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Abstract 

This paper characterizes a class of availability models that exhibit a product form 
steady state solution. A condition for the models to have a product form solution is 
stated explicitely. The resulting product form is presented together with a proof. A 
number of examples is discussed that show the usefulness of our product form results 
for the analysis of computer system availability. 

1 Introduction 

Over the last decade computer systems have penetrated in almost every part of society. 
Moreover, computer systems become more and more involved in highly responsible activ-
ities. This often implies that the malfanctioning of a computer system, i.e. the failure of 
crucial components, results in great losses. These arguments justify the need to access the 
probability of malfunctioning or conversely, the probability of well functioning. 

The most commonly used measures to quantify the well functioning of a system are 
reliability and availability. The reliability function is typically of interest for systems that 
have to remain operational during their whole (limited) mission length, such as air or space-
craft systems. If components can be repaired and if some downtime can be tolerated then 
availability is a more appropriate concept. There are several types of availability measures. 
[12] provides an overview on numerical methods for calculating transient measures such as 
point- and interval availability. In this paper we focus on the steady state availability of 
repairable computer systems. 

Basically we consider a system consisting of N components that are alternatively up 
and down. We denote by Ti the set of all possible states of the system and partition Ti into 
Q and B, the set of states in which the system is up (the "good" states) and the set of states 
in which the system is down (the "bad" states) respectivily. Let the function a: Ti —»• {0,1} 
be such that ot(H) = 1 if H € Q and a(H) = 0 if H € B. Then the steady state availability, 
A, is given by 

«, 
A= $ > ( # ) « ( # ) , (1.1) 

Hen 

'address: Fiee University, Department of Economics and Econometrics, De Boelelaan 1105, 1081 HV, 
Amsterdam. 
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where T(H) denotes the steady state probability that the system is in state H. Note that 
steady state availability can be easily generalised to long term average reward by allowing 
the fuction a(-) to be any real valued function on the state space %. From (1.1) it is clear 
that for our purpose it suffices to obtain the steady state distribution 7r(-). 

If all components have statistically independent life times and are seperately repaired 
7r(-) has a very simple form. Let a state H = {hi,... ,hn] denote that components 
h\,...,hn are down while the other components are up and let ph denote the steady state 
probability that component h is up. If the mean life time and mean repair time for com
ponent h are given by / ^ and v^ respectively then ph is given by 

Ph = - X - (1-2) 

and the steady state distribution 7r(-) is given by 

x( j ) = n Ph n (i - Ph)- (i.3) 
h<f,H h€H 

This model is often used in availability studies of (large) communication networks. A typical 
performance measure in this context is the probability that two nodes can communicate 
via a network of links that are subject to failure (cf. [1], [2], [3], [8]). Note that in this case 
7T(-) depends on the life time distributions and repair time distributions only through their 
means. This is refered to as insensitivity. For proofs on the existence of the steady state 
distribution and other asymptotic quantities we refer to [13]. 

For modelling fault tolerant computer systems the assumption that components have 
statistically independent life times is to restrictive. Therefore the failure- and repair times of 
the components are mostly assumed to be exponentially distributed. Under this assumption 
the steady state distribution 7r(-) of the corresponding Markov chain can be obtained by 
solving a set of linear equations numerically. If the cardinality of the state space is large then 
special techniques must be used, such as sparse matrix storage and successive overrelaxation 
(cf. [6]). For highly reliable systems a bounding technique based on state space aggregation 
is presented in [10]. 

We do not assume that failure- and repair times are exponentially distributed, but 
instead characterize a class of models that exhibit a insensitive product form steady state 
solution like (1.3) without assuming that the life times are statistically independent nor that 
the components are seperately maintained. The class of product form models is character-
ized by putting conditions on the way in which the failure-and repair processes of individual 
components are allowed to depend on the state of the system. The two main conditions 
are that the repair of a component starts immediately upon failure and that the system 
behaviour in a state H does not depend on the way that state was entered. In section 2 
these conditions are stated explicitely. 

