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Abstract
Autoscaling of containers can leverage performance measures from the different layers of the computational stack. This

paper investigate the problem of selecting the most appropriate performance measure to activate auto-scaling actions

aiming at guaranteeing QoS constraints. First, the correlation between absolute and relative usage measures and how a

resource allocation decision can be influenced by them is analyzed in different workload scenarios. Absolute and relative

measures could assume quite different values. The former account for the actual utilization of resources in the host system,

while the latter account for the share that each container has of the resources used. Then, the performance of a variant of

Kubernetes’ auto-scaling algorithm, that transparently uses the absolute usage measures to scale-in/out containers, is

evaluated through a wide set of experiments. Finally, a detailed analysis of the state-of-the-art is presented.

Keywords Autonomic computing � Auto-scaling � Docker � Container � Kubernetes � Performance evaluation �
Correlation

1 Introduction

A container (e.g. Docker [24]) and LXC [18]) is a software

environment where one can install an application compo-

nent (the so called microservice) or an application and all

the library dependencies, the binaries, and a basic config-

uration needed for the execution. Containers provide a

higher level of abstraction for the application life-cycle

management and potentially may solve many distributed

application challenges [9], e.g. portability and perfor-

mance overhead. With containers, a microservice or an

application can be executed on any platform running a

container engine [23]. Containers are lightweight and

introduce lower overhead compared to Virtual Machines

(VMs) [11, 14, 22, 25]. Those are some of the reasons that

make the cloud computing industry to adopt container

technologies and to contribute to their evolution [7, 8, 33].

Cloud service providers today offer container-based ser-

vices and container development platforms [13]: Google

container engine, Amazon Elastic Container Service and

Microsoft Azure Container Service are examples of widely

used platforms. Containers are also adopted in HPC (e.g.

[37]) and to deploy large scale big data applications,

requiring high elasticity in managing a very large amount

of concurrent components (e.g. [15, 28, 36]).

The use of containers as base technology for deploying

large-scale applications opens many challenges in the area

of resource management at run-time [9, 29]. Many con-

tainer orchestration frameworks are available, for example

Kubernets [8], Docker Swarm, Mesosphere Marathon,

Cloudify. This paper focuses on container auto-scaling

mechanisms. First, the correlation between absolute and

relative usage measures [11] and how a resource allocation

decision can be influenced by them is analyzed in different

workload scenarios. Absolute and relative measures could

assume quite different values [11]. The former account for

the actual utilization of resources in the host system (e.g.

virtual machine or phys- ical server), while the latter

account for the share that each container has of the

resources used. Then, the performance of a variant of

Kubernetes’ auto-scaling algorithm, that transparently uses
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the absolute usage measures to scale-in/out containers, is

evaluated through a wide set of experiments.

Relative usage measures are today adopted by container

orchestration frameworks like Kubernetes. For example,

the Kubernetes Horizontal Pod Auto-scaling (KHPA)

algorithm uses relative CPU utilization to trigger the

scaling actions and to estimate the number of containers to

be deployed to keep the resource utilization below a

specified threshold value. Relative measures allow to easily

configure horizontal scaling thresholds and the sharing of

resources among different containers (e.g., defining usage

quotas). However, as demonstrated in this paper (cf.

Sect. 2), relative usage measures underestimate the

required capacity, hence are not appropriate to determine

the amount of resources needed to satisfy service level

objectives, like response time.

In a previous work of the author [10] was modelled the

correlation between relative and absolute metrics analyzing

data obtained from measurements on a real system.

Moreover, a new auto-scaling algorithm based on absolute

metrics (named KHPA-A) was proposed. KHPA-A was

conceived to be plugged into the Kubernetes controller and

to makes the concept of absolute metrics transparent to the

users, letting them to use the more intuitive concept of

relative metrics adopted by KHPA. KHPA-A relies on an

absolute-relative CPU utilization correlation model to

predict the absolute metric values and to determine, more

accurately, the number of containers to be deployed.

