529 research outputs found

    Autonomous power management of series-cascaded and hybrid microgrids

    Get PDF
    Microgrids with power electronics interfaced Distributed Generation units are gaining high popularity due to its zero emission characteristics. Control and coordination of these generation units are the most crucial factors that will determine the effective utilisation and flexibility of microgrids. Conventional microgrid structure with droop controlled parallel distributed generation units are being replaced by the series-cascaded structure due to its reduced conversion stages and inherent harmonic sharing capability. This research work first aims to develop a microgrid architecture integrating dispatchable and non-dispatchable distributed generation units in a series-cascaded manner. Existing control strategies for cascaded microgrids focus on dispatchable type generation only. However, adequate power sharing and voltage regulation of a microgrid containing mixed dispatchable and non-dispatchable cascaded generation units demand new control approaches to achieve operational performance and reliability comparable to the conventional parallel-topology microgrid. To ensure maximum utilisation of non-dispatchable units a novel microgrid architecture formed by a dispatchable master unit followed by a set of non-dispatchable slave photovoltaic units in a series-cascaded manner is developed. A fully decentralised control scheme is proposed, which achieves autonomous power balancing and voltage regulation, ensures full utilisation of non-dispatchable generation units, and allows surplus power curtailment under light load conditions. Further, this research work aims to extend the series topological arrangement to form a hybrid microgrid, where low voltage converters are cascaded as a string unit to achieve rated output voltage, and these strings are then paralleled to obtain higher redundancy and power rating. The extension of the arrangement to a hybrid microgrid requires the development of new control strategies, since existing schemes cannot be applied in their original form. As of now hybrid microgrids are controlled using either distributed or centralised schemes to achieve accurate power sharing among the distributed generation units at the cost of complex communication infrastructure. Therefore, a new control scheme is proposed for the hybrid microgrid which aims to achieve accurate power sharing among the paralleled units while maintaining adequate synchronisation among the cascaded converters without any communication link. Fundamental concepts as well as mathematical and simulation models of the existing and proposed control schemes are presented. All the proposed control strategies are validated through extensive simulation results and the series-cascaded microgrid control is validated through matching simulation and experimental results

    A survey on modeling of microgrids - from fundamental physics to phasors and voltage sources

    Get PDF
    Microgrids have been identified as key components of modern electrical systems to facilitate the integration of renewable distributed generation units. Their analysis and controller design requires the development of advanced (typically model-based) techniques naturally posing an interesting challenge to the control community. Although there are widely accepted reduced order models to describe the dynamic behavior of microgrids, they are typically presented without details about the reduction procedure---hampering the understanding of the physical phenomena behind them. Preceded by an introduction to basic notions and definitions in power systems, the present survey reviews key characteristics and main components of a microgrid. We introduce the reader to the basic functionality of DC/AC inverters, as well as to standard operating modes and control schemes of inverter-interfaced power sources in microgrid applications. Based on this exposition and starting from fundamental physics, we present detailed dynamical models of the main microgrid components. Furthermore, we clearly state the underlying assumptions which lead to the standard reduced model with inverters represented by controllable voltage sources, as well as static network and load representations, hence, providing a complete modular model derivation of a three-phase inverter-based microgrid

    Seamless Transition of a Microgrid Between Grid-Connected and Islanded Mode

    Get PDF
    This thesis focuses on improving the behavior of inverters during transition periods from islanded mode to grid-connected mode (GC) and vice-versa. A systematic approach is presented to add smart features to inverters to enhance their capability to cope with sudden changes in the power system. The importance of microgrids lies in their ability to provide a stable and reliable source of power for critical loads in the presence of faults. For this purpose, a design is proposed consisting of a distributed energy resource (DER), battery energy storage system (BESS) and a load connected through a bypass switch with the main utility distribution substation. The BESS is connected to the AC distribution feeder through a smart inverter that is controlled in both modes of operations. The system was tested using MATLAB/Simulink models and the results show proof of the seamless transition between the two modes of operation. The cost of building the software system was unnoticeable due to the availability of a MATLAB license but the real cost of the hardware needed to build the system will be moderate though the importance will be significant

    A Self-Synchronized Decentralized Control for Series-Connected H-Bridge Rectifiers

    Get PDF

    Review of Harmonic Mitigation Methods in Microgrid: From a Hierarchical Control Perspective