From a mathematica! point of view this product form result is not new as based on the 
notion of reversibility (cf. [4], [7]). The primary goal of this paper, however is to show that 
apart from queueing theory product form results are also useful in availability modelling. 

This paper is organized as follows. In section 2 we introducé and illustrate the model 
and give sufficiënt conditions for a product ibrm solution. In section 3 we state and proof 
this product form result. In section 4 we give a number of examples that show how various 
systems can be modelled and how the product form conditions can be verified. Section 5 
concludes the paper and indicates further research. 
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2 Model and product form conditions 

In this section we first give an abstract formulation of the model. The main feature of 
the model is that components go down and are repaired with state dependent speeds. We 
illustrate this with an example and give an equivalent queueing network interpretation. 
Then we state sufficiënt conditions on these speeds that ensure a product form for the 
steady state probabilities. With some examples we indicate how these conditions can be 
checked in practice. 

2.1 T h e m o d e l 

Consider a system consisting of N components, numbered 1,...,N. Each component is 
alternatively up (being able to work) and down (not able to work and needing repair). 
When component h goes down, it requires a random amount of repair Rh. When its repair 
is completed the component immediately returns to the up mode and performs a random 
amount of work, Wh, before going down again. 

Let a state H = {h\,...,hn} denote that components hx,...,hn are down while the 
other components are up. For notational convenience we assume that hi,...,hn are given 
in increasing order. The state in which all components are up (none is down) is denoted by 
0. The speeds at which the components in the up mode work and the speeds at which the 
components that are down are repaired are allowed to be state dependent. If the system is 
in state H = {hi,...,hn} then the speed at which a component h that is up (i.e. h ^ H) 
works is denoted by 

0(h]h1,...,hn),hi{h1,...,hn}. (2.1) 

and the speed at which a component h that is down (i.e. h E H) is repaired is denoted by 

S(h\hi,...,hn), h £ {hi,...,hn}. (2.2) 

If there is no danger of ambiguity we abbreviate P(h\hi,. ..,hn) and S(h\hi,...,hn) by 
P(h\H) and S(h\H) respectively. Further, we write H\ + H2 for the union of two sets H\ 
and #2 , H\ — H2 for their symmetrie difference and h for the singleton {h}. 

Interpretation of the speeds The actual time that component h remains up depends on 
the random amount of work, Wh, that it performs before going down and on the varying 
speeds /3(h\-) with which it works, i.e. on the states that the system visits during the up 
time of component h. This is illustrated in the example below. In the same way the time 
that a component h remains down depends on the amount of repair, Rh, that it needs and 
on the speed(s) 6(h\-) with which it is repaired. 

Example Consider a computer system with two disc units, numbered 1 and 2. If both 
dises are operational then they perform 1 instruction per unit time. However, if one disc is 
down then the other one takes over all its work and thus has to work twice as fast, resulting 
in 2 instructions per unit time. Thus /3(1|0) = /?(2|0) = 1 and /?(1|2) = /?(2|1) = 2. Sup-
pose that at time t = 0 disc 2 goes down and that disc 1 can still perform 3600 instructions 
before going down. If the repair of disc 2 takes more than 1800 time units then disc 1 has 
performed all its 3600 instructions and will go down after 3600/2 = 1800 time units. But 
if the repair of disc 2 requires only 1000 time units then disc drive 1 is still able to perform 
3600 — 2 * 1000 = 1600 instructions when disc 2 goes up again. This means that disc 1 will 
remain up another 1600 time units, provided that disc drive 2 remains up also. Thus, in 
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node 0(up) 

A(h\E) 

D{h\E) 

node 1 (down) 

Figure 1. Queueing network model 

this case disc 1 goes down at t = 2600. 

Below we give some more examples of how the functions /3 and 6 can be used as delay 
or acceleration factors to model failure- and repair dependencies between the components. 
In the examples E\ and Ei denote two disjoint sets of components not containing compo
nent h. 

