity appear quite high. We note however that

∆max
capacity = 9.01% and ∆

max(5)
capacity = 0.35% for the case study instance. Thus,

performance is comparable to the instance in the case study.

In the second experiment, we investigate how computation time scales with the size

of instances. The size of instances is controlled though the number rotables types

that are in the field at any one time, |I1|. We varied |I1| between 20 and 40 in steps
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Figure 3.7 Boxplot of computation times for different instance sizes as measured by the

number of rotable types in the field, |I1|. For each of the sizes |I1| = 20, 25, 30, 35, 40, 30

instances where generated randomly as shown in Table 3.4, with the exception that |I1| is

controlled as indicated.

of 5 and generated 30 random instances for each size. Figure 3.7 shows a boxplot

for |I1| = 20, 25, 30, 35, 40. Note that the vertical axis has a logarithmic scale, so

computation times seem to scale exponentially, which, given Proposition 3.2, is to

be expected. There is also quite some variation in the running times for instances

that are the same size. Nevertheless, the largest computation times for solving the

largest instance are 5.7 hours, which is sufficiently short to do an overnight run.

For sensitivity and scenario analyses, it seems the LP-relaxation provides a good
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substitute with more acceptable computation times.

3.6. Conclusion

In this chapter, we have presented a model for the aggregate planning of rotable

overhaul and supply chain operations. The model has many realistic features and

incorporates lcc considerations in planning decisions when it is used in a rolling

horizon setting. Despite the fact that solving the presented model to optimality is

NP-hard in general, we have provided evidence to suggest that a linear programming

relaxation of the problem supplies the user with useful information that aids in

decision making and even yields decisions that are close to optimal for large instances

of AROSCP, as found in practice. In the context of a real life case study, we have

argued that it is beneficial to fix MIOTs relatively early so that an effective plan

for overhaul and supply chain operations can be made that utilizes the flexibility of

overhaul planning that exists only when considering the entire life cycle of an asset.

In the context of the case study, we also argued that it is better to focus on smoothing

workload experienced by the overhaul workshop rather than focussing on postponing

overhaul of rotables as long as possible.
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3.A. Proof of Proposition 3.2

We show that being able to solve the AROSCP will enable one to decide the

BIN-PACKING decision problem, i.e. we reduce BIN-PACKING to AROSCP. The

following decision problem, known as BIN-PACKING, is strongly NP-complete (e.g.

Garey and Johnson, 1979): Given positive integers α1, . . . , αm, β, and κ, is there

a partition of {1, . . . ,m} into disjoint sets Υ1, . . . ,Υκ such that
∑
j∈Υi

αj ≤ β for

i = 1, . . . , κ?

Now suppose we are given an instance of BIN-PACKING. Without loss of generality,

we may assume that
∑m
i=1 αi ≤ κβ, αi ≤ β for all i ∈ {1, . . . ,m}, and κ ≤ m.

From this instance of BIN-PACKING, we give a pseudo-polynomial transformation

(as defined by (Garey and Johnson, 1979, p.101)) such that the answer to this instance

of BIN-PACKING is yes, if and only if the optimal objective value of the corresponding

instance of AROSCP equals 0. By Lemma 4.1 of Garey and Johnson (1979) we have

then proven that AROSCP is strongly NP-hard.

The basic idea behind this reduction is the following. By setting the initial number

of non ready-for-use rotables sufficiently high, the release of overhaul orders is

constrained only by available workforce capacity, i.e. by (3.29). This workforce

capacity can be kept constant at β across periods by constraints (3.27) and (3.28).

Now the problem can be viewed as packing overhaul order releases into several one

period bins of fixed size β. By penalizing these order releases in all but κ periods, the

objective becomes to pack as many order releases as possible in the κ periods in which

the order releases are not penalized. If the optimal objective of AROSPC is 0, then

it was possible to pack all overhaul order releases in κ periods and so the instance of

BIN-PACKING is a yes-instance.

More formally, the reduction is as follows. Set Y = {1, . . . ,m + 1} and TYy = {y}
for all y ∈ Y ; thus, aggregated and regular periods coincide. Set W d = β, and

∆l
y = ∆u

y = δlt = δut = 1. This ensures capacity is identical across periods. Set

I = {1, . . . ,m} and set ai = 1, pi = m + 1, qi = m + 1, Li = 1, Hd
i = 1, Bd

i = 0,

nd
i,0 = 0, Dd

i,m+1 = 1 and ri = αi for all i ∈ I. Furthermore, set Dd
i,t = 0 for all

i ∈ I and t ∈ {1, . . . ,m}. Thus, each type of rotable needs to be replaced exactly

once before or in the last period of the planning horizon. This instance of AROSCP

is feasible because the following is a feasible solution: ni,i = 1 for i ∈ I and ni,t = 0

otherwise, xi,m+1 = 1 for all i ∈ I and xi,t = 0 otherwise. (Note that all other

variables are set by constraints). There are no acquisitions (ai = 1 for all i ∈ I) so

cai does not need to be set. Most other cost parameters are set to 0; cWy = 0 for all

y ∈ Y and cri,t = 0 for all i ∈ I and t ∈ T Ii . However, we set cmi,t = 1 for all i ∈ I
and t ∈ {1, . . . ,m − κ} and set cmi,t = 0 otherwise. Note that m − κ ≥ 1 because,

by assumption,
∑m
i=1 αi ≤ κβ and αi ≤ β for all i ∈ {1, . . . ,m}. The objective
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function now reduces to
∑
i∈I
∑m−κ
t=1 cmi,tni,t. Let OPT denote the optimal solution

to this instance of AROSCP. If OPT = 0 then, necessarily ni,t = 0 for all i ∈ I

and t ∈ {1, . . . ,m − κ}. Furthermore, by constraint (3.25),
∑
i∈It rini,t ≤ wt for

all t ∈ T , which, by our choice of parameter values, implies
∑
i∈I αini,t ≤ β for all

t ∈ {m−κ+1, . . . ,m}. All rotables in this instance of AROSCP have to be overhauled

exactly once in or before period m because of constraints (3.31), (3.32) and (3.35).

Therefore, for each i ∈ I, there is some t ∈ {m − κ + 1, . . . ,m} such that ni,t = 1.

when OPT = 0. Now it follows that a partition that satisfies the requirement of the

original BIN-PACKING problem is given by:

Υj = {i ∈ I|ni,m−κ+j = 1}, j ∈ {1, . . . , κ}.

In an analogous manner, it is possible to construct an optimal solution with objective

0 to an instance of AROSCP if the corresponding instance and truth certificate of

BIN-PACKING is given, by setting all xi,t and ni,t to 0, except xi,m+1 = 1 for all

i ∈ I and ni,m−κ+j = 1 if i ∈ Υj . Thus, we have shown that an instance of BIN-

PACKING is a yes-instance if and only if the corresponding AROSCP problem has

an optimal objective of 0. We observe further that (i) the reduction can be performed

in polynomial time, (ii) that the numbers in the corresponding AROSCP instance

are polynomially related to the numbers in the BIN-PACKING instance (in fact they

are linearly related), and (iii) that the size of the AROSCP instance is polynomially

related to the size of the BIN-PACKING instance (because κ ≤ m). 2

3.B. Details on the random instance generator

3.B.1 Rotable characteristics

First, we generate the number of different rotable types that are already in the field

at the beginning of the planning horizon, |I1|, from UD(25, 40). Then for each i ∈ I1,

we draw pi, qi, ri and Li as shown in Table 3.4. Note that for i ∈ I1, ai = 1 by

definition and needs not be generated randomly.

Some of the rotables i ∈ I1 may belong to assets that will be disposed of before the

end of the planning horizon, i.e., possibly pi < 360 for some i ∈ I1. If this is the case,

we assume that this asset will be replaced by a new type of asset, which consists of

rotables with identical characteristics that will remain current for the remainder of

the planning horizon. For example, if 1 ∈ I1, p1 = 270, a1 = 1, q1 = 120, r1 = 200,

L1 = 1, and |I1| = 32, then we add rotable type 33 to I and set a33 = p1 + 1 = 271,

p33 = p1 = 360, q33 = q1 = 120, r33 = r1 = 200, and L33 = L1 = 1. This procedure is

shown formally in Table 3.4 using set expressions and the fact that I is generated to

contain a sequence of integers. We note that it is also possible that a rotable type that
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is replaced some time during the planning horizon is replaced with a rotable type that

has different characteristics. In particular, new rotable types are likely to be more

reliable due to technological advancements. The models can also accommodate these

scenarios. However, we make the conservative assumption that rotable types are

replaced by rotable types with identical characteristics.

3.B.2 Initial conditions and flexibility

For each type of rotable i ∈ I, there are revisions already due. We assume the

worst case scenario that the first upcoming revision of any one rotable type are due

in a single period. For rotable type i ∈ I, this single period is ai + τi and τi is

generated as τi = UD(10, qi). The number of revisions due in period ai + τi is

drawn from UD(30, 600). This means that for each i ∈ I, Dd
i,t = 0 if t 6= τi and

Dd
i,τi

= UD(30, 600).

Again as a worst case scenario, Ud
i = 0 and nd

i,t = 0 for all relevant i and t, meaning

that there are no recent order releases and that there have been no replacements ahead

of time. Initially, for each i ∈ I1 there is no stock of non-ready-for-use rotables, i.e.,

Hd
i = 0 for all i ∈ I1. The initial ready-for-use stock of i ∈ I1 is generated as a fraction

of the first peak number of revisions due in period ai + τi: B
d
i =

⌈
U(0.1, 0.3) ·Dd

i,τi

⌉
,

where dxe is the smallest integer equal to or exceeding x.

The bounds ∆l
y and ∆u

y are obtained by generating ∆l (∆u) as U(0.7, 0.95)

(U(1.05, 1.3)) and setting ∆l
y = ∆l and ∆u

y = ∆u
y for all y ∈ Y \ {|Y |}. Similarly

δlt (∆u
t ) are obtained by generating δl (δu) as U(0.7, 0.95) (U(1.05, 1.3)) and setting

δlt = δl and δut = δu for all t ∈ T . Finally, in each case, W d is set as 150000. We do

not generate this parameter randomly, because the ri are already generated randomly.

3.B.3 Costs parameters

The cost parameters are discounted on a yearly basis by the discount parameter α.

Within a year however, there is no discounting, so that for a period t ∈ T , the

corresponding year is dt/12e.





Chapter 4

Optimal and heuristic repairable

stocking and expediting in a

fluctuating demand environment

“There can be only academic value

in an ‘optimal’ policy”

Craig Sherbrooke

4.1. Introduction

Both service and manufacturing industries depend on the availability of expensive

equipment to deliver their products. Examples of such equipment include aircraft,

rolling stock and manufacturing equipment. When this equipment is not working,

the primary processes of their owners come to an immediate stop. To reduce the

downtime of equipment, companies stock critical components such that the equipment

can be returned to an operational state quickly by replacing a defective component

with a ready-for-use component. Many components represent a significant financial

investment and so they are repaired rather than discarded after a defect occurs.

Consider for example, aircraft engines, bogies, or lenses for wafer steppers; these are

components of aircraft, rolling stock, and integrated circuit manufacturing equipment,

respectively, and their prices range from several hundreds of thousands up to tens of

millions of dollars. These expensive components are very specific to the equipment
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they service. Consequently, the best time for companies to buy these components

is at the same time as when the original equipment is purchased because, at this

time, it is possible to negotiate reasonable prices. (In literature, this is often

referred to as the initial spare parts supply problem and it occurs in many different

environments (e.g. Rustenburg et al., 2001; Pérès and Grenouilleau, 2002). Later

in time, such components often have to be custom made and prices are very steep

if the component can be purchased at all. An aggravating factor is that demand

intensity for these components typically fluctuates over time, reflecting the fluctuating

need for maintenance over time. Companies anticipate these demand fluctuations by

leveraging the possibility of expediting the repair of defective components, rather

than buying new components. Expediting repair comes at a price, either because

an external repair shop charges more for expedited repairs or because an internal

repair shop can only handle a limited amount of expedited repairs. In the latter case,

the cost of expediting can be thought of as a Lagrange multiplier that enforces a

constraint on the number of expedited repairs that can be requested per time unit.

In this situation, the model in the present chapter serves as a building block for a

multi-item model. Chapter 5 explores such a multi-item model in detail.

In this chapter, we study a model that is inspired by practice at NedTrain.

However, the problem is generic for companies that maintain capital assets and

use repairable spare parts to run their operations such as in the aviation, defense,

public transportation, and manufacturing industry. These companies hold inventory

of repairable spare parts that are used to maintain equipment. When defective parts

are sent to a repair shop for repair, there is often the possibility to request that

the repair of a part is expedited. In this situation, these companies face two major

decisions related to their inventory control, one at a tactical level, and another at the

operational level:

1. How many repairable spare parts should we buy? (tactical)

2. When should we request that the repair of a part is expedited? (operational)

We refer to the first decision as the dimensioning decision and to the second as the

expediting decision. The spare repairables are usually purchased at the same time

as the technical systems which they support. After this time, the repairables are

either no longer available in the market or prohibitively expensive. Thus the decision

to buy repairables is a tactical decision that occurs one time only. The S spare

repairables that are purchased at the time of the acquisition of the technical system

are also called the turn-around stock. After this initial tactical decision come the

operational recurring decisions to either expedite or not expedite the repair of spare

parts each time demand occurs. These decisions should take demand fluctuations

as well as current inventory levels into account. Expediting repairs incurs costs,
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either because an external repair shop charges extra for expedited repairs, or because

an internal repair shop needs to somehow adapt their operations to accommodate

expedited repairs. The model in this chapter is intended to aid both the dimensioning

and the expediting decision. Especially for the dimensioning decision, it is important

to consider the fact that expediting will occur later at the operational level.

We study the decision problem of the previous paragraph via a stochastic inventory

model for repairable items. In this model a defective item is replaced with a ready-

for-use item and sent to a repair shop immediately after the defect occurs. At this

point in time, the inventory manager is faced with the decision to either expedite or

not expedite the repair of the part. Expediting repair is more costly but has a shorter

lead time. This expediting decision is informed by knowledge about the fluctuation

of demand intensity over time.

Our model runs in continuous time, and demand for the component is a Markov

modulated Poisson process (MMPP). The state of the Markov chain that drives the

demand process can be observed directly and is used to inform the expediting decision.

This demand model is quite rich and can serve to model such divers things as economic

conditions, seasons of a year, the degradation of a fleet of equipment, and knowledge

about the maintenance program of equipment (Song and Zipkin, 1993). It has also

been observed empirically that demand for repairable spare parts behaves as a non-

stationary Poisson process (Slay and Sherbrooke, 1988). In any case, the MMPP

offers the flexibility to model both stationary and non-stationary demand processes

and so it can be used to model a wide variety of demand models. In particular it

offers the possibility to model demand fluctuations.

We assume that there are no economies of scale in replenishment so that inventory is

replenished by an (S − 1, S)-policy, meaning that each defective item is immediately

sent to the repair shop. We model the expedited lead time as being deterministic and

the regular lead time as being the convolution of the expedited lead time and several

exponential phases, the passing of which is monitored. Modeling lead time as such

is a convenient device to investigate the value of tracking order progress information

and the effect of different lead time distributions. (Gaukler et al., 2008, use a very

similar model of order progress information.) Many lead time distributions can be

modeled quite closely by this device and in particular deterministic lead times can be

approximated arbitrarily closely by letting the number of exponential phases approach

infinity.

The main contributions of this chapter are as follows. For the described setting, we

characterize the optimal repair expediting policy for the infinite horizon average and

discounted cost criteria by formulating the problem as a Markov decision process.

We find that the optimal policy may take two forms. The first form is simply to

never expedite repair. The second form is a state dependent threshold policy, where
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the threshold depends on both the state of the modulating chain of demand and

the pipeline of repair orders. We also provide monotonicity results for the threshold

as a function of the pipeline of repair orders. We give closed-form conditions that

determine which of the two forms is optimal. In analyzing the optimal policy, we

also confirm a conjecture of Song and Zipkin (2009) that the expediting policy they

propose is optimal for some special cases.

Secondly, we show how to optimally solve the joint problem of determining the turn-

around stock and the expediting policy.

Thirdly, we propose a heuristic that is computationally efficient, and is shown to

perform well compared to the optimal solution. In this heuristic, we replace the

optimal expediting policy with a parameterized threshold policy that shares important

monotony properties with the optimal expediting policy. The thresholds depend on

the available knowledge about the fluctuation of demand. Borrowing the terminology

of Zipkin (2000), we call this policy the world driven threshold (WDT) policy. In a

numerical study involving a large test bed, this heuristic has an average and maximum

optimality gap of 0.15% and 0.76% respectively.

Finally, we investigate the value of anticipating demand fluctuations by comparing

optimal joint stocking and expediting policy optimization against naive heuristics

that do not explicitly model demand fluctuations, or that separate the stocking and

expediting policy decisions. These naive heuristics have optimality gaps of 11.85% on

average and range up to 63.67% in our numerical work. The comparison with these

naive heuristics show that

1. There is great value in leveraging knowledge about demand fluctuations, in

making repair expediting decisions.

2. Fluctuations of demand and the possibility to anticipate these through expedit-

ing repairs should be considered explicitly in sizing the turn-around stock and

can lead to substantial savings.

This chapter is organized as follows. In §4.2, we review relevant literature and position

our contribution with respect to existing results. The model is described in §4.3 and

analyzed exactly in §4.4. In general, the exact analysis leads to algorithms that suffer

from the curse of dimensionality. Therefore, in §4.5, we study a heuristic informed by

our exact analysis that is computationally tractable. In §4.6, we provide numerical

results on the performance of the heuristic we propose and investigate the value of

anticipating demand fluctuations through the joint optimization of the turn-around

stock and expediting policy. Concluding remarks are provided in §4.7.
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4.2. Literature review

Our model is situated at the intersection of two streams of literature. The first one

deals with sizing the turn-around stock of repairable item inventories and the second

one with expediting, or inventory models with two (or more) supply modes.

An important characteristic of repairable item inventories is that inventory is

replenished by repairing defective items. Repairable item inventory systems thus form

a closed loop system that implicitly dictates base-stock levels. Often, the number of

supported assets is large and the demand process is assumed to be independent of the

number of outstanding orders. A small stream of literature considers situations where

the number of supported technical systems is low and so the number of outstanding

orders will affect the demand process (e.g. Gross and Ince, 1978). We assume that

demand for the repairable is not affected by the number of outstanding repair orders.

This is in line with the modeling assumptions of most of the repairable item inventory

literature that was started with the metric model introduced by Sherbrooke (1968).

Most of the important results in this stream of literature have been consolidated in

the books by Sherbrooke (2004) and Muckstadt (2005). In this chapter, we add to the

literature on repairable item inventories by studying what happens when it is possible

to expedite the repair of a defect part, and in particular if this flexibility can be used to

respond to a fluctuating demand environment. In doing this, we relax the commonly

held assumption that demand is a stationary Poisson process. Our assumption of a

Markov modulated Poisson process is more in line with empirical findings (Slay and

Sherbrooke, 1988). Verrijdt et al. (1998) already studied simple heuristics for the case

that demand is a stationary Poisson process and emergency and regular repair lead

times are both exponentially distributed. We relax the assumptions that the demand

process is stationary and consider a more general lead time structure. Furthermore,

we study optimal solutions as well as a new heuristic informed by the structure of the

optimal solution. We also remark that expediting repair is not the same as shipping

a ready-for-use part from a different stocking location which is commonly known as

an emergency shipment (e.g. Alfredsson and Verrijdt, 1999).

Inventory models with multiple supply modes have been reviewed by Minner (2003).

Here we review the important and more recent results. Most authors consider

a periodic review setting where the regular and expedited lead time differ by a

single period and find that a base-stock policy is optimal for both the regular and

expedited supply modes (e.g. Fukuda, 1964). When the lead time of the regular

and expedited supply modes differ by more than a single period, optimal policies do

not exhibit simple structure and depend on the entire vector of outstanding orders

(e.g. Whittmore and Saunders, 1977; Feng et al., 2006). As a result, recent research

considers heuristic policies for the control of dual supply systems, the most notable of
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these being the dual-index policy and variations thereof (Veeraraghavan and Scheller-

Wolf, 2008; Sheopuri et al., 2010; Arts et al., 2011). Under the dual-index policy, a

regular and emergency inventory position are tracked separately, and both are kept

at or above their respective order-up-to levels.

As opposed to the above mentioned papers, Moinzadeh and Schmidt (1991) consider

a system running in continuous time facing Poisson demand with deterministic

emergency and regular replenishment lead times. They show how to evaluate a given

dual-index policy, although the name was not coined at the time, and the structure was

not recognized as such. Song and Zipkin (2009) reinterpret the model of Moinzadeh

and Schmidt (1991) revealing the simple structure of the policy and show how the

performance of any such policy can be evaluated in closed form using an equivalence to

a special type of queueing network that has a product form solution. This equivalence

also allows them to consider very general lead time structures. Verrijdt et al. (1998)

consider a similar system in the context of repairable items. In their model, the regular

and expedited supply/repair modes have independent exponentially distributed lead

times. They consider a different policy where repair is expedited when the inventory

on hand drops below a certain critical level.

While two different heuristic expediting policies have been suggested in the literature

by Moinzadeh and Schmidt (1991) and Song and Zipkin (2009), and Verrijdt et al.

(1998), the optimal expediting policy has not yet been investigated. Song and Zipkin

(2009) conjecture that their policy is optimal in some special cases. In this chapter,

we analyze the optimal repair expediting policy in the case of deterministic expedited

repair lead times and stochastic regular repair lead times. As it turns out, the form

suggested by Moinzadeh and Schmidt (1991) and Song and Zipkin (2009) is optimal in

the special case that the regular repair lead time has a shifted exponential distribution

and demand is a Poisson process. For more general lead time structures and demand

processes, the optimal policy is a generalization of this policy. We note that Song and

Zipkin (2009) also considered Markov modulated Poisson demand as an extension, but

their expediting policy does not depend on the state of modulating chain of demand.

4.3. Model formulation

Our model supports two decisions: (i) How to dimension the turn-around stock S and

(ii) what expediting policy to follow. The two decisions we consider in this chapter

live in different time scales. For the analysis, we will use a nested procedure that

determines the optimal expediting policy for a given turn-around stock, and use this

to determine the optimal turn-around stock. Below we give an integrated description

of the model. In §4.3.1, we discuss the main assumptions of the model and their
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justifications.

We consider a repairable item stock-point operated in continuous time with an infinite

planning horizon [0,∞). The stock-point faces Markov modulated Poisson demand

and so demand is a Poisson process whose intensity varies with the state of an

exogenous Markov process Y (t). The Markov process Y (t) is irreducible and has a

finite state space Θ = {1, ..., |Θ|} with generator matrix Q whose elements we denote

by qij . For notational convenience, we also define qi = −qii and qmax = maxi∈Θ qi.

When Y (t) = y, the intensity of Poisson demand is given by λy ≥ 0; λ = (λ1, ..., λ|Θ|),
λy > 0 for at least one y ∈ Θ. For convenience, we also define λmax = maxy∈Θ λy. We

denote demand in the time interval (t1, t2] given Y (t1) = y as Dy
t1,t2 . Note that Y (t1)

provides information about the distribution of demand in the interval (t1, t2], t2 > t1.

We assume that Y (t) can be observed by the decision maker and so it provides a form

of aggregated advance demand information.

The size of the turn-around stock, S ∈ N0, of the repairable is determined at time

t = 0 and cannot be adapted afterwards. We assume that failed parts can always

be repaired (no condemnation) and that defective parts are sent to the repair shop

immediately, i.e., we use an (S − 1, S) replenishment policy.

There exists a regular and an expedited repair option. The expedited repair lead

time, `e, is deterministic. The expedited repair lead time may represent things such

as the transport time and the repair time or a lead time agreed upon with an external

company that provides emergency repair service. We also refer to using the expedited

repair mode as expediting repair.

The regular repair lead time consists of the emergency repair lead time `e, and a

random component of length Lr, with mean E[Lr] < ∞. We shall also refer to Lr
as the additional regular repair lead time. Lr is used to model such things as the

time that a part waits for resources to become available in the repair shop or the

lead time difference between regular and emergency repair lead times as contracted

with an external repair shop. We assume that this additional time is distributed as

the sum of m exponential phases, with mean 1/µi for the i-th exponential phase. We

also let µmax = maxi∈{1,...,m} µi. The inventory manager can observe the pipeline

of outstanding orders and so she knows how many phases each part in the pipeline

has completed. In particular, the inventory manager knows when the last phase

(m) is completed and the remaining lead time of a regular order is `e. A graphical

representation of the system under study is given in Figure 4.1.

Turn-around stock depreciation costs are incurred with a constant rate h > 0 for

all repairable spare parts, regardless of where they are in the supply chain. Repair

expediting costs per item are ce > 0, i.e., ce represents the cost difference between

using the regular and emergency repair modes. A penalty cost rate p > 0 per item
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Repair shop
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Figure 4.1 Repairable item inventory system with the possibility to expedite repair

short per time unit for the repairable item inventory is also charged (backordering).

We are interested in minimizing the long run average cost rate by (i) deciding on

the turn-around stock, S, to be purchased at time t = 0 and (ii) implementing a

repair expediting policy. (As an extension, we shall also consider minimizing total

discounted costs for the expediting policy in §4.4.1.4.)

4.3.1 Main assumptions and justifications

In the model of §4.3, some assumptions require either a practical or analytical

justification. Here we list the main assumptions and their justifications.

• The turn-around stock S is determined at time t = 0, and remains fixed after

that: Because repairables are specific to the capital asset which they support,

they are only produced in small series when the capital asset is produced. After

the particular capital asset is no longer produced, the repairable is either no

longer available or has to be custom made against a steep price. Thus, for the

user of the capital asset, it is most economical to purchase all spare repairables

jointly with the asset they support.

• We consider an infinite planning horizon. The lifetime of repairables considered

in the model is as long as the life cycle of the assets they support which is

typically several decades. This is long compared to other time characteristics
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in the problem such as lead times which are typically measured in weeks, and

justifies using infinite horizon models.

• Demand is a Markov modulated Poisson process: In spare parts literature, the

Poisson demand model is perhaps the most common (e.g. Sherbrooke (2004) and

Muckstadt (2005)). For relatively short periods of time, this demand model is

often sufficiently accurate, and Markov modulated Poisson demand can handle

Poisson demand as a special case. For longer periods of time, the demand

intensity for repairables may be affected by things such as weather conditions

(increased wear) and periodic inspections. Slay and Sherbrooke (1988) observe

that demand for aircraft components behaves as a Poisson process for which

the rate varies over time. There are many reasons for this behavior such as

weather, asset loading, and the fact that many capital assets undergo one

or more major revisions during their lifetime. During these revision periods,

demand for repairables peak, as inspections reveal latent failures. Often, the

exact timing of revision periods is uncertain when the asset is acquired. The

Markov modulated Poisson process offers the flexibility to model these and many

other demand scenarios. The recent trends in condition based maintenance are

a rich source for modeling demand using a MMPP.

• Repair of a part is always possible (no condemnation): Under normal operations,

the expensive repairables considered in our model only fail permanently in case

of industrial accidents. Generally, the probability of this happening is negligible.

• The additional regular repair lead time, Lr, can be modeled by a sum of

exponential phases, and phase transitions can be observed. This assumption

appears quite strong. We think of the m exponential phases of Lr primarily as

a device to model order progress information. A special case occurs as m→∞
as this will approach deterministic replenishment lead times and order progress

is known exactly. We also note that if the first two moments of Lr are known

(or estimated from data) and satisfy c2Lr = Var[Lr]/E2[Lr] ≤ 1, then m and

µi, i = 1, ...,m can be chosen so as to match these moments. Such a fitting

procedure will require that m ≥ b1/c2Lr + 1c (Aldous and Shepp, 1987). It is

evident that as c2Lr decreases, more information is available on when a repairable

completes its additional regular repair lead time. Under the present model, this

is naturally matched by increasing m. Therefore, we may think of the parameter

m as a modeling device that conveys how closely one tracks, or is able to track,

the progress of repairables through the replenishment pipeline. In particular,

as m → ∞, the regular replenishment lead time approaches a deterministic

lead time and order progress is known exactly. Thus, this assumption allows

us to gain insight on the added value of being able to track repairable order

progress carefully. However in §6.8, we show that this added value is small and
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consequently we believe it is unnecessary to refine the model of the additional

regular repair lead time and how progress through the orde pipeline is, or can

be, monitored.

4.4. Exact Analysis

The analysis of the model benefits from first considering the optimization of the

expediting policy separately. That is, we use a nested procedure. Therefore in §4.4.1,

we consider our model where the turn-around stock, S, is fixed, and focus on finding an

optimal expediting policy. We call this problem M(S). After this, we turn attention

to the joint problem of sizing the turn-around stock and determining an expediting

policy in §4.4.2.

4.4.1 Expediting policy optimization

In this subsection, we consider the problem of finding optimal repair expediting

policies for fixed S. (Recall that this problem was termed M(S)). Since the holding

costs depend linearly on S only, we need not consider holding cost in finding an optimal

expediting policy for a fixed S. We make several steps in our analysis. First, we give

the state space description and give closed form conditions under which the state

space can be truncated to yield a finite state space for the purpose of finding average

optimal expediting policies. We also show that when these conditions do not hold, the

optimal policy is to never expedite repair. After that, we formulate a finite horizon

finite state space Markov decision process. The average optimal expediting policy is

characterized in §4.4.1.3 and the infinite horizon discounted version in §4.4.1.4.

4.4.1.1 State space description

Let Xi(t) denote the number of items in regular repair at time t that are in the

i-th phase of their additional repair lead time (i = 1, ...,m), and let X(t) =

(X1(t), ..., Xm(t)). The following observation shows that X(t) and Y (t) contain all the

information needed to make expediting decisions. Let cp(x, y) denote the expected

penalty cost rate at time t+`e conditional on
∑m
i=1Xi(t) = X(t)eT = x and Y (t) = y,

cp : N0 × Θ → R (N0 = N ∪ {0} and e = (1, 1, . . . , 1)). To find cp(x, y), note

that S − X(t)eT = S − x represents the number of parts that are on hand at the

stockpoint at time t or will arrive at the stockpoint before time t + `e. Thus the

expected number of backorders at time t + `e given X(t)eT = x and Y (t) = y is

E
[(
D
Y (t)
t,t+`e

− (S −X(t)eT)
)+

| X(t)eT = x, Y (t) = y

]
. From this it is easily verified
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that

cp(x, y) = p E
[(
D
Y (t)
t,t+`e

−
(
S −X(t)eT

))+
∣∣∣∣X(t)eT = x, Y (t) = y

]
= p

∞∑
k=S−x

(k − (S − x))P
{
Dy
t,t+`e

= k
}
. (4.1)

When convenient, we also use the notation cp(x, y|S) for cp(x, y) to make the

dependence on S explicit. We note that to use (4.1), one must be able to evaluate

P
{
Dy
t,t+`e

= k
}

. This can be done numerically by inverting the generating function

of P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}

which is given in the form of a matrix exponential

(e.g. Fischer and Meier-Hellstern, 1992) and then un-conditioning on the event

Y (t + `e) = y′. We relegate further details of this to appendix 4.A. Let ∆

denote the difference operator with respect to the first argument of a function, i.e.,

∆cp(x, y) = cp(x + 1, y) − cp(x, y). The following lemma establishes some useful

properties of cp. The proof of Lemma 4.1, in Appendix 4.B.1, is similar to the proof

of these same properties for the cost function of a news-vendor problem.

