Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Does your Robot have Skills?

Bagh, Simon; Nielsen, Oluf Skov; Pedersen, Mikkel Rath; Kruger, Volker; Madsen, Ole

Published in:
Proceedings of the 43rd International Symposium on Robotics

Publication date:
2012

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Bagh, S., Nielsen, O. S., Pedersen, M. R., Kruiger, V., & Madsen, O. (2012). Does your Robot have Skills? In
Proceedings of the 43rd International Symposium on Robotics VDE Verlag GMBH.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 30, 2020

https://vbn.aau.dk/en/publications/9f184d42-459a-4d30-871c-bab8082cfbba

The 43" Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

Does your Robot have Skills?

Simon Begh, Oluf Skov Nielsen, Mikkel Rath Pedersen, Volker Kriiger and Ole Madsen

Department of Mechanical and Manufacturing Engineering,
Aalborg University
Aalborg, Denmark
e-mail: {sb, olnie, mrp, vok, om}@m-tech.aau.dk

Abstract— This article presents a unifying terminology
for task-level programming of highly flexible mobile ma-
nipulators in industrial environments. With a terminology
of tasks and object-centered skills, industrial applications
are analyzed in the logistic and assistive domains. The
analysis shows that many tasks can actually be solved with
a small library of predefined building blocks, called skills.
In logistics domains, it can be exploited that the sequences
of skills needed to solve specific tasks follow certain pat-
terns, whereas in assistive tasks, the sequence vary a lot,
and tasks must be taught to the robot by a user, based on
Standard Operating Procedures or process knowledge. An
overview is presented on how to implement a skill-based
architecture, enabling reuse of skills for different industri-
al applications, programmed by shop-floor workers. The
terminology of tasks, skills, and motion primitives is intro-
duced and designed to separate responsibilities of robot
system developers, robot system integrators and shop floor
users concerning programming of the robot system. The
concept of testable pre- and postconditions assigned to the
skills are proposed to help both in developing skills and
asserting when a skill is applicable.

Keywords: industrial robots, mobile manipulation, flexi-
ble automation, robot skills, task-level programming.

I. INTRODUCTION

The paradigm-shift from mass production to mass
customization and the request to dynamically scale the
throughput on production lines up and down have
changed the demands for automation systems, as solu-
tions are needed that are more flexible than today’s
production lines with conveyor belts and stationary in-
dustrial robots. A solution to this is to develop robots
that are more flexible in the way that they can easily be
moved between different workstations and solve a larg-
er variety of tasks. In addition, many tasks in production
of small or medium volumes involve transportation of
parts between workstations and machines. This call for
new types of robots that

e are able to move around autonomously in industrial
environments,

e can be programmed on the fly, and

e can cope with uncertainties due to not completely
known environments.

A concept for targeting the mobility issue is autono-
mous industrial mobile manipulation (AIMM), where a
manipulator is mounted on a mobile platform.[13] For
this type of flexible robots, classical robot-centric pro-
gramming paradigms do not suffice, as robot programs
are typically developed from scratch dedicated for a

specific task and environment. In order to speed up pro-
gramming of flexible robots, and even let shop floor
workers do it, another paradigm than traditional ro-
bot-centric programming needs to be adopted - a
task-level programming paradigm.

In task-level programming, a sequence of actions,
performed on objects, specify a production-related goal.
The sequence of actions leading to the fulfillment of this
goal can either be planned or specified by an operator.

A. State of the art

Many approaches to task-level robot programming
exist already in different fields of robotic research.
Task-level programming specifies what the robot should
do in terms of actions on the objects involved in the task
and not necessarily to the full extent how it should be
achieved (for instance in terms of manipulator trajecto-
ries). This is similar to the symbolic representation of
tasks (goals) of one of the earliest developments in au-
tonomous robot, Shakey, which uses STRIPS rules and
the STRIPS planner to reason about which actions may
lead to accomplishing a goal [10]. The symbolic repre-
sentation of STRIPS is however not very tightly con-
nected with the physical world. This topic is dealt with
in the formulation of Object-Action Complexes (OACs)
[12], a framework for cognitive robots to identify possi-
ble actions based on the objects it perceives and infer
the objects based on what actions can be performed on
them. The tight connection between actions and objects
and the formulation of OACs is a basis for how robust
robot skills can be defined. Although, in industrial sce-
narios as addressed here, objects and possible actions
are expected to be provided to the robot by a user and
not learned by the robot itself.

