108 research outputs found

    Autonomic behavioural framework for structural parallelism over heterogeneous multi-core systems.

    Get PDF
    With the continuous advancement in hardware technologies, significant research has been devoted to design and develop high-level parallel programming models that allow programmers to exploit the latest developments in heterogeneous multi-core/many-core architectures. Structural programming paradigms propose a viable solution for e ciently programming modern heterogeneous multi-core architectures equipped with one or more programmable Graphics Processing Units (GPUs). Applying structured programming paradigms, it is possible to subdivide a system into building blocks (modules, skids or components) that can be independently created and then used in di erent systems to derive multiple functionalities. Exploiting such systematic divisions, it is possible to address extra-functional features such as application performance, portability and resource utilisations from the component level in heterogeneous multi-core architecture. While the computing function of a building block can vary for di erent applications, the behaviour (semantic) of the block remains intact. Therefore, by understanding the behaviour of building blocks and their structural compositions in parallel patterns, the process of constructing and coordinating a structured application can be automated. In this thesis we have proposed Structural Composition and Interaction Protocol (SKIP) as a systematic methodology to exploit the structural programming paradigm (Building block approach in this case) for constructing a structured application and extracting/injecting information from/to the structured application. Using SKIP methodology, we have designed and developed Performance Enhancement Infrastructure (PEI) as a SKIP compliant autonomic behavioural framework to automatically coordinate structured parallel applications based on the extracted extra-functional properties related to the parallel computation patterns. We have used 15 di erent PEI-based applications (from large scale applications with heavy input workload that take hours to execute to small-scale applications which take seconds to execute) to evaluate PEI in terms of overhead and performance improvements. The experiments have been carried out on 3 di erent Heterogeneous (CPU/GPU) multi-core architectures (including one cluster machine with 4 symmetric nodes with one GPU per node and 2 single machines with one GPU per machine). Our results demonstrate that with less than 3% overhead, we can achieve up to one order of magnitude speed-up when using PEI for enhancing application performance

    A self-mobile skeleton in the presence of external loads

    Get PDF
    Multicore clusters provide cost-effective platforms for running CPU-intensive and data-intensive parallel applications. To effectively utilise these platforms, sharing their resources is needed amongst the applications rather than dedicated environments. When such computational platforms are shared, user applications must compete at runtime for the same resource so the demand is irregular and hence the load is changeable and unpredictable. This thesis explores a mechanism to exploit shared multicore clusters taking into account the external load. This mechanism seeks to reduce runtime by finding the best computing locations to serve the running computations. We propose a generic algorithmic data-parallel skeleton which is aware of its computations and the load state of the computing environment. This skeleton is structured using the Master/Worker pattern where the master and workers are distributed on the nodes of the cluster. This skeleton divides the problem into computations where all these computations are initiated by the master and coordinated by the distributed workers. Moreover, the skeleton has built-in mobility to implicitly move the parallel computations between two workers. This mobility is data mobility controlled by the application, the skeleton. This skeleton is not problem-specific and therefore it is able to execute different kinds of problems. Our experiments suggest that this skeleton is able to efficiently compensate for unpredictable load variations. We also propose a performance cost model that estimates the continuation time of the running computations locally and remotely. This model also takes the network delay, data size and the load state as inputs to estimate the transfer time of the potential movement. Our experiments demonstrate that this model takes accurate decisions based on estimates in different load patterns to reduce the total execution time. This model is problem-independent because it considers the progress of all current computations. Moreover, this model is based on measurements so it is not dependent on the programming language. Furthermore, this model takes into account the load state of the nodes on which the computation run. This state includes the characteristics of the nodes and hence this model is architecture-independent. Because the scheduling has direct impact on system performance, we support the skeleton with a cost-informed scheduler that uses a hybrid scheduling policy to improve the dynamicity and adaptivity of the skeleton. This scheduler has agents distributed over the participating workers to keep the load information up to date, trigger the estimations, and facilitate the mobility operations. On runtime, the skeleton co-schedules its computations over computational resources without interfering with the native operating system scheduler. We demonstrate that using a hybrid approach the system makes mobility decisions which lead to improved performance and scalability over large number of computational resources. Our experiments suggest that the adaptivity of our skeleton in shared environment improves the performance and reduces resource contention on nodes that are heavily loaded. Therefore, this adaptivity allows other applications to acquire more resources. Finally, our experiments show that the load scheduler has a low incurred overhead, not exceeding 0.6%, compared to the total execution time

    Adaptive heterogeneous parallelism for semi-empirical lattice dynamics in computational materials science.