This paper extends the set of experiments in [10] to

assess the performance of KHPA-A versus KHPA in a

more realistic scenario. Specifically, while in [10] a single

container was used to stress the CPU, in this paper a

concurrent workload (multiple instances of containers) is

executed on the same host to emulate the contention of the

virtual/physical resources. Therefore, new correlation

models are determined and the advantage of using KHPA-

A versus KHPA is confirmed in the new scenarios. This

performance study shows that the use of absolute metrics to

trigger the container scaling actions and to dimension the

appropriate number of Pods allows to properly control the

application response time and, eventually, to keep it below

thresholds specified by service level objectives (cf.

Sect 5.2.3). The analysis presented is valid for high loaded

servers (absolute CPU utilization higher than 75%) and

shows that: for the single instance workload, the responce

time obtained with the KHPA is a factor between 1.5 and 2

higher than the response time obtainable with the KHPA-A

algorithm; for the concurrent workload, the responce time

obtained with the KHPA is between 2 and 3 order of

magnitude higher than the response time obtainable with

the KHPA-A algorithm; the KHPA-A algorithm always

provides performance comparable with the expected per-

Pod CPU utilization and response time. Although the focus

of the paper is only on CPU intensive workload and on

Kubernetes’ auto-scaling algorithms, the results of this

work could be considered a guideline when implementing

any containers’ auto-scaling algorithm.

Finally, the paper’s contribution is positioned in the

context of the state-of-the-art in performance evaluation

and autoscaling of containers.

The paper is organized as in what follow. Section 2

introduces the concept of relative and absolute measures, it

describes how the horizontal containers auto-scaling works

in Kubernetes and it provides the motivating example for

this study. Section 3 is devoted to the container workload

characterization in term of CPU utilization. A workload

model is presented both for relative and absolute CPU

utilization. The models of the correlation between relative

and absolute CPU utilization are described in Sect. 4. The

KHPA-A algorithm is presented in Sect. 5, along with the

performance evaluation results. An extensive review of the

state-of-the-art is presented in Sect. 6. Finally, Sect. 7

gives the concluding remarks.

2 Motivating example

2.1 Relative and absolute measures

Relative are those performance measures which values are

based on the data collected from the /cgroup virtual file

system using tools like docker stats or cAdvisor.

For example, in Docker, the relative CPU utilization

measures the share of CPU used by a container with respect

to the other containers. Relative CPU utilization is reported

as percent of total host capacity. For example, given two

containers each using as much CPU as they can, each

allocated the same CPU shares by Docker, then the

docker stats command for each would register 50%

utilization, though in practice their CPU resources will be

fully utilized.

Absolute performance measures report about the

cumulative activity counters in the operating system. For

example, the absolute CPU utilization reports the per-

centage of CPU used to perform specific activity on a

specified processor, e.g. executing at the user level, or

serving interrupts. Absolute metrics are collected from the

/proc filesystem using standard monitoring tools like

mpstat or sar.

2.2 The Kubernetes’ auto-scaling example

As the driving example is considered the horizontal Pods

auto-scaling in Kubernetes. Kubernetes allows to create

and to deploy units called Pods. A Pod represents a running

process on a cluster and encapsulates an application
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container (or, in some cases, multiple containers), storage

resources, a unique network IP, and options that govern

how the container(s) should run. A Pod represents a unit of

deployment: a single instance of an application in Kuber-

netes, which might consist of either a single container or a

small number of containers that are tightly coupled and that

share resources (cf. Kubernetes documentation at kuber

netes.io). This study assumes a one to one mapping

between Pods and containers. In order to replicate an

application’s instance, it is enough to replicate and deploy

the Pod containing the application container.

Algorithm 1 KHPA algorithm. It returns the number
of Pods to be deployed
Input: Utarget, ActivePods

// Target utilization and the set of active Pods
Output: P // The target number of Pods to deploy
1: while true do
2: for all i ∈ ActivePods do
3: Ui = getRelativeCPUUtilization(i);
4: U = U ∪ {Ui}
5: end for
6: P =ceil( sum( U ) / Utarget );
7: wait(τ) // wait τ seconds, the control loop period
8: end while

The Kubernetes’ Horizontal Pods Auto-scaling algo-

rithm is based on a control loop, with a period s ¼ 30 s (cf.