A different approach for robots to reuse knowledge
on how to solve tasks is to share recipes (programs)
over networks like The Semantic Web or for industrial
applications in the Knowledge Integration Framework
(KIF) [5]. In KIF for example an abstract representation
of how an emergency-stop button is assembled using
guarded motions is stored, such that it can be used on
robots even of different type if the same basic capabili-
ties are available. There are however some features that
this approach lacks; a formal description of which con-
ditions the program will work under, the preconditions,
and a description of the effects of executing the program,
the postconditions.

A solution to this could be to associate the program
with a skill description template, as in SKORP [2] - an
approach to skill-based robot programming using a

The 43" Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

graphical representation of skills, where the skill tem-
plate serves as a communication tool between the skill
developer and the application programmer. However,
these pre- and postconditions need to be connected to
the real robot, i.e. to be testable before they actually jus-
tify their existence.

B. Contribution

In this study different application scenarios are ana-
lyzed to provide a terminology that can assist in all lev-
els of task-level robot programming, from the developer
of the basic capabilities of the robot to the shop floor
worker who will program new tasks. Using this termi-
nology,

e a concept of robot skills is utilized to analyze pro-
duction processes, and identify what skills are
needed for certain task domains, and

e the skills and tasks abstraction is proposed to en-
capsulate, convey, and reuse expert knowledge to
create robust robot programs.

I1. DEFINITION OF TASKS AND SKILLS

In this section we will introduce our definitions of
the key terms of this paper. Similar to papers that model
human action using an abstraction hierarchy of action
primitives, actions and activities [6,15], or that model
language out of phonemes, words and sentences [17],
we will denote the same type of hierarchy by using the
terms motion primitives, skills and tasks. Motion primi-
tives perform basic motion commands of the robot, and
skills are basic functionalities the robot has.

A. Tasks

Tasks are in this context, quite intuitively, character-
ized by attaining a certain production-related goal in the
factory hall, e.g. fill feeder A or load part B into machine
C. We say that a task can be decomposed into a se-
quence of skills from the set S of skills if there exists a
robot that is able to complete a task by using the skills
from S. Tasks are defined based on measurable state
variables, and the robot uses its skills to change these
state variables. State variables can be either measured
with vanishing uncertainty by dedicated sensors, e.g. by
those that are built into the manufacturing systems, or
by sensors on the robot, such as vision, torque or tactile
Sensors.

B. Skills

Skills are the foundation of task-level programming,
and provide the building blocks for the robot to com-
plete the task. Which skills are available to a robot de-
pends on its hardware and its sensors. In Sec. IV-A we
discuss a method for defining skills that are somewhat
independent of the hardware they run on, without loss of
generality.

How to automatically select the right set of skills to
accomplish a task, however, is an open question.[16] In
the present paper we suggest finding the skills by ana-
lyzing real-world implementations and Standard Oper-
ating Procedures (SOP) from an industrial partner. This

way, the identification of the set of skills is consistent
with human intuition.

One core property and main justification for using
skills is their object-centeredness. Classic robot pro-
grams are usually based on 3D coordinates, e.g. a pick
up function requires the object to be at an a-priori de-
fined 3D location. Skills, on the other hand, are not ap-
plied on 3D locations but on objects, i.e. pick up
<object>. In order to instantiate e.g. the pick up
skill on object, the robot will use a sensing device
such as a video camera or a range scanner to first detect
and then localize the object. Once the 3D location is
available, the robot is in principle able to execute the
classic function for picking up the object.

A second core property of a skill is that each one
needs pre- and postconditions to ensure and verify a
correct functioning: Before the robot can execute a skill,
all preconditions need to be fulfilled, e.g. reachability of
the object is a precondition of the pick up <ob-
ject> skill. If the object is not reachable, the skill
cannot be executed. A check of the postconditions will
verify if the expected outcome of the skill was satisfac-
torily met, i.e. that the executed skill was successful.
Thus, the pre- and postconditions are effectively a query
on the world state, that evaluates to true or false.