• /3(h\Ei) = 0 reflects that component h, although it is up, does not work if the com
ponents in the set E\ are down. Thus, component h can not go down if the system is 
in state H\. We also refer to this by saying that the failure process of component h has 
stopped. 
• /3(h\Ei + E2) < f3(h\Ei) indicates that component h works at a lower speed if, apart 
from the components in E%, an additional set of components, Ei, has failed. Another 
interpretation is that the failure process is slowed down. 
• /3(h\Ei + E2) > (3(h\Ei) indicates that component h works faster if the additional compo
nents E2 have failed. Another interpretation is that that the failure process is accelerated. 
• S(h\Ei + E2 + h) < 6(h\Ei + h) indicates that the repair of component h is slowed down 
if an additional set of components E2 has failed. 
• S(hi\hi, hj) > S(hj\hi, hj) = 0 models the (preemptive) priority of the repair of component 
hi over that of component hj. 

Queueing network interpretation (cf. [6]) Our model is equivalent to the closed 
two-node queueing network model with N different jobs circulating between node 0 and 
node 1 given in figure 1. Each job corresponds to a component which is up if it is at node 
0 and down if it is at node 1. A job h in node 0 (corresponding component up) will request 
to make a transition to node 1 (corresponding component down) after having received a 
random amount of service Wh. If at that moment the collection of jobs, E, is already 
present at node 1, then this request is granted with probability A(h\E). With probability 
1 — A(h\E) job h must receive another random amount of service Wh before submitting its 
next request. Analoguously, a request from a job h in node 1 to make a transition to node 
0 after having received a random amount of service Rh is granted with probability D{h\E) 
if the collection of jobs, E, is present at node 1. 

Further, a job h in node 0 is served at a state dependent speed i/>(h\H) and a job 
h in node 1 is served at a state dependent speed <f>(h\E), where E is the collection of 
jobs at node 1. In [4] it is shown that our model is equivalent to this queueing network 
model. The equivalence is established by choosing f3(h\E) = A(h\E)i(>(h\E) and S(h\E) = 
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D(h\H)<j>(h\H). 

2.2 P r o d u c t form condit ion 

Denote by Ti C 2 ^ the set of states, including 0 (no components down) that can be reached 
from state 0 by components going up and down. ( 2 ^ denotes the power set of { 1 , . . . ,N}). 
Our iirst assumption is that in any state H € H, H ^ 0, there is a component h € H 
such that 6(h\H) > 0. This means that in any state in which one or more components 
are down, there is at least one component that is being repaired. This conforms condition 
(2.3) below. If all random variables Wh and Rh were exponential then we would have an 
irreducible Markov chain on Ti. This follows since each state H € Ti can be reached from 
0 by definition and 0 can be reached from any state H G Ti by subsequent repairs. But, as 
we do not restrict ourselves to exponential up- and down times and thus can not speak in 
terms of Markov chains, we call the set Ti an irreducible set. Thus the irreducible set Ti is 
the set of states, containing 0, such that out of any state H £H any other state in Ti and 
no state outside Ti can be reached. 

We now state sufficiënt conditions on the functions /? and S in order for the steady 
state probabilities to be of product form. 

Product form conditions For any state H = {h\,...,hn} E Ti, E ^ 0 

S(h\H) > 0 for some heH. (2.3) 

ê(h\H) = 0 <^> P(h\H -h) = 0ioTaU.heH. (2.4) 

Further, for all permutations (h^,. ..,hin) of {hi,...,hn} for which the denominator in 
(2.5) below is positive 

where K(H) is some positive value depending on H only. 1T(0) = 1 by definition. 

Discussion of condit ions Condition (2.3) guarantees that the product in (2.5) has a 
positive denominator for at least one permutation, while (2.4) guarantees that if the de
nominator of this product is zero then also the numerator is equal to zero, so that the 
product can be chosen equal to K{H). Thus, effectively only permutations with non-zero 
denominators need to be considered. 

The interpretation of condition (2.4) is that if component h can not be repaired when 
the system is in state H then component h can not go down when the system is in state 
H — h and vice versa. 

The key-condition (2.5) is related to the well-known Kolmogorov criterion for a Markov 
chain to be reversible (cf. [7]). For our model with state dependent speeds it can be 
shown that the Kolmogorov criterion is equivalent to condition (2.5). Roughly speaking, 
(2.5) requires that it should not matter in which order components go down, with fi/6 as 
additional factor per component that is down. Note that if the functions /? and ë take the 
values zero or one only then (2.5) follows directly from (2.4). 

