
A SELF-MOBILE SKELETON IN THE PRESENCE OF

EXTERNAL LOADS

by

Turkey Alsalkini

Submitted for the degree of

Doctor of Philosophy

Department of Computer Science

School of Mathematical and Computer Sciences

Heriot-Watt University

October 2017

The copyright in this thesis is owned by the author. Any quotation from the report or

use of any of the information contained in it must acknowledge this report as the source

of the quotation or information.

Abstract

Multicore clusters provide cost-effective platforms for running CPU-intensive and
data-intensive parallel applications. To effectively utilise these platforms, sharing
their resources is needed amongst the applications rather than dedicated environ-
ments. When such computational platforms are shared, user applications must
compete at runtime for the same resource so the demand is irregular and hence the
load is changeable and unpredictable.
This thesis explores a mechanism to exploit shared multicore clusters taking into
account the external load. This mechanism seeks to reduce runtime by finding the
best computing locations to serve the running computations. We propose a generic
algorithmic data-parallel skeleton which is aware of its computations and the load
state of the computing environment. This skeleton is structured using the Mas-
ter/Worker pattern where the master and workers are distributed on the nodes of
the cluster. This skeleton divides the problem into computations where all these
computations are initiated by the master and coordinated by the distributed work-
ers. Moreover, the skeleton has built-in mobility to implicitly move the parallel
computations between two workers. This mobility is data mobility controlled by
the application, the skeleton. This skeleton is not problem-specific and therefore it
is able to execute different kinds of problems. Our experiments suggest that this
skeleton is able to efficiently compensate for unpredictable load variations.
We also propose a performance cost model that estimates the continuation time of
the running computations locally and remotely. This model also takes the network
delay, data size and the load state as inputs to estimate the transfer time of the
potential movement. Our experiments demonstrate that this model takes accurate
decisions based on estimates in different load patterns to reduce the total execution
time. This model is problem-independent because it considers the progress of all
current computations. Moreover, this model is based on measurements so it is not
dependent on the programming language. Furthermore, this model takes into ac-
count the load state of the nodes on which the computation run. This state includes
the characteristics of the nodes and hence this model is architecture-independent.
Because the scheduling has direct impact on system performance, we support the
skeleton with a cost-informed scheduler that uses a hybrid scheduling policy to im-
prove the dynamicity and adaptivity of the skeleton. This scheduler has agents
distributed over the participating workers to keep the load information up to date,
trigger the estimations, and facilitate the mobility operations. On runtime, the skele-
ton co-schedules its computations over computational resources without interfering
with the native operating system scheduler. We demonstrate that using a hybrid ap-
proach the system makes mobility decisions which lead to improved performance and
scalability over large number of computational resources. Our experiments suggest
that the adaptivity of our skeleton in shared environment improves the performance
and reduces resource contention on nodes that are heavily loaded. Therefore, this
adaptivity allows other applications to acquire more resources. Finally, our exper-
iments show that the load scheduler has a low incurred overhead, not exceeding
0.6%, compared to the total execution time.

In the name of Allah, Most Gracious, Most Merciful,
<< Taught man what he did not know >> (Qur’an, 95:5)

<< My Lord, enable me to be grateful for Your favour which You have
bestowed upon me and upon my parents and to do righteousness of
which You approve. And admit me by Your Mercy into [the ranks of]
Your righteous servants. >> (Qur’an, 27:19)

i

Acknowledgements

All praises are due to Allah for His boundless and, in particular, for giving me good
health, the strength of determination and support to perform this work.

I am forever indebted to my supervisor, Greg Michaelson, for his support and
encouragement to accomplish this research. He was not only a supervisor, but also,
he was the best friend who offered his continuous advice and encouragement during
my PhD study. Weekly meetings have given me the power to proceed when I was
down.

A special thank to Prof Phil Trinder for his help with HiPEAC in granting me
an internship in Samsung.

I am very grateful to the people in the department of computing at Heriot-Watt
University for providing valuable assistance. I am very thankful to my examiners Jon
Kerridge and in particular Hans-Wolfgang Loidl for his time and useful comments.

I acknowledge my gratitude to the people I have been in contact with in Ed-
inburgh and the UK. I am also grateful to many others, all of whom cannot be
named.

Many thanks for the Ministry of Higher Education in Syria for offering me this
scholarship. Also I would like to thank the British Council (HECBP) for their
financial support.

And now it is time to register my profound gratitude to my grandmother who
trained me, taught me and encouraged me to face the life challenges. To my mum
for her love, help, and belief in me. To my beautiful angel, Nouha, who I met and
bewitched me with her eyes and smile. She has been a constant source of strength
and inspiration. She gave me the happiness and deep joys of sharing in Love. To
my grandfather who passed away. To my aunt for her constant encouragement and
support. To my uncles, brother, sisters for all their emotional support and limitless
love. Also I would like to take this opportunity to express my gratitude to my friend
and graduate class mate, Bassel, who has been detained and killed in the prison in
Syria. To all my friends who I met during my life.

To my country Syria and people who suffered from long years of displacement
and suffering. To the martyrs, detainees and all innocent people who are suffering
throughout these years.

This thesis is therefore dedicated to them.

ii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Contribution . 3

1.3 Thesis Structure . 5

1.4 Publications . 6

2 Literature Review 7

2.1 Parallel Computing . 8

2.1.1 Parallel Architectures . 8

2.1.1.1 Distributed Memory Architectures 9

2.1.1.2 Shared Memory Architecture 10

2.1.1.3 Multi/Many-core Architectures 11

2.1.2 Parallel Programming Patterns 12

2.1.3 Parallel Programming Models 13

2.1.3.1 Distributed Memory Systems 14

2.1.3.2 Shared Memory Systems 15

2.2 Skeletons for Parallel Computing . 16

2.2.1 Skeleton Types . 17

2.2.2 Advantage of Using Skeletons 18

2.2.3 Skeletons in Parallel Environments 19

2.3 Parallel Cost models . 26

2.3.1 Constrained Parallel Programming Paradigms 28

2.3.2 Cost Models . 29

2.3.2.1 PRAM Cost Models 30

iii

2.3.2.2 LogP Cost Models 30

2.3.2.3 BSP Cost Models . 31

2.3.2.4 DRUM Cost Models 33

2.3.2.5 System-Oriented Cost Models 33

2.3.2.6 Skeleton Cost Models 34

2.4 Scheduling . 37

2.4.1 Scheduling Model . 38

2.4.2 Challenges of Application Scheduling 39

2.4.3 Load Management . 40

2.4.3.1 Static and Dynamic Load Management 40

2.4.3.2 Strategies of Dynamic Load Management 42

2.5 Mobility . 43

2.5.1 Mobility Models . 44

2.5.2 Properties of Mobile Systems 45

2.5.3 Advantages of Mobility . 46

2.5.4 Code Mobility . 47

2.5.5 Agent-based Systems . 48

2.5.6 Autonomic Systems . 49

2.6 Summary . 50

3 Self-Mobile Skeleton 53

3.1 Pragmatic Manifesto . 53

3.2 HWFarm Skeleton . 55

3.2.1 Motivation . 55

3.2.2 Skeleton Design . 57

3.2.2.1 Static Skeleton . 58

3.2.2.2 Mobility Support . 61

3.2.3 Host Language . 62

3.2.4 Skeleton Implementation . 63

3.2.4.1 Dealing with Data 63

3.2.4.2 Allocating Model . 69

iv

3.2.4.3 Implementation Summary 69

3.2.4.4 Mobility . 78

3.2.4.5 Prototype . 81

3.2.4.6 Skeleton Initialisation and Finalization 83

3.2.5 Using the HWFarm Skeleton 83

3.2.6 Skeleton Assessment . 89

3.3 Experiments . 90

3.3.1 Platform . 90

3.3.2 Skeletal Experiments . 90

3.4 Summary . 92

4 Measurement-based Performance Cost Model 94

4.1 Performance Cost Model . 94

4.1.1 Cost Model Design . 95

4.1.2 The HWFarm Cost Model . 99

4.1.2.1 Mobility Cost . 102

4.1.3 Changes to the HWFarm skeleton 111

4.2 Cost Model Validation . 111

4.2.1 Execution Time Validation . 111

4.2.1.1 Regular Computations 112

4.2.1.2 Irregular Computations 115

4.2.2 Mobility Decision Validation 118

4.2.3 Mobility Cost Validation . 120

4.3 Summary . 122

5 Optimising HWFarm Scheduling 125

5.1 HWFarm Scheduler . 125

5.1.1 HWFarm Scheduler Components 127

5.1.2 HWFarm Scheduler Properties 127

5.1.3 Scheduling Policies . 128

5.1.3.1 Load Information Exchange 129

v

5.1.3.2 Transfer Policy . 133

5.1.3.3 Mobility Policy . 135

5.2 HWFarm Scheduling Optimisation 141

5.2.1 Accurate Relative Processing Power 141

5.2.2 Movement Confirmation . 142

5.3 Overhead . 142

5.3.1 Allocation Overhead . 143

5.3.2 Load Diffusion Overhead . 144

5.3.2.1 Overhead at the Load Agent 145

5.3.2.2 Overhead at the Workers 146

5.3.2.3 Overhead at the Master 147

5.3.3 Mobility Overhead . 147

5.3.4 Overhead Summary . 149

5.4 Scheduling Evaluation . 151

5.4.1 Mobility Behaviour Validation 151

5.4.2 Mobility Performance Validation 153

5.5 Summary . 155

6 Generating Load Patterns 157

6.1 Introduction . 158

6.2 Design and Implementation . 159

6.2.1 Load and Scheduling . 159

6.2.2 Load Function Design . 160

6.2.3 The Implementation . 162

6.3 Load Function Evaluation . 163

6.3.1 The Load Function Impact . 165

6.3.2 Load Balancing . 166

6.3.3 Work Stealing . 168

6.3.4 Mobility . 169

6.4 Summary . 169

vi

7 Evaluation 171

7.1 Introduction . 171

7.2 Parallel Pipeline . 173

7.3 Scalability . 177

7.4 Adaptivity . 179

7.5 Summary . 185

8 Conclusion and Future Work 186

8.1 Summary . 186

8.2 Limitations . 190

8.2.1 MPI Compatible Platforms 190

8.2.2 Program Pattern . 190

8.2.3 Granularity . 190

8.2.4 GPU Architectures . 191

8.3 Future Work . 191

8.3.1 Data Locality and Mobility 191

8.3.2 Fault Tolerance . 192

8.3.3 Memory and Cache . 192

8.3.4 New Skeletons . 192

8.3.5 Dynamic Allocation Model . 192

A Applications Source Code 194

A.1 Square Numbers Application . 194

A.2 Matrix Multiplication Application . 195

A.3 Raytracer Application . 197

A.4 Molecular Dynamics Application . 209

A.5 BLAST Application . 212

A.6 findWord Application . 214

B The HWFarm Skeleton Source Code 223

B.1 The HWFarm Function Header File 223

B.2 The HWFarm Function Source Code 224

vii

Bibliography 260

viii

List of Tables

2.1 Skeletons summary. 27

4.1 Parameters of the HWFarm cost model. 102

4.2 Summary of the results of mobility decision validation in Matrix Mul-

tiplication. 119

4.3 Summary of the results of mobility decision validation in Raytracer. . 120

4.4 Mobility cost validation with Matrix Multiplication. 123

4.5 Mobility cost validation with Raytracer. 124

5.1 The local estimated times of all tasks at worker 3. 138

5.2 Estimated move costs to the remote workers. 138

5.3 The final move report of the estimation algorithm. 141

5.4 The characteristics of the architectures used in the overhead investi-

gation. 144

5.5 The measured times of the allocation overhead. 145

5.6 The measured overhead for collecting the load information. 145

5.7 The measured overhead at one worker process. 146

5.8 The measured overhead at the master. 147

5.9 Measurements of the sub-operations of the mobility overhead. 148

5.10 The measured times to execute the Matrix Multiplication application

and its overhead. 150

5.11 The measured times to execute the Raytracer application and its

overhead. 150

5.12 The improvement in the performance in the presence of external

load(Matrix) . 154

ix

5.13 The improvement in the performance in the presence of external

load(Raytracer) . 155

6.1 The precision of load generation by the load function. 166

6.2 The impact of the load function on the system. 166

6.3 Work Stealing with the number of tasks processed on each core (bold

number refers to the number of tasks processed on a loaded core) . . 168

7.1 The sizes and number of tasks of some applications. 180

7.2 The cases of running the HWFarm problems. 181

7.3 Summary of the execution times and the improvements for all appli-

cations. 181

x

List of Figures

2.1 Shared Memory Architectures. 8

2.2 Distributed Memory Architectures. 9

3.1 The effect of running multiple applications on the same processor. . . 56

3.2 The HWFarm structure. 58

3.3 The HWFarm structure with mobility. 62

3.4 Sequential and parallel programs. 64

3.5 Task structure in the HWFarm skeleton. 64

3.6 The distribution of data in the HWFarm skeleton.(I: Input, O: Out-

put, S: State, P: Program). 67

3.7 The distribution of tasks based on the allocation model. 8: 8-core

node; 24: 24-core node; 64: 64-core node. 70

3.8 Allocating MPI processes into cluster nodes. 71

3.9 Master/Worker cooperation. 71

3.10 Tasks table at one worker. 76

3.11 An overview of the mobility operation in the HWFarm skeleton. . . . 78

3.12 Step a of the mobility operation in the HWFarm skeleton. 80

3.13 Step b of the mobility operation in the HWFarm skeleton. 80

3.14 Step c of the mobility operation in the HWFarm skeleton. 80

3.15 Step d of the mobility operation in the HWFarm skeleton. 81

3.16 The main loop of the user function. 87

3.17 The execution time and the speedup when using the HWFarm skele-

ton to solve 2000*2000 Matrix Multiplication problem. 91

xi

3.18 The execution time and the speedup when using the HWFarm skele-

ton to solve Raytracer problem with 100 rays. 92

4.1 Deng’s cost model . 100

4.2 The HWFarm cost model . 101

4.3 The HWFarm cost model with its parameters. 103

4.4 The scaled transfer times compared to the scaled data-sizes. 105

4.5 The scaled transfer times compared to the scaled relative processing

power. 107

4.6 The relationship between the transfer time and the network latency. . 108

4.7 The scaled transfer times compared to the scaled network latency. . . 109

4.8 Execution time validation of Matrix Multiplication with one task. . . 112

4.9 Execution time validation of Matrix Multiplication with two tasks. . . 113

4.10 Execution time validation of Matrix Multiplication with four tasks. . 113

4.11 Execution time validation of Matrix Multiplication with eight tasks. . 114

4.12 Summary of the estimation accuracy in validating the execution time

in Matrix Multiplication. 114

4.13 Example of 2D Raytracer problem with 3 objects in the scene. 115

4.14 Execution time validation of Raytracer with one task. 116

4.15 Execution time validation of Raytracer with two tasks. 116

4.16 Execution time validation of Raytracer with four tasks. 117

4.17 Execution time validation of Raytracer with eight tasks (100 rays). . 117

4.18 Summary of the estimation accuracy in validation the execution time

in Raytracer. 118

4.19 Execution times for a Matrix Multiplication task (2000*2000) on 2

locations . 119

4.20 Execution times for a task (raytracer with 40 rays) on 2 locations . . 120

5.1 The circulating approach used to diffuse the load information in HW-

Farm. 133

5.2 Load state of a normal loaded node. 134

5.3 Load state of a highly loaded node. 134

xii

5.4 An example showing how the HWFarm scheduler reschedules the

tasks when worker 3 becomes highly loaded. 137

5.5 Stage A of the estimation operation at worker 3. 139

5.6 Stage B of the estimation operation at worker 3. 139

5.7 Stage C of the estimation operation at worker 3. 140

5.8 Stage D of the estimation operation at worker 3. 140

5.9 Stage E of the estimation operation at worker 3. 141

5.10 The mobility behaviour of 10 tasks on 3 workers(Matrix Multiplication)152

5.11 The mobility behaviour of 8 tasks on 3 workers(Raytracer) 153

6.1 The load function design. 161

6.2 The load function structure. 163

6.3 The required and actual load in node 4. 164

6.4 The required and actual load in the node with other changes in the

load (adaptive mode). 165

6.5 Load balancing (static/dynamic) under load changes. 167

6.6 The load pattern applied to Raytracer and its impact on moving tasks

between workers. 169

7.1 The pipeline approach. 173

7.2 Parallel pipeline with skeletons. 174

7.3 The structure of the HWFarm skeleton to solve a findWord example. 174

7.4 The load pattern and the mobility behaviour of tasks at at Worker 1. 175

7.5 The load pattern and the mobility behaviour of tasks at at Worker 2. 175

7.6 The load pattern and the mobility behaviour of tasks at at Worker 3. 176

7.7 The load pattern and the mobility behaviour of tasks at at Worker 4. 176

7.8 Task 1 and its locations in the findWord problem. 177

7.9 Task 7 and its locations in the findWord problem. 177

7.10 The execution times of running the findWord problem using the HW-

farm skeleton. 178

7.11 The execution times of running the N-body problem using the HW-

farm skeleton. 179

xiii

7.12 Mapping the tasks on worker 1 for case AllOff. 182

7.13 Mapping the tasks on worker 1 and worker 2 for case POn. 183

7.14 Mapping the tasks on worker 1 and worker 2 for case MOn. 184

7.15 Mapping the tasks on worker 1 and worker 2 for case BOn. 185

xiv

Chapter 1

Introduction

1.1 Context

In recent years, there has been a dramatic increase in the amount of available com-

pute and storage resources. Emerging multicore clusters offer popular high per-

formance computing platforms for commercial and scientific applications. These

clusters are either dedicated or non-dedicated. Dedicated clusters are expensive

and rare resources while non-dedicated clusters provide sharing resources amongst

multiple applications.

The increasing availability of shared resources on parallel platforms associated

with the growing demand for parallel applications leads to load variations and re-

source contention. Resource contention occurs when multiple processes or threads

are sharing and competing to acquire processing units. Such contention has a major

impact on the performance of the running applications. Hence, resource contention

implicitly leads to poor performance, high energy consumption, and application slow

down and high latency.

In this thesis, we address the problem of exploiting non-dedicated multicore clus-

ters taking into consideration resource contention under unpredictable workloads.

To achieve a desired performance, a framework has been proposed to solve prob-

lems and run algorithms in the shortest time in the presence of external load. This

framework is designed using skeletal programming approach. This approach is able

to manage the complexity of developing parallel computational applications and ex-

1

Chapter 1: Introduction

ploit easily a parallel computing platform. In this context, our skeleton/framework

works as a user-space parallel application that maintains to divide the problem into

sub-problems, computations, and run them on the nodes of the cluster concurrently

where the skeleton has distributed components hosted on these nodes to harness the

computing power of the multicore cluster.

To be adaptive to the variations of the competitive workload, a scheduling policy

has been provided. As a result, this scheduler is load-aware, performance-oriented

where it takes into consideration the external load and performs pre-emptive schedul-

ing of the parallel computations to meet the performance goal, reducing the total

execution time.

Because the variations of workload are changeable and unpredictable, gathering

system information to perform better rescheduling decisions is needed along with

a dynamic mechanism that takes appropriate decisions. Accordingly, the scheduler

uses a measurement-based performance cost model to predict the behaviour of the

parallel computations on a running architecture by deriving a mathematical formula

that expresses the completion time of the given computations. In this model, we

address architecture specific metrics such as resource usage and availability. Fur-

thermore, the behaviour of the parallel computations and network status are also

considered.

The rescheduling behaviour of our skeleton is implemented using a pre-emptive

approach. This approach requires moving the live computations amongst the nodes

of the clusters looking for better computational power to serve these computations

faster. The skeleton is enhanced with a built-in mobility support implemented im-

plicitly in the skeleton. The mobility of the skeleton computations is driven by the

CPU load of the nodes where those computations run. So once a node becomes

highly loaded, a move will be produced for better utilisation of computational re-

sources of that node and to meet the application performance goal. Mobility is an

appropriate solution when resource contention happens.

Thus, our research question is how can we enable parallel programs to adapt to

a dynamically changing environment, to minimise effects on run-times? To sum-

2

Chapter 1: Introduction

marise our answer, this thesis proposes a data-parallel generic skeleton that is able

to harness the computational power of non-dedicated multicore clusters taking into

account resource contention in the presence of external loads. This skeleton seeks

to find the best computational power to execute its computations faster. Hence

the performance goal of the skeleton is application-specific. This makes our skele-

ton selfish in meeting its performance metric which is sometimes bad in terms of

shared computing platforms. But, our experiments show that the skeleton somehow

improves the global load balancing and application throughput of the whole sys-

tem. Moreover, the experiments suggest that the skeleton is scalable and produces

speed-up when running different problems. Also, the experiments show significant

improvement of the performance and how the skeletons compensate for the load

variations. Our skeleton can be used by programmers to solve problems in parallel.

1.2 Contribution

The contributions of this research are as follow:

• We present a data-parallel skeleton called HWFarm for multicore clusters.

Multicore clusters provide standard general purpose platforms in terms of

computing. This skeleton is designed using Master/Worker pattern and im-

plemented using the C programming language and MPI as a communication

library for distributed memory architectures. Therefore, this skeleton works

best in parallel platforms compatible with MPI. For local collaboration on

the nodes, the PThreads library has been used. This skeleton reallocates its

computations/tasks amongst the involved nodes using a built-in mobility ap-

proach. This approach uses strong mobility with data mobility where the

skeleton saves the execution state of its computations, transfers them, and

resumes their execution. Experiments showing the mobility behaviour of the

skeleton tasks suggest that the skeleton is able to improve the performance

when running problems over shared parallel environments under high loaded

conditions. Our experiments show that the HWFarm skeleton is able to miti-

gate the resource contention by dynamically moving its tasks across the nodes

3

Chapter 1: Introduction

of the cluster.

• To manage the mobility behaviour of the skeleton, we provide the HWFarm

skeleton with a load scheduler which is autonomously responsible for taking

mobility decisions and managing load information. The mobility decision is

taken using a performance cost model that uses dynamic measures obtained

from the environment, the running program, and the load state of the system.

The cost model is dynamic where the external load changeable and unpre-

dictable at run-time. The environment measures are the characteristics of the

nodes where the skeleton runs. Moreover, the information of the running pro-

gram includes the progress of the program. Finally, the load state reflects the

current internal and external load. The load state is crucial in taking move-

ment decisions. Consequently, this model is dynamic, problem-independent,

language-independent, and architecture-independent. This enhances the adap-

tivity of the HWFarm skeleton.

• We explore a mechanism to generate artificial CPU loads to degrade system

performance on multicore architectures and control the resource usage. This

leads to a novel load function which may be instantiated to generate pre-

dictable patterns of load in a dedicated system to simulate different control-

lable load scenarios that may occur in a shared distributed non-dedicated

system. The generated load is dynamic, precise and adaptive. We present

a new tool which helps in evaluating experiments that depend on changes in

the load in multi-processor and multi-core environments. Examples of exper-

iments that can be evaluated using the load function are the static/dynamic

load balancing, work stealing and mobility experiments. This tool might be

used in a homogeneous setting to simulate a heterogeneous environment by

giving differential constant loads to the processing elements with the same

characteristics. It might also be used to simulate different patterns of system

component failure by giving processing elements infeasibly large loads.

4

Chapter 1: Introduction

1.3 Thesis Structure

The structure of this thesis is as follow:

Chapter 2 introduces concepts of parallel computing, skeletal programming,

mobility, scheduling, and cost modelling. Furthermore, this chapter provides a sur-

vey of skeletons and parallel programming languages that support the skeletal-based

approach.

Chapter 3 gives an overview about designing skeletal-based systems. Then we

propose the design of the HWFarm skeleton and the implementation of our skeleton.

Furthermore, we explore how we support our skeleton with a mobility mechanism

that enables it to move its live computations amongst nodes. Moreover, we discuss

the usability of this skeleton and provide guides about how to run different types of

problems with some assumptions/restrictions.

Chapter 4 introduces the performance cost model used in the HWFarm skele-

ton. This chapter describes how the cost model is aware to the environment load

state and the computation behaviour. Furthermore, experiments are performed to

evaluate the decisions taken by this cost model. These experiments show the accu-

racy of these decisions in terms of completion times, mobility decisions and mobility

costs. Furthermore, this chapter shows that these decisions lead to improve of the

performance of the skeleton and meet the performance goal.

Chapter 5 proposes the load scheduler used in the HWFarm skeleton. This

scheduler uses a circulating approach to diffuse the load information in order to

provide the most recent load information to all participated nodes. Moreover, this

chapter discusses in depth how this scheduler uses a measurement-based cost model

to take movement decisions that can be used to produce a new schedule. Evalu-

ation experiments have been carried out to demonstrate the improvement of the

performance and the mobility behaviour. This chapter also demonstrates that the

scheduling and cost operations incur low overhead compared to the total execution

time.

Chapter 6 presents a tool implemented as a load function that generates dy-

namic, adaptive load patterns across multiple processors. This load function is

5

Chapter 1: Introduction

highly effective in a shared dedicated system for simulating patterns of load changes.

Moreover, this chapter shows that this function has minimal impact in an experi-

mental setting.

Chapter 7 explores the evaluation of HWFarm on a range of applications with

different characteristics. It also demonstrates the usability of the skeleton over large

scale applications. Furthermore, this chapter evaluates the adaptivity feature of the

HWFarm skeleton that has a large positive impact on all applications running on

shared nodes.

Chapter 8 gives a summary of the thesis, outlines the research direction for

future work, and discusses the limitations of this work.

1.4 Publications

This work has led to three publications. The first paper explains the HWFarm

skeleton design and implementation with its mobility behaviour. The second paper

presents the load function structure and its usability. The third paper propose the

dynamic cost model and the load scheduler to improve the performance eof the

HWFarm skeleton. These published papers are:

• Alsalkini T. and Michaelson G., 2012. Dynamic Farm Skeleton Task Allocation

through Task Mobility. In: 18th International Conference on Parallel and

Distributed Processing Techniques and Applications. Las Vegas, USA, pp.

232-238.

• Alsalkini T. and Michaelson G., 2014. Generating Artificial Load Patterns

on Multi-Processor Platforms. In: 11th International Conference on Applied

Computing. Porto, Portugal, pp. 77-84.

• Alsalkini T. and Michaelson G., 2015. Optimising Data-Parallel Performance

with a Cost Model in The Presence of External Load. In: 12th International

Conference on Applied Computing. Greater Dublin, Ireland, pp. 89-96.

6

Chapter 2

Literature Review

Hardware development has been progressing in the recent years. However, the rise

of multi-core processors has affected the ability of the software developers to har-

ness the resources of these architectures to match their requirements. Designing

parallel and distributed software models to manage the scientific problems is needed

to fully exploit such platforms. These models should offer abstractions of low-level

details to free the developers from this burden. In this thesis, we propose a parallel

framework that aims to harness the compute power of multi-core clusters. In Sec

2.1 we review the development of the architectures and parallel computing as well

as computing platforms used to run parallel applications. Furthermore, the paral-

lel programming models needed to fully exploit such platforms are discussed. This

framework is proposed as a skeleton that encapsulates all coordination and low level

issues. This helps the programmers to focus on their problem rather than spending

too much time dealing with parallel programming details. Algorithmic skeletons are

high-level parallel programming constructs that embed parallel coordination over

sets of locations. A background of algorithmic skeletons and a survey of skeletal-

based libraries/languages have been shown in Sec 2.2. Our skeleton addresses the

resource contention issue in shared platforms. This requires a scheduling policy that

deals with the changeable load conditions in the system and takes appropriate deci-

sions. Dynamic cost modelling and performance models used in the skeletal based

frameworks and structured parallel models are introduced in Sec 2.3. The notions

of scheduling and their techniques are discussed in Sec 2.4. Finally, the skeleton

7

Chapter 2: Literature Review

performs rescheduling activities by moving some parallel computations amongst the

nodes of the clusters. This movement happens autonomously and controlled by the

scheduler. Sec 2.5 reviews the concepts of mobility and autonomous systems.

2.1 Parallel Computing

Parallel computing solves big computational problems by concurrently using mul-

tiple processing elements. Parallelism aims to reduce the total execution time by

decomposing the problem into independent sub-problems and executing them si-

multaneously on a parallel computing platform. Thus, parallelism seeks to achieve

better computational performance.

2.1.1 Parallel Architectures

Parallel computing architectures are the platforms where the computations are con-

currently executed. These architectures are composed of multiple processing ele-

ments, which are connected via some interconnection networks, and software that

manages those elements to work together [93]. The processing units communicate

with each other using either distributed or shared memory approach. See Figure 2.2

and 2.1 that show the components of distributed and shared memory architectures,

respectively.

Figure 2.1: Shared Memory Architectures.

The most popular classification of computer architectures was defined by Flynn

[100]. In this taxonomy, there are two types of streams: the data stream and

8

Chapter 2: Literature Review

Figure 2.2: Distributed Memory Architectures.

the instruction stream. These streams can be single or multiple. As a result, the

computer architecture categories are: Single-Instruction Single-Data (SISD), Single-

Instruction Multiple-Data (SIMD), Multiple-Instruction Single-Data (MISD), and

Multiple-Instruction Multiple-Data (MIMD). The single-processor computers are

classified as SISD systems while the parallel systems are either SIMD or MIMD.

However, we here introduce a survey of parallel architecture and their parallel

programming models according to memory access. Recent surveys can be found in

[21, 138, 82].

2.1.1.1 Distributed Memory Architectures

Distributed memory systems are parallel architectures in which each processor unit

has only access to its own local memory. The processing units of distributed mem-

ory architectures are connected in several ways ranging from architectural-specific

structure to geographical spread networks. Examples of these systems are:

• Distributed Memory Multiprocessor :

Distributed memory multiprocessor systems consist of multiple processing el-

ements that connect to each other via interconnection networks. In these sys-

tems, there is no global memory, so that the processor needs message passing

approach to access remote data [181].

• Multicomputer :

A multicomputer is a distributed memory multiprocessor where the processors

are physically close to each other and connected through high-speed intercon-

9

Chapter 2: Literature Review

nection network [19].

• Clusters :

A cluster is a parallel computing system that consists of a set of computers

interconnected with each other by a network to comprise a computing system

[49]. Each computer in a cluster may have a single processor or multiple pro-

cessors and connects to other computers via a LAN (Local Area Network).

The nodes, the computers in the cluster, can work together as an integrated

computing resource or they can operate individually. Hence, clusters provide

cost-effective environments that offer computing services for solving high per-

formance problems. An example of a cluster is a Beowulf system which is a

scalable cluster hosted by open source software [209]. A Beowulf system is

composed of group of nodes incorporated in personal computers and based on

a private system network. In this thesis, we are studying this architecture as

one of parallel computing platforms.

• Grid :

A Grid is a system for sharing the computational resources, such as data

storage, I/O capacity, or computing power, over the Internet [102, 103]. A

computational Grid is a mechanism to access shared computational resources

in a scalable, secure, high-performance manner. Those who use a Grid are

able to share and use computational resources in geographically distributed

locations.

2.1.1.2 Shared Memory Architecture

A shared memory system is a category of parallel architectures where each pro-

cessing unit has access to a global memory. Through this memory, the processes

communicate, coordinate, and synchronise with other processes in the system [93].

In such systems, there are independent processors connected with memory modules

via an interconnection network. In terms of memory access, shared memory systems

can be categorised in three categories:

• Uniform Memory Access (UMA): In UMA, the shared memory locations are

10

Chapter 2: Literature Review

accessible by all processors with the same access time. These systems are also

known as Symmetric Multiprocessor (SMP). An Example of this architecture

is PMC-Sierra RM9000x2 [192].

• Non-uniform Memory Access (NUMA): NUMA is a memory organisation

where each processor has part of the shared memory. In these systems, the

access times are not equal due to the distance between the processor and the

memory module. For an example, see the Intel Single-chip Cloud Computer

(SCC) [164].

• Cache-Only Memory Access (COMA): In COMA, the shared memory com-

prises cache memory and the address space is made of all the caches. In this

case, part of the shared memory and a cache directory are attached to each

processor. The Swedish Institute of Computer Sciences Data Diffusion Ma-

chine (DDM) [113] is an example of this architecture. Another example is

KiloCore [39] which is a chip that has 1000 cores and 12 memory modules.

This chip is developed by the VLSI Computation Laboratory (VCL) at UC

Davis.

2.1.1.3 Multi/Many-core Architectures

Computer manufacturers initially made chips with one processor. Producing faster

processors requires increasing the number of transistors and raising the clock speed.

Due to the limit on the scaling of clock speeds, which is known as the power wall,

manufacturers turned to multicore architectures to overcome the space and over-

heating issues. In this architecture, the chips have two or more processors (cores)

and share hardware caches [120]. Multicore architecture is an effective example of

a shared memory architecture where the communication amongst cores is fast and

the bandwidth is high.

Another core-based approach has been introduced in parallel programming. This

approach, which is known as many-core, uses a large number of small cores. An

example of a many-core architecture is the Graphical Processing Unit (GPUs) [125]

where a GPU is a special-purpose SIMD processor initially designed for a particular

11

Chapter 2: Literature Review

class of applications [178]. Recently, GPUs have been employed to perform general

purpose applications GPGPU [232].

2.1.2 Parallel Programming Patterns

Effective use of parallel architectures involves dividing a problem into computations

that can be of executed on available processing units. Parallelising a problem can

be several kinds: data, task, or pipeline parallelism [163, 119].

In terms of parallel programming design, Mattson el al [163] introduced a pat-

tern language that provides patterns to help users in developing parallel programs.

This language has 19 patterns organised into four design phases: Finding Con-

currency, Algorithm Structure, Supporting Structures, and Implementation Mecha-

nisms. However, the patterns that support structure design and correspond to the

parallel programming models are: SPMD (Single Program Multiple Data), Master/-

Worker (task pool), Loop Parallelism (independent iterations), and the Fork/Join

pattern.

• SPMD : In this pattern, each process or thread, performs the same operations

but with different set of data. SPMD can be used either in distributed or

shared memory systems. This pattern provides processes that are easy to

manage, achieves high scalability, and shows close to parallel environment.

• Master/Worker : This pattern involves two kinds of processes: Master pro-

cesses and worker processes. A master process initiates a bag of tasks and sets

a pool of workers. Whilst, a worker process obtains a task from the master

and executes it. All workers run concurrently until the bag becomes empty.

This pattern is typically used in problems that require the workload to be bal-

anced amongst the workers. The Master/Worker pattern has good scalability

and fault tolerance support. A disadvantage of this pattern is the bottleneck

between master and workers but this problem can be avoided if the algorithm

is well implemented.

12

Chapter 2: Literature Review

• Loop Parallelism: In this pattern, the runtime will split up the intensive iter-

ations amongst the processes or threads if they are nearly independent. Loop

parallelism is mainly suitable for shared memory systems. But it also can be

used in a distributed fashion if each loop iteration is really big.

• Fork/Join: This pattern has a main process that creates new processes to

execute some concrete operations. The main process will wait for all forked

processes to join. The Fork/Join pattern is suitable for problems that create

tasks dynamically and good for shared systems. The overhead in this pattern

is related to the cost of creating and destroying the processes.

2.1.3 Parallel Programming Models

Developing parallel applications in a wide range of parallel systems is a complicated

task [49]. Developers are challenged by a variety of issues related to the system

and the programming style. To solve these issues, there are two main approaches:

automatic parallelization and parallel programming [138].

The first approach relies on parallelizing compilers that are used for parallelizing

a sequential program into a version able to execute on a parallel system. Such

compilers are limited to problems that have regular computations and commonly do

not provide useful speedup on distributed memory machines [49]. An alternative to

parallelizing compilers is parallel programming languages which are used to relieve

programmers from the complexity of parallelism. However, these languages are

designed from principles that help to produce a parallel programming language to

deal with the difficulties of parallelism.

The second approach is parallel programming which is based on developer efforts

to exploit parallel architectures. In this approach, developers use a traditional high-

level programing language, like C or Fortran, augmented with a library, such as

PThreads [48], or extended with parallelism support, like CILK [37].

Other ways of parallel programming are providing programming skeletons that

support some parallelization. Skeletal programming will be explained in further

details later.

13

Chapter 2: Literature Review

As mention above, parallel architectures are categorised into shared memory and

distributed memory [207]. Here, we discuss the parallel programming models used

to develop across parallel systems.

2.1.3.1 Distributed Memory Systems

The message passing model is commonly used in distributed memory systems to

move data between processing elements without the need for a global memory. Pro-

gramming using the message passing model has the advantages [85]: portability of

parallel programs as they do not require any hardware support, and the ability to

explicitly control the placement of data on the memory by the programmer. This

model also has disadvantages [49, 85]. The first one is that the programmers have to

manage the tasks of parallelisation, such as: communication, synchronisation, data

distribution, and load balancing. The second disadvantage is that these models may

incur communication overhead due to the time needed for processes to communicate.

Message passing model suits the SPMD parallel programming pattern in addition

to the Master/Worker pattern [163].

Examples of message-passing models:

• MPI : Message Passing Interface is a library of routines to connect processes

that are located across the distributed memory system [112]. This library

can be bound to C, C++, Fortran, Java, etc. MPI operations are classi-

fied as point-to-point and collective routines. Point-to-point routines, such

as send/receive, provide communication between two processes. Collective

routines ease communication amongst groups of two or more processes.

• PVM : Parallel Virtual Machine is a software environment that uses the mes-

sage passing model to exploit heterogeneous distributed processing elements.

PVM makes a set of computing units appear as a virtual computing system

[27].