Lemma 4.1 cp(x, y) has the following properties:

(i) cp(x+ 1, y) ≥ cp(x, y) for all x ∈ N0 and y ∈ Θ, i.e., cp is non-decreasing in x.

(ii) ∆cp(x+ 1, y) ≥ ∆cp(x, y) for all x ∈ N0 and y ∈ Θ, i.e., cp is convex in x.

(iii) ∆cp(x, y) ≤ p for all x and y ∈ Θ and ∆cp(x, y) = p for all x ≥ S and y ∈ Θ.

(iv) ∆cp(x, y|S) ≥ ∆cp(x, y|S + 1) for all x ∈ N0, y ∈ Θ and S ∈ N0.

Next, we note that whenever an item fails at time t, and is not expedited, X1(t)

increases by one. Thus, X(t) and Y (t) contain all information needed to do cost

accounting, and, in particular, to make optimal expediting decisions.

Proposition 4.1 below allows us to truncate the relevant state space if ce < pE[Lr],

and fully characterizes an optimal expediting policy if ce ≥ pE[Lr]. Proposition 4.1

can be understood intuitively by making the following casual observation: Whenever

a repair is expedited, this may avert a backorder at most for the additional regular

repair lead time Lr. Thus, when the cost of expediting repair is more than or equal to

the expected backorder cost over the additional regular repair lead time, expediting

is never beneficial. Conversely, if expediting is cheaper than the cost of a backorder

over the expected additional regular lead time, then expediting is almost certainly

beneficial if the number of parts already in repair that will not arrive within the

expedited lead time is sufficiently large.
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Proposition 4.1 For the infinite horizon, average cost criterion, the following

statements hold:

(i) If ce ≥ pE[Lr] then it is optimal to never expedite repair.

(ii) If ce < pE[Lr] then there is an M ∈ N such that whenever X(t)eT ≥ M it is

optimal to expedite repair upon failure of a part.

Proof: Here we prove part (i). The proof of part (ii) is in the appendix; that

proof is more subtle, involving the verification that several limits exist, but is based

on a similar idea.

The proof is based on showing that any policy that expedites in some state when

ce ≥ pE[Lr] can be improved by a policy that is identical except that it does not

expedite in that state. Let π denote an arbitrary policy that expedites for some state

(x, y). Suppose now that at time t′, the process is in state (x, y) and a demand

occurs. Let (X(t), Y (t)) denote the process under policy π. Next we construct a

coupled process, (X′(t), Y (t)), that is identical to (X(t), Y (t)) except that the failed

part arriving at time t′ is not expedited. Let X̃(t) denote the evolution of the part

expedited at time t′ by policy π through the pipeline, i.e., X̃(t) = ei if the part sent to

regular repair at time t′ has completed its first i− 1 phases of the additional regular

repair lead time at time t, and X̃(t) = 0 if the part has completed its additional

regular repair lead time. (ei is the i-th unit vector with dimension m.) With this

notation, we can write X′(t) = X(t) + X̃(t). Now let Tr = inf{t− t′|X̃(t) = 0, t ≥ t′}
and note that Tr

d
=Lr, where

d
= denotes equality in distribution. By construction,

any cost difference between the processes (X′(t), Y (t)) and (X(t), Y (t)) must occur

in the interval [t′, t′ + Tr), because these processes are identical outside that interval.

In [t′, t′ + Tr), X(t) incurs exactly ce more emergency repair costs due to the part

expedited at time t′, and X′(t) incurs more penalty costs because X′eT = X(t)eT + 1

for t ∈ [t′, t′ + Tr). The expected cost difference between the processes (X(t), Y (t))

and (X′(t), Y (t)) thus satisfies:

ce − ETr

{
E(X(t),Y (t))

[∫ t′+Tr

t=t′
∆cp(X(t)eT, Y (t))

∣∣∣∣∣Tr
]}
≥ ce − ETr [pTr]

= ce − pE[Lr] ≥ 0 (4.2)

where the first inequality holds by lemma 4.1 (iii). Thus we see that when ce ≥ pE[Lr],

any policy π that expedites for some states, can be improved (in the weak sense)

by changing the decisions to not expedite in those states. This implies that when

ce ≥ pE[Lr], the policy to never expedite is optimal. 2
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Proposition 4.1 has an important implication: When ce < pE[Lr], there is a finite M

such that it is optimal to expedite repair in all states (x, y) such that xeT ≥M . We

can limit ourselves to such policies, and then all states with xeT ≥ M are transient.

Consequently, for the purpose of finding average optimal policies, we may restrict the

state space of (X(t), Y (t)) to the finite set S = {(x, y) ∈ Nm0 ×Θ|xeT ≤M} for some

M ∈ N. We remark that in the proof of Proposition 4.1 (ii), it is shown how such an

M can be found.

4.4.1.2 MDP formulation with bounded transition rates

In this section, we consider the model M(S) with ce < pE[Lr], and state space

S = {(x, y) ∈ Nm0 × Θ|xeT ≤ M}, where M is chosen such that it is optimal to

expedite whenever XeT ≥ M . (By Proposition 4.1, such a finite M ∈ N exists.)

With a slight abuse of notation, we term the problem of finding an optimal policy for

this model as M(S,M). In this finite state space, transition rates are bounded and

so we can apply the technique of uniformization to transform the problem of finding

an optimal expediting policy to discrete time.

Remark 4.1 Without Proposition 4.1, uniformization would not have been possible.

Thus, Proposition 4.1, not only facilitates the computation of optimal policies, but

is also essential in establishing the structure of optimal policies using an inductive

approach based on the dynamic programming recursion. 3

In each state (x, y), we take a decision as to whether we expedite the repair of a part

if the next event happens to be the arrival of a defective part. We let 1 denote the

decision to expedite if a part arrives and let 0 be the decision to not expedite if a part

arrives. Thus the action space in state (x, y) is A(x, y) = {0, 1} when xeT < M and

A(x, y) = {1} otherwise. Observe that if we take a decision 1 in some state of the

system, this does not necessarily imply we will expedite some part, because the next

event in the systems may not be the arrival of a defective part.

As uniform transition rate for this MDP, we choose Λ = λmax+M
∑m
i=1 µi+qmax. Let

p((x′, y′)|(x, y), a) denote the transition probability from state (x, y) ∈ S to (x′, y′) ∈
S when action a ∈ A(x, y) is taken and note that the time between transitions has an

exponential distribution with mean 1/Λ. Without loss of generality, we rescale time
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such that Λ = 1. Then we have:

p((x′, y′)|(x, y), a) =



λy, if x′ = x + e1, y′ = y, a = 0;

xmµm, if x′ = x− em, y′ = y, a ∈ {0, 1};
xiµi, if x′ = x− ei + ei+1, y′ = y,

a ∈ {0, 1}, i = 1, ...,m− 1;

qy,y′ , if x′ = x, y′ 6= y, a ∈ {0, 1};∑m
i=1(M − xi)µi+
qmax − qy + λmax − λy, if (x′, y′) = (x, y), a = 0;∑m
i=1(M − xi)µi+
qmax − qy + λmax, if (x′, y′) = (x, y) and a = 1;

0, otherwise,
(4.3)

where ei is the i-th unit vector in dimension m. Regardless of the decision taken,

between transitions, an expected penalty cost of cp(xeT, y) is incurred. Additionally,

a cost of ce is incurred if an arriving defective part is rejected from the system.

Now let Vn(x, y) denote the optimal total cost function when in state (x, y) and having

n transitions to go and define V0(x, y) ≡ 0. The finite horizon dynamic programming

recursion (Bellman equation) is given by

Vn+1(x, y) = cp(xeT, y) + λy1{xeT<M}min{ce + Vn(x, y), Vn(x + e1, y)}
+ λy1{xeT=M}(ce + Vn(x, y)) +

∑m−1
i=1 xiµiVn(x− ei + ei+1, y)

+ xmµmVn(x− em, y) +
∑m
i=1(M − xi)µiVn(x, y)

+
∑
y′∈Θ\{y} qyy′Vn(x, y′) + (qmax − qy + λmax − λy)Vn(x, y), (4.4)

where 1{·} is the indicator function.

Remark 4.2 Note that an alternate uniformization constant is given by Λ′ =

λmax +Mµmax + qmax, where µmax = maxi∈{1,...,m} µi. This uniformization constant

is smaller, and therefore more suitable if the dynamic programming recursion is used

in value iteration algorithms. With this uniformization constant the MDP recursion

becomes (we again scale time such that Λ′ = 1):

Vn+1(x, y) = cp(xeT, y) + λy1{xeT<M}min{ce + Vn(x, y), Vn(x + e1, y)}
+ λy1{xeT=M}(ce + Vn(x, y))

+
∑m−1
i=1 xiµiVn(x− ei + ei+1, y) + xmµmVn(x− em, y)

+
∑m
i=1 xi(µmax − µi)Vn(x, y) + (M −∑m

i=1 xi)µmaxVn(x, y)

+
∑
y′∈Θ\{y} qyy′Vn(x, y′) + (qmax − qy + λmax − λy)Vn(x, y). (4.5)

In this section, we will work with the formulation with the computationally ‘less

efficient’ Λ so that we can reuse some results in the literature to prove structural
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properties of optimal policies. In the numerical section, §4.6, we use the formulation

in because a smaller uniformization constant leads to quicker convergence of value

iteration algorithms (e.g Kulkarni, 1999). 3

To analyze the value function Vn(x, y) in §4.4.1.3, we employ the event based dynamic

programming approach introduced by Koole (1998, 2006). To this end, let V denote

the set of all functions v : S → R and let f, f1, ..., fm+2 ∈ V. We define the following

operators Tcost,TAC(i),TTD(i),TD(i),Tenv : V → V, Tunif : Vm+2 → V.

Tcostf(x, y) = cp(xeT, y) + f(x, y) (4.6)

TAC(i)f(x, y) = 1{xeT<M}min{ce + f(x, y), f(x + ei, y)} (4.7)

+ 1{xeT=M}(ce + f(x, y))

TTD(i)f(x, y) =
xi
M
f(x− ei + ei+1, y) +

M − xi
M

f(x, y) (4.8)

TD(i)f(x, y) =
xi
M
f(x− ei, y) +

M − xi
M

f(x, y) (4.9)

Tenvf(x, y) =
∑

y∈Θ\{y}
qyy′f(x, y′) + (qmax − qy + λmax − λy)f(x, y)

(4.10)

Tunif(f1, · · · , fm+2)(x, y) = λyf1(x, y) +

m∑
i=1

Mµifi+1(x, y) + fm+2(x, y) (4.11)

These operators are variations to operators defined by Koole (1998, 2004, 2006) and

are originally intended to model various common queueing mechanisms such as arrival

control (TAC(i)), transfer departures from multi-server tandem queues (TTD(i)), and

departures from multi-server queues (TD(i)), while the operators Tcostf(x, y), Tenv

and Tunif are mainly convenient for bookkeeping. The Bellman recursion for our

MDP, (4.4), can now be written succinctly as

Vn+1(x, y) = TcostTunif

[
TAC(1)Vn(x, y),TTD(1)Vn(x, y), · · · ,TTD(m−1)Vn(x, y),

TD(m)Vn(x, y),TenvVn(x, y)
]
. (4.12)

This formulation of the MDP recursion is convenient because the propagation of

value function properties over n can be analyzed through the propagation properties

of operators, for which results are available in literature.

We remark that the operators used to rewrite the MDP recursion reveal that the

MDP we are dealing with is equivalent to an admission control problem for a tandem

line of ample exponential server queues. A similar equivalence is exploited by Song

and Zipkin (2009) in finding effective means to evaluate heuristic policies.
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4.4.1.3 Average optimal expediting policies

To characterize average optimal policies, we study properties of the value function and

how these properties propagate through recursion (4.12). We define the first order

difference operator with respect to xi, ∆i, as ∆if(x, y) = f(x + ei, y)− f(x, y). We

distinguish the following subsets of V:

I(i) = {f ∈ V|f(x, y) ≤ f(x + ei, y)} (4.13)

C(i) = {f ∈ V|∆if(x, y) ≤ ∆if(x + ei, y)} (4.14)

UI = {f ∈ V|f(x + ei+1, y) ≤ f(x + ei, y), i = 1, ...,m− 1} (4.15)

SM(i, j) = {f ∈ V|∆if(x, y) ≤ ∆if(x + ej , y)}. (4.16)

In (4.13)-(4.16), it is understood that the inequalities that characterize each set must

hold when the arguments on both sides of the inequality exist in S. I(i) and C(i) are

the sets of non-decreasing and convex functions with respect to xi respectively. UI is

the set of upstream increasing functions as introduced in Koole (2004) and renamed in

Koole (2006). The set SM(i, j) consists of functions with a specific supermodularity

property. Finally, define F as

F =

(
m⋂
i=1

I(i)

)
∩

 m⋂
j=2

SM(1, j)

 ∩ UI ∩ C(1). (4.17)

Lemma 4.2 The following statements hold:

(i) The function g ∈ V defined by g(x, y) = cp(xeT, y) is a member of F , i.e.,

g ∈ F .

(ii) If f ∈ F then Tcostf(x, y),TAC(1)f(x, y),TD(m)f(x, y),Tenvf(x, y) ∈ F and

TTD(i)f(x, y) ∈ F for i = 1, ...,m− 1.

(iii) If fj ∈ F for j = 1, ...,m+ 2, then Tunif(f1, ..., fm+2)(x, y) ∈ F .

The proof of this lemma is in Appendix 4.B.3. The properties of functions in V that are

shown to propagate through operators (4.6)-(4.11) in Lemma 4.2, imply structure on

the optimal policy. To state the next lemma, we introduce some notation. Let x(−1)

denote the vector x with its first component set to 0, i.e., x(−1) = (0, x2, . . . , xm).

The next lemma explains how the optimal policy at transition epoch n is related to

properties of Vn−1.

Lemma 4.3 If Vn−1 ∈ F , then, at transition epoch n, there are state dependent

thresholds Tn
(
x(−1), y

)
such that it is optimal to expedite the repair of an arriving
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part at transition epoch n if X1(tn) ≥ Tn
(
X(−1)(tn), Y (tn)

)
, where tn is the time

corresponding to transition epoch n. Furthermore the thresholds Tn
(
x(−1), y

)
satisfy

the following monotonicity property: ∆iTn
(
x(−1), y

)
≤ 0, for i = 2, ...,m.

Proof: Let Vn−1 ∈ F . The fact that a state dependent threshold policy is

optimal at decision epoch n follows immediately from the fact that Vn−1 ∈ C(1) and

Koole (2006), Theorem 8.1. Because Vn−1 ∈
⋂m
i=2 SM(1, i), this threshold is non-

increasing in x2 to xm, again by Koole (2006), Theorem 8.1. This can be written as

Tn(x + ei, y) ≤ Tn(x, y) for i = 2, ...,m, and by subtracting Tn(x, y) from both sides

we obtain ∆iTn(x, y) ≤ 0. 2

An alternative interpretation of Lemma 4.3 is that the optimal policy at transition

epoch n (under the stated condition) is a switching curve between expediting and not

expediting repair. This switching curve is decreasing in xi for i = 2, ...,m. Figure

4.2 illustrates two such switching curves. In part (a) of the figure, for a given x2, it

is optimal to expedite repair if x1 is on or above the shown line. In part (b) of the

figure, for given (x2, x3) it is optimal to expedite repair if x1 is on or above the shown

surface.

The policy described in Lemma 4.3 can also be reinterpreted as a state dependent

expedite-up-to policy. To see this, define IPe(t) = S − X(t)eT, and note that

this can be interpreted as the expedited inventory position: on-hand inventory

minus backorders plus outstanding orders arriving within the expedited lead time

`e. The optimal policy is now to expedite parts to retain IPe(tn) at or above

the level S − Tn
(
X(−1)(tn), Y (tn)

)
. Thus the resulting policy is a state dependent

version of the dual-index policy (Veeraraghavan and Scheller-Wolf, 2008; Arts et al.,

2011, consider state independent dual-index policies), where regular and emergency

inventory positions are both kept at or above their order-up-to levels. Note however,

that the regular order-up-to level was assumed to be S from the start as we are dealing

with a closed loop system. Without this fixed base-stock level, a state dependent

dual-index replenishment policy need not be optimal.

The main result of this section is that average optimal policies also have the structure

described in Lemma 4.3.

Theorem 4.1 Consider the model M(S). If ce ≥ pE[Lr], then it is average optimal

to never expedite repair. If ce < pE[Lr], then there are state dependent threshold levels

T
(
x(−1), y

)
∈ N0 such that it is average optimal to expedite the repair of an arriving

defective part at time t if X1(t) ≥ T
(
X(−1)(t), Y (t)

)
. Furthermore these threshold

levels T
(
x(−1), y

)
satisfy the property in Lemma 4.3, i.e., ∆iT

(
x(−1), y

)
≤ 0 for

i = 2, ...,m.
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Figure 4.2 Part (a) shows the state dependent threshold for n = 593 in the case where Lr
has an Erlang(2) distribution (m = 2). Part (b) shows the state dependent thresholds for

n = 1513 when Lr is Erlang(3) distributed (m = 3). Both cases are based on the problem

instance with |Θ| = 1, λ1 = 1, E[Lr] = 4, `e = 2, ce = 8, p = 10, and S = 8. In both

cases, n coincides with the iteration in which average optimal policies are found within some

precision.

Proof: The first part of the theorem is simply a restatement of part (ii) of

Proposition 4.1. If ce < pE[Lr], we may apply Proposition 4.1.(ii) to truncate the state

space at a finiteM and optimal solutions to M(S,M) will coincide to optimal solutions

to M(S) providedM is sufficiently large. Therefore, let us consider M(S,M). Observe

that state (0, y) for any y ∈ Θ is reachable from any other state for any policy, so this

MDP is unichain. Furthermore, since under any policy, there are transitions from

state (0, y) to itself, this MDP is aperiodic. By Theorem 8.5.4 of Puterman (1994),

max(x,y)∈S(Vn+1(x, y)−Vn(x, y))−min(x,y)∈S(Vn+1(x, y)−Vn(x, y)) converges to the

optimal average costs as n → ∞. Now for each n, a policy of the form described in

Lemma 4.3 is optimal because V0 ∈ F and so, by induction using Lemma 4.2, so are

Vn for n ∈ N. Finally since both the state and action space of this MDP are finite,

there are finitely many policies that satisfy Lemma 4.3, and at least one of them will

be found infinitely often throughout recursion (4.12). Such a repair expediting policy

is average optimal. 2

Theorem 4.1 also answers a question and conjecture posed by Song and Zipkin (2009,

p. 371): “Are there any systems for which some policy of the form above is in fact
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optimal?”. The policy Song and Zipkin (2009) propose is exactly the policy described

in Theorem 4.1 for the special case that m = 1. For m ≥ 2 one obtains a generalized

form of this policy.

4.4.1.4 Infinite horizon discounted optimal expediting policies

The same policy structure results hold for the case where we are interested in the

infinite horizon discounted cost criterion. Let β > 0 be the discount rate. Proposition

4.1 continues to hold with pE[Lr] replaced by the expected discounted penalty costs

over an interval of length Lr:

ELr

[∫ Lr

0

pe−βtdt

]
=
p

β
− p

β
E
[
e−βLr

]
.

This holds in general for all non-negative distributions that might model Lr. In our

particular model, the Laplace-Stieltjes transform of Lr is given by:

E
[
e−βLr

]
=

m∏
i=1

µi
µi + β

.

The MDP recursion can be written in exactly the same manner as before except that

Tcost, needs to be changed to Tβcost : V → V with

Tβcostf(x, y) =
cp(xeT, y)

Λ + β
+

Λ

Λ + β
f(x, y).

It is readily verified that Tβcost propagates the same properties as Tcost, that is, if

f ∈ F then also Tβcostf(x, y) ∈ F . With this change, it is easy to verify that Theorem

4.1 still holds, again with pE[Lr] changed to p
β −

p
βE
[
e−βLr

]
.

Theorem 4.2 Consider the infinite horizon discounted cost criterion for model

M(S) with discount rate β. If ce ≥ p
β −

p
βE
[
e−βLr

]
= p

β −
p
β

∏m
i=1

µi
µi+β

, then

it is β-discounted optimal to never expedite repair. If ce < p
β −

p
βE
[
e−βLr

]
=

p
β −

p
β

∏m
i=1

µi
µi+β

, then there are state dependent threshold levels T
(
x(−1), y

)
∈

N0 such that it is β-discounted optimal to expedite repair at time t if X1(t) ≥
T
(
X(−1)(t), Y (t)

)
. Furthermore these threshold levels T

(
x(−1), y

)
satisfy the property

in Lemma 4.3, i.e., ∆iT
(
x(−1), y

)
≤ 0 for i = 2, ...,m.

Remark 4.3 Numerical results indicate that optimal expediting thresholds satisfy

additional monotonicity properties, namely that

− 1 ≤ ∆2T
(
x(−1), y

)
≤ ∆3T

(
x(−1), y

)
≤ . . . ≤ ∆mT

(
x(−1), y

)
≤ 0, (4.18)
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implying in particular that T
(
x(−1) + ei, y

)
≤ T

(
x(−1) + ei+1, y

)
for i ∈ {2, . . . ,m}.

This property essentially formalizes that the optimal expediting policy is more

sensitive to late to arrive repair orders, than it is to soon to arrive repair orders.

To prove that this property holds, it suffices to show that

∆1Vn(x + ei, y) ≥ ∆1Vn(x + ei+1, y) (4.19)

for all (x, y) in S, n ∈ N and i ∈ {1, . . . ,m − 1}, but we have only been able to

establish it for i ∈ {2, . . . ,m − 1}. The property in (4.19) might be called upstream

convexity. Unfortunately, we have been unable to prove this property. The difficulty

lies in proving that this property is propagated by TTD(1). Ghoneim and Stidham Jr

(1985) and Moreta and Ziedins (1998) have also reported that they were unable to

prove this property for very similar systems. At the same time, they too were unable

to find a counterexample. 3

4.4.2 Turn-around stock optimization

In the analysis in the previous sections, we have considered problem M(S), i.e.,

we have considered S to be a fixed constant that was determined at t = 0, and

have focussed on using the expedition decision to minimize expedition and backorder

penalty costs. Now, we focus on the joint optimization of the turn-around stock S

and the expediting policy. For brevity of exposition, we only discuss the average cost

criterion in this section.

To facilitate presentation, we first present some notation: We let C(S) denote the

optimal average expediting and backorder penalty costs per time unit for a turn-

around stock of size S, i.e., C(S) = limn→∞ Vn(0, 1)/n is the optimal cost associated

with M(S). Furthermore, we let Ctot(S) := hS + C(S) denote the total cost rate

associated with a turn-around stock of S if an optimal repair expediting policy is

used.

Whenever we drop the time index of a stochastic process, we are referring to the

process in steady state, e.g. P{Y = y} = limt→∞ P{Y (t) = y}. We let the random

variable D(L) denote demand in an interval of length L ≥ 0 when the modulating

chain of demand is in steady state, i.e.,

P{D(L) ≤ k} =
∑
y∈Θ

P{Y = y}P
{
Dy
t,t+L ≤ k

}
.

A lower bound of Ctot(S) is given by the average holding and backorder penalty cost

rates of the system with turn-around stock S under the feasible policy of expediting

everything against zero expediting cost:

CLB(S) := hS + pE
[
(D(`e)− S)

+
]
.
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When we do include the expediting costs, we obtain an upper bound for Ctot(S):

CUB(S) := CLB(S) + ceλ̄.

Here, λ̄ =
∑
y∈Θ λyP{Y = y} is the long run average demand per time period. Let

S∗ := argminS∈N0
Ctot(S) denote the optimal turn-around stock. An upper bound to

Ctot(S
∗) is obtained by minimizing CUB(S). The S that minimizes CUB(S) (as well

as CLB(S)) can be easily found as CUB(S) is convex. We denote this minimizer Ŝ

and it is the smallest integer that satisfies the newsvendor inequality

P
{
D(`e) ≤ Ŝ

}
≥ p− h

p
. (4.20)

Since CLB(S) is convex, it is easy to find the greatest S ≤ Ŝ and smallest S ≥ Ŝ such

that CLB(S) ≥ CUB(Ŝ). This will provide lower and upper bounds respectively on

S∗.

Proposition 4.2 The optimal turn-around stock, S∗, that minimizes Ctot(S) is

bounded as SLB ≤ S∗ < SUB, where SLB and SUB are given by

SLB = max
{
{0} ∪min{x ∈ N0, x ≤ Ŝ : CLB(x) ≥ CUB(Ŝ)}

}
(4.21)

SUB = min{x ∈ N0, x ≥ Ŝ : CLB(x) ≥ CUB(Ŝ)}, (4.22)

Furthermore, if C(S) ≤ h for some S ∈ N0, then S∗ ≤ S.

Proof: The bounds established by SLB and SUB follow directly from the analysis

preceding Proposition 4.2. To verify the last statement, observe that C(S) is non-

negative and decreasing and that ∆Ctot(S) = h + ∆C(S). Combining these facts

implies that if C(S) ≤ h, then ∆Ctot(S) ≥ 0 and so S∗ < S. 2

Proposition 4.2 gives us bounds that can be used to minimize Ctot(S) by enumeration.

A natural question is whether C(S) is convex in S as this would make optimization

easy. Unfortunately C(S) is not convex in S as can be verified by considering

the problem instance with Poisson demand with rate λ = 10, `e = 1, E[Lr] = 3,

m = 1, p = 10 and ce = 15. In this case, C(S) can be obtained exactly without

dynamic programming using the results in Moinzadeh and Schmidt (1991) and

Song and Zipkin (2009). (In §4.5.1.1, we also show how to compute C(S) without

dynamic programming for this instance.) For this instance it can be verified that

C(20) − 2C(19) + C(18) ≤ −0.03, showing that C(S) is not convex in general; see

also Figure 4.3. The non-convexity of C(S) does affect the unimodality of Ctot(S)

but only in rather extreme cases. Figure 4.4 presents such a case. In §4.6 we present



106 Chapter 4. Repairable stocking and expediting

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Base-stock level S

C
(S

)

Figure 4.3 Consider the problem instance with Poisson demand with rate λ = 10, `e = 1,

m = 1, E[Lr] = 3, p = 10 and ce = 15. This figure shows the optimal cost for expediting

and backordering as a function of the turn-around stock C(S). Note in particular the

non-convexity around S = 19.
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Figure 4.4 Consider the problem instance with Poisson demand with rate λ = 3.43, `e = 8,

m = 1, E[Lr] = 15, p = 37.2 and ce = 116. This figure shows Ctot(S) for this instance.

Although the fact that Ctot(S) is not unimodal is not immediately apparent from sub-figure

(a), it is apparent from sub-figure (b). Any small deviation of any of the problem parameters

will make Ctot(S) unimodal.

numerical work for instances as they are typically encountered in practice. For all

these instances, C(S) is convex and Ctot(S) is unimodal. In fact, a cursory look at

Figures 4.3 and 4.4.a does not immediately reveal that C(S) and Ctot(S) are not

convex. This is typical for all counterexamples we have found.
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4.4.2.1 Trading off safety stock and safety time

In this subsection, we formally show that as the turn-around stock increases, the need

for expediting decreases and vice versa. To formalize this, we need some additional

notation. Let W be set of all functions w : S × N0 → R. The extra argument

corresponds to the turn-around stock. We make the dependence of Vn(x, y) on S

explicit by writing Vn(x, y, S). Note that operators (4.6)-(4.11) are also mappings

from W →W. We start with a sub-modularity of Vn(x, y, S) with respect to x1 and

S.

Lemma 4.4 For all n ∈ N0, (x, y) ∈ S and S < SUB,

∆1Vn(x, y, S) ≥ ∆1Vn(x, y, S + 1) (4.23)

where S is chosen with an appropriate M that is common for all S < SLB

The proof of this lemma is in the appendix and follows an inductive approach. Now

we can formally state that as the turn-around stock increases, the need for expediting

decreases and vice versa.

Proposition 4.3 Let TS
(
x(−1), y

)
denote the expediting threshold that is average

optimal under a turn-around stock level of S at (x, y) ∈ S. Then TS
(
x(−1), y

)
≤

TS+1

(
x(−1), y

)
for all (x, y) ∈ S and S ∈ N0, that is, when the turn-around stock

increases, the need for expediting decreases.

Proof: Because the expediting decision is taken whenever min{Vn(x, y, S) +

ce, Vn(x + e1, y, S)} = Vn(x, y) + ce, which is equivalent to ∆1Vn(x, y, S) ≥ ce, it is

clear that Lemma 4.4 implies the result. 2

The interpretation of Proposition 4.3 is that the possibility to expedite acts as kind of

safety time, that can be used in stead of (safety) stock to lower the risk of backorders.

4.5. E-WDT Heuristic

In the previous section, we have analyzed an exact solution to our problem. However,

finding the optimal solution involves solving an MDP which suffers from the curse of

dimensionality for each S between SLB and SUB . Furthermore, the optimal expediting

policy is rather intricate, depending on the entire vector of repair that will not arrive

within the expedited lead time. In this section, we describe a heuristic for our model

that involves an expediting policy that is much easier to interpret and that does not
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impose the same computational burden. We call this heuristic the E-WDT heuristic

for reasons that will become clear later. This section is organized in the same fashion

as the previous section: First we discuss heuristic expediting policies in §4.5.1 and

then we discuss the heuristic optimization of the turn-around stock in §4.5.2.

4.5.1 World driven threshold policies

Computing the state dependent optimal threshold levels quickly becomes computa-

tionally prohibitive as m increases. A plausible heuristic policy is to aggregate all

orders in X(t) and to put a threshold expediting level, T (y), on their sum X(t)eT.

This threshold will then only depend on Y (t) and so, borrowing the terminology of

Zipkin (2000), we call such a policy a world driven threshold (WDT) policy. It is

readily verified that the WDT policy satisfies the monotonicity property in Theorem

4.1 that ∆iT
(
x(−1), y

)
≤ 0. Indeed, observe that the thresholds (TWDT (x, y)) of a

WDT policy satisfy:

∆iT
WDT (x, y) =

{ −1, if T (x, y) > 0;

0, otherwise.

This is shown graphically in Figure 4.5, where the optimal thresholds are shown with

the best WDT thresholds. As before, the most convenient way to interpret Figure

4.5 is to think of it as a switching curve: If x1 is on or above the shown line for some

x2, then expedite the repair, otherwise do not expedite repair.

