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The design of efficient elasticity control mechanisms for dynamic resource allocation

is crucial to increase the efficiency of future cloud-network slice-defined systems.

Current elasticity control mechanisms proposed for cloud- or network-slicing, only

consider cloud- or network-type resources respectively. In this paper, we introduce

the elaSticity in cLOud-neTwork Slices (SLOTS) which aims to extend the horizontal

elasticity control to multi-providers scenarios in an end-to-end fashion, as well as to

provide a novel vertical elasticity mechanism to deal with critical insufficiency of

resources by harvesting underused resources on other slices. Finally, we present a

preliminary assessment of the SLOTS prototype in a real testbed, revealing outcomes

that suggest the viability of the proposal.
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1 INTRODUCTION

Our previous research1 highlights the benefits and challenges of orchestrating the integration of softwarization- and

cloudification-like resources, considering the requirements for achieving quality-assured 5G services in Ultra-Dense Net-

working scenarios. Our proposed approach leverages slicing techniques to become capable of orchestrating end-to-end

multi-dimensional virtual partitions over shared physical infrastructure, which are isolated and independent by definition, at

runtime. The novelty of our approach is the ability to provide orchestration for both network- and cloud-type resources to afford

end-to-end cloud-network slices, which have been proven to be viable, reasonable and efficient. In cloud-network slice-defined

systems, intelligent mechanisms capable of performing automatic and autonomous elasticity, for both cloud and network

resources, are extremely important, since they are needed to enable a common information model that explicitly provides

elasticity policies to accomplish the scheduling of resources in both environments.

Although our previous research establishes end-to-end cloud-network slices in a flexible way, elasticity control mechanisms

were not available. Beyond state of the art, in this work we elicit requirements we believe must be met to enable efficient

elasticity in cloud-network slice-defined systems: (a) to carry out elasticity, taking into account both network- and cloud-type

resource conditions in an integrated way and at runtime; (b) to implement an end-to-end fine-grained view per cloud-network

slice instance, with enclosing services (eg, Virtual Network Functions [VNFs] and software applications); and (c) to deploy

statistic-based elasticity control of resources, that necessarily considers usage levels in each cloud-network slice instance and

enclosing service.
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In this paper, we propose the elaSticity in cLOud-neTwork Slices (SLOTS), which suits all the aforementioned requirements

towards orchestration of cloud-network slice-defined systems and, thereby, foster an adaptable control plane that leverages

emerging technologies and concepts to be able: (a) to provide vertical elasticity as a service in a per cloud-network slice instance

control basis, while (b) keeping both cloud- and network-type resources towards assuring service quality over the cloud-network

instance slice lifetime. SLOTS is implemented in a prototype approach for real evaluations and reveals outcomes that suggest

SLOTS to be a viable approach to orchestrate end-to-end cloud-network slices at runtime.

The rest of this paper is organized as follows: Section 2 provides an analysis of the most relevant related works. Section 3

presents SLOTS. Section 4 describes implementation and experimental evaluation. Finally, Section 5 provides conclusions and

remarks for future research.

2 RELATED WORK

Resource elasticity has been widely explored in cloud computing and, recently, in the context of 5G networks. Some research

efforts explore new elasticity features for network slicing in 5G networks.2 Nevertheless, research on how network elastic-

ity can be integrated into cloud elasticity is still open. Also, most of the cloud computing elasticity solutions are based on

fixed thresholds (a.k.a, reactive elasticity approach), whereas the majority of authors claim threshold-based technique per-

formance is highly dependent on the selected parameters.3 Despite the fact of reacting after events, the reactive elasticity

approach is still widely explored by many commercial and academic initiatives. One reason is its ease of implementation, as

it adopts a stochastic resource computing approach (eg, 2-fold, 3-fold and the like, or fixed percentages rates, 20%, 50%, etc.)

to scale up and down targeted resources. Another reason is the fact that large-scale cloud providers such as Google, AWS,

and others have no urgency on avoiding an eventual overprovision of resources situation on the due to their abundance of

resources.