    Get PDF
    With the variability in performance of the multitude of parallel environments available today, the conceptual overhead created by the need to anticipate runtime information to make design-time decisions has become overwhelming. Performance-critical applications and libraries carry implicit assumptions based on incidental metrics that are not portable to emerging computational platforms or even alternative contemporary architectures. Furthermore, the significance of runtime concerns such as makespan, energy efficiency and fault tolerance depends on the situational context. This thesis presents a case study in the application of both Mattsons prescriptive pattern-oriented approach and the more principled structured parallelism formalism to the computational simulation of inelastic neutron scattering spectra on hybrid CPU/GPU platforms. The original ad hoc implementation as well as new patternbased and structured implementations are evaluated for relative performance and scalability. Two new structural abstractions are introduced to facilitate adaptation by lazy optimisation and runtime feedback. A deferred-choice abstraction represents a unified space of alternative structural program variants, allowing static adaptation through model-specific exhaustive calibration with regards to the extrafunctional concerns of runtime, average instantaneous power and total energy usage. Instrumented queues serve as mechanism for structural composition and provide a representation of extrafunctional state that allows realisation of a market-based decentralised coordination heuristic for competitive resource allocation and the Lyapunov drift algorithm for cooperative scheduling

    The ParaPhrase project : parallel patterns for adaptive heterogeneous multicore systems

    Get PDF
    Funding: This work has been supported by the European Union Framework 7 grant IST-2011-288570 “ParaPhrase: Parallel Patterns for Adaptive Heterogeneous Multicore Systems”This paper describes the ParaPhrase project, a new 3-year targeted research project funded under EU Framework 7 Objective 3.4 (Computer Systems) , starting in October 2011. ParaPhrase aims to follow a new approach to introducing parallelism using advanced refactoring techniques coupled with high-level parallel design patterns. The refactoring approach will use these design patterns to restructure programs defined as networks of software components into other forms that are more suited to parallel execution. The programmer will be aided by high-level cost information that will be integrated into the refactoring tools. The implementation of these patterns will then use a well-understood algorithmic skeleton approach to achieve good parallelism. A key ParaPhrase design goal is that parallel components are intended to match heterogeneous architectures, defined in terms of CPU/GPU combinations, for example. In order to achieve this, the ParaPhrase approach will map components at link time to the available hardware, and will then re-map them during program execution, taking account of multiple applications, changes in hardware resource availability, the desire to reduce communication costs etc. In this way, we aim to develop a new approach to programming that will be able to produce software that can adapt to dynamic changes in the system environment. Moreover, by using a strong component basis for parallelism, we can achieve potentially significant gains in terms of reducing sharing at a high level of abstraction, and so in reducing or even eliminating the costs that are usually associated with cache management, locking, and synchronisation.Postprin

    Accelerating sequential programs using FastFlow and self-offloading

    Full text link
    FastFlow is a programming environment specifically targeting cache-coherent shared-memory multi-cores. FastFlow is implemented as a stack of C++ template libraries built on top of lock-free (fence-free) synchronization mechanisms. In this paper we present a further evolution of FastFlow enabling programmers to offload part of their workload on a dynamically created software accelerator running on unused CPUs. The offloaded function can be easily derived from pre-existing sequential code. We emphasize in particular the effective trade-off between human productivity and execution efficiency of the approach.Comment: 17 pages + cove