14

Chapter 2: Literature Review

2.1.3.2 Shared Memory Systems

In shared memory systems, processes or threads, which execute tasks concurrently,

have access to a global shared memory [93, 19]. The communication amongst pro-

cesses can be accomplished through shared variables or shared communication chan-

nels. Shared memory architectures have low latency and high bandwidth. However,

this raises two issues: consistency and coherency [85]. The consistency issue is raised

when multiple processors try to access or update shared memory locations. There-

fore, a proper memory coherence model should be chosen in designing distributed

memory systems.

Examples include:

• POSIX Threads (Portable Operating System Interface Threads): In this model,

there are several threads, running simultaneously on a shared memory plat-

form [19]. PThreads [48] is introduced as a low level, flexible library of routines

to manage the threads explicitly. This library is used with the C programming

language. Using PThreads, programmers have full control to create, manage,

and destroy threads. Parallelism using this model needs much effort from de-

velopers to avoid race conditions and deadlock. The most appropriate parallel

programming pattern when using this library is the Fork/Join model [163].

• Intel TBB (Intel Threading Building Blocks): Intel TBB is a multithreaded

model in shared memory systems [191]. It is presented as a C++ template

library that manages and schedules threads to run concurrently in order to

execute tasks in parallel. This library also contains various generic algorithms

and supports dependency and data flow graphs as well as offering synchroni-

sation and collective primitives.

• OpenMP (Open Multi Processing): OpenMP is a shared memory based parallel

programming model; it is also known as a multithreaded model [57]. OpenMP

is implemented as an API to provide a set of compiler primitives and runtime

library routines. This API can be used with Fortran, C, and C++. The

parallel program patterns that are suited to OpenMP are loop parallelization,

15

Chapter 2: Literature Review

SPMD, and join/fork pattern.

To combine the ease of writing parallel programs in shared memory systems

with the scalability of the distributed memory environments, the DSM (Distributed

Shared Memory) model has been proposed [185]. In this model, the system is

implemented as shared memory in a distributed memory environment. An example

of a model that uses the DSM approach is PGAS (Partitioned Global Address Space)

[63]. An example of a PGAS language is Chapel [56]. Moreover, UPC (Unified

Parallel C) is a parallel programming language that supports the PGAS model.

UPC is an extension of the programing language C and can be used in shared or

distributed memory environments [220].

For GPU architectures, the SPMD programming model is used as each element is

independent from other elements [178]. To develop applications over GPUs, NVIDIA

proposed CUDA (Compute Unified Device Architecture) as a parallel programming

model [176]. Moreover, OpenCL (Open Computing Language) provides a standard

interface to implement data and task parallelism over heterogeneous platforms [212].

2.2 Skeletons for Parallel Computing

The algorithmic skeleton, according to Cole [65], is an approach in parallel program-

ming to abstract the complexities that exist in the parallel implementations. The

skeleton concept is closely related to functional languages, so higher order functional

structures can be produced by using skeletons [187].

A parallel program can be composed of simple skeletons. These skeletons are

referred to as elementary skeletons. These skeletons abstract the basic operations

of the data parallel model [159]. Furthermore, elementary skeletons may use per-

formance cost measures to achieve effective implementations. Using elementary

skeletons, it is difficult to adapt the architectural characteristics of the wide range

of parallel computing systems. Moreover, acquiring the best performance when com-

posing several elementary skeletons is a very tough job. To solve these issues, exact

skeletons can be used to define complex patterns.

16

Chapter 2: Literature Review

Each skeleton has an implicit parallel implementation hidden from the user; thus,

the main advantage is that the communication and parallelism details are embedded

in the skeleton. The skeletons are equivalent to polymorphic higher order functions

so that there are various kinds of skeletons covering different programs over different

data types [99]. In contrast, skeletons that support particular data structures are

known as homomorphic skeletons. Homomorphic skeletons may deal with lists,

arrays, trees or graphs. Thus, some authors may name skeletons depending on

the data structure that the skeletons support, for example list skeletons, matrix

skeletons, or tree skeletons.

2.2.1 Skeleton Types

In terms of functionality, parallel skeletons can be classified into three types: task-

parallel, data-parallel and resolution skeletons [187, 111]:

• Task-parallel skeletons : In this kind of skeleton, the parallelism will be based

on the task, so there are many function calls in parallel. Examples of task-

parallel skeleton are: the pipe skeleton where computations that are relevant

to different stages can run simultaneously, and the farm skeleton which can

schedule independent tasks across several processing units. This is also known

as Master/Slave. The pipe skeleton can be found in different frameworks such

as SKELib [74] and Muskel [9] while examples of libraries that support the

farm skeleton are JaSkel [98] and Eden [152].

• Data-parallel skeletons : These skeletons apply parallelism by partitioning the

data amongst processors and performing the computation on different parts

concurrently. For examples: the map skeleton applies a function or operation

concurrently over items in a list. The map skeleton is an example of SIMD

parallel programming pattern. The reduce skeleton executes a function or

operation on each pair of elements to form the final result. It is also referred as

scan. The fork skeleton applies different operations on various data elements.

The fork skeleton is an example of a MIMD parallel programming pattern.

Most of the libraries support data-parallel skeletons. For examples P3L [73]

17

Chapter 2: Literature Review

offers the map, reduce and scan skeletons while Calcium [51] library support

the fork skeleton.

• Resolution skeletons : these skeletons are designed as the solution of a family of

problems. An example of a resolution-parallel skeleton is Divide and Conquer

(D&C) which divides the list of elements recursively into two lists until a

condition is met. Then, the D&C skeleton applies a function to the list and

afterwards merges the results back to produce the final result. The D&C

skeleton is provided in many libraries such as Skandium [149] and Calcium

[51]. Another example of resolution-parallel skeletons is Branch and Bound

(B&B) which also branches recursively across the search space. Then, it uses

an objective function to bound the resulting data. An example of libraries

that supports the B&B skeleton is Muesli [62].

2.2.2 Advantage of Using Skeletons

The main target of skeletons in parallel programming is to separate the application

from the implementation [99]. By using skeletons, users can specify the parallel

parts and leave the parallelism complexities to the skeletons.

Skeletons are modelled as higher-order functions able to be customised to specific

applications. However, optimised skeleton implementations, which fit specific lan-

guages and parallel architectures, should be generated to achieve high performance

and portability over various machines.

The main advantages of using algorithmic skeletons in parallel programming are

[49]:

• Programmability : Skeletons hide the low-level details, such as communications

and coordination, from the programmers. Therefore, such solutions help the

programmers to spend more time in optimising the problem. Hence, using

skeletons improves the programmability of the parallel programming systems

and increases the productivity of users.

• Reusability : Skeletons have been built to form generic patterns for developing

18

Chapter 2: Literature Review

the problems that have the same parallel structure. This will increase the

reusability and avoid the repetition of efforts in programming and optimising

the programs that belong to particular parallel template.

• Portability : Portability has considerable importance in parallel applications.

So, skeletons should adapt to the parallel systems and the hardware archi-

tecture. Thus, parallel applications that are developed using skeletons have

ability to run on various platforms.

• Efficiency : Developing parallel applications requires a balance between effi-

ciency and portability. Skeletal-based parallel programming using cost models

can achieve improvement in the performance.

2.2.3 Skeletons in Parallel Environments

Skeletal programming is used to overcome the problems of coordination in parallel

programming by exploiting generic program structures. Much work has been carried

out on skeletal programming for different data types for various parallel architec-

tures. Skeleton implementations may support either a specific parallel architec-

ture or heterogeneous architectures, including shared memory, distributed memory,

multi-core, or many-core architectures. Such skeletons are provided as libraries on

top of a parallelisation mechanism, such as MPI, or a high level parallel language

that supports skeletal constructs. Each skeleton may be associated with a compiler

that translates the high-level functions into source code able to run over the target

hardware. Some implementations may support a list of skeleton patterns: map,

reduce, farm, etc. Others may support one or more types of skeletal programming.

In this section, we are going to review some examples of available skeletons and

parallel programming languages that support the skeletal approach. Other surveys

can be found in [21, 111].

• P3L, SkIE & SkELib

P3L (Pisa Parallel Programming Language), 1992, [73] is a skeleton-based

parallel programming language that provides skeleton constructs. These con-

19

Chapter 2: Literature Review

structs abstract the common patterns of task and data parallelism. P3L is

associated to a template-based compiler that is used to optimise the imple-

mentation of templates to a specific architecture. Moreover, the P3L compiler

can use a performance cost model to help in allocating resources corresponding

to parallel systems.

SkIE (Skeleton-based Integrated Environment), 1999, [24] is a coordination

language similar to P3L. This language enables the user to interact with graph-

ical tools to compose skeletal parallel modules. Furthermore, this language

provides advanced tools such as visualisation, performance analysis and de-

bugging tools.

SkELib, 2000, [74], which is a C library, inherits from P3L and SkIE and uses

a template-based system.

• SCL

SCL (Structured Coordination Language), 1995, [77] is a skeletal program-

ming language that supports various commonly used data structures through

configuration skeletons. Furthermore, SCL offers data-parallel skeletons, like

map, and task-parallel skeletons, like farm, using elementary skeletons and

computation skeletons, respectively.

• Skil

Skil, 1996, [43] is an imperative language supported with higher-order func-

tions and a polymorphic type system. Skil offers data and task parallelism over

parallel distributed architectures. Skeletons in Skil language are not nestable.

• HDC

HDC (Higher-order Divide and Conquer), 2000, [121] is a sub set of Haskell

that uses a higher-order functional style. It has many implementations of

the Divide and Concur paradigm starting from the general model to concrete

cases such as multiple block recursion and elementwise operations. Therefore,

it supports resolution parallelism over distributed platforms.

• Muskel & nmc

20

Chapter 2: Literature Review

Muskel, 2001, [9], provides nestable skeletons for data and task parallelism

and exploits a macro data flow model to achieve parallelism. Muskel gives

users a skeletal-based parallel programming system by targeting parallel dis-

tributed architectures. Furthermore, Muskel has features that optimise the

performance such as load balancing and resource usage. Much work has been

done on skeletal extensibility [9] and combining structured with unstructured

programming [72].

Nmc, 2010, [10] is the multicore version of the Muskel library. This version

provides some skeletons to run on multicore clusters.

• ASSIST

ASSIST, 2002, [223] is a structured programming language that uses a module-

described graph to express parallel applications. It has performance optimisa-

tion through controlling resource usage and supporting load balancing.

• SkiPPER

SkiPPER, 2002, [198] is a library of skeletons for vision applications in Caml

with type safety. Skeletons in SkiPPER are either declarative or operational.

• Mallba

Mallba, 2002, [8] is a skeletal-based library for combinational optimisation.

Mallba provides three generic resolution methods: exact, heuristic, and hybrid

with three different implementations: sequential, parallel in local area, and

parallel in wide area.

• Llc language

Llc, 2003, [87] is a high-level parallel programming language that offers sup-

port for four skeletons: forall, parallel sections, task farms and pipelines [8].

Skeletons with Llc can be executed on multicore or distributed systems. Llc

uses a compiler that generates MPI code based on OpenMP like directives. A

new approach to generate a hybrid MPI/OpenMP code has been developed to

control the communication on the node itself and amongst the nodes [194].

• Alt & HOC-SA

21

Chapter 2: Literature Review

Alt, 2003, [16, 15] a Java-based Grid programming system composed of a set

of skeletons. These skeletons are provided as services to the clients on parallel

distributed systems. It supports a data-parallelism approach over shared dis-

tributed memory architectures.

HOC-SA (Higher-Order Components-Service Architecture), 2004, [91] encap-

sulates the Alt approach to support parallelism. In HOC-SA, clients send the

code and the data to be executed to servers with a skeleton description flow.

Once the execution completes, the result is delivered to the users.

• Lithium

Lithium, 2003, [12] is a Java library that provides nestable skeletons to support

data and task parallelism. Lithium is implemented with a macro data flow

implementation model. In this model, the nodes in the data flow graph host a

piece of code to be executed on the computational units. Extensions of Lithium

have been proposed for performance optimisation such as load balancing.

• Eden

Eden, 2005, [152] is an extension of Haskel. It supports task and data par-

allelism over distributed memory environments. It also supports automatic

communication between processes. Many extensions have been proposed for

Eden such as a flexible distributed work pool skeleton [83] in 2010 and a skele-

ton iteration framework [84] in 2012.

• eSkel

eSkel (Edinburgh Skeleton Library), 2005, [29] is a C library that offers a set of

skeletons over the MPI model. This library supports data and task parallelism

on parallel distributed systems. eSkel provides two skeleton modes, nesting

and interaction. In terms of performance, eSkel uses empirical methods and

the Amoget process algebra for resource allocation and scheduling.

The Edinburgh group has done much work on the adaptive approach through

presenting a parallel pipeline pattern [110].

• JaSkel

22

Chapter 2: Literature Review

JaSkel, 2006, [98] is a skeleton based framework in Java. It provides nestable

skeletons that can run on different platforms. JaSkel skeletons execute sequen-

tially, concurrently on shared memory systems, or in parallel on clusters.

• QUAFF

QUAFF, 2006, [97] is a C++ and MPI based skeleton library that uses a

template-based meta-programming approach to reduce overhead and enable

compile time optimisation. QUAFF provides a set of nested skeletons on

parallel distributed environments. Moreover, QUAFF uses type checking and

C++ templates to generate new C/MPI code at compile time.

• SkeTo

SkeTo, 2006, is a C++ library that provides a set of operations on parallel

data structures, such as list, on distributed memory systems [162]. This li-

brary provides parallel skeletons based on the BMF programming model [32].

SkeTo supports nestable skeletons for data and resolution parallelism. To op-

timise SkeTo, a fusion transformation approach has been provided in order to

reduce the overhead. A new version of SkeTo has been proposed in 2009 to

work on multicore architectures [136]. In the multicore version, SkeTo offers

a number of skeletons that manage the dynamic scheduling using the size of

cache. Recently, a new version with list support has been released [160] in

2010. In this version, the skeletons are equipped with fusion optimisation that

is implemented based on an expression templates programming technique.

• AMSs

AMSs (Autonomous Mobility Skeletons), 2007, [80] are higher order functions

that support autonomous mobility. These skeletons are guided by a cost model

which makes them aware of the load changes on the network.

• Calcium

Calcium, 2007, [51] is a library of skeletons in Java. This library supports

nestable data and task parallel skeletons on parallel distributed architectures.

Moreover, Calcium provides additional features that help in improving the

23

Chapter 2: Literature Review

performance such as a performance tuning model.

• TBB

TBB (Threading Block Building), 2007, [191] is a pattern-based library, de-

veloped by Intel, for parallel applications on multicore architectures. TBB

provides a wide range of parallel patterns such as, for, reduce, sort, in addi-

tion to some patterns. TBB offers concurrent data structures and gives the

programmer ability to control other threads, task scheduling, and granularity.

Major industry powerhouses have developed similar frameworks, TPL, 2009,

[147] from Microsoft, MapReduce, 2008, [79] from Google, Hadoop, 2012, [228]

and Phoenix, 2007, [189] from Apache, and BlockLib, 2008 [14] from IBM.

• Muesli

Muesli, 2009, [62] is a skeleton library that offers skeletons through C++

methods. This library provides nestable skeletons for data and task parallelism

and supports parallel distributed architectures. Muesli was extended in 2010

to support multicore parallel programming [61].

• Skandium

Skandium, 2010, [149], like Calcium, is also a Java library that supports skele-

tal programming on shared memory systems. This library is a reimplemen-

tation of the Calcium library on multicore architectures. Skandium offers

nestable skeletons for both data and task parallelism.

• STAPL

STAPL (Standard Template Adaptive Parallel Library), 2010, [47] is a skele-

ton framework that gives the user the ability to compose a parallel program

from a set of elementary skeletons. Using a parametric data flow graph, this

framework is a representation of a parallel implementation of STL (Standard

Template Library). STAPL can work in both shared and distributed mem-

ory platforms. Furthermore, this framework supports nested composition for

multi-level parallelism.

• FastFlow

24

Chapter 2: Literature Review

FastFlow, 2011, [11] is a parallel programming framework written in C++.

This framework supports pattern-based programming on parallel shared/dis-

tributed memory systems in addition to GPU architectures. FastFlow is struc-

tured into three layers to provide different levels of abstractions to the ap-

plication developer. These layers give the programmer a high level parallel

programming, flexibility, and portability to different platforms. In 2014, a

ParallelFor skeleton [75] was added to the framework that supports many-core

architecture. This skeleton filled the gap between the conventional data struc-

tures and loop parallelisation facilities provided by low-level frameworks, such

as OpenMP.

• OSL

OSL (Orlans Skeleton Librray), 2011, [128] is a C++ library of data-parallel

skeletons that follow the BSP parallel model [36] of parallel computations. It

is built over MPI and uses expression templates to optimise the efficiency in a

functional programming style. Skeletons in the OSL library perform operations

on distributed arrays where the data is distributed amongst the processors. In

an update of this library, in 2013, a skeleton has been implemented to support

list homomorphism. This skeleton is called BH [146] (BSP homomorphism).

Like SkeTo, OSL also uses expression templates for fusion optimisation.

• HWSkel

HWSkel, 2013, [21] is a skeletal based parallel programming library for hetero-

geneous multicore cluster and GPUs. HWSkel provides a number of skeletons

optimised through a static performance model.

• Skel

Skel, 2014, [46] is a domain specific language implemented in Erlang. This

library supports map, farm, pipe and seq skeletons as well as providing a

high-level cost model related to each skeleton. This cost model predicts the

performance of the parallel program. Skeletons of Skel can be nestable where

they run over shared memory platforms.

25

Chapter 2: Literature Review

• SkelCL

SkelCL, 2015, [210] is skeleton library for GPUs to ease GPU programming.

Other examples of skeleton-based GPU programming frameworks are PSkel,

2015, [183], SkePU, 2010, [94], Marrow, 2013, [158], and Lapedo, 2016, [127].

Much work has been done to compose the memory affinity approach with skeletal

programming. Such skeletons seek to enhance the memory affinity by locating the

threads and the data for increasing the performance. Recent work can be found

in [109].

Some skeletons libraries have been developed for embedded real-time systems [208].

Another approach to skeletal programming is developing an implementation of

an existing library. Example of these approach are DatTel [35] and MCSTL [203],

which are parallel implementation of the standard library STL in C++.

Several researchers developed skeletons with various programming languages.

Surveys of work on skeletal programming can be found in [111, 21, 197, 190, 35,

161, 170, 68].

See Table 2.1 that summarises all skeleton mentioned in our survey.

2.3 Parallel Cost models

A cost model is a performance model [166] used to estimate the costs of program

performance metrics, such as time [193]. Cost models have two levels [80]:

• Computation Cost Model: to estimate the cost of a sequential computation.

• Coordination Cost Model: to estimate the cost of coordinating of parallel,

distributed and mobile programs.

Computation Cost Model

The estimation of execution time for a program running on a specific computer and

manipulating some data can be done in two ways [64]:

26

Chapter 2: Literature Review

Year Type of
Support

Nesting Skeleton Set

P3L, SkIE &
SkELib

1992-
2000

language/ li-
brary(SkELib)

limited map, reduce, scan, comp,
pipe, farm, seq & loop

SCL 1995 language limited map, scan, fold & farm

Skil 1996 library no pardata, map & fold

HDC 2000 Haskell subset no map, red, scan, filter & dc

Muskel & nmc 2001 library yes farm, pipe & seq

ASSIST 2002 language no seq & parmod

SkiPPER 2002 library limited scm, df & tf

Mallba 2002 library no exact, heuristic & hybrid

Llc language 2003 language yes forall, parsection, farm &
pipeline

Alt & HOC-
SA

2003-
2004

library no map, reduction, scan, dh,
apply & sort

Lithium 2003 library yes map, farm, reduce & pipe

Eden 2005 Haskell
extension

yes map, farm, dc, pipe &
ring

eSkel 2005 library yes pipe, farm, deal, butterfly
& hallowSwap

JaSkel 2006 library yes farm, pipeline &
heartbeat

QUAFF 2006 library yes seq, pipe, farm & pardo

SkeTo 2006 library yes list, matrix & tree

AMSs 2007 library no automap, autofold &
autoIterator

Calcium 2007 library yes seq, pipe, farm, for, while,
map, dc & fork

TBB 2007 library yes for, reduce, scan, do, sort
& pipeline

Muesli 2009 library yes array, matrix, farm, pipe
& parallel comp

Skandium 2009 library yes seq, pipe, farm, for, while,
map, dc & fork

STAPL 2010 library yes map, map-reduce, scan,
butterfly, allreduce &

alltoall

FastFlow 2011 library yes pipeline, farm, parallelFor
& mapReduce

OSL 2011-
2013

library no map, zip, reduce, scan,
permute, shift,

redistribute & flatten

HWSkel 2013 library no hMap, hMapAll,
hReduce, hMapReduce &

hMapReduceAll

Skel 2014 language yes map, farm, pipe & seq

Table 2.1: Skeletons summary.

27

Chapter 2: Literature Review

• Static Analysis : The measurement is done by using mathematical reasoning on

the code of the program and the data to determine the time to execute the pro-

gram. The performance model of the program may be machine-independent.

These models are also called static cost models or analytical formula.

• Dynamic Analysis : The execution time of a program is measured on given data

and on a particular machine. The measurement is done by using an internal

clock and benchmarking the execution of the program where the benchmark

is machine-specific. These models are also called dynamic cost models.

Coordination Cost Models

Parallel programming is a complex activity that includes many decisions, such as

task allocation, scheduling and communication. The parallel programming model

can exploit the coordination cost models for parallel programming. Coordination

models may use the computation cost models for enhancing coordination decisions.

To simplify using a cost model with parallel programs, developers use constrained

parallel programming paradigms to simplify modelling the coordination in a parallel

application.

2.3.1 Constrained Parallel Programming Paradigms

To make a parallel programming solution efficient, the programmer should take care

of the coordination amongst the resources. However, programmers may typically

use constrained coordination patterns to ease the challenges of developing parallel

applications [219]. By using these coordination models, resource analysis will be

more flexible.

Bulk Synchronous Parallel

The BSP model uses a coordination pattern where the computations are composed

of a series of supersteps [123]. In a BSP computation, each superstep includes three

stages: independent computations, communication, and barrier synchronisation. In

28

Chapter 2: Literature Review

the first stage, independent computations run on each processor where each compu-

tation concurrently performs some operations on local data. In the communication

stage, data from each processor will be exchanged with other processors. The barrier

synchronisation stage blocks all processes and waits for other processes until they

finish their computations and communication.

The Bird-Meertens Formalism

Programmers in BMF [32] are constrained to use a set of higher-order functions,

HOFs. BMF is a calculus that uses bulk operations over data structures, such as

lists, to derive a functional program form specification. Rangaswami [188] proposed

the HOPP model (Higher-order Parallel Programming) which is a methodology

based on BMF.

Workflow Language

Using workflow languages [227], such as Pegasus [145], programmers are able to

manage the execution of computations on available resources. Such a language maps

an abstract workflow written by the user or constructed using Chimera [104] which

is a system that describe the logical input, the transformation, and the output.

Skeletons

As discussed above, common coordination models are encapsulated in constrained

patterns with associated cost models to be used by the programmers. These patterns

can be proposed as a library or language constructs.

2.3.2 Cost Models

Parallel cost models are used to predict the behaviour of a parallel application on a

running architecture by deriving a mathematical formula that depicts the execution

time of the given application. This formula is parameterised with a set of parameters

that reflect the characteristics that affect the program execution. These metrics can

be provided by the programmer or by the environment.

29

Chapter 2: Literature Review

Cost models are usually employed by structured frameworks, such as skeletons, to

enhance the performance or by schedulers to increase the accuracy of their decisions.

In the following, we will show some parallel performance models for parallel

systems. Other surveys can be found in [219, 21, 155, 115, 133, 179].

2.3.2.1 PRAM Cost Models

The PRAM, Parallel Random Access Machine, model [101] is an abstraction of

parallel computation by assuming that PRAM operations run synchronously on a

set of processors with global shared memory. The PRAM model is based on a

sequential model RAM [70].

Computations in the PRAM model are composed of synchronous steps; each

costs a unit of time regardless of the operation and wherever the location of shared

memory is. This helps in design-time analysis of the parallel algorithm where the

communications and the memory hierarchy are not needed to be addressed at this

phase of design to expose application-specific parallelism.

In real machines, the cost of a parallel algorithm may be affected by a number of

parallel activities, such as memory access and network latency. Thus, several vari-

ants of PRAM model have been proposed. Block PRAM (BPRAM) [5], Local mem-

ory PRAM (LPRAM) [6], and Hierarchical PRAM (H-PRAM) [122] are PRAM-

based variants for addressing the remote memory and data locality. Asynchronous

PRAM (APRAM) [69] is another PRAM variant that introduces the asynchrony

concept to the basic PRAM model. Concurrent shared memory access is addressed

through the variants [168]: Queue-Read Queue-Write PRAM (QRQW PRAM),

Exclusive-Read Exclusive-Write PRAM (EREW PRAM) , and Concurrent-Read

Concurrent-Write PRAM (CRCW PRAM).

2.3.2.2 LogP Cost Models

The LogP model [71] is a parallel computation model for distributed memory sys-

tems. In this model, a parallel machine is composed of a number of processors

that have access to local memory and communicate with other processors via mes-

sage passing. The communication costs are described in the LogP model using four

30

Chapter 2: Literature Review

parameters: L(latency), o(overhead), g(gap), and P (processors).

• Latency, L, is the maximum communication time needed to send a message

between two processors. It may depend on the hierarchy of the architecture.

• Overhead, o, is the amount of time required by a processor to receive and send

a message. Within this period, the processor cannot perform other activities.

• Gap, g, describes the minimal amount of time between receiving or sending

two messages. The inverse of gap is the communication bandwidth which is

the amount of data that can be exchanged within a period of time.

• Processors, P , is the number of processors in the system. Furthermore, P

indicates the degree of parallelism.

The LogP model supports only short messages and ignores long messages. To

overcome this shortcoming, an extension of the basic LogP model, LogGP model,

has been proposed by Alexandrov [13]. In this model, a new parameter G reflects

the bandwidth with regard to long messages.

Supporting long messages in LogGP raised an issue related to the increased

overhead incurred by the synchronisation cost between the sender and the receiver.

These costs have been described by the LogGP extension, LogGPS [126].

Memory access in the LogP model is also characterised where the costs of access

are the same for all memory locations. That may be true in homogeneous architec-

tures, such as clusters. But the costs may be different for heterogeneous systems.

To model these costs, HLogGP [42], an extension of LogGP, has been developed.

The LogP model offers a compromise between abstraction and simple models,

such as PRAM. However, LogP characterises the communication and coordination

costs to give a more realistic view of the performance implementation for algorithms

that need likely communications.

2.3.2.3 BSP Cost Models

The BSP cost model [205, 221] uses restricted BSP programming to fairly predict

the performance of computations. The BSP model provides a bridge that links the

31

Chapter 2: Literature Review

software and hardware. Moreover, this model offers a simple way to derive the values

of model parameters for a specific machine for realistic prediction on several parallel

architectures.

Due to the simplicity of the BSP programming model which consists of a se-

quence of supersteps, the cost of a BSP program equals the sum of the costs of each

superstep.

The BSP cost model estimates the cost of each superstep using this formula:

Tsuperstep = w + h.g + l

Where:

w: the cost of the longest superstep (running local computation).

h: number of messages between two processors.

g: an estimated value that depends on the communication network.

l: the constant cost of the barrier synchronisation.

In real parallel architectures, the cost of a superstep is the sum of three parts:

the cost of the longest parallel sub-superstep, the maximum time to deliver a mes-

sage between two processers, and the cost of synchronisation [179]. Then, BSP

uses the estimated cost of a superstep to estimate the cost of a program by sum-

ming the sub-costs of the remaining supersteps. Several updates have been made to

the BSP cost model for different aspects. D-BSP [78], Decomposable-BSP, model

is a variant that supports submachine synchronisation. Another variant is E-BSP

[132], Extended BSP, which models that targets data locality and different pat-

terns of communications. Recently, an updated BSP model, MultiBSP model, has

been introduced by Valiant [222]. This model takes into account the memory/cache

hierarchies and the memory/cache sizes on multi-core architectures.

In general, LogP and BSP models deal with communication bandwidth and net-

work latency via their parameters [31]. In addition, both assume that processors

can work asynchronously. But, the LogP model is capable of modelling the commu-

nication overhead and therefore makes LogP more realistic than BSP.

32

Chapter 2: Literature Review

2.3.2.4 DRUM Cost Models

DRUM [96], Dynamic Resource Utilisation Model, is a resource-aware model that

provides dynamic load balancing on parallel clusters with heterogeneous resources.

This model contains information about the underling hardware resources and the

interconnection network. Also, DRUM facilitates monitoring the capabilities of

processing, memory, and communications for evaluation purposes.

Heterogeneity and scalability are the most important features covered in DRUM.

Heterogeneous clusters are cost-effective platforms where their computational powers

are able to be expanded through incorporating new additional nodes. In DRUM,

each node n is assigned with a value, power, that represents the total load that can

be given based on its processing and communication capabilities. Thus, the power

of node is the weighted sum of processing power and communication power.

powern = wcomm
n cn + wcpu

n pn, w
comm
n + wcpu

n = 1

Where:

powern: the power of node n.

pn: the processing power pn.

cn: the communication power cn.

wcpu
n : weight factor of processing capabilities of node n.

wcomm
n : weight factor of communications capabilities of node n.

2.3.2.5 System-Oriented Cost Models

Software-oriented cost models can be used to capture characteristics of parallel hard-

ware through providing information about the cost of running concrete operations

on specific machines [219], for example the cost of creating a thread. These sorts of

models are often used in hardware design analysis of algorithms in order to provide

further information during runtime. This provides significant information that may

help in taking accurate decisions in dynamic resource mechanisms: load balancing,

data locality, or scheduling.

33

Chapter 2: Literature Review

2.3.2.6 Skeleton Cost Models

Algorithmic skeletons involve the parallel process, communication and synchronisa-

tion, and cost complexity [50]. Cost models are used to calculate the skeleton’s cost

complexity. The cost models of algorithmic skeletons measure the computation cost

and communication cost for skeletons.

Darlington

There are many parallel implementations of skeletons, such as FARM, PIPE and

(DC) Divide and Conquer. The cost model for each one according to Darlington is

[76]:

• DC Skeleton: The implementation of a DC skeleton assumes that there are

processors organised as a balanced binary tree, and all processors will work as

leaf. The execution time can be estimated using the formula:

tsolx =
∑log(p)−1

i=0 (tdivx/2i + tsetupx/2i+tcomb
x/2i

+ tcommx/2i
) + tseq

x/2logp

Where

tsolx : The time to solve a problem of size x.

tdivx : The time to divide a problem of size x.

tcombx : The time to combine two results.

tsetupx & tcommx : The setup and transmission time for communication.

tseqx : The time to solve problem of size x sequentially.

• FARM Skeleton: The implementation of a Farm skeleton has two major parts:

the master processor and worker processors. The execution time can be esti-

mated using the formula:

tfarm = ts +R(te + 2tc)

Where:

ts: The start-up time.

R: The number of tasks.

34

Chapter 2: Literature Review

te: The time to solve one task.

tc: The communication time.

• PIPE Skeleton: The execution time can be estimated using the formula:

tPipe = ts + (tev + tc)(p+ n− 1)

where:

ts: The start-up time.

p: The number of stages.

n: The number of elements in the list.

te: The execution time of one stage for one element.

tc: The communication time between stages.

v: The number of virtual stages allocated to a real stage.

BSP

The restricted parallel programming model, BSP, is associated with algorithmic

skeletal programming where the BSP approach eases optimising the performance

of skeletal-based programs. Zavanella [237] has proposed a BSP-based methodol-

ogy, Skel-BSP, that supports performance adaptivity for skeletons. Skel-BSP, which

is a subset of P3L [73], uses an extension of the D-BSP cost model called EdD-

BSP model. Enhancing portability in Skel-BSP is performed through adapting the

structure of the program to the target machine using EdD-BSP parameters and im-

plementation templates. Another example of a BSP-based approach is BSML [106],

Bulk-Synchronous Parallel ML. BSML, which is an extension of ML, a functional

parallel language designed for implementing BSP algorithms. Using BSML, efficient

hardware can be chosen based on the prediction of performance of a BSP program

on a given architecture. BSML is produced as a library [153] in the OCaml language

[148].

35

Chapter 2: Literature Review

BMF

Many researchers have presented cost models that support programs written with

the BMF programming model. Cai and Skillicorn [204] have investigated PRAM

cost models for BMF programs with list data structures. In this models, the cost of

operation on elements are provided as well as the size of data structure. Much work

to provide BMF-based programs with cost models can be found in [129, 117, 34].

P3L

P3L can use a LogP-based variant to predict the performance of program on parallel

architectures. The P3L template-based compiler optimises the program to the target

hardware using a cost model. This model provides more information than the basic

LogP model does, such as processor speed and communication bandwidth.

An analytical model has been introduced in [180] where the computation time

T of granularity k is:

T (k) = k(Tdis() + Tc
∏N

i=1 di + Tcol)

Where

Tc: sequential computation time.

di: data granularity for dimension i.

Tdis: data distribution time.

Tcol: time for collecting results.

HOPP

The HOPP cost model [204] gives the cost of the potential implementation for a

program on a target distributed-memory system. In HOPP, the cost of a program

is calculated for n steps. Cpi is the cost of the functions in step i based the sequen-

tial implementation and number of processors. Ci,i+1 is the cost of communication

between two consecutive steps.

∑i=n
i=1 Cpi +

∑i=n−1
i=0 Ci,i+1

36

Chapter 2: Literature Review

SkelML

SkelML [44] provides performance cost models for several skeleton, such as farm and

pipeline. The SkelML compiler uses performance models to decide the efficient par-

allelism based on the predicted computational time and the network communication

overhead.

Other

Other performance cost models have been developed for several languages. Ham-

mond et al. [114] built a variety of cost formulas for a library of skeleton implemen-

tations in Eden, a parallel functional language. Thus, the proper implementation

will be chosen at compile time through instantiating parameters of a given platform.

Yaikhom et al.[234] presented a set of skeletons where each is associated with a cost

model. These models use a process algebra approach and have some parameters

that can be deduced from running of benchmarks.

2.4 Scheduling

One of the biggest issues in parallel and distributed systems is developing techniques

for scheduling the tasks on multiple locations [54]. The problem is how to distribute

the computations amongst all available processing elements to minimise the total

execution time and increase the performance.

Within a parallel computing environment, computation, data, and network re-

sources are shared amongst both system and application components. Consequently,

a scheduler is needed to achieve better performance [102]. Schedulers are classified

into three classes based on their performance goals. These are: job schedulers that

enhance the system performance by optimising throughput, resource schedulers that

control the resource usage in order to utilise resources or fair scheduling, and applica-

tion schedulers that improve the performance of an application through optimising

specific performance measures, like total execution time. Both job schedulers and

resource schedulers promote system performance while application schedulers target

37

Chapter 2: Literature Review

individual applications. Application schedulers are also referred as high-performance

schedulers.

In this thesis, our target is reducing the total execution time for a parallel appli-

cation so we will only review the developing of application schedulers, while resource

and job scheduler are beyond the scope of thesis.

2.4.1 Scheduling Model

Parallel applications are composed of one or more tasks that need to be executed

over different resources [103]. These tasks may communicate with each other to

solve a particular problem. Scheduling these tasks on participating resources in-

cludes a set of operations to produce a schedule and a cost model for evaluating the

performance measures. Scheduling involves the following activities: resource dis-

covery, task placement, data mapping, and task/communications ordering. Hence,

scheduling is assigning tasks and data into resources with some order in time.

High-performance schedulers use scheduling models to evaluate the performance,

define a schedule, and perform actions to produce the resulting schedule. Using

parameters from the application and the environment, high-performance schedulers

perform the best schedule based on the schedule policy.

Developing an effective high-performance scheduler is challenging because of the

heterogeneity of the hardware/software resources and the competition amongst users

to acquire resources in a shared environment. However, the scheduling model used

by a high-performance scheduler should represent the characteristics of the dynamic

environment and the application performance. Hence, a scheduling model can: pro-

duce time frame-specific predictions because the performance varies over time; uti-

lize dynamic information, which is needed to reflect the system state to develop

resource-aware schedules; and adapt to chosen execution platforms for deriving ac-

curate predictions.

A scheduling model comprises a scheduling policy, a program model, and a per-

formance model.

A program model is an abstraction of a program using a data-flow-style program

38

Chapter 2: Literature Review

graph or a set of characteristics. An example of systems that represent the program

using a data-flow-style program graph is MARS [107]. In contrast, AppLeS [30]

represents a program using a set of its characteristics.

A performance model evaluates the behaviour of the schedule. High-performance

schedulers employ performance models to make an optimal schedule. A performance

model is commonly parametrized with both static and dynamic information which

can be provided by the programmer, system, or a combination. SPP(X) [23] is an

example of a system that use performance models.

A scheduling policy is a set of rules that achieves a schedule to optimize the

performance goal of the application. Applications may have different performance

goals, where the common performance goal is minimising the execution time. As an

example, Dome [20] focuses on minimising the execution time using load balancing

as a scheduling policy. Much effort is on heuristic-based that are static schedulers

and take decision based on assumptions from prior knowledge of benchmark execu-

tion [45].

2.4.2 Challenges of Application Scheduling

There are number of challenges that need to be considered for High-performance

scheduling [103]:

• Portability and Performance: The main goal of scheduling is to improve the

performance. But, having better performance depends on leveraging environ-

ment features. However, a scheduling strategy should balance the performance

gain and the heterogeneity of the architecture resources.

• Scalability : it is important for a high-performance scheduler to use a dynamic,

scalable mechanism to select the resources.

• Efficiency : a high-performance scheduler is predicting the behaviour and mak-

ing a decision to redistribute the load. These decisions need to be accurate

and the schedule to be efficient with low overhead.