A number of academic proposals have exploited the reactive elasticity approach. For example, the work in Reference 4

presents the ACCRS framework, which adopts static thresholds to trigger reactive elasticity. Several other proposals present sim-

ilar restrictions under different scenarios, such as Reference 5: which proposes ElasticDocker and Reference 6 which proposes

(DoCloud), both proposal to scale up and down docker containers, considering unlimited resources7; works with QoS metrics

to support unlimited elasticity8; which proposes Helpar, an hybrid model for elasticity, but also based on static thresholds and

unlimited resources. As can be seen, none of these proposals address critical scenarios in terms of the amount of resources

available to perform elasticity, and all follow stochastic models for resource-computing.

In the commercial side, different elasticity mechanisms are employed. The Amazon EC2 AWS platform offers a auto-scaling

technique called Target Tracking Scaling, which is able to dynamically provide horizontal elasticity for a specific resource (eg,

CPU, RAM, bandwidth).9 The Google Cloud Platform supports a auto-scaling mechanism called Multiple Policies (MP), which

uses multiple elasticity policies at different levels.10 The MP mechanism is also restricted to horizontal elasticity. In the same

way, container management systems such as Kubernetes11 and Docker Swarm12 also adopt horizontal elasticity for containerized

applications. A common characteristic of all these elasticity mechanisms is the fact they are restricted to horizontal elasticity,

assuming that the infrastructure provider is always capable to offer new resources to meet the elasticity demand, following

stochastic models.

Finally, the elasticity mechanisms hereinabove described lack to address specific scenarios imposed by cloud-network slices,

in which the underneath multi-provider/multi-domain infrastructure implies an end-to-end elasticity control. Regarding this,

SLOTS aims to extend the elasticity control over resources from multiple providers by applying vertical and horizontal elasticity

at the same time and also using elasticity as a service, seeking to provide different options to be used by cloud-network slices. In

addition, stochastic resource-computing scheme impact in several issues, varying from waste of resources, poor response time,

and multiple attempts to meet stability. In this sense, SLOTS introduces an elasticity mechanism that can be used to address

critical situations of resource insufficiency where the stochastic approaches fail. SLOTS proposes a solidarity approach to deal

with this issue in which slices having unused resources can act as donner in the benefice of others that need more resources.

Finally, SLOTS is intended to small- and medium-sized cloud and network providers that require a fine-grained control of the

resources.

3 ELASTICITY CONTROL FOR CLOUD-NETWORK SLICES

By combining softwarization and cloudification technologies, slicing has emerged as a viable ecosystem to leverage new busi-

ness models imposed by the 5G scenario. At the same time, slices independently provided a partitioned view of physical
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F I G U R E 1 Functional architecture of the SLOTS approach

and virtual resources, thereby allowing instances of virtualized networks to run on top of a partitioned and dedicated

infrastructure. Based on the new requirements, use cases and challenges of the 5G scenario, the SLOTS proposal was designed

towards the native integration of cloud and network resources. SLOTS extended the orchestration of network slicing to the

cloud, thereby allowing both scenarios to perform the slicing in a collaborative and coordinated way.

In this context, the cloud-network slicing approach implemented by SLOTS provides an end-to-end view, involving a set

of physical (cloud servers, network nodes), and virtual (Virtual Machines (VMs) containers, VNFs, virtual links) components.

Such a view enables mechanisms to be developed to support the management of multiple cloud infrastructures and networks

in a collaborative way. Figure 1 depicts the functional architecture of the proposed SLOTS approach. As shown in Figure 1,

the SLOTS proposal encompasses the design of a functional architecture by presenting different functional blocks and internal

subsystems that interact through specific interfaces to perform different functions. The main blocks of the SLOTS architecture

are: the Cloud-Network Control Plane, DC, and WAN Control Plane. Next, we give a brief description of each block and its

components, introducing the proposed mechanism for cloud-network vertical elasticity.