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world

    Performance-aware component composition for GPU-based systems

    Full text link

    Parallel Patterns for Adaptive Data Stream Processing

    Get PDF
    In recent years our ability to produce information has been growing steadily, driven by an ever increasing computing power, communication rates, hardware and software sensors diffusion. This data is often available in the form of continuous streams and the ability to gather and analyze it to extract insights and detect patterns is a valuable opportunity for many businesses and scientific applications. The topic of Data Stream Processing (DaSP) is a recent and highly active research area dealing with the processing of this streaming data. The development of DaSP applications poses several challenges, from efficient algorithms for the computation to programming and runtime systems to support their execution. In this thesis two main problems will be tackled: * need for high performance: high throughput and low latency are critical requirements for DaSP problems. Applications necessitate taking advantage of parallel hardware and distributed systems, such as multi/manycores or cluster of multicores, in an effective way; * dynamicity: due to their long running nature (24hr/7d), DaSP applications are affected by highly variable arrival rates and changes in their workload characteristics. Adaptivity is a fundamental feature in this context: applications must be able to autonomously scale the used resources to accommodate dynamic requirements and workload while maintaining the desired Quality of Service (QoS) in a cost-effective manner. In the current approaches to the development of DaSP applications are still missing efficient exploitation of intra-operator parallelism as well as adaptations strategies with well known properties of stability, QoS assurance and cost awareness. These are the gaps that this research work tries to fill, resorting to well know approaches such as Structured Parallel Programming and Control Theoretic models. The dissertation runs along these two directions. The first part deals with intra-operator parallelism. A DaSP application can be naturally expressed as a set of operators (i.e. intermediate computations) that cooperate to reach a common goal. If QoS requirements are not met by the current implementation, bottleneck operators must be internally parallelized. We will study recurrent computations in window based stateful operators and propose patterns for their parallel implementation. Windowed operators are the most representative class of stateful data stream operators. Here computations are applied on the most recent received data. Windows are dynamic data structures: they evolve over time in terms of content and, possibly, size. Therefore, with respect to traditional patterns, the DaSP domain requires proper specializations and enhanced features concerning data distribution and management policies for different windowing methods. A structured approach to the problem will reduce the effort and complexity of parallel programming. In addition, it simplifies the reasoning about the performance properties of a parallel solution (e.g. throughput and latency). The proposed patterns exhibit different properties in terms of applicability and profitability that will be discussed and experimentally evaluated. The second part of the thesis is devoted to the proposal and study of predictive strategies and reconfiguration mechanisms for autonomic DaSP operators. Reconfiguration activities can be implemented in a transparent way to the application programmer thanks to the exploitation of parallel paradigms with well known structures. Furthermore, adaptation strategies may take advantage of the QoS predictability of the used parallel solution. Autonomous operators will be driven by means of a Model Predictive Control approach, with the intent of giving QoS assurances in terms of throughput or latency in a resource-aware manner. An experimental section will show the effectiveness of the proposed approach in terms of execution costs reduction as well as the stability degree of a system reconfiguration. The experiments will target shared and distributed memory architectures

    SusTrainable: Promoting Sustainability as a Fundamental Driver in Software Development Training and Education. 2nd Teacher Training, January 23-27, 2023, Pula, Croatia. Revised lecture notes

    Full text link
    This volume exhibits the revised lecture notes of the 2nd teacher training organized as part of the project Promoting Sustainability as a Fundamental Driver in Software Development Training and Education, held at the Juraj Dobrila University of Pula, Croatia, in the week January 23-27, 2023. It is the Erasmus+ project No. 2020-1-PT01-KA203-078646 - Sustrainable. More details can be found at the project web site https://sustrainable.github.io/ One of the most important contributions of the project are two summer schools. The 2nd SusTrainable Summer School (SusTrainable - 23) will be organized at the University of Coimbra, Portugal, in the week July 10-14, 2023. The summer school will consist of lectures and practical work for master and PhD students in computing science and closely related fields. There will be contributions from Babe\c{s}-Bolyai University, E\"{o}tv\"{o}s Lor\'{a}nd University, Juraj Dobrila University of Pula, Radboud University Nijmegen, Roskilde University, Technical University of Ko\v{s}ice, University of Amsterdam, University of Coimbra, University of Minho, University of Plovdiv, University of Porto, University of Rijeka. To prepare and streamline the summer school, the consortium organized a teacher training in Pula, Croatia. This was an event of five full days, organized by Tihana Galinac Grbac and Neven Grbac. The Juraj Dobrila University of Pula is very concerned with the sustainability issues. The education, research and management are conducted with sustainability goals in mind. The contributions in the proceedings were reviewed and provide a good overview of the range of topics that will be covered at the summer school. The papers in the proceedings, as well as the very constructive and cooperative teacher training, guarantee the highest quality and beneficial summer school for all participants.Comment: 85 pages, 8 figures, 3 code listings and 1 table; editors: Tihana Galinac Grbac, Csaba Szab\'{o}, Jo\~{a}o Paulo Fernande
    corecore