For m > 1, finding the best WDT policy is about as difficult as finding an optimal

policy since the stationary distribution of X(t) under such a policy still requires the

evaluation of an m + 1 dimensional Markov chain. A notable exception, that we

discuss in §4.5.1.1, occurs when demand is a stationary Poisson process, i.e., |Θ| = 1.

In general, for |Θ| > 1 and ce < pE[Lr], we propose the following heuristic way of

finding a good WDT policy. In stead of working with the (m+ 1)-dimensional space,

move to two-dimensional space by approximating Lr by a single exponential phase

with the same mean µ1 = µ = 1/E[Lr]. Then we are left with a two-dimensional

space for which we can easily solve the resulting MDP to optimality using any common

algorithm to solve finite state and action space MDPs such as value iteration, policy

iteration or linear programming.

The WDT policies that result from this procedure are not necessarily optimal within

the class of WDT policies and the computed cost is not exact but an approximation.

Since the system under study is equivalent to a type of ample server queue, we may

expect this approximation to be quite accurate. In the next subsection, we show that

this approach is exact for Poisson demand and in §4.6, we provide numerical evidence

that WDT policies that are found in this manner perform exceptionally well compared
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Figure 4.5 Optimal and heuristic policies. Part (a) shows the optimal state dependent

threshold in conjunction with the best WDT policy for the case with λ = 1, E[Lr] = 4,

`e = 2, p = 10, ce = 8, S = 8 and m = 2. Part (b) shows the optimal state dependent

threshold for in conjunction with the best heuristic policy for the same case except S = 12.

to optimal policies under Markov modulated Poisson demand. Furthermore, the cost

approximations of this method are also very accurate.

4.5.1.1 Special case: Poisson demand

Now we briefly consider the evaluation of WDT policies for the special case where

|Θ| = 1, and we are dealing with stationary Poisson demand. In this case, the

evaluation of a WDT policy can be done exactly for any distribution of Lr in closed

form using the results of Song and Zipkin (2009). (In this context, it might be

appropriate to refer to a WDT policy, simply as a threshold policy. For convenience,

we use the name WDT policy also in this context.) Alternatively, one may simply

observe that X(t)eT, under such a policy, has the same stationary distribution as the

number of customers in a M/G/c/c queue, where the number of servers c is set equal

to the threshold T and the service time is distributed as Lr. In this equivalence, a

customer being blocked from the queue because all T servers are busy corresponds

to a repair being expedited because there are T or more parts that will not arrive

within `e. The average expediting and backorder penalty cost rate for such a policy
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with threshold level T and base-stock level S, C(T |S) is therefore given by:

C(T |S) = λceB(T, λE[Lr]) +

T∑
x=0

cp(x|S)
(λE[Lr])

x/x!∑T
k=0(λE[Lr])k/k!

(4.24)

where B(c, ρ) = ρc/c!∑c
k=0 ρ

k/k!
is the Erlang loss function with c servers and traffic

intensity ρ, λ is the intensity of the Poisson demand process, and cp(x|S) = cp(x, 1|S).

Expression (4.24) also reveals that the performance of a WDT policy is insensitive to

the distribution of Lr for the special case of Poisson demand. This insensitivity does

not hold for Markov modulated Poisson demand. In the numerical section however, we

provide evidence that the performance evaluation of a WDT policy is nearly insensitive

to the exact distribution of Lr for Markov modulated Poisson demand processes.

4.5.2 Heuristic optimization of the turn-around stock:
The E-WDT heuristic

In §4.5.1, we discussed a heuristic to obtain a good WDT policy for a given turn-

around stock S, namely by finding the optimal expediting policy after replacing Lr
by a single exponential phase with the same mean. (This is of course exact if Lr
happens to be exponentially distributed.) The heuristic for joint optimization is

based on this idea.

Let CE(S) denote the optimal expediting and penalty cost rate when Lr has an

exponential distribution with mean µ−1 and the turn-around stock is S. (The E

stands for exponential distribution, as Lr has an exponential distribution in CE.) The

heuristic we propose is to minimize CE-tot(S) = hS + CE(S) with µ−1 = E[Lr] using

a greedy algorithm such as golden section search. We call this heuristic the E-WDT

heuristic. (E stands for exponential and WDT stands for world driven threshold.)

There is no guarantee that a greedy search of CE-tot(S) yields the global optimum

of CE-tot(S) because CE(S) need not be convex as shown in §4.4.2. However, we

have been unable to construct an example Ctot(S) that is not unimodal and this

serves as an indication that a greedy algorithm can work well. We let SE denote the

base-stock level that is found by applying the E-WDT heuristic and TE(y) denote the

corresponding expediting thresholds that depend only on y ∈ Θ.

We emphasize that in general CE(SE) does not represent the real backordering and

expediting cost of applying the WDT policy with TE(y), because these costs are not

insensitive to the distribution of Lr unless demand is a Poisson process. Let CR(S)

denote the real backordering and expediting costs when applying the WDT policy

found by assuming Lr is exponential to the real system where Lr is not necessarily

exponential. Similarly, let CR-tot(S) = hS + CR(S). We provide numerical evidence

in §4.6.3 that CE(SE) ≈ CR(SE).
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4.6. Numerical results

The numerical section is divided in three subsections. In §4.6.1, we present the test bed

that is used for all numerical experiments. In §4.6.2, we benchmark the performance

of the WDT policy described in §4.5.1 against the optimal expediting policy for fixed

turn-around stock. We benchmark the performance of the E-WDT heuristic against

optimal joint optimization of turn-around stock and expediting policy in §4.6.3. This

section also investigates how accurate the performance estimates are when Lr is

approximated by an exponential distribution. Finally in 4.6.4, we present results that

shed light on the value of leveraging the possibility to expedite repair in anticipating

demand fluctuations. We do this in a setting with exponential lead times where the

E-WDT heuristic gives optimal solutions. We compare with two naive heuristics that

assume demand is a Poisson process. We also compare the E-WDT heuristic to a

heuristic that determines the size of the turn-around stock and expediting policy

separately.

4.6.1 Test bed and set-up

For all experiments, the backorder penalty cost is fixed at p = 10. The other problem

parameters are varied as a full factorial experiment. The expected additional regular

repair lead time was either low or high, E[Lr] ∈ {2, 4}, and takes on an Erlang

distribution, i.e., µ1 = µ2 = . . . = µm. The level of detail with which order progress

is tracked, as modeled by m, is varied between 1 and 6, depending on what is

computationally feasible. (For example the computational burden is higher when

demand is a MMPP as opposed to a stationary Poisson process.) The parameter m is

shown when results are presented so that it is always clear exactly how m was varied.

The expedited repair lead time is either low or high, `e ∈ {1, 2}. By Proposition

4.1, we know that expediting is only useful when ce < pE[Lr]. Therefore, we chose

ce = νpE[Lr] for ν ∈ {0.2, 0.4}.
Demand is a stationary Poisson process or a MMPP. The long run average demand

intensity λ̄ ∈ {1, 2}. For the Markov modulated Poisson demand, we use two basic

‘modulating processes’ that we refer to as the cyclic and erratic MMPP respectively.

They are specified by the generator matrices and intensity vectors

Qcyclic = ·


−1 1 0 0

0 −1 1 0

0 0 −1 1

1 0 0 −1

 , λcyclic =
(

1
2 1 3

2 1
)
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Parameter # Values

Long run average demand per period (λ̄) 2 1,2

Expected additional regular lead time (E[Lr]) 2 2,4

Expedited lead time (`e) 2 1,2

Per unit expediting costs (ce) 2 0.2 · pE[Lr], 0.4 · pE[Lr]

Holding costs per time unit (h) 2 0.5,1

Average transition rate of modulating chain (q̄) 2 0.1, 0.05

Turn-around stock safety factor (k) 3 0,1,2

Backorder penalty costs (p) 1 10

Basic demand process type 3 Poisson, MMPP-erratic, MMPP-cyclic

Table 4.1 Description of instances in our test bed

Qerratic = ·

 − 3
2 1 1

2

1 − 3
2

1
2

2
5

2
5 − 4

5

 , λerratic =
(

1
4

1
2 2

)
It is readily verified that both these MMPPs have a long run average demand of 1

per time unit. Therefore, by multiplying λ by λ̄ we obtain a MMPP with a long run

average demand of λ̄ per time unit. Secondly, we scale how quickly the modulating

chain of demand evolves by pre-multiplying the generator of Y (t), Q, by a scalar q̄.

For our experiment, q̄ ∈
{

1
20 ,

1
10

}
so that the demand environment fluctuates either

quickly or slowly relative to the replenishment lead times. Note that q̄ does not

affect the stationary distribution of the modulating chain of demand, and so it does

not affect the long run average demand per time unit. However, it does affect the

variability of demand over any finite time horizon.

In §4.6.2, we investigate the performance of the WDT policy for fixed turn-around

stock. In this section, the fixed turn-around stock is set as

S :=
⌈
λ(E[Lr] + `e) + k

√
λ(E[Lr] + `e)

⌉
with k ∈ {0, 1, 2}. (dxe denotes x rounded up to the nearest integer.) We refer to k

as the safety factor and turn-around stock is tight for k = 0 up to ample for k = 2.

In §4.6.3, we optimize the expediting policy jointly with the turn-around stock. In

this section, the test bed has two levels of holding cost, h ∈
{

1
2 , 1
}

.

A summary of the test bed is given in Table 4.1.

In the numerical experiments, we use value iteration to determine C(S), CE(S), and

CR(S). (We used Bellman equation (4.2) with the smaller uniformization constant

in our algorithm). All value iteration algorithms are implemented in C and the value

iteration is terminated when the relative error is less then 10−4, i.e., value iteration
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to find optimal policies stops after n+ 1 iterations if

max(x,y)∈S(Vn+1(x, y)− Vn(x, y))−min(x,y)∈S(Vn+1(x, y)− Vn(x, y))
1
2 [max(x,y)∈S(Vn+1(x, y)− Vn(x, y)) + min(x,y)∈S(Vn+1(x, y)− Vn(x, y))]

< 10−4.

To evaluate a given WDT policy exactly when m 6= 1 (i.e. evaluate CR(S)), we use

value iteration with the same stopping criterion.

4.6.2 Performance of the WDT policy for fixed turn-around stock

In this section, we investigate how the WDT policy performs relative to the optimal

expediting policy for fixed turn-around stock. The turn-around stock is fixed so that

the expediting policy can be studied in isolation from the stocking decision. To this

end, we investigate the relative difference of the WDT obtained by assuming Lr is

exponential with respect to the optimal expediting policy. Formally this is defined

as:

δC =
CE(S)− C(S)

C(S)
· 100%,

Tables 4.2 and 4.3 show the average and maximum optimality gaps for this situation

over the test bed in §4.6.1. In both cases, the optimality gaps increase as m increases,

meaning that order progress information does have added value, especially for more

predictable demand (Poisson demand and cyclic MMPP demand). When demand is

not very predictable (erratic MMPP demand), the variance of demand increases and

so do the costs. The value of order progress information remains relatively steady

and so the relative value of this information decreases. However, the magnitude of all

optimality gaps is small especially considering the fact that turn-around stock holding

cost hS is not included in the costs. The larger gaps occur when k is large (Table 4.4),

and consequently the turn-around stock is large. The reason for this is that when

the turn-around stock is large, expediting is rarely necessary and backorders seldom

occur so that penalty and expediting costs are small. In this situation, small absolute

deviations from optimality can constitute large relative deviations.

The computation times for determining an optimal policy are in the order of a week

when m = 6 and demand is a Poisson process on a machine with 2.4 GHz CPU and 4

GB of RAM. For m = 6 and MMPP demand, computation was no longer practical and

so these results are missing from Tables 4.2 and 4.3. Throughout, when ‘-’ appears

in a table, it indicates that computation was not feasible for these instances.
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Table 4.2 Average optimality gaps δC in backorder and expediting costs for fixed turn-around

stocks

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP AVG

2 0.52% 0.45% 0.43% 0.16% 0.13% 0.34%

3 0.92% 0.80% 0.76% 0.32% 0.26% 0.61%

4 1.22% 1.07% 1.02% 0.43% 0.36% 0.82%

5 1.45% 1.28% 1.22% 0.53% 0.44% 0.98%

6 1.64% - - - - 1.64%

AVG 1.15% 0.90% 0.86% 0.36% 0.30% 0.88%

Table 4.3 Maximum optimality gaps δC in backorder and expediting costs for fixed turn-

around stocks

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP MAX

2 1.92% 1.35% 1.62% 1.38% 0.84% 1.92%

3 2.76% 2.10% 2.39% 2.03% 1.24% 2.76%

4 3.38% 2.63% 2.91% 2.49% 1.58% 3.38%

5 3.86% 3.03% 3.29% 2.84% 1.89% 3.86%

6 4.25% - - - - 4.25%

MAX 4.25% 3.03% 3.29% 2.84% 1.89% 4.25%

Table 4.4 Average and maximum optimality gaps δC for different fixed turn-around stock

sizes

k 0 1 2

AVG 0.42% 0.83% 0.96%

MAX 2.59% 4.25% 3.29%
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4.6.3 Performance of the E-WDT heuristic

Now we consider the joint optimization of expediting policy and turn-around stock.

In this situation the optimality gap is defined as

δCtot =
CR-tot(SE)− Ctot(S

∗)
Ctot(S∗)

· 100%,

where SE = argminS∈N0
CE-tot(S) and S∗ = argminS∈N0

Ctot(S). Tables 4.5-4.6 show

that the average and maximum optimality gaps δCtot
have the same trends as in the

case where optimization over S is not included. However, since the costs of holding

repairables is now included, the optimality gaps are very small, never exceeding 0.76%.

In all but 35 out of 480 instances, S∗ and SE coincide, and the absolute difference is

never more than 1.

Table 4.5 Average optimality gaps δCtot when optimization over S is included

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP AVG

2 0.08% 0.09% 0.09% 0.08% 0.07% 0.08%

3 0.14% 0.17% 0.16% 0.16% 0.13% 0.15%

4 0.19% 0.23% 0.21% 0.21% 0.17% 0.20%

AVG 0.14% 0.17% 0.15% 0.15% 0.12% 0.15%

Table 4.6 Maximum optimality gaps δCtot when optimization over S is included

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP MAX

2 0.22% 0.23% 0.29% 0.39% 0.23% 0.39%

3 0.36% 0.34% 0.43% 0.63% 0.31% 0.63%

4 0.46% 0.44% 0.53% 0.76% 0.41% 0.76%

MAX 0.46% 0.44% 0.53% 0.76% 0.41% 0.76%

Recall that CR-tot(S)(S) 6= CE-tot(S), because the function CE-tot(S) assumes that

Lr has an exponential distribution. Now we investigate how closely CE-tot(S)

approximates CR-tot(S) by looking at the relative error

εE =
CE-tot(SE)− CR-tot(SE)

CR-tot(SE)
· 100%.

The relative error εE is always positive and the averages and maxima are shown in

Tables 4.7 and 4.8. This observation can be explained by observing that the variability
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of the exponential distribution is higher than that of the Erlang distribution. Since

lead time variability generally degrades performance, we should expect that εE is

generally positive.

Note that the approximation errors are larger than the optimality gaps shown in

Tables 4.5 and 4.6, but still very acceptable. This is an important observation:

The insensitivity of the WDT policies with regard to the distribution of Lr is not

only in performance evaluation, but even more so in policy optimality. Furthermore,

this approximation leads to a slight overestimation of the real costs which, from the

managers perspective, is usually a safer deviation than an underestimation.

Table 4.7 Average error εE made by approximating Lr as having an exponential distribution

when optimization over S is included

q̄ 0.1 0.05 0.1 0.05

m cyclic MMPP erratic MMPP AVG

2 0.46% 0.26% 0.89% 0.52% 0.53%

3 0.63% 0.35% 1.23% 0.71% 0.73%

4 0.73% 0.40% 1.42% 0.81% 0.84%

AVG 0.61% 0.33% 1.18% 0.68% 0.70%

Table 4.8 Maximum error εE made by approximating Lr as having an exponential distribution

when optimization over S is included

q̄ 0.1 0.05 0.1 0.05

m cyclic MMPP erratic MMPP MAX

2 1.13% 0.66% 1.70% 1.01% 1.70%

3 1.57% 0.89% 2.38% 1.39% 2.38%

4 1.81% 1.02% 2.76% 1.60% 2.76%

MAX 1.81% 1.02% 2.76% 1.60% 2.76%

4.6.4 Value of anticipating demand fluctuations

In this section, we discuss three simple heuristics that either ignore the fact that

demand is a Markov modulated Poisson process, or that separate the expediting

policy and turn-around stock sizing decisions. Thus these heuristics fail to anticipate

demand fluctuations.

In the context of repairables, the Poisson process has traditionally been used to model
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demand (Muckstadt, 2005; Sherbrooke, 2004). Our experience and that of Slay and

Sherbrooke (1988) indicates that this model is usually accurate for short periods of

time (say up to several lead times) but is not accurate for extended periods of time as

demand intensity fluctuates. This effect is captured in the present model by using the

MMPP to model demand. Nevertheless, it is convenient to use the Poisson demand

model as the evaluation CE-tot(S) can be done exactly in closed form using (4.24).

Consequently, an easy heuristic is to use the Poisson demand model with demand

intensity either equal to the long run average demand or, to be on the safe side, equal

to the demand intensity in peak periods, λmax. We refer to these two heuristics as

POIS-AVG and POIS-MAX respectively when average and peak demand intensities

are used.

Another common approach is to use a traditional news-vendor inventory model

without expediting to determine the turn-around stock. A simple approach would

be to select S to minimize

hS + pE
[(
DY
t,t+`e+E[Lr] − S

)+
]
. (4.25)

The S that minimizes (4.25) is the smallest integer that satisfies the newsvendor

inequality ∑
y∈Θ

P
{
Dy
t,t+`e+E[Lr] ≤ S

}
P{Y = y} ≥ p− h

p
, (4.26)

and we denote this minimizer by SNV F . (NVF is short for newsvendor fractile.)

After determining SNV F using (4.26), we determine the optimal expediting policy for

SNV F . We refer to this heuristic as NVF-D∞.

We consider the case that Lr has an exponential distribution so that the optimal

expediting policy is a WDT policy. The POIS-AVG and POIS-MAX coincide with the

optimal and E-WDT solution when demand is a Poisson process for all the instances

in our test bed. (The reason for this is that Ctot(S) is unimodal.) Therefore, Tables

4.9 and 4.10 show the average and maximum optimality gaps only for the cases that

demand is an MMPP for all three naive heuristics: POIS-AVG, POIS-MAX and

NVF-D∞.

When demand is relatively steady, as is the case in the cyclic MMPP demand

proces, POIS-AVG does not perform very bad, but when demand is more erratic,

the performance deteriorates dramatically with optimality gaps up to 63.67%. The

POIS-MAX policy avoids these extreme optimality gaps (although 24.21% is still

quite substantial), but this occurs at the expense of cost performance when demand

follows the more moderate cyclic MMPP process. The NVF-D∞ solution performs

similarly for all demand scenario’s. In general, however all naive heuristics performs

quite poorly with an average optimality gap of more than 11.69% for each heuristic
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Table 4.9 Average optimality gaps of naive heuristics

q̄ 0.1 0.05 0.1 0.05

Heuristic cyclic MMPP erratic MMPP AVG

POIS-AVG 2.41% 3.04% 19.48% 23.26% 12.05%

POIS-MAX 12.07% 11.32% 12.64% 11.17% 11.80%

NVF-D∞ 11.61% 10.99% 11.93% 12.26% 11.69%

AVG 8.70% 8.45% 14.68% 15.56% 11.85%

Table 4.10 Maximum optimality gaps for naive heuristics

q̄ 0.1 0.05 0.1 0.05

Heuristic cyclic MMPP erratic MMPP MAX

POIS-AVG 6.14% 8.07% 51.78% 63.67% 63.67%

POIS-MAX 15.38% 15.35% 24.21% 23.43% 24.21%

NVF-D∞ 29.44% 29.40% 29.72% 34.15% 34.15%

MAX 29.44% 29.40% 51.78% 63.67% 63.67%

and maximum optimality gaps above 24.21% for each heuristic. Consequently, we

conclude that

1. There is great value in leveraging knowledge about demand fluctuations, as

contained in Y (t) for making repair expediting decisions.

2. Fluctuations of demand and the possibility to anticipate these through expedit-

ing repairs should be considered explicitly in sizing the turn-around stock and

can lead to substantial savings.

4.7. Conclusion

In this chapter, we have considered the joint problem of finding the best turn-around

stock and expediting policy for repairables that experience fluctuating demand.

With regard to expediting policies, we have characterized the structure of optimal

policies, confirming a conjecture by Song and Zipkin (2009). Since computing optimal

expediting policies suffers from the curse of dimensionality, we proposed the use

of WDT policies. These policies have an intuitive appeal and share important

monotonicity properties with optimal policies.

We have shown that the joint problem can be solved by using convexity of the problem
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with respect to the turn-around stock for optimal expediting policies as well as WDT

policies that are obtained by assuming that the additional regular repair lead time,

Lr, has an exponential distribution.

In a numerical study, we have shown that the E-WDT heuristic we propose performs

very close to optimal with an optimality gap of 0.15% on average and 0.76% at most

across our test bed.

Finally, we investigated the value of anticipating demand fluctuations by proper joint

optimization of the turn-around stock and expediting policy by comparing the E-WDT

heuristic with more naive heuristics that do not anticipate demand fluctuations or that

separate the stocking and expediting problems. With optimality gaps of 11.85% on

average and of at most 63.67%, we have shown that

1. There is great value in leveraging knowledge about demand fluctuations, when

making repair expediting decisions.

2. Fluctuations of demand and the possibility to anticipate these through expedit-

ing repairs should be considered explicitly in sizing the turn-around stock and

can lead to substantial savings.
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4.A. Determining P{Dy
t,t+`e

= k}

In this appendix, we show how P
{
Dy
t,t+`e

= k
}

can be determined numerically. To

this end, let py,y′(k, `e) = P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}

be the (y, y′)-entry of the

matrix P(k, `e). Then the matrix generating function P̃(z, `e) =
∑∞
k=0 P(k, `e)z

k

satisfies (e.g Fischer and Meier-Hellstern, 1992):

P̃(z, `e) = exp ([Q− (1− z) diag(λ)]`e) .

A plethora of numerical methods to compute the matrix exponential are discussed

in Moler and Van Loan (2003). For the numerical work in this thesis, we use

the scaling and squaring algorithm with a Padé approximation. The probabilities

P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}

can be obtained from P̃(z, `e) by numerical inversion

using the LATTICE-POISSON algorithm of Abate and Whitt (1992) which uses the

approximation

P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}

≈ 1

2krk

{
P̃(r, `e) + (−1)kP̃(−r, `e) + 2

k−1∑
n=1

(−1)n Re(P̃(r exp(nπi/k), `e))

}
,

where i =
√
−1, 0 < r < 1 and Re(x) denotes the real part of the complex number

x. The absolute error in this approximation is bounded by r2k

1−r2k and so by choosing

r = 10−γ/(2k), we obtain an accuracy of approximately 10−γ . Then the needed

probability, P
{
Dy
t,t+`e

= k
}

, can be found by un-conditioning:

P
{
Dy
t,t+`e

= k
}

=
∑
y′∈Θ

P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}
P{Y (t+ `e) = y′|Y (t) = y}

The probabilities P{Y (t + `e) = y′|Y (t) = y} are found from the transient analysis

of Y (t). In particular, if we let ry,y′ = P{Y (t + `e) = y′|Y (t) = y} be the (y, y′)-th
element of the matrix R(`e), then R(`e) = exp(`eQ).
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4.B. Proofs

4.B.1 Proof of Lemma 4.1

Proof: The proof is a direct proof. Note that P
{
Dy
t,t+`e

= k
}

= 0 for k < 0. For

part (i) we have:

∆cp(x, y) = cp(x+ 1, y)− cp(x, y)

= p
[∑∞

k=S−(x+1)(k − S + x+ 1)P
{
Dy
t,t+`e

= k
}

−∑∞k=S−x(k − S + x)P
{
Dy
t,t+`e

= k
}]

= p
[∑∞

k=S−x−1(k − S + x)P
{
Dy
t,t+`e

= k
}

+
∑∞
k=S−x−1 P

{
Dy
t,t+`e

= k
}

−∑∞k=S−x(k − S + x)P
{
Dy
t,t+`e

= k
}]

= p
∑∞
k=S−x P

{
Dy
t,t+`e

= k
}
≥ 0. (4.27)

For part (ii) we have:

∆2cp(x, y) = ∆cp(x+ 1, y)−∆cp(x, y)

= p
[∑∞

k=S−(x+1) P
{
Dy
t,t+`e

= k
}
−∑∞k=S−x P

{
Dy
t,t+`e

= k
}]

= pP
{
Dy
t,t+`e

= S − x− 1
}
≥ 0. (4.28)

Part (iii) follows immediately from (4.27) and noting that P
{
Dy
t,t+`e

= k
}

= 0 for

k < 0.

Finally for part (iv), we can write using (4.27)

∆cp(x, y|S)−∆cp(x, y|S + 1)

= p
[∑∞

k=S−x P
{
Dy
t,t+`e

= k
}
−∑∞k=S+1−x P

{
Dy
t,t+`e

= k
}]

= pP
{
Dy
t,t+`e

= S − x
}
≥ 0 (4.29)

2

4.B.2 Proof of Proposition 4.1 (ii)

Proof: Here we present the proof of part (ii), the proof of part (i) is in the main

text. The proof is based on constructing two coupled processes and showing that
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expediting repair is expected to dominate using regular repair when there are many

parts still undergoing additional regular repair.

Let ε = (pE[Lr]− ce)/3 > 0. We denote the probability density function of Lr as fLr
and fix α <∞ to verify ∫ ∞

t=α

tfLr (tr)dt ≤ ε/p. (4.30)

Such an α exists because tfLr (t) > 0 for t ∈ (0,∞) so that
∫∞
t=α

tfLr (t)dt is strictly

decreasing in α and furthermore limα→∞
∫∞
t=α

tfLr (t)dt = 0. Let Eµ denote an

exponential random variable with mean µ−1. We fix an integer M ′ to verify

P {Eµm < α}M
′
E[Lr] ≤ ε. (4.31)

Such an M ′ ∈ N exists because α <∞ and so P {Eµm < α} < 1.

Now we consider an arbitrary policy π that does not expedite when xeT ≥ S+M ′ = M

for some (x, y) ∈ S. Consider an arbitrary moment in time, t′, when a failed part

arrives to the system and
∑m
i=1Xi(t

′) ≥ S + M ′ = M and policy π stipulates that

the part should not be expedited. Denote this process Xπ(t). We let X̃(t) denote

the evolution of the part sent to regular repair at time t′ by policy π, so X̃(t) = ei if

the part sent to repair at time t′ has completed its first i− 1 phases of the additional

regular repair, and X̃(t) = 0 if the part has completed its additional regular repair

lead time. Next, we consider an alternate process which is identical to Xπ(t) except

that it does expedite the unit arriving at t′. We denote this process Xe(t), and

formally define it as Xe(t) = Xπ(t) − X̃(t). We let Tr = inf{t − t′|X̃(t) = 0, t ≥ t′}
and note that Tr

d
=Lr.

Analogous to the proof of part (i), Xπ(t)eT = Xe(t)eT + 1 for t ∈ [t′, t′ + Tr), and
Xπ(t) = Xe(t) for t ≥ t′+ Tr. Also both processes make exactly the same expediting
decisions for all t > t′. Thus any cost differences between Xe(t) and Xπ(t) occur in
the time interval [t′, t′ + Tr). Denote the expectation of this cost difference Ξ. Then
we have:

Ξ = ce − ETr

E(Xe(t),Y (t))

 t
′+Tr∫
t=t′

∆cp(X
e
(t)e

T
, Y (t))dt

∣∣∣∣∣∣∣ Tr



= ce −
∞∫

tr=0

E(Xe(t),Y (t))

 t
′+Tr∫
t=t′

∆cp(X
e
(t)e

T
, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr

 fLr (tr)dtr

= ce −
∞∫

tr=0

E(Xe(t),Y (t))

 t
′+Tr∫
t=t′

∆cp(X
e
(t)e

T
, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr, Xe(t)eT ≥ S for all t ∈ (t′, t′ + Tr)


× P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)}fLr (tr)dtr

−
∞∫

tr=0

E(Xe(t),Y (t))

 t
′+Tr∫
t=t′

∆cp(X
e
(t)e

T
, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr, Xe(t)eT < S for some t ∈ (t′, t′ + Tr)





4.B Proofs 123

× P{Xe(t)e
T < S for some t ∈ (t′, t′ + tr)}fLr (tr)dtr

≤ ce −
∞∫

tr=0

E(Xe(t),Y (t))

 t
′+Tr∫
t=t′

∆cp(X
e
(t)e

T
, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr, Xe(t)eT ≥ S for all t ∈ (t′, t′ + Tr)


× P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)}fLr (tr)dtr

= ce −
∞∫

tr=0

ptrfLr (tr)P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)}dtr (4.32)

The third equality is obtained by conditioning on whether or not Xe(t)eT stays above

S on the interval [t′, t′+Tr). The first inequality follows from dropping the last term

and the last equality follows from Lemma 4.1 (iii).

Next we observe that P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)} is bounded below by the

probability that there are fewer than M ′ parts already in additional regular repair

at time t′, finish additional regular repair before t′ + tr. Since the remaining time in

regular repair for any of these parts is at least an Eµm random variable (by the lack

of memory property), we conclude that

P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)} ≥ 1− P{Eµm < tr}M
′
. (4.33)

Now continuing from (4.32) and using (4.33) we obtain:

Ξ ≤ ce −
∫ ∞
tr=0

ptrfLr (tr)
(

1− P{Eµm < tr}M
′
)
dtr

= ce − pE[Lr] +

∫ ∞
tr=0

ptrfLr (tr)P{Eµm < tr}M
′
dtr

= ce − pE[Lr] +

∫ α

tr=0

ptrfLr (tr)P{Eµm < tr}M
′
dtr

+

∫ ∞
tr=α

ptrfLr (tr)P{Eµm < tr}M
′
dtr

≤ ce − pE[Lr] + P{Eµm < α}M ′
∫ α

tr=0

ptrfLr (tr)dtr +

∫ ∞
tr=α

ptrfLr (tr)dtr (4.34)

≤ ce − pE[Lr] + P{Eµm < α}M ′E[Lr] +

∫ ∞
tr=α

ptrfLr (tr)dtr

≤ −3ε+ ε+ ε = −ε < 0. (4.35)

Inequality (4.34) follows because P{Eµm < tr} is increasing in tr and the final

inequalities follow from the choice of ε, α and M ′. Since Ξ < 0, we conclude that

the expected cost of process Xπ(t) is greater than the cost of Xe(t). Thus, we have

shown that any policy that does not expedite when X(t)eT ≥M and ce < pE[Lr] can

be strictly improved by expediting whenever X(t)eT ≥ M . That is, if ce < pE[Lr],

then there is a M ∈ N such that whenever X(t)eT ≥M it is optimal to expedite. 2
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4.B.3 Proof of Lemma 4.2

To facilitate the presentation of the proof we introduce the following shorthand:

I =

m⋂
i=1

I(i), SM(1) =

m⋂
j=2

SM(1, j)

Furthermore, when f ∈ X implies TYf(x, y) ∈ X , we say that TY propagates X .