    Get PDF

    Control and Stability of Residential Microgrid with Grid-Forming Prosumers

    Get PDF
    The rise of the prosumers (producers-consumers), residential customers equipped with behind-the-meter distributed energy resources (DER), such as battery storage and rooftop solar PV, offers an opportunity to use prosumer-owned DER innovatively. The thesis rests on the premise that prosumers equipped with grid-forming inverters can not only provide inertia to improve the frequency performance of the bulk grid but also support islanded operation of residential microgrids (low-voltage distribution feeder operated in an islanded mode), which can improve distribution grids’ resilience and reliability without purposely designing low-voltage (LV) distribution feeders as microgrids. Today, grid-following control is predominantly used to control prosumer DER, by which the prosumers behave as controlled current sources. These grid-following prosumers deliver active and reactive power by staying synchronized with the existing grid. However, they cannot operate if disconnected from the main grid due to the lack of voltage reference. This gives rise to the increasing interest in the use of grid-forming power converters, by which the prosumers behave as voltage sources. Grid-forming converters regulate their output voltage according to the reference of their own and exhibit load sharing with other prosumers even in islanded operation. Making use of grid-forming prosumers opens up opportunities to improve distribution grids’ resilience and enhance the genuine inertia of highly renewable-penetrated power systems. Firstly, electricity networks in many regional communities are prone to frequent power outages. Instead of purposely designing the community as a microgrid with dedicated grid-forming equipment, the LV feeder can be turned into a residential microgrid with multiple paralleled grid-forming prosumers. In this case, the LV feeder can operate in both grid-connected and islanded modes. Secondly, gridforming prosumers in the residential microgrid behave as voltage sources that respond naturally to the varying loads in the system. This is much like synchronous machines extracting kinetic energy from rotating masses. “Genuine” system inertia is thus enhanced, which is fundamentally different from the “emulated” inertia by fast frequency response (FFR) from grid-following converters. Against this backdrop, this thesis mainly focuses on two aspects. The first is the small-signal stability of such residential microgrids. In particular, the impact of the increasing number of grid-forming prosumers is studied based on the linearised model. The impact of the various dynamic response of primary sources is also investigated. The second is the control of the grid-forming prosumers aiming to provide sufficient inertia for the system. The control is focused on both the inverters and the DC-stage converters. Specifically, the thesis proposes an advanced controller for the DC-stage converters based on active disturbance rejection control (ADRC), which observes and rejects the “total disturbance” of the system, thereby enhancing the inertial response provided by prosumer DER. In addition, to make better use of the energy from prosumer-owned DER, an adaptive droop controller based on a piecewise power function is proposed, which ensures that residential ESS provide little power in the steady state while supplying sufficient power to cater for the demand variation during the transient state. Proposed strategies are verified by time-domain simulations

    Voltage-based droop control of converter-interfaced distributed generation units in microgrids

    Get PDF
    Sinds de laatste jaren is er in het elektrisch energienet een enorme toevloed aan kleine decentrale generatoren, vaak op basis van hernieuwbare energiebronnen. De distributienetten werden echter niet gebouwd om injectie van energie toe te laten. Hierdoor komen steeds meer problemen in de distributienetten voor, zoals bijvoorbeeld overspanningen tijdens zonnige periodes. Dit bemoeilijkt de verdere integratie van hernieuwbare energiebronnen. In deze context werd het microgrid concept voorgesteld om een gecoordineerde koppeling van decentrale generatoren in het net mogelijk te maken. Microgrids zijn kleine subnetten die lokaal hun elementen, zoals de generatoren en de lasten regelen om bepaalde doeleinden te bereiken. Ze kunnen bijvoorbeeld de spanningsregeling in hun net verzorgen of als een geheel meespelen in de energiemarkten. Een karakteristiek van microgrids is dat ze onafhankelijk van het net kunnen werken, in het zogenaamde eilandbedrijf. In eilandbedrijf moeten het verbruik en de opwekking op ieder tijdstip op elkaar afgesteld zijn. Aangezien microgrids erg verschillende eigenschappen hebben van het gewone elektrisch net, zijn hier specifieke regelstrategieen voor vereist. In deze doctoraatsverhandeling wordt een dergelijke regelstrategie uitgewerkt, de zogenaamde spanningsgebaseerde droop (proportionele) regeling. Het spanningsniveau wordt als de niet-conventionele parameter gebruikt om het microgrid te regelen