It is not difficult to see that condition (2.5) is equivalent to 

K(H + h)_ /3(h\S) r 2 f i , 
K{H) S(h\H + h) K } 
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for all states H and all components h such that 6{h\H + h) > 0. The speeds /? and 6 
often suggest a form for the function K(-) so that condition (2.5) can be easily checked by 
verifying (2.6). In the two examples below we will illustrate the usefulness of the equivalent 
condition (2.6). 

Example 1 (coordinate convex) Suppose that the maximum number of components 
that can be down at the same time is C. I.e. if C components are down then the other 
components stop working (their failure process is temporarily stopped) until one of the C 
components is repaired. Thus H = {H: \H\ < C}, where \H\ is the number of components 
that is down. Assuming for simplicity that this is the only dependency in the model, the 
speeds are given by 

• ( 
»<«»>-< J S * 1 , " '"> 
S(h\H) = dh, for all H e U. (2.8) 

Substituting these speeds in condition (2.6) yields 

K(H + h) f JjLfif|JT|<C7 
K(H) \ o , i f | # | = C, 

which immediately suggest the following form for the function K(-) 

(2.9) 

K(H) = i Uh^H # ' i f | F | < ° (2.10) 

Example 2 (ne ighbourhood s t ruc ture ) This is a slightly more complicated example 
involving a neighbourhood strucure, inspired by the rude CSMA protocol in communication 
theory (cf. [11]). As before, denote by H the set of components that is down. If the system 
is in state H then NQ(H) denotes the number of neighbours of component h that is up and 
Ni(H) denotes the number of neighbours of h that is down. Components that are down 
are always repaired at a speed 6 = 1. The working speed for a component h that is up 
depends on the number of its neighbours that are up and down in the following way 

P(h\H) = pNohWqNïm, (2.11) 

where p and q are arbitrary, non negative constants. The case q = 0, for example, cor-
responds to the case where a component h only works if all its neighbours are up. Or, 
alternatively, the failure process of component h is stopped if one or more of its neighbours 
is down. Substituting these speeds into condition (2.6) yields 

K(H + fc) = p N j W g A W . (2.12) 

From (2.12) it follows that the number of extra terms p due to an additional component h 
that is down is exactly the number of pairs (h, h') such that h and h' are neighbours and 
h' is up in state H. The same holds for the number of extra terms q, with h' is up replaced 
by h' is down. This suggests the following form for the function K(-), which can be easily 
checked to satisfy (2.6). 

K(H) = pBoWqBl{H), (2.13) 

where Bo(H) denotes the number of pairs of neighbours that are up and Bi(H) denotes 
the number of pairs of neighbours that are down when the system is in state H. 
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3 Product form result 

In this section we obtain a product form solution for the steady state probabilities K(H). 
For this result we need to expand our state description. First, in order to indicate for 
each component h if it is up or down we define the N-dimensional macro-state vector 
s = (si,...,sN)by 

_ f 0,if< 
~\ l,if< 
_ • v/, x* component h is up , . 
~" ' 1 ; f component h is down *• ' ' 

However, not all macro-state vectors s G {0,1}^ may correspond to a state H in the 
earlier defined irreducible set of states Ti. In order to have that Ti +^+ S for the space of 
macro-state vectors S, we define the function <f>:{0,l}N -* 2N by 

<f>(s) = {h e {!,...,N}:sh = 0}. (3.2) 

Thus $(s) is the set of components that are down if the system is in macro-state s. 

Now, defining the macro-state space S = is G {0, l } ^ : ^ * ) G Ti\ and defining the N-

dimensional vector t = (t\,... ,<JV) € T = $1+ by 

_ ƒ residual amount of work for component h, if Sh = 0 .„ „. 
~ 1 residual amount of repair for component h, if s^ = 1, *• " ' 

the state of the system is completely determined by a pair (s,t) G S X T, the micro-state 
space. 