Skill
r-r-—r-—m———F———"——"—7—7——— il
| |
| < |

Parameterd) | & |
arameters S . = W
| g Execution %
I & = State
| o <
1| 8 A
State | 3 |
| & Prediction |
| |
L e |

Fig. 1. Skill model

Robot skills have two very distinct features; execu-
tion and inspection, each requiring a different form of
object interaction. Thus, a robot skill is expected to
modify the state of the real world and concurrently up-
date the systems state variables. A model of a robot skill
is shown in Fig. 1. Queries on the state variables and
input parameters (which are provided at task-level pro-
gramming time) serves as a means of testing if the pre-
conditions of the skill execution are met, either by prior
knowledge or ad hoc inspection. If the preconditions are
met, the skill is executed, based on the parameters and
the state variables. Parameters are thus stored in the task
description and are for instance objects or locations, e.g.
<red box> for the locate or pick up skill or
<warehouse> for the move to skill.

The postconditions are two-part in relation to the
skill; prediction and evaluation. The prediction specifies
formally what the expected effect of executing the skill
is, and can thus be used to select an appropriate skill for
achieving a desired goal state. The evaluation checks
that the state variables after execution is within an ex-
pected range and updates the state variables to reflect
the actual state after the skill execution.

Since skills are goal-oriented, the prediction of a skill
must devise a change in the state variables. This change

The 43" Intl. Symp. on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012

can either occur by letting the robot interact with objects
or by letting the robot inspect the scene to gain further
information on the current state.

According to the vision, we want to set up industrial
robot tasks on the task level. To do this we need to iden-
tify what skills the robot needs in the possible applica-
tion domains of flexible mobile manipulators. By using
the definition of skills presented in this section, we now
look for these patterns in real-world industrial scenarios.

II1. SKILL-BASED ANALYSIS OF INDUSTRIAL
APPLICATIONS

Two approaches are pursued in order to identify
skills for industrial applications. Firstly, the skills are
found through analysis of industrial tasks, industrial im-
plementations and laboratory experiments - Fig. 2 top -
and secondly, skills are identified through analysis of
Standard Operating Procedures (SOP), which are de-
scriptions of how tasks are manually performed by the
operators, hence human-action to robot skill mapping -
Fig. 2 bottom.

Fig. 2. Background for analysis - industrial implementation,
laboratory testing and analysis of Standard Operating Proce-
dures (SOP)

One important aspect of the analysis is that it is im-
plicitly based on the natural language and communica-
tion between the people who work in the production, so
the identified skills are identified based on what one
finds intuitive for the given task held against the defini-
tion of skill.

A. Analysis

In Begh et al. [3] more than 566 industrial tasks are
analyzed to identify the application categories poten-
tially suitable for mobile manipulators, shown in Fig. 3.
In the present paper, three classes of logistic tasks
(transportation, multiple part feeding and single part
feeding) and two classes of assistive tasks (machine
tending and assembly) are investigated to identify which
skills are needed in these particular categories.

In logistics tasks, the robot needs to cover larger dis-
tances so the mobility of the mobile manipulator is es-
sential. For assistive tasks there can also be a need for
mobility, but typically in a more limited production ar-

ea. Assistive tasks are generally more value-adding
tasks compared to logistic tasks.

Logistic Assistive Service

Maintenance, Repair

Transportation and Overhaul

Machine Tending

Multiple Part Feeding Assembly Cleaning

Single Part Feeding Inspection

Process Execution

Fig. 3. General application categories for AIMMs. Green -
focus for first approach: analysis of industrial implementation
and laboratory test. Blue - focus for second approach: analy-
sis of Standard Operating Procedures

1) Analysis of Logistic Tasks: In Fig. 4 the three types
of logistic tasks are illustrated. The basic skill sequences
for transportation, multiple part feeding and single part
feeding are presented in the following.

Charging /

Multi Part station

Feeding

Transportation

Single Part

Fig. 4. Logistic tasks: Transportation, multiple part feeding,
and single part feeding[4]

Transportation is the process of moving parts and
work pieces between workstations and storages. Trans-
portation tasks involve physical separation of locations
larger than the workspace of the robot manipulator. In
basic transportation tasks, there is not necessarily any
direct contact or communication with production ma-
chines nor is there any advanced manipulation involved,
i.e. only a few degrees of freedom is required (e.g. a
forklift, as opposed to a robotic arm).

