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Abstract— Reinforcement Learning (RL) methods enable au-
tonomous robots to learn skills from scratch by interacting
with the environment. However, reinforcement learning can
be very time consuming. This paper focuses on accelerating
the reinforcement learning process on a mobile robot in an
unknown environment. The presented algorithm is based on
approximate policy iteration with a continuous state space
and a fixed number of actions. The action-value function is
represented by a weighted combination of basis functions.
Furthermore, a complexity analysis is provided to show that
the implemented approach is guaranteed to converge on an
optimal policy with less computational time.

A parallel parking task is selected for testing purposes. In
the experiments, the efficiency of the proposed approach is
demonstrated and analyzed through a set of simulated and
real robot experiments, with comparison drawn from two well
known algorithms (Dyna-Q and Q-learning).

I. INTRODUCTION

In order to work in an unknown environment, robots
require the ability to acquire novel behaviors, motor skills
and control policies, as well as to improve existing ones. One
of the most common and general frameworks for this type
of learning and adaptation is reinforcement learning (RL).
However, many RL methods are time consuming, especially
for a real robot to learn complex tasks with large state spaces
from scratch [5], [1].

Nevertheless, many authors, such as [4], [18], [17], [20],
[23], [16], [25], [6], tried to improve the performance of
reinforcement learning to accelerate the learning process and
make it applicable to continuous state spaces by combin-
ing RL with different methods, such as neural networks,
planning, etc. However, the high computational complex-
ity, tuning of the initial parameters or lack of sufficient
demonstration on a real world application prevented these
techniques from achieving their potential to solve many real
world problems. To ameliorate these problems, we apply
and extend a reinforcement learning algorithm called Least-
Squares Policy Iteration (LSPI) [14]. Least-Squares Policy
Iteration is designed to solve control problems [14], [15], and
uses value function approximation to cope with large state
spaces and batch processing for efficient use of the training
data. In addition, LSPI converges faster with fewer samples
and no initial tuning of parameters is required, as explained
in detail in Section III. In this paper, we extend LSPI so that
it will work on a continuous state space by directly working
on the state variables.

Development of an automatic parallel parking controller
for autonomous vehicles is an important task for both indus-
trial and military applications, where the objective is to store
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autonomous vehicles efficiently when not in operation [26].
Many researchers, such as [19], [7], [2], [8], [26], used
parallel parking as a case study in their experiments. We
demonstrate the performance of the proposed approach in
both simulated and real robot experiments on the parallel
parking task. In our experiments, we used two different types
of basis functions - polynomial basis functions (PBF) and
radial basis functions (RBF) [13] - to approximate the repre-
sentation of the Q-value function. We continue our study
by conducting a complexity analysis of the implemented
approach to show that the implemented approach converges
to an optimal policy with less computational time. The results
of the simulation and real robot experiments demonstrate that
the learning process has been accelerated.

The main contribution of this paper is to introduce a vision
guided parallel parking system that accelerates the learning
of a car parking maneuver from scratch using the LSPI
algorithm. The implemented approach works directly on the
state variables without discretizing the state variables. The
rest of the paper is organized as follows. After discussing
related work in Section II, we explain the methodology
of the implemented approach for the learning process in
Section III. Then, we give a complexity analysis of the
approach in Section IV. In Section V, we describe the
problem specification, state space representation and the use
of an omnidirectional camera for the state space variable
calculation. Section VI presents the experimental results,
followed by our conclusions in Section VII.

II. RELATED WORK

To build an automatic parallel parking vehicle, an accurate
model of the environment and the robot body and dynamics
is required in advance. However, obtaining such a model is
not trivial and any change in the environment may cause
the approach to fail. An alternative approach to the classical
planning approach is to make the encoding of a task simpler
by enabling the robot to learn and adapt its behaviors
using fuzzy logic, neural networks or reinforcement learning.
For example, Gómez-Bravo et al. [7] introduced a fuzzy
behavior-based control for parallel and diagonal parking in
wheeled vehicles. Zhao et al. [26] proposed an algorithm for
parking in tight spaces using a genetic fuzzy system. Gu and
Hu [8] presented a path-tracking scheme for a car-like mobile
robot based on neural predictive control, where a wavelet-
based neural network is employed to model the non-linear
kinematics of the robot. Martinéz-Marı́n [19] introduced a
reinforcement learning approach to obtain optimal motion
of non-holonomic robots.