Refering to remark 3.1 for the general case, we assume that the distribution functions 
Fh and Gh of the random variables Wh and Rh have continuous density functions fh and gh 
respectively. Let v(s,t) denote the steady state density for the micro-states (s,t) £ S X T 
and let ir(H) be the steady state distribution for the states E G Ti. First we will proof the 
(technical) key-theorem, yielding a product form for the steady state density p(s,t). The 
second, more practical theorem is a direct consequence of the first and provides a simple 
product form expression for the steady state distribution K(H), which is insensitive (i.e. 
depends only on the distributions Fh and Gh through their means). 

Theorem 3.1 Under conditions (2.3)-(2.5) we have for all (s,t) G S X T with c a nor-
malizing constant, H = <f>(s) and K{H) given by (2.5) that 

p(s,t) = cK(H) IJ {1--FU**)] I I [1-Gh(tk)l (3.4) 
h:sh=0 h:sh=l 

Proof All we have to do is to verify the global balance or forward Kolmogorov equation 
(3.9) below, assuming (without loss of generality) that it has a unique solution. But before 
doing so we will first illustrate how the forward Kolmogorov equation, which requires that 
in any state (s,t) the "total rate of change" is equal to 0, is derived. 

Consider a fixed state (s, t) with H = <f>(s) representing the components that are down 
and let e& denote the h-th iV-dimensional unit vector. The change in state (s, t) due to 
the completion of an infinitesimal amount of residual work, A, performed by a component 
h that is up (sh = 0) is given by 

{p(s,t) - p(s,t - Aeh)}P(h\H) + o(A), (3.5) 
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h:sh 

where o(A)/A —• O as A —»• 0. The system makes a transition to state (s,t) from a state 
(s + eh,t+ [T — th]eh),0 < T < A, by the completion of the infinitesimal amount of residual 
repair r of component h if, after its repair, component h can perform an amount of work 
th- This results in a change 

/ p(s + eh,t + [T-th]eh)6(h\H + h)fh(th)dT + o(A). (3.6) 

Summing (3.5) and (3.6), deviding by A and letting A J. 0 yields the rate of change due to 
a component h that is up («^ = 0) given by 

-^-p(s,t)^(h\H) + ]imp(s + eh,t + [A - th]eh)S(h\H + h)fh(th). (3.7) 

Analogously, the rate of change due to a component h that is down (s^ = 1) is given by 

—p(s,t)6(h\H) + limp(s -eh,t + [A- th]eh))f3(h\H - h)gh{th) (3.8) 

Summing all these rates of change for components that are up and down and equating this 
sum to zero yields the forward Kolmogorov equation given by 

J2 {•^•P(s,t)f3(h\H) + Kmpis + eh,t + [A - th]eh)6(h\H + h)fh(th)} + 

] T {-J^p(s,t)S(h\H) + ]hRP(s-eh,t + [A- th]eh))(3(h\H - h)gh(th)} 

= 0. (3.9) 

We will proof that the product form (3.4) satisfies the forward Kolmogorov equation (3.9) 
by showing that all seperate terms (3.7) and (3.8) are equal to zero. First consider the 
terms (3.7) for components h that are up. From (2.6) it follows directly that we can restrict 
ourselves to the case f3(h\H) > 0 and 6(h\h + H) > 0. From the postulated product form 
solution (3.4), the assumption that the distributions Fh and Gh have continuous densities 
fh and gn and by noting that limA|o[l - F(A)] = 1 it follows that 

Wh
pM = l'-F^lf^^ = -AOOKmKM + [A - th]eh) (3.10) 

Using the equivalent (2.6) of the permutation invariant expression (2.5) it follows that 

]imp(s,t + [A - th]eh)P(h\H) = HmK* + eh,t + [A- th]eh)6(h\H + h). (3.11) 
A|0 A|0 

Equation (3.10) and (3.11) together imply that the terms (3.7) are equal to 0. In the same 
way it can be shown that the terms (3.8) are equal to 0, which completes the proof. 