Algorithm 1, line 7).

KHPA takes as input the target relative utilization Utarget

(as percentage of the requested CPU), and the set of active

Pods ActivePods, deployed in the previous control period

(s seconds before). The output is the target number of Pods

P to deploy. Each s seconds, the algorithm gathers the

relative CPU utilization of the Pods, measured with

cAdvisor (line 3) and stores it in the vector U (lines 3

and 4). Finally, at line 5, the target number of Pods P, is

computed using the following formula:

P ¼
P

i2ActivePods Ui

Utarget

� �

: ð1Þ

The KHPA algorithm implemented in Kubernetes includes

more features, not considered in this study because not

influenced by relative/absolute usage measures, like: the

possibility to define the minimum and maximum number of

Pods to instantiate; and the possibility to postpone the

allocation/deallocation of resources to avoid instability

(ping pong effects).

Let us suppose now that Utarget ¼ 66%, three application

replicas are running, and the per-Pod CPU utilization is

79%, 75% and 83%, respectively. At the next control

period, the KHPA algorithm determines that a new Pod

should be deployed P ¼ 4. The load will be distributed

among the Pods and the estimated per-Pod utilization will

be
PP

i¼1 Ui=P ¼ 59:25.

The horizontal Pods auto-scaling in Kubernetes uses the

relative CPU utilization. Since Urelative �Uabsolute and

because Eq. 1, the inequality Prelative �Pabsolute always

holds.

The deployment of Prelative rather then Pabsolute Pods

could hurt the performance of an application. That could be

demonstrated, for example, using the classical response

time model R ¼ S=ð1� UÞ, where S is the service time.

The inequality S=ð1� UabsoluteÞ� S=ð1� UrelativeÞ is

always valid, that means the expected response time (based

of the relative CPU utilization) is less then the actual

response time, that is Rabsolute. Hence, the scaling of con-

tainer based on Urelative could produce, in practice, the

violation of the service level objective defined on the

response time.

3 Workload characterization

To understand the impact of relative and absolute usage

measures on the performance of autoscaling algorithms a

CPU intensive workload is generated and characterized

(specifically by means of Urelative and Uabsolute). Although

many different distributed application workload generators

exists, e.g. YCSB or JMeter, for this study is important to

use tools that allow to directly control the amount and type

of stress produced on the CPU of the systems. Hence,

stress-ng and sysbench have been selected.

Because the goal of the paper is to study the behaviour

of auto-scaling algorithms under heavy-load conditions,

different combination of the stress tools’ parameters are

used to bring the absolute CPU utilization of the testing

environment in the range 60% – 95% (cf. Sect. 3.1).

Specifically, stress-ng multiplies square matrix and

allows to set as input the size N of the matrix and the

number of workers W (or threads) that do the multiplica-

tions. sysbench verifies prime numbers by doing stan-

dard division of the input number N by all numbers

between 2 and the square root of the input number. It also

allows to specify the number of workers W (or threads) as

input.

Two types of workload are generated. First, a single

instance of the containerized stress tool is executed (i.e. a

single container runs). Then, multiple containers are exe-

cuted concurrently. In the second case no quotas on the

CPU utilization are set to increase the interference among

containers in sharing the physical/virtual resources.

Table 1 shows the values of the parameters used to

generate the workload. For each value of N, experiments

are executed with all the values of W. Hence, 16 different

dataset are generated, and each contain n = 10 runs to

account for system uncertainty. The same set of experi-

ments has been conducted running one and three
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concurrent containers on the same host environment. In the

first case we have no interference in using resources. In the

second case, we use three containers for two main reasons:

first, the machine we use for the experiments is a dual core,

hence running three or more containers generate interfer-

ence in the contention of physical resources. Second,

because the limited capacity of our testbed, we empirically

found that we can run three instances of a stress tool, plus

the containers used to deploy the monitoring infrastructure

that consist of three components: cAdvisor, Prometheus

and Grafana (cf. Sect. 3.1). Performance data are sampled

each 1 s.

