7,802 research outputs found

    Novel parameter estimation schemes in microsystems

    Get PDF
    This paper presents two novel estimation methods that are designed to enhance our ability of observing, positioning, and physically transforming the objects and/or biological structures in micromanipulation tasks. In order to effectively monitor and position the microobjects, an online calibration method with submicron precision via a recursive least square solution is presented. To provide the adequate information to manipulate the biological structures without damaging the cell or tissue during an injection, a nonlinear spring-mass-damper model is introduced and mechanical properties of a zebrafish embryo are obtained. These two methods are validated on a microassembly workstation and the results are evaluated quantitatively

    Haptic guidance for microrobotic intracellular injection

    Full text link
    The ability for a bio-operator to utilise a haptic device to manipulate a microrobot for intracellular injection offers immense benefits. One significant benefit is for the bio-operator to receive haptic guidance while performing the injection process. In order to address this, this paper investigates the use of haptic virtual fixtures for cell injection and proposes a novel force field virtual fixture. The guidance force felt by the bio-operator is determined by force field analysis within the virtual fixture. The proposed force field virtual fixture assists the bio-operator when performing intracellular injection by limiting the micropipette tip\u27s motion to a conical volume as well as recommending the desired path for optimal injection. A virtual fixture plane is also introduced to prevent the bio-operator from moving the micropipette tip beyond the deposition target inside the cell. Simulation results demonstrate the operation of the guidance system.<br /

    Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas

    Get PDF
    This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading

    Evaluation of Telerobotic Shared Control Strategy for Efficient Single-Cell Manipulation

    Full text link

    A Fully Automated Robotic System for Microinjection of Zebrafish Embryos

    Get PDF
    As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes the problems inherent in manual operation, such as human fatigue and large variations in success rates due to poor reproducibility. Based on computer vision and motion control, the microrobotic system performs injection at a speed of 15 zebrafish embryos (chorion unremoved) per minute, with a survival rate of 98% (n = 350 embryos), a success rate of 99% (n = 350 embryos), and a phenotypic rate of 98.5% (n = 210 embryos). The sample immobilization technique and microrobotic control method are applicable to other biological injection applications such as the injection of mouse oocytes/embryos and Drosophila embryos to enable high-throughput biological and pharmaceutical research

    Virtual haptic cell model for operator training

    Full text link
    Microrobotic cell injection is an area of growing research interest. Typically, operators rely on visual feedback to perceive the microscale environment and are subject to lengthy training times and low success rates. Haptic interaction offers the ability to utilise the operator&rsquo;s haptic modality and to enhance operator performance. Our earlier work presented a haptically enabled system for assisting the operator with certain aspects of the cell injection task. The system aimed to enhance the operator&rsquo;s controllability of the micropipette through a logical mapping between the haptic device and microrobot, as well as introducing virtual fixtures for haptic guidance. The system was also designed in such a way that given the availability of appropriate force sensors, haptic display of the cell penetration force is straightforward. This work presents our progress towards a virtual replication of the system, aimed at facilitating offline operator training. It is suggested that operators can use the virtual system to train offline and later transfer their skills to the physical system. In order to achieve the necessary representation of the cell within the virtual system, methods based on a particle-based cell model are utilised. In addition to providing the necessary visual representation, the cell model provides the ability to estimate cell penetration forces and haptically display them to the operator. Two different approaches to achieving the virtual system are discussed

    3D particle-based cell modelling for haptic microrobotic cell injection

    Full text link
    Introducing haptic interface to conduct microrobotic intracellular injection has many beneficial implications. In particular, the haptic device provides force feedback to the bio-operator\u27s hand. This paper introduces a 3D particle-based model to simulate the deformation of the cell membrane and corresponding cellular forces during microrobotic cell injection. The model is based on the kinematic and dynamic of spring &ndash; damper multi particle joints considering visco-elastic fluidic properties. It simulates the indentation force feedback as well as cell visual deformation during the microinjection. The model is verified using experimental data of zebrafish embryo microinjection. The results demonstrate that the developed cell model is capable of estimating zebrafish embryo deformation and force feedback accurately

    Vision-based sensor for three-dimensional vibrational motion detection in biological cell injection

    Get PDF
    Intracytoplasmic sperm injection (ICSI) is an infertility treatment where a single sperm is immobilised and injected into the egg using a glass injection pipette. Minimising vibration in three orthogonal axes is essential to have precise injector motion and full control during the egg injection procedure. Vibration displacement sensing using physical sensors in ICSI operation is challenging since the sensor interfacing is not practically feasible. This study proposes a non-invasive technique to measure the three-dimensional vibrational motion of the injection pipette by a single microscope camera during egg injection. The contrast-limited adaptive histogram equalization (CHALE) method and blob analyses technique were employed to measure the vibration displacement in axial and lateral axes, while the actual dimension of the focal axis was directly measured using the Brenner gradient algorithm as a focus measurement algorithm. The proposed algorithm operates between the magnifications range of 4× to 40× with a resolution of half a pixel. Experiments using the proposed vision-based algorithm were conducted to measure and verify the vibration displacement in axial and lateral axes at various magnifications. The results were compared against manual procedures and the differences in measurements were up to 2% among all magnifications. Additionally, the effect of injection speed on lateral vibration displacement was measured experimentally and was used to determine the values for egg deformation, force fluctuation, and penetration force. It was shown that increases in injection speed significantly increases the lateral vibration displacement of the injection pipette by as much as 54%. It has been demonstrated successfully that visual sensing has played a key role in identifying the limitation of the egg injection speed created by lateral vibration displacement of the injection pipette tip
    corecore