Proof: Part (i) of the lemma can be verified directly by using Lemma 4.1.

For part (ii) we consider each operator separately. Let f ∈ F . For operator Tcost

the results hold because of part (i) of this lemma and Theorem 7.1 in Koole (2006).

For Tenv the result hold trivially as this operator produces linear combinations of

functions in F .

By Theorems 7.3 and 7.4 of Koole (2006) we have that TTD(i) propagates F for

i = 1, ...,m− 1 and TD(m) propagates F .

For TAC(1), the inequalities that characterize I ∩UI are propagated whenever xeT <

M −1 by Theorem 7.2 of Koole (2006). When xeT = M −1 we have for i = 1, . . . ,m:

∆iTAC(1)f(x, y) = ce + f(x + ei, y)−min(ce + f(x, y), f(x + e1, y))

≥ ce + f(x + ei, y)− ce − f(x, y)

= f(x + ei, y)− f(x, y) ≥ 0, (4.36)

where the second inequality holds because f ∈ I. This shows TAC(1) propagates I.

Similarly, and again for xeT = M − 1, we find for i = 1, . . . ,m− 1:

TAC(1)f(x + ei, y)−TAC(1)f(x + ei+1, y) = ce + f(x + ei, y)− ce− f(x + ei+1, y) ≥ 0,

(4.37)

where the inequality holds because f ∈ UI. Thus we have shown that TAC(1)

propagates UI. (Recall that the case xeT = M need not be considered because,

in this case, the inequalities do not exist in S. A similar observation will hold for the

other inequalities in F .) Also by Theorem 7.2 of Koole (2006), for all x that satisfy

xeT < M − 2 it holds that TAC(1)f(x, y) ∈ C(1) ∩ SM(1). Consider the case that

xeT = M − 2. To show TAC(1) preserves convexity, we consider three cases:

(a) Case: min{ce + f(x + e1, y), f(x + 2e1, y)} = f(x + 2e1, y). This case implies

that ce ≥ f(x + 2e1, y) − f(x + e1, y) and furthermore as f ∈ C(1) we have

min{ce + f(x, y), f(x + e1, y)} = f(x + e1, y). Thus we have:

∆2
1TAC(1)f(x, y) = ce + f(x + 2e1, y)− 2f(x + 2e1, y) + f(x + e1, y)

= ce − f(x + 2e1, y) + f(x + e1, y) ≥ 0. (4.38)

The inequality holds because ce ≥ f(x + 2e1, y)− f(x + e1, y).
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(b) Case: min{ce + f(x + e1, y), f(x + 2e1, y)} = ce + f(x + e1, y) and min{ce +

f(x, y), f(x + e1, y)} = ce + f(x, y). Now we have

∆2
1TAC(1)f(x, y) = ce + f(x + 2e1, y)− 2ce − 2f(x + e1, y) + ce + f(x, y)

= f(x + 2e1, y)− 2f(x + e1, y) + f(x, y) ≥ 0, (4.39)

where the inequality holds because f ∈ C(1).

(c) Case: min{ce + f(x + e1, y), f(x + 2e1, y)} = ce + f(x + e1, y) and min{ce +

f(x, y), f(x + e1, y)} = f(x + e1, y). Now we have:

∆2
1TAC(1)f(x, y) = ce + f(x + 2e1, y)− 2ce − 2f(x + e1) + f(x + e1, y)

= f(x + 2e1, y)− f(x + e1, y)− ce ≥ 0. (4.40)

The inequality holds because the case implies that ce ≤ f(x+2e1, y)−f(x+e1, y).

Thus we have shown that TAC(1) propagates C(1) if f ∈ F . To show TAC(1) also

propagates SM(1), we distinguish 2 cases.

(a) Case: min{ce + f(x, y), f(x + e1, y)} = ce + f(x, y). In this case we have

∆1TAC(1)f(x + ej , y)−∆1TAC(1)f(x, y)

= ce + f(x + e1 + ej , y)−min{ce + f(x + ej , y), f(x + e1 + ej , y)}
−min{ce + f(x + e1, y), f(x + 2e1)}+ min{ce + f(x, y), f(x + e1, y)}

≥ 2ce + f(x + e1 + ej)− 2ce − f(x + ej , y)− f(x + e1, y) + f(x, y)

= f(x + e1 + ej)− f(x + ej , y)− f(x + e1, y) + f(x, y) ≥ 0. (4.41)

The second inequality holds because f ∈ SM(1, j).

(b) Case: min(ce + f(x, y), f(x + e1, y)) = f(x + e1, y) Now we find that:

∆1TAC(1)f(x + ej , y)−∆1TAC(1)f(x, y)

= ce + f(x + e1 + ej , y)−min{ce + f(x + ej , y), f(x + e1 + ej , y)}
−min{ce + f(x + e1, y), f(x + 2e1)}+ min{ce + f(x, y), f(x + e1, y)}

≥ ce + f(x + e1 + ej , y)− f(x + e1 + ej , y)

− ce − f(x + e1, y) + f(x + e1, y) = 0. (4.42)

Thus we have shown that TAC(1) propagates SM(1) if f ∈ F .

Part (iii) holds trivially as Tunif produces linear combinations of functions in F . 2
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4.B.4 Proof of Lemma 4.4

Proof: The property in (4.23) is a type of submodularity property (c.f. Altman

and Koole, 1998). In this proof, we actually prove a slightly stronger property, namely

that (4.23) also holds with ∆1 replaced by ∆i for i = 1, . . . ,m. We define SB as:

SB = {f ∈ W|∆if(x, y, S) ≥ ∆if(x, y, S + 1) for i = 1, . . . ,m}.

Because of (4.12) and the fact that V0(x, y, S) ∈ SB, we only need to show that if

f ∈ SB and fj ∈ SB for j = 1, . . . ,m+ 2, then also

Tcostf(x, y, S),TAC(1)f(x, y, S)TD(m)f(x, y, S),Tenvf(x, y, S) ∈ SB
TTD(j)f(x, y, S) ∈ SB for j = 1, . . . ,m− 1 and

Tunif(f1, . . . fm+2)(x, y, S) ∈ SB.

For Tcost, this follows from Lemma 4.1 (iv) and Theorem 7.1 of Koole (2006). For Tenv

and Tunif this follows because these operators take linear combinations of functions

in SB. For TAC(1) and TD(m) this follows from Theorems 7.2 and 7.3 of Koole (2006)

respectively. For TTD(j), we distinguish two cases:

(a) Case: j 6= i. We have

∆iTTD(j)f(x, y, S)−∆iTTD(j)f(x, y, S + 1)

=
xj
M
f(x + ei − ej + ej+1, y, S) +

M − xj
M

f(x + ei, y, S)

− xj
M
f(x− ej + ej+1, y, S)− M − xj

M
f(x, y, S)

− xj
M
f(x + ei − ej + ej+1, y, S + 1)− M − xj

M
f(x + ei, y, S + 1)

+
xj
M
f(x− ej + ej+1, y, S + 1) +

M − xj
M

f(x, y, S + 1)

=
xj
M

(∆if(x− ej + ej+1, y, S)−∆if(x− ej + ej+1, y, S + 1))

M − xj
M

(∆if(x, y, S)−∆if(x, y, S + 1)) ≥ 0

The inequality holds because f ∈ SB.
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(b) Case j = i. We have

∆iTTD(i)f(x, y, S)−∆iTTD(i)f(x, y, S + 1)

=
xi + 1

M
f(x + ei − ei + ei+1, y, S) +

M − xi − 1

M
f(x + ei, y, S)

− xi
M
f(x− ei + ei+1, y, S)− M − xi

M
f(x, y, S)

− xi + 1

M
f(x + ei − ei + ei+1, y, S + 1)− M − xi − 1

M
f(x + ei, y, S + 1)

+
xi
M
f(x− ei + ei+1, y, S + 1) +

M − xi
M

f(x, y, S + 1)

≥ xi
M
f(x + ei+1, y, S) +

M − xi − 1

M
f(x + ei, y, S)

− xi
M
f(x− ei + ei+1, y, S)− M − xi − 1

M
f(x, y, S)

− xi
M
f(x + ei+1, y, S + 1)− M − xi − 1

M
f(x + ei, y, S + 1)

+
xi
M
f(x− ei + ei+1, y, S + 1) +

M − xi − 1

M
f(x, y, S + 1)

=
xi
M

(∆if(x− ei + ei+1, y, S)−∆if(x− ei + ei+1, y, S + 1))

M − xi − 1

M
(∆if(x, y, S)−∆if(x, y, S + 1)) ≥ 0

The first inequality follows by adding 1
M (∆i+1f(x, y, S + 1) − ∆i+1f(x, y, S))

which is less than 0 because f ∈ SB. (Note that ∆i+1f(x, y, S) is well defined

here because because j < m and so i+ 1 ≤ m because i = j by assumption.) The

final inequality also follows from the induction hypothesis.

2





Chapter 5

A system approach to repairable

stocking and expediting in a

fluctuating demand environment

“Be Prepared... the meaning of the

motto is that a scout must prepare

himself by previous thinking out

and practicing how to act on any

accident or emergency so that he is

never taken by surprise.”

Robert Baden-Powell

5.1. Introduction

In the previous chapter, we considered two decisions for a single repairable item: How

many spare parts to buy and when to expedite the repair of a part. Although this

problem can appear for a single part in isolation, it appears more commonly for one

or more groups of repairables that support different fleets of equipment. Each fleet

has a target with respect to availability which is translated into a requirement on

the expected number of backorders for parts that belong to a fleet. Repairable spare

parts are kept on stock to meet these targets for each fleet. However, this stocking

problem can not be resolved for each fleet separately because repairables that belong
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to different fleets may use the same resources for repair. These repair resources are

flexible and this is modeled through the possibility to expedite the repair of a part.

(An expedited repair order has a shorter lead time.) Since the flexibility of a repair

resource is limited, there is a constraint on the amount of repair work that can be

expedited per time unit for each repair resource. We refer to the amount of work that

a repair resource handles per time unit as the load. Repairables from different fleets

compete for the opportunity to load a repair resource with expedited orders.

For the situation described in the previous paragraph, decision makers need to

determine adequate stock levels for all repairables as well as expediting rules. The

objective of the decision maker is to minimize the costs involved with either purchasing

or holding repairable spare parts while:

• meeting a service level in the form of a maximum average number of backorders

for each fleet, and

• keeping the load imposed on each repair resource due to expedited orders below

a set target level.

Demand for a single type of repairable spare part usually fluctuates over time. These

demand fluctuations arise for several reasons such as periodic inspections, usage

patterns of equipment over time and the season of year. (A more thorough discussion

on repairable demand fluctuations over time is provided in §4.3.1.) When the reasons

for demand fluctuations are understood, the expediting decision can be made to

anticipate these fluctuations and to make effective use of repair resources.

In this chapter, we provide a mathematical model for the decision problem described

above. This model (like the models in other chapters) has been conceived with an

application at NedTrain in mind. We emphasize however that the applicability of

the model and results in this chapter extend to other companies that maintain their

own equipment. We will illustrate the need, as well as the application of the model

using an example that runs throughout this entire chapter. This example is about a

fictitious railway company. We finish this introduction by starting this example. The

rest of the chapter is organized as follows. §5.2 reviews related literature and positions

the contribution of this chapter with respect to existing literature. The mathematical

model is provided in §5.3. The analysis of the model is in §5.4 and can be skipped

without loss of continuity. Computational results of the model are provided in §5.5

and concluding remarks are offered in §5.6.

Example 5.1 The railway company Thomas&Co needs new trains to replace

locomotives with pulled carriages. They decide to buy 100 trains from Liam

Engineering Inc., and plan to use those for the next 30-40 years on long distance

train services. Along with this order of 100 trains, Liam Engineering Inc. offers
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the possibility to buy (repairable) spare parts at a considerable discounted price.

Thomas&Co would like to buy repairable spare parts at this discounted price and

is taking this opportunity to decide on the stocking levels of repairables for the new

fleet, as well as to reconsider the stocking levels for repairables of other fleets. �

5.2. Literature review and contribution

Multi-item repairable inventory models are abundant in literature. We refer the

reader to the books of Sherbrooke (2004) and Muckstadt (2005) and review papers by

GuideSrivastava1997, Kennedy et al. (2002), and Basten and Van Houtum (2013) for

a broad overview. In this section, we briefly discuss literature with similar modeling

assumptions and literature that expounds on or uses similar solution methods as those

used in this chapter. On the modeling side, the main contributions of this chapter

are the fluctuating demand model and the use of a dynamic expediting policy that

depends on demand fluctuations. On the analysis side, we decompose the problem per

item via a column generation algorithm. Therefore, this section is organized around

three main topics: fluctuating demand (§5.2.1), repair expediting and scheduling

policies (§5.2.2), and decomposition and column generation algorithms (§5.2.3).

5.2.1 Fluctuating demand

Demand for repairables that fluctuates over time has been considered before in a

series of models developed by the RAND corporation under the name Dyna-metric

(Hillestad, 1982; Carillo, 1989; Isaacson and Boren, 1993). Initially, these models were

based on an extension of Palm’s theorem for non-stationary Poisson processes, but

these efforts eventually developed into simulation models that do not allow efficient

optimization. In the Dyna-metric approach, demand is a non-stationary Poisson

proces, but the Poisson demand rate is a deterministic function of time. Rather

than performing steady-state analysis, the Dyna-metric approach is to perform a

transient analysis at some particular point in time that is chosen by the modeler.

The Dyna-metric model does not include the possibility to expedite repair. Demand

fluctuations are therefore only buffered by holding inventory.

A similar approach is followed by Lau and Song (2008) with two exceptions: They also

model the finite repair capacity using queueing approximations and they evaluate the

transient behavior of the system at several points of interest rather than only one. For

their extensions to Dyna-metric, they take heuristic or approximative approaches.

Our work differs from these contributions because demand fluctuations are modeled

by a Markov modulated Poisson process. This resembles practice more closely as
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the intensity of demand over time behaves as a stochastic process rather than a

deterministic function. Additionally, our model deals with these demand fluctuations

not only by holding repairable inventory, but also by using the possibility to expedite

repair. Our modeling also allows us to evaluate our system exactly and compute tight

lower bounds on optimal system performance.

5.2.2 Expediting and repair scheduling policies

The possibility to either expedite repair or prioritize the scheduling of repairs in

the repair shop has been considered many times, mostly under the assumption of

fixed given turn-around stock levels (Hausman and Scudder, 1982; Scudder, 1986;

Scudder and Chua, 1987; Pyke, 1990; Tiemessen and Van Houtum, 2012). In these

contributions, the repair shop is modeled by a finite server queue. Given a limited

capacity, the question becomes: How should limited repair capacity be allocated to

repair jobs of various types, i.e., which repair jobs deserve priority?

As observed by Tiemessen and Van Houtum (2012), even for fixed given turn-around

stock levels, computing optimal priority rules, or evaluating a given rule, requires

computation times that grow exponentially in the number of different repairable types.

Accordingly, most contributions in this area use simulation to study heuristic priority

rules. All these authors report that system performance increases substantially

by using various priority rules. Hausman and Scudder (1982) and Tiemessen and

Van Houtum (2012) both point out that substantial stock reductions should be

possible as a result of using an effective priority rule. Under static priority rules,

the priority of a spare part depends on its type only. Under these relatively simple

rules, Sleptchenko et al. (2005) and Adan et al. (2009) have shown numerically that

significant reductions in inventory investment are possible compared to simple first

come first serve scheduling of repair jobs. More sophisticated priority rules also

consider the on-hand inventory and expected future demand in deciding the priority

of a part. These dynamic priority rules are essentially mechanisms that change the

repair lead time of an item based on current on-hand stock and estimated future

demand. In this regard, the possibility to schedule repairs can be interpreted as

providing lead time flexibility. The expediting policy in our model provides this lead

time flexibility, but does not suffer from the tractability issues that dynamic priority

queueing models suffer from.

We retain tractability because we assume a rather simple priority rule and refrain

from explicitly modeling the queueing behavior that occurs in the repair shop. If

the repair shop is external to the company holding inventory, this is a natural

modeling choice, but even when the repair shop is internal to the company, this

model has merit: In many organizations, the repair shop and inventories are managed
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separately. Coordination of repair priorities often happens implicitly through lead

time agreements between the inventory manager and the repair shop manager. Our

model is a first step in explicitly considering the effect of smart priority rules when

deciding on turn-around stocks. We believe it is also useful in practical situations in

which a more more sophisticated priority rule is used.

The possibility to expedite the repair of a part without considering queueing effects

in the repair shop has been considered previously by Verrijdt et al. (1998), but their

policy only depends on the on-hand inventory of a part and considers Poisson demand

only. Moinzadeh and Schmidt (1991) study the same policy that we use, but in the

context of deterministic lead times and Poisson demand. Song and Zipkin (2009) show

that the model of Moinzadeh and Schmidt (1991) can be reinterpreted as a special type

of queueing network for which a product-form solution exists. This observation allows

them to significantly generalize the model of Moinzadeh and Schmidt (1991), but it

does not allow expediting policies that somehow depend on demand fluctuations. The

expediting policy we propose in this chapter, does depend on demand fluctuations,

and is shown to be optimal under certain conditions described in chapter 4 of this

thesis. The merit of this rule is that it captures the essential trade-off involved in

dynamically scheduling repair of spare parts, while being sufficiently simple to make

the problem of deciding inventory levels tractable.

5.2.3 Decomposition and column generation

Decomposition and column generation is a general technique to deal with optimization

problems that have a Lagrangian1 that can be decomposed. The most straightforward

way of dealing with such problems is by manipulating the Lagrange multipliers as

suggested by Everett (1963)2 and later by Fisher (1981). Brooks and Geoffrion (1966)

noted that one efficient way of finding the best Lagrange multipliers is via setting up

a linear program in which each variable corresponds to a solution for each of the parts

1The Lagrangian of a constrained optimization problem

min
x∈Rm

{f(x)|gi(x) ≤ bi, i = 1, ...n}

is given by

L(x, u) = f(x) +
n∑
i=1

ui(gi(x)− bi),

where x and u = (u1, . . . , un) are vectors. For all fixed u ≥ 0, a minimum of L(x, u) is also a

lower bound for the original optimization problem. The Lagrangian was called after the Italian

mathematician and astronomer Joseph-Louis Lagrange (1736-1813) who developed this technique.
2Hugh Everett III (1930-1982) was a quantum physicist who proposed the many worlds

interpretation of quantum mechanics. His contribution to operations research, known commonly

as the Everett result, was conceived in a hotel room while he was visiting Copenhagen and failed to

come to any agreement with Niels Bohr on their differing interpretations of quantum mechanics.
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that compose the Lagrangian. The Lagrange multipliers then correspond to shadow

prices (or dual variables) of the linear program. Their algorithm is essentially the

decomposition and column generation algorithm that we use in this chapter.

In the context of spare parts inventory optimization, decomposition and column

generation has been used as early as in the seminal paper of Sherbrooke (1968) to

solve the metric model, where the Lagrangian is decomposable per spare part type.

Essentially, the technique reduces the original optimization problem that encompasses

many types of repairables, to repeatedly solving a single-item inventory problem

for each repairable. Usage of this technique for spare part inventory optimization

problems has found much recent following, e.g. Kranenburg and Van Houtum (2007,

2008); Alvarez et al. (2013a,b). In all these papers (including Sherbrooke (1968)),

there is one or more service level constraints that need to be achieved by all parts

collectively (rather than individually). After moving these service level constraints to

the objective by taking the Lagrangian, the best Lagrange multipliers are found via

dual variables in a linear programming relaxation of the problem. (See also Dantzig

and Wolfe (1960) and Lübbecke and Desrosiers (2005) for a more general and thorough

treatment of this technique.)

We use the same technique to find a lower bound and a feasible solution for our model.

Different from all the papers mentioned in the previous paragraph, different repairable

items are not only linked because of a collective service level, but also through the

expediting load that they have on one or more repair resources. This is a merit of

how our model is set up: Our expediting rule mimics the dynamic priorities given to

repairs but allows for tractable analysis through the technique of decomposition and

column generation.

5.3. Model

In this section, we model our problem and illustrate most modeling steps by

continuing the example started in the introduction. We start with some notation and

preliminaries in §5.3.1. Then we discuss the control policy we use for each repairable

type in §5.3.2. Fluctuating demand models are discussed in §5.3.3. We conclude this

section by formally stating our optimization problem in §5.3.4.

5.3.1 Notation and preliminaries

We consider several fleets of assets for which we keep repairable spare parts on stock.

We denote the set of fleets by A and the set of repairable items by I. We refer to

each element of I as a stock keeping unit (SKU). The set of SKUs used to maintain
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fleet a ∈ A is denoted IAa . There is a set of repair resources, C, that are used to

repair defective parts. The items that load repair resource c ∈ C are contained in the

set ICc . We will assume that ∪c∈CICc = ∪a∈AIAa = I and ∩c∈CICc = ∩a∈AIAa = ∅.
This assumption is not essential to the analysis, but it does simplify notation and

presentation.

Each SKU i ∈ I faces Markov modulated Poisson demand. This means that demand

for SKU i is a Poisson process whose intensity varies with the state of an exogenous

Markov process Y ti . The Markov process Y ti is irreducible and has a finite state space

Θi = {1, ..., |Θi|} with generator matrix Qi whose elements we denote by qi(m,n).

For notational convenience, we define qi(m) = −qi(m,m) and qmax
i = maxm∈Θi qi(m).

When Y ti = y, the intensity of Poisson demand at time t is given by λi(y) ≥ 0;

λi = (λi(1), ..., λi(|Θ|)), λi(y) > 0 for at least one y ∈ Θi and λmax
i = maxy∈Θi λi(y).

We denote demand for SKU i in the time interval (t1, t2] given Y t1i = y as Dy
i (t1, t2).

Note that Y t1i provides information about the distribution of demand in the interval

(t1, t2], t2 > t1. We assume that Y ti can be observed directly for all i ∈ I and

provides a form of aggregated advance demand information. In the previous chapter,

we already discussed the modeling versatility of this demand model. In example 5.3,

we will encounter an example of how demand might fluctuate over time. We address

how to model such demand and provide examples in §5.3.3.

There exists a regular and an expedited repair option for each SKU i ∈ I. The

expedited repair lead time for SKU i is deterministic and denoted by `i. The expedited

repair lead time may represent things such as the transport time and the repair time

or a lead time agreed upon with an external company that provides emergency repair

service. We also refer to using the expedited repair mode as expediting repair. The

regular repair lead time of SKU i consists of the emergency repair lead time `i,

and a random component of length Li. The random variable Li has an exponential

distribution with mean 1/µi. Li models such things as the time that a part waits for

resources to become available in the repair shop or the lead time difference between

regular and emergency repair lead times as contracted with an external repair shop.

The assumption that Li has an exponential distribution, seems rather restrictive, but

numerical evidence in §4.6 suggests that it is not a very strong assumption at all as

the performance of the system seems rather insensitive to the exact distribution of Li
for a fixed mean. The inventory manager knows for each repair order of SKU i when

Li has lapsed, and the remaining lead time of an order is `i.

Of each SKU i, we already own SLBi parts. The main decision variables are the total

number of parts to own for each SKU. This is denoted by Si for SKU i ∈ I and is

also referred to as the turn-around stock. For each SKU i ∈ I there is an acquisition

price Cai for buying additional spare repairables.

Each repair of an SKU i ∈ ICc part, imposes a ‘load’ of ui on repair resource c ∈ C.



136 Chapter 5. A system approach to repairable stocking and expediting

We use the term ‘load’ for ui, but the interpretation of ui can vary broadly. To

illustrate this, consider for example the following two scenarios:

• Repair is performed by an external repair shop and the repair lead time may

be shortened in exchange for an increased price for the repair. However, there

is a maximum target on the amount of money that can be used for requesting

expedited lead times from external parties. In this case, the repair resource

c might be this annual target for expedited repairs expenses and ui is the

additional cost of an expedited repair over a regular repair.

• Repairs are conducted by a repair shop within the company. This repair shop

can expedite the repair of certain parts upon request, as long as the load imposed

on the repair shop by expedited repairs is limited. Manpower is the bottleneck

in the repair shop. The load imposed on the repair shop ui could then be man

hours required for the repair of a SKU i ∈ ICc part.

For each repair resource c ∈ C there is maximum Emax
c on the load this repair resource

is allowed to experience due to expedited repair orders.

Table 5.1 summarizes the notation we have introduced so far as well as notation we

will introduce later.

Now we return to our example to put all this notation in some perspective

Example 5.2 Thomas&Co already has a fleet of 200 trains that are used for services

with many stops. This fleet is called Village, while the fleet of 100 trains they are

about to buy is called City. Now A = {City,Village}. All mechanical repairs are

done in an internal repair shop, while the repair of climate and airconditioning units

is outsourced to an external company. Therefore, C = {Outsource,Mechanic}.
Manpower is the bottleneck in the internal repair shop so ui is measured in man

hours if i ∈ ICMechanic. If i ∈ ICOutsource, then ui is measured in EUROS. Thomas&Co

has gathered all this data as shown in Table 5.2. Note that from Table 5.2 we can

also read that ICMechanic = {2, 3, 5, 6}, ICOutsource = {1, 4}, IAVillage = {1, 2, 3}, and

IACity = {4, 5, 6}. The data not shown in Table 5.2 is that `i = 2 and E[Li] = 3 for all

i ∈ I. In the next example, we will consider demand data. �

5.3.2 Control policy

Let Xt
i be the number of parts of SKU i that have been sent to regular repair and

have not yet completed the exponential phase of their repair at time t. As control

policy for each SKU i, we propose to place a replenishment order whenever demand

occurs, i.e. we use a (Si − 1, Si) replenishment policy. For the expediting policy, we
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Table 5.1 Overview of notation

Sets

I : Set of all SKUs.
A : Set of all fleets.
C : Set of all types of repair shop resources.

IAa : Set of SKUs used to maintain fleet a ∈ A.

ICc : Set of SKUs that load repair resource c ∈ C.
Θi : Set of modulating states of the Markov modulating chain of demand for SKU i ∈ I

Input Parameters

λi(y) : Demand intensity for SKU i ∈ I when Yi(t) = y ∈ Θi
λi : The vector (λi(1), λi(2), · · · , λi(|Θi|))
λmax
i : maxy∈Θi

λi(y) for SKU i ∈ I
Qi : Generator matrix of the modulating process Yi(t) of SKU i ∈ I
qi(m,n) : The element of row m column n of Qi, i ∈ I
qi(m) : −qi(m,m)
qmax
i : maxm∈Θi

qi(m)
`i : The (deterministic) expedited repair lead time of SKU i ∈ I
µ−1
i : Mean of the additional regular repair lead time, E[Li];

(the mean regular repair lead time is `i + µ−1
i )

SLBi : Lower bound on the size of the turn-around-stock for SKU i ∈ I
Cai : Acquisition costs for SKU i ∈ I
ui : Resource load associated with the repair of SKU i ∈ I
Bmax
a : The maximally allowed mean number of backorders over all SKUs i ∈ IAa for a ∈ A.
Emax
c : The maximally allowed mean resource loading resulting from repair

expediting over all items i ∈ ICc for expediting resource c ∈ C.

Decision variables

Si : Size of the turn-around-stock for SKU i ∈ I
Ti(y) : Expediting threshold for SKU i ∈ I when Y ti = y ∈ Θi
Ti : The vector (Ti(1), Ti(2), · · · , Ti(|Θi|))

Output of model

Xti (Si,Ti) : The number of parts of SKU i ∈ I in regular repair at time t and not arriving to

inventory before time t+ `i under an expediting policy with thresholds Ti.
Bti (Si,Ti) : Random variable that denotes the number of backorders of SKU i

at time t under policy (Si,Ti);

Dyi (t1, t2) : Demand for SKU i ∈ I in the interval (t1, t2] given Y
t1
i = y ∈ Θi

Li : Additional regular repair lead time; has exponential distribution with mean µ−1
i

Bi(Si,Ti) : Expected number of backorders of SKU i ∈ I, limt→∞ E[Bti (Si,Ti)]
Ei(Ti) : Expected number of repairs of SKU i ∈ I that are expedited per unit time∑

y∈Θi
λi(y)P(Xi(Ti) ≥ Ti(y) ∩ Yi = y)

Table 5.2 Input data for Thomas&Co

SKU# Description Cai (kEURO) Fleet Repair Resource ui SLBi

1 Climate unit 30 Village Outsource 500 2
2 Electro motor 45 Village Mechanic 16 1
3 Break set 5 Village Mechanic 4 5
4 Airconditioning unit 10 City Outsource 500 0
5 Electro motor 30 City Mechanic 16 0
6 Break set 2 City Mechanic 4 0
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Repair shop
λi(Yit)

Xit≥Ti(Yit)?

ℓi

No → do not expedite

Exp(μi)

Xit

Yes → Expedite

Figure 5.1 A graphical representation of the model for a single item.

propose to expedite whenever Xt
i exceeds some threshold that depends on Y ti , i.e.

replenishment orders are expedited at time t if Xt
i ≥ Ti(y) when Y ti = y. Thus the

control policy for any SKU i can be described by the turn-around stock Si and a

vector Ti = (Ti(1), Ti(2), · · · , Ti(|Θi|)) containing the expediting thresholds for each

modulating state. The stochastic process Xt
i depends on Ti and so we will write this

explicitly: Xt
i (Ti). Figure 5.1 gives a graphical representation of the control policy for

any SKU i. The combined policy is denoted by (Si,Ti) and can also be reinterpreted

as a state dependent dual-index policy as has also been noted in chapter 4. We will

use that term for a policy in this chapter.

The state dependent dual-index policy we propose is actually optimal under a linear

backordering and expediting cost structure as shown in Theorem 4.1 of chapter 4.

Furthermore, the numerical study in §4.6 shows that the performance of a state

dependent dual-index policy is rather insensitive to the assumption that Li has an

exponential distribution, i.e. both the performance evaluation error and optimality

gap for similar systems where Li has a different distribution with the same mean are

small (within 2.76% and 0.70% respectively over a large test bed).

Under a (Si,Ti) policy, (Xt
i (Ti), Y

t
i ) is a Markov process on

S =

{
(x, y)

∣∣∣∣x ∈ {0, . . . ,max
k∈Θi

Ti(k)

}
, y ∈ Θi

}
.

The Markov process (Xt
i (Ti), Y

t
i ) has three types of transitions:

1. Transitions from (x, y) to (x+1, y) which occur with intensity λi(y) if x < Ti(y)
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2. Transitions from (x, y) to (x− 1, y) which occur with intensity xµi if x > 0

3. Transitions from (x, y) to (x, y′) which occur with intensity qi(y, y
′) if y, y′ ∈ Θi

and y 6= y′.