Figures 1 and 2 show the probability distribution func-

tion (pdf) of the CPU utilization measured under the single

instance workload. stress-ng generates a more intense

workload than sysbench. In the sysbench workload

Urelative range from 65% to 91% but the majority of samples

are between 80 and 90%. Uabsolute range from 82 to 91%.

With the stress-ng workload Urelative is in the range

76–91% and the Uabsolute in the range 90–94%.

3.1 Experimental environment and monitoring
tools

The CPU usage is measured running the sysbench and

stress-ng workloads on a server equipped with: 2 CPU

AMD Turion(tm) II Neo N40L Dual-Core 1.5 GHz; 2 GB

of RAM; ATA DISK HDD 250GB (ext4). The software

platform is characterized by: Ubuntu 14.04 Trusty, Docker

v 1.12.3, Grafana 3.1.1, Prometheus 1.3.1, cAdvisor 0.24.1.

The containers running the monitoring infrastructure

(Grafana and Prometheus) are configured to run on the

cores of one of the two CPUs. In the same way, the con-

tainers running the stress tool and an instance of cAdvisor

share the cores of the other CPU. We chose cAdvisor

rather then docker stat because experiments show they

provide the same results, but cAdvisor can be directly

connected with Prometheus.. mpstat is used to collect

absolute metrics on the host. Prometheus (prometheus.io) is

used to extract the data sampled by cAdvisor each 1

second. Finally, Grafana (grafana.org) queries the data

extracted by Prometheus and enables the export and the

visualization of data. Although the impact of those tools on

the CPU utilization of the testbed is negligible their exe-

cution is bound on the cores of one of the two CPUs

available.

4 Correlation model

The correlation between the relative CPU utilization and

the absolute CPU utilization is evaluated using: the Pear-

son’s correlation coefficient (q) and the related 95% con-

fidence bounds; and the p-value (that gives a measure of

the static significance of the correlation coefficient—if

p\0:05 q is statistically significant).

The correlation coefficients for the datasets obtained are

very similar (q � 0:91) and the 95% confidence interval

overlaps. The p-value is always less than 0.05. The corre-

lation model determined is linear, that is

Uabsolute ¼ bþ a � Urelative ð2Þ

In Fig. 3 is plotted the linear correlation for the four

workloads defined in Sect. 3. The values for the linear

fitting coefficients and the 95% confidence bounds are in

Table 2.

The rationale behind Eq. 2 is the following. While using

containers, practitioners (e.g. DevOps team) are used with

Table 1 Workload parameters
Tool Input size (N 9 103) Num. of workers W Num. of instances

stress-ng 32, 64, 128, 256 1, 2, 4, 6 1,3

sysbench 16, 32, 64, 128

U
relative

60 65 70 75 80 85 90 95

CPU Utilization

0

0.1

0.2

0.3

0.4

0.5

pd
f

60 65 70 75 80 85 90 95

CPU Utilization

0

0.1

0.2

0.3

0.4

0.5
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f

U
absolute

Fig. 1 The sysbench workload: (left) the probability distribution

function (pdf) of the relative CPU utilization; and (right) the pdf of

the absolute CPU utilization
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Fig. 2 The stress-ng workload: (left) the probability distribution

function (pdf) of the relative CPU utilization; and (right) the pdf of

the absolute CPU utilization
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relative metrics that, because their definition (c.f.

Sect. 2.1), are more intuitive and practical than absolute

metrics. Moreover, Docker uses quotas and limits based on

relative metrics and Kubernetes autoscaling algorithm is

configured defining thresholds on relative metrics. Hence,

our goal was to provide a solution that make the use of the

absolute metrics transparent to the users. Equation 2, the

core of KHPA-A algorithm, enables a DevOps team: to use

relative metrics in the configuration of their execution and

orchestration environment; to use cAdvisor rather then

collecting absolute metrics from the underlining physical/

virtual system (not always accessible); and to take deci-

sions based on the absolute metrics. The proposed solution

imply also that the KHPA-A algorithm can be plugged in

an existing environment without the need of any recon-

figuration of the system and of the scaling policy

parameters.

