1,876 research outputs found

    Autonomous Lighting Agents in Photon Mapping

    Get PDF
    proceedings of ISVC'05International audienceIn computer graphics, global illumination algorithms such as photon mapping require to gather large volumes of data which can be heavily redundant.We propose both a new characterization of useful data and a new optimization method for the photon mapping algorithm using structures borrowed from Artificial Intelligence such as autonomous agents. Our autonomous lighting agents efficiently gather large amounts of useful data and are used to make decisions during rendering. It induces less photons being cast and shorter rendering times in both photon casting and rendering phase of the photon mapping algorithm which leads to an important decrease of memory occupation and slightly shorter rendering times for equal image quality

    Autonomous lighting agents in global illumination

    Get PDF
    In computer graphics, physically-based global illumination algorithms such as photon-mapping have a linear progression between complexity and quality. To a given quality, rendering time scale linearly with computer performances. With Moore's law call in question and increasing demand in quality thoose algorithms need more and more optimisations. Existing optimisations such as irradiance caching are themselves very linear in performance gain. We propose a new optimisation method for the photon-mapping global illumination algorithm. We used structures borrowed from Artificial Intelligence such as autonomous agents to reduce computing time of the photon casting phase and rendering phase of the algorithm. Our structure called Autonomous Lighting Agents starts by using an agent-based scene discovery algorithm and is later used to make decisions during rendering inducing less photons beeing casted and smaller rendering times

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    UVC Dose Mapping by Mobile Robots

    Get PDF
    As infeções adquiridas em ambientes hospitalares são um problema persistente e crescente e a sua prevenção envolve a desinfeção de áreas e superfícies. A necessidade de métodos de desinfeção eficazes aumentou muito em consequência da pandemia de Covid-19. Um método eficaz é a utilização de exposição UVC porque a radiação UVC é absorvida pelos ácidos nucleicos e, portanto, é capaz de inativar microrganismos. Este método também traz muitas vantagens quando comparado com os métodos tradicionais de desinfeção. A desinfeção UVC pode ser realizada por equipamentos fixos que têm de ser deslocados de um local para outro de modo a desinfetar toda uma área, ou por um equipamento móvel autónomo que requer intervenção humana mínima para desinfetar completamente um ambiente. Esta dissertação foca em robôs móveis que desinfetam um ambiente utilizando radiação UVC. Estes robôs móveis são capazes de se mover autonomamente enquanto mapeiam o ambiente à sua volta e simultaneamente o desinfetam. Os robôs mantêm registo da dose aplicada a cada área do ambiente de modo a construir um mapa da dose e diferenciar as áreas completamente desinfetadas das que não o estão. Esta solução tem a vantagem de o robô realizar a desinfeção UVC sem necessitar de parar em cada área nem ter conhecimentos prévios sobre o ambiente. A validação desta solução foi realizada utilizando o rviz, uma ferramenta do Robot Operating System (ROS), e a LiDAR Camera L515. A câmara foi utilizada para recolher a informação necessária para a criação do mapa do ambiente e o rviz foi utilizado para visualizar o mapa da dose.Hospital-acquired infections are a persistent and increasing problem and their prevention involves disinfecting areas and surfaces. The necessity for effective disinfection methods has highly increased in consequence of the Covid-19 pandemic. An effective method is using UVC exposure because UVC radiation is absorbed by nucleic acids and, therefore, is able to inactivate microorganisms. This method also brings many advantages when compared with traditional disinfection methods. UVC disinfection can be performed by fixed equipments that have to be moved from place to place to disinfect an entire area, or by an autonomous mobile equipment that requires minimal human intervention to completely disinfect an environment. This dissertation is focused on mobile robots that disinfect an environment using UVC radiation. These mobile robots are able to move autonomously while mapping the surrounding environment and simultaneously disinfect it. The robots keep track of the dose applied to each area of the environment in order to build a dose map and differentiate areas that are completely disinfected from those that are not. This solution has the advantage of the robot performing UVC disinfection without needing to stop in each area nor having previous knowledge of the environment. The validation of this solution was performed using rviz, a Robot Operating System (ROS) tool, and the LiDAR Camera L515. The camera was used to capture the necessary information for creating the map of the environment and rviz was used to visualize the dose map

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the Andalucía TECH Campu

    Chemical applications of escience to interfacial spectroscopy

    No full text
    This report is a summary of works carried out by the author between October 2003 and September 2004, in the first year of his PhD studie

    Virtuality Engineering in Esports

    Get PDF
    Traditional sports and esports benefit from the development of Information and Communications Technologies (ICT), including gaming, 4D image/video processing, augmented reality (AR), virtual reality (VR), machine learning (ML), artificial intelligence (AI), big data, high-performance computing (HPC), and cloud computing. On the fuzzy border between the areas of physical and modified reality, both types of sports can coexist.  The hardware layer of esports includes PC, consoles, smartphones, and peripherals used to interface with computers, including sensors and feedback devices. The IT layer of esports includes algorithms required in the development of games, online platforms, and virtual reality. The esports community includes amateur and professional players, spectators, esports organizers, sponsors, and other stakeholders. Esports and gaming research spans throughout law (intellectual rights, insurance, safety, and age restrictions), administration (teams, clubs, organizations, league regulations, and tournaments) biology (medicine, psychology, addiction, training and education) Olympic and non-Olympic disciplines, ethical issues, game producers, finance, gambling, data acquisition and analysis. Our article aims to presents selected research issues of esports in the ICT virtualization layer

    Radiative Contour Mapping Using UAS Swarm

    Full text link
    The work is related to the simulation and design of small and medium scale unmanned aerial system (UAS), and its implementation for radiation measurement and contour mapping with onboard radiation sensors. The compact high-resolution CZT sensors were integrated to UAS platforms as the plug-and-play components using Robot Operation System. The onboard data analysis provides time and position-stamped intensities of gamma-ray peaks for each sensor that are used as the input data for the swarm flight control algorithm. In this work, a UAS swarm is implemented for radiation measurement and contour mapping. The swarm of UAS has advantages over a single agent based approach in detecting radiative sources and effectively mapping the area. The proposed method can locate sources of radiation as well as mapping the contaminated area for enhancing situation awareness capabilities for first responders. This approach uses simultaneous radiation measurements by multiple UAS flying in a circular formation to find the steepest gradient of radiation to determine a bulk heading angle for the swarm for contour mapping, which can provide a relatively precise boundary of safety for potential human exploration
    corecore