T h e o r e m 3.2 Under conditions (2.S)-(2.5) we have for all H EH that 

where c is a normalizing constant. 
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Proof The result follows directly from theorem 4.1 by integrating over all possible residual 
quantities th of work (if Sh = 0) or repair (if Sh = 1) for all components h = 1 , . . . , N, where 
s is such that 0(s) = H. The change of order of integration and taking products below is 
justified by the fact that all integration variables occur in exactly one seperate term in the 
product form (3.4). Thus, 

7r(#") = f p(s,t)dt 

oo oo 

= cK(H) ][[ J[l-Fh(th)]dth H J[l-Gh(th)]dth 
h:sh=0 Q h-.Sh=l 0 

KW n E[wh) n £ M = ^ w n l f § T ' <3-13) 
fc:si,=0 h:ah=l heH L A J 

= c v 
",:sh=0 h:sh 

where c = cUh=iE[Wh]. 

R e m a r k 3.1 To avoid technicalities, we gave the proof of theorem 3.1 under the assumption 
that Fh and Gh have continuous densities fh and gh respectively. However, this assump
tion may be relaxed and in fact the theorem holds for arbitrary distributions Fh and Gh, 
provided that multiple transitions at the same time are avoided. 

4 Examples 

In this section we give a number of examples to illustrate how the product form result can 
be used and how the product form conditions can be easily verified. For each example we 
show that the speeds (3 and 6 satisfy the product form conditions (2.3) and (2.4) and that 
there exists a function K(H) such that (2.5), or equivalently (2.6), is satisfied. Once we 
have this function K(H) the stationary distribution n(H) follows directly from (3.12). 

4.1 S imple series—parallel configuration 

Consider a system consisting of one critical device, C, and M secundary devices, S i , . . . , SM 
(see figure 2). The system is operational if the critical device and at least k out of the M 
secundary devices are up. We assume that all failure processes stop if the system is not 
operational and that there is a single repair unit giving preemptive priority to the critical 
device. Thus 

f3(Si\H - Si) = 6(Si\H) = 0, for all states H with Ce E. (4.1) 

Further we assume that the secundary devices are repaired in a processor sharing manner, 
i.e. 

6(Si\H) = T^T, for all states H with C $. H, (4.2) 
I - a l 

where \H\ denotes the number of secundary devices that is down and that all other speeds 
are equal to 1. Observe that if C G H = {hi,...,hn} then the only permutations 
(/i t l, ,hin) of H that yield a non-zero denominator in (2.5) are those with /&,„ = C, 
i.e. the critical component is the last one that goes down. From this observation it follows 
directly that the values K(H) are given by 

K{H>-\(\H\-l)l,ifC€H ( 4 ' 3 ) 
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Si 

SM 

Figure 2. Series-parallel configuration 

4.2 Nested structure 

Consider a database system consisting of a front-end, two processing subsystems and a 
database (see figure 3). The system is operational if the front-end and the database are up 
and at least one of the processing subsystems is operational. Each subsystem consists of a 
switch, a memory and two processors and is operational if the switch, the memory and at 
least one of its processors are up. We assume that all failure processes stop if the system is 
not operational and that the failure processes within a subsystem stop if the subsystem is 
not operational. Each subsystem has its own repair unit, giving preemptive priority to the 
memory and the switch. (Note that, within a subsystem, the memory and the switch can 
not be down at the same time since the failure processes stop if one of these components is 
down). If the database goes down then both repairman are assigned to repair the database 
immediately. The same holds for the front-end. Thus, the database and the front-end 
have preemptive priority on system level. The repair units resumé the work they were 
doing as soon as they finish the repair of a component with higher priority, i.e., the priority 
disciplines are work conserving. 

For notational convenience we introducé the function £ : { ! , . . . , N} —• 2 ^ defined by 

C(h) — {.ff |the failure process of component h is stopped in state E}, (4.4) 

where we use the convention that h $ £(h). I.e., C{h) is the collection of states in which 
component h does not work due to other failed components. From this definition it follows 
that 

(4.5) 

(4.6) 

P(h\H) = 0 < ^ H e C(h) 

and it is easy to check that the priority rules for repair imply that 

6(h\H + h) = Q «*=• He C(h). 