39

Chapter 2: Literature Review

• Multi-scheduling : resource schedulers, job schedulers and application sched-

ulers are all working for their performance goals. Coordinating multiple sched-

ulers is difficult and presents a challenge to the developers of schedulers. One

common problem that may occur is thrashing which cause unstable load bal-

ancing. However, multi-scheduling strategies must consider the stability of the

system for meeting their objectives.

• Locality : data locality may be affected when the tasks that process these data

are moved. Scheduler developers should find a compromise between commu-

nication overhead and the desired performance goal [225].

2.4.3 Load Management

Load management is one branch of a family of global scheduling polices, for man-

ageing the load of all locations in a network, cluster or Grid. The main goal of load

management is to improve the performance of an application by evenly assigning

tasks to each processing unit [177]. Load management is categorised into two types:

static and dynamic.

2.4.3.1 Static and Dynamic Load Management

The aim of static load management is to minimize the execution time of an appli-

cation [201]. Static load management predicts the run-time behaviour of a program

at compile time by estimating the task’s execution time and communication delays.

The main advantage of predicting the behaviour of the application is that the over-

head of the scheduling process takes place at compile time. However, the run-time of

the application may have unpredictable conditions such as network delays or reliance

on inputs, so that predicting the behaviour at compile time will be inaccurate and

may not be equal to real values at run-time. As a result, static load management

may make inappropriate decisions.

Dynamic load management depends on information collected at run-time to

reschedule tasks from heavily loaded machines to lightly loaded machines. The aim

of dynamic load management is to maximise the utilisation of processing power.

40

Chapter 2: Literature Review

The advantage of dynamic load management over static load management is that

the system does not need to be aware of the run-time behaviour of the applications

before execution. Dynamic load management incurs a run-time overhead resulting

from the communication cost of load information, the processing cost of decision

making and the communication cost for task transfer.

There are four policies, which also can be polices for dynamic scheduling, for

dynamic load management algorithms [92, 80, 172]. These policies are:

• Information Policy determines the information needed for predicting the be-

haviour in order to make a decision to redistribute the load. An information

policy also specifies the mechanism to collect and diffuse the information that

reflects the system state amongst locations. Triggering the collection of infor-

mation can occur via many approaches. A location can ask for the state of

other locations when it becomes a sender or receiver; this is called a Demand-

driven approach. Or a location may share its state when it is changed; this is

called a State-changed driven approach. Another approach is Periodic where

collecting the information happens periodically.

• Transfer Policy indicates the condition to transfer the load from a heavily

loaded location to lightly loaded locations. This policy may be a threshold-

based approach, a relative-load approach, or a hybrid approach.

• Selection Policy decides the tasks that should be moved. There are two ap-

proaches in selecting the tasks: non-pre-emptive and pre-emptive. A non-

pre-emptive approach assigns the tasks to the selected location before the

execution of the tasks. By contrast, a pre-emptive approach relocates tasks to

the selected location during the run-time. A pre-emptive policy can migrate

running tasks and therefore it is yielding significant performance benefits. A

pre-emptive policy is more costly than a non-pre-emptive policy, but it is more

flexible.

• Placement Policy identifies the locations to which a task should be transferred.

The commonly used approach is polling, by asking the destination location to

41

Chapter 2: Literature Review

accept transferring the task. Selecting a location can be: random, which

selects a random location to move the task; shortest, which determines the

lightly loaded location as a destination; or threshold, where the selected node

will be checked before moving the task.

In a dynamic load management system, the selection and placement policies are

combined together to produce an optimised schedule or to balance the system load

[151]. This combination can be either a push policy or a pull policy.

• Pull Policy : This is sometimes called a receiver-initiated policy, passive load

distribution policy, or work stealing. In this policy, when nodes become idle,

they request or steal work from other nodes.

• Push Policy : This is sometimes called sender-initiated policy, active load dis-

tribution policy, or work distribution. In this policy, the loaded nodes look for

lightly loaded nodes to give them some work.

For a low system load, the push policy works well and minimises the overhead

but this may cause unstable load in the system. On the other hand, a pull policy is

better for high system load.

Examples of dynamic load management systems are Load Sharing Facility (LSF)

[2] and GrapevineLB [165].

2.4.3.2 Strategies of Dynamic Load Management

Dynamic load management strategies are classified according to entities that hold

the information and share the load amongst the resources. Thus, a dynamic load

management strategy can be centralised, decentralised, or hierarchical [240, 186].

In a centralised management system, there is a central node which collects in-

formation about the system state and builds an estimate of the system state. The

central node may hold a shared file which records updates from all nodes. The

advantage of centralised load management is that the overhead is low during the

estimation process. The disadvantages are poor scalability and failure-proneness.

42

Chapter 2: Literature Review

In a decentralised management system, each node is responsible for collecting

state information and constructing an estimate of the system state. This organiza-

tion is not easy to scale to large system because it can incur large overheads to gain

accurate and consistent state information.

In hierarchical management systems, both centralised and decentralised load

management strategies are combined to inherit the properties and extract the ad-

vantages of both. A hybrid strategy can be implemented when nodes are divided

into clusters and the data are exchanged amongst them.

2.5 Mobility

The term mobility refers to a change of location achieved by system entities [37]. In

mobile computing, computations are moved amongst network locations and hence

enable a better use of resources in a network [176, 187]. A mobile program is able

to move its code and state from one location to another in a network and resume

its execution [143]. Mobility has different forms: hardware and software mobility.

Hardware mobility means the mobility of devices, such as laptops and PDAs.

Therefore, software mobility refers to moving computations from one location to

another [80, 40]. Some classifications of software mobility are process migration

and mobile languages. In process migration, the system decides when and where

to move, while in mobile languages, the system gives the programmer the ability

to decide the placement of computations on anew network location. MOSIX [25] is

an example of a distributed operating system that supports process migration. An

example of a mobile programming language is Java Voyager [3].

Check-pointing is a snapshot of the state of application; it is the main operation

in mobile systems to move the computations amongst processors in a network or

cluster [116]. Check-pointing is performed at a source location, sent and resumed at

the destination location. Check-pointing can be performed on an individual process

or on a whole operating system process. Check-pointing may be relevant to other

states, such as opened files or shared memory so that the check-pointing at process

level will often fail while the check-pointing at system-level will be able to get all

43

Chapter 2: Literature Review

local states.

2.5.1 Mobility Models

Mobility can be performed at different levels of granularity [116]. These models are:

• Data Mobility : A simple approach to mobility is that the application can save

its state and resume work from the saved point. Data mobility happens by

moving the saved state between locations on a network.

• Object Mobility : An object is a single unit that includes code and data. Object

mobility is serializing objects between machines where the program may con-

tain several objects roaming between machines. For example, RMI (Remote

Method Invocation) [184] will forward the calls transparently to the remote

object when method invocations happen for that object. RMI has a global

registry to save locations of a remote object during its life. Object mobility

is more complex because the remote object has one or more threads running

and these threads keep parts of the state of the object in the stack and CPU

registers. Some object mobility systems allow mobility when the invocation

reaches a specific execution safe point. For example, Emerald [131] supports

object mobility at several levels of granularity [105].

• Process Migration: process migration is moving the state of a program and

its data. The process is independent of the implementation language. Process

migration faces a problem when a process leaves an open file or similar unre-

solved state in the originating host; this is known as residual dependency. One

solution is to create a proxy process on the operating system on the originating

host, and that process handles the access to the local process. This solution

will require access to the resources over the network, so performance may be

reduced, and the process may fail if one of the two hosts crashes, which may

weaken the stability. Two examples of operating systems that support process

migration are Sprite [88] and MOSIX [25].

44

Chapter 2: Literature Review

• Virtual Machine Migration: A common problem with virtual machines is in-

creasing hardware utilization [26]. This problem can be solved by relocating

the workloads from an original host to another host before server downtime.

This process is called Virtual Machine Migration and happens when the down-

time of the server is planned or predicted. Sometimes VM migration happens

with migrating disk state. All applications running in the VM of the original

host will move to the new host. The shared memory and file system problems

are solved in this type of migration. An example of virtual machine migration

platforms is VMotion [1] which is included in VMware vSphere. This platform

seamlessly enables moving live VMs between physical machines.

Data mobility is an example of a fine-grained technique. On the other hand, pro-

cess migration and object migration are course-grained techniques. Virtual machine

migration is the most coarse-grained type of mobility.

2.5.2 Properties of Mobile Systems

Mobile systems should have mechanisms to effectively use the available resources.

The properties of mobile system include [80, 40, 105]:

• Mobility Control : A mobile system should have a mechanism to make the

programmer able to decide on the mobile operation.

• Weak or Strong Mobility : Mobility has two forms defined by Fuggutta et el

[105]: weak mobility and strong mobility. Weak mobility is moving the code

from one location to another. Whilst, strong mobility moves the code and

state information from one location to another and resumes the execution from

the stop state [81]. Strong mobility is also known as transparent migration.

Mobility systems may support weak mobility such as Java Voyager [3] or weak

and strong mobility like JavaGoX [196].

• Implicit or explicit mobility : Implicit mobile systems move the active compu-

tations, like a thread, from one location to another in the network. Implicit

mobile systems usually operate on a small scale, e.g. LAN or cluster [169].

45

Chapter 2: Literature Review

However, in explicit mobile systems, the moving of active computations is con-

trolled by the programmer. Explicit mobile systems usually operate on open

systems and in large-scale settings [40].

• Awareness of Location: after execution, the program may need to access re-

sources not located in the same location. In this case, the mobile operation

will happen under programmer control and be related to the resources [52].

• Safety and Security : Mobile systems have been developed to work in a network

where the resources are shared amongst entities of the network. Safety means

preventing undesired behaviour of programs. Security means the integrity of

the information and protection from malicious attacks [142].

• Architecture Independent : The main idea for mobile systems is to move the live

computations between locations on large distributed systems. These locations

may have different architectures and operating systems. Thus, it is necessary

to compile the program into architecture-independent code that is able to work

on heterogeneous networks [229].

2.5.3 Advantages of Mobility

Some of the main advantages of mobile computations are [211, 131]:

• Load Sharing : Moving the computations amongst processors on a network or

system can lead to a better use of resources and lighten the load on slowly-used

processors, and it gives a faster performance.

• Communications Performance: Moving the active objects that interact inten-

sively to the same node can reduce the communication costs of their interac-

tions.

• Availability : Moving objects to different nodes can improve service and protect

against broken or lost connection.

• Resource Utilisation: An object visiting a node can take advantage of services

or capabilities at that location.

46

Chapter 2: Literature Review

2.5.4 Code Mobility

In traditional computing, each computation is linked to a single machine [105].

Thus, the code of the computations belongs to the local machine. This is not true

for mobile systems. In mobile systems, the code, the execution state and the data

of computation, can be moved to a different machine.

Mobile systems provide mechanisms that support weak or strong mobility. There

are two mechanisms that support strong mobility: migration and remote cloning

[216]. The migration mechanism pauses the computation, moves it to the destina-

tion machine, and resumes execution. When the destination machine and the time

for migration are determined by the migrating machine, such migration is called

proactive. In contrast, when the movement is determined by a different computa-

tion that has some relationship with the computation to be migrated, this is called

reactive. For example, the MoviLog [242] platform supports migrating its computa-

tions either proactively or reactively.

The remote cloning mechanism will create a copy of a computation at a destination

machine without detaching it from the current machine. Remote cloning can also

be proactive and reactive [28].

Weak mobility is supported by a mechanism that is able to move the code

amongst machines and either links it to a running computation or uses it as a code

segment for a new computation [105]. The migration can be stand-alone code or a

code fragment. The stand-alone code will create a new computation on the destina-

tion machine, whereas a code fragment will be linked and executed in the context

of running code. The mechanism supporting weak mobility can be synchronous or

asynchronous depending on the computation suspension relative to when the code

is executed on the destination machine. The asynchronous mechanism can be in im-

mediate or deferred mode depending on the execution of the code on the destination

machine.

47

Chapter 2: Literature Review

2.5.5 Agent-based Systems

An agent is computer software hosted in an environment [217]. Agents are designed

to solve a specific problem in the system where they are located. The state and

the behaviour of agents may change due to interactions with the environment either

responding to external events or initiating actions in order to achieve particular

objectives. Thus, agents have to be both proactive and reactive [130]. Systems that

rely on agents as the key abstraction are called agent-based systems. Such systems

may use a single agent or multiple agents that cooperate with each other to achieve

a general objective. These systems are also known as multi-agent systems [231].

Properties that characterise agents are [231, 214]:

• Autonomy : each agent has control over its internal state without any external

intervention. This state can be used to make the decision to perform some ac-

tions. Because of the autonomy property, agents are referred to as autonomous

agents.

• Reactivity : agents situated in an environment respond with an action that

may change the environment.

• Pro-activeness : agents learn from the environment and interaction with others

to initiate goal-directed actions when necessary.

• Sociability : agents are capable of communicating with other agents or the

environment to achieve a certain goal.

Much work on agents can be found in [230, 231, 195].

Agents also may have a mobility property that enables them to change their

environment and move to another one [143]. Those agents are called mobile agents.

Agents that do not have the mobility property are called stationary agents. To gain

information from remote systems, a special communication mechanism is supported

in stationary agents. However, mobile agents are free to move amongst systems as

they are not bound to a particular system. Indeed, mobile agents keep their state

and code while moving which enables them to resume execution on other systems.

48

Chapter 2: Literature Review

Furthermore, mobility gives the agents the facilities needed to be in the same host

with the resources they request and the objects with which they interact. System

performance can be improved by agent mobility through reducing the network load

and overcoming network latency.

Mobile agents provide the flexibility and abstraction needed for building dis-

tributed systems.

2.5.6 Autonomic Systems

Autonomic systems are capable of managing themselves to achieve high-level ob-

jectives given from an administrator [139, 171]. Autonomous systems are also

referred to as autonomic systems. In this context, autonomic systems are self-

management systems that can maintain and manage their operations in the case of

system changes, such as workload, demand, or components, and software/hardware

failures. Self-management autonomic computing systems may have one or more of

these aspects [171]:

• Self-configuration: an autonomic system is able to automatically configure, ad-

just, setup, and install components. All system configurations will be adapted

in accordance with administrator objectives.

• Self-optimisation: autonomic systems attempt to improve their efficiency by

endeavouring to perform operations with high throughput and achieve goals

at optimum levels. Self-optimisation systems monitor their state and take

decisions, such as resource allocation, to improve the performance.

• Self-healing : autonomic systems are able to adjust, diagnose, and repair lo-

calised problems and failure in the software and hardware.

• Self-protection: the system can protect itself from malicious attacks. Also, the

system can use early reports to expect and prevent problems by taking actions

to avoid failure.

An example of an autonomous system is ASP [4] (Autonomic Job Scheduling Pol-

icy) for Grid that supports three of the self-management aspects: self-optimisation,

49

Chapter 2: Literature Review

self-healing, and self-protection. Liu et el [150] have presented a component-based

programming framework which is an example of a self-configuration system. More-

over, Deng [80] has developed resource-aware programs with a self-optimisation abil-

ity. These programs are called AMPs (Autonomous Mobility Programs).

2.6 Summary

A cluster is a distributed memory system that uses message passing approach for

communication. Emerging the latest multi-core technologies in the cluster systems

offered many benefits. System developers are forced to deal with parallelism across

nodes, cores and other processing units. It becomes necessary to make the appli-

cation scalable and automatically adaptable to different number of nodes/cores. In

this thesis, we target multi-core cluster with diverse number of nodes and quantity

of processing elements. To match our objectives, we need to design a distributed

programming framework which is able to exploit multicore clusters. We use MPI

as a message passing library in the distributed memory architecture to secure the

communications amongst those components. Our framework is designed as Master/-

Worker model to maintain the cooperation in the framework. At the node level, we

use Fork/Join pattern to manage the coordination inside the workers. Accordingly,

we use the PThread library to flexibly manage the threads within the multicore

nodes. At the level of the problem, or most specifically, the task, each task uses

SPMD model. The GPU programming is beyond the scope of our thesis where we

concentrate on the compute power of the CPU cores of the node.

This framework is implemented using skeletal approach and hence it offers a

high level data-parallel skeleton. This skeleton separates the computation from

the coordination. Hence, this skeleton helps in optimising the problems through

improving the productivity of programmers by focusing on the domain-specific issues

while parallel and communication details are implicitly maintained.

The skeleton implementation mainly supports executing farm pattern problems

but it also can be used to solve problems such as pipe pattern or map-reduce pattern

problems. Other patterns such as divide and conquer and scan patterns are not

50

Chapter 2: Literature Review

implemented in our framework. Skeletons usually provided as a language extension,

library or parallel programming language. A survey of skeletons has been proposed

in the literature. This work proposes a skeleton as a library in the C programming

language.

To enhance the dynamicity and adaptivity of our skeleton, we develop a high

performance dynamic application scheduler to optimise the performance of the skele-

ton. The main goal of the scheduler is minimising the total execution time under

loaded conditions. This scheduler uses real time observations and performs a set

of event-based operations to enhance the skeleton performance goal. Moreover, the

skeleton scheduler is triggered by the loaded nodes. Hence, push policy has been

used to implement the selection and placement policies. Our scheduler follows a

hybrid centralised/decentralised approach to exploit advantages of both strategies.

The operations of the skeleton scheduler depend on local coordination without in-

terfering with other scheduling systems or the native operating system scheduler.

There is a wide range of scheduling policies that has been proposed in the literature.

However, schedulers target potential execution environments, language representa-

tions, and problem domains. As a result, schedulers are difficult to compare [141].

The skeleton scheduler takes decisions based on a dynamic performance cost

model. This cost model helps the scheduler to decide if the current tasks can run

faster on remote locations taking into consideration the changeable load, the run-

ning architecture and the progress of the executing problem. Therefore, this cost

model depends on measurements at run-time. This cost model is based on the model

developed by Deng [81, 80] where our new version supports multicore architectures

and takes into account the external load of the application in the executing environ-

ment. Skeletons that are guided by performance model are also proposed in many

works. Examples of these skeletons can be found in [80, 51, 223, 9, 29].

This scheduler uses mobility in transferring live computations from node to node

using a pre-emptive approach. This mobility is implemented at the application

level, the skeleton, where strong mobility with data mobility has been used. In our

skeleton, mobility operations occur transparently where mobility operation includes

51

Chapter 2: Literature Review

saving the execution state, transferring, and resuming the execution of live com-

putations. Some programming language supports mobility like JavaGoX [196] and

Java Voyager [3] where some skeletons can get benefits of this feature like mobility

skeletons [81, 89]. In such skeletons, common patterns of mobile computations are

encapsulated. Other mobility support can be provided by the system like MOSIX

[25] where MOSIX is cluster management system that manages resources, allocates,

and migrates processes amongst nodes.

52

Chapter 3

Self-Mobile Skeleton

Skeletal programming has given significant benefits to developers to relieve them

from the difficulties of parallelism and keep them focusing on solving problems.

Such an approach has put forward solutions to exploit parallel systems without

going into low-level details, such as communications and coordination. This work

proposes a generic data-parallel skeleton, HWFarm, which can exploit multicore

clusters. This skeleton is self-mobile where all mobility operations are implemented

inside the skeleton. In this chapter, we start with the concepts of designing skeletal-

based systems in Section 3.1. Then, we propose the design and the implementation

of our skeleton with further details about its usability in Section 3.2. Next, we

show experiments for evaluating the performance in Section 3.3. Cost modelling

and scheduling will be discussed in the next chapters.

3.1 Pragmatic Manifesto

A wide range of skeletons are provided through either a library or language con-

structs. To effectively design skeletal-based systems, Cole [67] presented a manifesto.

These principles are:

1. Propagate the concept with minimal conceptual disruption: this principle re-

quires that the skeleton should be provided as a simple concept in an existing

programming language. This is necessary to ease the difficulties in learning

new programming languages with new constructs.

53

Chapter 3: Self-Mobile Skeleton

2. Integrate ad-hoc parallelism: the construction of skeletons must be integrated

with structured parallelism. Hence, skeletal systems should be developed in

order to implement a parallel pattern that has not been supported by available

skeletons.

3. Accommodate diversity : the specification of a skeleton offers a level of flexibil-

ity that provides variations in implementation of the real algorithms. Beside

flexibility, a straightforward abstraction of skeletons must be constructed. As

a result, a balance is needed between simplicity of abstraction and realistic

flexibility.

4. Show the pay-back : results and benefits of developing skeletal systems must

be presented. We must also show the improvements offered by the adoption

of skeletal systems.

Danelutto et al [72] extended Cole’s principles by adding three related to reusabil-

ity and modern heterogeneous platforms. These principles are:

5. Support code reuse: this allows the skeletons to be reused with very little

change to the sequential code.

6. Handle heterogeneity : with various kinds of parallel architectures, the skeleton

must be able to run on different platforms. This means that the implementa-

tion should be adapted to execute on heterogeneous resources such as clusters

or Grids.

7. Handle dynamicity : skeletons may run on environments, such as non-dedicated

clusters, that have changeable available resources. Hence, skeletons must be

supported with mechanisms to handle such situations.

Now, we will explore our skeleton that meets these principles to be able to

integrate with the mainstream of parallel programming.

54

Chapter 3: Self-Mobile Skeleton

3.2 HWFarm Skeleton

The HWFarm skeleton is the main body of our work in this thesis. Its name is

a combination from the initials of Heriot-Watt University, HW, and the parallel

model used to implement this skeleton, the Farm parallel programming model. This

skeleton has a built-in mobility feature which enhances its dynamicity. This enables

the skeleton to reallocate its computations seeking for faster processing units. Thus,

this reduces the executing time and improves the performance of the skeleton. Unlike

mobile skeletons that are based on mobile languages [89], the HWFarm skeleton is

based on the C programming language [140] and depends on MPI [112, 206] and the

PThreads [48] library.

In this section, we will explore the motivation and the design of the HWFarm

skeleton. Next, we introduce the techniques used to develop the skeleton and propose

the implementation of the skeleton. Then, we show how the skeleton can be used to

parallelise a sequential program. Finally, we discuss how HWFarm met the skeleton

design manifesto.

3.2.1 Motivation

Shared, non-dedicated environments offer conputing platforms for executing parallel

applications. Sharing these resources raises new challenges in terms of the scheduling

and management of applications demanding computational power. Resource con-

tention is one of these challenges where processes of the user applications compete

to acquire processing units. This contention has an influence on the performance

of the running applications. Therefore, resource contention implicitly leads to poor

performance and application slow down and latency [199, 238].

Figure 3.1 shows a motivating example of the influence of external workload. This

test program estimates Pi using the Dart algorithm [22]. It is implemented using C

and OpenMP where all threads cooperate to calculate the required value. We run

the test program with other programs running concurrently as workload programs.

These programs are EP and IS in NPB 3.3 (NASA Parallel Benchmark) [174]. The

Dart program and the workload programs are tested on a machine with 8 cores. We

55

Chapter 3: Self-Mobile Skeleton

Figure 3.1: The effect of running multiple applications on the same processor.

56

Chapter 3: Self-Mobile Skeleton

repeated the experiments in different scenarios in order to check how applications

affect each other. First, we ran the Dart program with no external workload and

repeated the execution with different number of threads. Then, we simultaneously

ran the workload program EP with 2, 4, 6, and 8 processes. Afterwards, we added

more workload by running another workload program, IS. Therefore, in the last

three scenarios, we ran 4 processes of EP with 4 processes of IS (4 & 4), 8 processes

of EP with 4 processes of IS (8 & 4), and 8 processes of EP with 8 processes of IS

(8 & 8).

In our example, the processes of the Dart program and the processes of the

workload programs share the CPU where the local scheduler manages to assign a core

to each process. But, if the total number of processes for all running applications on

the machine exceeds the number of cores, the local scheduler will follow its policy

to give a fair amount of time to each process requiring processing power. As a

result, each process does not get the processing power needed and therefore the

total execution time will increase which in turn leads to poor performance. This

can be observed in Figure 1 where each sub-figure reflects the execution time of the

Dart program running with other workload on the same machine.

To solve this issue, the execution of a parallel application needs to be dynami-

cally adapted for optimising the performance goals, especially, when working in an

open, shared, non-dedicated environment where the external workload is changeable

and unpredictable. This thesis offers a mechanism to schedule and manage the local

application load to avoid resource contention problem in shared computing plat-

forms. The contention we address is the computing power contention where other

contention such as memory and network contentions are beyond the scope of this

work.

3.2.2 Skeleton Design

The aim of this work is to propose a high-level function developed using a skeletal-

based approach, HWFarm. This skeleton takes into consideration the external work-

load through self-adaptiveness and therefore this will make the skeleton aware to

57

Chapter 3: Self-Mobile Skeleton

the environment workload. Based on the load state, the skeleton can reallocate its

computations to other nodes in order to meet its performance goal, reducing the

total execution time. In this sense, the HWFarm skeleton is self-optimised. The

HWFarm load redistribution will diminish the influence on each other of multiple

applications running on a machine. Hence, the performance of all applications (our

skeleton and other programs) should be significantly improved, see Chapter 7.

We initially developed a skeleton [167] that executes the user program in parallel.

This skeleton is supported with a simple cost model that deals with internal and

external load. This skeleton assigns one task to each worker and transfers the task

if the worker is highly loaded. We then extended our previous work to support

multi-core architecture with costed scheduling decisions.

3.2.2.1 Static Skeleton

Here, we will discuss the main concepts in designing the HWFarm skeleton. Figure

3.2 shows the basic structure of the HWFarm skeleton.

Figure 3.2: The HWFarm structure.

Coordination Pattern

The coordination pattern of the HWFarm skeleton is the farm parallel programming

model [163]. In this model, we have two kinds of processes, master and worker. Using

58

Chapter 3: Self-Mobile Skeleton

the farm model, the running computations on remote workers can be monitored.

Furthermore, this model helps in diffusing load information amongst the workers

which is helpful to make accurate decisions. In our skeleton, we assume that the

task pool is static and all tasks are assigned to workers and hence there are no new

tasks waiting in the pool. One of the disadvantages of the Master/Worker model is

a bottleneck due to the centralised master serving all workers. A bottleneck occurs

when a worker must wait until other workers finish communicating with the master.

This can be avoided through reducing the master-worker activities and devolving

the critical making decisions to remote workers. Details of this hybrid mechanism

are discussed in Chapter 5.

Master

The master is responsible for the whole coordination in the skeleton via: creating

the tasks, computations; dividing the data; assigning the tasks to workers; and

collecting the results of execution.

Worker

The worker executes the received tasks from the master and exchanges the load

information with other workers and with the master. The model used in the work-

ers is Fork/Join programming [163] where the worker maintains local threads and

manages the communications with the master.

Task Model

Tasks in the HWFarm skeleton are intensive computations that process data and

run concurrently in parallel. These tasks are initialised in the master process where

each task is linked with a function and an evenly divided chunk of data. In workers,

the function of the task will be executed to manipulate the input data to produce

the output data. An important assumption in this model is that the lengths of all

tasks are equal. In addition, another assumption is that there is no dependency

or communication amongst the tasks so that they are fully independent equal-sized

59

Chapter 3: Self-Mobile Skeleton

tasks. The chunk size is set by the user and hence the length of the task and the

number of tasks are not controlled by the skeleton.

Task Allocation

Assigning tasks to workers is based on the total number of cores and the number of

tasks. The tasks will be distributed amongst workers based on a static allocation

model used by the master. This distribution will achieve an initial balanced load

in proportion to the number of cores on each worker. Details of this model are in

Section 3.2.4.2.

Program Model

The class of problem that the skeleton executes is similar to the loop parallelism

model [163]. In the HWFarm model, the program has a number of iterations to

process a chunk of data. Hence, the program will perform the same operations

on different data segments. Thus, the skeleton can be classified as a data-parallel

skeleton.

Communication

Based on the coordination pattern, the communications inside the skeleton are only

between the master and the workers. Therefore, the connections are a master-

worker connection when the master assigns a task to the worker and a worker-master

connection when the worker returns the results to the master.

Platform

One of our design principles is to tackle homogeneous clusters. As a result, the

parallel computing architecture we target in the HWFarm skeleton is a multi-core

architecture, in particular a multi-core cluster. Cluster nodes may have different

number of cores with varied characteristics. In this thesis, GPU architectures and

CPU accelerators are not addressed.

60

Chapter 3: Self-Mobile Skeleton

Result Collection

Once a worker completes the execution of its tasks, it will send the results to the

master. Then, the master gathers the sub-results into a global array and delivers it

to the user program. The user program can now deal with the processed data, like

flushing to an external file or a disk.

3.2.2.2 Mobility Support

We provide our skeleton with ability to move running tasks amongst nodes in order

to have an improved schedule in the system. We use data mobility granularity where

the application itself is responsible for transferring the code, the data, and the state.

The HWFarm skeleton is built as an abstraction between the coordination and

the program. But, to make the skeleton able to move running tasks, there is a need

to access the user computations to monitor and manage their execution state. To

achieve this goal, the skeleton needs to keep a reference to all data processed in

the task as well as the running state. This requires that the user has the burden

to separate the state of execution from other internal iterations. In the HWFarm

program model, loop parallelism, if the variables that hold data are globalised out

of the main loop, this will save the state of the execution. As an example, during

running a loop, the progress of the execution can be indicated by the main counter.

Thus, whenever this counter is checked, the progress will be known.

Execution state includes the main loop counter that increases while the func-

tion is running. Also, the state can include any variables that are needed for the

computation.

Besides moving the state, mobility includes moving the results of the processed

data. Thus, when the program resumes, the sub-results will be available, and the

program will continue to produce the remaining results.

Mobility is triggered in the skeleton if it is better to execute selected tasks on

faster locations. When the scheduler decides to move a task, the mobility operation

will be triggered. First, the source worker requests permission to move a task to

the destination worker. Once permission is received, the source worker implicitly

61

Chapter 3: Self-Mobile Skeleton

performs check-pointing which is an operation to pack the task data and its state

before transferring the whole computation. Then, the selected task moves to the

destination worker. As a result, we have a new connection between workers involved

in the mobility operation. Accordingly, the connections in the skeletons are master-

worker for allocating tasks, worker-master for sending results and worker-worker for

mobility.

Figure 3.3 shows the structure of the HWFarm skeleton and how the master and

the workers communicate with each other to execute the problem in parallel.

Sending a task (master to worker)

Sending results (worker to master)

Mobility operation (worker to worker)

Worker 1 Worker 2 Worker X

Master

Task pool

Task Task

Task

Task
Task Task Task Task

Figure 3.3: The HWFarm structure with mobility.

3.2.3 Host Language

Providing a high-level skeleton in a common existing language is much preferable

to the programmer than learning a new programming language. The HWFarm

skeleton is implemented in the C programming language, one of the most pervasive,

dominant programming languages in software engineering. It has many features

that are helpful in implementing our skeleton [140, 18]; some of them are:

• It is widely used in the software development domain.

62

Chapter 3: Self-Mobile Skeleton

• C uses memory through pointers which helps also in polymorphic programming

(void pointers). This pointer capability has a significant use in supporting

function pointers. This has many benefits for high-level programming such as

abstraction.

• C gives access to the hardware and it is closely related to low-level languages

such as Assembly.

• C is portable and not linked to any operating system or processor type. This

enables our skeleton to run on a wide range of architectures.

To support parallel communications amongst the participating processes, we used

the MPI model [206]. This model is widely used in multi-processor architectures.

Thus, all aspects related to creating the processes and other issues are in MPI where

process management is implicitly handled in the MPI communication library. The

MPI library used in this work is MPICH.

To employ the shared memory platform, we used the PThreads library [48] that

provides full control of creating, managing, starting, and killing running threads.

OpenMP offers a mechanism to program shared memory but PThreads has full

control in order to maintain multi-threaded programming.

3.2.4 Skeleton Implementation

HWFarm is a skeleton provided as a function call that hides low-level details from

the user. In this section, we will explore how the skeleton deals with data. Then, we

show the allocation model used by the HWFarm skeleton. Finally, we give a further

look inside the structure of the skeleton.

3.2.4.1 Dealing with Data

In sequential programs, the program processes the input data to produce output

data, but, in concurrent execution, the program may have multiple instances where

each processes local data while all instances can access shared data. All instances

work to produce the output data; see Figure 3.4.

63

Chapter 3: Self-Mobile Skeleton

Sequential Program

Input Program Output

Parallel Program

Shared Input

Input1 Program1

Program2Input2
Output

Figure 3.4: Sequential and parallel programs.

In the HWFarm skeleton, all tasks are running together. These tasks are dis-

tributed over the machines where some tasks may share the same node. To improve

the flexibility of dealing with local and shared data in a node, the HWFarm skeleton

classifies the data into three classes: input data, state data, and output data. All

these data buffers are identified by the user. Input data is both shared and will

be broadcast to all workers and local data will be equally divided into tasks. State

data is configured and set by the user and based on the user-program to save the

execution state of each task. Output data holds the results of the processed data;

see Figure 3.5.

Figure 3.5: Task structure in the HWFarm skeleton.

64

Chapter 3: Self-Mobile Skeleton

Each task in the work pool has at least: a pointer to the user function, a pointer

to the shared input data, a pointer to the local input data, a pointer to the execution

state, and a pointer to the output data. All these pointers will be set dynamically

inside the skeleton.

Data Configuration

To properly assign the data to tasks, it is a requirement that the whole data should

be in consecutive memory locations. This is not the case when the memory allocation

is dynamic. To solve this issue, especially when dealing with algorithms that are

implemented using dynamic mechanisms, the user is restricted to keep the input,

state, and output data in consecutive locations in the memory. This will avoid

problems when assigning a task to a worker where the potential segment of data is

selected. Also, this helps the skeleton to keep the data ready when a check-pointing

is required.

Depending on the algorithm implementation, data buffers need to be set and

allocated before the skeleton call. Each data buffer, except state, requires three

parameters specified by the user: the buffer of the allocated data in the memory,

the size of the memory location for one data item, and the length of the data

allocated for one task. For example, if we have an array of 100 integer numbers and

we want to create 10 tasks, the parameters for this user-array are:

data input : A; data input item size : 8; data input length : 10

where: A is the name of the input buffer; 8 refers to the size of one data input

item; and 10 is the number of items in one task. In this example, data input item size

holds the value of 8 which is the number of bytes to store one integer value. Gener-

ally, this value depends on the data type of one item unit in the input buffer. Also,

this value depends on the hardware on where the skeleton runs. As a result, to

keep the skeleton hardware-independent, the user is required to dynamically assign

the allocation size of the input item to properly maintain this data by the skeleton.

Here, this value can be obtained from sizeof(int).

65

Chapter 3: Self-Mobile Skeleton

The data type of the input buffer is not restricted to simple data types. The skele-

ton gives the user ability to define custom data types. But, the user is also required

to provide the same details for the relevant structures. Then, data input item size

refers to the size of the data structure defined by the user. Yet, they have to make

sure that all structures in the memory are consecutive.

State data is the main part of the data that saves the execution state. The state

in HWFarm is defined in the hwfarm state struct as follow:

typedef struct hwfarm_state{

int counter;

int max_counter;

void* state_data;

int state_len;

} hwfarm_state;

hwfarm state struct has four elements: two for the counter/index of the main

loop, a buffer for user defined state data, and the length of that buffer.

The user program must have a main index-based loop with a counter and the

maximum iterations of this loop. This counter should be used to iterate through

the data. These values will be set by the user before the skeleton call and then used

by the user function as an input. state data buffer is any data that the user may

need before or during the task execution where state len is the size of this buffer

in bytes. The counter will be used later by the scheduler for the estimation and

mobility operations. Hence, it is very important to configure the counter properly

before the function call and inside the main loop of the user program. This may

require minor re-factoring of the loop to be usable in the skeleton.

Figure 3.6 illustrates the work of the HWFarm skeleton from the perspective of

data. In this example, the problem will be divided into 4 tasks so that the input data

is divided into 4 chunks with a chunk per a task, see Figure 3.6.A. There are two

workers and hence two tasks are allocated to each worker. Then, the master sends

the shared data and the allocated tasks to the participating workers. Workers receive

the tasks and start executing, see Figure 3.6.B. On each worker, tasks execute the

66

Chapter 3: Self-Mobile Skeleton

program on their local input data and may use the shared data. When all executions

finish, the results of each task are ready to be sent to the master. The master gathers

the results to produce the final output, see Figure 3.6.C.

Master

Worker 1

Task 1
I1

P

S1O1

Shared

Task 2
I2

P

S2O2

Worker 2

Task 3
I3

P

S3O3

Shared

Task 4
I4

P

S4O4

B

A
Master

Shared

Worker 1 Worker 2

I1 I2 I3 I4

Input

C
Master

O1 O2 O3 O4

Worker 1 Worker 2

Output

Figure 3.6: The distribution of data in the HWFarm skeleton.(I: Input, O: Output,
S: State, P: Program).

Data Manipulation

The data will be delivered by the skeleton to the user-defined function through a

hwfarm task data struct:

typedef struct hwfarm_task_data{

int task_id;

void* input_data; int input_len;

void* shared_data; int shared_len;

void* state_data; int state_len;

void* output_data; int output_len;

67

Chapter 3: Self-Mobile Skeleton

int* counter; int* counter_max;

} hwfarm_task_data;

The fields of this structure are as follow:

• task id: The id of the current task.

• input data: The reference of the input buffer(chunk).

• input len: The length of the input buffer.

• shared data: The reference of the shared buffer.

• shared len: The length of the shared buffer.

• state data: The reference of the state buffer(chunk).

• state len: The length of the state buffer.

• output data: The reference of the output buffer.

• output len: The length of the output buffer.

• counter: The reference of the main counter.

• counter max: The reference of the maximum number of iterations in the main

loop.