Cloud-Network Control Plane is a key building block of SLOTS architecture, and contains a set of functional components

that interact to orchestrate the lifecycle of cloud-network slices in different technology domains. The elements of Cloud-Network

Control Plane are summarized as follows: The Slice Constructor assumes the task of creating a whole end-to-end cloud-network

slice across multiple technology domains from the relevant constituent slice parts, taking into account the slice template informa-

tion to check available resources in the participating providers; The Slice Resource Orchestrator (SRO) component is responsible

for combining the slice parts that make up an end-to-end cloud-network slice, orchestrating slices and service elements over

slices parts. The main functions of the SRO are: (a) Orchestrating the end-to-end Slice Lifecycle, (b) Decommissioning the

end-to-end Slice, (c) Instantiating virtual resources for the services, (d) Performing the Elasticity. The SRO performs the Elas-

ticity, which in turn directly deals with the Virtual Infrastructure Manager (VIM) and WAN Infrastructure Manager (WIM)

so that modifying the allocation of the virtual resources of each selected slice. The Slice Monitoring component provides a

uniform abstraction layer over the monitoring subsystems in heterogeneous VIMs and WIMs that are part of an end-to-end

cloud-network slice. Finally, the Slice Database maintains full knowledge of all activated cloud-network slices in the SLOTS

ecosystem (eg, DC slice part or WAN slice part, and on the services running on each slice).

In order to provide advanced connectivity and resource control capabilities for cloud-network slices, the Data Center (DC)

Control Plane contains the necessary components to handle all of the cloud infrastructure needed by SLOTS. Similarly, the WAN

Control Plane provides the capabilities of network infrastructures to enable connectivity between different slice parts. These

two control planes reside specifically in the cloud and network providers and the components are described in the sequence.

The Cloud Slice Controller component participates in each Data Center Provider and is responsible for dynamically creating

a data center slice. To this end, the Cloud Slice Controller supports the following operations: (a) Resource Management, (b)

Cloud Slice Creation, (c) VIM Deployment, and (d) Cloud to Network Connectivity. The Network Slice Controller component

participates in each network provider to dynamically creating a network slice. A network slice is a virtual network infrastructure

(eg, nodes, links, VNFs, etc.) properly connecting two cloud slice parts. To create a network slice, the Network Slice Controller

carries out the following operations: (a) Network Management, (b) Network Slice Creation, (c) Resource Provision, and (d)

WIM Deployment.

The primary goal of the elasticity architecture proposed in this paper is to guarantee the performance of the cloud-network

slices as much as possible while maintaining committed levels of service level agreement (SLA) and application performance. A

reactive model triggers the decision-making process, whereby the elasticity control mechanism follows a unique statistic-based
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decision scheme (in contrasts to the stochastic model, as raised in Section 2). Moreover, this proposal distinguishes itself from

the related work through its distributed architecture that can simultaneously act in the different cloud and network providers

so that applying vertical elasticity control functions for readjusting (scale up and down) resources at CPU, RAM, and network

levels to each of the activated cloud-network slices.

On the basis of page-limit restrictions, the proposed elasticity control workflow encompasses the following steps: (a) Mon-

itoring: responsible for collecting metrics from the infrastructure providers composing a slice and delivering such metrics to

the elasticity module; (b) Reasoning: in charge of computing which slice resources will be subjected for re-sizing, as well

as the new amount patterns each selected resources will be scaled up (augmented) or down (shrank) to suit respective SLA

commit; and finally, (c) Enforcement: the process responsible for enforcing the changes in the slice, but also for the intelli-

gence about the proper moment to enforce the required adaptations. Initially, a monitoring stack is used to gather slice metrics.