Many authors tried to improve the performance of rein-
forcement learning to make it applicable to continuous state
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spaces by combining it with different methods (such as a
neural network, etc). Millán et al. [20] presented a modifi-
cation of Q-learning that works in continuous domains. The
modification is based on an incremental topology preserving
map (ITPM) to partition the input space, and incorporation
of a bias to initialize the learning process. The continuous
state-action Q-learning approach has been evaluated on a
real robot that must learn to follow walls. Mahadevan [17]
introduced an enhancement of the policy iteration approach
called Representation Policy Iteration (RPI). RPI uses spec-
tral graph theory [3] to build basis representations for smooth
value-functions on graphs induced by MDP. The approach
represents the action-value functions using a function ap-
proximator based on a number of basis functions. Johns
et al. [10] introduced an extension of Mahadevan’s [17]
work by providing a compact spectral bases function rep-
resentation using Kronecker Factorization. Mahadevan et
al. [18] presented a framework for simultaneously learning
in continuous MDPs, where a least-squares policy iteration
method is used to learn the control policy. The proposed
approach was demonstrated using the standard benchmark
tasks of an inverted pendulum and mountain car.

Our approach differs from the above approaches in that
we learn the control policy from scratch on the real robot
using only vision for state estimation, and that the time and
number of trials required to learn the parallel parking task
is significantly reduced using approximate policy iteration.
In addition, it required less computation time compared to
policy iteration and value iteration approaches.

III. METHODOLOGY

A. Least-Squares Policy Iteration

In this work, we applied least-squares policy iteration
(LSPI) [14], [15] as the learning algorithm for the following
several factors:

1) LSPI converges faster with fewer samples than tradi-
tional approaches (such as gradient-descent, Q-learning
and Dyna-Q), since the samples are used more effi-
ciently. This property comes from the fact that LSPI
evaluates the policy with a single pass over the set
of samples, and all the samples can be used in each
iteration to evaluate the policy.

2) LSPI is particularly suited to mobile robot applications
because it does not require careful tuning of initial
parameters, e.g., learning rate. As it has no learning
rate parameters to tune, and does not take gradient
steps, there is no risk of overshooting, oscillation or di-
vergence, which are difficulties many other algorithms
have to face. This property comes from the fact that
the policy is evaluated over a history of samples. Thus,
LSPI is insensitive to initial parameter settings.

3) LSPI learns the weights of the linear functions, which
can update the Q-values based on the most updated
information regarding the features, while Q-learning
makes a decision directly based on Q-values.

LSPI approximates Q-values, Qπ , for a given policy, π, with
a parametric function approximation instead of evaluating

the optimal state-action values function directly to find the
optimal policy. More precisely, the action-value function is
approximated as a linear weighted combination of k basis
functions (features):

Q(s, a) ≈ Q̂π(s, a, w) =
k∑
i=1

φi(s, a)wi = Φ(s, a)TW,

(1)
where φi is the ith basis function and wi is its weight in the
linear equation, W is the weights vector, k is the number
of basis functions (features), s is the current state and a is
the current action. The k basis functions (features) represent
information extracted from the state-action pairs. They were
designed manually in our experiments.

With the help of Eq. 1, the TD update equation given
in [24] can be re-written as ΦW ≈ R + γPΠπΦW , where
Φ is a (|S||A| × k) matrix, representing the basis functions
for all state-action pairs, where |S| and |A| are the total
number of states and actions respectively. This equation can
be reformulated [14] as: ΦT (Φ−γPΠπΦ)W = ΦTR, where
P is a stochastic matrix that contains the transition model
of the process, and R is a vector that contains the reward
values.