When the user function is called, all data related to the task will be available in

this struct. The user has to follow the reference style in writing the code especially

the counter. This will keep all changes accessed and controlled by the skeleton for

enabling mobility and scheduling.

Inside the iterations of the main loop in the user program, the user can define

any data type and use any allocation method. But, before reaching the end of

the iteration, they have to save the result to output data and update the state.

Updating the state includes updating the index value, shared values and any other

data needed between iterations.

See the example in Section 3.3.2 that explains using the skeleton with its state.

68

Chapter 3: Self-Mobile Skeleton

3.2.4.2 Allocating Model

Exploiting a parallel platform requires having some knowledge about its architecture

to effectively distribute the load for the best performance. Low-level details about

the architecture and information about the executions are good metrics to achieve

resource-aware schedule decisions where the initial schedule has a significant impact

on the total performance.

A load balancing mechanism works well when all nodes have the same character-

istics. But, in heterogeneous multi-core clusters, where each node has an arbitrary

number of cores, such a mechanism may not work. To solve that, the HWFarm

skeleton takes into account the heterogeneity of the participating nodes in order to

achieve the best initial task distribution. However, HWFarm uses a simple static

allocation model parameterised with the number of cores for each worker as well as

the total number of tasks. This initial model ignores the communication costs and

any dynamic metrics to reduce the overhead incurred at the skeleton start-up.

Suppose node i has Ci cores where the total number of nodes is N . Then, the

total number of cores C is:

C =
∑N

i=1Ci

When each worker is assigned to one node, the number of tasks allocated to each

worker is:

Ti = dCi

C
∗ T e

where: T is the total number of tasks and Ti is the number of tasks allocated to

worker i.

Figure 3.7 shows the number of tasks assigned to each worker for different node

instances. In this distribution, the number of tasks allocated to each worker is the

proportion of the number of cores in that node on which the worker runs.

3.2.4.3 Implementation Summary

The aim of the HWFarm skeleton is to execute sequential user code in parallel.

Accordingly, the user should take into account that this code will be concurrently

69

Chapter 3: Self-Mobile Skeleton

Figure 3.7: The distribution of tasks based on the allocation model. 8: 8-core node;
24: 24-core node; 64: 64-core node.

executed on chunks of data. After preparation of the code and data, the user can

call the skeleton and wait for the results to handle the processed data. Now, we will

explain the skeleton activities to accomplish the whole operation.

As outlined in Section 3.2.2.1, the coordination pattern used to implement the

HWFarm skeleton is Master/Worker. Master and workers are MPI processes. These

processes will be allocated to the resources according to the default MPI process

manager.

The parallel system targeted by the skeleton is a multi-core cluster which is

composed of a number of machines, nodes. Each node in this cluster has multi-core

processor and a memory. Fig 3.8 shows the deployed HWFarm processes over the

cluster’s nodes. As a result, we have a master process allocated to one machine and

worker processes allocated to other machines.

70

Chapter 3: Self-Mobile Skeleton

Figure 3.8: Allocating MPI processes into cluster nodes.

Master

The master process works as a global coordinator for the skeleton. The master starts

by creating the pool of tasks based on user parameters and user data. Each task

has data and a function. Then, it assigns a selected number of tasks to each worker

based on an allocation model. Each worker may execute one or more tasks. Finally,

when a worker finishes executing a task, the master will be ready to receive its results

and gather all sub-results to be delivered to the user program; see Figure 3.9.

Figure 3.9: Master/Worker cooperation.

71

Chapter 3: Self-Mobile Skeleton

A task in HWFarm has many details that need to be grouped. Thus, we define a

data structure to hold all details of the task. This data structure will be created and

filled with the appropriate values by the skeleton, either in the master or workers.

This data structure and its fields are as follow:

struct mobile_task{

int m_task_id;

The id of the task.

void * input_data;

The buffer of the input data.

int input_data_length;

The length of the input data buffer; the number of items in the input buffer.

int input_data_item_size;

The size of one item in the input buffer; the number of bytes allocated in the memory

for one input data item. This can be simple, such as integer, or complex, such as

user defined structure. i.e. sizeof(<type>).

void * shared_data;

The buffer of the shared data.

int shared_data_length;

The length of the shared data buffer; the number of items in the shared buffer.

int shared_data_item_size;

The size of one item in the shared buffer; the number of bytes allocated in the

memory for one shared data item.

void * output_data;

The buffer of the output data.

72

Chapter 3: Self-Mobile Skeleton

int output_data_length;

The length of the output data buffer; the number of items in the output buffer.

int output_data_item_size;

The size of one item in the output buffer; the number of bytes allocated in the

memory for one output data item.

int counter;

This is a state field and refers to the value of the counter of the main loop.

int counter_max;

This is a state field and refers to the maximum number of iterations in the main

loop.

void * state_data;

The buffer of the state data; this is also a state field. This field can be used for

passing values or saving constants.

int state_data_size;

The size of the state buffer; the total number of bytes allocated for the whole state

buffer.

long shift;

This value points to the location of input data in the memory in the main input

buffer; this value is calculated for each task and it is very important when gathering

the sub-results of the executed tasks.

int moves;

The total number of movements of this task. Each task may encounter different

number of movements during its lifetime. This field also can be synchronously used

with the next four fields to store/obtain some useful information while this task is

visiting a concrete worker.

73

Chapter 3: Self-Mobile Skeleton

int m_dest[MAX_MOVES];

An array to store the ids of the workers that hosted this task as a result of mobility.

double m_start_time[MAX_MOVES];

An array to store the arrival times of this task.

double m_end_time[MAX_MOVES];

An array to store the leaving times of this task.

float m_avg_power[MAX_MOVES];

An array to store the average values of the relative computational power throughout

the execution of this task on that worker. Each value is calculated based on the CPU

MHz of the host node, the number of cores, and the number of active processes.

float m_work_start[MAX_MOVES];

An array to store the work done before the task arrives at this worker.

int done;

A Boolean field to check if the task is completed or not.

double task_move_time;

The total amount of time needed to move the task; this can be calculated once when

the master sends this task to a worker.

fp *task_fun;

};

A reference to the function on the worker. This value will be set by the worker when

it arrives.

Most of these fields are set by the master while the timing and moving fields will

be set by the workers.

During executing tasks on remote workers, the master keeps a log of all details

of the tasks. To implement this, the master has a table of task reports for profiling

all activities of each task. This task report is defined as follow:

74

Chapter 3: Self-Mobile Skeleton

struct mobile_task_report{

int task_id;

int task_status;

double task_start;

double task_end;

int task_worker;

int mobilities;

double m_dep_time[MAX_MOVES];

double m_arr_time[MAX_MOVES];

struct mobile_task * m_task;

};

The description of fields of a task report structure is:

• task id: The id of the task.

• task status: The status of this task(0: waiting for running; 1: running; 2:

completed; 3: moving).

• task start: When the task is allocated to a worker.

• task end: When the task is completed.

• task worker: The id of the worker that runs this task.

• moves: The number of movements of this task.

• m dep time[]: An array to store the times of movements(leaving source worker);

depends on moves.

• m arr time[]: An array to store the times(arriving destination worker); de-

pends on moves.

• m task: A reference to the details of the task in the master.

Some fields are set by the master at the beginning or at the end of the execution.

Others are set when a notification is received from a worker about an update on a

status of this task.

75

Chapter 3: Self-Mobile Skeleton

Worker

A worker process manages the local executions and all activities in the node so it

can be called as a local coordinator. First, a worker expects to receive tasks from

the master. But, within the execution, other workers may ask the current worker to

accept some tasks.

To keep monitoring all running tasks in one worker, the worker needs a table

of all local tasks running on this worker. Each record in this table refers to a task

running locally as well as some timing information and threads relevant to that task.

This table helps the worker control all hosted tasks for estimation and mobility. So

When estimation is triggered, the worker will iterate through this table to estimate

the total execution time of each task based on the local/global load information.

Figure 3.10 shows the table structure in one worker.

Figure 3.10: Tasks table at one worker.

This table is dynamically created and a record will be added to this table once

a task arrives. A record in this table is implemented in the HWFarm skeleton as

follow:

struct worker_task{

int task_no;

double w_task_start;

double w_task_end;

pthread_t task_pth;

pthread_t moving_pth;

struct mobile_task * m_task;

int move;

int go_move;

76

Chapter 3: Self-Mobile Skeleton

int go_to;

int move_status;

struct worker_local_load * w_l_load;

struct estimation * estimating_move;

struct worker_task * next;

};

The fields of worker task structure point to:

• task no: The id of the task.

• w task start: The time of execution here.

• w task end: The time of completion here.

• task pth: The thread that executes this task here.

• moving pth: The thread that is responsible for mobility.

• m task: A reference to the details of the mobile task.

• move, to, go move, move status: These four fields are used between task pth

thread and moving pth thread for synchronising the mobility operation.

• w l load: A pointer to the history of the local load; more details about this

struct are in Chapter 5.

• estimation move: A pointer to a structure used by the skeleton scheduler;

more details about this struct are in Chapter 5.

After creating a record for the arrived task, the worker creates a thread to run

the attached function over the input data. If the arrived task was already running

in another worker, a confirmation to the source worker and a notification to the

master will be sent.

When the task completes, the worker updates the fields and sends the results to

the master.

77

Chapter 3: Self-Mobile Skeleton

3.2.4.4 Mobility

To enhance dynamicity in shared computing platforms, the HWFarm skeleton is

supported with a mobility feature. Mobility in HWFarm is performed transparently

by the skeleton and based on the user settings. Figure 3.11 shows an overview of

the mobility operation performed by the HWFarm skeleton.

Figure 3.11: An overview of the mobility operation in the HWFarm skeleton.

To support mobility, a cooperation is required between the program and the

skeleton. Hence, the program has to manage four matters: state, using references,

activating mobility, and calling check-pointing.

• State: The HWFarm skeleton offers a structure that enables the user to define

the execution state, hwfarm state, outlined in Section 3.2.4.1. The user is

required to specify the values for this structure before calling the skeleton.

• Using References : In order to control and access all the data in the task, this

data should be referenced. These references are passed to the user function

and therefore the user has to deal with this data using pointers as well. In

this case, at any time, the worker process has access to: input data, processed

data, and the state.

78

Chapter 3: Self-Mobile Skeleton

• Activating Mobility : This is accomplished when calling the skeleton. The skele-

ton function has an argument that specifies the status of mobility, switched

on or off.

• Check-pointing : This operation is performed by the skeleton but under pro-

gram control. To avoid blocking the task execution during intensive com-

putation and critical memory access, it is preferred to check if there is need

for mobility between two iterations. Therefore, the HWFarm skeleton offers

a function which the program has to call at the end of each iteration. This

function is called checkForMobility() and it is also a parameter in the user

function. This function only checks a flag for this task and hence there is no

blocking for the executing thread.

To properly move a running computation to another location, we need to move

its code, its data, and the execution state to another location and then resume the

computation from its stop point. The code of the computation is already available on

all processes because HWFarm is based on top of MPI which has an SPMD model.

Thus, the user function is defined in the memory name space of all participating

processes.

The data including input, shared, output, and state is structured in the task data

structures mobile task and worker task. These data structures will keep access

to the data while the user function is running. Therefore, whenever the task stops

executing, the updated data is available and ready to be transferred.

The skeleton needs a decision maker to determine when and where mobility will

occur. This is performed by the skeleton scheduler guided by a performance cost

model. We will explore in Chapter 4 and Chapter 5 how the skeleton scheduler takes

move decisions based on the load state.

The mobility operation is a set of activities occurring in the workers involved

in this operation to move selected tasks from the source worker to the destination

worker. To illustrate this operation, we have worker 1 and worker 2 executing 2

tasks and one task, respectively. During the execution, the node that hosts worker

1 becomes highly loaded. In this case, when the skeleton scheduler triggers mobility

79

Chapter 3: Self-Mobile Skeleton

at the source worker:

(a) The skeleton sends a move request to the destination worker which checks if

it is feasible to accept new tasks. See Figure 3.12.

Figure 3.12: Step a of the mobility operation in the HWFarm skeleton.

(b) When a confirmation has been received from the destination worker, a thread,

Mobility Agent (MA), will be created for moving a task to that destination.

Then, the MA thread synchronises with the task thread until checkForMobility()

has been called by the thread to enable check-pointing. See Figure 3.13.

Figure 3.13: Step b of the mobility operation in the HWFarm skeleton.

(c) The MA thread sends the task data: input, output, state buffers and other

task details to the destination worker. The destination worker receives the

task and resumes the task execution. See Figure 3.14.

Figure 3.14: Step c of the mobility operation in the HWFarm skeleton.

(d) Before executing the received task, the worker will notify the source worker

and the master. This notification informs the source worker that the task has

been successfully received and its execution has been resumed. Furthermore,

80

Chapter 3: Self-Mobile Skeleton

the destination worker notifies the master that a task has been moved to a new

location and hence the mapping of the tasks needs to be updated. However,

the local task table will be updated at the destination worker. Once the

source worker receives a move complete, the source worker kills the thread of

the current moved task and frees the relevant resources. See Figure 3.15.

Figure 3.15: Step d of the mobility operation in the HWFarm skeleton.

Finally, the skeleton continues its activities and repeats mobility operations when

needed.

3.2.4.5 Prototype

in this section, we explore the usability of the HWFarm skeleton. All code fragments

presented in this section are in the C programming language, the programming

language we use to develop the HWFarm skeleton. We present the prototype of the

HWFarm function call as follow:

void hwfarm(fp user_function, int tasks,

void *input_data, int input_data_item_size, int input_data_length,

void*shared_data, int shared_data_item_size, int shared_data_length,

void *output_data, int output_data_item_size, int output_data_length,

hwfarm_state main_state, int mobility)

{. . .}

This prototype shows the parameters needed to call the skeleton function. The

parameters are:

• user function: The function written by the user to be called by workers to

manipulate the scattered data for one task.

81

Chapter 3: Self-Mobile Skeleton

• tasks: The total number of tasks.

• input data, input data item size, input data length: Input data de-

tails; outlined in Section 3.2.4.1.

• shared data, shared data item size, shared data length: Shared data

details; outlined in Section 3.2.4.1.

• output data, output data item size, output data length: Output data

details; outlined in Section 3.2.4.1.

• main state: A data structure that holds state of the execution. This param-

eter is essential in optimising the execution via the HWFarm scheduler; also

outlined in Section 3.2.4.1.

• mobility: A Boolean value to activate the mobility operations. If 0, the

skeleton will work as a static skeleton.

The prototype of the user function is as follow:

void user_function (hwfarm_task_data* t_data,

chFM checkForMobility){ }

This function has two parameters: t data is an input parameter that holds all

data. Details about this structure are outlined in Section 3.2.4.1. checkForMobility

is a function to be called to check the mobility. Programs have to retrieve the data

from the input pointer hwfarm task data and update the execution state before

check-pointing. The implementation of the user function should follow the pattern:

void <function_name>(

hwfarm_task_data* t_data,

chFM checkForMobility){

int *i = t_data->counter;

int *i_max = t_data->counter_max;

//retrieve the input, the output, and the state.

while(*i < *i_max){

82

Chapter 3: Self-Mobile Skeleton

//Perform the computing over the input data

//Save the results of this iteration to the output data

//Increment the counter

checkForMobility();

}

}

3.2.4.6 Skeleton Initialisation and Finalization

Because the HWFarm skeleton is based on MPI, the environment needs to be

initialised and terminated when all executions are complete. This is done via

initHWFarm()and finalizeHWFarm().

initHWFarm() initializes the MPI environment to establish the communicator

and create the processes. We use MPI THREAD MULTIPLE to create MPI processes

with multithreaded support where we are creating many PThreads inside MPI pro-

cesses.

void initHWFarm(int argc, char ** argv){

int provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

}

finalizeHWFarm() terminates the MPI processes:

void finalizeHWFarm(){

MPI_Finalize();

}

3.2.5 Using the HWFarm Skeleton

Now, we will start with a simple sequential example and explain how this code can

be parallelised using HWFarm.

83

Chapter 3: Self-Mobile Skeleton

Suppose we have the sequential C code to square numbers in a list.

int num_array[ARRAY_SIZE];

while(i < ARRAY_SIZE){

num_array[i] = num_array[i] * num_array[i];

i++;

}

To use the HWFarm skeleton to parallelise this code, we have to configure the

number of tasks and the chunk size. In this example, we set the number of tasks

to 10 tasks where the value of ARRAY SIZE is multiple of 10 and therefore all tasks

have an equal chunk of data. The code for configuring the initial values is:

int problem_size = ARRAY_SIZE;

int tasks = 10;

int chunk = problem_size / tasks;

Also, we need to set the input buffer and the input parameters. Here, we initialise

the input buffer with NULL because this buffer should be set at all processes. The

variable input data size is set to the number of bytes to store one integer number

in the host node. Finally, the variable input data len is set to the chunk size where

each task will processes this number of items. The fragment of code for configuring

the input is:

int * input_data = NULL;

int input_data_size = sizeof(int);

int input_data_len = chunk;

We will repeat the initialisation for the output buffer and its parameters. In

this example, the number of items in the output is equal to the number of items in

the input. This is not the case for all problems. The number of items in the input

and in the output can be flexibly set by the user depending on the problem. This

gives the HWFarm flexibility to manipulate a wide range of problems. The code for

configuring the output is:

84

Chapter 3: Self-Mobile Skeleton

int * output_data = NULL;

int output_data_size = sizeof(int);

int output_data_len = chunk;

Then, the state of the execution needs to be set. The values of the state depend

on the implementation of the problem as well as the number of items to be processed.

At the beginning, each task processes a chunk of data and therefore the main counter

is initialised to 0 and the maximum number of items is set to the chunk size. In

this example, the state is set to NULL where in this implementation the state is not

required. The code for specifying the values of the data structure hwfarm state is

as follows:

hwfarm_state main_state;

main_state.counter = 0;

main_state.max_counter = chunk;

main_state.state_data = NULL;

main_state.state_len = 0;

To activate mobility, the variable should have the value 1; otherwise it should

have the value 0.

int mobility = 1;

Before calling the skeleton, the master should allocate the input buffer and the

output buffer where the input data need to be initialised. The code is as follow:

if(rank == 0)

{

//Prepare the input data

//Prepare the output buffer

}

Then, the skeleton will be called with the parametrised values.

85

Chapter 3: Self-Mobile Skeleton

hwfarm(hwfarm_square, tasks,

input_data, input_data_size, input_data_len,

NULL, 0, 0,

output_data, output_data_size, output_data_len,

main_state, mobility);

When the skeleton function returns, the master can deal with the output data.

hwfarm square is the function that will be called for each task to process a

particular chunk of data. This function has the prototype outlined in the previous

section. First, the user obtains the values of the counter for the main loop. The

main counter values should be obtained using pointers as follow:

int *i = t_data->counter;

int *i_max = t_data->counter_max;

Then, the input and the output references will be obtained as follow:

int *input_p = (int*)t_data->input_data;

int *output_p = (int*)t_data->output_data;

Observe that all assignments in the user function should be performed through

pointers to reflect the updates on the passed arrays and to keep all data, such as

input, output, and counter, up to date during the execution of the task.

The main loop looks like:

while(*i < *i_max){

*(output_p + (*i)) = *(input_p + (*i)) * *(input_p + (*i));

(*i)++;

checkForMobility();

}

In comparison with the sequential code, we can see that parallel code is somehow

similar to serial code except using pointers and calling the check-point function,

checkForMobility(). A call to this function is needed to complete the check-

pointing and accomplish transferring the current task if necessary. Following this

86

Chapter 3: Self-Mobile Skeleton

approach is required to properly estimate and perform mobility during the execution

of the program. Then, the dynamicity of the HWFarm skeleton is fully exploited.

Figure 3.16 shows the original and modified loop when using the HWFarm skeleton.

while(i < ARRAY_SIZE){

num_array[i] = num_array[i] * num_array[i];

i++;

}
(a) The original loop

while(*i < *i_max){

*(output_p + (*i)) = *(input_p + (*i)) * *(input_p + (*i));

(*i)++;

checkForMobility();

}
(b) The modified loop

Figure 3.16: The main loop of the user function.

The full code of this example is as follow:

void hwfarm_square(hwfarm_task_data* t_data, chFM checkForMobility){

int *i = t_data->counter;

int *i_max = t_data->counter_max;

int *input_p = (int*)t_data->input_data;

int *output_p = (int*)t_data->output_data;

while(*i < *i_max){

*(output_p + (*i)) = (*(input_p + (*i))) * (*(input_p + (*i)));

(*i)++;

checkForMobility();

}

}

int main(int argc, char** argv){

initHWFarm(argc,argv);

int problem_size = ARRAY_SIZE; //number of item in the list

int tasks = 10; //number of tasks

int chunk = problem_size / tasks;// number of items in one task

//local input data details

87

Chapter 3: Self-Mobile Skeleton

int * input_data = NULL;

int input_data_size = sizeof(int);

int input_data_len = chunk;

//output data details

int * output_data = NULL;

int output_data_size = sizeof(int);

int output_data_len = chunk;

//details of the main counter

hwfarm_state main_state;

main_state.counter = 0;

main_state.max_counter = chunk;

main_state.state_data = NULL;

main_state.state_len = 0;

int mobility = 1;

if(rank == 0)

{

//Prepare the input data

//Prepare the output buffer

}

hwfarm(hwfarm_square, tasks,

input_data, input_data_size, input_data_len,

NULL, 0, 0,

output_data, output_data_size, output_data_len,

main_state, mobility);

if(rank == 0){

//Do something with the output

}

finalizeHWFarm();

}

88

Chapter 3: Self-Mobile Skeleton

3.2.6 Skeleton Assessment

The design of the HWFarm skeleton has addressed a pragmatic manifesto [67] and its

extension in [72]. Here, we discuss how the HWFarm skeleton met these principles:

1. Propagate the concept with minimal conceptual disruption: HWFarm is pre-

sented as a library or a function call in the C programming language. This

avoids learning new syntax and gets benefits from C features, such as porta-

bility. Nevertheless, rewriting of the code to obtain parallel code is required.

Moreover, HWFarm depends on the MPI and PThreads libraries to support

communications in distributed and shared memory platforms, respectively.

2. Integrate ad-hoc parallelism: because the HWFarm skeleton is built on top

of the most popular message passing libraries, this integrates with ad-hoc

parallelism.

3. Accommodate diversity : The program pattern supported by the HWFarm

skeleton is the loop parallelism pattern. Moreover, it is straight forward to

compose multiple HWFarm function calls to solve problems in a pipeline style.

However, the HWFarm skeleton is not nestable and the Divide and Conquer

pattern is not supported.

4. Show the pay-back : To illustrate the payback, we present a skeleton that is

straight forward to use and responsive to the load changes and where distri-

bution is based on machine characteristics.

5. Support code reuse: In the HWFarm skeleton, the sequential code can be

reused with some modifications where the structure of the code is unmodified.

But there is more effort when the implementation has special behaviour, such

as dynamic allocation.

6. Handle heterogeneity : The HWFarm skeleton supports multi-core clusters

that provide heterogeneous resources without addressing GPU architectures

or CPU accelerators. In addition, the HWFarm skeleton works in MPI com-

patible platforms with Linux based operation systems.

89

Chapter 3: Self-Mobile Skeleton

7. Handle dynamicity : The HWFarm skeleton is designed to be dynamic through

raising its awareness to the external load and supporting a mobility approach

to enable the skeleton to reallocate its computations amongst the nodes of

non-dedicated clusters. This enhances the skeleton to handle dynamicity and

adaptivity to the load state of the system.

3.3 Experiments

In this section, we present some experiments in order to show the improvement in

the performance from the perspective of speed up.

3.3.1 Platform

The HWFarm skeleton is tested on a Beowulf cluster located at Heriot-Watt Univer-

sity. The cluster consists of 32 eight-core machines: 8 quad-core Intel(R) Xeon(R)

CPU E5504, running GNU/Linux at 2.00GHz with 4096 kb L2 cache and using

12GB RAM.

3.3.2 Skeletal Experiments

In these experiments, we show the speed up when running our skeleton with different

chunk sizes for the same problem. We use two applications Matrix Multiplication

and Raytracer. For simplicity, we used two nodes of the Beowulf cluster to run our

skeleton, one for the master and one for the worker.

The Matrix Multiplication problem is based on:

for(i=0;i<n;i++) //n:row count in M1

for(j=0;j<m;j++) //m:col count in M2

for(k=0;k<c;k++) //c:col count in M1 = row count in M2

M3[i][j]=mul(M1[i][k],M2[k][j]);

In the first experiment, we run a 2000*2000 Matrix Multiplication problem with

different number of tasks to investigate that the skeleton achieves a speedup. The

90

Chapter 3: Self-Mobile Skeleton

chunk size of each run is related to the number of tasks where the problem size is

fixed. The full source code can be found in Appendix A.2. Figure 3.17 illustrates a

good speed-up when using several tasks to solve the same problem.

Figure 3.17: The execution time and the speedup when using the HWFarm skeleton
to solve 2000*2000 Matrix Multiplication problem.

Another application of the HWFarm skeleton is Raytracer.

rays=generateRays(rays_count,coordinates);

scene=loadObjects();

foreach ray in rays

imp=firstImpact(ray,scene);

imps=addImpact(imp);

showImpacts(imps,rays_count);

We run the application to solve 100 rays with 20000 objects in a 2D scene. Each

run has different number of tasks while the chunk size is implicitly calculated based

on the number of rays and the number of tasks. The full source code can be found

in Appendix A.3. Figure 3.18 shows the speedup gained when using our skeleton to

solve the Raytracer problem.

Further experiments that evaluate the behaviour and the performance of the

HWFarm skeleton will be discussed in Chapter 5.

91

Chapter 3: Self-Mobile Skeleton

Figure 3.18: The execution time and the speedup when using the HWFarm skeleton
to solve Raytracer problem with 100 rays.

3.4 Summary

In this chapter, we presented the design and the structure of the HWFarm skele-

ton. The HWFarm skeleton is provided as a function or a library, hosted by the

C programming language, and dependent on the MPI and PThreads libraries. We

followed the skeletal principles provided by Cole [67] and Danelutto et al [72] to

implement this skeleton. We also showed how our skeleton fulfilled these design

concepts.

The HWFarm skeleton offers an efficient tool to exploit the processing power of

shared computing architectures, such as multi-core clusters. This skeleton can run

as a static skeleton or mobile skeleton. The requirements of running our skeleton in

static mode are as follows:

• The skeleton runs on platforms that are MPI compatible with Linux operating

system.

• The skeleton can be used to execute user programs in parallel. The user

program should follow the pattern outlined in Sec 3.2.4.5 where refactoring of

the sequential code is needed.

• The data that will be processed by the program should also be allocated by the

user. Therefore, the data buffers (input, shared and output), the unit sizes,

and buffer lengths are defined based on the executing platform.

• The data in each buffer should be allocated in consecutive memory locations.

92

Chapter 3: Self-Mobile Skeleton

• The program has to use pointers and references in updating the output buffer.

In the mobile version, the skeleton needs more requirements to take advantage

of its dynamicity. The requirements are as follows:

• The state of the program execution is defined with the state data structure,

hwfarm state. This structure is outlined in Sec 3.2.4.1. This structure has to

be modified, especially the counter field, at the end of each iteration by the

corresponding values to reflect the execution state of the program.

• At the end of each iteration, the checkForMobility() function should be

called.

• To activate mobility, calling the skeleton with mobility switched on is required.

Either running in static or mobile mode, the skeleton runs with assumptions. In

this thesis, we assume that:

• the sizes of tasks are fixed;

• the size of the task pool is static;

• the skeleton does not accept adding/removing nodes at run-time;

• and there is no dependency amongst tasks.

The experiments in this chapter show that the HWFarm skeleton gives good

speed-up when running in static mode. In the next chapters, we will explore how to

run the skeleton in mobile mode.

In the next chapter, we explore how HWFarm uses a performance cost model to

take the decisions needed to improve the performance.

93

Chapter 4

Measurement-based Performance

Cost Model

In the previous chapter, we presented our skeleton with a mobility approach to

enable the skeleton to reschedule its computations. Here, we discuss a performance

cost model used by the scheduler to produce costed decisions about the running

tasks. Such a model helps the scheduler to decide the computation location on

which a selected task can run faster. Therefore, this improves the performance and

reduces the total execution time. We discuss the cost model used by the HWFarm

skeleton in Section 4.1. Next, we show the evaluation of this cost model in Section

4.2.

4.1 Performance Cost Model

The presence of multiple applications in a shared environment may cause resource

contention by the running processes. Mobility is a good solution to lighten the

load and enhance the efficiency. But, mobility must be controlled and driven by

concerns related to the performance goals. Hence, a cost model is needed to take

accurate decisions. Accuracy of such decisions requires that the cost models should

be dynamic to reflect the environment load. Nonetheless, dynamic cost models incur

more overhead at run-time than static cost models.

In this thesis, we propose a dynamic performance cost model, the HWFarm cost

94

Chapter 4: Measurement-based Performance Cost Model

model. This model uses a measurement-based approach at run-time to estimate the

continuation time of the running computations. This model is parametrised with

dynamic parameters such as environment workload and the progress of the running

computations. Our experiments show that this cost model supports the adaptivity

of the HWFarm skeleton through taking accurate decisions. In this section, we

explore the HWFarm cost model design and its dynamic metrics.

4.1.1 Cost Model Design

The mobility decision in the HWFarm cost model is taken when the time to complete

executing a task at the current location is greater than the time to execute the same

task on a remote location aggregated with the transfer cost of that task. The

condition of the mobility decision is:

T i > Tmobility + T j; where i! = j

where: T i and T j are the estimated times for a task at location i and at location

j, respectively. Tmobility is the predicted cost of moving a task from the source

location to the destination location where transfer costs between all nodes are the

same.

To develop an adequate scheduling mechanism for the HWFarm skeleton, this

requires taking decisions based on the current behaviour. Therefore, we employ

a performance cost model to solve this issue. Nonetheless, evolving such a model

needs to take into consideration these challenges: architecture characteristics, ap-

plication parameters, system load, and network delays. All these challenges need to

be addressed in order to acquire the performance goals.

Architecture characteristics

To optimise the performance of HWFarm, the cost model should address the charac-

teristics of target architectures. These architectures are usually composed of various

kinds of processing units and hierarchical interconnections. To fully exploit these

rapidly evolving heterogeneous resources in the shared environments, HWFarm has

95

Chapter 4: Measurement-based Performance Cost Model

to be adaptive to the platforms where it is running. This also achieves performance

portability. However, due to the big influence of the architecture characteristics on

performance, these characteristics need to be integrated with the cost model. Con-

sequently, the HWFarm cost model should be architecture-independent and be able

to predict the performance on the target architectures.

The architecture parameters that affect the running computations and used in

architecture-independent cost models are: the speed of CPU, number of processing

units, number of cores, memory, and cache. Deng [80] presented a cost model

parameterised with the CPU speed. The number of processing units is also used

with many cost models such as LogP [71]. L2 cache is also addressed in the cost

model proposed by Khari [21].

In the HWFarm cost model, we use two static architecture parameters: the speed

of the CPU and number of cores on that CPU. We assume that all cores in a node

have the same clock speed. In this work, we do not address the memory and the

cache.

The static information used by the HWFarm cost model can be obtained once at

the start-up from the /proc virtual file system. These values reflect the maximum

potential computational power of the current machine.

Application

Conventionally, to estimate the cost of running an implementation, cost analysis of

the algorithm should be carried out. This requires knowledge of the application and

the executing platform. Furthermore, this may take much effort that transcends the

benefits of analysis.

In skeletal-based systems, the skeleton is adopted as a parallel subroutine to

execute a parametrised user code. This generic subroutine is referred to as a black-

box component [55]. Hence, there is no prior knowledge about the programs they

execute. In HWFarm, the skeleton executes its tasks with awareness about their

progress of execution. This is implemented with assistance from the user. This was

detailed further in Chapter 3.

96

Chapter 4: Measurement-based Performance Cost Model

Parallel applications are generally computationally intensive. Such applications

are typically implemented using constrained programming models. Constrained

programming models or concrete coordination patterns simplify the cost modelling

of these applications. Because the program model used in the HWFarm skeleton is

loop parallelism, this gives the running tasks a repetitive nature.

In iteration-based applications, each iteration that manipulates the specific amount

of data has an executing cost somehow similar to the cost of other iterations that

process the same amount of data [235]. That is correct if the execution continues

on the same platform with the same load state. But, this is not the case if the com-

putations are irregular. We will discuss the accuracy of the estimations in irregular

computations in Section 4.2.1.2. In some references, the iterations are referred to as

super-steps like the BSP parallel model [123].

Therefore, in the HWFarm cost model, we used a partial execution approach to

estimate the continuation times based on the past execution on the current node.

This approach is also based on monitoring and measuring of the behaviour of the

running computations. This approach was previously used by Yang et al [235]

where they showed that this mechanism is portable and cost-effective to predict the

performance. The metrics used in the model are: the elapsed time for a specific task

and how much work was completed in this location. These metrics are classified as

dynamic parameters that reflect the behaviour of the execution of the running tasks.

The first metric can be measured dynamically while the second is obtained from the

data structure of the relevant task. All details about this structure are outlined in

Section 3.2.4.1. These two metrics are also used in the cost model developed by

Deng [80].

System load

Selecting load metrics that characterize the system workload is crucial to the move-

ment decisions. The information about the system load reflects the environment’s

state. However, we need to employ the metrics that are useful to estimate the

continuation execution time from the past local load.

97

Chapter 4: Measurement-based Performance Cost Model

We identify the dynamic metrics that represent the workload of the systems:

• The load average represents the average system load over a period of time. It

appears in the form of three numbers which represent the system load during

the last one-, five-, and fifteen-minute period.

• The CPU utilisation refers to the percentage of usage of the CPU on all cores.

• The number of running processes refers to the number of processes and threads

currently assigned to the CPU.

In HWFarm, we use the CPU utilisation and the number of running processes as

dynamic input parameters of the HWFarm cost model. We exclude the load average

because it depends on the number of running and runnable tasks over a past period,

and its values are only updated in 3 second intervals in a typical Linux Kernel.

However, these values will be obtained periodically to measure the load state of the

host node. Like architecture characteristics, these values are also obtained from the

/proc virtual file system.

Network

The performance of parallel applications may be affected by the network contention

due to communication delay and latency. In order to produce accurate decisions,

the network characteristics should be considered in estimating the costs.

In the HWFarm cost model, the estimated times are calculated depending on

the local state on the current node and on other nodes. Because there are no inter-

communications amongst the tasks, the network latency has to be considered only

in mobility decisions. Therefore, to get accurate decisions for either moving a task

or not, that depends also on the cost of moving a task, Tmobility. Initially, we assume

that the communications are uniform within the cluster environment. Nonetheless,

for more accurate decisions, we need to observe the real network properties.

Network overhead, network contention, network bandwidth, and network latency

are metrics that have been used in cost modelling. An example of cost models that

use network characteristics is the LogP model [71].

98

Chapter 4: Measurement-based Performance Cost Model

In HWFarm, for simplicity, we use only the network latency as an indication of

whether the node is in a remote cluster or a local cluster.

As a conclusion, developing a highly accurate absolute cost model perfected

for a single implementation, a specific target language, and a concrete architec-

ture needs much effort. To overcome these challenges, the HWFarm cost model

might be used for a wide range of implementations written to solve different prob-

lems with various programming languages. Consequently, we propose a dynamic,

generic, architecture-independent, problem-independent and language-independent

cost model. This model supports the HWFarm skeleton to enhance its adaptivity

through predicting its own performance and hence the skeleton will be self-optimised.

However, the HWFarm cost model uses dynamic experimental measurements to

estimate the behaviour of the computations. This dynamicity incurs an overhead

that may influence the performance. We will explore further the overhead later in

Chapter 5.

4.1.2 The HWFarm Cost Model

The HWFarm cost model is based on a generic cost model [80] developed by Deng,

see Figure 4.1. Deng’s model combines the abstract static generated model with dy-

namic parameters. Furthermore, this model predicts the continuation times on the

current location and on other locations. This model also uses Formula 4.5 to deter-

mine mobility. Deng’s cost model is used in AMPs (Autonomous Mobile Programs)

and in AMSs (Autonomous Mobile Skeletons) such as automap, autofold, AutoIter-

ator implemented in Jocaml, and Java Voyager, and JavaGo over LANs. However,

Deng’s model addresses the processing power of the CPU but it does not take into

account the cores of that CPU. Moreover, this model takes into consideration only

the local load.

We use Deng’s model as a basis of our model and add more parameters that

optimise the performance. This model is implemented in C and accepts any program

able to run in parallel with some restrictions. Furthermore, it takes into account the

heterogeneity of the resources as well as the overall system workload in the shared

99

Chapter 4: Measurement-based Performance Cost Model

Ttotal = TComp + TComm + TCoord

Th > Tcomm + Tn
TComm = mTcomm

TCoord = npTcoord
TCoord < OTstatic

n <
OTstatic
pTcoord

Te =
Wd

Sh

Th =
Wl

Sh

Tn =
Wl

Sn

O : Overhead e.g. 5%
Ttotal : total time
Tstatic : time for static program running on the current location
TComm : total time for communication
Tcomm : time for a single communication
TCoord : total time for coordination
Tcoord : time for coordination with a single processor(location)
TComp : time for computation
Te : time has elapsed at current location
Th : time will take here
Tn : time will take in the next location
Wd : the work has been done at current location
Wl : the work left
Sh : the current CPU speed
Sn : the next location CPU speed
m : number of communication
n : number of coordination
p : number of processor

Figure 4.1: Deng’s cost model

environment. This awareness guides the skeleton to be more adaptive and elastic.

The HWFarm cost model, see Figure 4.2, starts with calculating the total pro-

cessing power for the location where the task is running, P , Formula 4.1.