One of the drawback of the proposed approach is the

uniqueness of the correlation model for a specific work-

load. Hence the correlation model (coefficients a and b)

should be periodically evaluated, starting from run-time

monitored data, and the linear correlation coefficients

should be dynamically updated, according to the data

collected.

5 Auto-scaling performance evaluation

The new algorithm KHPA-A takes only two additional

inputs with respect KHPA, that are the linear fitting coeffi-

cients a and b of the correlation model (c.f. Table 2 and

Eq. 2).Utarget is expressed as a absolute utilization value, e.g.

obtained from a response time constraint. The pseudocode

for KHPA-A is in Algorithm 2. At line 4 the absolute uti-

lization is computed using Eq. 2 (the relative utilization is

collected using cAdvisor). At line 7 the number of target

Pods P is computed using the Uabsolute value.

Algorithm 2 KHPA-A algorithm. It returns the number
of Pods to be deployed
Input: Utarget, a, b, ActivePods

// Target utilization, correlation coefficients and the set
of active Pods

Output: P // The target number of Pods to deploy
1: while true do
2: for all i ∈ ActivePods do
3: Urelative,i = getRelativeCPUUtilization(i);
4: Uabsolute,i = b + a · Urelative,i;
5: Uabsolute = Uabsolute ∪ {Uabsolute,i}
6: end for
7: P =ceil( sum( Uabsolute ) / Utarget );
8: wait(τ) // wait τ seconds, the control loop period
9: end while

5.1 Performance metrics and experiments setup

The metrics used to compare the performances of the

KHPA and KHPA-A auto-scaling algorithms are: the

average per-Pod absolute CPU utilization U after adapta-

tion; the average application response time R after adap-

tation; and the difference DP between the number of pods

allocated by KHPA-A and KHPA. U, R and DP are defined

by the following equations:

U ¼ 1

P
�
XP0

i¼1

U0
i

ð3Þ

R ¼ S

1� U
ð4Þ

DP ¼P0
KHPA�A � P0

KHPA

P0
KHPA�A

ð5Þ

60 70 80 90 100
CPU Utilization Urelative

60

70

80

90

100
C

P
U

U
ti

liz
at

io
n

U
ab

so
lu

te

Single Stress-ng
Single SysBench
Multiple Stress-ng
Multiple SysBench

Fig. 3 The correlation model (linear interpolation) between relative

CPU utilization (x-axis) and absolute CPU utilization (y-axis) for the

four datasets

Table 2 Correlation model: linear fitting coefficients for the four

datasets

Workload a (95% conf. bounds) b (95% conf. bounds)

Single 0.19 75.73

stress-ng (0.17, 0.20) (74.56, 76.91)

Single 0.30 63.71

sysbench (0.28, 0.32) (62.04, 65.37)

Concurrent 3.0 - 130.3

stress-ng (2.97, 3.20) (- 131.2, - 129.7)

Concurrent 1.5 - 32.1

sysbench (1.48, 1.53) (- 32.73, - 32.31)
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where: P0 and U0 are the target number of Pods and the

average per-Pod utilization computed in the previous

adaptation period (s seconds earlier); S is the service time.

In the results, U and DeltaP are plotted as a percentage

(%) rather then in the range [0, 1]. U and R are also

compared with the expected per pod CPU utilization and

expected average response time.

The performance comparison is based on a simulation

study. The simulator is implemented in Matlab and the

simulation logic is as follows:

– Step 1 the target utilization is set and one Pod is

deployed

– Step 2 the per-Pod service demand is randomly

generated, i.e. the relative CPU utilization Urelative, is

generated using the empirical pdf obtained from our

datasets (cf Sect. 3 and Figs. 1 and 2)

– Step 3 each s seconds the new number of Pods needed

to match the target utilization is computed using KHPA

or KHPA-A, and then Pods are deployed. The assump-

tion is that the workload is balanced among the

deployed Pods and that is available enough computa-

tional capacity (e.g. VMs) to run the Pods

– Step 4 when the system is stable and before the s
control period expires a new workload for all the

deployed Pods is generated (i.e. jump back to Step 2))

Fifty control periods have been simulated (i.e., 1500 s) and

at each control period the total CPU demand is generated

according to the probability distributions functions early

determined for Urelative. However, a cap for the number of

Pods is set to deploy no more than 2000 Pods. If that limit

is reached the simulation is terminated.