Multiple part feeding is the process of loading sever-
al components at a time into part feeders or machines.
The two basic multiple part feeding setups utilize either
kanban boxes that are unloaded into feeders, or shovel-
ing of parts, where parts can be in bulk on pallets placed
at a workstation, and the mobile manipulator will shovel
the parts into a feeder right next to the pallet. In Fig. 5
the general skill sequence for a multiple part feeding
task is illustrated. Much like in transportation tasks, this
involves moving to a storage to pick up kanban boxes or
small load carriers (SLCs) typically placed on a shelf
system, then moving to a designated workstation, and
unloading the content of the box into a part feeding
machine. The difference is that here the task is initiated
by a signal from a machine, and parts are emptied into
the machine.

The 43" Intl. Symp. on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012

Single part feeding is the process of loading compo-
nents, one at a time, into feeders and machines. The
difference compared to multiple part feeding, is that the
robot is in direct contact/interaction with objects. Thus,
the mobile manipulator will pick up one part at a time,
e.g. from a pallet, and place the part into a machine or
onto a conveyor belt. The robot might have to move
between the picking and placing locations.

Multiple Part Feeding

Locate q
—> <SLC As —» Pick up <SLC A> —»

Move to
<storage>

Place <SLC A,
platform>

]

Move to
<part feeder —»
1>

v

Move to
<storage>

Pick up
<SLC A>

Unload <SLC A,
part feeder 1>

Place <SLC A,
platform>

|

Pick up <SLC
A, platform>

Place <SLC A,
storage shelf>

Fig. 5. Skill sequence for multiple part feeding tasks

It is easy to see that the principal sequences of skills
are almost similar for this domain, even though the or-
der and length of the sequence can vary. Although the
sequences for logistic tasks follow a specific pattern,
there can be significant gains in planning the tasks, as
the robot is typically able to carry several parts or con-
tainers at a time. This kind of planning is essentially
solving travelling salesman problems for which order to
visit what location.

2) Analysis of Assistive Tasks: For machine tending
and assembly tasks, SOPs (shown in Fig. 6) are ana-
lyzed to identify skills. Each step of the instructions is
mapped to its respective robot skills. The specific de-
tails of the SOPs will not be shown due to confidential-
ity reasons from the industrial partner.

Arbejdsinstruktion

Usstyr:
Avbeidsplads &/ Functional location B16-2446-03-0308 / Hydr.- Arbidsplads 4/ Functional ocation B116-2446-03-0308. Hydro
eumatisk prese or SQ Rotor / Produidion og mifing ‘poeamatisk presse for 5Q Rtor / Produlion og mling -

Fig. 6. Example Standard Operating Procedure for operators

Machine Tending is the process of loading/unloading
materials into machinery for processing but also in-
cludes aspects like opening/closing doors, pressing but-
tons and turning knobs. Assembly is the process of fit-
ting components together, e.g. into larger or completed
parts. Pre-assembly tasks are typically carried out before
assemblies as semi-finished goods.

An example of instructions in a SOP for assembly
could be; Pick up the rotor from the fixture or Place the

valve into the rotor shaft. This will respectively result in
a pick up skill and a place skill. In a machine tending
task, an example could be: Open machine door or Push
Start-button, which would result in an open skill and
push skill.

B. Results - Skill Portfolio

An overview of the identified skills is presented in
Table I, where a formal description is provided for each
skill. It can be seen that this short set of skills is suffi-
cient for solving a large set of industrial tasks, especial-
ly for logistic applications, where the check, align, open,
close, press, release and turn skills are not necessary. A
condition for this to be possible, is however the ability
to make the skills generic such that a large set of objects
can be handled with the same skill.