Next, the relative processing power will be calculated for the location on which

the worker is allocated, Ri, see Formula 4.2.

Then, after obtaining the dynamic parameters needed for estimation: architec-

ture characteristics, application parameters, and system load, the estimated time

to complete the task at the current location can be calculated, Ti, see Formula 4.3.

The previous steps will be repeated for the all participating workers in order to:

calculate the total processing power, Pj, calculate the relative processing power,

100

Chapter 4: Measurement-based Performance Cost Model

Rj, and estimate the times to complete a specific task on other locations, Tj, see

Formula 4.4.

Pi = SiCi (4.1)

Ri =
Pi

ni

(4.2)

Ti =
WlReTe
WdRi

(4.3)

Tj =
WlReTe
WdRj

(4.4)

Ti > Tmobility + Tj (4.5)

Si: The CPU speed at location i
Ci: Number of cores at location i
Pi: The total processing power at location i
ni: The number of running processes at location i
Ri: The relative processing power at location i
Re: The relative processing power at the current location for the elapsed time
Ri: The relative processing power at the current location i
Rj: The relative processing power at the remote location j
Ti: The estimated time to finish the task at the current location i
Te: The elapsed time at the current location i
Tj: The estimated time to finish the task at the remote location j
Tmobility: The time spent in moving the task from a location to another
Wd: Percentage of the work done
Wl: Percentage of the work left (100 - Wd)

Figure 4.2: The HWFarm cost model

Based on these estimates and the predicted cost to transfer the task between two

locations, we can take a decision to keep this task running here or move it to a faster

location. Thereafter, we will name Formula 4.5 as the mobility decision formula.

Each estimate is related to a task and depends on the work done, the work left,

the elapsed time, the relative processing power during the previous task execution

and the relative processing power now. The relative processing power, which is also

refereed to as the load state, is the amount of processing power that a task can get

when running on that node. This value is related to the characteristics of the host

node and the total number of processes running on the node.

Observe that Wd is only the work done at the current location. This can easily

101

Chapter 4: Measurement-based Performance Cost Model

be measured but we need more details if the task previously has been moved in

order to calculate the work left. Each task has a field that holds the amount of work

processed when it leaves a location. Therefore, Wl will be the percentage of the work

left for processing the remaining data based on the work done at previous locations

and the work done here, at the current location. The work done is obtained from

the counter fields of the hwfarm state struct in the HWFarm skeleton. This struct

is discussed in details in Sec 3.2.4.1.

Table 4.1 summarizes the parameters used by the HWFarm cost model.

Parameter Description Type Static/Dynamic Source

Si Node CPU Speed Local/Remote Static Architecture
Ci Node Core Count Local/Remote Static Architecture
ni Number of processes Local/Remote Dynamic System Load
Te Elapsed Time Local Dynamic Application
Wd Work done Local Dynamic Application
Wl Work Left Local Dynamic Application
Li Network Latency Network Dynamic Network

Table 4.1: Parameters of the HWFarm cost model.

Figure 4.3 shows that the HWFarm cost model is divided into two stages: local

estimations and remote estimations. Local estimation, Stage 1, is parametrised

with the information about the node, the application and the load state. Then,

Stage 2 takes the local estimates as well as the information about the network, the

application, and the other nodes in order to produce the remote estimations and

finally concludes the final decision.

4.1.2.1 Mobility Cost

The mobility cost, Tmobility, is a significant component of the mobility decision for-

mula, see Formula 4.5 in Figure 4.2. This component represents the time predicted

to transfer the task to the destination node.

In HWFarm, there are three types of transfers: from the master to a worker,

assigning tasks; from a worker to the master, returning results; and from a worker

to a worker, task mobility. In this section, we focus on predicting the time needed

to transfer a selected task to a new location.

102

Chapter 4: Measurement-based Performance Cost Model

Figure 4.3: The HWFarm cost model with its parameters.

Task mobility in HWFarm is an operation that takes place when the host node is

affected by an external load. This load influences all operations in this node including

the network operations. Thus, the mobility cost should consider the load state of the

source node. Furthermore, because mobility requires moving the execution state,

this means that the size of the mobile task data may be changed according to the

transfer type. Moreover, the network latency should be addressed to avoid the

transfers that take a long time to complete. Such transfers add more delays to the

total execution times and consequently affect the overall performance.

When transferring data through a network, there are many factors influencing

the moving operation such as the data size, the network overhead, the network

bandwidth, and the network latency. In HWFarm, we simplify the prediction of the

transfer time through using an approach that takes into account the past transfers

of the task. Also, this approach considers the changes in the transferred task in

terms of data size as well as the changes of the executing environment conditions,

the load state, and the network latency.

103

Chapter 4: Measurement-based Performance Cost Model

Based on the previous approach, the prediction operation in HWFarm is application-

independent where it predicts the time of transferring data regardless of what the

task is. Also, the prediction is architecture-independent where the network structure

characteristics are featured in the times measured from the previous transfers.

Much work has been done to predict the cost of transferring data to another

location. For example, Vazhkudai et al [224] proposed a framework that predicts

the performance of data transfer in Grid platform based on past data transfer.

Next, we need to experiment with the impact of three factors: data size, load

state, and the network latency on the transfer time. Each one of these factors will be

individually investigated to find the relationship between this factor and the transfer

time. Here, we use the HWFarm skeleton with a simple program, a Square Numbers

application, that calculates the square of integer numbers in a one dimensional array.

Data Size

In HWFarm, the data size is the total amount of data attached to the task where

this amount might be changed according to the transfer type.

In this experiment, we will investigate the impact of data size on the transfer

times through measuring the times spent to transfer a task with various data sizes

between two nodes/workers. Here, we measure the transfer cost of sending a task

with a specific data size. Then, we compare the measured value with a new trans-

fer cost when sending a task with a different data size. Accordingly, the changes

of the transfer times are relevant to the changes of the data sizes. However, the

other factors, the load state and the network latency, are constant. We repeat this

experiment with various data sizes and then compare the changes of the transfer

times with the changes of the data sizes. Consequently, we have a relation between

the scaled transfer times and the the scaled data sizes. Figure 4.4 shows the scaled

transfer times compared to the scaled data sizes. The base unit of the times is

seconds while the base unit of the data size is byte.

Note that there is a dependency between the scaled data sizes and the scaled

transfer times. Therefore, from this relationship, a regression analysis [58] is needed

104

Chapter 4: Measurement-based Performance Cost Model

Figure 4.4: The scaled transfer times compared to the scaled data-sizes.

to predict the future transfer times based on changes of data size. We choose a power

regression, y = axb, to fit the given set of data. The reason behind this selection is

based on the assumption that if the data size of the task has not been changed, the

prediction of the future transfer time is similar to the previous transfer cost. As a

result, the power regression of the scaled transfer times compared to the scaled data

sizes yields: a = 1 and b = 1.023:

y = x1.023

Where: y refers the scaled transfer times while x points to the scaled data size.

As a conclusion:

y =
T2
T1
, x =

DS2

DS1

=⇒ T2
T1

= (
DS2

DS1

)1.023 =⇒

T2 = (
DS2

DS1

)1.023 ∗ T1 (4.6)

Where:

T1: The time of the previous transfer.

DS1: The data size at the previous transfer.

DS2: The data size at the next transfer

T2: The predicted time of the next transfer.

105

Chapter 4: Measurement-based Performance Cost Model

This formula is fitted for the values of the data size at the next transfer that are

less than 2000 times of the values of the data size at the previous transfer. This

range of scales has been selected because the data-points afterwards are inconsistent

and hence they are difficult to model.

As an example, if there is a task that has been previously transferred (DS1 =

1000 bytes and T1 = 1 sec), then the predicted time to transfer the same task with

changes in its data (DS2 = 2000 bytes) is T2 = 21.023 ∗ 1 = 2.032 sec.

Another example, there is a task (DS1 = 1000 bytes) and its past transfer time

is (T1 = 1 sec). To predict the future transfer of this task where its data size has no

change, it will be T2 = 11.023 ∗ 1 = 1 sec. This means that there is no change in the

predicted transfer time due to the unchanged data size.

Load State

The load state in HWFarm is referred to as the relative processing power R. Mobility

between two workers occurs due to changes in R. To experiment with the effect of

changes in R on the transfer times, we will measure the time spent to transfer a

task in different relative processing power conditions. This example has a fixed-size

task while the network latency is also fixed.

Figure 4.5 shows the scaled transfer times compared to the scaled relative pro-

cessing power. The base unit of the times is second.

This Figure also shows a dependency between the scaled transfer times and the

scaled relative processing powers. Therefore, to estimate the future transfer cost,

we also need a regression analysis to fit these data. Here, we use a power regression

for the same reason mentioned in the previous section. As a result, this regression

yields: a = 1 and b = −1.04:

y = x−1.04

Where: y refers the scaled transfer times while x points to the scaled relative

processing powers R. As a conclusion:

y =
T2
T1
, x =

R2

R1

=⇒ T2
T1

= (
R2

R1

)−1.04 =⇒

106

Chapter 4: Measurement-based Performance Cost Model

Figure 4.5: The scaled transfer times compared to the scaled relative processing
power.

T2 = (
R1

R2

)1.04 ∗ T1 (4.7)

where:

T1: The time of the previous transfer.

R1: The relative processing power at the previous transfer.

R2: The relative processing power at the next transfer.

T2: The predicted time of the next transfer.

This formula is fitted for the values of the load state that are less than 400%

where the scale of the relative processing power is ranging from 0.38 to 1. Like the

effect of the data size, the data set of this range reflects a consistent behaviour of the

scaled transfer time compared to the scaled relative processing power. However, the

computational efficiency of the extra loaded nodes, beyond 400%, degrades badly

and hence this model will produce movement decisions. Furthermore, this formula

says that the next transfer time equals to the previous transfer time if there is no

change on the relative processing power. This will not happen where the mobility

occurs only if the current worker is highly loaded.

107

Chapter 4: Measurement-based Performance Cost Model

Network Latency

Transferring tasks amongst locations occurs through a network which may have a

latency that affects the total time spent to accomplish this operation. Therefore,

we need to consider the network latency in estimating the transfer time. We control

the latency at a concrete location using the netem utility [118] that adds a specific

amount of delay to all outgoing packets.

Figure 4.6 shows that the time of transferring a task for different network delays.

These values depict that the times are equal if the latency is below a threshold value

point while they increase after that value. We assume that this value is a network

delay threshold where all network delays have a negligible influence on the transfer

time of a task. Based on these values, the threshold is L = 1.5ms.

Figure 4.6: The relationship between the transfer time and the network latency.

To investigate the effect of changes of the network latency on the transfer times,

we use the HWFarm skeleton with the Square program that has a fixed-size task

and unchanged relative processing power. We will measure the time spent to trans-

fer a task between two locations in different situations of network latency at the

destination location.

To find the scaled network latencies, the threshold L should be taken into ac-

count. This means that any delay value that is less than 1.5ms will be assumed as

L. This is true where all delays have the same effect on the transfer time.

108

Chapter 4: Measurement-based Performance Cost Model

Now, we explore the scaled transfer times compared to the scaled network latency,

see Figure 4.7. The base unit of the network latency is millisecond.

Figure 4.7: The scaled transfer times compared to the scaled network latency.

This figure also shows a dependency between the scaled transfer times and the

scaled network latency. Therefore, the estimation of the next transfer time can be

performed through a regression analysis to fit the data set. Also, we use a power

regression that yields: a = 1 and b = 0.907:

y = x0.907

Where y refers the scaled transfer times while x points to the scaled network

latency. As a conclusion:

y =
T2
T1
, x =

max(L2, L)

max(L1, L)
=⇒ T2

T1
= (

max(L2, L)

max(L1, L)
)0.907 =⇒

T2 = (
max(L2, L)

max(L1, L)
)0.907 ∗ T1 (4.8)

Where:

T1: The time of previous transfer.

L1: The network latency at the previous transfer.

L2: The network latency at the next transfer.

T2: The predicted time of the next transfer.

L: The threshold of the network latency.

109

Chapter 4: Measurement-based Performance Cost Model

This formula is fitted for the scaled network latencies that are less than 13 times

where the maximum delay applied is 20 ms. Here, the network delays that are

greater than 20 ms are also difficult to model. As a result, if the network latency

at the previous transfer and at the next transfer are less than (L = 1.5 ms), the

network latency has no effect on the predicted cost. Then,

max(L2, L)

max(L1, L)
=
L

L
= 1→ T2 = T1

Otherwise, if either L1 or L2 is greater than L, Formula 4.8 is applied where the

threshold L will be considered as a base to calculate the scaled latency.

Mobility Cost Summary

Now, we combine all three factors that affect the transfer times in one formula. Any

changes in the data size will change the transfer time. Then, if the load state is

changed, that will affect the whole operation. Moreover, if there is network latency,

this will affect the transfer.

We assume that the first transfer that occurs when the master assigns a task is

the baseline in predicting the mobility cost of this task. This time is referred to as

Tassignment or Ta.

The formula that predicts the transfer time of the task selected to move to a

destination worker is as follow:

Tmobility = (
DSmobility

DSa

)1.023 ∗ (
Ra

Rmobility

)1.04 ∗ (
max(Lmobility, L)

max(La, L)
)0.907 ∗ Ta (4.9)

where:

DSa: The data size when this task is first assigned to the current worker.

DSmobility: The data size of this task that is supposed to be transferred to another

worker.

Ra: The relative processing power when this task is first assigned to a worker.

Rmobility: The relative processing power of the current node.

La: The network latency when this task is first assigned to the current worker.

110

Chapter 4: Measurement-based Performance Cost Model

Lmobility: The network latency at the destination node when this task is supposed

to be transferred to that node.

L: The threshold of the network latency.

Ta: The time spent when this task is first assigned to the current worker.

4.1.3 Changes to the HWFarm skeleton

To efficiently fulfil the objectives of building the HWFarm skeleton, the HWFarm

performance cost model is implemented in the skeleton. This is performed through

creating agents responsible for the estimating operations. These agents are called,

the Estimator Agents, EAs. This supports the distributed nature of the skeleton

where each worker runs an estimator agent when necessary. Details about triggering

decision making will be explained in Chapter 5.

4.2 Cost Model Validation

In this section, we present experiments with the HWFarm cost model to validate the

estimated execution times and the mobility decisions. We are exploring two types

of computations: regular and irregular. For regular problems, we use a Matrix

Multiplication application. In contrast, we experiment a Raytracer problem in a 2D

scene as an example of irregular computations.

For these experiments, we test the skeleton in a Beowulf cluster located at Heriot-

Watt University. This cluster consists of 32 eight-core machines (8 quad-core In-

tel(R) Xeon(R) CPU E5504, running GNU/Linux(2.6.32) at 2.00GHz with 4096 kb

L2 cache and using 12GB RAM).

4.2.1 Execution Time Validation

In this section, we validate the times estimated by the HWFarm cost model. These

times are crucial in taking decisions to remap the running tasks over the processing

units.

111

Chapter 4: Measurement-based Performance Cost Model

Size Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

1000*1000 3.095 3.095 0.006 0.194 0.00042
1200*1200 5.349 5.341 0.009 0.169 0.01118
1400*1400 8.472 8.464 0.010 0.118 0.01040
1800*1800 17.972 17.936 0.036 0.201 0.03707
2000*2000 24.629 24.598 0.032 0.130 0.05363

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

4 24.644 24.599 0.045 0.183
8 24.629 24.599 0.03 0.122
12 24.625 24.599 0.026 0.106
16 24.603 24.599 0.004 0.016
20 24.606 24.599 0.007 0.028
24 24.608 24.599 0.009 0.037

(b) The estimated/actual time of problem
2000*2000

(c) The estimated/actual time

Figure 4.8: Execution time validation of Matrix Multiplication with one task.

4.2.1.1 Regular Computations

Regular computations have iterations where each consumes the same amount of

processing time under the same load. We use Matrix Multiplication as a regular

application to validate the estimations of our cost model. The pseudo-code of the

Matrix Multiplication algorithm is:

for(i=0;i<n;i++) //n:row count in M1

for(j=0;j<m;j++) //m:col count in M2

for(k=0;k<c;k++) //c:col count in M1 = row count in M2

M3[i][j]=mul(M1[i][k],M2[k][j]);

Figures 4.8, 4.9, 4.10 and 4.11 show the estimated and actual time when running

Matrix Multiplication with a range of problem sizes and various numbers of tasks.

In each figure, Table (a) shows the estimated time compared to the measured

actual time, with errors and standard deviation. The estimated time is the average

of calculating the estimated continuation times during the execution of the problem.

Table (b) shows the detailed estimated times for a task comparable to the actual time

at different sample points. Figure (c) illustrates how the estimated time approaches

112

Chapter 4: Measurement-based Performance Cost Model

Size Task Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

2000*2000 1 12.249 12.196 0.053 0.435 0.07240
2 12.242 12.192 0.050 0.410 0.07036

3000*3000 1 41.704 41.199 0.505 1.226 0.31275
2 41.883 41.220 0.664 1.611 0.52493

4000*4000 1 97.519 97.479 0.057 0.058 0.05302
2 97.471 97.418 0.060 0.062 0.04168

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

4 42.228 41.361 0.867 2.096
8 41.602 41.361 0.241 0.583
12 41.523 41.361 0.162 0.392
16 41.636 41.361 0.275 0.665
20 41.642 41.361 0.281 0.679
24 41.548 41.361 0.187 0.452
28 41.481 41.361 0.120 0.290
32 41.431 41.361 0.070 0.169
36 41.426 41.361 0.065 0.157
40 41.392 41.361 0.031 0.075

(b) The estimated/actual time of task 2 of prob-
lem 3000*3000

(c) The estimated/actual time

Figure 4.9: Execution time validation of Matrix Multiplication with two tasks.

Size Task Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

3000*3000 1 20.585 20.458 0.127 0.621 0.13036
2 20.645 20.479 0.166 0.811 0.17948
3 20.566 20.446 0.120 0.587 0.12275
4 20.556 20.442 0.114 0.558 0.11826

4000*4000 1 50.014 49.827 0.187 0.375 0.15170
2 50.070 49.866 0.204 0.409 0.13916
3 49.612 49.470 0.142 0.287 0.20968
4 49.681 49.463 0.218 0.441 0.17847

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

4 21.109 20.639 0.470 2.277
8 20.958 20.639 0.319 1.546
12 20.76 20.639 0.121 0.586
16 20.705 20.639 0.066 0.320
20 20.643 20.639 0.004 0.019

(b) The estimated/actual time of task 4 of prob-
lem 3000*3000

(c) The estimated/actual time

Figure 4.10: Execution time validation of Matrix Multiplication with four tasks.

113

Chapter 4: Measurement-based Performance Cost Model

Size Task Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

4000*4000 1 24.931 24.531 0.401 1.635 0.42224
2 24.935 24.537 0.403 1.642 0.43074
3 24.939 24.528 0.414 1.688 0.44459
4 24.944 24.526 0.422 1.721 0.45783
5 26.968 27.115 0.613 2.261 0.49469
6 26.933 27.128 0.725 2.673 0.52169
7 26.694 26.931 0.693 2.573 0.48356
8 30.248 30.480 0.529 1.736 0.27621

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

6 30.703 29.667 1.036 3.492
12 29.48 29.667 0.187 0.630
18 29.799 29.667 0.132 0.445
24 29.993 29.667 0.326 1.099
30 29.792 29.667 0.125 0.421

(b) The estimated/actual time of task 8 of prob-
lem 4000*4000

(c) The estimated/actual time

Figure 4.11: Execution time validation of Matrix Multiplication with eight tasks.

the actual time where the solid line indicates the actual time projected backwards.

These results show how the estimated time are accurate with a maximum error of

3% when comparing those times to the actual times.

Figure 4.12 summaries the results presented above. This figure depicts that the

accuracy of the estimation is improved as the task progresses towards completion.

Figure 4.12: Summary of the estimation accuracy in validating the execution time
in Matrix Multiplication.

114

Chapter 4: Measurement-based Performance Cost Model

4.2.1.2 Irregular Computations

In irregular computations, each iteration may need a different amount of processing

time depending on the data. Here we use a simple Raytracer application where the

pseudo-code of the Raytracer algorithm is:

rays=generateRays(rays_count,coordinates);

scene=loadObjects();

foreach ray in rays

imp=firstImpact(ray,scene);

imps=addImpact(imp);

showImpacts(imps,rays_count);

The Raytracer problem is based on rays that trace the path of light to produce an

image from 2D objects in the scene. Figure 4.13 shows a 2D scene with three objects

and the paths of lights, dots in the picture. Note that each ray may encounter a

different number of objects which leads to different amount of computation.

Figure 4.13: Example of 2D Raytracer problem with 3 objects in the scene.

Figures 4.14, 4.15, 4.16 and 4.17 illustrate the estimated and actual time when

running Raytracer with different number of rays and various numbers of tasks.

Note that in irregular computations, the estimated times are not as accurate as in

regular computations. Figure 4.17 shows an error reaching 20% from the actual time.

Nonetheless, the decisions made by the cost model reduce the overall execution time

because the continuation cost is affected in the highly loaded workers and therefore

mobility will help to execute the task faster in the lightly loaded workers.

115

Chapter 4: Measurement-based Performance Cost Model

Size(Rays) Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

20 6.836 6.814 0.059 0.873 0.03079
30 15.188 15.329 0.400 2.608 0.35025
40 27.216 27.585 0.830 3.008 0.68579
50 42.844 43.431 1.285 2.959 1.01699

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

6 25.796 27.585 1.789 6.485
12 27.230 27.585 0.355 1.287
18 28.317 27.585 0.732 2.654
24 27.927 27.585 0.342 1.240

(b) The estimated/actual time of problem 40
rays

(c) The estimated/actual time

Figure 4.14: Execution time validation of Raytracer with one task.

Size(Rays) Task Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

30*30 1 7.208 7.420 0.213 2.864 0.09687
2 7.652 7.315 0.337 4.607 0.33517

40*40 1 13.273 13.811 0.539 3.899 0.23142
2 13.776 13.211 0.565 4.277 0.49087

50*50 1 20.044 20.794 0.750 3.605 0.26754
2 22.984 21.702 1.282 5.907 0.80755

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

3 20.040 20.794 0.754 3.626
6 19.888 20.794 0.906 4.357
9 19.804 20.794 0.99 4.761
12 19.866 20.794 0.928 4.463
15 20.139 20.794 0.655 3.150
18 20.529 20.794 0.265 1.274

(b) The estimated/actual time of problem 50
rays

(c) The estimated/actual time

Figure 4.15: Execution time validation of Raytracer with two tasks.

116

Chapter 4: Measurement-based Performance Cost Model

Size(Rays) Task Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

50*50 1 10.307 10.365 0.058 0.560 0.04214
2 10.777 11.150 0.373 3.345 0.32585
3 11.940 11.563 0.377 3.258 0.14325
4 9.965 9.891 0.074 0.752 0.06602

100*100 1 39.158 39.296 0.138 0.352 0.10103
2 44.451 46.076 1.625 3.526 1.30430
3 46.500 44.573 1.927 4.324 0.83220
4 41.109 40.610 0.499 1.228 0.49682

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

5 42.624 46.076 3.452 7.492
10 42.864 46.076 3.212 6.971
15 43.342 46.076 2.734 5.934
20 43.969 46.076 2.107 4.573
25 44.638 46.076 1.438 3.121
30 45.178 46.076 0.898 1.949
35 45.524 46.076 0.552 1.198
40 45.892 46.076 0.184 0.399
45 46.032 46.076 0.044 0.095

(b) The estimated/actual time of problem 100
rays

(c) The estimated/actual time

Figure 4.16: Execution time validation of Raytracer with four tasks.

Size(Rays) Task Est-Time(Sec) Act-Time(Sec) Ave-Error Per(%) St-Dev

100*100 1 20.418 20.717 0.328 1.585 0.34545
2 20.119 20.328 0.235 1.157 0.16234
3 26.109 26.172 0.789 3.015 1.04277
4 39.525 32.863 6.662 20.271 4.64025
5 38.298 32.471 5.827 17.945 4.07632
6 32.070 27.700 4.370 15.777 3.29234
7 22.355 21.277 1.078 5.069 1.24830
8 20.339 20.204 0.203 1.003 0.25247

(a) Execution time validation for different problem sizes

Time Est-Time Act-Time Diff Diff
(Sec) (Sec) (Sec) %

5 19.870 20.328 0.458 2.253
10 20.421 20.328 0.093 0.457
15 20.181 20.328 0.147 0.723
20 19.965 20.328 0.363 1.786
25 19.944 20.328 0.384 1.889
30 20.174 20.328 0.154 0.758
35 20.281 20.328 0.047 0.231

(b) The estimated/actual time of problem 100
rays

(c) The estimated/actual time

Figure 4.17: Execution time validation of Raytracer with eight tasks (100 rays).

117

Chapter 4: Measurement-based Performance Cost Model

Figure 4.18 summaries the results presented above. Also, this figure illustrates

that the estimation gives more accuracy while the elapsed time becomes longer.

Figure 4.18: Summary of the estimation accuracy in validation the execution time
in Raytracer.

4.2.2 Mobility Decision Validation

As defined in the mobility decision formula, Formula 4.5, the mobility decision

should be taken when the current task may run faster at another location. We

need to validate that the decision is taken as expected. To investigate the accuracy

of the mobility decision, we run a Matrix Multiplication problem composed of one

task using our skeleton on two locations under three different execution modes: the

original mode (O) with mobility off and no load, the load mode (L) with mobility off

and load, and the mobility mode (M) with mobility on and load. Figure 4.19 shows

the estimated continuation times for one task calculated frequently in 3 seconds

period. In this figure, each table refers to a concert mode where the first column

in each table refers to the estimated times at Location 1 while the second column

refers to the estimated times at Location 2. Moreover, the bold numbers refer to

the estimated times of the task on that location. In mode O, the table shows that

the estimated times for both locations are the same because both locations have the

same relative processing power. In mode L, we apply an amount of load on the first

location after 3 seconds to make it highly loaded. The results show how the task is

affected by the load applied on Location 1 while the cost model gives an estimate

that the task can run faster on Location 2. When activating the mobility, in mode

118

Chapter 4: Measurement-based Performance Cost Model

M, and after applying the load, the cost model finds that Location 2 is faster than

the current location so that the task will be moved to Location 2 to gain better

performance than staying at Location 1.

Table 4.2 summarises the execution times of the Matrix Multiplication problem

in the three execution modes. In mode O, the actual execution time is 25.56 seconds.

When the load is applied, in mode L, the execution time becomes 35.068 seconds

and therefore the degradation is 9.508 seconds. Because of mobility, the execution

time is improved by 7.127 seconds compared to the execution time at mode L.

Consequently, this mobility compensates for the load condition occurred at location

1 by 7.127/9.508 ∗ 100 = 74.96%.

Time

(Sec)

3
6
9
12
15
18
21
24
27
30
33

Estimated times(S)

Loc1 Loc2

24.614 24.614
24.602 24.602
24.598 24.598
24.570 24.570
24.575 24.575
24.577 24.577
24.565 24.565
25.568 25.568

(a) Times in Mode O

Estimated times(S)

Loc1 Loc2

24.720 24.720
37.357 28.722
36.052 28.590
36.052 29.409
35.955 30.157
35.319 30.512
35.254 31.283
36.373 32.147
35.147 32.842
35.595 33.628
35.064 34.418

(b) Times in Mode L

Estimated times(S)

Loc1 Loc2

24.614 24.614
34.223 26.443
32.781 27.964
32.049 27.978
31.259 27.947
30.523 27.958
29.756 27.944
29.015 27.952
28.255 27.943

(c) Times in Mode M

Figure 4.19: Execution times for a Matrix Multiplication task (2000*2000) on 2
locations

Mode Execution Time Difference

Mobility off & no load O 25.56 X
Mobility off & load L 35.068 9.508
Mobility on & load M 27.941 -7.127

Table 4.2: Summary of the results of mobility decision validation in Matrix Multi-
plication.

In the irregular computation, Raytracer, we also run the skeleton in three exe-

cution modes: O, L and M on two locations. Table 4.3 shows the execution times in

these modes. Observe that with mobility, the execution time is improved by 12.782

119

Chapter 4: Measurement-based Performance Cost Model

seconds while it is degraded by 14.144 seconds without mobility. As a result, the

componsation here is 12.782/14.144 ∗ 100 = 90.37%. Detailed results for Raytracer

can be found in Figure 4.20.

In conclusion, in these experiments, we can see how the cost model informs a

good decision to move the task to a new location. This costed decision and the

corresponding movement operation reduce the total execution time of the task.

Time

(Sec)

3
6
9
12
15
18
21
24
27
30
33
36
39

Estimated times(S)

Loc1 Loc2

24.342 24.343
24.355 24.356
24.994 24.994
25.977 25.978
26.604 26.605
26.889 26.890
26.644 26.645
26.337 26.338

(b) Times in Mode O

Estimated times(S)

Loc1 Loc2

24.428 24.433
29.548 23.960
32.176 26.674
34.270 28.985
35.325 30.508
36.698 32.275
37.957 33.954
38.912 35.399
39.919 36.882
40.471 38.021
40.447 38.720
40.425 39.422
40.198 39.964

(c) Times in Mode L

Estimated times(S)

Loc1 Loc2

24.401 24.405
34.924 28.049
32.723 26.261
33.528 27.667
33.339 28.352
32.562 28.609
31.145 28.400
29.344 27.916
27.703 27.542

(d) Times in Mode M

Figure 4.20: Execution times for a task (raytracer with 40 rays) on 2 locations

Mode Execution Time Difference

Mobility off & no load O 26.133 X
Mobility off & load L 40.277 14.144
Mobility on & load M 27.495 -12.782

Table 4.3: Summary of the results of mobility decision validation in Raytracer.

4.2.3 Mobility Cost Validation

The HWFarm cost model seeks to find faster locations that can serve the running

tasks; nonetheless it is important to estimate the transfer cost to the destination

location in order to produce better reallocation and improve the performance. How-

ever, the estimated mobility cost influences the selection of the target location es-

pecially when there are many remote locations involved in solving the problem.

120

Chapter 4: Measurement-based Performance Cost Model

Therefore, the mobility cost has a considerable influence on the movement decision

taken by the cost model, see the mobility decision formula, Formula 4.5.

Here, we validate the mobility cost predicted by the HWFarm cost model, see

Formula 4.9. We again use the two applications: Matrix Multiplication and Ray-

tracer. For each benchmark, we run different sizes of tasks with different amount of

load on the host node. All measurement are collected by repeating the experiment

three times.

In Matrix Multiplication, we use a problem composed of one task. The im-

plementation we use in this experiment has matrix B as shared data amongst all

workers while matrix A will be divided amongst the tasks which will be allocated to

the workers. When mobility occurs, additional data will be packed with the initial

task data, the output, and state data. Then, the total transferred data may become

two times bigger, more or less. Table 4.4 shows the estimated mobility cost com-

pared to the actual cost. The relative error of the estimated mobility cost (actual

mobility cost) is ranging from 0.08% to 9.92%. The relative error of the estimated

mobility cost (total execution time) is not exceeding 0.6%.

In Raytracer, the problem is also composed of one task. Like the Matrix Multi-

plication implementation, the Raytracer implementation has the objects of the scene

as shared while the rays are divided amongst the workers. Each task processes a list

of rays to produce a list of impacts where processing one ray produces one impact.

When mobility occurs, the added data is the list of impacts produced by partially

processing the list of rays as well as the state data. Table 4.5 shows the estimated

mobility cost compared to the actual cost. The relative error of the estimated mo-

bility cost (actual mobility cost) ranges from 0.27% to 24.66%. The relative error

of the estimated mobility cost (total execution time) is not exceeding 0.03%.

Observe that if the initial transfer cost is too small, the error in estimating the

transfer cost is big, like the Raytracer results. But, the error is small when the

initial transfer cost is large, the Matrix Multiplication results. In both results, the

error is very small compared to the total execution time of the computation.

121

Chapter 4: Measurement-based Performance Cost Model

4.3 Summary

In this chapter, we presented the HWFarm cost model. This model is dynamic,

problem-independent, language-independent, and architecture-independent. This

model uses an approach that is based on real measurements of the computations

and the running environment.

This model estimates the continuation time of a task based on its progress and

some metrics obtained from the executing platform. We use the mobility decision

formula to take decisions about where this task can run faster, see Formula 4.5.

The progress of each task can be obtained from the HWFarm skeleton where

this model is embedded in the skeleton. As outlined in Chapter 3, the skeleton has

access to all running tasks and therefore it can acquire information regarding the

behaviour of running these tasks.

Regarding the executing platform metrics, the cost model uses static metrics

and dynamic metrics. The static metrics are the clock speed and the number of

cores where we assumed that the cores of each node have the same clock speed. The

dynamic metrics used in the cost mode are the CPU utilisation and the number of

running processes. These metrics reflect the relative processing power or the load

state of a concrete node.

We initially supposed that the communications within cluster environment are

uniform. Then, we proposed a model that predicts the future transfer cost of a task

based on the network latency, the task size and the load state of the system.

We validated the estimates produced by the HWFarm cost model where the

error in the estimated times is ranging from 3% to 20% for regular and irregular

computations. We also validated the mobility decisions where we found that this

model gives accurate decisions that help the HWFarm skeleton to find a faster node

to run each task. These decisions improve the total execution times where the

compensation reaches to 90%.

In this next chapter, we demonstrate how HWFarm uses the cost model to

reschedule the tasks in order to improve performance.

122

Chapter 4: Measurement-based Performance Cost Model

T
as

k
A

ct
ua

l E
xe

cu
ti

on

ti
m

e(
S

ec
)

P
re

vi
ou

s
T

ra
ns

fe
r

ti
m

e(
S

ec
)

E
st

im
at

ed
 M

ob
il

it
y

C
os

t(
S

ec
)

A
ct

ua
l M

ob
il

it
y

C
os

t(
S

ec
)

A
bs

ol
ut

e
E

rr
or

R
el

at
iv

e
E

rr
or

(M

ob
il

it
y

C
os

t)
R

el
at

iv
e

E
rr

or

(T
ot

al
 E

x-
T

im
e)

In
it

ia
l T

as
k

S
iz

e
(b

yt
es

)
L

oa
d

A
pp

li
ed

 %

0.
43

1
0.

45
8

0.
02

7
5.

90
%

0.
26

%
18

00
07

64
11

2.
5

0.
50

2
0.

46
7

0.
03

6
7.

67
%

0.
34

%
18

00
07

64
15

0
0.

59
8

0.
55

6
0.

04
2

7.
56

%
0.

40
%

18
00

07
64

20
0

0.
69

4
0.

68
3

0.
01

1
1.

55
%

0.
10

%
18

00
07

64
25

0
0.

79
1

0.
81

2
0.

02
1

2.
59

%
0.

20
%

18
00

07
64

30
0

0.
89

6
0.

85
9

0.
03

7
4.

31
%

0.
36

%
18

00
07

64
35

0
0.

98
4

0.
99

2
0.

00
7

0.
74

%
0.

07
%

18
00

07
64

40
0

0.
76

2
0.

74
8

0.
01

4
1.

88
%

0.
06

%
32

00
07

64
11

2.
5

0.
88

7
0.

92
7

0.
04

0
4.

31
%

0.
16

%
32

00
07

64
15

0
1.

05
5

1.
11

7
0.

06
2

5.
55

%
0.

25
%

32
00

07
64

20
0

1.
22

4
1.

20
4

0.
02

0
1.

65
%

0.
08

%
32

00
07

64
25

0
1.

39
6

1.
39

8
0.

00
2

0.
14

%
0.

01
%

32
00

07
64

30
0

1.
58

0
1.

49
4

0.
08

6
5.

74
%

0.
35

%
32

00
07

64
35

0
1.

63
3

1.
48

6
0.

14
7

9.
92

%
0.

60
%

32
00

07
64

40
0

1.
70

7
1.

57
9

0.
12

8
8.

10
%

0.
17

%
72

00
07

64
11

2.
5

1.
98

8
2.

13
0

0.
14

2
6.

68
%

0.
18

%
72

00
07

64
15

0
2.

36
6

2.
57

3
0.

20
7

8.
04

%
0.

27
%

72
00

07
64

20
0

2.
74

7
2.

99
3

0.
24

6
8.

20
%

0.
32

%
72

00
07

64
25

0
3.

12
5

3.
41

1
0.

28
6

8.
40

%
0.

37
%

72
00

07
64

30
0

3.
50

9
3.

73
2

0.
22

3
5.

96
%

0.
29

%
72

00
07

64
35

0
3.

89
5

4.
25

2
0.

35
8

8.
41

%
0.

46
%

72
00

07
64

40
0

3.
03

1
2.

85
0

0.
18

1
6.

33
%

0.
10

%
12

80
00

76
4

11
2.

5
3.

53
1

3.
25

8
0.

27
3

8.
38

%
0.

15
%

12
80

00
76

4
15

0
4.

20
1

4.
51

8
0.

31
7

7.
02

%
0.

17
%

12
80

00
76

4
20

0
4.

87
2

5.
38

6
0.

51
3

9.
53

%
0.

28
%

12
80

00
76

4
25

0
5.

55
1

6.
00

8
0.

45
7

7.
61

%
0.

25
%

12
80

00
76

4
30

0
6.

23
1

6.
54

1
0.

31
0

4.
74

%
0.

17
%

12
80

00
76

4
35

0
6.

92
8

6.
92

3
0.

00
5

0.
08

%
0.

00
%

12
80

00
76

4
40

0
4.

75
6

4.
39

0
0.

36
6

8.
34

%
0.

10
%

20
00

00
76

4
11

2.
5

5.
51

5
5.

46
3

0.
05

2
0.

95
%

0.
01

%
20

00
00

76
4

15
0

6.
56

1
7.

07
4

0.
51

4
7.