The joint steady state distribution of (Xt
i (Ti), Y

t
i ) can be determined from these

transition intensities. When we drop the time superscript t, we refer to the steady

state random variables. With the distribution of (Xi(Ti), Yi), we can determine the

performance of a SKU i ∈ I in terms of the expected backorders and the expected

number of repairs of that are expedited per time unit under policy (Si,Ti).

Let Bti (Si,Ti) denote the number of backorders of SKU i ∈ I at time t under policy

(Si,Ti). It satisfies

Bt+`ii (Si,Ti) =
(
D
Y ti
i (t, t+ `i)− (Si −Xt

i (Ti))
)+

, (5.1)

and so the expected number of backorders of SKU i ∈ I in steady state, Bi(Si,Ti),

satisfies:

Bi(Si,Ti) = lim
t→∞

E
[
Bt+`ii (Si,Ti)

]
= E

[(
DYi
i (t, t+ `i)− Si +Xi(Ti)

)+
]
. (5.2)

Equation (5.2) can be evaluated after noting that Dy
i (t, t + `i) can be computed by

numerical inversion of a generating function as explained in §4.A.

Next consider the expected number of repairs that are expedited per time unit of

SKU i ∈ I, and denote it by Ei(Ti). (Note that Ei(Ti) depends on Ti only, not on

Si.) We have:

Ei(Ti) =
∑
y∈Θi

λi(y)P(Xi(Ti) ≥ Ti(y) ∩ Yi = y). (5.3)

Bi(Si,Ti) and Ei(Ti) can be evaluated in many ways. In §5.5, we use value iteration

to compute Bi(Si,Ti) and Ei(Ti).

5.3.3 Markov Modulated demand models and fitting

Fitting a MMPP demand model to data has not received much attention in the

literature. Fitting procedures do exist, but these are geared primarily to applications

of queueing models in telecommunication systems (e.g. Heffes and Lucantoni, 1986;

Meier-Hellstern, 1987; Yoshihara et al., 2001; Nelson and Gerhardt, 2010). Using

Markov modulated demand in the context of inventory problems has been advocated

by Song and Zipkin (1993) and Zipkin (2000). These authors emphasize that this

demand model allows for great modeling flexibility and indicate that this demand
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model can accommodate such divers phenomena as weather conditions and economic

conditions. However, practical algorithms to fit MMPP demand models to data have

not been provided in the literature. In this section, we provide two fitting techniques.

The first fitting procedure in §5.3.3.1 is specific for the maintenance context of this

thesis. The second fitting procedure in §5.3.3.2 is a moment fitting procedure, that

we believe can also be useful outside of the setting considered in this chapter.

5.3.3.1 Fitting based on maintenance strategy and installed base

The fitting procedure we describe is best understood by first considering an example.

Example 5.3 For the SKUs in Table 5.2, Maintenance engineers at Thomas&Co

are asked to assess what the demand will behave like over the next 30-40 years.

From past experience, they know that break sets need to be replaced on each train

approximately every year and so they expect a relatively steady demand of 200/50 = 4

for SKU 3 and 100/50 = 2 parts per week for SKU 6. (We work with a year of 50

weeks.) An airconditioning unit (SKU 4) is estimated to fail due to random causes

about once every 5 years. Over the entire fleet, this means that demand due to

failure maintenance will be about 1
5100/50 = 0.4 parts per week. Additionally, the

maintenance engineers expect that the airconditioning units of the entire City fleet

will need to be overhauled roughly every 4 years. They warn that this will lead to

peaks in demand during overhaul periods. How high this peak will be, depends on the

length of the overhaul period. Currently, revision periods are planned to last a year.

For SKU 5, the City electro motor, random failures occur around once every 10 years

so they expect a relatively steady demand of 1
10100/50 = 0.2 per week. Electro motors

require overhaul every 7 or so years, so here too, maintenance engineers insist that

inventory will be needed to deal with peak demand during overhaul periods. Similar

estimates are also available for SKUs 1 and 2: SKU 1 and 2 fail due to random causes

once every 4 and 8 years respectively and need to be replaced and overhauled every

4 and 6 years respectively. �

Example 5.3 illustrates how an understanding of maintenance can improve the

understanding of how demand for certain repairables fluctuates. This understanding

can then be modeled as the modulating chain for demand. Suppose that demand for

repairables behaves as described in Example 5.3: Demand is relatively steady over

some period, until demand peaks because of a revision period in which parts are

overhauled preventively. Then a simple MMPP that models demand is the following.

Let Na denote the number of equipment in fleet a ∈ A and consider an SKU i ∈ IAa .

Let λran
i denote the intensity with which any piece of equipment in the fleet fails

randomly (i.e. not due to wear out). Wear out failures do not occur because all
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repairables in the fleet are overhauled during revision periods. The time between

revision periods is a random variable Mi for SKU i. (Mi is not deterministic because

the time between revision periods is decided upon based on the condition of the fleet.)

Once the revision period starts, it lasts Ri time units and all repairables in the fleet

are expected to be replaced and revised during this period. Ri is also a random

variable. If we approximate Mi and Ri by exponential random variables a MMPP

demand model is given by:

Qi =

( −E[Mi]
−1 E[Mi]

−1

E[Ri]
−1 −E[Ri]

−1

)
, λT

i =

(
λran
i Na

λran
i Na +Na/E[Ri]

)
. (5.4)

Rather than using the exponential distribution for Ri and Mi, it is possible to use

any phase type distribution if appropriate. The restriction of modeling Ri and Mi by

phase type distributions is rather weak because phase type distributions are dense in

the class of all non-negative distributions (Schassberger, 1973). If we choose to model

Mi by an Erlang-2 distribution, we obtain:

Qi =

 −( 1
2E[Mi])

−1 ( 1
2E[Mi])

−1 0

0 −( 1
2E[Mi])

−1 ( 1
2E[Mi])

−1

E[Ri]
−1 0 −E[Ri]

−1

 , λT
i =

 λran
i Na
λran
i Na

λran
i Na + Na

E[Ri]

 .

(5.5)

Example 5.4 Thomas&Co decide to use (5.4) to model their demand. This yields

(time units are weeks):

Q1 =

( − 1
200

1
200

1
50 − 1

50

)
, Q3 = 0, Q5 =

( − 1
350

1
350

1
50 − 1

50

)
Q2 =

( − 1
400

1
400

1
50 − 1

50

)
, Q4 = Q1, Q6 = 0,

and

λT
1 =

(
1

5

)
,λT

2 =

(
1
2
9
2

)
,λT

3 = 4,λT
4 =

(
2
5
12
5

)
,λT

4 =

(
1
5
11
5

)
,λT

6 = 2.

�

5.3.3.2 Fitting based on moments of demand over expected lead time

One of the drawbacks of the stationary Poisson demand model is that it has only

one parameter and so fixing the mean demand per period, also fixes the variance of

demand per period. The MMPP allows for fitting arbitrary moments of demand for



142 Chapter 5. A system approach to repairable stocking and expediting

any finite time span provided that the variation coefficient (variance of demand in

that time span divided by the mean demand in that time span) is greater than 1.

Suppose we are given the mean E[D] and variance Var[D] of demand over some finite

time span. We scale time such that this time span is exactly one time unit. The

following proposition provides a two-state MMPP that fits these moments.

Proposition 5.1 Let X be a random variable with mean µ and standard deviation

σ that satisfy σ2/µ > 1. The number of counts during one time unit of a MMPP in

steady state with parameters

Q =

( −β β

αβ −αβ

)
, λ = (0, λ), (5.6)

matches the first two moments of X if α is fixed to verify

α ≥ κσ
2 − µ
µ2

, (5.7)

for some κ ≥ 2, λ is fixed as

λ = (1 + α)µ, (5.8)

and β is fixed as the unique and attractive solution to the fixed point equation

β =
µ
√

2αe−(α+1)β(σ2 − µ) + 2α(µ− σ2) + α2µ2 + αµ2

(α+ 1) (σ2 − µ)
. (5.9)

Appendix 5.A provides the proof of Proposition 5.1 as well as several figures of the

fit that this procedure provides.

5.3.4 Optimization problem

The objective of the manager is to minimize the investment he is about to make

in buying repairable spare parts. The constraints are to keep the total expected

backorders for each fleet a ∈ A below Bmax
a and to keep the total expected resource

loading due to expedited repair orders below Emax
c for each repair resource c ∈ C.

A backorder for a part renders some equipment down. If an expedited repair mode

is available for SKU i ∈ I, it is unacceptable that any particular backorder for SKU

i ∈ I lasts longer than `i. To ensure this never happens, it suffices to ensure that

Ti(y) ≤ Si for each i ∈ I and y ∈ Θi. Combining all this leads to the following formal
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statement of our optimization problem which we call P :

(P ) min
{Si,Ti|i∈I}

∑
i∈I

Cai
(
Si − SLBi

)
(5.10)

subject to
∑
i∈IAa

Bi(Si,Ti) ≤ Bmax
a ∀a ∈ A (5.11)

∑
i∈ICc

uiEi(Ti) ≤ Emax
c ∀c ∈ C (5.12)

SLBi ≤ Si ∀i ∈ I (5.13)

Ti(y) ≤ Si ∀i ∈ I, ∀y ∈ Θi (5.14)

Si, Ti(y) ∈ N0 ∀i ∈ I, ∀y ∈ Θi. (5.15)

We denote the optimal costs to problem (P ) by CP . In the next section, we construct

a feasible solution with cost CUBP for problem (P ) as well as a lower bound, CLBP , on

the optimal cost of problem (P ). Section 5.4 can be skipped without loss of continuity.

Example 5.5 Thomas&Co would like to adhere to the goals of having Bmax
Village = 1

and Bmax
Village = 0.5. For expediting the repair of climate and airconditioning units

(Outsource repair resource) there is a weekly budget of 200 EUROS, Emax
Outsource =

200. (Note that the ‘loads’ for each SKU i ∈ I are provided in Table 5.2 as discussed

in Example 5.2.) For expediting the repair for the internal repair shop that handles

mechanical repairs, the agreement with the repair shop manager is to keep requests

for expedited repair orders below the nominal load of 20 man hours per week on

average, Emax
Mechanic = 20. �

5.4. Analysis

The analysis will proceed by giving an algorithm to construct a lower bound for

problem (P ) in §5.4.1. In 5.4.2, we show how to find a good feasible solution for

problem (P ) based on the lower bound constructed in §5.4.1.

5.4.1 Constructing lower bounds with column generation

To obtain a lower bound for problem (P ), we first reformulate it to an integer linear

program and then relax the integrality constraints. We refer to this problem as the

master problem (MP ). To this end, we introduce the set Ki of all dual-index policies

k for item i that respect constraints (5.13)-(5.15) of problem (P ). Policy k ∈ Ki has

base-stock level and expediting thresholds (Ski ,T
k
i ). We also introduce the decision
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variable xki ∈ {0, 1} that indicates whether policy k is chosen for item i. If we relax

the integrality constraint on xki , we obtain the master problem:

(MP ) min
{xki |i∈I,k∈Ki}

∑
i∈I

Cai
(
Ski − SLBi

)
xki (5.16)

subject to
∑
i∈IAa

∑
k∈Ki

Bi(Ski ,Tk
i )xki ≤ Bmax

a ∀a ∈ A (5.17)

∑
i∈ICc

∑
k∈Ki

uiEi(Tk
i )xki ≤ Emax

c ∀c ∈ C (5.18)

∑
k∈Ki

xki = 1 ∀i ∈ I (5.19)

xki ≥ 0 ∀i ∈ I, ∀k ∈ Ki.

Since Ki is an infinite set, (MP ) is an infinite dimensional linear program. The

way to solve (MP ), is to introduce a restricted master problem (RMP ) in which we

replace Ki with a finite subset Kres
i and solve (RMP ) to optimality. Then we consider

whether we can improve the solution to (RMP ) by adding policies k ∈ Ki \Kres
i to

Kres
i . To see if such policies exist for SKU i, we need to solve a sub-problem. (This

sub-problem is also called the column generation problem or pricing problem.) We let

pa denote the dual variable of (RMP ) corresponding with fleet a ∈ A for constraint

(5.17), ρc denote the dual variable of (RMP ) corresponding with repair resource

c ∈ C for constraint (5.18) and vi denote the dual variable of (RMP ) corresponding

with SKU i for constraint (5.19). If i ∈ IAa ∩ ICc , then the sub-problem for SKU i is

given by:

(SUB(i)) min
{(Si,Ti)}

Cai
(
Si − SLBi

)
− paBi(Si,Ti)− ρcuiEi(Ti)− vi

subject to SLBi ≤ Si
Ti(y) ≤ Si ∀y ∈ Θi (5.20)

Si, Ti(y) ∈ N0 ∀y ∈ Θi. (5.21)

If a feasible solution to (SUB(i)) exists with a negative objective value, then the

objective of (RMP ) can be improved by adding this solution to Kres
i and solving

(RMP ) with this larger set Kres
i . An optimal solution to (RMP ) is also an optimal

solution for (MP ) if the optimal objective of (SUB(i)) is non-negative for each i ∈ I.

Since (MP ) is a relaxation of (P ), we have also found a lower bound for problem (P )

that we denote by CLBP .

Note that all policies that yield a negative objective for (SUB(i)) can improve the

solution of (RMP ), so we do not need to solve (SUB(i)) to optimality each time we

obtain new dual variables from the restricted master problem. We do need to solve
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(SUB(i)) to optimality to verify that an optimal solution to (RMP ) is also optimal

for (MP ). The next section treats heuristic and exact methods to solve (SUB(i)).

5.4.1.1 Solving the sub-problem

The optimization problem (SUB(i)) is almost identical to the single-item problem

discussed in chapter 4. The main differences are that:

• (SUB(i)) assumes a state dependent dual-index form for the control policy for

each item

• The expediting thresholds in (SUB(i)) are restricted to be below Si rather than

any number in N0 ∩ {∞}.

However, the methods from chapter 4 can be applied almost immediately by observing

that the form of the policy we assume is actually optimal as shown in Theorem 4.1

and that constraint (5.20) can be accommodated by setting the constant M in chapter

4 equal to Si. The exact and heuristic methods in §4.4 and §4.5 can easily be adapted

to solve (SUB(i)) by restricting the search over Si to be above SLBi . The exact

method in §4.4 is also exact for (SUB(i)) because the bounds on an optimal Si given

in Proposition 4.2 are obtained via lower and upper bounds that are also lower and

upper bounds on the optimal objective of (SUB(i)).

5.4.2 Constructing a good feasible solution

Several methods have been suggested to find a good feasible solution based on a lower

bound of the type constructed in the previous section. Kranenburg and Van Houtum

(2007) and Kranenburg and Van Houtum (2008) suggest rounding the fractional

solution obtained from solving (MP ) and then performing a local search to find a

good feasible solution. More recently, Alvarez et al. (2013a) and Alvarez et al. (2013b)

suggest solving the final version of (RMP ) after all columns have been generated as

an integer linear program. Because the found very good results compared to local

search algorithms, we also take that approach. To speed up the solution process we

use the feasibility pump heuristic (Fischetti et al., 2005) and stop the solution of

the integer linear program as soon as a feasible solution with optimality gap3 of less

than 0.5% is found or 1 minute has elapsed (whichever occurs first). This results in

a feasible solution to (P ) that is also an upper bound. We denote the cost of this

solution by CUBP .

3Observe that this optimality gap is with respect to the integer linear programming formulation

with a finite number of columns, not with respect to the original optimization problem.
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Alvarez et al. (2013a) and Alvarez et al. (2013b) report that this approach is

computationally feasible with a commercial solver such as CPLEX. Our approach

works well with the GLPK open source solver, even though the performance of this

solver is consistently lagging in benchmarks4.

Example 5.6 For the instance of Thomas&Co, we find a lower bound on the optimal

cost of CLBP = 851.58 kEURO. (Note that since all prices of parts are integer multiples

of 1000 EURO, 852 kEURO is also a lower bound on the optimal costs of acquiring

new repairable parts.) We also found a feasible solution with cost CUBP = 892 kEURO.

This solution is shown in Table 5.3. The solution in Table 5.3 is further characterized

Table 5.3 Feasible solution for the Thomas&Co problem (P )

SKU# Si Ti(1) Ti(2)

1 19 19 11
2 4 2 0
3 12 4 -
4 12 12 12
5 2 1 0
6 16 9 -

by
∑
i∈IAVillage

Bi(Si,Ti) = 0.940,
∑
i∈IACity

Bi(Si,Ti) = 0.485,
∑
i∈ICOutsource

Ei(Ti) =

176.231, and
∑
i∈ICMechanic

Ei(Ti) = 19.996. The optimality gap (CUBP − CLBP )/CLBP ·
100% = 4.7%.

5.5. Computational results

We discuss the questions we would like to answer, and the test bed we use in §5.5.1.

We present and discuss the numerical results in §5.5.2.

5.5.1 Objectives and test bed

The objectives of this numerical study are to:

1. Determine whether the algorithm to find a feasible solution to (P ) is effective,

i.e., determine whether it finds solutions that are close to optimal;

2. Determine whether the algorithm to find a feasible solution to (P ) is efficient,

i.e., determine whether it finds a feasible solution within reasonable time;

4See for example the MIPLIB2010 (Koch et al., 2011) benchmark accessible via the benchmark

site of Hans Mittelmann: http://plato.asu.edu/bench.html

http://plato.asu.edu/bench.html
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3. Determine by how much stock investment can be reduced because of the

possibility to expedite repair of parts.

To answer these question, we set up a large test bed of instances. The order of

magnitude of problem parameters for our test instances are based on observations

made at NedTrain. We introduce the notation U(a, b) for a uniform random variable

on the interval (a, b). An overview of how instances in the test bed are generated is

shown in Table 5.4. The total number of instances in the test bed is 3523 = 1944.

For each combination of parameters 1,2,3,4,5,9, and 10 in Table 5.4, we generate two

instances randomly as follows:

• For each SKU i ∈ I, we generate a Markov modulated Poisson demand process

with Q generated as shown under 7 in Table 5.4, and λ generated by one of

the two option shown under 8 in Table 5.4. (This is why two instances are

generated.);

• Each SKU i ∈ I is assigned uniformly at random to a repair resource set ICc for

c = 1, . . . , |C|;

• For each SKU i ∈ I, we generate an acquisition price from U(100, 1000);

• For each SKU i ∈ I, set ui = 1;

• The values Bmax
a and Emax

c are set as fractions ν and ξ of the the total expected

demand per time unit for the fleet and repair resource respectively as shown

under 9 and 10 in Table 5.4.

To assess the value of expediting, we create a ‘benchmarking’ instance for each

‘orginal’ instance of (P ) that we generate. This benchmarking instance is created

to be identical to the original instance except that the mean repair lead time of the

benchmark instance is less than or equal to te mean repair lead time of the original

instance, but such that it is not possible to differentiate repair lead times through

expediting. This is achieved as follows. We raise Emax
c for each c ∈ C of the original

instance such that it is feasible (and optimal) to expedite all repairs. We change the

expedited lead time to the shortest possible mean repair lead time possible in the

original instance which is ξ`i + (1 − ξ)(`i + E[Li]). (Note that this procedure works

because ui = 1 for all i ∈ I.)

Now for each generated original instance we compute a feasible solution with cost

CUBP as described in §5.4.2 and compare it to the lower bound CLBP that is obtained

via the method described in §5.4.1:

%GAP =
CUBP − CLBP

CLBP
· 100%. (5.22)
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Table 5.4 Parameters for test bed instances

Parameter Values

1 Number of fleets |A| 1,2,4

2 Number of repair resources |C| 1,2,4

3 Number of SKUs per fleet |IAa | 20,50,100

4 Mean of additional regular
2,4

repair lead time, E[Li]

5 Expedited repair lead time, `i 1,2

6 Acquistion cost for SKU i ∈ I, Cai U(100, 1000)

7 Modulating chain generator

(
−q1 q1
q2 −q2

)
for SKU i ∈ I, Qi with q1 = [U(200, 400)]−1, q2 = [U(5, 50)]−1

8 Demand intensity vector
(

U(0.01, 0.1)

U(0.5, 1.5)

)
,

(
U(0.01, 0.5)

U(1, 2)

)
,

for SKU i ∈ I, λi
9 Upper bound on backorders ν

∑
i∈IAa

∑
y∈Θi

P(Yi = y)λi(y)

for fleet a ∈ A, Bmax
a for ν = 0.05, 0.02, 0.01

10 Upper bound on expediting load ξ
∑
i∈ICc

∑
y∈Θi

P(Yi = y)λi(y)

for resource c ∈ C, Emax
c for ξ = 0.2, 0.1, 0.05

Next we investigate the relative difference with the benchmark instance. We denote

a lower bound on the optimal objective of the benchmark instance by CLBBENCH . We

compare CUBP with CLBBENCH :

%V AL =
CLBBENCH − CUBP

CLBBENCH
· 100%. (5.23)

The algorithms described in §§5.4.1-5.4.2 were programmed as a single threaded

application in C with GLPK as the solver of both linear and integer linear programs.

All computations were carried out on a PC running Windows (32 bit) with Intel Core

Duo 2.33 GHz CPU and 4 GB of RAM.

5.5.2 Results

Table 5.5 shows the results of the computational experiment. For each of the

parameters in Table 5.4 that has several settings, we computed the mean and

maximum %GAP and %V AL as well as the mean and maximum computation time

in seconds for each of the settings. We will now discuss objective 1-3 as stated in the

previous subsection.

The average optimality gap of our feasible solution is very small at 0.67% but

optimality gaps of up to 6.76% do occur. The optimality gap seems to increase with

the number of fleets and repair resources. This is not surprising, because (MP ) has

|I|+|A|+|C| constraints and the same number of basic variables in an optimal solution.
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Table 5.5 Summary of computational results

%GAP %VAL CPU time (s)

Parameter Values avg max avg max avg max

Number of fleets, |A| 1 0.39 3.00 25.0 48.1 31 154

2 0.56 6.76 25.0 49.1 76 313

4 1.05 5.49 24.8 48.2 152 522

Number of 1 0.40 4.54 25.1 49.1 76 473

repair resources, |C| 2 0.55 3.57 25.1 48.2 85 511

4 1.04 6.76 24.7 48.1 98 522

Number of SKUs 20 0.64 5.49 24.7 49.1 38 157

per fleet, |IAa | 50 0.68 4.71 25.0 47.9 80 282

100 0.68 6.76 25.1 47.6 141 522

Fraction of total demand 0.05 0.72 6.76 24.9 48.2 78 462

per time unit that may be 0.02 0.68 5.49 24.8 48.0 88 502

backordered, ν 0.01 0.61 5.26 25.1 49.1 93 522

Fraction of total demand 0.2 0.88 6.76 32.2 49.1 86 452

per time unit that may be 0.1 0.62 4.71 24.3 38.8 88 502

expedited, ξ 0.05 0.50 3.72 18.3 31.4 85 522

Expedited repair 1 0.70 6.76 28.5 49.1 59 305

lead time, `i 2 0.63 5.26 21.4 42.7 113 522

Random demand

(
U(0.01, 0.5)

U(1, 2)

)
0.72 5.26 28.2 49.1 111 522

intensity vector

(
U(0.01, 0.1)

U(0.5, 1.5)

)
0.61 6.76 21.7 41.4 62 281

Additional regular repair 2 0.69 4.74 20.9 39.4 82 502

lead time, E[Li] 4 0.64 6.76 29.0 49.1 91 522

Total 0.67 6.76 24.9 49.1 86 522

Because of constraint (5.19), there is a basic variable for each i ∈ I. Therefore, there

will be at most |A|+ |C| SKUs for which the optimal solution to (MP ) is fractional.

This explains why the optimality gap increases with both |A| and |C|. Somewhat

surprisingly, the optimality gap does not seem to decrease significantly with |IAa |.
This is different form other multi-item spare parts problem where the optimality gap

typically does decrease with the number of SKUs considered, (e.g Kranenburg and

Van Houtum, 2007, 2008; Alvarez et al., 2013a,b). This can be explained by the fact

that we put a time limit of 1 minute on the integer linear programming solver.

The computation times of finding a feasible solution are 86 seconds on average and at

most 522 seconds, which is quite acceptable given the size of the problems. It is also

convenient that the computation time seems to scale linearly in the number of SKUs.

Over 95% of the computation time for solving (MP ) to optimality is spent in solving
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(SUB(i)). This task could also be parallelized on modern multi-core processors so

that the computation time can be further reduced by a factor equal to the number of

cores on a processor.

The value of using expediting to influence repair lead times of repairables is quite

valuable with an average benefit of 24.9% and even benefits of up to 49.1%. As was

to be expected, the benefits increase with the fraction of total demand that can be

expedited and with the expedited lead time. But even the opportunity to expedite

5% of demand leads to average savings of as much as 18.3% compared to static lead

times.

5.6. Conclusion

This chapter presented an efficient and effective algorithm to determine near optimal

turn-around stock levels for a large group of repairable items that are used in the

maintenance of several fleets of equipment. The use of expediting to influence the

repair lead time of repairables was shown to be quite effective in reducing the stock

investment needed to meet service levels for several fleets of equipment.
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5.A. Proof of Proposition 5.1

We start with some preliminaries. Consider a two state MMPP with generator R and

intensity vector ν given by

R =

( −r1 r1

r2 −r2

)
, ν = (ν1, ν2).

We let Nt denote the number of arrivals this MMPP generates in an interval of length

t when it is in steady state. From Heffes and Lucantoni (1986), we have that

E[Nt] =
ν1r2 + ν2r1

r1 + r2
(5.24)

and

Var[Nt] = E[Nt] + 2At− 2A

r1 + r2

(
1− e−(r1+r2)t

)
(5.25)

with

A =
r1r2(ν1 − ν2)2

(r1 + r2)3
.

Now we start the proof of Proposition 5.1.

Proof: Let N denote the number of arrivals during one time unit in steady state

in the MMPP in the proposition. Using (5.24), we find that

E[N ] =
λ

α+ 1
, (5.26)

and equating this with µ and solving for λ yields

λ = (α+ 1)µ. (5.27)

Substituting (5.27) with E[N ] = µ into (5.25) yields

Var[N ] = µ+
2αµ2

(α+ 1)β
− 2αµ2

(α+ 1)2β2

(
1− e−(α+1)β

)
. (5.28)

Equating (5.28) with σ2, and rearranging we obtain

(σ2 − µ)(α+ 1)β2 − 2αµ2(α+ 1)β + 2αµ2 = 2αµ2e−(α+1)β . (5.29)

Applying the quadratic root formula to (5.29) and simplifying, we find that if there

is a β > 0 that satisfies

β =
µ
√

2αe−(α+1)β(σ2 − µ) + 2α(µ− σ2) + α2µ2 + αµ2

(α+ 1) (σ2 − µ)
, (5.30)
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we have a fit. Now we show that such a unique β∗ > 0 does exist provided

α ≥ κσ
2 − µ
µ2

, and
σ2

µ
> 1, (5.31)

for some κ ≥ 2.

For convenience define f : R+ → R as

f(β) =
µ
√

2αe−(α+1)β(σ2 − µ) + 2α(µ− σ2) + α2µ2 + αµ2

(α+ 1) (σ2 − µ)
(5.32)

where R+ = [0,∞) and let α, σ2 and µ satisfy (5.31). To show that there is a unique

β∗ > 0 that solves (5.30), it suffices to show that f(0) > 0 and that f ′(β) < 0 for all

β ∈ R+. That f(0) > 0 can be verified directly and for f ′(β) we have

f ′(β) = − αµe−(α+1)β√
α2µ2 − 2α

(
1− e−(α+1)β

)
(σ2 − µ)

< 0. (5.33)

The strict inequality holds because (5.31) holds. Next we observe that f ′(β) > −1

for all β > 0 and in particular for β∗, because f ′′(β) > 0 for all β > 0:

f ′′(β) =
αµe−

3
2 (α+1)β

{
2α(α+ 1)e(α+1)β(µ− σ2) + (α+ 1)α2µ2e(α+1)β

}
2
{
α2µ2e(α+1)β + 2αe(α+1)β(µ− σ2) + 2α(σ2 − µ)

} 3
2

+
(α+ 1)αµe(α+1)β√

α2µ2e(α+1)β + 2αe(α+1)β(µ− σ2) + 2α(σ2 − µ)
> 0. (5.34)

The strict inequality again holds because (5.31) holds. Since f ′(0) = −1, and

f ′(β) < 0 and f ′′(β) > 0 for all β > 0, we conclude that |f ′(β)| < 1 for all β > 0 and

in particular for β∗. This implies that β∗ is an attractive fixed point of f . 2

The fit provided in Proposition 5.1 is parameterized by κ ≥ 2. To gain some intuition

on the fit provided and the role of the parameter κ, we provide some examples of the

distribution of N1 that this fit generates in Figures 5.2 and 5.3.
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Figure 5.2 Fitted distributions generated by the procedure in Proposition 5.1. Standard

deviation and the fitting parameter κ are varied as shown in the plots.
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Figure 5.3 Fitted distributions generated by the procedure in Proposition 5.1. Standard

deviation and the fitting parameter κ are varied as shown in the plots.
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6.1. Introduction

This chapter studies base-stock policies for consumables that are reviewed period-

ically. When the stock for consumables is depleted, it is a common procedure to

use an emergency supply source to replenish the part almost instantaneously so that

maintenance is not halted for lack of a part. All items that are replenished by the
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emergency procedure are lost to the normal mode of replenishment. This problem is

mathematically equivalent to the classical lost sales inventory problem that has been

studied by Karlin and Scarf (1958), Morton (1969), Morton (1971), van Donselaar

et al. (1996), Johansen (2001), Janakiraman et al. (2007), Zipkin (2008b), Zipkin

(2008a), Levi et al. (2008), Huh et al. (2009b), and Goldberg et al. (2012). This

system consists of a periodically reviewed stock point which faces stochastic i.i.d.

demand. When demand in a period exceeds the on hand inventory, the excess is lost.

Replenishment orders arrive after a lead time τ . At the end of each period, costs for

lost sales and holding inventory are charged. For such systems, we are interested in

minimizing the long run average cost per period.

The loss of excess demand can have many interpretations. In the context of this

thesis, the excess is lost because it is filled by an emergency shipment from another

supplier. The traditional interpretation is that a potential sale to a customer has

been lost. The terminology of a lost sale has become the standard in the literature

so we will also use this standard in the present chapter.

The structure of the optimal policy for lost sales inventory systems with a positive

replenishment lead time is still not completely understood, and the computation

of optimal policies suffers from the curse of dimensionality as the state space is τ -

dimensional. Goldberg et al. (2012) show that the policy to order the same quantity

each period is asymptotically optimal as τ approaches infinity. However, for moderate

values of τ as encountered in practice, it is difficult to find a good policy. The only

policy with a strict performance bound is the dual-balancing policy proposed by Levi

et al. (2008). This policy has a cost of no more than twice the optimal costs. In a

numerical study, Zipkin (2008a) shows that the dual balancing policy is effective for

low per unit lost sales penalty costs, but that base-stock policies perform better in

general, especially for high penalty costs. Huh et al. (2009b) show that in fact, base-

stock policies are asymptotically optimal as the lost sales penalty costs approach

infinity. However, computing the best base-stock policy for a lost-sales inventory

problem efficiently remains a challenge. Huh et al. (2009a), p. 398, observe that:

“Although base-stock policies have been shown to perform reasonably well in lost

sales systems, finding the best base-stock policy, in general, cannot be accomplished

analytically and involves simulation optimization techniques”. Although the burden

of optimization is alleviated by the fact that the average cost under a base-stock

policy is convex in the base-stock level (Downs et al., 2001; Janakiraman and Roundy,

2004), evaluating the performance of any given base-stock policy requires either value

iteration or simulation.