The weights W of the linear function Q̂π can be extracted
by solving the following linear system of equations [14]:

W = A−1b, (2)
A = ΦT (Φ− γPΠπΦ), (3)
b = ΦTR, (4)

but the values of P and R will be unknown or too large to
be used in practice. To overcome this problem, LSPI learns
A and b by sampling from the environment. A sample is
defined as {s, a, s′, r}, where s, a, s′, r are the current state,
action, next state, and immediate reward, respectively. Given
a set of samples, D = {{si, ai, s′i, ri}|i = 1, 2, . . . , L}, an
approximate form of Φ, PΠπΦ and R can be constructed as
follows:

Q̂ =

 φ(s1, a1)T

. . .
φ(sL, aL)T

 , (5)

P̂ΠπΦ =

 φ(s′1, π(s′1))T

. . .
φ(s′L, π(s′L))T

 , (6)

R̂ =

 r1
. . .
rL

 . (7)

With Φ, PΠπΦ and R, the optimal weights can be found
using Eq. 2. Thus, by combining the policy-search efficiency
of approximate policy iteration with the data efficiency of
approximate estimation of the Q-value function, we obtain
the Least-Square Policy Iteration (LSPI) algorithm [15].
The aim of LSPI is to learn a policy, π, that maximizes
the corresponding Q-function.

The policy evaluation step of the approximate policy
iteration depends on the Q-value function estimation de-



scribed in Eq. 1. So, whenever a new sample is collected,
the weights of the approximation are updated. After the
policy evaluation phase is finished processing, the policy
improvement starts by selecting a policy that maximizes the
approximate representation of the Q-value, as shown in Eq. 8.

π(s|w) = arg max
a

φ(s, a)Tw. (8)

Lagoudakis and Parr [14], [15], show that these estimates
converge on the optimal weights of the linear function
approximation as the number of samples increases. To study
the performance of the implemented approach, we provide a
complexity analysis in Section IV.

B. Modified Basis Function (Feature) Representation

In standard RL algorithms, the agent perceives the current
state of the agent in the environment, denoted by s, and then
executes an action a. This unique number, s, is extracted
from the state space variable by discretizing the state space
variables [22]. Alternatively, an approximate representation
using a number of basis functions can be used, where any
state, s, in the state space is approximated by a linear
combination of k basis functions. However, the current state,
s, is still abstracted from a number of input state variables.
In this section, we explained how to avoid this abstraction
by working directly with the state variables.

By contrast, in the proposed approach, the idea is to
make φi represent a continuous state variable instead of
representing a specific number abstracted from the state
variables. LSPI calculates the k basis functions (features)
for the current situation of the agent in the environment,
where the current situation is represented by a unique number
called the current state s, where s is abstracted from the
state variables. We extend this by making LSPI calculate the
k basis functions (features) directly from the state variables
(SV1, SV2, . . . , SVn) as shown in Fig. 1.

SV1
. . .

SVn

Extract the
current state s
by discretizing
the state
variables

s
Calculate
k-basis
functions

Store k-basis
functions in
φ

(a) Standard Feature Representation

SV1

. . .

SVn

Calculate
(k/n)-
basis
functions

. . .
Calculate
(k/n)-
basis
functions

Store
k-basis
functions
in φ

(b) Modified Feature Representation

Fig. 1. Feature Representation
Assume that we have |A| actions that can be performed by

the agent. Then φ will comprise |A| vectors of k elements
(independent of the current state, s, in the state space |S| but
dependent on the state variables to compute the features in
each element of φ). Thus, Eq. 1 is changed to

Q̂π(SV, a;W ) =
k∑
i=1

φi(SV, a)wi = Φ(SV, a)TW, (9)

where SV = {SV1, SV2, . . . , SVn}, SV1, SV2, . . . , SVn
represent n state variables. The new feature representation
provides a way to deal with a continuous state space by
working directly with the state space variables.