26
%

0.
14

%
20

00
00

76
4

20
0

7.
60

8
8.

34
3

0.
73

5
8.

81
%

0.
21

%
20

00
00

76
4

25
0

8.
67

2
9.

17
4

0.
50

2
5.

47
%

0.
14

%
20

00
00

76
4

30
0

9.
73

5
10

.4
24

0.
68

8
6.

60
%

0.
19

%
20

00
00

76
4

35
0

10
.7

95
10

.6
23

0.
17

2
1.

62
%

0.
05

%
20

00
00

76
4

40
0

1.
96

3

1.
25

8

0.
70

8

0.
29

7

0.
16

8

40
00

*4
00

0
18

2.
57

3

50
00

*5
00

0
35

5.
84

4

15
00

*1
50

0
10

.3
86

20
00

*2
00

0
24

.4
48

30
00

*3
00

0
77

.1
72

T
ab

le
4.

4:
M

ob
il
it

y
co

st
va

li
d
at

io
n

w
it

h
M

at
ri

x
M

u
lt

ip
li
ca

ti
on

.

123

Chapter 4: Measurement-based Performance Cost Model

T

as
k

(1

00
00

 O
bj

ec
ts

)
A

ct
ua

l E
xe

cu
tio

n
tim

e(
Se

c)
Pr

ev
io

us
 T

ra
ns

fe
r

tim
e(

Se
c)

E
st

im
at

ed
 M

ob
ili

ty

C
os

t(
Se

c)
A

ct
ua

l M
ob

ili
ty

C

os
t(

Se
c)

A
bs

ol
ut

e
E

rr
or

R
el

at
iv

e
E

rr
or

(M

ob
ili

ty
 C

os
t)

R
el

at
iv

e
E

rr
or

(T

ot
al

 E
x-

T
im

e)
In

iti
al

 T
as

k
Si

ze
(b

yt
es

)
L

oa
d

A
pp

lie
d

%

0.
00

89
0.

01
17

0.
00

3
23

.6
68

%
0.

01
9%

48
07

64
11

2.
5

0.
01

00
0.

01
11

0.
00

1
10

.3
78

%
0.

00
8%

48
07

64
15

0
0.

01
36

0.
01

66
0.

00
3

18
.2

59
%

0.
02

0%
48

07
64

20
0

0.
01

34
0.

01
65

0.
00

3
18

.8
90

%
0.

02
1%

48
07

64
25

0
0.

01
55

0.
01

99
0.

00
4

22
.3

02
%

0.
03

0%
48

07
64

30
0

0.
01

75
0.

01
94

0.
00

2
9.

94
2%

0.
01

3%
48

07
64

35
0

0.
01

9
0.

02
3

0.
00

4
17

.1
25

%
0.

02
6%

48
07

64
40

0
0.

03
16

0.
03

79
0.

00
6

16
.6

31
%

0.
01

1%
19

20
76

4
11

2.
5

0.
03

63
0.

03
98

0.
00

3
8.

76
5%

0.
00

6%
19

20
76

4
15

0
0.

04
34

0.
04

69
0.

00
3

7.
39

2%
0.

00
6%

19
20

76
4

20
0

0.
04

94
0.

04
49

0.
00

4
9.

96
6%

0.
00

8%
19

20
76

4
25

0
0.

05
74

0.
05

21
0.

00
5

10
.1

45
%

0.
00

9%
19

20
76

4
30

0
0.

06
65

0.
05

34
0.

01
3

24
.6

56
%

0.
02

3%
19

20
76

4
35

0
0.

07
7

0.
06

9
0.

00
8

12
.3

16
%

0.
01

5%
19

20
76

4
40

0
0.

07
24

0.
07

26
0.

00
0

0.
27

2%
0.

00
0%

43
20

76
4

11
2.

5
0.

08
41

0.
09

04
0.

00
6

6.
94

2%
0.

00
5%

43
20

76
4

15
0

0.
09

99
0.

11
02

0.
01

0
9.

36
1%

0.
00

8%
43

20
76

4
20

0
0.

11
58

0.
13

71
0.

02
1

15
.4

90
%

0.
01

6%
43

20
76

4
25

0
0.

13
22

0.
14

94
0.

01
7

11
.4

73
%

0.
01

3%
43

20
76

4
30

0
0.

14
44

0.
16

83
0.

02
4

14
.2

15
%

0.
01

8%
43

20
76

4
35

0
0.

15
9

0.
15

3
0.

00
7

4.
43

7%
0.

00
5%

43
20

76
4

40
0

30
0*

30
0

13
0.

58
0

0.
00

6

0.
02

1

0.
04

5

10
0*

10
0

14
.8

35

20
0*

20
0

57
.9

46

T
ab

le
4.

5:
M

ob
il
it

y
co

st
va

li
d
at

io
n

w
it

h
R

ay
tr

ac
er

.

124

Chapter 5

Optimising HWFarm Scheduling

The proposed skeleton supported with a mobility approach is guided by a cost model.

Effective cost modelling requires information from the system and the application.

The cooperation amongst the distributed components of HWFarm is controlled by a

hybrid scheduler. This scheduler is centralised in managing the global load informa-

tion and decentralised in taking appropriate mobility decisions through employing

a cost model. In this chapter, we demonstrate the scheduling in HWFarm and show

that this scheduler has a low overhead compared to the total execution time where

all its activities occur concurrently with the running computations. The rest of the

chapter is organized as follows: Section 5.1 discusses the policies of the HWFarm

scheduler in. Section 5.2 shows the optimisation of scheduling activities. Section 5.3

discusses the overhead introduced by HWFarm. Section 5.4 evaluates the scheduling

mechanism in behaviour and performance aspects.

5.1 HWFarm Scheduler

The HWFarm scheduler is a distributed scheduler that uses global information from

all nodes to perform a new schedule. Within the node scope, the HWFarm sched-

uler is an application-specific thread scheduler because it only manages its threads.

The HWFarm scheduler is classified as a pre-emptive scheduler because it suspends

running threads and reschedules them to run on different nodes.

Using an efficient scheduling algorithm is crucial to enhance the performance of

125

Chapter 5: Optimising HWFarm Scheduling

the cluster [60]. Batch scheduling is widely used in dedicated clusters to manage

non-interactive jobs. An example of a batch scheduler is IBM LoadLeveller [134].

For interactive systems, a wide range of algorithms can be used such as Round

Robin Scheduling and Priority Scheduling [215]. These are common in servers and

PCs. For more complex scheduling techniques, co-operative scheduling can be used

like gang scheduling [95]. In such scheduling, explicit global synchronisation is

used to simultaneously schedule a group of processes that belong to the same job.

On the other hand, communication-driven co-scheduling techniques, like SB(Spin

Block)[173], can be employed to schedule a parallel job through coordinating the

communicating processes.

Now, it is important to understand the scheduling technique used in the multi-

core cluster environment targeted by HWFarm. Linux is a popular operating system

that is widely used for multiprocessor environments. The default scheduler in Linux

is CFS (Completely Fair Scheduler) [239] which is available in Linux 2.6.23 and

above. This policy maintains providing a fair amount of the processor to the pro-

cesses. This policy considers the priority which ranges from 0 to 40.

Consequently, a simple scheduling technique, the local native scheduler, has been

chosen for the following reasons: 1) we want to keep the implementation simple and

minimise the overhead. 2) We assumed that the parallel job, the program executed

by the skeleton, has no internal dependencies and therefore there are no communica-

tions amongst the tasks. Therefore, complicated scheduling such as gang scheduling

or co-scheduling is not needed. 3) Due to working in a shared environment, it is not

desirable to change the scheduling policy of the operating system scheduler.

In summary, the HWFarm skeleton will run on a cluster as a user-space parallel

application whose processes are allocated to nodes. Each worker process and all

running threads have normal priority like any other process or thread running in

the system. Because there is no direct coordination between the worker and the local

scheduler, all processes or threads running on an individual node will be scheduled

to resources based on the local scheduling policy. However, the local scheduler will

take care of the assignment of resources to the running applications. When a worker

126

Chapter 5: Optimising HWFarm Scheduling

becomes overloaded, the HWFarm scheduler lightens the load of this node through

remapping its tasks to other nodes.

The HWFarm scheduling goal is reducing the total execution time and hence

improving the performance. It also can be referred to as cost driven scheduling

because it uses a performance cost model that suggests new faster locations. Fur-

thermore, the overall tasks in HWFarm are independent and hence there is no need

to take into consideration the communication amongst the tasks. The locality of the

running tasks also is not considered. Moreover, process or thread affinity is not ad-

dressed in this thesis where any thread migration or context switching is considered

as a local scheduler issue.

5.1.1 HWFarm Scheduler Components

As stated in Chapter 3, the HWFarm skeleton is composed of the master process

and worker processes allocated to machines/nodes. The master process works as a

global coordinator that maintains the global load information to any worker while

the worker process performs as a local scheduler that manages the running tasks.

The HWFarm scheduler is decomposed into three agents that cooperate with

each other in order to accomplish the scheduling:

• LA, the Load Agent, is a distributed agent responsible for locally collecting

the load information on workers and keeping the load information up to date

in the master.

• EA, the Estimator Agent, is responsible for taking decisions to suggest new

schedules based on cost model estimations.

• MA, the Mobility Agent, is responsible for performing the transfer of a task

to a destination worker.

5.1.2 HWFarm Scheduler Properties

The scheduler in HWFarm should have the following desirable properties:

127

Chapter 5: Optimising HWFarm Scheduling

• Efficient : the scheduler is efficient through rescheduling the tasks to enhance

the performance and balance the load. This happens with no interference with

the local policies.

• Dynamic: the scheduler is responsive and sensitive to the changes of workload

of the system.

• Transparent : the scheduler implicitly decides when and where to move the

tasks. Hence, the allocating and the reallocating of tasks occur autonomously

based on the skeleton behaviour and the load changes.

• Adaptive: the scheduler is able to exploit new architectures and new programs.

Furthermore, this gives the scheduler the ability to exploit a wide range of

computational architectures.

• Predictive: the scheduler can estimate the future performance depending on

the past behaviour within the constraints and assumptions made on the code.

• Asynchronous : the functionalities of the scheduler have been assigned to

agents that run concurrently on the workers where these agents work together

towards the global objective.

Now, we will explore the policies of the HWFarm scheduler to meet the perfor-

mance goal.

5.1.3 Scheduling Policies

Being a dynamic load management system, the load scheduler in HWFarm should

fulfil the following policies:

Information policy : determines the mechanism of collecting and exchanging the

load information amongst the processing elements. This policy will be discussed

further in Section 5.1.3.1.

Transfer policy : defines the conditions to move tasks. This is driven by the

workload status of workers. A sender-initiated or push policy has been chosen

because it is simple to implement. In addition, a loaded worker is able to decide

128

Chapter 5: Optimising HWFarm Scheduling

if it is better to move some tasks away from it. It is important to note that this

policy is decentralised because each worker triggers mobility and hence this supports

scalability. Deciding mobility is maintained by the worker and is not centralised in

the master. Further details about this policy will be explained in Section 5.1.3.2.

Selection policy : identifies what tasks should be moved. There are different

possible policies that help in selecting the tasks for movement. Some policies choose

the oldest tasks while others select the new ones. Yet other policies depend on the

estimation time, where the task that has the longest or the shortest estimation time

will be moved. We use the estimate of the local continuation time and compare

it to the estimate of the continuation time at remote locations. In this case, the

slower tasks that may run faster in remote locations will be selected. This means

that the most affected tasks will be selected for movement. Therefore, as much as

we minimize the influence of the external load, we will improve the performance of

our application.

Placement policy : specifies the location/node to which a task should be moved.

Depending on the cost model, the node that has plenty of resources to serve other

tasks and that is able to execute the slow tasks will be identified to receive those

tasks.

The selection and placement policies are combined in the mobility policy; see

Section 5.1.3.3, where the mobility decision is based on how the slow task will run

faster on the chosen target location.

5.1.3.1 Load Information Exchange

Seeking an optimal redistribution of the workload needs knowledge of the environ-

ment load states. When such information is available, the estimate will be most

accurate. In the HWFarm skeleton, we consider the overall workload in the system

because the dynamic load information is a significant factor in the estimations pro-

duced by the cost model. Consequently, we need an effective mechanism to make

this information available when needed.

Load information diffusion is a mechanism that can be used to share the load

129

Chapter 5: Optimising HWFarm Scheduling

information in the system. It is also referred to as information dissemination. Such

a mechanism is used by systems that need to take decisions during run-time, such

as dynamic/distributed load balancing, failure detection, database replication, and

aggregate computation. In dynamic load balancing, a load information diffusion

mechanism can be used to guide the workload redistribution. Examples of load

information policies used by dynamic load balancers are: direct neighbourhood [236],

average neighbourhood [241], dimension-exchange [233], and gossip-based protocol

[33]. A circulation approach has been used by Alzain [7] to update the dynamic load

information amongst processing elements.

Load Information Diffusion in HWFarm

In HWFarm, the master is dedicated to managing and controlling the global load

information. It collects the information from all workers and keeps this information

updated in order to provide it to a worker when needed.

To collect the information, the master uses a circulation approach where a mes-

sage circulates across all workers to gather their load information.

As outlined in Chapter 3, the pattern used in the HWFarm skeleton is Mas-

ter/Worker. We used a circulation approach in order to avoid the bottleneck when

collecting the information from all participating workers. The latest information

about the load is available at a concrete location so this mechanism is centralised

on the master. This is very useful for having accurate decisions because the most

recent global information will be available to the decision makers once they request

it. Experiments showed that this approach has a low overhead. More details about

the overhead will be discussed in Section 5.3.2.

At the start-up of the skeleton, the master creates a load agent which is re-

sponsible for triggering the collecting operation. After creating the load agent, a

logical table, WorkerLoad, of load information will be created. This table is dy-

namically maintained by the master and lists all details about the load states of the

participating workers/nodes. In this logical table, each record/row represents the

load information for a worker. This table is implemented in C via a linked list of

worker load data structure that has the definition:

130

Chapter 5: Optimising HWFarm Scheduling

struct worker_load{

int worker_id;

int m_id;

int current_tasks;

int total_tasks;

int status;

int w_cores; //Static metric

float w_cpu_speed; //Static metric

double w_cpu_uti; //Dynamic metric

int w_running_procs; //Dynamic metric

struct network_times net_times;

};

The fields of this structure refer to:

• worker id: The id of the worker.

• m id: The id of the message triggered by the load agent.

• current tasks: The number of tasks that are currently running at that

worker.

• total tasks: The total number of tasks processed at that worker.

• status: The status of the worker: 0: free; 1: busy; 2: requesting the latest

load details; 3: involved in mobility.

• w cores: A static value that refers to the number of cores.

• w cpu speed: A static value that refers to the processer speed.

• w cpu uti: A dynamic value that refers to the CPU utilisation.

• w running proc: A dynamic value that refers to the number of running pro-

cesses

• net times: A data structure that holds the network delay information.

131

Chapter 5: Optimising HWFarm Scheduling

The field net times stores the initial and current network delay of this node.

This network delay information will be used by the cost model to estimate the

mobility cost. The network times data structure has the definition:

struct network_times{

double init_net_time;

double cur_net_time;

};

Where:

• init net time: The initial network delay of this worker.

• cur net time: The current network delay of this worker.

The WorkerLoad table will be updated periodically in order to keep up to date

with the load state of the system. As discussed in Chapter 4, the cost model re-

quires the latest load information to accurately estimate the times and then makes

decisions. However, our experiments show that collecting the load information runs

concurrently and incurs low overhead. Accordingly, in HWFarm, we chose one sec-

ond as a refresh rate of the collection to keep the load updated globally with the

master. This rate has been chosen to make a trade-off between taking inaccurate

decisions and increasing the overhead of the collection. As previously mentioned,

taking inaccurate decisions is caused by using old load information where the refresh

rate is large. In contrast, decreasing the rate will increase the overhead incurred by

the load agents.

The collecting operation starts at the master where the load agent sends an empty

load message to a worker. Next, the receiving worker appends its load information

in the load message and circulates it to the next worker. When the load message

is full of information, the final worker sends the message to the master. Then, the

master updates the current load information with the latest information; see Figure

5.1.

At each worker, the load agent is responsible for obtaining the local load. Then

the load will be stored in a data structure that can be used later by other agents.

132

Chapter 5: Optimising HWFarm Scheduling

Figure 5.1: The circulating approach used to diffuse the load information in HW-
Farm.

This data structure is similar to the worker load data structure illustrated above.

This local information will be periodically updated and sent via the circulated load

message to the master to be used when any worker needs this information.

5.1.3.2 Transfer Policy

Triggering the estimation operation depends on the situation in which the worker

can be considered to be overloaded. In this case, the worker is not able to serve

the applications or, in other words, there are no resources to meet the increase in

demands. The HWFarm scheduler responds to this condition through starting an

estimator agent at that worker to check the affected tasks.

Each worker has a load agent, LA, which periodically obtains dynamic metrics

such as the CPU utilisation and the number of running processes. The update rate

of this operation is one second. This rate has been chosen because the worker should

be aware of its load to take appropriate decisions.

When reading the load information, it can easily be observed when the worker

becomes loaded. But, experiments showed that it is difficult to judge that a worker

is highly loaded from one reading because the processors have an unsteady nature.

133

Chapter 5: Optimising HWFarm Scheduling

This unsteadiness in the load is because the processor supports a multitasking envi-

ronment where an arbitrary number of processes may use the resources for a short

period of time. Hence, it is not necessary to take an action if there are processes

that use the processor for a short period.

Figure 5.2: Load state of a normal loaded node.

Figure 5.3: Load state of a highly loaded node.

Figure 5.2 shows an example of the CPU utilisation of a node for one minute.

At second 11.5, the CPU utilisation is 100% and hence the node is loaded but

afterwards the workload becomes ordinary. Then, at second 52.4, the load becomes

100% and decreases again to be normal. In this scenario, there is no need to incur

the overheads in estimating and mobility where all tasks are running normally.

In contrast, Figure 5.3 shows an example of a node loaded with multiple appli-

cations where after second 12.4 many processes ask for resources and the CPU is

fully utilised.

134

Chapter 5: Optimising HWFarm Scheduling

Here, we propose a policy to trigger the estimation based on multiple readings.

This policy depends on checking if the following condition is true for three consec-

utive readings. The reason of choosing three readings is finding a balance between

the overhead of the estimation operation when the worker is not actually loaded

and the delay of triggering the estimation operation which affects the running tasks.

This to some extent implies that the load in the worker is not occasional and thus

the HWFarm tasks will be affected by this load.

Rh

Sh

< β (5.1)

where:

Rh: The relative processing power at the current location

Sh: The CPU speed at the current location

β : The load threshold

β is the threshold of the loading state at which it can be decided that this node

is loaded. Then, a delay will occur to the running processes on the future if the load

stayed steady or became worse. In this thesis, we use β = 0.95 as a threshold where

we empirically found this value.

This policy will avoid the redundancy of mobility amongst the workers because

it starts the estimation operation when the current worker is really loaded and takes

accurate decisions if needed.

5.1.3.3 Mobility Policy

To take decisions for scheduling the local running tasks, estimation operations for

the continuation and transfer times of the running computations are required. The

estimation of the continuation time compared to the continuation times on other

locations reflects the progress of running these computations on the current loca-

tion in loaded conditions. Then based on the estimation of the transfer times, the

mobility decision formula Ti > Tmobility + Tj will be applied to make a decision.

Making more accurate decisions requires the latest load information. Hence,

this load information of all nodes is prerequisite of these operation. Therefore, a

135

Chapter 5: Optimising HWFarm Scheduling

request for this information will be sent to the master. This invokes communication

overhead; whereas, per contra, this improves the accuracy of the taken decisions.

When this information is available, an estimator agent will be initialised to start

the estimation operations through applying the cost model. Next, for each task

running locally, estimated times to complete locally and remotely will be produced.

Then, the estimator agent will issue a mobility report that includes the suggested

movements of certain tasks to specific workers. The algorithm used by the estimator

agent to produce the mobility report is as follows:

EC_local = getEstimationCostHere(tasks);

//Get the continuation cost and the network cost (the cost model)

EC_remote = getEstimationCostOtherWorkers(tasks);

improvement = 1;

do{

longest_task = getTheSlowestTask(tasks, EC_local);

new_worker = getTheBestEstimate(EC_local, EC_remote);

if(new_worker != current_worker){

updateMobilityReport(longest_task, new_worker);

updateEstimations(EC_local, EC_remote);

}else

improvement = 0;

}while(improvement);

This algorithm seeks to find a task mapping that improves the total execution

time under the current load condition. In the estimation algorithm, first, the times

for running all local tasks on the current node and on remote nodes will be estimated

using the functions getEstimationCostHere and getEstimationCostOtherWorkers,

respectively. Then, the next step will be repeated until finding an provably opti-

mal mapping. In the loop, getTheSlowestTask function looks for the slowest task

based on the array of local estimated times, EC local. Then, getTheBestEstimate

function returns the worker where this longest task can run faster. If the task can

run faster on another worker, this task will be mapped to that worker and the es-

136

Chapter 5: Optimising HWFarm Scheduling

timated times will be updated based on the new mapping. Otherwise, there is no

improvement to run this task on any node and the loop will end. The output of

this algorithm is the mobility report or move report. This report contains the map-

ping of the selected tasks to the chosen workers. During the algorithm execution,

there is no actual mobility occurring for any task but there is only changes in the

tasks’ mapping. Once the tasks’ mapping has been changed the estimates should

be updated where the estimation should take into consideration the new mapping

because, when the tasks are rescheduled, this produces a change on the load state

of the local and remote nodes.

To illustrate how this algorithm works, we demonstrate it with an example, see

Figure 5.4. In this example, the skeleton has three workers involved in solving a

problem with 12 tasks. Each worker processes 4 tasks. From the estimation point of

view, each worker endeavours to reduce the execution time of its tasks. Hence, each

worker has no idea about the tasks of other workers and their execution progress

but it has knowledge of the load information of those workers. At some point,

worker 3 becomes highly loaded, so an estimator agent will be created to handle

the estimation operations. Then, a move report stating the affected tasks will be

produced and accordingly the HWFarm scheduler will reschedule these tasks.

Figure 5.4: An example showing how the HWFarm scheduler reschedules the tasks
when worker 3 becomes highly loaded.

Here, we are exploring the estimation operation at worker 3. Table 5.1 shows

the estimated completion times of the current tasks before worker 3 gets loaded.

Furthermore, the estimated move costs of all tasks to the participating workers are

illustrated in Table 5.2.

137

Chapter 5: Optimising HWFarm Scheduling

Task Local Estimated Time (Sec)
T1 48.384
T2 48.785
T3 51.917
T4 52.024

Table 5.1: The local estimated times of all tasks at worker 3.

Task Worker Move Cost(Sec)

T1
W1 0.449
W2 0.449

T2
W1 0.448
W2 0.448

T3
W1 0.449
W2 0.449

T4
W1 0.446
W2 0.446

Table 5.2: Estimated move costs to the remote workers.

After receiving a huge amount of load at worker 3, the estimation operation will

be triggered. The estimation algorithm repeats multiple times, stages, until finding

the best schedule. Each stage has new local and remote estimates, a new produced

mapping, and a version of the move report, see Figures 5.5, 5.6, 5.7, 5.8 and 5.9.

These stages are as follows:

Figure 5.5(a) shows the initial estimated times at stage A for all tasks. These

times tell the agent that all tasks will be finished after 84.576 seconds. But, the

estimates for the same tasks on other workers give better times, so the agent will

select the slowest task and look for a worker that can run this task fastest, see Table

5.5(b). Thus, the first mobility suggestion is to move task 3 to worker 1. So there is

a new mapping of the tasks. But this mapping, if we assume that this task has been

moved to worker 1, will affect the running tasks on both worker 3 and worker 1.

This means that the estimated times need to be updated based on the new mapping.

Figure 5.6(a) shows the new estimated times for the four tasks at stage B. Ob-

serve how other tasks, 1, 2, and 4, will be faster if task 3 moves to worker 1. Also,

all times for the potential moved tasks will include the move cost. As an example,

the estimated time of task 3 to complete on worker 1 is: 54.129 + 0.449 = 54.578

seconds. At stage B and within the new mapping, the time to complete all four

tasks is 77.742 seconds, see Table 5.6(b). Then, the estimation algorithm seeks an

improved mapping and it finds that task 4 will run faster on worker 1.

138

Chapter 5: Optimising HWFarm Scheduling

(a) Estimated execution times for the local tasks.

Task
Current Current Local/Remote Estimated Times (Sec)
Mapping Estimate (Sec) W3 W1 W2

T1 W3 78.872 78.872 50.478 50.478
T2 W3 77.819 77.819 49.804 49.804
T3 W3 84.576 84.576 54.129 54.129
T4 W3 84.502 84.502 54.081 54.081

(b) The local and remote estimated times considering the current mapping.

Figure 5.5: Stage A of the estimation operation at worker 3.

(a) Estimated execution times for the local tasks.

Task
Current Current Local/Remote Estimated Times (Sec)
Mapping Estimate (Sec) W3 W1 W2

T1 W3 72.563 72.563 50.478 50.478
T2 W3 71.594 71.594 49.804 49.804
T3 W1 54.578 a 84.576 54.129 54.129
T4 W3 77.742 77.742 54.081 54.081

aThe estimated time to run this task on a remote worker aggregated with the move cost to that
worker.

(b) The local and remote estimated times considering the current mapping.

Figure 5.6: Stage B of the estimation operation at worker 3.

Again, at stage C, the estimator finds that a task can run faster on another

worker so a new mapping will be produced and the estimated times for all tasks will

be updated, see Figure 5.7(a) and Table 5.7(b).

The algorithm continues to find new mapping and then it updates the estimated

times for the other task, stage D, see Figure 5.8(a) and Table 5.8(b).

Now, there is one task left at worker 3 and three tasks are suggested to move to

worker 1. But, task 2 still can run faster and there is an improvement if it is moved

to worker 2. Hence, a new mapping will be produced and updated estimated times

will result, see Figure 5.9(a) and Table 5.9(b).

139

Chapter 5: Optimising HWFarm Scheduling

(a) Estimated execution times for the local tasks.

Task
Current Current Local/Remote Estimated Times (Sec)
Mapping Estimate (Sec) W3 W1 W2

T1 W3 66.253 66.253 50.478 50.478
T2 W3 65.368 65.368 49.804 49.804
T3 W1 54.578 a 77.810 54.129 54.129
T4 W1 54.527 a 77.742 54.081 54.081

a The estimated time to run this task on a remote worker aggregated with the move cost to
that worker.

(b) The local and remote estimated times considering the current mapping.

Figure 5.7: Stage C of the estimation operation at worker 3.

(a) Estimated execution times for the local tasks.

Task
Current Current Local/Remote Estimated Times (Sec)
Mapping Estimate (Sec) W3 W1 W2

T1 W1 50.927 a 66.253 50.478 50.478
T2 W3 59.143 59.143 49.804 49.804
T3 W1 54.578 a 71.044 54.129 54.129
T4 W1 54.527 a 70.982 54.081 54.081

a The estimated time to run this task on a remote worker aggregated with the move cost to
that worker.

(b) The local and remote estimated times considering the current mapping.

Figure 5.8: Stage D of the estimation operation at worker 3.

Finally, when the algorithm does not find an improved mapping, a move report

will be released. In this example, this report suggests to move tasks 1, 3, and 4 to

worker 1 and task 2 to worker 2, see Table 5.3. Next, a move request will be sent

to the destination workers to check their availability to host these tasks.

Observe that with the new tasks’ mapping, the estimated finishing time has been

improved from 84.576 second to 54.578 second.

140

Chapter 5: Optimising HWFarm Scheduling

(a) Estimated execution times for the local tasks.

Task
Current Current Local/Remote Estimated Times (Sec)
Mapping Estimate (Sec) W3 W1 W2

T1 W1 50.927 a 59.943 50.478 50.478
T2 W2 50.252 a 59.143 49.804 49.804
T3 W1 54.578 a 64.278 54.129 54.129
T4 W1 54.527 a 64.222 54.081 54.081

a The estimated time to run this task on a remote worker aggregated with the move cost to
that worker.

(b) The local and remote estimated times considering the current mapping.

Figure 5.9: Stage E of the estimation operation at worker 3.

Selected Tasks Chosen Destination Worker

1 3, 4 & 1 1
2 2 2

Table 5.3: The final move report of the estimation algorithm.

5.2 HWFarm Scheduling Optimisation

The HWFarm scheduler depends on the mobility decisions to optimise the perfor-

mance. In this section, we discuss some additional procedures to guarantee that the

decisions taken are accurate.

5.2.1 Accurate Relative Processing Power

Decisions made using the HWFarm cost model are based on the behaviour of the

computations in the past as well as the load in the last period. During running

of a computation at a processing unit, it may experience different load situations

that influence its progress. Hence, measuring the elapsed time without considering

the slight changes in the system load may lead to inaccurate estimations of the

continuation times. To enhance the estimation locally, each worker monitors and

records the current system load for each running task. Therefore, each task will

keep the average of local load that indicates the load encountered while it is running

locally.

141

Chapter 5: Optimising HWFarm Scheduling

5.2.2 Movement Confirmation

After deciding which tasks to move to which workers, a request will be sent to those

workers to check their availability. This request ensures that the load states of the

destination workers have not changed during taking the decisions.

Mobility decisions may not be accurate in some situations in which the desti-

nation worker may receive an unexpected load. These new changes may invalidate

the decision produced by the cost model. To address this issue, the destination

worker needs to confirm task mobility. Therefore, before moving tasks to another

worker, each worker should receive permission from that destination worker to start

the mobility operation. This adds communication overhead which we will explore

in detail in the next section. But, this policy guarantees that the decision taken are

based on the updated load information.

In HWFarm, the destination worker agrees to receive tasks from any worker if it

is not already busy receiving tasks from other workers. This policy avoids moving

tasks at the same time from two workers to one destination workers. This is likely

to happen in a dynamic load management system where multiple workers have the

same load information. If the destination worker denies the move permission, no

action will be taken at the source worker. This tells the source worker that there is

reallocation of tasks happening in the skeleton. This reallocation will invalidate the

current load information and therefore the decisions are inaccurate. This policy can

be considered as a sort of negotiation between workers to avoid the location thrashing

which is one of the greedy effects that has been explored by Chechina [59].

5.3 Overhead

Dynamically managing the load in an environment requires further activities that

introduce overheads in the system. A balance is needed between the overhead and

the endeavour towards achieving the performance goals.

The overhead activities incurred in HWFarm are categorised into three cate-

gories:

142

Chapter 5: Optimising HWFarm Scheduling

• Allocation activities: This overhead is static and incurred only at the start-up.

• Load diffusion activities: These activities are carried out in the load agents

on the workers and on the master. This overhead is dynamic and runtime-

activated.

• Mobility activities: These activities are carried out by the estimator and the

mobility agents. This overhead is occasional and based on the load state.

Some procedures have been implemented to reduce the overhead in the HWFarm

scheduler:

• Using a sender-initiated mechanism: This mechanism will reduce overhead

because there is no need to estimate or perform any operation if the local load

is normal.

• Improving the sender-initiated policy: We optimised the sender-initiated pol-

icy through triggering the estimation operation only if the worker is actually

loaded; see Section 5.1.3.1.

• Asynchronous activities: Most of the HWFarm activities are performed con-

currently to avoid blocking the running computations.

To investigate these categories of overhead in HWFarm, we ran some experiments

on different architectures and with various numbers of nodes. These platforms are

located at Heriot-Watt University. Table 5.4 shows the characteristics of the nodes

used in these experiments.

In evaluating our measurements, we use the applications: Matrix multiplication,

Raytracer, and Square Numbers.

5.3.1 Allocation Overhead

This overhead is introduced at the start-up of the skeleton in order to collect the in-

formation needed to allocate the tasks to workers based on the node’s characteristics.

This overhead is only at the master.

143

Chapter 5: Optimising HWFarm Scheduling

Machine
Name

Number of
Machines

CPU Clock
Speed (MHz)

CPU Model Name Cores Class
Code

Beowulf 32 1596.00 Intel(R)Xeon(R) CPU
E5504@2.00GHz

8 A

linuxXX 86 1200.00 Intel(R) Core(TM) i7
CPU 860 @2.80GHz

8 B

osiris 1 1600.00 Intel(R) Xeon(R) CPU
X5650@2.67GHz

24 C

sif, thor,
and baldur

3 1400.00 AMD
Opteron(tm)Processor

6380

64 D

Table 5.4: The characteristics of the architectures used in the overhead investigation.

The single activity in this overhead is applying the model outlined in Section

3.2.4.2 to calculate the portion of tasks assigned to each worker. Hence, this activity

needs communication between the master and the workers to obtain the nodes’

characteristics.

To explore this activity, we need to measure how much time the allocation oper-

ations take before assigning tasks to workers. In these experiments, we use different

number of nodes with various architectures to study the effect of the platform on

the allocation overhead.

Table 5.5 shows the times spent at the master to decide the allocation por-

tion. These results suggest that this overhead is related to the target nodes and

more specifically the number of cores of the participated nodes. Furthermore, this

overhead is affected by the network delay between the master and the worker. In

conclusion, the allocation operation yields negligible overhead at runtime where this

overhead is target-dependant and problem-independent.

5.3.2 Load Diffusion Overhead

The load diffusion system in HWFarm is distributed amongst the components of

the skeleton (the master and the workers). The activities of this system may incur

overhead on these components. Here, we investigate the effect of these activities on

the running tasks. The activities of this overhead are distributed amongst the load

agent at the worker, the load agent at the master, and the worker process.

144

Chapter 5: Optimising HWFarm Scheduling

Nodes Nodes
Types

Time for Matrix
Multiplication (Sec)

Time for
Raytracer (Sec)

Time for Square
Numbers(Sec)

1 1A 0.009 0.009 0.009
2 2A 0.016 0.015 0.015
4 4A 0.029 0.028 0.028
8 8A 0.056 0.055 0.055
16 16A 0.111 0.107 0.111
24 24A 0.165 0.161 0.164
32 32A 0.220 0.216 0.219
50 32A+18B 0.346 0.341 0.349
100 32A+68B 0.698 0.694 0.702
5 4A+1C 0.036 0.036 0.035
6 4A+1C+1D 0.042 0.041 0.042
8 4A+1C+3D 0.057 0.056 0.056

Table 5.5: The measured times of the allocation overhead.

5.3.2.1 Overhead at the Load Agent

The activities performed by the local load agent at workers are:

Collecting the local load : This activity periodically collects the current load

states. Table 5.6 shows the measured overhead for obtaining the load details on

different architectures.

A B C D
TLDO Collecting (Sec) 0.003972 0.00118 0.002315 0.010761

Table 5.6: The measured overhead for collecting the load information.

Recording R for all running tasks : Based on the optimisation procedure in Sec-

tion 5.2.1, this activity calculates R from the collected load details and then records

it to every local task. To investigate the time spent to perform this activity, we run

some experiments on the previous architectures. The measurements show that the

time does not exceed 1 nano second for each task. As a result, the total time of

collecting and recording the load on a worker is:

TLDO LLA = TLDO Collecting +N ∗ TLDO RecordingR (5.2)

where:

TLDO LLA: The load diffusion overhead at the local load agent

TLDO Collecting: The time spent to obtain the local load information

145

Chapter 5: Optimising HWFarm Scheduling

TLDO RecordingR: The time spent to record the current load state in one task

N : The total number of tasks on the current worker

As an example, if we run the skeleton on a local Beowulf cluster (architecture

A), then the overhead to collect the local load information on a worker that runs 8

tasks is:

TLDO LLA = 0.003972 + 8 ∗ (0.000001) = 0.00398sec

Another example, if we run the skeleton on an architecture where a node has 64

cores (architecture D), then the overhead to collect the local load information on

that worker that runs 64 tasks is:

TLDO LLA = 0.010761 + 64 ∗ (0.000001) = 0.010825sec

Observe that when running the skeleton on a worker with 8 cores, the overhead

is 0.004 second while it is 0.01 second on a 64-core machine.

5.3.2.2 Overhead at the Workers

Now, we need to investigate the overhead at the worker process. This overhead is

incurred when a worker receives the load message and then the worker has to append

its own load information. This overhead is based on communications amongst the

participating workers so the network delay has major influence on these measure-

ments.

Table 5.7 shows the time measured at a worker process that runs on different

platforms. This time includes the time to receive the load message, time to append

the local load, and the time to send the new load message to a new worker.

A B C D
TLDO W (Sec) 0.000383 0.000444 0.000395 0.000352

Table 5.7: The measured overhead at one worker process.

146

Chapter 5: Optimising HWFarm Scheduling

5.3.2.3 Overhead at the Master

The master is dedicated to maintaining the global load information so the operations

at the master cannot be considered as an overhead.

Table 5.8 shows the times taken to circulate the load message and the time

spent to update the main worker load table, WorkerLoad. These operations are also

influenced by the network delay between the master and the workers.

A B C D
TLDO Circulating (Sec) 0.000375 0.000429 0.000348 0.000356
TLDO Updating (Sec) 0.000151 0.000160 0.000143 0.000090

Table 5.8: The measured overhead at the master.

5.3.3 Mobility Overhead

The mobility overhead is expected to be the main source of overhead. In HWFrm,

this overhead is concurrently introduced by the estimator agent that follows the

algorithm outlined in Section 5.1.3.3. Hence, it is related to the estimation pro-

cess and all mobility coordination before accomplishing the movement between the

workers. This overhead is difficult to calculate at the right time where the source

worker is loaded with different amount of load that causes various delays.

This overhead starts when the latest global load information is available at the

source worker and ends when the mobility report is sent to the destination worker.

The breakdown of this overhead is: initialising the arrays, finding the estimation

costs for each task, finding the best mapping, and sending the mobility report.