When the resource use of a slice is marked as critical, for example, on matching a predefined maximum usage rate of the cur-

rent assigned amount, the SLOTS elasticity control function is triggered. Firstly, the resource selection function is invoked for

determining the required resources (CPU, memory, and/or network) to suit the slice's SLA. Afterwards, the resources selection

function checks if resources are available in the system and, if so, the resource discovery function starts the resource-computing

task as follows. Slices are classified as either beneficiaries or donors. The former (Beneficiary) are those subjected to obtain

additional resources from other slices, the donors, which in turn are able to cede a fraction of their residuals (ie, underused

resources, meaning the difference between assigned, and under instant use). SLOTS maintain a list of potential donor slices,

entailing only those featuring residual resources for optimization perspectives. In order to obtain the amount of the required

resource for scaling up the beneficiary cloud network slice, SLOTS breaks forcibly this amount into a number of parts matching

the units of listed donor slices, equally. To avoid slice starvation, each cloud-network slice instance is set with both min-

imum (cannot shrink below) and maximum (cannot exceed) limits of cloud- and network-type resources. On summing all

of the resource parts shrank from the donor slices, SLOTS augments the beneficiary slice by the resulting amount accord-

ingly. This statistic-based resource-computing model of SLOTS raises as unique and distinguishes itself from the related work

significantly.

4 IMPLEMENTATION AND EVALUATION OF THE SLOTS PROPOSAL

This section presents aspects concerning both SLOTS prototyping and evaluation tests. The prime goal of the prototyping stand

to carry a proof-of-concept in the SLOTS architecture, whereas the evaluation tests mainly addresses to assessing the resulting

impact that both stochastic-based and statistic-based resource-computing models take in affording cloud-network slicing level

elasticity control functions under high resource-constrained conditions (when all DCs become fully saturated). A real testbed

was set for accurate-enhanced assessments. The methodology used considers two set of experiments participating in the tests.

The Regular Elasticity Experiment implements a stochastic-based resource-computing approach (as raised in Section 2), which

scales up and down in a fraction of 20% (augmenting) and 10% (shrinking) of current resource patterns respectively. The SLOTS

Elasticity Experiment adopts the same resource-computing approach of the Regular Experiment, but on detecting resource

saturate condition, it then automatically switches to the statistic-based approach shown in Section 3.

Three cloud-network slices are set in each of the experiment: the Slice #1 represents a FIWARE-supported IoT

Machine-To-Machine (M2M) application serving a maximum rate of 5 Mbps, through which a Mosquitto server provisions

publish-subscribe operations. The Iperf tool is used to provision UDP flows to slices #2 and #3; both slices #2 and #3 consume

UDP-like streaming flows at a maximum rate of 7 and 3 Mbps respectively, representing Over the top multimedia content. In

order to denote per-slice resource use dynamic behavior, both computing (CPU and RAM) and network (bandwidth) parameters

variations are set along the course of the experiment (10 minutes), which can be summarized in the following. At the begin-

ning of the experiment (instant time 0 second), the UDP-like flows start within slices #2 and #3 and gradually scale up until

matching their respective maximum transmission rates (ie, 7 and 3 Mbps respectively, at instant time 30 seconds). In regards

of the TCP-like flow (served by slice #1), the number of clients increase progressively until reaching a total of 500 clients

(instant time of 3 minutes). This behavior simulates a situation in which several IoT devices are associated with a single MQTT

Broker.

In light to meet the main goal of testbed evaluation, in terms of carrying out both prototyping and evaluation tests, key

performance indicators (namely bandwidth, CPU, and RAM usage patterns) are fetched all over the experiment time. In order to

allow the DC rack servers running through resource-saturated condition, and thus enable our assessments, the virtual machines

are set to operate in limited computing and networking conditions.