More specifically, each interaction between the agent and
the environment provides a sample {SV, a, r, ŚV } (SV is
initialized randomly at the first step), which describes the
reward, r, received upon executing action, a, in the state
variables, SV , and ending in state ŚV . At any time, the
estimates of the weights of the linear function Q̂π can be
extracted by solving the system of equations w = A−1b [15]
as shown in Eq. 2, where the collected samples are used to
update A and b as follows:

Ãt+1 = Ãt + φ(SVt, at)(φ(SVt, at)−
γφ(SV ′t , π(SV ′t )))T , (10)

b̃t+1 = b̃t + φ(SVt, at)rt, (11)

where (SVt, at, rt, SV ′t ) is the tth sample of experience from
a trajectory generated by the agent. Thus, LSPI does not
explicitly estimate the probability of state transition, P , and
reward function, R, because they will be either unknown
or too large to be used in practice. It rather estimates the
Q-function directly from interactions with the environment
through samples. The computation of A and b, derived from
the samples, and the resulting Wπ from solving the linear
system of equations, AWπ = b, is repeated for a number of
iterations or until the algorithm reaches the optimal policy.

Here, we explain how the basis functions (features) are
calculated in our experiments. For every action, one sub-
vector of φ is filled with hand coded values that represent
a specific action, while the rest of the sub-vectors will be
equal to zero. The first element of the hand-coded sub-vector
is equal to 1 and the remaining elements of the sub-vector
are calculated using PBF shown in Eq. 12 or RBF shown in
Eq. 13:

φi(SV, a) = φi−1(SV, a) ∗ (
n∑
j=1

SVj)/(
n∑
j=1

SVmaxj ), (12)

φi(SV, a) = exp−d
2/(2∗σ2), (13)

where i is from 1 to the size of the sub-vector, SVj and
SVmaxj represent the jth state variable and the maximum
value of that state variable respectively, a is the current
action, d represents the distance of the current state variable
value from the center of the state variable, and σ2 is the
variance parameter of the Gaussian curve, which is usually
equal to 1. We used PBF or RBF because we believe that it
is a simpler notion and provides a more intuitive explanation
of various function approximation schemes.

IV. COMPLEXITY ANALYSIS

A. Computational Complexity

A standardized measurement of the computational time
complexity of an algorithm is the number of elementary
computer operations it takes to solve a problem, in the
worst case. The number of computer operations depends on



the “size” of the problem. In the following paragraph, we
will give the time complexity of some basic reinforcement
learning approaches and the implemented approach.

The value iteration approach works by producing suc-
cessive approximations of the optimal value function. Each
iteration requires O({|S|×|A|}2) or faster if there is sparsity
in the transition function [11]. However, the number of iter-
ations required can grow exponentially as the discount factor
approaches 1 and the number of states increases. Although,
it costs O({|S|×|A|}2+|S|3) steps per iteration [11], policy
iteration converges in less iterations than value iteration.

Value iteration and policy iteration approaches depend on
the total number of states and actions, which make these
approaches inapplicable for large or continuous state-action
space. In our approach, the cost of each iteration of the
approximate policy iteration is shown in Eq. 14:

O(NB3 +NB2 + (NB2 ∗ hm) + (NB ∗ hm)), (14)

where NB is the number of basis function used and NB �
|S|×|A|, and hm represents the number of samples collected.
In our experiments, we investigated the number of samples,
hm, required to reach the optimal behavior. We tested for
hm = 50, 100 or unlimited and observed that hm = 100
or unlimited does not make a major difference compared to
hm = 50. Therefore, we used hm = 50 in our experiments
(meaning that at each step, we collect one sample and
49 samples from the previous learning). Thus, the time
complexity of approximate policy iteration is less than the
value iteration and policy iteration approaches as shown in
section VI-A, and is not affected by the number of states.

B. Convergence Analysis

The linear system of equation that is used to approximate
the Q-value function can be re-written as follows [15]:

A︷ ︸︸ ︷
ΦT (Φ− γPΠπΦ)

X︷︸︸︷
wπ =

b︷ ︸︸ ︷
ΦTR, (15)

ΦTΦ(I − γPΠπ)wπ = ΦTR, (16)
(I − γPΠπ)wπ = (ΦTΦ)−1ΦTR. (17)

In general, ΦTΦ is a non-singular matrix [9], [21]. Also, it
is well known that (I − γPΠπ) is non-singular if, and only
if, ‖γPΠπ‖ < 1, where I is the identity matrix [9], [21].
Thus, the system shown in Eq. 15 has a unique solution
if, and only if, ‖PΠπ‖ < 1

|γ| . To find the solution of
Eq. 15 we need to compute the matrix A and b and this
can be done by using Eqs. 10 and 11. Thus, for convergence
‖φ(SVt, at)(φ(SVt, at) − γφ(SV ′t , π(SV ′t )))T ‖ < 1, where
‖φ‖ ≤ 1 satisfies the condition. This proves that the system
in Eqs. 10 and 11 exists, and has a unique solution that
converges for all values of γ ∈ (0, 1) [12], [9]. Note that,
if the matrix A is singular, singular value decomposition is
used to find the solution of the system.