Based on the mobility algorithm, the time required to produce the new mapping

report in a skeleton with w workers executing N tasks is:

TMO = TMO init+
t∑

i=1

T i
MO findingEC∗N∗w+

t∑
i=1

T i
MO findingMapping+TMO Report (5.3)

where:

TMO: The mobility overhead.

147

Chapter 5: Optimising HWFarm Scheduling

TMO init: The time spent to initialize the data structures.

T i
MO findingEC : The time spent to find the estimation cost for one task. An array

of estimates with N columns and w rows will be calculated to provide all possible

reallocations for this task.

T i
MO findingMapping: The time spent to find the best location for one task.

TMO Report: The time spent to send the mobility report to the new target workers.

Note that this value is also affected by the network delay. Furthermore, this value

depends on the number of tasks running locally and the number of involved workers.

In the worst case, the overhead of sending a mobility report is:

TMO Report = Min(w, t) ∗ TMO Report Message (5.4)

One report message includes a move request for one or more tasks. If the number

of tasks is greater than the number of workers, the worst case is sending a report

message to every worker, w. In contrast, if the number of workers is greater than

the number of tasks, the worst case is sending N report messages.

To find the time needed to process sub-operations of the mobility overhead,

we run the skeleton with the previous architectures to obtain the measurements;

see Table 5.9. Note that the time measured, TMO Report Message, refers to the time

needed to send one message between two workers, which is also affected by the

communication overhead.

A B C D
TMO init(ms) 0.020 0.019 0.024 0.063
TMO findingEC(ms) 0.001 0.001 0.001 0.002
TMO findingMapping(ms) 0.001 0.001 0.001 0.001
TMO Report Message(ms) 0.300 0.235 0.335 0.382

Table 5.9: Measurements of the sub-operations of the mobility overhead.

As an example, if the skeleton runs an application with 50 tasks over 10 workers

on a Beowulf cluster, then the time needed to complete the estimation is (where

each worker has 5 tasks to execute):

TMO = 0.02 + 5 ∗ (0.002 ∗ 10 ∗ 5) + 5 ∗ (0.001) + TMO Report

148

Chapter 5: Optimising HWFarm Scheduling

In the worst case, with an assumption that the average transfer time is ≈ 0.3ms,

the mobility report advises to move the five tasks to five different workers so we

need five messages to the target workers. So, the total time to send the report is:

TMO Report = Min(t, w) ∗ TMO Report Message = 5 ∗ 0.3 ≈ 1.5ms

Therefore,

TMO = 0.02 + 5 ∗ (0.002 ∗ 10 ∗ 5) + 5 ∗ (0.001) + 1.3 = 1.825ms

This value might be changed due to the communication delay between the work-

ers and the characteristics of the host nodes.

5.3.4 Overhead Summary

Now we investigate the measured execution time with all categories of overhead at

run-time. We run the skeleton with different number of nodes in a Beowulf cluster.

We use two applications: Matrix Multiplication and Raytracer; see Tables 5.10 and

5.11. Each experiment is repeated four times with various numbers of tasks. The

Raytracer application is investigated in a 2D scene with 120000 objects.

The allocation overhead is measured at the master. The load overhead is only

measured at the local load agent at worker 1 when obtaining the load details. The

load agent runs along with the other tasks on a worker so the numbers in the tables

are the total overhead from the load agent during the worker lifetime. Moreover,

the mobility overhead includes the measured times of the mobility operations and

the worst case of sending the move report.

The allocation overheard is mandatory where the allocation operation is architecture-

aware and the skeleton needs this information before allocating the tasks. When

using 100 nodes, the allocation overhead is only 0.698 seconds; see Table 5.5.

The load diffusion overhead is important to provide the latest load information to

the master and the participating workers. However, this overhead is asynchronous,

dynamic, distributed, and architecture-aware. This amount can be customised by

reducing the frequency of obtaining the local load but this leads to old load details

149

Chapter 5: Optimising HWFarm Scheduling

Size Ts
a

Ws
b

Ts/W
c

Ex-time(Sec)
d Overhead(Sec)

Allocation Load Mobility

2500*2500 5 1 5 10.693 0.008979 0.039670 0.000093+0.0003
4000*4000 10 4 2-3 26.616 0.028081 0.104663 0.000130+0.0009
6000*6000 15 6 2-3 65.619 0.043746 0.265538 0.000133+0.0009
6000*6000 30 6 5 44.703 0.043490 0.181664 0.000153+0.0015
7000*7000 28 10 2-3 81.828 0.080072 0.333914 0.000122+0.0009
8000*8000 8 2 4 210.837 0.016773 0.857721 0.000152+0.0006

aThe total number of tasks.
bThe total number of workers/nodes.
cThe number of tasks on a worker.
dThe total execution time.

Table 5.10: The measured times to execute the Matrix Multiplication application
and its overhead.

Size(Rays) Ts
a

Ws
b

Ts/W
c

Ex-time(Sec)
d Overhead(Sec)

Allocation Load Mobility

20 1 1 1 8.115 0.008082 0.031354 0.000082+0.0003
50 4 2 2 13.264 0.014050 0.049044 0.000119+0.0006
100 10 4 2-3 22.578 0.026173 0.088936 0.000123+0.0012
150 12 3 4 42.925 0.020927 0.169810 0.000147+0.0009
200 8 5 1-2 112.922 0.034389 0.449357 0.000128+0.0015
250 20 7 2-3 70.076 0.051412 0.277574 0.000142+0.0021
300 50 10 5 40.723 0.073884 0.160297 0.000142+0.0030

aThe total number of tasks.
bThe total number of workers.
cThe number of tasks on a worker.
dThe total execution time.

Table 5.11: The measured times to execute the Raytracer application and its over-
head.

available at the master. However, with one second frequency, when running our

skeleton with an application for 210 seconds, the total time spent to obtain the load

during that period is less than 0.86 seconds. Therefore, the load diffusion overhead

is <= 0.4%.

The mobility overhead is asynchronous and occurs occasionally where it is needed

to accurately decide where to move the computations. The experiments showed that

this overhead is very small in normal situations and it will easily be served even if

the node is highly loaded. Here, this overhead is not exceeding 0.0002 second. The

mobility overhead is also affected by the network delay. In this experiment, we

assume that the move report overhead is at its worst case because it is difficult to

150

Chapter 5: Optimising HWFarm Scheduling

expect the move report in a load condition, as outlined in Sec 5.3.3. As an example,

when we have 50 tasks and 10 workers, the overhead of sending the move report is

0.003 sec.

Consequently, these experiments show that the overhead incurred from the ac-

tivities of HWFarm during the runtime is low when compared to the total execution

time, less than 0.58%. In the Matrix Multiplication application, the overall overhead

is ranging from 0.41% to 0.51%. Whilst in the Raytracer application the overhead

ranges from 0.43% to 0.58%.

5.4 Scheduling Evaluation

In this section, we demonstrate experiments to evaluate the HWFarm scheduling

in terms of the mobility behaviour and the optimised performance of the produced

schedule. We are exploring two types of computations: regular and irregular. For

regular problems, we use a simple Matrix Multiplication application. In contrast,

we are testing a simple Raytracer as an example of irregular computations.

The skeleton with its scheduler was tested in a Beowulf cluster located at Heriot-

Watt University. The cluster consists of 32 eight-core machines (8 quad-core Intel(R)

Xeon(R) CPU E5504, running GNU/Linux(2.6.32) at 2.00GHz with 4096 kb L2

cache and using 12GB RAM).

5.4.1 Mobility Behaviour Validation

To investigate that the mobility behaves as we expect, we run a Matrix Multi-

plication problem with 8 tasks running on 3 locations.

Figure 5.10(a) shows the changes on the load over these locations. We use our

load function that generates artificial load patterns on multi-core platforms. Further

details about this function will be discussed on Chapter 6. Figure 5.10(b) illustrates

the behaviour of the tasks during their executions. This behaviour is influenced by

the current load of the nodes. It can be seen that the HWFarm scheduler lightens

the loaded nodes whenever the worker becomes loaded. This figure shows that the

behaviour of the tasks is the inverse behaviour of the load.

151

Chapter 5: Optimising HWFarm Scheduling

(a) The load pattern applied to the skeleton

(b) The mobility behaviour

Figure 5.10: The mobility behaviour of 10 tasks on 3 workers(Matrix Multiplication)

For the Raytracer problem, we run with 8 tasks on 3 locations. The load is also

generated by the load function but with more delay amongst the nodes; see Figure

5.11(a). The HWFarm scheduler produces dynamic schedules according to the load

state of the nodes. Like the Matrix Multiplication example, the mobility of the tasks

is also behaving inversely to the load on the hosted nodes; see Figure 5.11(b).

Consequently, in both experiments, the skeleton responds quickly to load changes.

152

Chapter 5: Optimising HWFarm Scheduling

(a) The load pattern applied to the skeleton

(b) The mobility behaviour

Figure 5.11: The mobility behaviour of 8 tasks on 3 workers(Raytracer)

5.4.2 Mobility Performance Validation

After evaluating the mobility behaviour, we need to run our mobile skeleton to

explore how the skeleton improves the performance under loaded conditions. We

run each experiment in three execution modes: the original mode (O), the load

mode (L) and the mobility mode (M). In mode O, we measure the total execution

time of running the problem with no load applied and no mobility supported. For

mode L, we measure the times in the presence of the external load. In mode M, we

measure the total execution times for running each problem with the presence of

the external load while mobility is switched on.

To explore how mobility in HWFarm improves the execution time in the presence

of the external load, we compare the execution times before and after applying

mobility in modes L and M, respectively. Then we calculate the compensation by

comparing the improvement when mobility is applied compared to the degradation

of the execution time when the load is present, Compensation(%) = Diff(L&M)
Diff(O&L)

.

Table 5.12 shows the results of Matrix Multiplication. We can see how the

153

Chapter 5: Optimising HWFarm Scheduling

execution time becomes longer due to the load applied. Then, after mobility, we

notice that the execution time is improved compared to the execution time without

mobility. Here, the compensation is ranging from 12.41% to 57.52%.

Matrix Ts/Ws a Mode Mode Mode Diffb Diffc Improvement
Multi O(S) L(S) M(S) (O&L) (L&M) (%)

3600*3600 6/3 26.65 40.35 32.47 13.7 7.78 57.52
4800*4800 12/3 31.08 47.28 42.15 16.2 5.13 31.66
5600*5600 14/3 42.74 61.46 57.83 18.72 3.63 19.41
6000*6000 6/3 120.95 164.91 159.55 43.96 5.36 12.19
6000*6000 10/3 73.81 104.08 94.42 30.27 9.66 31.92
6000*6000 12/3 60.98 86.83 81.69 25.85 5.14 19.91
7200*7200 12/3 102.52 143.58 138.12 41.06 5.46 13.31
7700*7700 14/3 108.9 165.09 149.35 56.19 15.74 28.01

aThe total number of tasks/workers
bThe difference between mode O and mode L
cThe difference between mode L and mode M

Table 5.12: The improvement in the performance in the presence of external
load(Matrix)

For the Raytracer problem, we also run different number of rays with various

numbers of tasks; see Table 5.13. Like Matrix Multiplication, we can see the im-

provement in the total execution time after applying mobility. The compensation

in Raytracer is ranging from 23.91% to 59.09%.

As a conclusion, in both experiments, either with regular or irregular compu-

tations, the HWFarm skeleton seeks to improve the performance of the problem it

runs when one or more of its nodes experience highly loaded conditions. Further-

more, these results show how our skeleton compensates for changes on the node’s

load. Our experiments suggest that the compensation can reach 59%. We should

mention that this improvement mostly depends on the amount of load on the loaded

nodes, when this load is applied, and how the local computations are affected by

this load. Note that in the irregular computations the estimation is less accurate

but the results show improvement in the performance when activating mobility.

154

Chapter 5: Optimising HWFarm Scheduling

Raytracer Ts/Ws a Mode Mode Mode Diff b Diffc Improvement
(rays) O(S) L(S) M(S) (O&L) (L&M) (%)

90 6/3 24.66 35.31 32.10 10.65 3.21 30.10
100 5/3 36.82 49.06 41.82 12.24 7.24 59.09
120 8/3 32.62 47.51 42.22 14.89 5.29 35.55
140 8/3 49.21 66.99 63.21 17.78 3.78 21.26
150 9/3 44.55 58.59 54.65 14.05 3.94 28.08
150 10/3 40.38 55.75 48.47 15.37 7.28 47.34
150 15/3 28.01 39.11 35.58 11.10 3.53 31.84
200 8/4 94.25 121.37 107.35 27.12 14.02 51.68
300 16/4 105.17 143.87 134.62 38.70 9.25 23.91

aThe total number of tasks/workers
bThe difference between mode O and mode L
cThe difference between mode L and mode M

Table 5.13: The improvement in the performance in the presence of external
load(Raytracer)

5.5 Summary

In this chapter, we demonstrated the scheduling approach used in HWFarm. The

HWFarm skeleton uses a costed-informed scheduler to meet its performance goal,

reducing the total execution time. This scheduler uses a circular mechanism to

collect the load information from the nodes involved in running the skeleton. Next,

this information will be delivered to the sender-initiated worker that needs it for

making scheduling decisions. Then, the scheduler will reallocate the task based on

the decisions made by the loaded workers.

We explored that the overhead in HWFarm is low compared to the total execu-

tion time. This overhead is incurred by the allocation, load diffusion, and mobility

operations. Our experiments suggest that the overhead of the mobility activities is

low even with the worst case scenarios when moving all local tasks. These experi-

ments concluded that the total overhead of the skeleton activities is less than 0.6%.

Furthermore, we demonstrated some procedures to optimise that overhead in the

HWFarm skeleton.

Finally, some experiments have been carried out to evaluate this scheduler in

terms of mobility behaviour and mobility performance. As a result, once some nodes

155

Chapter 5: Optimising HWFarm Scheduling

become loaded, this scheduler reduces the total execution time and compensates for

the load changes.

In the next chapter, we present our load generator tool that we used to apply

various patterns of load to the experimental nodes.

156

Chapter 6

Generating Load Patterns

In the previous chapters, we discussed the HWFarm skeleton and its dynamicity.

Nonetheless, it is necessary to evaluate the scheduling decisions and policies pro-

duced by this skeleton under repeatable conditions. Typically, such parallel systems

are evaluated on dedicated platforms with little or no external impact on load. For

dynamic systems, however, such as those that adapt to changing conditions, it is nec-

essary to generate both predictable and realistic patterns of load in order to mimic

a real loaded environment. We have developed a novel load function which may

be instantiated to generate dynamic, adaptive, predictable patterns of load across

multiple processors. Our function can both generate idealised load patterns, and

record and playback real load patterns. Furthermore, it can dynamically maintain

a required load pattern in the presence of external real-time load changes, which

makes it particularly suitable for experimentation on shared systems. In this chap-

ter, we start with an introduction in Section 6.1. Next, in Section 6.2, we discuss

the design of the load function and show that it can generate dynamic, adaptive and

precise load, with minimal impact on system load. We then illustrate its use in the

experimental evaluation of static/dynamic load balancing, load stealing and mobile

skeletons in Section 6.3.

157

Chapter 6: Generating Load Patterns

6.1 Introduction

In recent years, communication networks and computer environments have offered

resources which are distributed across a large number of systems and are shared by

a large number of users. The demand for resources in such computational environ-

ments is irregular, so the load may be unpredictable.

In real world systems, there is a fundamental difference in behaviour between

dedicated systems, like supercomputers, where the parallel system is dedicated to

execute the scheduled tasks, and non-dedicated systems, like servers, where multiple

tasks can share the resources, thus the system may have volatile loads.

Heterogeneous architecture software needs to be tested and validated, but re-

source usage depends on the computing demands from other user processes. Thus,

the experimental environment for such software needs to be adaptable to reflect

changing conditions. Some simulation tools, for example SimGrid [53], can be used

to explore varying loads. Nonetheless, simulating the interaction and behaviour of

distributed system nodes is very difficult and may be impossible in some situations

where it is very hard to obtain the influencing factors [41].

For better results, it is more efficient if these experiments run on real environ-

ments under controlled conditions. Thus, a load generator is needed to mimic such

conditions by producing a desired amount of load across the environment. Ideally,

the load generator would produce defined levels of load on CPU, memory, cache

and network. For example, KRASH [182] is a tool for reproducible generation of

system-level CPU load on many-core machines. It creates a dynamic and precise

load but only for multicore systems. Stress [226] is a workload generator for stressing

the CPU, memory, I/O and the disk. This tool spawns a fixed number of processes

with some calculations for stressing the CPU. The load generated using this tool is

non-dynamic where it is not changing at run-time. Another method presented by

Makineni et al to reduce the CPU performance is down-scaling the CPU frequency

which is used to reduce CPU power consumption [156]. Moreover, cpulimit [157] is a

tool to limit the CPU usage of a process. It controls the CPU time dynamically and

quickly without changing the scheduling settings but it does not handle multicore

158

Chapter 6: Generating Load Patterns

systems. Wrekavoc [90] is a tool for heterogeneity simulation which enables users

to limit the resources available to their application. Lublin et al [154] proposed

an approach to instrument workload models of the system. This approach analy-

ses and models the job-level workloads to substantially improve the experimental

procedures.

In this chapter, we are exploring a mechanism to generate loads to degrade

system performance on heterogeneous architectures and control the resource usage.

We discuss the implementation of a load function which may be instantiated to

apply dynamic, precise, adaptive patterns of load in a dedicated system to simulate

different load scenarios that may occur in a shared distributed non-dedicated system.

Our load function has been constructed to generate CPU load, as the CPU is a

significant element in high performance computing. This function is able to generate

a dynamic, precise and systematic load on shared/distributed memory architecture.

Hence, we can prepare and replicate real experimental conditions by applying various

patterns of loads. Moreover, the load function is able to measure and record the

load for the whole system, nodes and cores, where it can use the load pattern later

for mimicking the whole system. Generating loads for memory, cache and network

are beyond the scope of this work.

6.2 Design and Implementation

6.2.1 Load and Scheduling

In this section, we propose the design and implementation of the load function that

creates threads which are scheduled on a regular basis. The time slices assigned to

these threads depend on the amount of load in the load pattern.

Our function has been designed to meet the following requirements:

• Reproducibility : The load function is able to generate the desired load on the

system regardless of environmental conditions (number of machines, number

of cores, other user processes).

• Precise: It can generate a precise CPU load through matching the given load

159

Chapter 6: Generating Load Patterns

to the desired load.

• Dynamic: Under external real-time changes, a required load pattern can be

dynamically maintained, which makes the load function specifically appropri-

ate to be used in experimentations on shared systems.

• Adaptive: The load function is able to generate patterns of load consider-

ing the current load of the system. This also improves the precision of the

generated load where other user’s loads will be part of the given pattern of

load.

• Over-loading & Non Intervention: The load function can create any number

of loaders on a core, resulting in a highly loaded core. Furthermore, the load

function has minimal impact on the system because the scheduling policy is

not affected and the priorities of the current processes are not changed.

6.2.2 Load Function Design

The load function is designed using the Master/Worker model, see Figure 6.1. Here,

the master is responsible for managing and controlling the workers which are dis-

tributed over all the nodes in the system, as localised measurement entities and

load generators. The load function will run on multiprocessor systems where the

master will be hosted on a node as the global controller while worker processes are

distributed amongst the nodes. However, each worker process generates a thread,

the local controller, and the load generator threads, the loaders.

The load function operates in two modes: recording the current load and gen-

erating load patterns. Accordingly, the global controller will maintain the desired

operation through cooperating with the remote controllers. On other hand, the local

controller is responsible for either recording the node load or generating the desired

load on that node.

Generating load on a CPU means making it unavailable for processing other

work. In other words, generating the CPU load involves creating and running

threads/processes on the CPU cores. A loader is an intensive thread which runs

160

Chapter 6: Generating Load Patterns

on one CPU core and has to be controlled to adjust the amount of load, either by

the thread itself or by another thread, the local controller. This thread will run fre-

quently to monitor and manage the loader threads with no change in their priorities.

However, the frequency of running the local controller thread should be balanced to

avoid extra load on the CPU and to precisely control the load. Our function runs

with regular policy without changing any priorities.

Figure 6.1: The load function design.

Typical parallel applications are composed of many processes or threads [120].

These threads use the CPU cores which are the smallest computing elements in a

computing system. The operating system scheduler assigns a CPU core to threads.

These threads are competing for accessing the core at the same time. Then, the

scheduler has to choose which thread should run on the core using scheduling pol-

icy. The schedulers try to balance fairly resource usage amongst running threads.

Therefore, the scheduler will use time-slicing by assigning time intervals of the core

execution to all threads intend to run on the core where the time intervals assigned

to the threads depends on their priorities and the scheduler policy. We can conclude

that the core load is the ratio of unavailable time slices to the total time slices.

Applying a load on a core means making some time slices on the core unavailable.

Regarding the dynamic load, the local controller will change the number of unavail-

able time slices in the core depending on the load profile. In contrast, for adaptive

load, the local controller will take into account the current external real-time load

changes and generate the remaining amount of load to reach the desired load.

Variants of load injector use a supervisor model, for example KRASH [182] and

Wrekavoc [90].

161

Chapter 6: Generating Load Patterns

6.2.3 The Implementation

We implement our load function using C and MPI [206] while we use the PThreads

library to create and manage the threads [48]. In this implementation, we target

MPI compatible systems with Linux operating system (the Linux kernel is 2.6 or

later). Here, the function has two main tasks: recording the loads of the machines

and generating CPU loads.

To record the load, a monitor thread is created by the local controller to record all

information about the machine using the /proc virtual file system. The information

is collected every second by default, or according to input configurations. After that,

the information will be sent to the global controller to create the load pattern for

the current system.

To generate the CPU load, see Figure 6.2, the local controller will create a loader

thread for each core in the hosted node. Thereafter, it will assign a core to a thread

to guarantee that the thread is running only on one core. This is implemented using

cpuset, a Linux feature which can be used to restrict the thread execution on a

specific core or cores (in PThreads, this is implemented in thread affinity) [175].

Depending on the load pattern and for generating a precise load, the local controller

will check frequently each loader to make sure that it is loading the core with the

desired amount of load.

The loader thread is a simple infinite loop with conditions to keep the loader

monitored and controlled by the local controller so that it has minimal impact on

cache and memory. The local controller will run once per second by default, or

according to input configurations. Each time, the local controller will calculate the

amount of load for each loader depending on the load pattern and the actual load.

Then, it sets the sleep period of the loader threads. Hence, the generated load will

be precise and match the desired pattern of load. The local controller is not attached

to a specific core so that it does not matter where it runs. If the scheduling is fair,

the local controller will run on time.

162

Chapter 6: Generating Load Patterns

Figure 6.2: The load function structure.

6.3 Load Function Evaluation

In general, the load function may change the loads of arbitrary processors across a

cluster or Grid, according to the load pattern with which it is instantiated.

The load function was tested with a Beowulf cluster located at Heriot-Watt

University. The cluster consists of 32 eight-core machines where each is an 8 core

Intel(R) Xeon(R) CPU E5504, running GNU/Linux at 2.00 GHz with 4096 kb L2

cache and using 12GB RAM.

In the first experiment, see Figure 6.3, we validate the reproducibility for a real

environment by running the LINPACK [86] benchmark over 4 nodes. First, we

run the load function in the record mode to observe the load of the system. After

that, we reproduce the recorded load pattern on the same nodes. The average

error between the load pattern and the generated load is 0.62 sec with a standard

deviation 0.105 sec.

To validate the dynamic and adaptive requirements, we propose a simple pattern

of load. Here, during run-time the load function generates the load dynamically and

matches the generated load to the given pattern of load. The load function can run

in either adaptive or non-adaptive mode.

163

Chapter 6: Generating Load Patterns

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 (

%
)

Time(Sec)
Node4(Required Load) Node4(Generated Load)

Figure 6.3: The required and actual load in node 4.

In adaptive mode the function will take into account the current system load

while in non-adaptive mode it will generate the load regardless of the current load.

In this experiment, we generate the load over 5 nodes with an adaptive mode.

Surprisingly, an external user monopolises the first node for some time, see the

green curve in Figure 6.4. In this case, the local controller in the first node will ask

the loaders to reduce the artificial load to make the total load equal to the required

load, see Figure 6.4. This will make the node loaded with the desired amount of

load apart from how many users are using the current node. The generated load will

be precise with a necessarily delay if the load of other users below the wanted load.

Note that there are many saliences in the generated load. This happens when there

are load changes on the system and the load function takes an action to adjust the

generated load to match the desired value.

The more precise a load is generated, the better a real system is simulated.

The local controller collects, generates and assigns the amount of load for a loader.

Therefore, it is very important to run the local controller thread on time to set

the required amount of load. See Table 6.1 which illustrates the average error

for generating varying amounts of load under 100%. We run the load function in

adaptive and non-adaptive modes. Here, we notice that the average error in the

adaptive mode is around 0.18 at the low loads while in the non-adaptive mode the

average error is around 0.2 at the high loads.

If the load is more than 100%, the local controllers will compete for acquiring

164

Chapter 6: Generating Load Patterns

Figure 6.4: The required and actual load in the node with other changes in the load
(adaptive mode).

resource. An undesirable delay in executing the local controller will occur which

affects only the next time interval. This delay depends on the total number of

threads and the scheduling policy. The delay will not affect the generated load if

the required load is over 100% but if the load in the pattern decreases the load then

a slight error may appear.

6.3.1 The Load Function Impact

When conducting an experiment, the load function runs at the same time to apply

a load pattern for evaluating the solution. So it is important to ensure that running

the function itself will not have a significant impact on overall system performance.

To explore this, we use a Matrix Multiplication benchmark with the load function

doing nothing.

As Table 6.2 shows, we found that the effect on the system with a load function

doing nothing is from 0.05% to 0.87%. We conclude that the load function has an

insignificant impact on the overall performance of the system.

Because we are working across distributed memory architectures, it is also very

important to check the function’s impact on network performance. However, the

communications within the load function are performed only at the start-up and

165

Chapter 6: Generating Load Patterns

Loads
Adaptive Mode Non-Adaptive Mode

Average Error S-Deviation Average Error S-Deviation
1 % 0.151 0.149 0.099 0.123
2 % 0.156 0.119 0.062 0.083
5 % 0.168 0.143 0.116 0.080
10 % 0.184 0.085 0.068 0.049
25 % 0.080 0.046 0.053 0.053
50 % 0.075 0.063 0.088 0.031
75 % 0.081 0.041 0.120 0.043
90 % 0.051 0.074 0.157 0.052
98 % 0.099 0.050 0.175 0.061
99 % 0.038 0.058 0.181 0.063
100 % 0.056 0.207 0.204 0.173

Table 6.1: The precision of load generation by the load function.

1000x1000 2000x2000 3000x3000 4000x4000 5000x5000
Time 0.687 2.525 9.923 18.034 40.143
Time with the
load function

0.693 2.527 9.963 18.043 40.363

Percentage 0.873 % 0.079 % 0.403 % 0.05 % 0.548 %

Table 6.2: The impact of the load function on the system.

the finish time. Therefore, the load function has a negligible impact on the network

performance.

Regarding other impacts, such as memory and disk impacts, in this work, we are

not addressing these impacts where we implemented the load function with minimal

memory and disk access. We expect that the impact is negligible but this needs to

be investigated.

Now, we explore the use of the load function in three parallel computing ex-

periments. In this section, we do not address the evaluation of these experiments

themselves; rather we are evaluating tool use in very different contexts to control

resource availability according to a load pattern.

6.3.2 Load Balancing

Load balancing attempts to balance the work load of all locations in multicomputer

systems [54]. In static load balancing, the work load is allocated at the start-

up while in dynamic load balancing the work allocation depends on information

166

Chapter 6: Generating Load Patterns

collected from the workers. Thus, the behaviour and performance of an experiment

in load balancing depends on the current load of the system. We implemented a

Matrix Multiplication benchmark using the Task/Farm model in static and dynamic

mode. In the static version [200] the tasks should be distributed evenly amongst

all the workers. For dynamic load balancing, the distribution of tasks depends

on the internal and the external load of all workers [202]. Then, we run both

implementations for a 6000x6000 matrix with 100 tasks over 5 nodes alongside with

the load function with a load pattern illustrated in Figure 6.3 only for the first 3

nodes.

Figure 6.5: Load balancing (static/dynamic) under load changes.

Figure 6.5 presents the results of running 100 tasks over 5 nodes. In static load

balancing, the tasks are evenly distributed amongst all nodes, both the loaded and

unloaded; see Figure 6.5 (A). But, the loaded nodes take longer times to finish

executing the tasks allocated to them; see Figure 6.5 (B).

In the dynamic version, Figure 6.5 (C) shows that the number of tasks allocated

to nodes is varied depending on the load state of the nodes. Figure 6.5 (D) illustrates

that the time to complete all running tasks is roughly the same on all nodes.

167

Chapter 6: Generating Load Patterns

In the load balancing experiments, it can be observed that the generated load

has a direct impact on the behaviour of such experiments. Consequently, such a tool

can create a realistic loaded environment to help in evaluating these experiments.

6.3.3 Work Stealing

Work stealing is a thread scheduling technique for shared-memory multiprocessors

where a thread steals works from other threads [38]. For this experiment, we use

one node which has 8 cores. We run 8 threads over 8 cores where each thread has

a pool of tasks and these pools are shared amongst all threads. We repeated the

running 9 times with changing the number of loaded cores through assigning cores

to loaders.

Tasks on
Number of Loaded Cores

0 1 2 3 4 5 6 7 8
Core 1 256 166 158 146 128 147 171 205 256
Core 2 256 269 160 149 128 146 171 205 256
Core 3 256 269 290 149 128 146 170 205 256
Core 4 256 269 289 319 128 147 171 206 256
Core 5 256 269 288 320 384 146 171 205 256
Core 6 256 269 287 322 383 438 171 205 255
Core 7 256 269 289 321 384 439 511 206 257
Core 8 256 268 287 322 385 439 512 611 256

Table 6.3: Work Stealing with the number of tasks processed on each core (bold
number refers to the number of tasks processed on a loaded core)

Table 6.3 illustrates the effect of changing the load on task distribution. Here,

the tasks should be evenly distributed amongst the cores if they have the same

amount of load. In the table, bold numbers refer to the number of tasks processed

on each loaded core. We can see that as more as cores are loaded, the tasks are

redistributed to maintain overall balance between loaded and unloaded cores. Note

that when the number of loaded cores is 7, this makes the 8th core execute more

tasks compared with the other loaded cores.

Like load balancing, the load function provides a mechanism to evaluate the work

stealing experiments.

168

Chapter 6: Generating Load Patterns

6.3.4 Mobility

Next, we consider a mobile skeleton for a Raytracer benchmark that generates the

image for 100 rays for 120,000 objects in a 2D-scene. This skeleton is executed over

two nodes to execute the benchmark composed of one task.

Figure 6.6: The load pattern applied to Raytracer and its impact on moving tasks
between workers.

Figure 6.6 (A) shows the applied pattern of load while Figure 6.6 (B) gives how

the task changes its location according to the load state of the worker. The decision

of moving the task has been taken by the skeleton which mainly depends on the

load on the current worker and the other workers.

Like load balancing and work stealing experiments, this experiment shows the

effect of the generated load on the skeleton behaviour.

6.4 Summary

We have presented a new tool that generates dynamic, precise, adaptive CPU load.

This tool helps in evaluating experiments that depend on changes in the load in

multi-processor and multi-core environments. This tool is implemented as a load

function which we have shown to have minimal impact in an experimental setting.

Overall, we can conclude that the load function is highly effective in a dedicated

system for simulating patterns of load changes in a shared system.

We think that our load function is of far wider applicability. For example, it

might be used in a homogeneous setting to simulate a heterogeneous environment

169

Chapter 6: Generating Load Patterns

by giving differential constant loads to the processing elements with the same char-

acteristics. It might also be used to simulate different patterns of system component

failure by giving processing elements infeasibly large loads.

170

Chapter 7

Evaluation

In this work, we propose a load-aware skeleton used to solve problems through ex-

ploiting shared parallel computing platforms. Here, we will discuss how our skeleton

can be used to solve different types of problems in many different areas as well as

running large scale problems. This enhances how our skeleton is capable of accom-

modating diversity, which is one of principles in designing skeletal-based systems.

Furthermore, we will explore one of the side effects of our skeleton behaviour through

investigating the effect of mobility on other applications running on shared nodes.

In this chapter, we start with an introduction in Section 7.1. Next, in Section 7.2,

we evaluate the usability of HWFarm by applying it to pipeline structures. Then,

we evaluate scalability by measuring runtime on large architectures in Section 7.3.

Most importantly, we evaluate adaptivity by measuring the runtimes of applications

competing for resources on a small cluster in Section 7.4.

7.1 Introduction

Parallelism with high performance computing has introduced techniques to solve

complex problems that were not manageable on single processors. These techniques

have been implemented in many different areas: finance and trading, climate re-

search, and biosciences. To put our skeleton in the right context, it should be able

to solve problems related to data science such as modelling and numerical simula-

tions. Here we will demonstrate three of the common problems in data sciences: the

171

Chapter 7: Evaluation

N-body simulation problem, the BLAST algorithm and the findWord problem.

The N-body problem is a numerical simulation for motion of N particles that

are interacting gravitationally [218]. N-body algorithms have a wide range of ap-

plications such as plasma physics and molecular dynamics. The simulation of the

movement of each particle is distributed over time-steps. Each step requires com-

puting all forces exerted on each particle and then updating the new locations and

the new velocities for all particles. At each time-step, O(N2) operations need to be

computed. The pseudo-code of the sequential version of this problem is:

Set initial positions for all particles

for each timestep do

for each particle j do

for each particle i do

calculate the force at particle j

update the velocity and the location of particle j

endfor

endfor

BLAST (Basic Local Alignment Search Tool) algorithm is used to search for

sequences in a database of DNA or proteins [17]. A parallel version of Blast has

been presented in [144]. This algorithm is used to compare a database of sequences

(biological sequences such as amino-acid sequences or DNA sequences) for detecting

sequences above a concrete threshold. The pseudo-code of the sequential version of

this algorithm is:

Set the query sequence

Make a k-letter query word list

Scan the database to find the list of matching words

Extend the exact match to High Scoring Pairs

Evaluate the score of High Scoring Pairs

Show the gapped local alignment

Report every match whose score is lower than a threshold

172

Chapter 7: Evaluation

The findWord problem is a simple example of processing and analysing a huge

amount of data. These data are stored in a large number of files located in a shared

or distributed data storage. This problem has many applications such as natural

language processing and text mining [135]. The pseudo-code of the sequential version

of this problem is:

Read data from files

Extract the data

Analyse the data

Print out the results

All measurements are performed on local machines at Heriot-Watt University

Edinburgh. Details about the machines are outlined in Section 5.3. Now, we will

discuss some features that are considered in the HWFarm skeleton.

7.2 Parallel Pipeline

A pipeline is a form of parallelism composed of a sequence of stages that process

a sequence of input [66], see Figure 7.1. When using skeletons, each stage of the

pipeline can be executed by a skeleton to achieve the needed goal, see Figure 7.2.

The pipelining approach is not directly implemented in HWFarm but if we assume

that each skeleton call is a 1-stage pipeline then a sequence of calls yields a pipelined

implementation. Here, we study the pipeline structure to extend the range of pro-

grams that can be solved using the HWFarm skeleton.

Figure 7.1: The pipeline approach.

To demonstrate a pipeline pattern using HWFarm, we use the problem of finding

the most frequent word in a list of files, findWord problem. This example is com-

posed of two functions, extracting the data from the files and finding the words in

173

Chapter 7: Evaluation

Figure 7.2: Parallel pipeline with skeletons.

the extracted data, see Figure 7.3. This problem represents irregular compunctions

as the size of the files are variable. Furthermore, the size of the computation is large.

Figure 7.3: The structure of the HWFarm skeleton to solve a findWord example.

This experiment is performed in a Beowulf cluster at Heriot-Watt University

over 30000 files stored in a shared storage where a Network File System is set up.

In this example, there is no sending of the data between the master and the workers

where we assumed that the files are accessible by all nodes.

Now, we run a findWord problem with two stages using 4 workers and 20 tasks

as we need to distribute the files evenly amongst the workers. In the first stage,

each task processes 1500 files and produces extracted data saved into files. Then,

the second stage processes the extracted data for all files to find the most frequent

word.

Figures 7.4, 7.5, 7.6 and 7.7 show the changes on the load over the 4 nodes, the

top figure, and the behaviour of the tasks during their executions on that node,

the bottom figure. These load patterns have been generated using the load function

proposed in Chapter 6. This behaviour is influenced by the current load of the nodes.

It can be seen that the HWFarm scheduler lightens the loaded nodes whenever the

worker becomes loaded.

174

Chapter 7: Evaluation

Figure 7.4: The load pattern and the mobility behaviour of tasks at at Worker 1.

Figure 7.5: The load pattern and the mobility behaviour of tasks at at Worker 2.

175

Chapter 7: Evaluation

Figure 7.6: The load pattern and the mobility behaviour of tasks at at Worker 3.

Figure 7.7: The load pattern and the mobility behaviour of tasks at at Worker 4.

During runtime, each task will be moved multiple times as long as the host worker

is loaded. Because in this experiment, there are two stages with two skeleton calls,

this means that each task will end its execution at the end of each stage. Hence, a

new task distribution occurs at the beginning of each stage. Nonetheless, each task

may be moved while executing a pipeline stage due to loaded conditions during this

stage. Figure 7.8 shows task 1 and the workers which this task has visited during its

lifetime. Here, task 1 has 2 movements in stage 1 while it has no movements in stage

176

Chapter 7: Evaluation

2. Furthermore, Figure 7.9 shows the execution of task 7 which has 1 movement in

stage 2 and 1 movement in stage 2.