TABLEI

SKILL PORTFOLIO

Skill LT AT° Description

Move to v To go from one location (station) to anoth-
er in the factory

Locate v To determine or specify the position of an
object by searching or examining

Pick up v v To take hold of and lift up

Place v v To arrange something in a certain spot or
position

Unload v Unload a container: to remove, discharge
or empty the contents from a container

Shovel v To take up and move objects with a shovel

Check (4 Quality control: the act or process of test-
ing, verifying or examining

Align To make an object come into precise ad-
justment or correct relative position to an-
other object

Open v To move (as a door) from a closed position
and make available for entry, passage or
accessible

Close v Tomove (as a door) from an open position

Press v To press against with force in order to
drive or impel

Release v To let go or set free from restraint e.g. re-
lease a button

Turn v To turn a knob or handle

* Logistic Tasks
® Assistive Tasks

IV. IMPLEMENTATION RECOMMENDATIONS

This section presents the considerations relevant for
implementing task-level programming on industrial ro-
bots. A key consideration for these recommendations is
how to integrate the different types of actors involved in
creating robotic systems in an implementation architec-
ture for task level robot programming. In this work, that
is approached by separating the implementation into
layers.

A. Implementation layers

Fig. 7 shows how a three-layered architecture for
flexible robots can look like. The architecture is similar
to what is the presented by Gat [11] and Bjorkelund et
al. [5]. Imposing constraints on the implementation, as
using layered architectures and setting up a skill model

The 43" Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

with a defined structure, is a step in a different direction
than component based architectures like ROS and
OROCOS [8], which focus on providing great freedom
to the individual component designers. That fits well
with the demands of researchers, creating their own
components, but for other actors to be able to reuse the
components the lack of structure and well defined pre-
and postconditions makes it difficult to determine when
a certain component is applicable.[7] Component-based
middleware may however be a feasible way to imple-
ment a layered architecture due to its flexibility, scala-
bility and focus on reuse of software. Dividing the con-
trol into components and layers may also be a way to
enable integration of the architecture on different robots
if the same set of capabilities can be provided.

Shop floor operator

S Tasks composed of
00 0O skills on shop floor by
Taske worker or task planning

oriented
A

Engineer or robotic

. Application-
systems integrator

oriented skills

Composed of
generic skills and
motion primitives

Robot skill specialist

Device control specialist Motion primitives
v i representing the
Robot basic capabilities of

oriented the devices

Generic skills
composed of
motion primitives

View / Communication Level

Fig. 7. The implementation layers of the skill terminology.
Green: motion primitive layer. Blue: skill layer. Red: task
layer

1) Motion primitives: The three-layered architectures
have a motion primitive layer at the bottom level re-
sponsible for implementing the real-time control loops
of the robot. This layer is similar to the level of pro-
gramming that typically is carried out on industrial ro-
bots, but with the addition that movements can be inter-
rupted and altered in real-time, based on feedback from
sensors. For assistive task domains, hybrid
force/position control modes or the Impedance Control-
ler [1] are also considered as part of this layer. The ca-
pabilities are typically developed by device specialists
at the robot manufacturer, but if the real-time layer is
exposed to other developers, additional sensor-based
robot control modes can be added, like for instance vis-
ual servoing.[9]

2) Skills: The layer deserving the most attention is
the skill layer, as it is the layer that is exposed to the end
user when the operator is programming new tasks on the
robot. It is also important in the sense that it is responsi-
ble for providing reuse of robotic sub-programs at a
higher level than the intrinsic generic motion primi-
tive-layer. Currently much robot programming is carried
out by engineers or robotic system integrators, and even
though many applications for stationary industrial ro-
bots have similarities, tasks are usually programmed
from scratch. For flexible robots, it is necessary to
minimize that effort, and adding functionality in the

building blocks is a way to do that. However, subpro-
grams, as skills can be considered, can only be reused if
they are both generic and robust for the possible set of
applications.

Generic skills provide basic functionality on objects,
and they follow the basic skill model presented in Sec.
II. Being the low-level implementation of skills, these
are sequences of motion primitives, where the exact
choice of motion primitives is determined online. Ge-
neric skills will be implemented by a robot skill special-
ist, who utilizes the motion primitives for creating more
advanced, yet versatile, program building blocks, and
establishes the prediction and the pre- and postcondition
checks. Strict preconditions ensure that skills with a
sufficient robustness can be developed. An evaluation of
the skill execution is also essential to ensure the robust-
ness of a program, and statistics of skill executions can
be stored to diagnose and improve robot programs and
the skill itself. Skills can also be nested within other
skills to provide useful higher-level functionality.