Also, Lagoudakis and Parr [15] show that these estimates
converge to the optimal weights of the linear function ap-
proximation as the number of samples increases.

V. PROBLEM SPECIFICATION

Parallel parking was selected as a testing problem for sev-
eral reasons. Developing a robust automatic parallel parking
controller for autonomous vehicles is an important task for
both industrial and military applications, where the objective
is to store autonomous vehicles efficiently when not in
operation [26]. Parallel parking is a complicated task and
difficult to learn, because the driver has to have a clear
view of the parking space, other cars, pavements, and any
obstacles. In addition, car parking is a non-linear dynamic
system and high dimensional problem (3D or more).

Parallel parking of a real mobile robot consists of finding
an optimal policy and the necessary input. The optimal policy
connects the initial configuration to the final configuration
and satisfies existing environment constraints. For developing
an autonomous mobile robot system for factory use, control
variables should be carefully selected for a smooth and safe
movement of the robot between any two configurations. The
next subsections describe the test task.

A. Description of the performed state space

The state space for parallel parking can be described as
shown in Fig. 2(a), where Ls and Hp are the length and
width of the parking slot respectively, and L and H are
the length and width of the robot respectively. Two orange
squares are used to represent two cars in the parking area
as shown in Fig. 2(a). To speed up the learning process, a
complex task can be learned more easily and efficiently if
it is broken down into a sequence of simpler sub-tasks. The
parallel parking state space is specified by three different
target positions indicated by “A”, “B” and “C” as shown in
Fig. 2(b), Fig. 2(c) and Fig. 2(d), respectively. The parallel
parking task is divided into three phases for the following
reasons:
• Parallel parking involves localizing a sufficient parking

bay, obtaining a convenient start location for the robot
relative to the bay, and performing the parallel parking
maneuver. In other words, learning to move forward
until getting a point near the front car is the same idea
as finding the optimal start location (hence the necessity
of the first phase).

• During parallel parking, the robot will start moving
backwards until it reaches the point near the back car
and then starts moving forward to align itself in a
parallel orientation, with respect to the front car. This
validates the necessity of the second and third phases.

The maneuvering process can be completed with the
following three phases. In the first phase, the mobile robot
navigates forward from any location in the state space to
reach the “A” position with orientation parallel to the parking
space. The “A” position can be represented by the parameters
of the mobile robot and parking space as (Ls +L,Hp +H)
in the local state space coordinates.

To reach both the desired position and orientation simul-
taneously, the state space is represented using two variables
α ∈ [−50o, 50o] and β ∈ [−50o, 50o], where α is the angle
between the robot heading and “A” position, β is the angle
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Fig. 2. State space representation of the parallel parking task.

between the parking state space width axes and perpendicular
line to d, where d is the distance between the mobile robot
and the goal for that phase, as shown in Fig. 2(b).

After reaching the “A” position, the second phase starts
by driving in reverse until the mobile robot gets to the “B”
position as shown in Fig. 2(c). In the second phase, the state
space is represented using three variables α ∈ [−50o, 50o],
β ∈ [−5o, 50o] and front distance (FD ∈ [0, 0.5]m), where α
is the angle between the robot back heading and “B” position,
β is the angle between the parking space width axes and the
perpendicular line to d, where d is the distance between the
mobile robot and “B” position, and front distance (FD) is the
distance of the robot from the front car. If FD is greater than
0.5m, the robot is in a safe area from hitting the front car. We
fixed FD to less than 0.5cm to ensure that the robot learns its
behavior near the front car but without touching/bumping it.
We used β < −5o (experimentally determined) to represent
the pavement of the parking slot to avoid pavement detection.
Any value of β < −5o means the robot has hit the pavement.

