11,712 research outputs found

    Towards goal-based autonomic networking

    Get PDF
    The ability to quickly deploy and efficiently manage services is critical to the telecommunications industry. Currently, services are designed and managed by different teams with expertise over a wide range of concerns, from high-level business to low level network aspects. Not only is this approach expensive in terms of time and resources, but it also has problems to scale up to new outsourcing and/or multi-vendor models, where subsystems and teams belong to different organizations. We endorse the idea, upheld among others in the autonomic computing community, that the network and system components involved in the provision of a service must be crafted to facilitate their management. Furthermore, they should help bridge the gap between network and business concerns. In this paper, we sketch an approach based on early work on the hierarchical organization of autonomic entities that possibly belong to different organizations. An autonomic entity governs over other autonomic entities by defining their goals. Thus, it is up to each autonomic entity to decide its line of actions in order to fulfill its goals, and the governing entity needs not know about the internals of its subordinates. We illustrate the approach with a simple but still rich example of a telecom service

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    A study on performance measures for auto-scaling CPU-intensive containerized applications

    Get PDF
    Autoscaling of containers can leverage performance measures from the different layers of the computational stack. This paper investigate the problem of selecting the most appropriate performance measure to activate auto-scaling actions aiming at guaranteeing QoS constraints. First, the correlation between absolute and relative usage measures and how a resource allocation decision can be influenced by them is analyzed in different workload scenarios. Absolute and relative measures could assume quite different values. The former account for the actual utilization of resources in the host system, while the latter account for the share that each container has of the resources used. Then, the performance of a variant of Kubernetes’ auto-scaling algorithm, that transparently uses the absolute usage measures to scale-in/out containers, is evaluated through a wide set of experiments. Finally, a detailed analysis of the state-of-the-art is presented

    End-to-end elasticity control of cloud-network slices

    Get PDF
    The design of efficient elasticity control mechanisms for dynamic resource allocation is crucial to increase the efficiency of future cloud-network slice-defined systems. Current elasticity control mechanisms proposed for cloud- or network-slicing, only consider cloud- or network-type resources respectively. In this paper, we introduce the elaSticity in cLOud-neTwork Slices (SLOTS) which aims to extend the horizontal elasticity control to multi-providers scenarios in an end-to-end fashion, as well as to provide a novel vertical elasticity mechanism to deal with critical insufficiency of resources by harvesting underused resources on other slices. Finally, we present a preliminary assessment of the SLOTS prototype in a real testbed, revealing outcomes that suggest the viability of the proposal.Peer ReviewedPostprint (published version

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    CyberGuarder: a virtualization security assurance architecture for green cloud computing

    Get PDF
    Cloud Computing, Green Computing, Virtualization, Virtual Security Appliance, Security Isolation
    • …
    corecore