1,812 research outputs found

    Fuzzy logic based autonomous parallel parking of a car-like mobile robot

    Get PDF
    This study aims at developing an autonomous parallel parking controller for a Car-Like-Mobile-Robot. In this research we have presented a Neuro-Fuzzy control strategy to back drive the car to the parking lot based on the sonar data. We have focused on the case where the parking space dimensions are not known which has not been investigated by the previous approaches. Our controller is able to decide about the motion direction at each time interval by starting form the initial position and by processing the information obtained by the sensors. On the other hand, in the traditional approaches the path is planned in offline by knowing the parking space dimensions and then will be tracked based on path tracking algorithms. The simulation results demonstrate the effectiveness of the developed algorithm and show that the proposed scheme can be considered as a step towards autonomous intelligent vehicles which can successfully adapt their parking behavior in unknown parking spaces

    A vision-guided parallel parking system for a mobile robot using approximate policy iteration

    Get PDF
    Reinforcement Learning (RL) methods enable autonomous robots to learn skills from scratch by interacting with the environment. However, reinforcement learning can be very time consuming. This paper focuses on accelerating the reinforcement learning process on a mobile robot in an unknown environment. The presented algorithm is based on approximate policy iteration with a continuous state space and a fixed number of actions. The action-value function is represented by a weighted combination of basis functions. Furthermore, a complexity analysis is provided to show that the implemented approach is guaranteed to converge on an optimal policy with less computational time. A parallel parking task is selected for testing purposes. In the experiments, the efficiency of the proposed approach is demonstrated and analyzed through a set of simulated and real robot experiments, with comparison drawn from two well known algorithms (Dyna-Q and Q-learning)

    Driving a car with custom-designed fuzzy inferencing VLSI chips and boards

    Get PDF
    Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips were developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 microseconds, and therefore, making control of 'reflex-type' of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-priori unknown environments are first discussed. Then how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data is described. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulation results as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and some human-like reasoning schemes which may include as little as six elemental behaviors embodied in fourteen qualitative rules

    Development of an automatics parallel parking system for nonholonomic mobile robot

    Get PDF
    This paper depicts the development of backward automatic parallel parking system for nonholonomic mobile robot. The configuration of the system consists of ultrasonic sensor, rotary encoder, controller, and actuators. The path planning algorithm is developed based on the data acquired from the sensor. The proposed idea of the path planning is based on the geometrical equations in which the needed information is referring to the distance between the mobile robot and the adjacent object. The ultrasonic sensor and rotary encoder respectively used to detect parking area and measure the detected space. A PIC32MX360F512L microcontroller is used in order to generate the algorithm and control the movement of the mobile robot. System implementation is briefly described to depict the system as a whole. Experimental results are presented to demonstrate and validate effectiveness of the technique used

    Neuro-fuzzy techniques to optimize an FPGA embedded controller for robot navigation

    Get PDF
    This paper describes how low-cost embedded controllers for robot navigation can be obtained by using a small number of if-then rules (exploiting the connection in cascade of rule bases) that apply Takagi-Sugeno fuzzy inference method and employ fuzzy sets represented by normalized triangular functions. The rules comprise heuristic and fuzzy knowledge together with numerical data obtained from a geometric analysis of the control problem that considers the kinematic and dynamic constraints of the robot. Numerical data allow tuning the fuzzy symbols used in the rules to optimize the controller performance. From the implementation point of view, very few computational and memory resources are required: standard logical, addition, and multiplication operations and a few data that can be represented by integer values. This is illustrated with the design of a controller for the safe navigation of an autonomous car-like robot among possible obstacles toward a goal configuration. Implementation results of an FPGA embedded system based on a general-purpose soft processor confirm that percentage reduction in clock cycles is drastic thanks to applying the proposed neuro-fuzzy techniques. Simulation and experimental results obtained with the robot confirm the efficiency of the controller designed. Design methodology has been supported by the CAD tools of the environment Xfuzzy 3 and by the Embedded System Tools from Xilinx. © 2014 Elsevier B.V.Peer Reviewe

    2D laser-based probabilistic motion tracking in urban-like environments

    Get PDF
    All over the world traffic injuries and fatality rates are increasing every year. The combination of negligent and imprudent drivers, adverse road and weather conditions produces tragic results with dramatic loss of life. In this scenario, the use of mobile robotics technology onboard vehicles could reduce casualties. Obstacle motion tracking is an essential ability for car-like mobile robots. However, this task is not trivial in urban environments where a great quantity and variety of obstacles may induce the vehicle to take erroneous decisions. Unfortunately, obstacles close to its sensors frequently cause blind zones behind them where other obstacles could be hidden. In this situation, the robot may lose vital information about these obstructed obstacles that can provoke collisions. In order to overcome this problem, an obstacle motion tracking module based only on 2D laser scan data was developed. Its main parts consist of obstacle detection, obstacle classification, and obstacle tracking algorithms. A motion detection module using scan matching was developed aiming to improve the data quality for navigation purposes; a probabilistic grid representation of the environment was also implemented. The research was initially conducted using a MatLab simulator that reproduces a simple 2D urban-like environment. Then the algorithms were validated using data samplings in real urban environments. On average, the results proved the usefulness of considering obstacle paths and velocities while navigating at reasonable computational costs. This, undoubtedly, will allow future controllers to obtain a better performance in highly dynamic environments.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    INTELLIGENT VEHICLE PARKING USING FUZZY-NEURAL NETWORKS

    Get PDF
    This paper analyzes the performance and practical implementation of fuzzy-neural networks for the autonomous motion of mobile robots. The designed fuzzy-neural controller is a refined version of a conventional fuzzy controller, and was trained to optimize a given cost function minimizing positioning error. It was found that the mobile robot with fuzzyneural controller presents good positioning and tracking performance for different types of desired trajectories. It was verified by computer simulation as well as experimentally using a laboratory-scale car-like robot model

    FPGA implementation of embedded fuzzy controllers for robotic applications

    Get PDF
    Fuzzy-logic-based inference techniques provide efficient solutions for control problems in classical and emerging applications. However, the lack of specific design tools and systematic approaches for hardware implementation of complex fuzzy controllers limits the applicability of these techniques in modern microelectronics products. This paper discusses a design strategy that eases the implementation of embedded fuzzy controllers as systems on programmable chips. The development of the controllers is carried out by means of a reconfigurable platform based on field-programmable gate arrays. This platform combines specific hardware to implement fuzzy inference modules with a general-purpose processor, thus allowing the realization of hybrid hardware/soffivare solutions. As happens to the components of the processing system, the specific fuzzy elements are conceived as configurable intellectual property modules in order to accelerate the controller design cycle. The design methodology and tool chain presented in this paper have been applied to the realization of a control system for solving the navigation tasks of an autonomous vehicle
    corecore