98 research outputs found

    A Real Application of an Autonomous Industrial Mobile Manipulator within Industrial Context

    Get PDF
    In modern industry there are still a large number of low added-value processes that can be automated or semi-automated with safe cooperation between robot and human operators. The European SHERLOCK project aims to integrate an autonomous industrial mobile manipulator (AIMM) to perform cooperative tasks between a robot and a human. To be able to do this, AIMMs need to have a variety of advanced cognitive skills like autonomous navigation, smart perception and task management. In this paper, we report the project’s tackle in a paradigmatic industrial application combining accurate autonomous navigation with deep learning-based 3D perception for pose estimation to locate and manipulate different industrial objects in an unstructured environment. The proposed method presents a combination of different technologies fused in an AIMM that achieve the proposed objective with a success rate of 83.33% in tests carried out in a real environment.This research was funded by EC research project “SHERLOCK—Seamless and safe human-centered robotic applications for novel collaborative workplace”. Grant number: 820683 (https://www.sherlock-project.eu accessed on 12 March 2021)

    Innovative Mobile Manipulator Solution for Modern Flexible Manufacturing Processes

    Get PDF
    There is a paradigm shift in current manufacturing needs that is causing a change from the current mass-production-based approach to a mass customization approach where production volumes are smaller and more variable. Current processes are very adapted to the previous paradigm and lack the required flexibility to adapt to the new production needs. To solve this problem, an innovative industrial mobile manipulator is presented. The robot is equipped with a variety of sensors that allow it to perceive its surroundings and perform complex tasks in dynamic environments. Following the current needs of the industry, the robot is capable of autonomous navigation, safely avoiding obstacles. It is flexible enough to be able to perform a wide variety of tasks, being the change between tasks done easily thanks to skills-based programming and the ability to change tools autonomously. In addition, its security systems allow it to share the workspace with human operators. This prototype has been developed as part of THOMAS European project, and it has been tested and demonstrated in real-world manufacturing use cases.This research was funded by the EC research project “THOMAS—Mobile dual arm robotic workers with embedded cognition for hybrid and dynamically reconfigurable manufacturing systems” (Grant Agreement: 723616) (www.thomas-project.eu/)

    Improving the Flexibility and Robustness of Machine Tending Mobile Robots

    Get PDF
    While traditional manufacturing production cells consist of a fixed base robot repetitively performing tasks, the Industry 5.0 flexible manufacturing cell (FMC) aims to bring Autonomous Industrial Mobile Manipulators (AIMMs) to the factory floor. Composed of a wheeled base and a robot arm, these collaborative robots (cobots) operate alongside people while autonomously performing tasks at different workstations. AIMMs have been tested in real production systems, but the development of the control algorithms necessary for automating a robot that is a combination of two cobots remains an open challenge before the large scale adoption of this technology occurs in industry. Currently popular docking based methods require a mount point for the docking station and considerable time for the robot to locate and park. These limitations necessitate the consideration and implementation of more modern robot control and path planning techniques. This work proposes and implements a simulation testbed that uses a contemporary whole-body control, OCS2, to perform more flexible pick-and-place tasks. Within this testbed, an Industry 5.0 based pick-and-place framework is deployed, fine-tuned and tested. This system supports the one-shot lead-through based assignment of a prepick position by an operator, thus enabling the cobot to drive to this position and successfully pick up the part agnostic of base orientation and/or position. The proposed system allows robot path planning experimentation and assessment against a variety of cost and constraint values, and is capable of being modified to support various vision based part locating algorithms

    Does your Robot have Skills?

    Get PDF

    Interactions Between Humans and Robots

    Get PDF
    corecore