Application-oriented skills are skills developed by
the customer in-house in order to solve application spe-
cific needs for that company only. This allows the cus-
tomer not to be restricted to the generic portfolio of
skills, and instead increase the number of tasks solvable
for the flexible robot in specific industrial applications,
when a suitable generic skill is not available. Applica-
tion-oriented skills can be expensive to develop in terms
of man-hours as they are programmed from motion
primitives and generic skills by engineers or robotic
system integrators with little possibility of reuse.

3) Tasks: The task layer contains an abstract descrip-
tion of what the robot is doing in terms of the parame-
ters and state variables. This layer must interface with
end users, programming and initiating tasks, and sys-
tems controlling the production line, e.g. manufacturing
execution systems (MES).

B. Challenges in implementation

Although industrial environments are much more
organized than for instance households, it is inevitable
that disturbances will occur, e.g. positions of parts or
pallets are not completely known. Therefore the robot
must be able to update its state variable continuously.
Exactly when the robot must update specific state varia-
bles is a matter of future research, but at least checking
the variables involved in the next skill to be executed
may be useful.

A benefit of the skill model shown in Fig. 1, incor-
porating predictions and checks of pre- and postcondi-
tions, is the possibility of implementing error handling
in a planning layer. E.g. the robot can be able to back-
track in the case of skill execution errors (the evaluation
is unsatisfactory) or when a skill cannot be executed
(the pre-conditions are not met). The robot can then find
a sequence of skills that will lead to the correct states.
Small-scale testing has revealed that it is feasible to in-
tegrate a STRIPS planner, at least for logistic tasks.

The 43" Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

V. PRELIMINARY EXPERIMENTS

Several preliminary experiments have been conduct-
ed following the approach outlined in this paper, testing
some of the aspects of skills shown in Fig. 1. The ap-
proach looks very promising, and experiments incorpo-
rating all the aspects of skills is among future work.

In one experiment, a multiple part feeding scenario is
programmed by visual demonstration by a user. The us-
er points at a box the robot shall pick up, and points at a
feeder in which the contents shall be emptied. In this
experiment we have implemented

e a very simple set of state variables (gripper and box
both have the states full/empty),

e user-supplied parameters (the user specifies which
box/feeder should be the focus of the skill), and

e object-centered execution (the system knows, based
on the state variables, which objects should be lo-
cated, and detects the coordinates of the box/feeder
at runtime).

The evaluation of the expected outcome and verifica-
tion of preconditions is not implemented in this particu-
lar experiment, since it is merely a proof-of-concept.

V1. CONCLUSION AND FUTURE WORK

In this paper a unifying terminology for flexible mo-
bile manipulators in industrial environments is present-
ed, inspired from both research in robot systems archi-
tectures and cognitive robots. We see it as a vital part of
developing architectures for robot programming that the
end users are kept in focus. Our contribution provides a
clearer understanding of how different actors - from ro-
bot control specialists through integrators to shop floor
workers - contribute to programming industrial robots
on a task-level.

Logistic and assistive scenarios have been analyzed
to reveal that, for many tasks, only a limited set of skills
is necessary. The logistic application domain in particu-
lar seems promising for skill-based robots, as only a few
skills are needed, and many tasks can be solved without
complex interactions with machines and other objects.
The introduction of skills provides a systematic ap-
proach to reuse robotic programs, and being able to
specify skills formally in terms of pre- and postcondi-
tions can be a way to create a clear view of what the
purpose of a skill is.

In the ongoing research, skills will be developed and
tested in different application scenarios, with primary
focus on assembly tasks and using skills for hu-
man-robot interaction for logistic tasks. A central issue
here is how to choose the state variables that are to be
tested in the precondition checks and the evaluation step
in a consistent way. When the skills are in place, it must
also be easy for the operators to use them for task-level
programming. Therefore another focus of future re-
search is human-robot interaction tailored to the domain
of task-level programming. This could be, but is not
limited to, the ability to specify sequences of skills in a
GUI or through gesture recognition.

ACKNOWLEDGMENT(S)

This work has partly been supported by the European
Commission under grant agreement number
FP7-260026-TAPAS.