In this chapter, we provide an efficient method to compute near optimal base-stock

levels for lost sales inventory models as well as accurate approximations for the costs

of base-stock policies. This method is based on a different view of the dynamics of
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a lost sales inventory system, inspired by a relation to the dual sourcing inventory

system. This relation has been studied by Sheopuri et al. (2010), and allows us to

use ideas similar to those of Arts et al. (2011) for dual-sourcing inventory systems

in the context of lost sales inventory systems. Somewhat counter-intuitively, our

approach involves moving from a τ -dimensional state space description to a (τ + 1)-

dimensional state space description, where τ is the order replenishment lead time.

This (τ + 1)-dimensional state space is the pipeline of all outstanding orders, but

not the on-hand inventory. The next key idea to this approach is to aggregate this

pipeline of outstanding orders into a single state variable. This is essential to lending

tractability as the size of the original state space grows exponentially in both the lead

time and the base-stock level. By contrast, the aggregated state space grows linearly

in the base-stock level only.

From the distribution of this single aggregated state variable, all relevant performance

measures can be computed. The distribution of this single state variable can be

studied via a Markov chain. For the transition probabilities of this Markov chain,

we derive limiting results and show that for the most commonly used demand

distributions, the rate of convergence for these limits is at least exponential. We

also show that these limiting results satisfy a type of flow conservation property. This

flow conservation property relates the average size of an order entering or leaving

the pipeline to the total number of items in the pipeline. Based on these results,

evaluating a single base-stock policy approximately is as easy as solving S + 1 linear

equations, where S is the base-stock level. Numerical experiments indicate that this

approach yields excellent results. Across a test bed that is an extension of the test

beds considered by Huh et al. (2009b) and Zipkin (2008a), we find that our approach

has cost differences with the best base-stock policy of at most 1.30% and 0.01% on

average.

This chapter is organized as follows. The model and notation are described in §6.2. In

§6.3-6.5, we analyze the model by aggregating the state space, providing asymptotics

for this aggregation and studying the rate of convergence. In §6.6, we define and study

flow conservation properties of approximations and verify that our approximation has

this property. We consider a few small extensions in §6.7 and give numerical results

for our approximation in §6.8. Concluding remarks are provided in §6.9.

6.2. Model

We consider a periodic review single stage inventory system with a replenishment lead

time of τ periods (τ ∈ N0 = N ∪ {0}). Periods are numbered forward in time and

demand in period t is denoted Dt and {Dt}∞t=0 is a sequence of non-negative i.i.d.
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discrete random variables with 0 < E[Dt] < ∞. We let D denote the generic single

period demand random variable and we let D(k) denote demand over k periods. We

denote the order placed in period t by Qt and note that this order arrives in period

t+ τ . The pipeline of orders is denoted Qt = (Qt, Qt−1, . . . , Qt−τ ). We let It denote

the on-hand inventory at the beginning of period t before Qt−τ arrives. The lost sales

in period t are denoted by Lt = (Dt − It + Qt−τ )+, where x+ = max(0, x). In each

period, a holding cost of h per unit on-hand inventory before the arrival of an order

is incurred. Lost sales are penalized with p per lost sale. The system is operated by

a base-stock policy with base-stock level S ∈ N0. Thus, at the beginning of period

t, an order is placed to raise the inventory position Yt (on-hand inventory plus all

outstanding orders) up to the base-stock level S:

Qt = S − Yt, (6.1)

where

Yt = It +

t−1∑
k=t−τ

Qk, t ≥ 0. (6.2)

We assume without loss of generality that I0 ≤ S and Qt = 0 for t = −τ, . . . ,−1,

so that Qt ≥ 0 for all t ∈ N0. The random variable Qt depends on S; to stress

this, we will sometimes use the notation Qt(S). For each of the variables described,

we use the subscript ∞ to denote a random variable in steady state; for instance

P(I∞ = x) = limt→∞ P(It = x). Some care needs to be taken to ensure steady state

variables do exist; Huh et al. (2009a, Theorem 3) prove that a sufficient condition

for these steady state random variables to be well defined is P(D ≤ S/(τ + 1)) > 0.

Most discrete distributions commonly used, such as Poisson, geometric, and (negative)

binomial all satisfy this condition. Also any demand distribution with P(D = 0) > 0

verifies this condition. Our objective will be to minimize the long run average cost

per period C(S) over the base-stock level S:

C(S) = pE[L∞] + hE[I∞]. (6.3)

We note that this description of the problem is slightly different from most descriptions

in that we account for holding costs at the beginning of a period before the order that

is due in that period arrives, whereas we account for lost sales at the end of a period.

Obviously this convention does not change the long run expected cost per period, but

in the analysis, it will make the equations more transparent.
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6.3. State space aggregation

The dynamics of It, Lt and Qt are given by

It+1 = (It +Qt−τ −Dt)
+, (6.4)

Lt = (Dt − It −Qt−τ )+, (6.5)

Qt+1 = Dt − Lt. (6.6)

Define the pipeline sum, At, as the sum of all outstanding orders at time t, including

the order that arrives in period t and the order that was placed in period t:

At =

t∑
k=t−τ

Qk = Qte
T, (6.7)

where e is the vector of all ones of length τ + 1. For the pipeline sum, we have the

following result.

Lemma 6.1 The following equations hold for all t ≥ 0

(a) At + It = S

(b) At+1 = min(S,At −Qt−τ +Dt)

Proof: For (a), we can simply write using (6.1) and (6.2)

At + It = Qt +

t−1∑
k=t−τ

Qk + It = S − Yt + Yt = S.

For (b), we have

At+1 = S − It+1

= S − (It +Qt−τ −Dt)
+

= S − (S −At +Qt−τ −Dt)
+

= min(S,At −Qt−τ +Dt),

where the first equality follows from part (a), the second by substituting Equation

(6.4), the third applying (a) again, and the final equality is easily verified by

distinguishing the case (S − At + Qt−τ − Dt)
+ = 0 and (S − At + Qt−τ − Dt)

+ =

S −At +Qt−τ −Dt. 2

Finding E[A∞] gives us all the information we need to evaluate C(S) because

E[I∞] = S − E[A∞] (6.8)
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by Lemma 6.1 (a), and

E[L∞] = E[D∞]− E[Q∞] = E[D∞]− E[A∞]/(τ + 1) (6.9)

by using equations (6.7) and (6.5), and so

C(S) = −(h+ p/(τ + 1))E[A∞] + hS + pE[D∞]. (6.10)

Finally, we note that Lemma 6.1 (b) gives us the basis for a one-dimensional Markov

chain for At from which we can determine the distribution and mean of A∞. This

Markov chain has transition probabilities pij = P(At+1 = j|At = i) that can be found

by conditioning:

pij =

{
limt→∞

∑j
k=0 P(Qt−τ = i+ k − j|At = i)P(Dt = k), if 0 ≤ j < S;

limt→∞
∑i
k=0 P(Qt−τ = k|At = i)P(Dt ≥ S + k − i), if j = S.

(6.11)

Unfortunately, to evaluate limt→∞ P(Qt−τ = i|At = j), we need to evaluate the

(τ + 1)-dimensional Markov chain Qt. That is,

lim
t→∞

P (Qt−τ = x|At = y) = lim
t→∞

∑
q|qτ+1=x∩qeT=y P(Qt = q)∑

q|qeT=y P(Qt = q)
. (6.12)

Thus, in this view of the problem, the dimension of the system just increased from

τ -dimensional space to (τ + 1)-dimensional space and so this task suffers from the

curse of dimensionality even more than finding optimal policies does. In fact, it can

be shown that the state space of Qt grows exponentially in both S and τ as
(
S+τ+1
S

)
.

(For a derivation of this result, see §6.A.3.) However, in the limit that S → ∞, we

can characterize P(Qt−τ = i|At = j) using limiting results and we pursue this in the

next section.

6.4. Asymptotics

In this section, we show that as S approaches infinity and all other parameters stay

constant, that

P(Qt−τ = i|At = j)→ P
(
Dt−τ−1 = i

∣∣∣∑t−1
k=t−τ−1Dk = j

)
. (6.13)

Furthermore, for S = 0, 1, (6.13) holds with equality in the limit that t→∞. We use

these results to find an asymptotic approximation for C(S). To state our results, we

need some additional notation. We let
P−→ denote convergence in probability.1

1A sequence of random variables Xn is said to converge in probability to X (notation Xn
P−→ X)

if limn→∞ P(|Xn −X| ≥ ε) = 0 for all ε > 0.
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Theorem 6.1 The following holds for all t ≥ τ when everything is held constant

except S:

(a) As S →∞, Qt+1
P−→ Dt

(b) As S →∞, P (Qt+1 = i)→ P (Dt = i).

(c) As S →∞, P (Qt−τ = i|At = j)→ P
(
Dt−τ−1 = i

∣∣∣∑t−1
k=t−τ−1Dk = j

)
.

(d) For S = 0 and S = 1 and i ≤ j ≤ S,

lim
t→∞

P(Qt−τ = i|At = j) = P
(
Dt−τ−1 = i

∣∣∣∑t−1
k=t−τ−1Dk = j

)
.

Proof: First note that, by Equation (6.6), Qt+1 ≤ Dt with probability 1 for all

t ≥ 0. This implies in particular that Qt+1 ≤st Dt, i.e., P(Qt+1 ≤ x) ≥ P(Dt ≤ x)

and so also

P(At ≤ x) ≥ P
(∑t−1

k=t−τ−1Dk ≤ x
)
. (6.14)

Second, we observe that Qt+1 = Dt if and only if Lt = 0 which, by Equations (6.5)

and Lemma 6.1 (a), is equivalent to the inequality

Dt ≤ S −At +Qt−τ . (6.15)

With this set up, we will now show that as S →∞, Qt+1
P−→ Dt. Let δ ∈ (0, 1) and

let Sδ satisfy P(D(τ+2) ≤ Sδ) > 1 − δ. (Such an Sδ < ∞ exists because E[D] < ∞
and so limx→∞ P

(
D(τ+2) ≤ x

)
= 1.) Now for S ≥ Sδ, we have

P(|Dt −Qt+1| > 0) = P(Dt −Qt+1 > 0)

= 1− P(Dt = Qt+1)

= 1− P(Dt ≤ S −At +Qt−τ )

≤ 1− P(Dt +At ≤ S)

≤ 1− P
(
D(τ+2) ≤ S

)
(6.16)

< 1− (1− δ) = δ.

The first equality holds because Dt ≥ Qt+1 with probability one. The second equality

holds because Dt and Qt+1 are discrete random variables. The third equality holds

because, as observed above, Qt+1 = Dt if and only if (6.15) holds. The second

inequality follows by substituting (6.14), and the final inequality follows from the

fact that S > Sδ. This convergence in probability implies also the convergence in

distribution asserted in part(b): In the limit that S approaches infinity, Qt+1
d
=Dt

for all t > τ where
d
= denotes equality in distribution.
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Part (c) now follows from part (b).

For part (d), the case S = 0 is trivial. Consider the case S = 1. For the condition

At = 0, the result is again trivial. For the condition S = 1, we know that at time t,

Qk = 1 for exactly one k ∈ {t− τ, ..., t} and 0 otherwise, because At ≤ S. Thus, the

state space of the pipeline Qt, consists of the zero vector 0 and the unit vectors ei,

for i = 1, . . . ,m, where ei corresponds to the state that Qt+1−i = 1 and Qk = 0 if

k 6= t+ 1− i and 0 corresponds to an empty pipeline. The transition probabilities of

Qt are given by:

P(Qt+1 = x|Q = y) =


P(D = 0), if x = 0 and y ∈ {0, eτ+1};
P(D > 0), if x = e1 and y ∈ {0, eτ+1};
1, if x = ei+1 and y = ei for i ∈ {1, . . . , τ};
0, otherwise.

(6.17)

It is easily verified that the stationary distribution of Qt exists and satisfies

P(Q∞ = ei) = P(Q∞ = ei+1) for i = 1, . . . , τ . From this, it follows using (6.12)

that limt→∞ P(Qt−τ = 1|At = j) = 1
τ+1 , and P(Qt−τ = 0|At = j) = τ

τ+1 . Now, we

find

P
(
Dt−τ−1 = 1

∣∣∣∑t−1
k=t−τ−1Dk = 1

)
=

P (D = 1)P
(
D(τ) = 0

)
P
(
D(τ+1) = 1

)
=

P (D = 1)P (D = 0)
τ

(τ + 1)P(D = 1)P (D = 0)
τ

= 1/(τ + 1). (6.18)

The complement then equals τ/(τ + 1). 2

To state our next result, we let Ã∞ denote the random variable that results from

approximating P(At+1 = j|At = i) with limiting results in Theorem 6.1, i.e.,

P
(
Ã∞ = x

)
= π̃(x) where π̃(x) solves the set of linear equations

π̃(j) =

S∑
i=0

π̃(i)p̃ij , j = 0, . . . , S − 1,

S∑
i=0

π̃(i) = 1, (6.19)

with

p̃ij =


∑j
k=0 P

(
Dt−τ−1 = i+ k − j

∣∣∣∑t−1
k=t−τ−1Dk = i

)
P(Dt = k), if j < S;∑i

k=0 P
(
Dt−τ−1 = k

∣∣∣∑t−1
k=t−τ−1Dk = i

)
P(Dt ≥ S + k − i), if j = S.

(6.20)

Furthermore, we let

C̃(S) = −(h+ p/(τ + 1))E[Ã∞] + hS + pE [D∞] ,
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and Ĩ∞ = S − Ã∞ so that P(Ĩ∞ = x) = π̃(S − x) (by Lemma 6.1 (a)).

Theorem 6.2 If P(D ≤ S/(τ + 1)) > 0, then as S →∞,

(a) p̃ij −→ pij,

(b) π̃(x) −→ P(A∞ = x),

(c) E
[
Ã∞

]
−→ E [A∞] ,

(d) C̃(S) −→ C(S).

Furthermore we have that C̃(1) = C(1) and if τ = 0, then C̃(S) = C(S).

Proof: Part (a) follows directly from Theorem 6.1 (c). From Huh et al. (2009a)

Theorem 3, we know that under the condition P(D ≤ S/(τ + 1)) > 0, A∞ is well

defined. Consequently, P(A∞ = x), E[A∞] and C(S) can all be computed using only

algebraic manipulations on limt→∞ P(Qt−τ = i|At = j). Since limits are preserved

under such manipulation, we obtain (b)-(d). That C̃(1) = C(1) follows from Theorem

6.1 (d), and C̃(S) = C(S) if τ = 0 follows from observing that At is one-dimensional

in this case and so Ãt = At with probability one. 2

Even for rather small S, the distributions of I∞ and A∞ are very well approximated

by the distributions of Ĩ∞ and Ã∞. Figure 6.1 illustrates this for I∞ by showing the

distribution of I∞ as determined by simulation in conjunction with the distribution

of Ĩ∞. The same also holds for C̃(S) compared with C(S) as shown in Figure 6.2.

In §6.8, we report a more elaborate numerical study that shows that the approxima-

tions obtained are indeed very good across a much wider range of instances.

We conclude this section by remarking that the results above can be used to efficiently

find good base-stock levels for lost sales systems. From Downs et al. (2001), we know

that C(S) is convex in S, so a simple heuristic to find a good base-stock level is simply

to perform a golden section search (or any other algorithm of choice) on C̃(S) with

the upper bound SUB and lower bound SLB on S given by the result of Huh et al.

(2009b):

SUB = inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p/(τ + 1)

p/(τ + 1) + h

}
,

SLB = inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p+ τh

p+ (τ + 1)h

}
.

We call this heuristic the L-heuristic because it is based on limiting results. In

the numerical section, we explore this and find that this heuristic is both extremely

effective and efficient.
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Figure 6.1 The distributions I∞ as determined by simulation and of Ĩ∞ as determined by

solving (6.19) for a lost sales system with lead time τ = 4 facing Geometric demand with

mean 5 and base-stock levels of 10, 20, 40 and 40 in (a)-(d) respectively.
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Figure 6.2 The true cost function C(S) and the approximated cost function C̃(S) for the

lost sales system with τ = 4, h = 1, p = 10 for Poisson, negative binomial and geometric

demand in (a)-(c) respectively. The mean demand for all these distributions is 10.
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6.5. Rates of convergence

In this section, we show that the asymptotics of the previous section have very good

convergence properties under mild conditions on the demand distribution. To state

our results we introduce the hazard of demand over k periods as

H(k)(x) = P
(
D(k) = x

∣∣∣D(k) ≥ x
)

=
P
(
D(k) = x

)
P
(
D(k)Dt ≥ x

) .
Oddly, the hazard rate properties of common discrete random variables are not found

in standard literature. For the most commonly used demand models, namely Poisson,

geometric, and negative binomial, we summarize results in Proposition 6.1.

Proposition 6.1 If D is a Poisson distributed random variable, then for any k ∈ N

lim inf
x→∞

H(1)(x) = lim
x→∞

H(1)(x) = lim
x→∞

H(k)(x) = lim inf
x→∞

H(k)(x) = 1.

Furthermore, if D is a negative binomially (geometrically) distributed random variable

with success probability p and r required successes, then for any k ∈ N

lim inf
x→∞

H(1)(x) = lim
x→∞

H(1)(x) = lim
x→∞

H(k)(x) = lim inf
x→∞

H(k)(x) = p.

The proof of this proposition is in the appendix. With these results, we now turn to

the rate of convergence of the limits in §6.4.

Theorem 6.3 If lim infx→∞H(τ+2)(x) = 1 − θ ∈ (0, 1), then Qt+1 converges to Dt

in probability at least exponentially in S, i.e., for any ε ∈ (0, 1− θ),

P(Dt −Qt+1(S) > 0) ≤ O
(
(θ + ε)S

)
.

Furthermore, if lim infx→∞H(τ+2)(x) = 1, Qt+1 converges to Dt in probability super-

exponentially in S, i.e., for any ε ∈ (0, 1),

P(Dt −Qt+1(S) > 0) ≤ O
(
εS
)
.

Proof: From (6.16), we know that P(Dt − Qt+1(S) > 0) ≤ P(D(τ+2) > S). Let

lim infx→∞H(τ+2)(x) = 1 − θ ∈ (0, 1). This implies that for any ε ∈ (0, θ), we can

choose an N ∈ N such that for all x > N , Hτ+2(x) > 1− θ − ε. Now fix C > 0 such

that

P(D(τ+2) > S) ≤ C(θ + ε)S (6.21)

for all S ≤ N . Next observe that for S ≥ N
P
(
D(τ+2) > S + 1

)
P
(
D(τ+2) > S

) =
P
(
D(τ+2) > S

)
− P

(
D(τ+2) = S + 1

)
P
(
D(τ+2) > S

)
= 1−H(τ+2)(S + 1) ≤ θ + ε. (6.22)



166 Chapter 6. Base-stock policies for consumables

Now we proceed by induction to show that P(Dτ+2 > S) ≤ C(θ + ε)S for all S ∈ N.

We have already verified the induction hypothesis that P(Dτ+2 > S) ≤ C(θ+ ε)S for

all S ≤ N . Suppose it holds for some S ≥ N and consider S + 1:

P
(
D(τ+2) > S + 1

)
=

P
(
D(τ+2) > S + 1

)
P
(
D(τ+2) > S

) P
(
D(τ+2) > S

)
≤ (θ + ε)P

(
D(τ+2) > S

)
≤ (θ + ε)C(θ + ε)S = C(θ + ε)S+1.

The first inequality holds by using (6.22) and the second follows from the induction

hypothesis.

The second part of the proof follows an analogous argument where θ = 0, and so we

omit it. 2

A direct corollary from combining Proposition 6.1 and Theorem 6.3 is that the rates

of convergence asserted in Theorem 6.3 are actually independent of the lead time for

the Poisson, negative binomial and geometric demand model.

Corollary 6.1 If D has a Poisson distribution, then P(Dt −Qt+1(S) > 0) ≤ O(εS)

for any ε > 0, regardless of the lead time, τ . If D has a geometric or negative binomial

distribution with succes probability p, then P(Dt −Qt+1(S) > 0) ≤ O(p+ εS) for any

ε > 0, regardless of the lead time, τ .

Theorem 6.4 If lim infx→∞H
(τ+2)
D (x) = 1−θ ∈ (0, 1], Ã∞ converges in distribution

to A∞ at least exponentially fast in S, i.e. for any ε > 0 the following hold:

P(A∞ = x) = π̃(x) +O
(
(θ + ε)S

)
,

E [A∞] = E[Ã∞] +O
(
(θ + ε)S

)
,

C(S) = C̃(S) +O
(
(θ + ε)S

)
.

The proof of Theorem 6.4 is in §6.A.2. Here too, Proposition 6.1 and Theorem 6.4

can be combined to show that the convergence rate is independent of the lead time

for Poisson, negative binomial, and geometric demand.

Corollary 6.2 If D has a Poisson distribution, then for any ε > 0, it holds that

P(A∞ = x) = π̃(x) +O
(
εS
)
, E [A∞] = E[Ã∞] +O

(
εS
)
, and C(S) = C̃(S) +O

(
εS
)
.

If D has a negative binomial distribution with succes probability p, then for any ε > 0,

it holds that P(A∞ = x) = π̃(x) +O
(
(p+ ε)S

)
, E [A∞] = E[Ã∞] +O

(
(p+ ε)S

)
, and

C(S) = C̃(S) +O
(
(p+ ε)S

)
.
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Since the random variable D is heavy-tailed if and only if, limx→∞H(1) = 0 (Foss

et al., 2011), we have no results on the rate of convergence for heavy-tailed demand

distributions. However, in the numerical sections we also test our approximation

for the heavy-tailed generalized Pareto distribution and find that also here the

approximation performs very well.

6.6. Internal consistency: flow conservation

Our approximation relies on aggregating a pipeline of orders into a single state

variable. Because At is originally a pipeline of orders, everything that goes in has to

come out. Furthermore, everything that goes in, stays there for τ + 1 periods. Thus

by Little’s law, we must have that

(τ + 1)E[Q∞] = E[A∞]. (6.23)

Alternatively, we might observe that At =
∑t
k=t−τ Qk also directly implies (6.23). In

this light, we may think of (6.23) as expressing flow conservation: Since At contains

τ + 1 order quantities, on average the outgoing order should equal the total number

of items in the pipeline divided by the length of the pipeline. Thus, an attractive

property of any approximation of At is that it also satisfies (6.23) in some way. Let

us make this more precise. Via (6.11), an approximation of

lim
t→∞

P(Qt−τ = x|At = y)

induces an approximate Markov chain for At. Let us denote the Markov chain

induced by such an approximation Ât, and let us denote the approximation for

limt→∞ P(Qt−τ = x|At = y) by P(Q̂t−τ = x|Ât = y). Now under this approximation,

the outgoing order has long run mean

E
[
Q̂∞

]
=

S∑
y=0

E
[
Q̂t−τ

∣∣∣Ât = y
]
P
(
Â∞ = y

)
.

The next Proposition identifies a large class of approximations P(Q̂t−τ = x|Â = y)

that leads to an approximate chain Ât that satisfies (τ + 1)E
[
Q̂∞

]
= E

[
Â∞

]
.

Definition 6.1 A Markov chain Ât induced by replacing limt→∞ P(Qt−τ = x|At = y)

with some approximation P(Q̂t−τ = x|Ât = y) in the transition probabilities (6.11) is

called internally consistent if it satisfies (τ + 1)E
[
Q̂∞

]
= E

[
Â∞

]
.

With Definition 6.1 in place, we can state the main result of this section.
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Proposition 6.2 Any Markov chain Ât on 0, . . . , S with transition probabilities p̂ij =

P(Ât+1 = j|Ât = i) such that

p̂ij =


∑j
k=0 P

(
Q̂t−τ = i+ k − j

∣∣∣Ât = i
)
P(Dt = k), if 0 ≤ j < S;∑i

k=0 P
(
Q̂t−τ = k

∣∣∣Ât = i
)
P(Dt ≥ S + k − i), if j = S;

(6.24)

is internally consistent if

P
(
Q̂ = x

∣∣∣Â = y
)

= P
(
Xt−τ = x

∣∣∣∑t
k=t−τ Xk = y

)
for some integer valued non-negative i.i.d. sequence of random variables Xt.

Proof: First observe that
∑y
x=0 P

(
Xt−τ = x

∣∣∣∑t
k=t−τ Xk = y

)
= 1 and so Ât is

a Markov chain indeed.

Now we establish that (τ + 1)E
[
Q̂∞

]
= E

[
Â∞

]
. Because

E
[
Xn

∣∣∣∑t
k=t−τ Xk = y

]
= E

[
Xn+1

∣∣∣∑t
k=t−τ Xk = y

]
for any n ∈ {t− τ, . . . , t− 1} and

t∑
n=t−τ

E
[
Xn

∣∣∣∑t
k=t−τ Xk = y

]
= y,

we have that

E
[
Xn

∣∣∣∑t
k=t−τ Xk = y

]
= y/(τ + 1). (6.25)

Now for E
[
Q̂∞

]
we find

E
[
Q̂∞

]
=

S∑
y=0

E
[
Xt−τ

∣∣∣∑t
k=t−τ Xk = y

]
P
(
Â∞ = y

)

=

S∑
y=0

y/(τ + 1)P
(
Â∞ = y

)
= E

[
Â∞

]
/(τ + 1).

The second equality holds by substituting (6.25). 2

Of all possible choices for Xt in Proposition 6.2, Dt is of course the most obvious

because by Theorem 6.1, Qt
P−→ Dt−1.
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Corollary 6.3 Ãt is internally consistent.

Proof: This follows from Proposition 6.2 and the assumption that Dt is a series

of i.i.d. discrete non-negative random variables. 2

6.7. Extensions

The results in the previous sections can be used for several variations of lost sales

inventory models. Below we discuss several such extensions.

6.7.1 General single period cost functions

Our results give approximations, not only for the moments of I∞ and L∞, but

also for their entire distribution. Thus, a cost function that is not necessarily

linear in It and Lt can also be accommodated. To see how the distribution of

L∞ and I∞ can be approximated by the given results, note that by Lemma 6.1

P(I∞ = x) = P(A∞ = S − x) and using Theorem 6.2, this can be approximated by

π̃(S − x). Furthermore, for the distribution of Lt we have for x > 0

P(Lt = x) = P
(
(Dt − It −Qt−τ )+ = x

)
=

S∑
y=0

P (Dt = x+ y +Qt−τ |At = S − y)P(It = y)

=

S∑
y=0

S−y∑
z=0

P(Dt = x+ y + z)P(It = y)P (Qt−τ = z|At = S − y) . (6.26)

Now letting t → ∞ in (6.26) and using the limit results in Theorems 6.1 and 6.2 to

approximate, we find (again for x > 0):

P(L∞ = x) =

S∑
y=0

S−y∑
z=0

P(Dt = x+ y + z)π̃(S − y)P
(
Dt−τ−1 = z

∣∣∣∑t−1
k=t−τ−1Dk = S − y

)
.

6.7.2 Service level constraints

Suppose we are interested in the service level of a lost sales system in that we require

that a fraction β ∈ [0, 1) of all demand is filled while minimizing the on-hand inventory.
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If we choose to control this system by a base-stock policy, the objective now becomes

to minimize S such that

βE[D] ≤ E[A∞]/(τ + 1). (6.27)

An approximate solution to this problem can be found by approximating E[A∞] by

E
[
Ã∞

]
.

6.8. Numerical results

We test how good the base-stock policies found by using our limiting results are,

compared to the best base-stock policies. We use and extend the test bed of Huh

et al. (2009b) which is an extension of the test bed of Zipkin (2008a). (Note that

the papers of Zipkin (2008a) and Huh et al. (2009b) also report the performance of

the globally optimal replenishment policy.) The first set of instances in this test bed

have Poisson or Geometric demand distributions, both with mean 5 and lead times

τ ∈ {1, 2, 3, 4}. The holding cost is kept constant at h = 1 while the penalty costs

p ∈ {1, 4, 9, 19, 49, 99, 199}. In keeping with how results on the test bed are reported

in Zipkin (2008a) and Huh et al. (2009b), the detailed numerical results per instance

are reported in Appendix 6.C. In this section, we only present aggregated results

about the gap with the best base-stock level and the accuracy of the cost estimates

of our approximation (both computed by simulation optimization). We also compare

our heuristic against those suggested by Huh et al. (2009b). The first heuristic they

suggest is to select the base-stock level that minimizes cost for a backorder system

with p as the cost per backorder per period. The resulting base-stock level is denoted

SB and is the solution to a news vendor problem:

SB = inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p+ τh

p+ (τ + 1)h

}
.

We call this heuristic the B-heuristic (B for backlogging). Generally, it performs quite

poorly and so Huh et al. (2009b) also suggest an improved heuristic also based on

solving news vendor problems. This improved heuristic has base-stock level SI that

satisfies

SI =
p

p+ h
inf

{
y : P

(
D(τ+1) ≤ y

)
≥ p

p+ h

}
+

h

p+ h
inf

{
y : P (D ≤ y) ≥ p

p+ h

}
.

We call this heuristic the I-heuristic (I for improved news vendor heuristic). Our

heuristic is to use the base-stock level SL which is obtained by minimizing C̃(S) using

a golden section search. We call our heuristic the L-heuristic.
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Tables 6.1 and 6.2 report the average and (absolute) maximum percentage errors in

the performance predicted by the L heuristic

100% ·
(
C̃(SL)− C(SL)

)
/C(SL),

the average and maximum percentage cost differences with the best base-stock policy

and the hitrate: the percentage of instances in which the L-heuristic finds the best

base-stock level. In all cases except one, the L-heuristic finds the optimal base-

stock level. In the single case that it does not, the optimality gap is only 1.01%.

The estimate of the cost that the L-heuristic provides is extremely accurate for

geometric demand and only slightly less so for Poisson demand. The fact that the L-

heuristic also provides an accurate approximation of the average cost rate is an asset,

because the other heuristics only provide a base-stock level without an (accurate) cost

approximation.

Table 6.1 Performance of the L-heuristic for Poisson demand with mean 5

Parameter Estimation error (%) Gap with best base-stock (%)
Hitrate (%)

Lead time AVG MAX AVG MAX

1 0.99 3.53 0.14 1.01 86

2 1.22 3.69 0.00 0.00 100

3 1.25 3.84 0.00 0.00 100

4 1.18 3.68 0.00 0.00 100

Penalty cost

1 3.68 3.84 0.00 0.00 100

4 1.78 1.98 0.00 0.00 100

9 0.87 1.28 0.25 1.01 75

19 0.74 0.78 0.00 0.00 100

49 0.45 0.61 0.00 0.00 100

99 0.34 0.42 0.00 0.00 100

199 0.24 0.37 0.00 0.00 100

Total 1.16 3.84 0.04 1.01 96

At an aggregate level we can compare the three heuristics for these instances and

this comparison is shown in Table 6.3. For these problem instances, the L heuristic

outperforms the other heuristics with a significant margin.