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids

    Modeling and Control of Diesel-Hydrokinetic Microgrids

    Get PDF
    A large number of decentralized communities in Canada and particularly in Québec rely on diesel power generation. The cost of electricity and environmental concerns suggest that hydrokinetic energy is a potential for power generation. Hydrokinetic energy conversion systems (HKECSs) are clean, reliable alternatives, and more beneficial than other renewable energy sources and conventional hydropower generation. However, due to the stochastic nature of river speed and variable load patterns of decentralized communities, the use of a hybrid diesel- hydrokinetic (D-HK) microgrid system has advantages. A large or medium penetration level has a negative effect on the short-term (transient) and long-term (steady-state) performance of such a hybrid system if the HKECS is controlled based on conventional control schemes. The conventional control scheme of the HKECS is the maximum power point tracking (MPPT). In the long-term conditions, the diesel generator set (genset) can operate at a reduced load where the role of the HKECS is to reduce the electrical load on the diesel genset (light loading). In the short-term, the frequency of the microgrid can vary due to the variable nature of water speed and load patterns. This can lead to power quality problems like a high rate of change of frequency or power, frequency fluctuations, etc. Moreover, these problems are magnified in storage-less DHK microgrids where a conventional energy storage system is not available to mitigate power as well as frequency deviations by controlling active power. Therefore, developing sophisticated control strategies for the HKECS to mitigate problems as mentioned above are necessary. Another challenging issue is a hardware-in-the-loop (HIL) platform for testing and developing a D-HK microgrid. A dispatchable power controller for a fixed-pitch cross-flow turbine-based HKECS operating in the low rotational speed (stall) region is presented in this thesis. It delivers a given power requested by an operator provided that the water speed is high enough. If not, it delivers as much as possible, operating with an MPPT algorithm while meeting the basic operating limits (i.e., generator voltage and rotor speed, rated power, and maximum water speed), shutting down automatically if necessary. A supervisory control scheme provides a smooth transition between modes of operation as the water speed and reference power from the operator vary. The performance of the proposed dispatchable power controller and supervisory control algorithm is verified experimentally with an electromechanical-based hydrokinetic turbine (HKT) emulator. The permanent magnet synchronous generator (PMSG) is preferred in small HKECSs. So, a converter-based PMSG emulator as a testbed for designing, analyzing, and testing of the generator’s power electronic interface and its control system is developed. A 6-switch voltage source converter (VSC) is used as a power amplifier to mimic the behaviour of the PMSG supplying linear and non-linear loads. Technical challenges of the PMSG emulator are considered, and proper solutions are suggested. Finally, an active power sharing control strategy for a storage-less D-HK microgrid with medium and high penetration of hydrokinetic power to mitigate: 1) the effect of the grid frequency fluctuation due to instantaneous variation in the water speed/load, and 2) light loading operation of the diesel engine is proposed. A supplementary control loop that includes virtual inertia and frequency droop control is added to the conventional control system of HKECS in order to provide load power sharing and frequency support control. The proposed strategy is experimentally verified with diesel engine and HKT emulators controlled via a dSPACE® rapid control prototyping system. The transient and steady-state performance of the system including grid frequency and power balancing control are presented

    Enhancement of microgrid operation by considering the cascaded impact of communication delay on system stability and power management

    Get PDF
    Power management, system stability and communication structure are three key aspects of microgrids (MGs) that have been explored in many research studies. However, the cascaded effect of communication structure on system stability followed by the impact of stability on the power management has not been fully explored in the literature yet and needs more attention. This paper not only explores this cascaded impact, but also provides a comprehensive platform to optimally consider three layers of MG design and operation from this perspective. For generation cost minimization and stability assessment, the proposed platform uses an adaptive particle swarm optimization (PSO) while a new class of data exchange scheme based on IEC 61850 protocol is proposed to reduce the communication time delays among the inverters of distributed generations and the MG control center. This paper also considers the system stability using small-signal model of a MG in a real-time manner as an embedded function in the PSO. In this context investigations have been conducted by modeling an isolated MG with solar farm, fuel cell generator and micro-turbine in MATLAB Simulink. Detailed simulation results indicate the proposed power and stability management method effectively reduces the MG generation cost through maximizing the utilization of the available renewable generations while considering system stability. © 2020 Elsevier Lt
    • …
    corecore