The third phase is to park the mobile robot in the park-
ing space with the required orientation. The state space
is represented by three state variables α ∈ [−50o, 50o],
β ∈ [−5o, 50o] and front distance (FD ∈ [0, 0.5]m) as
shown in Fig. 2(d), where α is the angle between the robot
heading and “C” position, β is the angle between the parking
space width axes and the perpendicular line to d, where d
is the distance between the mobile robot and “C” position,
and front distance (FD) is the distance of the robot from
the front car. The goal is represented with the state space
parameters (−7o ≤ α ≤ 7o, −7o ≤ β ≤ 7o, FD > 200mm).
The robot can perform two actions, either turn right or turn
left by 5o at each step. Also, the robot drives at a constant
speed (forward in the 1st and 3rd phase, and backward in
the 2nd phase).

To make the robot movement realistic, the robot is only
allowed to turn while it is moving. The range of α and β
was restricted to match the reality. It is not realistic to park
a vehicle with α > 45o or α < −45o. Also, β > 45o or

β < −45o means that the vehicle is too far from the car
behind. The range of values of α and β are selected as shown
in Table I.

TABLE I
STATE SPACE PARAMETERS

Parameter 1st Phase 2nd Phase 3rd Phase

α [−50o, 50o] [−50o, 50o] [−50o, 50o]
β [−50o, 50o] [−5o, 50o] [−5o, 50o]
FD [0,50]cm [0,50]cm

Reward

(1) 120 if it gets to the goal,
(2) -1500 if it finishes outside state space,
(3) equal to a value, this value is decreased
as α or β increases

Goal State
Ready-to reverse- α=[−7o, 7o]
-reverse into-slot β=[−7o, 7o]

FD ≥200mm
Control Two actions: turn right and turn left

B. State Space Variable Calculation Using Omnidirectional
Vision

In the real robot experiments, there are several options
for vision sensors (single camera, stereo vision and omni-
directional camera). In our experiments, we need to detect
two cars (orange squares to simplify the detection). Thus,
a single camera is not useful if it cannot detect two distant
objects. Stereo vision uses two cameras to detect two distant
objects, which requires more image preprocessing time. So,
we selected an omnidirectional camera for the square object
detection and state space variable detection. However, the
use of the omnidirectional camera raised another issue;
the distortion and noise inherent from the omnidirectional
images. The following paragraph explains how distortion was
minimized.

The image resolution captured from our omnidirectional
camera is 2048 × 2048 pixels and the data had a 360-
degree field of view in the horizontal plane. Thus, the orange
square will have an isosceles trapezoidal shape with curved
upper and lower sides. From the experiments, we notice that
the average length of the upper and lower curves was 115
and 97 pixels respectively. However, a curve with 115 or
97 pixels with respect to a circle with diameter=2048 and
circumference=6433.98 can be approximated by a straight
line. So, we assumed that the orange square will have an
isosceles trapezoid shape with four straight sides, which
helped us to neglect the distortion obtained from the captured
image and avoid the extra processing time required to convert
omnidirectional images to panoramic images.

The robot is equipped with a 360o omnidirectional camera
shown in Fig. 8. The robot attempts to detect two orange
squares (representing two cars to simplify the detection).
Experimentally, we found that if the robot turns a specific
amount it will cause the location of one orange square to
change, depending on the direction of the turn, while the
location of the other orange square will stay relatively fixed.
Thus, we found that triangle T3 is approximately a mirror



of the triangle T1 in Fig. 3 and Fig. 4. When the robot is
between the two orange squares, as in the third phase as
shown in Fig. 5, the location of the two orange squares is
changing as the robot turns. So, we created a virtual triangle
T3, which connects the intersection of the robot’s x-axes and
the y-axes of the car behind with the center of the front car,
to make T3 a mirror of T1. The visual processing for the
three phases of parallel parking introduced in Section V-A
is described as follows.

1) First Phase: After detecting the state space parameters,
there are four cases for calculating α and β as shown in
Fig. 3. Using trigonometry, x1 & x3 can be easily calculated.
Since the triangle, T3, is an approximate mirror of the
triangle, T1, in either horizontal or vertical axes, we can
calculate x3 from triangle T1 using the information obtained
from the detected orange squares in the images. Now, the
four cases are: (1) α = x1+x3; (2) α = x1; (3) α = x1−x3;
(4) α = −(x3 − x1).