To account for the randomness of the workload, Steps

1–4 are repeated twenty times and the average value of the

metrics is computed over the 20 runs.

5.2 Experimental results

In the experiments we compare the performance of KHPA

and KHPA-A under the four workloads presented in

Sect. 4. For each workload three scenarios are considered:

Utarget ¼75%, 80% and 85%. The service time is always

S ¼ 0:001 s (it is only a scaling factor for R).

5.2.1 Single instance workload

This correlation model does not consider any interference

among running containers, hence is optimistic. Plots in

Fig. 4 shows the results for the Sysbench workload.

KHPA-A is always capable to maintain the absolute CPU

utilization U at the level of the expected CPU utilization

Urelative. Hence, also the response time R is close to the

expected value. With the KHPA algorithm the absolute

utilization is higher than the expected and, therefore the

response time. This means that with KHPA is not possible

to satisfy such kind of service level objectives.

In the 75% workload an higher number of Pods is

needed to maintain the lower level of system utilization

and the cap (maximum number of pods) is reached after 35

control periods. Another interesting trend is that when the

target CPU utilization Utarget increase (from 75% to 85%)

the difference between the response time R achievable with

KHPA and KHPA-A increase significantly. In the 75%

case RKHPA is about 1.5 time higher that RKHPA�A and in the

85% case RKHPA is about 2 time higher that RKHPA�A.

Is also interesting to observe how DP converge to the

value of 10%. This behaviour is more evident in the cases

of a target utilization equal to 75% and 80%. That means

KHPA-A use more containers than KHPA. In case of

stringent constraints on the CPU utilization, like in the case

of Utarget ¼ 75%. For very large deployments, KHPA-A

can allocate also 200 containers more than KHPA.

The performance behaviour under the stress-ng

workload is the same as forsysbench. Plots in Figs. 5 show

the results. stress-ng produces an higher CPU utilization

than sysbench. For the case target utilization T ¼ 80% the

maximum number of Pods is reached after 43 control periods,

and for T ¼ 75% after 32 control periods.With T ¼ 85% the

cup is not reached in the 50 control periods.

Under the stress-ng workload, the DP converge to

the value of 7.58. This means that KHPA reacts well to

CPU intensive workload, but always allocate an under-es-

timated number of Pods.

5.2.2 Concurrent workload

The most interesting cases are for Utarget = 80% and 85%.

Plots in Fig. 6 shows the results for stress-ng. For

Utarget = 80%, due to the contention of the CPU, KHPA is

not capable to deploy the right number of containers and

the UKHPA is about 18% higher than the expected CPU

utilization. The higher U results in a response time RKHPA

that is more than 2 times the RExpected . On the contrary,

KHPA-A algorithm provides performance close to the

expected value and hence, as allocation policy, could

guarantee responce time based constraints better than

KHPA. When the target utilization increases to Utarget =

85%, and KHPA algorithm is used, the system becames

more unstable. Indeed the higher per Pod utilization brings

the host utilization to 95% and up to 100% (and more)

when the workload increases. That results in a RKHPA that is

from 1 to 3 orders of magnitude higher than RExpected: the

typical behaviour of a saturated system. In both cases, the

value of DP converge to 14.8 that mans, for very large
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clusters, up to 300 more containers could be needed to

guarantee the target CPU utilization.

In Fig. 7 the results for sysbench are reported. In this

case, the overall workload is less intense than the case for

stress-ng, hence there is no saturation phenomenon.

However, when the target value for the utilization is 85%,

the UKHPA exceed the 90% and the responce time could be

between 60 up to 100% higher than the expected. In both

cases DP converge to the value of 8.5.