Hence condition (2.4) is satisfied. Now we have to check the permutation invariance condi-
tion (2.5). If the speeds /? and 6 take the values 0 or 1 only, then this follows directly from 
the observation that for each permutation for which the denominator in (2.5) is positive, 
both denominator and mimerator are equal to 1. Thus K(H) = 1 for all states H. 
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front-end 

. 

processor subsystem 

switch f ) — memory 

processor 

. 

subsystem processor 

memory —f ) switch 

processor 

data 
base 

Figure 3. Fault-tolerant database system 

Now suppose that the repair speed for a processor is equal to 1 if it is the only processor 
that is down in its subsystem but that, if the other one goes down too, this speed drops 
to q for both processors. Further, if in a subsystem both processors are up then they both 
work at speed 1 and if only one if them is up then it works at speed p. The repair (working) 
speeds for the processors are of course equal to 0 if the repair of some other component 
has priority (the failure process has stopped). The speeds of all other components take 
the values 0 or 1 only. Consider a state H = {hi,...,hn} of failed components. The only 
permutations (/&tl,... ,/&,„) that yield a non-zero denominator in (2.5) are those for which 

{hh,- • • ,*i.*_i} i £(hik), k = l,. ,n. (4.7) 

The only terms in the product in (2.5) that matter for such a permutation are those for 
which h{k denotes a processor, all the other terms P/6 being equal to 1. Thus we obtain 

1, if in both subsystems at most one processor is down 
K(H) = < |> if in one subsystem both processors are down 

( | ) 2 , if all four processors are down, 

which implies that condition (2.5) is satisfied. 

(4.8) 

4.3 M u l t i - s t a g e interconnect ion network 

Consider a multi-stage interconnection network (MIN) connecting K inputs to K outputs. 
We assume that K is a power of two. When using 2 x 2 internal switches to build up the 
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Figure 4. Multi-stage interconnection network 

MIN, there are M =2 log K stages required. The number of switches per stage is N = K/2. 
In figure 4 an 8 X 8 MIN is depicted. 

Assume that under normal operation all switches work at speed /? = 1. Switches 
that are down are repaired in a processor sharing manner. However, there is a critical 
number, Bi, associated with each stage. As soon as Bi switches of stage i are down the 
network abandons normal operation. Stage i is now critical and all switches that are up 
stop working. The repair of all switches that are not in the critical stage is also stopped 
in favour of the Bi switches that are down in the critical stage i. These are repaired in a 
processor sharing manner. As soon as one of the switches in the critical stage is repaired 
the system résumés normal operation again. 

Let Si denote the set of switches in stage i and let rii{H) = \H D Si\ denote the number 
of switches that is down in stage i if the system is in state H, i = 1 , . . . , M. Then for all 
states E and all switches h £ H the speeds /? are given by 

i3{h\H)={):*ni{H)<B"i=i— 
I Uj 6XS6* 

M 
(4.9) 

For all states H and all nodes h E H the repair speeds S are given by 

' j^,ifni(H)<Bi,i = l,...,M 

6(h\H) = < ^ - , if nj(H) = Bj and h G Sj 

k 0,'if nj(E) = Bj and h £ Sj. 
(4.10) 

Thus the speeds satisfy the product form conditions (2.3) and (2.4. From condition (2.6) 
it follows that the function K(H) is given by 

K{H) •{ 
\H\\, if ni{H) <Bi,i=l,...,M 
(\H\-l)Wj,iinj(H) = Bj. 

(4.11) 
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5 Conclusion 

In this paper we have characterized a class of availability models that exhibit a product 
form steady state solution. The conditions that have to be fulfilled for a model to fall in 
this class (the product form conditions) have been stated and examples are given that show 
how these conditions can be verified. 

Further research is conducted on using the product form results to obtain bounds 
for non product form models. This can be done by making proper adjustments in the 
speed functions /? and 6. Another topic for research is to make the existing algorithms 
for computing network reliability applicable to the product form class with dependencies. 
Thus with computations based on (3.12) rather than on (1.3). 
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