Next, we look at instances facing Poisson demand and means ranging from 1 to 10.

Holding cost h is kept constant again at 1, τ ∈ {2, 4} and p ∈ {1, 4, 9, 19, 49, 99, 199}.
Table 6.4 shows results for the L-heuristic, and Table 6.5 compares the three

heuristics. The L-heuristic again has favorable performance. The largest percentage

difference with the best base-stock policy of 1.30% is found here for the instance with

τ = 2, p = 19 and a mean demand of 2. The optimal base-stock level is 9, whereas our
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Table 6.2 Performance of the L-heuristic for geometric demand with mean 5

Parameter Estimation error (%) Gap with best base-stock (%)
Hitrate (%)

Lead time AVG MAX AVG MAX

1 0.01 0.09 0.00 0.00 100

2 -0.01 -0.05 0.00 0.00 100

3 0.02 0.11 0.00 0.00 100

4 -0.01 -0.04 0.00 0.00 100

Penalty cost

1 0.03 0.11 0.00 0.00 100

4 0.00 -0.05 0.00 0.00 100

9 0.00 -0.02 0.00 0.00 100

19 0.00 -0.02 0.00 0.00 100

49 0.01 0.01 0.00 0.00 100

99 0.00 -0.01 0.00 0.00 100

199 0.00 -0.01 0.00 0.00 100

Total 0.00 0.11 0.00 0.00 100

Table 6.3 Comparison of heuristics for Poisson and Geometric demand with mean 5

Demand

Poisson with mean 5 Geometric with mean 5

Gap with best base-stock (%) Gap with best base-stock (%)

Heuristic AVG MAX AVG MAX

L 0.04 1.01 0.00 0.00

I 1.14 5.59 4.51 11.22

B 20.16 156.72 30.67 232.25

heuristic finds a base-stock level of 10. The performance estimates of the L-heuristic

are not very accurate with errors up to 8.26%.

When we compare the three heuristics for these instances (see Table 6.5), we again

observe that the L heuristic performs better than the other heuristics by a significant

margin. The largest gap that we found for the L-heuristic of 1.30% is still small

compared to the results of the runner up I-heuristic with average and maximum gaps

of 4.51% and 11.22% respectively.

Next we consider negative binomial demand with r ∈ {1, 2} required successes and

succes probability q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}; see Table 6.6. The performance of our

heuristic is very good here, both in terms of difference with the best base-stock

policy and as a predictor of the actual costs involved. It is perhaps striking that

the performance of the L-heuristic is better for negative binomial demand than it is

for Poisson demand, even though the theoretical convergence properties are stronger
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Table 6.4 Performance of the L-heuristic for Poisson demand with varying means

Parameter Estimation error (%) Gap with best base-stock (%)
Hitrate (%)

Lead time AVG MAX AVG MAX

2 1.15 4.44 0.03 1.30 96

4 2.41 8.26 0.01 0.15 93

Penalty cost

1 3.41 4.58 0.01 0.11 90

4 1.86 2.48 0.01 0.24 95

9 1.30 2.04 0.01 0.15 95

19 0.97 1.97 0.10 1.30 85

49 1.10 2.54 0.00 0.00 100

99 1.47 4.33 0.00 0.06 95

199 2.34 8.26 0.00 0.00 100

Mean demand

1 1.46 6.62 0.00 0.00 100

2 1.24 3.62 0.10 1.30 86

3 2.18 8.26 0.01 0.11 93

4 1.57 3.65 0.00 0.00 100

5 1.84 4.22 0.00 0.00 100

6 2.00 5.10 0.00 0.00 100

7 2.31 5.97 0.02 0.24 93

8 1.65 4.40 0.00 0.00 100

9 2.01 4.54 0.07 0.74 79

10 1.55 4.52 0.00 0.02 93

Total 1.78 8.26 0.02 1.30 94

Table 6.5 Comparison of different heuristics for Poisson demand with varying mean and lead

time τ = 2

Gap with best base-stock (%)

Heuristic AVG MAX

L 0.02 1.30

I 1.90 19.00

B 15.71 98.65

for Poisson demand; see Theorem 6.3 and Proposition 6.1.

We compare the three heuristics under negative binomial demand only for τ = 2,

because this is the only lead time considered in the original test bed of Huh et al.

(2009b); see Table 6.7. Here again, the L-heuristic outperforms the other heuristics

by a considerable margin.

Finally, we test the L-heuristic for instances where demand follows the heavy-tailed
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Table 6.6 Performance of the L-heuristic with negative binomial demand

Parameter Estimation error (%) Gap with best base-stock (%)
Hitrate (%)

Lead time AVG MAX AVG MAX

2 -0.07 -15.01 0.01 0.17 94

4 0.51 5.05 0.00 0.08 90

Penalty cost

1 0.33 0.87 0.00 0.06 95

4 0.32 0.72 0.00 0.00 90

9 0.26 0.51 0.01 0.17 90

19 0.27 0.84 0.00 0.02 85

49 0.31 1.85 0.01 0.15 95

99 -0.39 -15.01 0.00 0.08 95

199 0.46 5.05 0.00 0.06 95

Negative Binomial parameters (r, q)

(1, 0.1) 0.75 4.48 0.02 0.17 71

(1, 0.2) -0.29 -2.85 0.00 0.02 93

(1, 0.3) -1.42 -15.01 0.01 0.08 93

(1, 0.4) 0.78 4.79 0.00 0.00 100

(1, 0.5) 0.83 5.05 0.00 0.00 100

(2, 0.1) 0.13 -1.59 0.00 0.01 86

(2, 0.2) 0.28 0.87 0.00 0.00 100

(2, 0.3) 0.27 0.66 0.01 0.15 79

(2, 0.4) 0.71 2.95 0.00 0.00 100

(2, 0.5) 0.18 0.44 0.00 0.00 100

Total 0.22 5.05 0.00 0.17 92

Table 6.7 Comparison of different heuristics for negative binomial demand and lead time

τ = 2

Gap with best base stock (%)

Heuristic AVG MAX

L 0.01 0.17

I 3.25 15.49

B 22.45 125.39

discretized generalized Pareto distribution. A brief description of this distribution

is given in Appendix 6.B for those not familiar with it. We include tests with this

distribution because it is heavy-tailed and so none of the convergence rate results in

§6.5 apply. We consider the discretized generalized Pareto distribution with shape

parameter k = 0.1 and scale parameter σ = 5 (see Table 6.8) and with shape

parameter k = 0.4 and scale parameter σ = 10 (see Table 6.9). Here too, our heuristic

performs very good. Perhaps surprisingly, our heuristic identifies better base-stock
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Table 6.8 Performance of the L-heuristic with discretized generalized Pareto demand with

k = 0.1 and σ = 5

Parameter Estimation error (%) Gap with best base-stock (%)
Hitrate

Lead time AVG MAX AVG MAX

1 -0.26 -1.95 0.00 0.00 100

2 -0.33 -2.32 0.01 0.06 71

3 -0.41 -3.25 0.00 0.00 100

4 -0.50 -1.02 0.00 0.00 100

Penalty cost

1 -0.13 -0.21 0.00 0.00 100

4 -0.23 -0.31 0.00 0.00 100

9 -0.31 -0.49 0.00 0.00 100

19 -0.41 -0.66 0.00 0.00 100

49 -0.75 -2.32 0.00 0.01 75

99 -0.49 -1.95 0.00 0.00 100

199 -0.32 -3.25 0.01 0.06 75

Total -0.37 -3.25 0.00 0.06 93

levels here, than it does for Poisson demand, even though there are theoretically

excellent convergence results for Poisson demand. A plausible explanation for this is

that for finite S, internal consistency as outlined in §6.6 is more instrumental in the

quality of our approximation than the asymptotic results in §6.4. We do see that the

hitrate deteriorates significantly as p increases in Table 6.9. This is because in these

cases, optimal base-stock levels are high and so the exact optimum is easier to miss.

In closing, we comment on computation times. Evaluating the best base-stock policy

using value iteration is almost as difficult as determining the optimal policy. Bijvank

and Johansen (2012) use a value iteration algorithm in a very similar setting and

report computation times of several minutes op to several hours. We already observed

that the state space required to evaluate the performance of a base-stock policy grows

exponentially in both S and τ . By contrast, the state space of our approximation

grows linearly in S only.

We determined the optimal base-stock levels with simulation and found computation

times of several minutes to be the norm on a machine with 2.4 GHz Intel processor

and 4GB of RAM. By contrast, the L-heuristic finds near optimal base-stock levels

within less then 0.1 seconds on the same machine.
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Table 6.9 Performance of the L-heuristic with discretized generalized Pareto demand with

k = 0.4 and σ = 10

Parameter Estimation error (%) Gap with best base-stock (%)
Hitrate

Lead time AVG MAX AVG MAX

1 -0.60 -1.97 0.00 0.00 86

2 -0.29 -0.68 0.00 0.01 43

3 -0.84 -1.75 0.00 0.01 57

4 -0.54 -1.23 0.01 0.02 57

Penalty cost

1 -0.23 -0.28 0.00 0.00 100

4 -0.66 -0.76 0.00 0.01 50

9 -0.66 -0.72 0.00 0.00 100

19 -0.68 -1.23 0.00 0.01 75

49 -0.92 -1.75 0.00 0.01 50

99 -0.80 -1.97 0.01 0.01 25

199 -0.01 -1.49 0.01 0.02 0

Total -0.57 -1.97 0.00 0.02 54

6.9. Conclusion

We have found an efficient heuristic to find good base-stock levels for lost sales

inventory systems. This heuristic outperforms existing heuristics by a considerable

margin and also provides accurate cost estimates. This method is based on

state space aggregation and limiting results for transition probabilities within this

aggregated state space. Numerical experiments indicate that this method has superior

performance in a wide diversity of instances with cost differences with the best base-

stock policy of at most 1.30% and 0.01% on average. Furthermore, our heuristic is

computationally very efficient, the most demanding algorithmic requirement being

the solution of linear equations.
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6.A. Proofs

6.A.1 Proof of Proposition 6.1

Proof: Let µ denote the mean of the Poisson distributed random variable D.

Consider H(1)(x):

H(1)(x) =
e−µ µ

x

x!∑∞
k=x e

−µ µk
k!

=
µx

x!
µx

x! +
∑∞
k=x+1

µk

k!

=
1

1 + x!
µx

∑∞
k=x+1

µk

k!

=
1

1 +
∑∞
k=1

µk∏k
j=1(x+j)

≥ 1

1 +
∑∞
k=1(µ/x)k

. (6.28)

Now using that lima→0

∑∞
k=1 a

k = lima→0 a/(1 − a) = 0, we observe that (6.28)

implies that limx→∞H(1)(x) ≥ limx→∞ 1
1+
∑∞
k=1(µ/x)k

= 1. Noting that H(1)(x) <

1 for all x ∈ N0, we have by the squeeze theorem that lim infx→∞H(1)(x) =

limx→∞H(1)(x) = 1. Since the Poisson distribution is closed under convolutions,

we also have lim infx→∞H(k)(x) = limx→∞H(k)(x) = 1, for any k ∈ N.

In case r = 1, the second result is trivial because then D is a geometric random

variable and H(1)(x) = p for all x ∈ N0. Consider now the case r > 1.

H(1)(x) =

(
x+r−1
x

)
pr(1− p)x∑∞

k=0

(
x+r−1+k
x+k

)
pr(1− p)x+k

=

(
x+r−1
x

)
pr(1− p)x(

x+r−1
x

)
pr(1− p)x+

∑∞
k=1

(
x+r−1+k
x+k

)
pr(1− p)x+k

=
1

1 + x!(r−1)!
(x+r−1)!

1
pr(1−p)x

∑∞
k=1

(
x+r−1+k
x+k

)
pr(1− p)x+k

(6.29)

To take the limit as x → ∞, we will now further simplify the second term in the
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denominator:

x!(r − 1)!

(x+ r − 1)!

1

pr(1− p)x
∞∑
k=1

(
x+ r − 1 + k

x+ k

)
pr(1− p)x+k

=
x!(r − 1)!

(x+ r − 1)!(1− p)x
∞∑
k=1

(x+ r − 1 + k)!

(x+ k)!(r − 1)!
(1− p)x+k

=
x!

(x+ r − 1)!

∞∑
k=1

(x+ r − 1 + k)!

(x+ k)!
(1− p)k

=

∞∑
k=1

(1− p)k
k∏
i=1

x+ r − 1 + i

x+ i

Now since limx→∞
∏k
i=1

x+r−1+i
x+i = 1 for all k ∈ N, we have that

lim
x→∞

∞∑
k=1

(1− p)k
k∏
i=1

x+ r − 1 + i

x+ i
=

∞∑
k=1

(1− p)k =
1− p
p

(6.30)

Taking the limit as x→∞ of (6.29) using (6.30) we find

lim inf
x→∞

H(1)(x) = lim
x→∞

H(1)(x) =
1

1 + 1−p
p

= p

Next, by observing that the sum of negative binomial (geometric) random variables

with the same succes probability p also has a negative binomial distribution with

succes probability p, we conclude that lim infx→∞H(k)(x) = limx→∞H(k)(x) = p,

for any k ∈ N. 2

6.A.2 Proof of Theorem 6.4

Proof: We prove that the exponential convergence in probability of Qt+1 to Dt

implies exponential convergence in distribution. The entire theorem then follows, as

from then on, only algebraic manipulations are involved. Recall that Qt+1 ≤ Dt with

probability one and so for any a ∈ N0

P(Dt ≤ a) ≤ P(Qt+1 ≤ a). (6.31)

Now for this same a, we have:

P(Qt+1 ≤ a) = P(Qt+1 ≤ a ∩Dt ≤ a) + P(Qt+1 ≤ a ∩Dt > a)

≤ P(Dt ≤ a) + P(Qt+1 −Dt ≤ a−Dt ∩ a−Dt < 0)

≤ P(Dt ≤ a) + P(Dt −Qt+1 > 0)

= P(Dt ≤ a) +O
(
(θ + ε)S

)
, (6.32)
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where (6.32) follows from applying Theorem 6.3. Combining (6.31) and (6.32) yields

the desired result. 2

6.A.3 Derivation of the state space size of Qt

The size of the state space of the vector Markov chain Qt is

S(S, τ) =
∣∣{x ∈ Nτ+1

0 |xeT ≤ S
}∣∣ .

Now observe that S(S, τ) can be expressed recursively in τ . We have for τ = 0

S(S, 0) =

S∑
k=0

1 = S + 1. (6.33)

For τ = 1 we have similarly

S(S, 1) =

S∑
k1=0

S−k1∑
k2=0

1 =
1

2
(S + 1)(S + 2), (6.34)

where the second equality follows from substituting (6.33). We can continue such

back substitution to obtain

S(S, 2) =

S∑
k1=0

S−k1∑
k2=0

S−k1−k2∑
k3=0

1 =
1

6
(S + 1)(S + 2)(S + 3) (6.35)

S(S, 3) =

S∑
k1=0

S−k1∑
k2=0

S−k1−k2∑
k3=0

S−k1−k2−k3∑
k4=0

1 =
1

24
(S + 1)(S + 2)(S + 3)(S + 4).

(6.36)

It is now easy to see that

S(S, τ) =
1

(τ + 1)!

τ+1∏
k=1

(S + k) =
(S + τ + 1)!

S!(τ + 1)!
=

(
S + τ + 1

S

)
. (6.37)

Thus, S grows exponentially in both τ and S.

6.B. The generalized Pareto distribution

A non-negative continuous random variable X is said to have a generalized Pareto

distribution if

P(X < x) = F (x) = 1− (1 + kx/σ)
−1/k
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for some k > 0 (shape parameter), σ > 0 (scale parameter) and all x > 02. If k < 1,

X has finite mean

E[X] = σ/(1− k),

and if k < 1/2, it also has finite variance

Var[X] =
σ2

(1− k)2(1− 2k)
.

It is easily verified that X has a heavy-tail. If Y = bX + 1/2c, then Y is said to have

a discretized generalized Pareto distribution and

P(Y = y) = F (y + 1/2)− F (y − 1/2)

for y ∈ N.

6.C. Tables with details per instance

Table 6.10 Performance of Limiting base-stock policy for Poisson demand distribution with

mean 5

Best base-stock Limiting base-stock

Lead
time

Lost
sales

penalty

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

1 1 8 2.08 8 2.15 2.08 3.53 0.00
1 4 12 4.16 12 4.23 4.16 1.74 0.00
1 9 13 5.55 14 5.61 5.61 0.04 1.01
1 19 15 6.73 15 6.78 6.73 0.76 0.00
1 49 17 8.22 17 8.25 8.22 0.32 0.00
1 99 18 9.20 18 9.23 9.20 0.32 0.00
1 199 19 10.14 19 10.16 10.14 0.21 0.00

2 1 12 2.23 12 2.31 2.23 3.69 0.00
2 4 16 4.64 16 4.73 4.64 1.98 0.00
2 9 19 6.32 19 6.38 6.32 1.00 0.00
2 19 21 7.84 21 7.89 7.84 0.68 0.00
2 49 23 9.63 23 9.67 9.63 0.38 0.00
2 99 24 10.84 24 10.89 10.84 0.42 0.00
2 199 25 12.03 25 12.07 12.03 0.37 0.00

Continued on next page

2The generalized Pareto distribution can, and sometimes is, generalized further by introducing a

location parameter and also allowing k ≤ 0.
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Best base-stock Limiting base-stock

Lead
time

Lost
sales

penalty

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

3 1 15 2.31 15 2.40 2.31 3.84 0.00
3 4 20 4.98 21 5.06 4.98 1.68 0.00
3 9 23 6.86 24 6.95 6.86 1.28 0.00
3 19 26 8.60 26 8.67 8.60 0.78 0.00
3 49 28 10.73 28 10.80 10.73 0.61 0.00
3 99 30 12.15 30 12.19 12.15 0.34 0.00
3 199 32 13.52 32 13.55 13.52 0.18 0.00

4 1 18 2.37 18 2.46 2.37 3.68 0.00
4 4 25 5.20 25 5.29 5.20 1.71 0.00
4 9 28 7.27 28 7.36 7.27 1.19 0.00
4 19 31 9.23 31 9.30 9.23 0.75 0.00
4 49 34 11.60 34 11.66 11.60 0.48 0.00
4 99 36 13.24 36 13.28 13.24 0.27 0.00
4 199 38 14.77 38 14.80 14.77 0.18 0.00

End of Table

Table 6.11 Performance of Limiting base-stock policy for Geometric demand distribution

with mean 5

Best base-stock Limiting base-stock

Lead
time

Lost
sales

penalty

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

1 1 5 4.06 5 4.06 4.06 0.09 0.00
1 4 12 10.04 12 10.04 10.04 0.02 0.00
1 9 17 14.73 17 14.73 14.73 -0.02 0.00
1 19 22 19.40 22 19.40 19.40 0.01 0.00
1 49 29 25.47 29 25.47 25.47 0.01 0.00
1 99 33 29.99 33 29.99 29.99 0.00 0.00
1 199 38 34.41 38 34.41 34.41 -0.01 0.00

2 1 6 4.18 6 4.18 4.18 -0.05 0.00
2 4 15 10.71 15 10.70 10.71 -0.05 0.00
2 9 22 15.99 22 15.99 15.99 -0.01 0.00
2 19 28 21.31 28 21.31 21.31 -0.01 0.00
2 49 36 28.22 36 28.22 28.22 0.01 0.00
2 99 41 33.28 41 33.28 33.28 0.00 0.00
2 199 46 38.22 46 38.22 38.22 0.01 0.00

Continued on next page
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Table 6.11 – (Continued)

Best base-stock Limiting base-stock

Lead
time

Lost
sales

penalty

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

3 1 7 4.24 7 4.24 4.24 0.11 0.00
3 4 18 11.13 18 11.13 11.13 0.03 0.00
3 9 26 16.87 26 16.87 16.87 0.01 0.00
3 19 33 22.73 33 22.73 22.73 -0.02 0.00
3 49 42 30.34 42 30.34 30.34 0.00 0.00
3 99 48 35.90 48 35.90 35.90 0.00 0.00
3 199 54 41.30 54 41.30 41.30 0.01 0.00

4 1 8 4.29 8 4.29 4.29 -0.04 0.00
4 4 21 11.44 21 11.44 11.44 -0.02 0.00
4 9 30 17.54 30 17.54 17.54 0.02 0.00
4 19 38 23.85 38 23.85 23.85 0.00 0.00
4 49 48 32.09 48 32.09 32.09 0.01 0.00
4 99 54 38.10 54 38.10 38.10 -0.01 0.00
4 199 61 43.91 61 43.91 43.91 -0.01 0.00

End of Table

Table 6.12 Performance of limiting base-stock policy for Poisson demand with varying mean

and lead time of 2

Best base-stock Limiting base-stock

penalty
cost

mean
demand

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

1 1 1 0.88 1 0.88 0.88 0.37 0.00
1 2 4 1.35 4 1.37 1.35 1.78 0.00
1 3 6 1.69 6 1.74 1.69 2.89 0.00
1 4 9 1.97 9 2.04 1.97 3.54 0.00
1 5 12 2.23 12 2.31 2.23 3.69 0.00
1 6 14 2.45 14 2.55 2.45 4.13 0.00
1 7 17 2.66 17 2.77 2.66 4.09 0.00
1 8 20 2.85 20 2.98 2.85 4.40 0.00
1 9 23 3.04 23 3.17 3.04 4.34 0.00
1 10 25 3.21 25 3.35 3.21 4.44 0.00

4 1 3 2.04 3 2.06 2.04 1.06 0.00
4 2 7 2.93 7 2.97 2.93 1.33 0.00
4 3 10 3.58 10 3.64 3.58 1.74 0.00
4 4 13 4.14 13 4.22 4.14 1.91 0.00

Continued on next page
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Best base-stock Limiting base-stock

penalty
cost

mean
demand

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

4 5 16 4.64 16 4.73 4.64 1.98 0.00
4 6 19 5.09 19 5.20 5.09 2.13 0.00
4 7 22 5.51 23 5.62 5.52 1.75 0.24
4 8 26 5.89 26 6.00 5.89 1.91 0.00
4 9 29 6.24 29 6.36 6.24 2.00 0.00
4 10 32 6.57 32 6.71 6.57 2.13 0.00

9 1 4 2.91 4 2.93 2.91 0.75 0.00
9 2 8 4.02 8 4.06 4.02 0.99 0.00
9 3 12 4.91 12 4.96 4.91 0.96 0.00
9 4 15 5.64 15 5.71 5.64 1.29 0.00
9 5 19 6.32 19 6.38 6.32 1.00 0.00
9 6 22 6.88 22 6.97 6.88 1.24 0.00
9 7 25 7.43 25 7.53 7.43 1.35 0.00
9 8 29 7.95 29 8.04 7.95 1.11 0.00
9 9 32 8.4 32 8.51 8.40 1.27 0.00
9 10 35 8.84 35 8.97 8.84 1.43 0.00

19 1 5 3.68 5 3.71 3.68 0.85 0.00
19 2 9 5.09 10 5.12 5.16 -0.68 1.30
19 3 13 6.12 13 6.17 6.12 0.89 0.00
19 4 17 7.01 17 7.06 7.01 0.76 0.00
19 5 21 7.84 21 7.89 7.84 0.68 0.00
19 6 24 8.52 24 8.59 8.52 0.84 0.00
19 7 28 9.21 28 9.28 9.21 0.71 0.00
19 8 31 9.79 31 9.87 9.79 0.85 0.00
19 9 34 10.38 35 10.48 10.46 0.27 0.74
19 10 38 10.91 38 11.00 10.91 0.85 0.00

49 1 7 4.63 7 4.64 4.63 0.28 0.00
49 2 11 6.26 11 6.28 6.26 0.40 0.00
49 3 15 7.56 15 7.59 7.56 0.42 0.00
49 4 19 8.65 19 8.69 8.65 0.44 0.00
49 5 23 9.63 23 9.67 9.63 0.38 0.00
49 6 26 10.5 26 10.57 10.50 0.63 0.00
49 7 30 11.26 30 11.32 11.26 0.56 0.00
49 8 34 12.02 34 12.08 12.02 0.49 0.00
49 9 37 12.7 37 12.78 12.70 0.61 0.00
49 10 41 13.36 41 13.43 13.36 0.49 0.00

99 1 7 5.24 7 5.26 5.24 0.41 0.00
99 2 12 7.11 12 7.13 7.11 0.32 0.00
99 3 16 8.56 16 8.60 8.56 0.42 0.00
99 4 20 9.78 20 9.82 9.78 0.42 0.00
99 5 24 10.84 24 10.89 10.84 0.42 0.00
99 6 28 11.81 28 11.85 11.81 0.33 0.00
99 7 32 12.71 32 12.75 12.71 0.35 0.00
99 8 35 13.55 35 13.61 13.55 0.43 0.00
99 9 39 14.29 39 14.35 14.29 0.39 0.00
99 10 43 15.04 43 15.09 15.04 0.33 0.00

Continued on next page
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Best base-stock Limiting base-stock

penalty
cost

mean
demand

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

199 1 8 5.82 8 5.83 5.82 0.18 0.00
199 2 13 7.92 13 7.94 7.92 0.23 0.00
199 3 17 9.5 17 9.53 9.50 0.31 0.00
199 4 21 10.86 21 10.90 10.86 0.34 0.00
199 5 25 12.03 25 12.07 12.03 0.37 0.00
199 6 29 13.07 29 13.12 13.07 0.35 0.00
199 7 33 14.02 33 14.07 14.02 0.33 0.00
199 8 37 14.92 37 14.96 14.92 0.27 0.00
199 9 41 15.79 41 15.82 15.79 0.21 0.00
199 10 44 16.6 44 16.66 16.60 0.35 0.00

End of Table

Table 6.13 Performance of limiting base-stock policy for Poisson demand with varying mean

and lead time of 4

Best base-stock Limiting base-stock

penalty
cost

mean
demand

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

1 1 2 0.91 2 0.92 0.91 0.65 0.00
1 2 6 1.42 5 1.45 1.42 1.86 0.06
1 3 10 1.79 9 1.84 1.79 2.73 0.11
1 4 14 2.09 14 2.17 2.09 3.65 0.00
1 5 18 2.37 18 2.46 2.37 3.62 0.00
1 6 22 2.61 22 2.72 2.61 4.08 0.00
1 7 27 2.83 27 2.96 2.83 4.58 0.00
1 8 31 3.04 31 3.18 3.04 4.40 0.00
1 9 36 3.24 36 3.39 3.24 4.54 0.00
1 10 40 3.43 40 3.58 3.43 4.52 0.00

4 1 5 2.24 5 2.26 2.24 0.89 0.00
4 2 10 3.23 10 3.28 3.23 1.58 0.00
4 3 15 3.99 15 4.06 3.99 1.82 0.00
4 4 20 4.62 20 4.71 4.62 2.01 0.00
4 5 25 5.19 25 5.29 5.19 1.88 0.00
4 6 30 5.69 30 5.81 5.69 2.02 0.00
4 7 35 6.13 35 6.29 6.13 2.48 0.00
4 8 40 6.59 40 6.73 6.59 2.07 0.00
4 9 45 6.98 45 7.15 6.98 2.38 0.00
4 10 50 7.39 50 7.54 7.39 2.04 0.00

Continued on next page
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Best base-stock Limiting base-stock

penalty
cost

mean
demand

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

9 1 6 3.23 6 3.26 3.23 0.98 0.00
9 2 12 4.57 12 4.63 4.57 1.37 0.00
9 3 17 5.62 17 5.71 5.62 1.61 0.00
9 4 23 6.48 23 6.57 6.48 1.51 0.00
9 5 28 7.24 28 7.36 7.24 1.55 0.00
9 6 34 7.96 34 8.06 7.96 1.33 0.00
9 7 39 8.52 39 8.70 8.52 2.04 0.00
9 8 44 9.17 44 9.30 9.17 1.48 0.00
9 9 49 9.70 50 9.87 9.72 1.63 0.15
9 10 55 10.28 55 10.40 10.28 1.17 0.00

19 1 8 4.21 8 4.26 4.21 1.27 0.00
19 2 14 5.88 14 5.94 5.88 1.11 0.00
19 3 20 7.15 20 7.26 7.15 1.55 0.00
19 4 25 8.24 25 8.35 8.24 1.41 0.00
19 5 31 9.17 31 9.30 9.17 1.45 0.00
19 6 37 10.06 37 10.18 10.06 1.22 0.00
19 7 42 10.76 42 10.97 10.76 1.97 0.00
19 8 48 11.59 48 11.72 11.59 1.11 0.00
19 9 53 12.23 53 12.41 12.23 1.53 0.00
19 10 58 12.98 59 13.08 12.98 0.80 0.02

49 1 9 5.29 9 5.42 5.29 2.33 0.00
49 2 16 7.43 16 7.54 7.43 1.37 0.00
49 3 22 8.90 22 9.12 8.90 2.54 0.00
49 4 28 10.34 28 10.47 10.34 1.28 0.00
49 5 34 11.44 34 11.66 11.44 1.86 0.00
49 6 40 12.52 40 12.73 12.52 1.68 0.00
49 7 46 13.40 46 13.72 13.40 2.45 0.00
49 8 51 14.46 51 14.64 14.46 1.27 0.00
49 9 57 15.19 57 15.48 15.19 1.95 0.00
49 10 63 16.20 63 16.30 16.20 0.65 0.00

99 1 10 6.02 10 6.25 6.02 3.75 0.00
99 2 17 8.45 17 8.62 8.45 2.05 0.00
99 3 24 10.03 24 10.47 10.03 4.33 0.00
99 4 30 11.79 30 11.95 11.79 1.38 0.00
99 5 36 12.93 36 13.28 12.93 2.64 0.00
99 6 42 14.07 42 14.48 14.07 2.89 0.00
99 7 48 15.04 48 15.59 15.04 3.65 0.00
99 8 54 16.40 54 16.63 16.40 1.39 0.00
99 9 59 17.15 60 17.61 17.16 2.63 0.06
99 10 65 18.35 65 18.51 18.35 0.88 0.00

199 1 11 6.59 11 7.03 6.59 6.62 0.00
199 2 18 9.31 18 9.65 9.31 3.62 0.00
199 3 25 10.74 25 11.63 10.74 8.26 0.00
199 4 31 13.08 31 13.34 13.08 1.99 0.00
199 5 38 14.20 38 14.80 14.20 4.22 0.00
199 6 44 15.33 44 16.11 15.33 5.10 0.00
199 7 50 16.35 50 17.32 16.35 5.97 0.00