On the basis of the prototyping tests, the proof-of-concept confirms the SLOTS architecture fully comply with the Figure 1,

as well as with the Section 3 definitions. In the evaluation tests, both experiments contain three slices with the following
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F I G U R E 2 Prototyping outcomes of regular and SLOTS elasticity experiments

resource allocations in terms of bandwidth, CPU and RAM: 25%, 45%, and 25% for the slice #1; 35%, 25%, and 15% for

the slice #2; and 15%, 20%, and 10% for the slice #3. In addition, the resources available in the system for elasticity to be

performed are: 5 Mbps (25% of total bandwidth), 10% vCPU and 1GB RAM (50% equivalent). The total resources avail-

able for both experiments are: 20 Mbps bandwidth, 1vCPU (0% to 100% usage scale) and 2GB RAM. When the 500 MQTT

clients perform the publish-subscribe messages, the MQTT Broker (slice #1) matches the need for elasticity control. Figure 2A

shows that the Regular elasticity solution scales up to the bandwidth of slice #1 from 5 Mbps (currently allocated resources)

to 10 Mbps (still insufficient to suit the SLA). Through the SLOTS approach, impact shown in Figure 2B, the bandwidth of

slice #1 is allowed to scale up 65%, achieving 13 Mbps (30% more than the Regular solution) through leveraging 5 Mbps of

the system, together with 5 Mbps of donor slices #2 (2 Mbps) and slice #3 (1 Mbps). The Regular Elasticity Experiment solu-

tion allows each cloud-network slice to leverage, at the end of the tests, average resources amounts of bandwidth, CPU and

RAM in the following patterns respectively: 25%, 45%, and 25% for the slice #1; 35%, 25%, and 15% for the slice #2; and

15%, 20%, and 10% for the slice #3. On the other side, the SLOTS Elasticity Experiment outcomes reveals that the respec-

tive averaging patterns with regard to bandwidth, CPU and RAM are of: 75%, 75%, and 50% for slice #1; 20%, 30%, and

30% for slice #2; and 10%, 20%, and 20% for slice #3. The numerical analysis on the temporal behavior of virtual CPU

resources, reveals that the Regular Elasticity solution has been provisioned from 45% to 55%, since only 10% of the vCPU

residual resources are available. In contrast, SLOTS allows to re-provision resources patterns from 45% to 70%, through lever-

aging a total 25% of residual resources (ie, 10% from system residual resources, 10% of donor slice #2 and 5% of donor

slice #3 fulfilling their respective committed limits). Due to the nature of the experiments, the RAM resources could not be

provisioned.

The outstanding ability that the SLOTS statistic-based elasticity control approach allows in the evaluation tests outperforms

the stochastic scheme of the Regular Elasticity Experiment, by means of successfully accomplishing an amount of 20% more

elasticity control. It is worth to highlight that, from the 7.5 minutes of the experiment time, the Regular Elasticity solution

becomes unable to carry out elasticity control functions due to DC's fully resource-saturated conditions.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, the SLOTS approach is proposed to carry out resource elasticity control functions tailored to cloud-network

slicing-defined systems. The statistic resource-computing model that SLOTS applies for elasticity control is unique in orches-

trating resources among donors and beneficiaries cloud-network slices, according to their current patterns along with committed

rates. The SLOTS solution was assessed through real testbed prototyping for accurate insights. The proof-of-concept analysis

confirms that the SLOTS elasticity control scheme complies the proposed architecture and deals with end to end cloud-network

slices. Moreover, the numerical outcome analysis suggests that SLOTS provides resource management and orchestration under

highly resource-saturated DC conditions, through adjusting resources among donors and beneficiaries cloud-network slices
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cooperatively, taking a unique statistic resource-computing approach. The evaluation outcomes prove that SLOTS outperforms

the Regular Elasticity solution through enabling to accomplish a rate of 20% more elasticity functions under the critical DC's

resource conditions.

As SLOTS is an ongoing project, we will continue to focus on studying and developing additional assessments, enforcement,

and control mechanisms, and tailor them to improve the re-orchestration of all the resources that support the cloud-network

slices. Moreover, we need to introduce new functions to deal with horizontal elasticity.
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