For all cases, β can be calculated as follows: x4 = 90−x1,
β = 90−x4 because β is the angle between the parking state
space width (vertical) axes and the perpendicular line to d.

(a) First Case. (b) Second Case.

(c) Third Case. (d) Fourth Case.

Fig. 3. Calculation of α and β in the 1st phase using omni-directional
camera. Orange blocks represent parked cars and drawn from view angle
of the omnidirectional camera

2) Second Phase: After reaching the “A” position, there
are four cases for calculating α and β as shown in Fig. 4. For
the first two cases, the triangle T3 is a mirror of triangle T1 in
either horizontal or vertical axes. Thus, x3 can be calculated
from T1. In case three and four, we can calculate x1 & x3 by
simple trigonometry. The four cases are: (1) α = x1+x3; (2)
α = x1−x3; (3) α = −(x3−x1); (4) α = x1. For all cases,
β can be calculated as shown: x4 = 90− x1, β = 90− x4.

3) Third Phase: Finally, the third phase has two cases for
calculating α & β as shown in Fig. 5. For both cases T1 is
mirror of T3, so we can calculate x3 from T1. For the first
case α = x1 + x3, but for the second case α = −(x1 + x3).
There is a special case in which both cars are aligned on the
same axes which means that α = 0. For both cases β can
be calculated as x4 = 90− x1, β = 90− x4.

(a) First Case. (b) Second Case.

(c) Third Case. (d) Fourth Case.

Fig. 4. Calculation of α and β in the 2nd phase using omni-directional
camera. Orange blocks represent parked cars and drawn from view angle
of the omnidirectional camera

(a) First Case. (b) Second Case.

Fig. 5. Calculation of α and β in the 3rd phase using omni-directional
camera. Orange blocks represent parked cars and drawn from view angle
of the omnidirectional camera

VI. EXPERIMENTS AND RESULTS

In our experiments, we compared the performance of the
improved LSPI using two different types of basis functions,
i.e. polynomial basis functions (PBF) and radial basis func-
tions (RBF), with the pre-existing Dyna-Q and Q-learning
algorithms [24] on the parallel parking task. To compare the
performance of the proposed improvement using RBF and
PBF, we performed 100 experiments and the average results
are shown in Table II.

TABLE II
COMPARE RBF AND PBF

Basis Order Number of Average Number of
Function Iteration Iterations over

100 experiments
PBF 2 23-231 27
PBF 4 3-9 4.8
RBF N/A 2-3 2.1

In the case of using PBF, we tested using polynomials of
order 2 and 4. For PBF with order 2, LSPI required more
than 27 iterations to converge for each state and sometimes
did not select the correct value. While for the polynomial of
order 4, LSPI required between 3 and 9 iterations to converge
for each step. Thus, we used PBF of order 4 in our simulated
experiments. In case of using RBF, we used the Gaussian



function. Furthermore, LSPI with PBF requires from 3 to
9 iterations with an average 4.8 iterations to converge on
the optimal policy, while LSPI with RBF requires from 2
to 3 iterations with an average 2.1 iterations. In order to
gauge the efficiency of the algorithm, a series of real robot
and simulated experiments were conducted. In the simulated
experiments, for each algorithm and phase, we conducted
10 trials of learning and then performed 40 trials without
learning to measure the performance of the learned behavior.
This process was repeated until we reached 140 trials of
learning.

A. Computational Complexity

To study the computational complexity of the implemented
approach, we provided a formula to calculate the compu-
tational complexity for some of the reinforcement learning
algorithms and the implemented approach in Section IV.
We used the third phase state space representation of the
parallel parking task to show the computational complexity,
as shown in Table III. In Table III, we compared dif-
ferent frameworks of learning in terms of the number of
computational operations required for each iteration. These
frameworks are value iteration (VI), policy iteration (PI) and
least-squares policy iteration with continuous state space and
fixed number of Actions (LSPI-CSFA). Value iteration (VI)
and policy iteration (PI) approaches are not applicable on
a continuous or large state space because it is hard to solve
the policy iteration or value iteration equations if the number
of states is large [22]. So for comparison purposes we
discretized the state space for PI and VI, while we calculated
the computational complexity for the implemented approach
using continuous state variables (the first row of Table III
shows how the state space are discretized for PI and VI).
Table III shows that the number of computational operations
required per iteration is greatly reduced using LSPI. In our
experiments, we used hm = 50.