5.2.3 Discussion

From the above results is evident the advantage of using

KHPA-A versus KHPA. Shortly speaking, for CPU inten-

sive workloads KHPA under-dimensions the number of

deployed Pods because the use of relative metrics. As

consequence, that will make impossible to setup an auto-

scaling policy capable to satisfy QoS requirements like

constraints on the responce time. On the contrary, with

KHPA-A, the scaling in/out actions are determined by the

absolute metrics (or better an estimation of the value

assumed by the absolute metrics). Absolute metrics, e.g.

the value of the CPU utilization of the virtual/phisical host,

have the advantage to measure the real usage of the host

system end hence can be used to compute QoS metrics like

the responce time. With KHPA-A a constraint on the

responce time can be translated into a constraint on the

CPU utilization, for example using the well know formula

R ¼ S=ð1� UÞ as explained in Sect. 2.1. In conclusion, we
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Fig. 4 Sysbench workload, single instance. a The aggregated relative CPU utilization demanded by all the deployed Pods. b The average per-Pod
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recommend to use KHPA-A each time is important to meet

QoS constraints.

6 Related works

The state-of-the-art studies on performance evaluation of

container and on auto-scaling algorithms for containers are

reviewed in what follow.

6.1 Performance

Many research works have assessed the performance of

containers against virtual machines confirming the small

footprint of containers. Those results boosted the container

adoption. However, this works proved also the poor I/O

throughput of containers, that is prohibitive for network

intensive applications. Other works aim at evaluating and

predicting the performance of containerized application, to

provide models for capacity planning, optimal deployment

and run-time adaptation. Finally, some research studies aim

at solving monitoring challenges.

The first seminal work on container performance eval-

uation [14] provides an extensive comparison among a

native Linux environment, Docker and KVM. In this work

the performances of the three environments are compared

in presence of CPU intensive, I/O intensive, Network

intensive, and NoSQL/SQL workloads. A similar study,

aimed at comparing the performance of containers with

hypervisors is [25]. In [30] as been investigated the
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performance of Cassandra while running on: a bare-metal

cluster, VMware VMs and Docker containers. While

standard benchmarks were used in the previous studies, a

scientific workload is considered in [3]. The authors shown

that Docker memory configuration can be tuned to make

container performance be slightly better than VMs.

Other studies investigate the performance of containers

running on cloud infrastructures. A performance compar-

ison of Docker versus Flockport (LXC) is presented in

[22], using the same benchmarks as in [14]. The containers

are deployed on top of the NeCTAR cloud. The compar-

ison was intended to explore the performance of CPU,

memory, network and disk. Docker versus Joyent’s Triton

is studied in [5]. The authors shows that on top of AWS

EC2 virtual machines Joyent’s Triton performs better or

almost the same than Docker with the advantage of

enhanced security features.

A performance prediction model based on the Support

Vector Regression has bee proposed in [35] to forecast the

performance of data stream processing applications

implemented with Apache Spark under different configu-

rations and resource competition settings. In [32] the

authors proposed a Learning Classifier System that, on the

basis of multi-layer monitored data, incrementally learns

rules representing the containerized application QoS

behaviour. A Layered Queuing Network-based perfor-

mance prediction model for multi-tier containerized

applications is proposed in [6]. The model allows to pre-

dict the resource demand.

Performance monitoring is a topic of increasing interest

for the containers’ research community. In [11] the authors

assess the different measurement methodology used to

collect performance counters for CPU and disk I/O inten-

sive Docker workload. The importance of using informa-

tion about the performance of all the stack components to

take effective deployment and adaptation decisions is

addressed in [20] where the authors propose Elascale, a

cloud service for monitoring performance metrics at all the

layers of the computational stack. The same approach is

used in [32], where a multi-layer monitored data are used

to drive the run-time adaptation.

This paper enhances the literature in different way. First

has been extended the correlation models proposed in [10]

considering a concurrent workload. Then, the correlation

model is used to take appropriate auto-scaling decisions.

This work confirms also the importance of monitoring the

appropriate performance counters, as suggested in [11].