Continued on next page
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Best base-stock Limiting base-stock

penalty
cost

mean
demand

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

199 8 56 18.10 56 18.46 18.10 1.99 0.00
199 9 62 18.70 62 19.53 18.70 4.43 0.00
199 10 68 20.23 68 20.55 20.23 1.56 0.00

End of Table

Table 6.14 Performance of limiting base-stock policy for Negative Binomial (r, q) demand

and lead time of 2

Negative binomial Best base-stock Limiting base-stock

parameter

penalty
cost

r q level cost level estimated
cost

real
cost

Estimation
error
(%)

Diff.
from
best

base-
stock

(%)

1 1 0.1 11 7.27 11 7.27 7.27 0.02 0.00
1 1 0.2 5 3.40 5 3.40 3.40 0.13 0.00
1 1 0.3 2 2.09 2 2.09 2.09 0.02 0.00
1 1 0.4 1 1.41 1 1.41 1.41 -0.06 0.00
1 1 0.5 0 1.00 0 1.00 1.00 0.00 0.00
1 2 0.1 32 11.57 32 11.66 11.57 0.81 0.00
1 2 0.2 14 5.44 14 5.48 5.44 0.80 0.00
1 2 0.3 8 3.38 7 3.40 3.38 0.60 0.06
1 2 0.4 4 2.33 4 2.34 2.33 0.35 0.00
1 2 0.5 3 1.67 3 1.68 1.67 0.33 0.00

4 1 0.1 27 18.57 27 18.57 18.57 -0.02 0.00
4 1 0.2 12 8.73 12 8.73 8.73 0.02 0.00
4 1 0.3 7 5.42 7 5.42 5.42 0.01 0.00
4 1 0.4 4 3.76 4 3.76 3.76 -0.01 0.00
4 1 0.5 3 2.69 3 2.69 2.69 0.09 0.00
4 2 0.1 57 27.23 57 27.38 27.23 0.54 0.00
4 2 0.2 25 12.83 25 12.90 12.83 0.55 0.00
4 2 0.3 15 7.99 15 8.03 7.99 0.45 0.00
4 2 0.4 10 5.54 10 5.57 5.54 0.49 0.00
4 2 0.5 6 4.03 6 4.05 4.03 0.42 0.00

9 1 0.1 38 27.71 39 27.71 27.76 -0.18 0.17
9 1 0.2 18 13.06 18 13.06 13.06 0.00 0.00
9 1 0.3 10 8.13 10 8.13 8.13 0.06 0.00
9 1 0.4 7 5.62 7 5.62 5.62 0.05 0.00
9 1 0.5 5 4.10 5 4.10 4.10 0.00 0.00

Continued on next page



6.C Tables with details per instance 187

Negative binomial Best base-stock Limiting base-stock

parameter Best base-stock Limiting base-stock

penalty
cost

r q level cost level estimated
cost

real
cost

Estimation
error
(%)

Diff.
from
best

base-
stock

(%)

9 2 0.1 73 39.17 73 39.32 39.17 0.37 0.00
9 2 0.2 33 18.46 33 18.53 18.46 0.37 0.00
9 2 0.3 19 11.52 20 11.56 11.52 0.37 0.00
9 2 0.4 13 7.98 13 8.01 7.98 0.40 0.00
9 2 0.5 9 5.83 9 5.85 5.83 0.26 0.00

19 1 0.1 49 36.92 49 36.92 36.92 -0.01 0.00
19 1 0.2 23 17.41 23 17.41 17.41 -0.01 0.00
19 1 0.3 14 10.86 14 10.86 10.86 0.01 0.00
19 1 0.4 9 7.52 9 7.52 7.52 -0.03 0.00
19 1 0.5 6 5.49 6 5.49 5.49 0.07 0.00
19 2 0.1 87 50.81 87 50.95 50.81 0.27 0.00
19 2 0.2 39 23.96 39 24.03 23.96 0.28 0.00
19 2 0.3 24 14.95 24 14.99 14.95 0.26 0.00
19 2 0.4 16 10.39 16 10.41 10.39 0.22 0.00
19 2 0.5 11 7.58 11 7.60 7.58 0.26 0.00

49 1 0.1 63 48.86 63 48.86 48.86 0.01 0.00
49 1 0.2 29 23.04 29 23.04 23.04 0.00 0.00
49 1 0.3 17 14.39 17 14.39 14.39 0.00 0.00
49 1 0.4 12 9.99 12 9.99 9.99 0.02 0.00
49 1 0.5 8 7.31 8 7.31 7.31 0.00 0.00
49 2 0.1 103 65.50 103 65.62 65.50 0.19 0.00
49 2 0.2 47 30.89 47 30.95 30.89 0.19 0.00
49 2 0.3 28 19.30 29 19.33 19.33 0.00 0.15
49 2 0.4 19 13.40 19 13.42 13.40 0.17 0.00
49 2 0.5 13 9.83 13 9.84 9.83 0.15 0.00

99 1 0.1 72 57.63 72 57.63 57.63 0.00 0.00
99 1 0.2 33 27.18 33 27.18 27.18 0.00 0.00
99 1 0.3 20 19.96 20 16.96 19.96 -15.01 0.00
99 1 0.4 14 11.81 14 11.81 11.81 0.00 0.00
99 1 0.5 10 8.65 10 8.65 8.65 -0.01 0.00
99 2 0.1 115 76.08 115 76.19 76.08 0.14 0.00
99 2 0.2 53 35.89 53 35.94 35.89 0.13 0.00
99 2 0.3 32 22.40 32 22.43 22.40 0.13 0.00
99 2 0.4 21 15.61 21 15.63 15.61 0.13 0.00
99 2 0.5 15 11.41 15 11.42 11.41 0.11 0.00

199 1 0.1 81 66.18 81 66.18 66.18 0.01 0.00
199 1 0.2 37 31.23 37 31.23 31.23 0.00 0.00
199 1 0.3 23 19.49 23 19.49 19.49 -0.01 0.00
199 1 0.4 16 13.60 16 13.60 13.60 -0.03 0.00
199 1 0.5 11 9.93 11 9.93 9.93 -0.03 0.00
199 2 0.1 126 86.26 126 86.35 86.26 0.10 0.00
199 2 0.2 58 40.69 58 40.73 40.69 0.10 0.00
199 2 0.3 35 25.40 35 25.43 25.40 0.11 0.00
199 2 0.4 24 17.69 24 17.70 17.69 0.08 0.00
199 2 0.5 17 12.96 17 12.97 12.96 0.10 0.00

Continued on next page
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Negative binomial Best base-stock Limiting base-stock

parameter Best base-stock Limiting base-stock

penalty
cost

r q level cost level estimated
cost

real
cost

Estimation
error
(%)

Diff.
from
best

base-
stock

(%)

End of Table

Table 6.15 Performance of limiting base-stock policy for Negative Binomial (r, q) demand

and lead time of 4

Negative binomial Best base-stock Limiting base-stock

parameter

penalty
cost

r q level cost level estimated
cost

real
cost

Estimation
error
(%)

Diff.
from
best

base-
stock

(%)

1 1 0.1 16 7.46 16 7.46 7.46 0.06 0.00
1 1 0.2 6 3.49 6 3.49 3.49 0.04 0.00
1 1 0.3 3 2.13 3 2.13 2.13 0.01 0.00
1 1 0.4 1 1.44 1 1.44 1.44 0.04 0.00
1 1 0.5 1 1.00 1 1.00 1.00 0.06 0.00
1 2 0.1 48 12.02 48 12.13 12.02 0.86 0.00
1 2 0.2 20 5.65 20 5.70 5.65 0.87 0.00
1 2 0.3 11 3.50 11 3.53 3.50 0.66 0.00
1 2 0.4 6 2.40 6 2.42 2.40 0.64 0.00
1 2 0.5 4 1.72 4 1.73 1.72 0.39 0.00

4 1 0.1 39 19.80 38 19.84 19.80 0.23 0.00
4 1 0.2 17 9.31 17 9.33 9.31 0.17 0.00
4 1 0.3 10 5.79 10 5.79 5.79 0.10 0.00
4 1 0.4 6 3.97 6 3.98 3.97 0.17 0.00
4 1 0.5 4 2.86 4 2.87 2.86 0.32 0.00
4 2 0.1 83 29.54 84 29.71 29.54 0.58 0.00
4 2 0.2 37 13.89 37 13.99 13.89 0.72 0.00
4 2 0.3 21 8.66 21 8.71 8.66 0.57 0.00
4 2 0.4 14 5.99 14 6.02 5.99 0.60 0.00
4 2 0.5 9 4.35 9 4.36 4.35 0.44 0.00

9 1 0.1 54 30.28 54 30.41 30.28 0.43 0.00
9 1 0.2 24 14.30 24 14.32 14.30 0.11 0.00
9 1 0.3 14 8.91 14 8.91 8.91 0.00 0.00
9 1 0.4 9 6.13 9 6.16 6.13 0.44 0.00
9 1 0.5 6 4.45 6 4.47 4.45 0.45 0.00
9 2 0.1 105 43.68 105 43.85 43.68 0.39 0.00
9 2 0.2 47 20.56 47 20.66 20.56 0.51 0.00

Continued on next page



6.C Tables with details per instance 189

Negative binomial Best base-stock Limiting base-stock

parameter

penalty
cost

r q level cost level estimated
cost

real
cost

Estimation
error
(%)

Diff.
from
best

base-
stock

(%)

9 2 0.3 28 12.82 28 12.88 12.82 0.42 0.00
9 2 0.4 18 8.88 18 8.92 8.88 0.51 0.00
9 2 0.5 12 6.48 12 6.50 6.48 0.24 0.00

19 1 0.1 68 40.98 67 41.32 40.98 0.83 0.02
19 1 0.2 30 19.47 31 19.48 19.47 0.03 0.02
19 1 0.3 18 12.13 18 12.13 12.13 0.01 0.00
19 1 0.4 12 8.34 12 8.41 8.34 0.84 0.00
19 1 0.5 8 6.08 8 6.13 6.08 0.78 0.00
19 2 0.1 123 57.87 124 58.00 57.87 0.23 0.01
19 2 0.2 56 27.25 56 27.34 27.25 0.33 0.00
19 2 0.3 33 16.99 33 17.05 16.99 0.36 0.00
19 2 0.4 22 11.76 22 11.83 11.76 0.63 0.00
19 2 0.5 15 8.62 15 8.63 8.62 0.11 0.00

49 1 0.1 84 54.60 84 55.57 54.60 1.78 0.00
49 1 0.2 38 26.31 38 26.20 26.31 -0.40 0.00
49 1 0.3 23 16.42 23 16.34 16.42 -0.48 0.00
49 1 0.4 15 11.17 15 11.37 11.17 1.74 0.00
49 1 0.5 11 8.14 11 8.29 8.14 1.85 0.00
49 2 0.1 145 76.19 145 76.00 76.19 -0.24 0.00
49 2 0.2 66 35.82 66 35.83 35.82 0.05 0.00
49 2 0.3 40 22.32 40 22.36 22.32 0.19 0.00
49 2 0.4 26 15.38 26 15.54 15.38 1.03 0.00
49 2 0.5 18 11.37 18 11.36 11.37 -0.08 0.00

99 1 0.1 96 64.13 96 65.98 64.13 2.87 0.00
99 1 0.2 44 31.51 44 31.11 31.51 -1.29 0.00
99 1 0.3 26 19.70 27 19.43 19.71 -1.45 0.08
99 1 0.4 18 13.10 18 13.49 13.10 2.98 0.00
99 1 0.5 13 9.61 13 9.90 9.61 3.00 0.00
99 2 0.1 160 89.65 160 88.88 89.65 -0.86 0.00
99 2 0.2 73 42.05 73 41.91 42.05 -0.32 0.00
99 2 0.3 44 26.16 44 26.16 26.16 0.00 0.00
99 2 0.4 29 17.88 29 18.19 17.88 1.75 0.00
99 2 0.5 20 13.36 20 13.34 13.36 -0.16 0.00

199 1 0.1 106 72.71 107 76.02 72.75 4.48 0.06
199 1 0.2 49 36.89 49 35.84 36.89 -2.85 0.00
199 1 0.3 30 23.09 30 22.38 23.09 -3.11 0.00
199 1 0.4 20 14.84 20 15.55 14.84 4.79 0.00
199 1 0.5 14 10.84 14 11.39 10.84 5.05 0.00
199 2 0.1 174 102.79 174 101.15 102.79 -1.59 0.00
199 2 0.2 79 47.99 79 47.71 47.99 -0.58 0.00
199 2 0.3 48 29.86 48 29.78 29.86 -0.28 0.00
199 2 0.4 32 20.11 32 20.71 20.11 2.95 0.00
199 2 0.5 23 15.22 23 15.20 15.22 -0.10 0.00

End of Table
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Table 6.16 Performance of limiting base-stock policy for discretized generalized Pareto

demand with k = 0.1 and σ = 5

Best base-stock Limiting base-stock

Lead
time

Lost
sales

penalty

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

1 1 5 4.28 5 4.28 4.28 -0.13 0.00
1 4 13 10.92 13 10.90 10.92 -0.23 0.00
1 9 18 16.45 18 16.44 16.45 -0.06 0.00
1 19 24 22.41 24 22.29 22.41 -0.53 0.00
1 49 32 30.45 32 30.46 30.45 0.01 0.00
1 99 38 37.70 38 36.97 37.70 -1.95 0.00
1 199 45 43.31 45 43.77 43.31 1.06 0.00

2 1 7 4.40 7 4.39 4.40 -0.21 0.00
2 4 16 11.56 16 11.54 11.56 -0.09 0.00
2 9 23 17.77 23 17.68 17.77 -0.49 0.00
2 19 30 24.35 30 24.19 24.35 -0.66 0.00
2 49 40 33.98 39 33.19 33.98 -2.32 0.01
2 99 46 40.28 46 40.24 40.28 -0.12 0.00
2 199 54 46.72 53 47.50 46.75 1.61 0.06

3 1 9 4.47 9 4.47 4.47 -0.07 0.00
3 4 20 12.01 20 11.97 12.01 -0.31 0.00
3 9 28 18.62 28 18.56 18.62 -0.34 0.00
3 19 36 25.63 36 25.62 25.63 -0.04 0.00
3 49 46 35.33 46 35.34 35.33 0.02 0.00
3 99 54 42.39 54 42.88 42.39 1.14 0.00
3 199 61 52.27 61 50.57 52.27 -3.25 0.00

4 1 10 4.51 10 4.51 4.51 -0.11 0.00
4 4 23 12.30 23 12.27 12.30 -0.28 0.00
4 9 32 19.30 32 19.23 19.30 -0.34 0.00
4 19 41 26.87 41 26.76 26.87 -0.41 0.00
4 49 52 37.39 52 37.13 37.39 -0.70 0.00
4 99 61 45.58 61 45.12 45.58 -1.02 0.00
4 199 69 53.57 69 53.21 53.57 -0.68 0.00

End of Table
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Table 6.17 Performance of limiting base-stock policy for discretized generalized Pareto

demand with k = 0.4 and σ = 10

Best base-stock Limiting base-stock

Lead
time

Lost
sales

penalty

Level Cost Level Estimated
Cost

Real
Cost

Estimation
Error

(%)

Diff.
from
best

base-
stock

(%)

1 1 12 13.89 12 13.87 13.89 -0.14 0.00
1 4 32 40.52 32 40.29 40.52 -0.56 0.00
1 9 52 68.20 52 67.72 68.20 -0.70 0.00
1 19 76 103.78 76 103.23 103.78 -0.53 0.00
1 49 118 167.22 117 166.50 167.22 -0.43 0.00
1 99 158 235.59 158 230.94 235.59 -1.97 0.00
1 199 211 314.23 210 314.62 314.24 0.12 0.00

2 1 15 14.16 15 14.12 14.16 -0.26 0.00
2 4 40 42.08 41 41.80 42.08 -0.68 0.01
2 9 64 71.29 64 70.81 71.29 -0.68 0.00
2 19 92 108.55 91 108.15 108.56 -0.38 0.01
2 49 137 174.83 137 173.71 174.83 -0.64 0.00
2 99 181 240.86 180 239.53 240.87 -0.56 0.01
2 199 237 320.30 234 324.18 320.34 1.20 0.01

3 1 19 14.30 19 14.26 14.30 -0.28 0.00
3 4 48 43.06 49 42.79 43.06 -0.62 0.01
3 9 75 73.57 75 73.04 73.57 -0.72 0.00
3 19 107 112.60 106 111.94 112.60 -0.58 0.00
3 49 155 182.81 155 179.62 182.81 -1.75 0.00
3 99 203 247.76 201 246.79 247.80 -0.41 0.01
3 199 258 337.44 257 332.43 337.45 -1.49 0.00

4 1 22 14.38 22 14.35 14.38 -0.23 0.00
4 4 56 43.84 56 43.51 43.84 -0.76 0.00
4 9 86 75.18 86 74.76 75.18 -0.56 0.00
4 19 120 116.45 120 115.02 116.45 -1.23 0.00
4 49 175 186.24 173 184.66 186.26 -0.86 0.01
4 99 223 253.74 221 253.14 253.77 -0.25 0.01
4 199 284 339.33 280 339.79 339.40 0.12 0.02

End of Table





Chapter 7

Conclusion

“O be wise, what can I say more?”

Jacob, the brother of Nephi

In this thesis, we studied maintenance spare parts planning and control. We provided

a general framework for maintenance spare parts planning and control in chapter

2. In chapters 3-5, we paid particular attention to the way maintenance strategies

affect the demand process for rotables and repairables. For rotables with a usage

based maintenance strategy, this led to a deterministic planning problem as studied in

chapter 3. Chapters 4 and 5 studied planning for repairables with either a breakdown

corrective or condition based maintenance strategy. We studied mechanisms to

expedite repairs as a way of providing lead time flexibility. Finally, chapter 6

considered a model for consumable inventory with emergency procedures in case of

stock-outs.

7.1. Research objectives revisited

In the introduction of this thesis we stated 9 research objectives. Now we revisit each

of these research objectives and summarize what we have learned.

7.1.1 Framework

Research objective 1 Develop a framework for the planning and control of a spare

part supply chain in organizations that own and maintain equipment. This framework
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should outline all relevant decisions that are made in such a supply chain and explain

how they relate to each other.

In §2, we developed a framework that identifies eight main processes involved with

controlling a spare part supply chain. We have also classified these decisions as either

strategic, tactical of operational and explained how they relate to each other.

7.1.2 Rotables, usage based maintenance and efficient utilization
of resources

Research objective 2 Develop a planning algorithm that makes efficient use of the

resources needed for rotable replacement and overhaul. This algorithm should exploit

the fact that demand for rotables is predictable.

In chapter 3, we developed a MIP formulation of the planning problem that turned

out the be strongly NP-hard. In spite of this, we provided computational evidence

that the LP relaxation of our formulation gives sufficiently accurate results to guide

decision making for instances of real life size.

The modeling phase also identified a flaw in the typical way the objective function

for such problems is set up. Most approaches focus on maximizing the time a rotable

spends in the field before it is overhauled. A better approach is to minimize the total

number of times a rotable is overhauled during its entire lifetime. These two objectives

are not equivalent because a rotable has finite lifetime. This insight also led us to

consider an additional degree of freedom in the planning of rotable replacement and

overhaul: It is possible to replace rotables earlier than the usage based maintenance

strategy requires without increasing the total number of replacements and overhauls

during the entire lifetime of a rotable. This extra planning flexibility can be used to

efficiently utilize the finite resources needed for replacement and overhaul.

Research objective 3 Investigate the value of using the predictability of demand

for rotables in making efficient use of resources.

A case study in chapter 3 based on NedTrain data identified labor costs as the

dominant cost factor. The focus on performing replacement and overhaul as late

as possible naturally leads to the need to employ a large workforce to deal with

peaks in overhaul requirements. Our model not only uses that demand for rotables is

predictable, but also smooths the demand for rotables. This smoothing significantly

decreases the size of the required workforce, and leads to cost savings of around 4% in

the case study. There is an essential trade-off between smoothing the workload in the
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overhaul workshop and performing overhaul as late as possible. For the case study at

NedTrain, we found that it is more appropriate to focus on smoothing the workload.

7.1.3 Repairables, condition based maintenance, and repair lead
time flexibility

Research objective 4 Develop a model of repair lead time flexibility and non-

stationary demand due to condition based maintenance for a single-item and

investigate how information regarding demand non-stationarity from condition based

maintenance can be used to leverage repair lead time flexibility.

In chapter 4, we developed a model in which lead time flexibility is modeled through

an expediting option. Non-stationarity of demand as a consequence of condition based

maintenance was modeled by a Markov modulated Poisson process.

We studied the optimal expediting policy and found that it has the following form:

Keep the number of parts on-hand and arriving to inventory shortly above some

threshold level that depends on the pipeline of outstanding repair orders and the

distribution of demand for the near future. Unfortunately, the optimal policy turned

out to be computationally intractable, so we also investigated a heuristic expediting

policy that aggregates information about the pipeline of repair orders. This policy

was shown to perform well in a computational study.

Research objective 5 Develop a model that can assess the interplay between

repairable inventory and lead time flexibility in buffering demand uncertainty and

non-stationarity.

In chapter 4, we also studied the joint optimization of repairable stock levels and

expediting policy. We showed formally that keeping more stock leads to less

expediting and vice versa in optimal solutions.

Research objective 6 Investigate the value of explicitly modeling lead time flexi-

bility and demand information arising from condition based maintenance.

In a numerical study for the single item model in chapter 4, we compared the optimal

stocking and expediting decision with decisions based on optimization models that do

not explicitly model lead time flexibility or demand information arising from condition

based maintenance. We found that this leads to average optimality gaps of more than

11% for single-item problems in a wide test bed. Furthermore, maximum optimality

gaps ranged all the way up to 64% in this test bed.
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For multi-item problems as considered in chapter 5, the possibility to expedite could

be used to reduce the investment in stock by 29% on average compared to the situation

where the mean lead time was identical, but expediting is not possible.

Research objective 7 Develop a tractable multi-item optimization algorithm that

supports the initial supply decision and incorporates lead time flexibility, non-

stationary demand arising from condition based maintenance and performance

objectives on fleet level.

Chapter 5 describes an algorithm that supports stocking decisions (including initial

supply) and incorporates both lead time flexibility (through expediting) and non-

stationary demand modeled by a Markov modulated Poisson process. The average

optimality gap of solutions found by this algorithm was 0.62% and 8.85% at most in

a computational study. The computational time was just over a minute on average

and always below 10 minutes for large instances.

7.1.4 Consumables, emergency procedures

Research objective 8 Develop an algorithm for the optimization of the base-stock

level in a periodic review lost sales inventory system that is fast and provides accurate

estimates of performance measures.

In chapter 6, we developed a fast algorithm to approximately evaluate and optimize

base-stock levels for the periodic review lost sales inventory systems. In numerical

work, the approximation was shown to be exceptionally accurate. This can be partly

explained by asymptotic results also given in chapter 6.
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Summary

Spare Parts Planning and Control

for Maintenance Operations

Interchangeable parts have revolutionized modern manufacturing. However, the idea

of interchangeable parts was originally a maintenance innovation. Equipment that

represents a significant financial investment (e.g. aircraft, rolling stock and MRI

scanners) is usually maintained by replacing parts in need of maintenance with ready-

for-use parts. In this manner, downtime of equipment due to maintenance can be kept

to a minimum. To make this system work, it is crucial to have the right amount of

spare parts available. This thesis studies the planning and control of spare part supply

chains that support maintenance operations of the type described above. We identify

three main types of spare parts:

• Rotables - These are items that constitute a sufficiently large subsystem of the

original equipment to warrant a separate usage based maintenance strategy.

Rotables are individually tracked and traced so that the correct usage can be

ascribed to each rotable individually. Usually, there are dedicated resources for

the maintenance and overhaul of rotables. Examples include aircraft engines,

rolling stock bogies, and elaborate weapon or radar systems on frigates.

• Repairables - These are items that are repaired after replacement after which

they are ready-for-use (RFU) again. Contrary to rotables, repairables do not

have their own usage based maintenance strategy, and they are usually not

individually tracked and traced. A repair shop handles the repair of many

different types of repairables. Examples of repairables include compressors and

pumps.

• Consumables - These are items that are discarded after replacement and bought

new from a supplier. Generally these are relatively cheap items such as gaskets,
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filters, and breakpads.

Demand intensity for rotable and repairable parts fluctuates over time because

maintenance fluctuates over time due to maintenance programs and equipment

degradation.

General framework

Chapter 2 presents a general framework for the planning and control of spare part

supply chains. This framework outlines the decision functions at strategic, tactical,

and operational level needed to effectively control a spare parts supply chain. It also

describes the interactions and (hierarchical) relations between these decisions and

provides an outline of how these decisions can be decomposed. As such, the framework

is a type of taxonomy of different decision functions and their interrelations. Chapter 2

also presents a review of literature on decision support models for the various identified

decision functions.

Rotables overhaul and supply chain planning

Chapter 3 studies the scheduled usage based maintenance of rotable parts. Rotable

maintenance is subject to a usage based maintenance strategy which means that a

rotable should not be used any longer than the maximum inter-overhaul time (MIOT).

Traditional approaches to scheduling usage based maintenance focus on postponing

overhaul as long as possible to take advantage of the technical life of the rotable.

Chapter 3 takes a more direct approach to this problem by considering the costs

of material and overhaul capacity over the entire lifetime of the equipment. We

also integrate the scheduling of different rotable types because they share the same

capacity for overhaul. The problem of scheduling rotable overhaul subject to capacity

and material availability constraints for all rotable types that share the same capacity

is formulated as a mixed integer linear program This problem is strongly NP-hard,

but computational evidence suggests that the provided MIP formulation can be used

to solve real life instances. Furthermore, the linear programming relaxation is quite

tight and can be used for sensitivity analyses. The main managerial insight is that it is

inappropriate to focus on minimizing early overhaul. Instead, managers should focus

on smoothing the overhaul workload of types of repairable jointly. This approach

leads to significant savings in capacity costs.
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Repairable expediting and stocking

Repairable spare parts are expensive and in many practical situations, it is not

possible to buy new repairables at will. It is economically attractive to purchase

these repairables jointly with the equipment because repairables are produced in larger

series when they are also used to build new equipment. Furthermore, these repairables

might not be available in the market at a later time. Demand for repairable items

typically fluctuates over time, reflecting the fluctuating need for maintenance over

time. Companies anticipate these demand fluctuations by leveraging the possibility

of expediting the repair of defective parts, rather than buying new parts. Expediting

repair incurs additional costs (compared to regular repair) either because an external

repair shop charges extra or because an internal repair shop needs to adapt its

operations to accommodate expedited repairs.

Chapter 4 studies the situation described above and supports two decisions at the

tactical and operational level respectively: (i) How many repairable spare parts

should the firm buy? and (ii) When should the firm request that the repair of a

part is expedited? The first decision is at a tactical level and the second is at an

operational level. Both are modeled by a single item stochastic inventory model.

The fluctuations of demand over time are modeled by a Markov modulated Poisson

demand process, and the possibility to expedite is modeled through two modes of

inventory replenishment with different lead times. The shorter of these lead times is

called the expedited lead time. For a fixed number of spare repairables and lot-for-lot

replenishment, the optimal expediting policy may take two forms. The first form

is simply to never expedite repair. The second form is a state dependent threshold

policy, where the threshold depends on both the state of the modulating chain of

demand and the pipeline of repair orders. Which type of policy is optimal can be

determined by evaluating a simple closed form expression involving cost and lead time

parameters.

Unfortunately the determination of optimal expediting policies as well as the decision

how many repairables to buy suffer from tractability issues in general. Therefore

Chapter 4 also presents a simple heuristic to determine a good expediting policy in

combination with an amount of repairables to buy. This heuristic is based on results

about optimal policies. In a numerical study involving a large test bed, this heuristic

has an average and maximum optimality gap of 0.15% and 0.76% respectively.

Finally, Chapter 4 investigates the value of anticipating demand fluctuations by

comparing optimal joint stocking and expediting optimization against naive heuristics

that do not explicitly model demand fluctuations, or that separate the stocking and

expediting policy decisions. These naive heuristics have optimality gaps of 12% on

average and range up to 64% in our numerical work. The comparison with these naive
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heuristics show that: (i) There is great value in leveraging knowledge about demand

fluctuations, in making repair expediting decisions; (ii) Fluctuations of demand and

the possibility to anticipate these through expediting repairs should be considered

explicitly when deciding how many repairables to buy and can lead to substantial

savings.

Chapter 5 extends the model of Chapter 4 to a multi-item multi-fleet multi-repair

capacity setting. The model seeks to minimize the investment in all different types of

repairable spare parts subject to constraints on the mean number of backorders for

each fleet and constraints on the repair expediting load experienced by each repair

capacity.

This last constraint allows the model to capture essential characteristics of smart

scheduling policies, namely that the repair lead time can be shortened for parts that

are in short supply and lengthened for parts that are in ample supply. The merit of

the model in chapter 5 is that it can do this in a tractable manner. Even so, this

optimization model is a non-linear non-convex integer programming problem. Lower

bounds for this problem can be found through a column generation algorithm in which

the pricing problem is exactly the problem studied in Chapter 4. A good feasible

solution can be found within reasonable time using binary programming techniques.

In extensive numerical experiments, the feasible solution we found had an optimality

gap of 0.67% on average and at most 6.76%.

The same numerical study also quantifies the effect of considering repair shop

flexibility through expediting compared to models in which stocking decisions are

based on a single lead time. Explicitly considering these flexible lead times through

expediting leads to an average reduction in repairable spare parts investment of 25%

compared to the approach based on a single lead time for a large test-bed.

Consumables

Chapter 6 studies base-stock policies for consumables that are reviewed periodically.

When the stock for consumables is depleted, it is a common procedure to use

an emergency supply source to replenish the part almost instantaneously so that

maintenance is not halted for lack of a part. All items that are replenished by the

emergency procedure are lost to the normal mode of replenishment. This problem is

mathematically equivalent to the classical lost sales inventory problem which consists

of a periodically reviewed stock point that faces stochastic demand and loses any

demand in excess of on-hand stock. Replenishment orders arrive after a deterministic

lead time τ . At the end of each period, costs for lost sales and holding inventory are

charged. For such systems, we are interested in minimizing the long run average cost

per period.



215

The structure of the optimal policy for lost sales inventory systems with a positive

replenishment lead time is still not completely understood, and the computation

of optimal policies suffers from the curse of dimensionality as the state space is τ -

dimensional. Base-stock policies are asymptotically optimal as the lost sales penalty

costs approach infinity. However, computing the best base-stock policy for a lost-

sales inventory problem efficiently remains a challenge. Chapter 6 presents an

approximate method to compute the average cost rate under a given base-stock level.

This approximation is based on several limiting results that have good convergence

properties. Furthermore, this approximation satisfies Little’s law with respect to the

queue of pipeline orders. A simple heuristic to find the best base-stock level is to

minimize the costs based on this approximation. A numerical study demonstrates

that this heuristic has a cost performance of within 0.1% from the best base-stock

policy on average and never more than 1.3% from the best base-stock policy across a

large test bed.
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