TABLE III
PARALLEL PARKING COMPLEXITY

Complexity
parameter VI PI LSPI-CSFA

No. Of αmax−αmin
5 × αmax−αmin

5 × α,
State βmax−βmin

5 × βmax−βmin
5 × β and

Calculation FDmax−FDmin
10

FDmax−FDmin
10 FD

No. Of State 1100 1100 Continuous state

Action Two actions Two actions Two actions
(5o right or left) (5o right or left) (5o right or left)

NB 10
Complexity Worst Case: Worst Case: Worst Case:

(Number of Computer 4,840,000 1,335,840,000 for hm= 50 is 6600
Operations) for hm= 100 is 12100

B. Simulated Experiments

All algorithms were compared using the number of suc-
cessful attempts to reach the goal for each phase versus the
number of learning trials. To test the performance of the
approach over the number of learning trials, we conducted
10 trials of learning and then performed 40 trials without
learning. To calculate the number of successful trials to reach
the final goal, this process was repeated until we reached
140 trials of learning as shown in Fig. 6. The results given
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Fig. 6. Number of success (simulated experiments).
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Fig. 7. Average Reward received (simulated experiments).

in Fig. 6 show that LSPI results in superior performance and
reduced time required to learn the parallel parking task, with
fewer than 50 trials required to reach the optimal behavior.

C. Convergence speed

At each episode, we measured the success rate of arriving
at the final goal, as shown in Fig. 6, and the cumulative
rewards of all the phases, as shown in Fig. 7 for all
algorithms.

From Fig. 6, we can conclude that LSPI with both types of
basis functions takes significantly fewer iterations to reach
the optimal behavior than Dyna-Q and Q-Learning. Also,
Fig. 7 shows that LSPI with both basis functions takes fewer
iterations to reach the best trade-off than Dyna-Q and Q-
Learning. Thus, LSPI with both basis functions converges
much faster than Dyna-Q and Q-Learning. These results
empirically confirmed our analysis that LSPI uses data more
efficiently than Dyna-Q and Q-learning.

D. Real Robot Experiments

The proposed approach was implemented on a real mobile
robot (Pioneer P3-AT, as shown in Fig. 8) to test the learning
efficiency in real time. The robot is equipped with an
omnidirectional camera (curved mirror & upward-pointing
camera), and the method to calculate the state space variables
from image was explained in Section V. During the real time
processing, the robot speed was restricted to 10 mm/sec for
safety reasons. To test the performance of the approach over
the number of learning trials, we stopped the learning every



Fig. 8. Pioneer P3-AT robot used in real robot experiments.
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Fig. 9. Number of success (Real Robot experiments).

10 trials to perform 40 trials with the learning switched
off and calculate the number of successful trials to reach
the final goal, as shown in Fig 9. It was shown in Fig. 9
that the proposed approach with RBF/PBF basis functions
required as few as 55 trials to reach the optimal behavior.
Then using the learned policy to test the performance of the
parallel parking task, we doubled, tripled and quadrupled the
normal speed with learning switched off. Furthermore, we
tested the performance by changing the parking slot from
1.95 to 1.7 of the robot’s length and used the collected
samples with learning switched off. This makes the learned
policy adaptable and flexible for changes in the environment.
As a future work, we will test this approach on a more
complicated task or test it with a continuous action space.

VII. CONCLUSION

In this paper, we implemented an approach for accelerating
learning of a parallel parking task. From the simulated and
real robot experiments, we conclude that LSPI generated bet-
ter performance (number of successes and average received
reward required to reach the goal) than value-based methods,
such as Dyna-Q and Q-learning. The experiments show that
the time and number of trials required to reach the optimal
performance was reduced dramatically.
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