6.2 Auto-scaling

Container orchestrators offer many features to aid DevOps

teams in managing the container life cycle both in the off-

line and run-time phases. One of the run-time management

tool is auto-scaling. Kubernetes and Docker SwarmAre

orchestrators that offer threshold based auto-scaling algo-

rithms based on relative metrics (mainly CPU and memory

utilization).

An early study on container resource management [17]

shows that Elastic Application Container-based resource

management outperforms the VM-based approach in terms

of feasibility and resource-efficiency. C-Port [1] is the first

example of orchestrator that use a constraint-programming

model for dynamic resource discovery, selection and

deployment. The C-Port orchestrator is used in [2] to

realize a distributed software defined environment that

deploys applications with docker over the CometCloud

federated cloud infrastructure. In [26] the authors provide a

general formulation of the elastic provisioning of virtual

machines for container deployment as an integer linear

programming problem. The heterogeneity of the environ-

ment, QoS and cost constraints are considered in the

problem formulation. The proposed algorithm provides

either the optimal VMs allocation and the scaling of con-

tainers. In [27] the authors propose Adaptive Container

Deployment (ACD), a general model of the deployment

and adaptation of containerized applications, expressed as

an Integer Linear Programming problem. Besides acquiring

and releasing geo-distributed computing resources, ACD

can optimize multiple run-time deployment goals, by

exploiting horizontal and vertical elasticity of containers.

An adaptive multi-instance container-based architecture

targeting time-critical applications is proposed in [31].

ElasticDocker, an autonomic controller powering vertical

elasticity of Docker containers autonomously is presented

in [4]. ElasticDocker scales up and down both CPU and

memory assigned to each container according to the

application workload. An architecture of a SaaS application

manager based on Docker and Kubernetes is proposed

in [33]. The paper describes the high level architecture

based three autonomic managers that should be capable to

adapt the multi-cloud infrastructure and the multi tech-

nology data storage level with the goal of guarantee

tenants’ SLAs. In [19] the authors propose an Ant Colony

Optimization (ACO) algorithm to schedule docker con-

tainers with the ultimate goal to use resources more effi-

ciently. The ACO algorithm performance is compared with

the greedy scheduling algorithm in DockerSwarm. A

framework for Application Oriented Docker container

(AODC) resource allocation to minimize the application

deployment cost in datacenters is presented in [16]. AODC

considers deployment of container on PM and is compared

against optimal VM placement algorithms. Elascale [20]

applies a default threshold-based, reactive auto-scaling

algorithm for all application’s micro and macro services.

In [21] the authors propose a proactive autoscaling mech-

anism that scale-in/out containers and distribute the load
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among instances on the base of the network traffic inten-

sity. In [12] the authors propose Virtual Hadoop a frame-

work for deploying containerized Hadoop clusters on

heterogeneous nodes. The framework include an scaling

algorithm to meet application time constraints. In [34] the

authors propose an autoscaling mechanisms for Data

Stream Processing Platform Service, deployed using

Docker and Kubernetes. The proposed solution takes

decisions on the basis of the predicted data arrival rate.

This work, differently from the others aim to enhances

the auto-scaling of containers in Kubernetes proposing a

QoS aware auto-scaling algorithm that make a transparent

use of the platform level (absolute) metrics.

7 Conclusions

This work propose and evaluate the performance of KHPA-

A an enhanced version of the KHPA auto-scaling algo-

rithm. The proposed solution leverage, in a transparent

way, absolute usage measures rather then relative. KHPA-

A can be plugged in any existing system orchestrated with

Kubernetes without the need to change the system

configuration.

The performance comparison shows that the use of

absolute metrics allows to properly control the application

response time and to keep it below thresholds introduced

by service level objectives. Specifically, for high loaded

servers. In the single instance workload case, the responce

time obtained with the KHPA is a factor between 1.5 and 2

higher than the response time obtainable with the KHPA-

A. For the concurrent workload, the KHPA’s responce time

is between 2 and 3 order of magnitude higher than the

KHPA-A’s responce time.

Although this study focused only on Kubernetes’ auto-

scaling algorithm, the results presented should be consid-

ered as a guideline when implementing any container’s

auto-scaling algorithm for managing CPU intensive

workloads with QoS constraints.
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