REFERENCES

[1] Alin Albu-Schaffer, Christian Ott, and Gerd Hirzinger. “A Uni-
fied Passivity-based Control Framework for Position,Torque and
Impedance Control of Flexible Joint Robots”.The International
Journal of Robotics Research, 26(1), pp 23-39, 2007.

[2] Colin C. Archibald and Emil Petriu. “Skills-Oriented robot pro-
gramming”. Intelligent Autonomous Systems III, volume 3, pp
104-113, Pittsburgh, 1993.

[3] Simon Begh, Mads Hvilshej, Morten Kristiansen, and Ole Mad-
sen. “Identifying and evaluating suitable tasks for autonomous
industrial mobile manipulators (AIMM)”. The International
Journal of Advanced Manufacturing Technology, November
2011.

[4] Simon Begh, Mads Hvilshej, Morten Kristiansen, and Ole Mad-
sen. “Autonomous industrial mobile manipulation (AIMM):
From research to industry”. Proceedings of the 42nd Interna-
tional Symposium on Robotics,2011.

[5] A. Bjorkelund, L. Edstrom, M. Haage, J. Malec, K. Nilsson, P.
Nugues, S. G. Robertz, D. Storkle, A. Blomdell, R. Johansson,
M. Linderoth, A. Nilsson, A. Robertsson, A. Stolt, and H.
Bruyninckx. “On the integration of skilled robot motions for
productivity in manufacturing”. Assembly and Manufacturing
(ISAM), 2011 IEEE International Symposium on, pp 1-9, 2011.

[6] Aaron Bobick and Volker Kriiger. “On Human Action”. Visual
Analysis of Humans, pp 279-288. Springer London, 2011.

[7] Davide Brugali and Patrizia Scandurra. “Component-based ro-
botic engineering (part i)[tutorial]”. Robotics & Automation
Magazine, IEEE, 16(4):84-96, 2009.

[8] Herman Bruyninckx. “Open robot control software: the
OROCOS project”. Robotics and Automation, 2001. ICRA01.
IEEE International Conference on, volume 3, pp 2523-2528.
IEEE, 2001.

[9] Lars-Peter Ellekilde and Henrik I. Christensen. “Control of mo-
bile manipulator using the dynamical systems approach”. Ro-
botics and Automation, 2009. ICRA’09. IEEE International
Conference on, pp 1370-1376, 2009.

[10] Richard E. Fikes and Nils J. Nilsson. STRIPS: “A new approach
to the application of theorem proving to problem solving”. Arti-
ficial Intelligence, 2(3-4): pp189-208, 1971.

[11] Erann Gat. “On three-layer architectures”. Artificial intelligence
and mobile robots, pp 195-210, 1998.

[12] Christopher Geib, Kira Mourdo, Ron Petrick, Nico Pugeault,
Mark Steedman, Norbert Krueger, et al. “Object action com-
plexes as an interface for planning and robot control”. IEEE RAS
International Conference on Humanoid Robots, 2006.

[13] Mads Hyvilshej, Simon Begh, Oluf Skov Nielsen, and Ole Mad-
sen. “Autonomous Industrial Mobile Manipulation (AIMM) -
Past, present and future”. Industrial Robot: An International
Journal, 39, pp. 120-135, 2011.

[14] Mads Hyvilshej, Simon Begh, Oluf Skov Nielsen, and Ole Mad-
sen. "Multiple Part Feeding - Real-world Application for Mobile
Manipulators”. Assembly Automation, 32, pp. 62-71,2012.

[15] Volker Kriiger, Danica Kragic, Ales Ude, and Christopher Geib.
“The meaning of action: A review on action recognition and
mapping”. Int. Journal on Advanced Robotics, Special issue on
Imitative Robotics, 21(13):pp. 1473-1501, 2007.

[16] Volker Kruger, Dennis Herzog, Sanmohan Baby, Ales Ude, and
Danica Kragic.” Learning Actions from Observations”. [EEE
Robotics & Automation Magazine, 17(2), pp. 30-43, June 2010.

[17] Lawrence Rabiner and Biing-Hwang Juang. “Fundamentals of
Speech Recognition”. Prentice Hall, Englewood Cliffs, 1993.