Figure 7.8: Task 1 and its locations in the findWord problem.

Figure 7.9: Task 7 and its locations in the findWord problem.

7.3 Scalability

This section discusses the scalability of the HWFarm skeleton over parallel com-

puting architectures. We will measure the runtimes of running large-scale problems

using HWFarm over a big number of nodes. Here, speed-up evaluation is not ad-

dressed in this work.

During the design of HWFarm, several issues have been considered to support

scalability, such as:

• Making the mobility decision: The decision in HWFarm is taken through a

decentralised approach where each worker is responsible for the decisions to

move its tasks.

• Transfer policy : We used a sender-initiated mechanism where the loaded

worker only triggers for mobility.

177

Chapter 7: Evaluation

• Load information: A circulating method has been used to collect the load from

the workers. This method has a light weight overhead, see Chapter 5.

Scalability is an important attribute in designing parallel algorithms and high

performance architectures [213]. Therefore, scalability is subject to the implementa-

tion, data size and the available resources. The data size is very important because

the structure of the skeleton at the master limits the data size to fit the memory

of the master node. The communication latency also should be considered at the

beginning, while during runtime the network latency is considered in the HWFarm

cost model.

A first example of scalability is the findWord problem. In this experiment, we

have 50000 text files. The skeleton will use 20 nodes as workers: 18 nodes with

8 cores on a Beowulf cluster, a 24-core node and a 64-core node. This problem

can easily be scalable as the input is only the files needed while all data will be

processed locally at the nodes. Figure 7.10 shows the execution times of running

only this problem without background load. Each worker will execute one task or

more if the number of tasks is greater than the number of workers. Each task will

be allocated locally to a core if the node is not loaded.

Figure 7.10: The execution times of running the findWord problem using the HW-
farm skeleton.

Note that the total overhead is due to the implementation of this problem and

the latency of accessing the files.

The second example is a numerical simulation for motion of N particles, the

N-body problem. In this experiment, we used 100000 particles for 10 time-steps.

Moreover, we used 21 nodes: 1 as a master and 20 nodes as workers.

178

Chapter 7: Evaluation

Figure 7.11: The execution times of running the N-body problem using the HWfarm
skeleton.

Figure 7.11 illustrates the execution time of running only this problem with

different number of tasks. Each task runs on a core and hence 100 cores are allocated

to solve this problem. In this implementation, there are different sources of overhead

such as communication and memory overhead.

As a conclusion, the HWFarm skeleton, static or mobile, can efficiently execute

large scale problems over a big number of nodes without background load. This

supports flexibility of the skeleton in solving different types of real algorithms, al-

though there are some requirements to run the sequential code. This also enhances

the skeleton in accommodating diversity which is one of the principles presented by

Cole [67] to design skeletal-based systems.

The total overhead of any problem is due to the implementation, the nodes, the

communication latency, and memory/storage overhead as well as the low overhead

of the skeleton itself. In Chapter 5, we showed that the HWFarm skeleton has low

overhead compared to the total execution time.

7.4 Adaptivity

In the previous experiments, we evaluated the HWFarm skeleton in the perspective

of a user application running in parallel over a number of nodes. Also, we showed

how the skeleton is adaptive to the load state of the system. Here we will discuss

the side effect of this adaptivity on the system and on other applications sharing

the resources with the skeleton.

179

Chapter 7: Evaluation

To study the effect of adaptivity on the system and on all applications running

on the system, we simulate resource contention occurring on a node by running three

parallel applications at once on a specific node. These applications will compete for

the node resources and therefore a delay may occur for all these applications. Here we

are not using our load generator function because we need real applications running

along with the skeleton to measure the execution times for all these applications. To

demonstrate that effect from different angles, we run three instances of the skeleton

executing three problems: BLAST algorithm, the N-body problem, and Matrix

Multiplication. Each time, we activate mobility on an instance and disable it on the

others. Disabling mobility makes the skeleton run as a parallel application composed

of concurrent threads. Therefore, each instance of the skeleton will consider the other

two applications as an external load. Thereafter, we will use B for the HWFarm

(BLAST) skeleton, P for the HWFarm (Particles) skeleton, and M for the HWFarm

(Matrix) skeleton. These applications are composed of different numbers of tasks.

See Table 7.1 that shows the sizes and the number of tasks of these applications.

Tasks Size

P 5 100000 particles/ 1 time-step
B 4 50 million DNA genes
M 6 6000*6000

Table 7.1: The sizes and number of tasks of some applications.

We have 5 executing cases illustrated in Table 7.2. First we need to measure the

original execution time for each application, case AAA. Next, we run all applications

together with disabled mobility and measure the times for all these applications, case

AllOff. Then, we run an instance of the skeleton with activated mobility while the

other instances have disabled mobility for the problems P, M and B in cases POn,

MOn and BOn, respectively.

To set up this experiment, we use three nodes of a Beowulf multicore cluster, a

master and two workers; details about these nodes are outlined in Section 5.3. In

case AAA, each application runs on one worker to measure its execution time. The

number of tasks for each skeleton is less than the number of cores on that worker

so no need for other workers. For the other cases, we use two workers because we

180

Chapter 7: Evaluation

need to keep one available worker in case there is a need to move tasks to a new

location when mobility is activated. We use only two workers because it is easier to

demonstrate the results and show the movement behaviour of the skeletons at the

run-time. Initially, all tasks of the three applications start at worker 1. Then, based

on the load state, mobility occurs for the tasks of the skeleton that has activated

mobility. In summary, our set-up shows that performance improvements are due to

mobility and not additional cores.

Case workers P M B

AAA 1 alone alone alone
AllOff 1 Mobility Off Mobility Off Mobility Off
POn 2 Mobility On Mobility Off Mobility Off
MOn 2 Mobility Off Mobility On Mobility Off
BOn 2 Mobility Off Mobility Off Mobility On

Table 7.2: The cases of running the HWFarm problems.

Table 7.3 summarises the results of all executing cases. In this table, each line

represents a case. In column Exec, each value represents the measured execution

time of running an application(col) in a case(line). The Diff columns in case AllOff

refers to the difference between the execution time in case AllOff and the execution

time in case AAA. This shows how each application is affected by other applications.

The Diff columns in cases POn, MOn and BOn, point to the difference between the

execution time in that case and the execution time in case AllOff. The compensa-

tions from mobility compared to the times with high background load are shown in

the Comp columns. Further details about those cases are as follows:

Case
P M B

Exec(S) Diff(S) Comp(%) Exec(S) Diff(S) Comp(%) Exec(S) Diff(S) Comp(%)
AAA 108.711 119.388 60.538
AllOff 187.977 +79.266 218.714 +99.326 142.287 +81.749
POn 110.378 -77.599 97.90 158.732 -59.982 60.39 116.969 -25.318 30.97
MOn 114.268 -73.709 92.99 122.188 -96.526 97.18 94.749 -47.538 58.15
BOn 162.945 -25.032 31.58 181.539 -37.175 37.43 62.911 -79.376 97.10

Table 7.3: Summary of the execution times and the improvements for all applica-
tions.

181

Chapter 7: Evaluation

Case AAA

In this case, each skeleton runs alone where its tasks are executed on one worker.

As a result, the measured total execution times are: 108.711 sec for P, 119.388 sec

for M, and 60.538 sec for B.

Case AllOff

We will run all skeletons together where all tasks will start executing on the same

worker, worker 1. In this experiment, all skeletons have disabled mobility and hence

worker 2 will be idle. Figure 7.12 shows the number of tasks running of worker 1

for each application.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Ta
sk

s

Time(sec)

Tasks at Worker 1

B
P
M

Figure 7.12: Mapping the tasks on worker 1 for case AllOff.

A delay will occur for all applications where worker 1 has only 8 cores while

the number of tasks at some points is 15 tasks. Consequently, P takes 187.977 sec,

M takes 218.714 sec, and B takes 142.287 sec. By comparing these times to the

times in case AAA, the execution times of these applications have been increased

by: 72.91%, 83.20%, and 135.04% for P, M and B respectively.

Case POn

In this case, we will turn mobility on for the HWFarm (P) skeleton to examine the

improvement of total execution time for this skeleton and other running applications.

Figure 7.13 shows that all tasks of the HWFarm (P) skeleton are moved to worker

2 as worker 1 experiences increased load from the other applications. Therefore, P

takes 110.378 sec, M takes 158.732 sec, and B takes 116.969 sec. By comparing

182

Chapter 7: Evaluation

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Ta
sk

s

Time(sec)

Tasks on Worker 1

B
P
M

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Ta
sk

s

Time(sec)

Tasks on Worker 2

B
P
M

Figure 7.13: Mapping the tasks on worker 1 and worker 2 for case POn.

these times to the times in case AllOff, we can observe that this mobility decreases

the delay due to the load where the execution time of the HWFarm (P) skeleton has

been improved by 77.599 sec. Therefore, the movement of the tasks of P produces a

large improvement and compensates for the loaded condition in worker 1 where the

compensation for P is : 77.599/79.266 ∗ 100 = 97.90%. Furthermore, this mobility

reduces the resource contention on worker 1 and hence other applications will acquire

more computing resources. As a result, the compensations for other applications,

M and B, are 60.39% and 30.97%, respectively.

Case MOn

In case MOn, the HWFarm (M) skeleton has mobility turned on while all applica-

tions run on worker 1. Like case POn, a large improvement has been gained due to

moving the 6 tasks of M to worker 2, see Figure 7.14. As a result, P takes 114.268

sec, M takes 122.188 sec, and B takes 94.749 sec. Here, the compensations are

97.18%, 92.99%, and 58.15% for M, P and B, respectively.

183

Chapter 7: Evaluation

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120

Ta
sk

s

Time(sec)

Tasks on Worker 1

B
P

M

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120

Ta
sk

s

Time(sec)

Tasks on Worker 2

B
P
M

Figure 7.14: Mapping the tasks on worker 1 and worker 2 for case MOn.

Case BOn

In case BOn, the HWFarm (B) skeleton has mobility turned on where all applications

run on worker 1. Like case POn and MOn, an improvement has been gained due

to moving the tasks of B to worker 2. As a result, P takes 162.945 sec, M takes

181.539 sec, and B takes 62.911 sec. Here, the compensations are 97.10%, 31.58%,

and 37.43% for B, P and M, respectively. See Figure 7.15 that shows the movements

of the tasks of B.

According to these results, we can conclude that adaptivity improves the exe-

cution time of the skeleton and the execution times of the applications sharing the

system resources. Our experiments showed that the direct compensation is larger

than indirect compensations. This adaptivity also reduces resource contention and

compensates for the loaded conditions. These improvements vary and are related

to the number of movements and how the running applications are affecting each

other. Moreover, another side effect of adaptivity is enabling the system to run

applications faster and therefore improves the throughput of the whole system.

184

Chapter 7: Evaluation

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Ta
sk

s

Time(Sec)

Tasks on Worker 1

B

P

M

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Ta
sk

s

Time(Sec)

Tasks on Worker 2

B

P

M

Figure 7.15: Mapping the tasks on worker 1 and worker 2 for case BOn.

7.5 Summary

This chapter includes many issues that are considered in HWFarm. We demon-

strated how the HWFarm skeleton accommodates diversity through executing prob-

lems implemented using a parallel pipeline approach and running large scale prob-

lems. Furthermore, our experiments suggested that adaptivity of our skeleton com-

pensates for the loaded conditions on shared platforms and reduces resource con-

tention. Our experiments showed that the compensation may reach up to 92%

compared to the time under a high background load. Moreover, we showed that a

side effect of the adaptivity of the HWFarm skeleton is improving the throughput

of the system.

185

Chapter 8

Conclusion and Future Work

8.1 Summary

Multicore clusters have emerged providing high performance computing platforms

for running applications. Sharing the resources of parallel platforms amongst the ap-

plications demanding computing power leads to resource contention amongst these

applications. This thesis presents the design and implementation of a skeleton (pat-

tern) that seeks to find better locations for its computations taking into consideration

the load variation and resource contention in shared multicore clusters. This pattern

offers an efficient way to run algorithms and solve problems through exploiting par-

allel platforms when an external load is present. This pattern is implemented using

skeletal-based approach which hides parallel details to keep the developer focused

on the domain issues.

Chapter 2 provides the concepts related to parallel computing, cost modelling

and scheduling. Furthermore, a survey of skeletons and parallel programming lan-

guages that support the skeletal approach has been introduced.

Chapter 3 proposes the design and implementation of the HWFarm skeleton.

Moreover, this chapter gives a detailed description of the skeleton structure and how

it can be used to run algorithms. This skeleton is proposed in two modes: static,

where the skeleton allocates tasks to the nodes and waits until they finish their

execution, and mobile, where the skeleton can move tasks amongst locations. This

chapter explores how this mobility feature is implemented in the skeleton to enable it

186

Chapter 8: Conclusion and Future Work

to reallocate its tasks based on the system load state. This skeleton is implemented

in C and runs over distributed and shared memory architectures. To support these

architectures, we use the MPI and PThreads libraries. We also provide examples

about how to run problems using the skeleton with guidelines on how to refactor the

sequential code with following some restrictions. An example of these restrictions

is loop parallelism as the program pattern where this skeleton supports running

problems with index-based loops, outlined Sec 3.2.4.5. Moreover, the data defined

by the user should be configured and allocated in consecutive memory locations.

Also, pointers should be used in updating the output and state data. To support

mobility, there are some considerations outlined in Sec 3.2.4.4. Furthermore, we

assumed that the tasks are fixed length and the task pool is static. Also, the

skeleton does not support adding or removing resources during the runtime and the

tasks are independent with no communications. As a skeletal-based system, the

HWFarm skeleton is evaluated in meeting the principles proposed by Cole [67] and

Danelutto et al [72].

Chapter 4 introduces the dynamic, measurement-based cost model used in the

HWFarm skeleton. This cost model is embedded in the skeleton to take the costed

decisions needed for rescheduling the tasks. This model calculates the estimated

continuation times for the current tasks in the local/remote nodes. These estimates

help to find faster locations for the slow tasks. The concept used to estimate the

continuation time is based on the measurement of the partial execution of the cur-

rent tasks. Furthermore, this model calculates the mobility cost for moving a task

between two nodes. This cost considers the network delay, the task size, and the

load state of the system.

This chapter also describes in detail the parameters used by the HWFarm cost

model. There are static and dynamic parameters. The static parameters, the CPU

core clock speed and the number of cores, reflect the computing power of the nodes

that host the skeleton tasks. In this work, we assume that the cores of a node

have the same clock speed. The dynamic parameters used in the cost model are

the number of processes and the CPU utilisation. Dynamic parameters from the

187

Chapter 8: Conclusion and Future Work

running computations are also used. In the mobility cost estimation, network delay

is used as network metric.

Moreover, this chapter shows experiments on validating the decisions taken by

the HWFarm cost model. These experiments demonstrate that the cost model gives

accurate decisions under different load conditions for regular and irregular compu-

tations. In regular computations, our experiments show the accuracy of the cost

model decisions with maximum error 3%. For irregular computations, the estimates

are less accurate, as expected, with error reaching 20%. Regarding estimating the

mobility cost, the error in the estimation is ranging from 0.1% to 25% where the

actual mobility cost is relatively small.

This cost model uses these estimates to take mobility decisions. Therefore, val-

idating the mobility decisions is also investigated in this chapter. Our experiments

suggest that mobility decisions compensate for the loaded conditions by 75% and

90% for regular and irregular computations, respectively. These compensations de-

pend on the load pattern applied and the number of tasks affected by that load.

Chapter 5 proposes the load scheduler used in the HWFarm skeleton. Moreover,

this chapter explores the load information diffusion approach used in this scheduler.

In this approach, the HWFarm skeleton uses a centralised mechanism to collect the

load information of the nodes where the latest load information will be stored at the

master.

Moreover, this chapter explores the policies used to trigger the mobility oper-

ations based on estimations of remaining work. These operations are triggered by

the worker which is responsible for applying the cost model to calculate the required

estimates and to produce the move report accordingly. Then, upon confirmation,

mobility occurs for the selected tasks to the chosen workers. It is important to note

that in HWFarm, the decision making is decentralised at the workers.

Furthermore, this chapter shows experiments on validating the behaviour of the

tasks during the run-time when some nodes are highly loaded. In these experi-

ments, the current load of the nodes influences the behaviour of the tasks where the

HWFarm scheduler lightens the loaded nodes when they become loaded. Also, the

188

Chapter 8: Conclusion and Future Work

mobility performance is also validated where the compensations are ranging from

12.41% to 57.52% for regular computations and from 23.91% to 59.09% for irregular

computations. We observe that even if the accuracy of the estimates in the irregular

computations is less accurate, the mobility decisions improve the performance.

This chapter also provides an overhead analysis for all activities of the scheduler,

in the master and workers. We study the overhead of the allocation operations, load

information operations, and mobility operations. Mobility operations are expected

to be the major source of overhead but our experiments suggest that, with the worst

movement scenario, the overhead is low compared to the total execution times. As a

conclusion, the overhead of the HWFarm skeleton is not exceeding 0.58% compared

to the total execution time.

Chapter 6 presents a tool that is able to generate dynamic, precise, adaptive

pattern of load across multiple processors. This tool is implemented in C with

the MPI and PThread libraries. This tool is effective in dedicated systems for

simulating patterns of load changes. This chapter shows how this tool can be used

to help evaluating experiments that depend on changing the load on multi-processor

platforms.

Chapter 7 evaluates the HWFarm skeleton in terms of its usability, scalability

and adaptivity. In this thesis, we propose the HWFarm skeleton as a generic data-

parallel framework to run problems in parallel. In this chapter, we demonstrate how

this skeleton can run different types of problems as well as its ability to execute

algorithms implemented in the pipeline style. Moreover, large scale applications can

also be executed by the HWFarm skeleton. Furthermore, this chapter explores the

side effects of the adaptivity of the HWFarm skeleton. This adaptivity has three

side effects:

• It can produce a global load balancing where the workers try to lighten the

loaded nodes by moving tasks from the highly loaded nodes to the lightly

loaded nodes. This side effect is shown in the behaviour of the moved tasks in

Sec 5.4.1.

• For other applications running along with the skeleton, our experiments show

189

Chapter 8: Conclusion and Future Work

how the skeleton reduces resource contention in the loaded node and therefore

this enables other applications to acquire more processing power. In these

experiments, our skeleton adaptivity compensates for the loaded condition

where the compensation may reach to 92% for the other applications.

• In terms of the system, our experiments suggest that the adaptivity of our

skeleton may improve the throughput of the system.

8.2 Limitations

This section discusses the limitations of HWFarm.

8.2.1 MPI Compatible Platforms

The HWFarm skeleton works on platforms compatible with MPI. We used MPI to

facilitate mobility where all created processes have the program code. Furthermore,

this simplifies the implementation of the mobility operations between two nodes.

8.2.2 Program Pattern

The program pattern supported by the HWFarm skeleton is loop parallelism. This

pattern helps in estimating the remaining iterations when assuming that all it-

erations have similar execution time. This is somehow true when executing the

computation on the same platform with the same load state.

8.2.3 Granularity

The most effective way to exploit HWFarm is solving problems with coarse grain

granularity. This is because moving small computations that take few seconds of

execution is not efficient. Examples of these problems are: computational intensive

algorithms and big data analysis.

190

Chapter 8: Conclusion and Future Work

8.2.4 GPU Architectures

GPU architectures provide high efficient computational resources but in this work

we did not address these architectures for two reasons: the complexity of the im-

plementation; and the overhead of check-pointing and migrating data processed on

these architectures.

8.3 Future Work

8.3.1 Data Locality and Mobility

Accessing data efficiently is becoming a big challenge in managing the resources in

the parallel systems. In HWFarm, we assumed that the data is included in the task

and the task function will be executed over the local data. In some problems, the

data is too big and it is difficult to be mobilized amongst the nodes such as analysing

a huge database or extracting features from thousands of images. Mapping tasks

into computation resources over nodes is maintained by the HWFarm skeleton while

accessing the data is moved to the user’s responsibility. Then, the user has to manage

dealing with data. This issue can be solved when using distributed file system where

all nodes in the cluster can access the data transparently. But, other issues regarding

the replication and the location of the data will arise. Examples of distributed

file system are: HDFS (Hadoop Distributed File System) [124] and GFS (Google

File System) [108]. A significant future work can be developed through providing

awareness of the location of the replica that is executed by the current process. This

can be done by cooperation with the distributed data store or the distributed file

system to decide where to run the processes on the nodes where the data is located.

Then, in case of mobility, this will be considered to move only to nodes that have

the same replicas. Examples of frameworks that take into consideration the replicas

when allocating computations are Hadoop [228] and Apache Spark [137].

191

Chapter 8: Conclusion and Future Work

8.3.2 Fault Tolerance

In distributed systems, a partial failure might occur when a single machine fails

while other parts operate correctly. Fault tolerance enables the system to recover

from a failure. This is important future work for our HWFarm skeleton. The

Master/Worker model implemented in HWFarm helps to perform fault tolerance.

This can be done at the master that carries out health check operations to make

sure that all workers are running properly. If one worker fails, the master that keeps

a track of the running tasks assigns the tasks to other workers.

8.3.3 Memory and Cache

The cost model considers many parameters to be sensitive to the load state of the

hosting nodes. The memory and the cache of the host nodes are also important

metrics that can be considered to decide that the memory of the executing node is

not enough to process the task. In future work, these metrics can be addressed and

reflect the actual load state of the executing nodes.

8.3.4 New Skeletons

HWFarm offers a data-parallel skeleton on shared computing platforms with a mo-

bility feature. An important future work can be done to support other types of

skeletons: task-parallel and resolution skeletons. We showed how the HWFarm

skeleton can perform pipeline programming style but it is more efficient to embed

all low level coordination in a separate implementation. Also, a divide and conquer

skeleton is another future implementation. There are some problems that require

sharing the data in the middle of the execution. Providing a skeleton that addresses

this issue is also interesting future work.

8.3.5 Dynamic Allocation Model

In this work, we proposed a static allocation model that decides the number of

allocated tasks based on the number of cores. A future work can be developed

192

Chapter 8: Conclusion and Future Work

through making this model dynamic by taking into consideration the current load

of the nodes. Then, based on the load and the number of cores, the allocated tasks

for each worker can be identified.

193

Appendix A

Applications Source Code

This appendix presents the full C code of all applications mentioned in the thesis.

Each application calls the skeleton functions and uses the structures defined in

Section 3.2.4 to access the data in the worker nodes. The full source code can be

found in the link: https://github.com/talsalkini/hwfarm.

A.1 Square Numbers Application

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include ”hwfarm . h”

4

5 void hwfarm square (hwfarm task data∗ t data , chFM checkForMobi l i ty){

6 int ∗ i = t data−>counter ;

7 int ∗ i max = t data−>counter max ;

8 int ∗ input p = (int ∗) t data−>input data ;

9 int ∗output p = (int ∗) t data−>output data ;

10 while (∗ i < ∗ i max){

11 ∗(output p + (∗ i)) = (∗ (input p + (∗ i))) ∗ (∗ (input p + (∗ i))) ;

12 (∗ i)++;

13 checkForMobi l i ty () ;

14 }

15 }

16

17 int main (int argc , char∗∗ argv){

18 initHWFarm(argc , argv) ;

19 int prob l em s i z e = a to i (argv [1]) ;

20 int chunk = ato i (argv [2]) ; // number o f i t ems in one t a s k

21 int ta sks = prob l em s i z e / chunk ; //number o f t a s k s

22 int mobi l i ty = a to i (argv [3]) ;

23 // l o c a l i npu t data d e t a i l s

24 int ∗ input data = NULL;

25 int i n pu t da t a s i z e = s izeof (int) ;

26 int i npu t da ta l en = chunk ;

27 // ou tpu t data d e t a i l s

28 int ∗ output data = NULL;

29 int ou tpu t da ta s i z e = s izeof (int) ;

194

Appendix A. Applications Source Code

30 int output data l en = chunk ;

31 // d e t a i l s o f t h e main coun te r

32 hwfarm state main state ;

33 main state . counter = 0 ;

34 main state . max counter = chunk ;

35 main state . s t a t e da t a = NULL;

36 main state . s t a t e l e n = 0 ;

37 i f (rank == 0){

38 // Prepare t h e inpu t data

39 input data = (int ∗) mal loc (s izeof (int) ∗(p rob l em s i z e)) ;

40 int j =0,k=0;

41 for (j = 0 ; j < l en ; j++)

42 input data [k++] = j +1;

43 // Prepare t h e ou tpu t b u f f e r

44 output data = (int ∗) mal loc (s izeof (int) ∗(l en)) ;

45 }

46

47 hwfarm(hwfarm square , tasks ,

48 input data , i npu t da ta s i z e , i nput data l en ,

49 NULL, 0 , 0 ,

50 output data , ou tput data s i z e , output data len ,

51 main state , mob i l i ty) ;

52

53 i f (rank == 0){

54 //Do someth ing w i th t h e ou tpu t

55 int i =0;

56 for (i =0; i<prob l em s i z e ; i++)

57 p r i n t f (”%d\n” , ∗ ((int ∗) output data + (i))) ;

58 }

59 finalizeHWFarm () ;

60 }

Listing A.1: The Square Numbers application C source code

A.2 Matrix Multiplication Application

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include ”hwfarm . h”

4

5 void hwfarm mm(hwfarm task data∗ t data , chFM checkForMobi l i ty){

6 void ∗ mat a = t data−>input data ;

7 void ∗ mat b = t data−>shared data ;

8 void ∗ r e s u l t = t data−>output data ;

9 int ∗ i = (t data−>counter) ;

10 int ∗ i max = (t data−>counter max) ;

11 int ∗ rows a = ((int ∗) t data−>s t a t e da t a) ;

12 int ∗ c o l s b = ((int ∗) t data−>s t a t e da t a)+1;

13 int ∗mat s = ((int ∗) t data−>s t a t e da t a)+2;

14 int ∗ j = 0 ;

15 int ∗k = 0 ;

16 int ∗c = 0 ;

17

18 while ((∗ i) < (∗ i max)){

19 while ((∗ j) < (∗ c o l s b)){

20 ∗ (((double∗) r e s u l t) + ∗c) = 0 ;

21 double mat res = 0 ;

22 while ((∗ k) < (∗mat s)){

195

Appendix A. Applications Source Code

23 int s h i f t a = ((∗ i) ∗ (∗mat s)) ;

24 int s h i f t b = ((∗ j) ∗ (∗mat s)) ;

25 s h i f t a = s h i f t a + ∗k ;

26 s h i f t b = s h i f t b + ∗k ;

27 double mat a item = ∗ (((double∗)mat a) + s h i f t a) ;

28 double mat b item = ∗ (((double∗)mat b) + s h i f t b) ;

29 mat res = mat res + (mat a item ∗ mat b item) ;

30 (∗k)++;

31 }

32 ∗ (((double∗) r e s u l t) + ∗c) = mat res ;

33 (∗ c)++;

34 (∗ j)++;

35 (∗k) = 0 ;

36 }

37 (∗ i)++;

38 (∗ j) = 0 ;

39 (∗k) = 0 ;

40 checkForMobi l i ty () ;

41 }

42 }

43

44 int main (int argc , char∗∗ argv){

45 initHWFarm(argc , argv) ;

46 int mat s i ze = a to i (argv [1]) ;

47 int chunk = ato i (argv [2]) ; // number o f i t ems in one t a s k

48 int ta sks = prob l em s i z e / chunk ; //number o f t a s k s

49 int mobi l i ty = a to i (argv [3]) ;

50

51 // l o c a l i npu t data d e t a i l s

52 double ∗ input data = NULL;

53 int i n pu t da t a s i z e = s izeof (double) ;

54 // Tota l number o f i t ems in one t a s k=chunk (number o f rows)∗ matr ix s i z e

55 int i npu t da ta l en = chunk ∗ mat s i ze ;

56 // shared data d e t a i l s

57 double ∗ shared data = NULL;

58 int s h a r ed da t a s i z e = s izeof (double) ;

59 int sha r ed da ta l en = mat s i ze ∗ mat s i ze ;

60

61 // ou tpu t data d e t a i l s

62 double ∗ output data = NULL;

63 int ou tpu t da ta s i z e = s izeof (double) ;

64 // Tota l number o f i t ems in one t a s k = chunk (number o f rows ∗ matr ix s i z e)

65 int output data l en = chunk ∗ mat s i ze ;

66 // d e t a i l s o f t h e main coun te r

67 hwfarm state main state ;

68 main state . counter = 0 ;

69 main state . max counter = chunk ;

70 main state . s t a t e da t a = NULL;

71 main state . s t a t e l e n = 0 ;

72

73 i f (rank == 0){

74 int k = 0 , i =0, j =0;

75 // Prepare t h e inpu t data

76 input data = (double∗) mal loc (s izeof (double) ∗(mat s i ze ∗mat s i ze)) ;

77

78 // i n i t i a l i s e t h e i npu t array w i th random va l u e s

79 for (i = 0 ; i < mat s i ze ; i++)

80 for (j = 0 ; j < mat s i ze ; j++)

81 input data [k++] = i + j + 1 ;

82

83 // i n i t i a l i s e t h e shared array w i th random va l u e s

84 shared data = (double∗) mal loc (s izeof (double) ∗(mat s i ze ∗mat s i ze)) ;

85 for (i = 0 ; i < mat s i ze ; i++)

196

Appendix A. Applications Source Code

86 for (j = 0 ; j < mat s i ze ; j++)

87 input data [k++] = i + j + 2 ;

88

89 // Prepare t h e ou tpu t b u f f e r

90 output data = (double∗) mal loc (s izeof (double) ∗(mat s i ze ∗mat s i ze)) ;

91

92 // S t a t e

93 main state . s t a t e da t a = (int ∗) mal loc (s izeof (double) ∗(3)) ;

94 // number o f rows in one chunk

95 main state . s t a t e da t a [0] = chunk ;

96 // number o f columns in one chunk

97 main state . s t a t e da t a [1] = mat s i ze ;

98 // the s i z e o f t h e matr ix

99 main state . s t a t e da t a [2] = mat s i ze ;

100 main state . s t a t e l e n = 3 ∗ s izeof (int) ;

101 }

102

103 hwfarm(hwfarm mm , tasks ,

104 input data , taskDataSize , inputDataSize ,

105 shared data , sha r ed da ta s i z e , shared data l en ,

106 output data , r e su l tDataS i ze , outputDataSize ,

107 main state , mob i l i ty) ;

108

109 i f (rank == 0){

110 //Do someth ing w i th t h e ou tpu t

111 pr intToFi l e (output data , mat s i ze) ;

112 }

113 finalizeHWFarm () ;

114 }

Listing A.2: The Matrix Multiplication application C source code

A.3 Raytracer Application

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <math . h>

4 #include ”hwfarm . h”

5

6 struct Poly ∗ Scene ;

7

8 struct Coord {

9 double x , y , z ;

10 struct Coord ∗ next ;

11 } ;

12

13 struct Vect {

14 double A,B,C;

15 struct Vect ∗ next ;

16 } ;

17

18 struct Ray {

19 struct Coord ∗ c ;

20 struct Vect ∗ v ;

21 struct Ray ∗ next ;

22 } ;

23

24 struct Poly {

197

Appendix A. Applications Source Code

25 int i ;

26 struct Vect ∗ N;

27 struct Coord ∗ Vs ;

28 struct Poly ∗ next ;

29 } ;

30

31 struct Impact {

32 double r ;

33 int i ;

34 } ;

35

36 struct Impacts{

37 struct Impact ∗ head ;

38 struct Impacts ∗ t a i l ;

39 } ;

40

41 struct MappedRays {

42 double cx , cy , cz , va , vb , vc ;

43 } ;

44

45 struct MappedImpacts {

46 double r ;

47 int i ;

48 } ;

49

50 struct i p r v a l s {

51 int xbig , xsmall , ybig , ysmall , zbig , z smal l ;

52 } ;

53

54 struct r i p v a l {

55 int b ;

56 int s ;

57 } ;

58

59 void pr in tcoord (struct Coord ∗ c){

60 p r i n t f (”Coord %l f %l f %l f \n” , c−>x , c−>y , c−>z) ;

61 }

62

63 void pr in t coo rd s (struct Coord ∗ c){

64 p r i n t f (”Coords\n”) ;

65 while (c !=NULL){

66 pr in tcoord (c) ;

67 c=c−>next ;

68 }

69 }

70

71 void pr i n tv e c t (struct Vect ∗ v){

72 p r i n t f (”Vect %l f %l f %l f \n” ,v−>A, v−>B, v−>C) ;

73 }

74

75 void p r i n t v e c t s (struct Vect ∗ v){

76 p r i n t f (”Vects\n”) ;

77 while (v!=NULL){

78 p r i n tv e c t (v) ;

79 v=v−>next ;

80 }

81 }

82

83 void pr in t ray (struct Ray ∗ r){

84 p r i n t f (”Ray\n”) ;

85 pr in t coo rd s (r−>c) ;

86 p r i n t v e c t s (r−>v) ;

87 }

198

Appendix A. Applications Source Code

88

89 void pr in t r ay s (struct Ray ∗ r){

90 int i =0;

91 while (r !=NULL){

92 p r i n t f (” i :%d − ” , i++) ;

93 pr in t ray (r) ;

94 r=r−>next ;

95 }

96 }

97

98 void pr in tpo ly (struct Poly ∗ p){

99 p r i n t f (”Poly %d\n” ,p−>i) ;

100 pr in t coo rd s (p−>Vs) ;

101 p r i n t v e c t s (p−>N) ;

102 }

103

104 void pr i n tpo l y s (struct Poly ∗ p){

105 p r i n t f (”Polys\n”) ;

106 while (p!=NULL){

107 pr in tpo ly (p) ;

108 p=p−>next ;

109 }

110 }

111

112 void pr int impact (struct Impact ∗ i){

113 i f (i==NULL)

114 p r i n t f (”No impact\n”) ;

115 else

116 p r i n t f (” Impact %l f %d\n” , i−>r , i−>i) ;

117 }

118

119 void pr int impacts (struct Impacts ∗ i){

120 p r i n t f (” Impacts\n”) ;

121 while (i !=NULL){

122 pr int impact (i−>head) ;

123 i=i−>t a i l ;

124 }

125 }

126

127 void p r i n t r i p v a l (struct r i p v a l ∗ r){

128 p r i n t f (”%d %d\n” , r−>b , r−>s) ;

129 }

130

131 struct MappedRays ∗ mapRays(struct Ray ∗ rays , int raysCount){

132 struct MappedRays ∗ m rays = (struct MappedRays ∗) mal loc (raysCount ∗ s izeof (struct MappedRays

)) ;

133 int i =0;

134 struct Ray ∗ r = rays ;

135 while (r != NULL && i < raysCount){

136 m rays [i] . cx = r−>c−>x ;

137 m rays [i] . cy = r−>c−>y ;

138 m rays [i] . cz = r−>c−>z ;

139 m rays [i] . va = r−>v−>A;

140 m rays [i] . vb = r−>v−>B;

141 m rays [i] . vc = r−>v−>C;

142 r=r−>next ;

143 i++;

144 }

145 return m rays ;

146 }

147

148 void mapImpactsItem (struct MappedImpacts ∗ m imps , struct Impacts ∗ imp , int impsIndex){

149 i f (imp−>head != NULL){

199

Appendix A. Applications Source Code

150 m imps [impsIndex] . r = imp−>head−>r ;

151 m imps [impsIndex] . i = imp−>head−>i ;

152 } else {

153 m imps [impsIndex] . r = −1;

154 m imps [impsIndex] . i = −1;

155 }

156 }

157

158 void mapImpacts (struct MappedImpacts ∗ m imps , struct Impacts ∗ imps , int impsCount){

159 int j =0;

160 struct Impacts ∗ imp = imps ;

161 while (imp != NULL && j < impsCount){

162 mapImpactsItem (m imps , imp , j) ;

163 imp = imp−>t a i l ;

164 j++;

165 }

166 }

167

168 struct Ray ∗ unmapRays (struct MappedRays ∗ m rays , int raysCount){

169 int i =0;

170 struct Ray ∗ rays = NULL;

171 struct Ray ∗ r = rays ;

172 while (i < raysCount){

173 i f (r != NULL){

174 r−>next = (struct Ray ∗) mal loc (s izeof (struct Ray)) ;

175 r = r−>next ;

176 } else{

177 rays = (struct Ray ∗) mal loc (s izeof (struct Ray)) ;

178 r = rays ;

179 }

180

181 r−>c = (struct Coord ∗) mal loc (s izeof (struct Coord)) ;

182 r−>c−>x = m rays [i] . cx ;

183 r−>c−>y = m rays [i] . cy ;

184 r−>c−>z = m rays [i] . cz ;

185 r−>c−>next = NULL;

186 r−>v = (struct Vect ∗) mal loc (s izeof (struct Vect)) ;

187 r−>v−>A = m rays [i] . va ;

188 r−>v−>B = m rays [i] . vb ;

189 r−>v−>C = m rays [i] . vc ;

190 r−>v−>next = NULL;

191 r−>next = NULL;

192 i++;

193 }

194 return rays ;

195 }

196

197

198 struct Impacts ∗ unmapImpacts (struct MappedImpacts ∗ m imps , int impsCount){

199 int j =0;

200 struct Impacts ∗ imps = NULL;

201 struct Impacts ∗ imp = imps ;

202 while (j < impsCount){

203 i f (imps != NULL){

204 imp−>t a i l = (struct Impacts ∗) mal loc (s izeof (struct Impacts)) ;

205 imp = imp−>t a i l ;

206 } else{

207 imps = (struct Impacts ∗) mal loc (s izeof (struct Impacts)) ;

208 imp = imps ;

209 }

210 i f (m imps [j] . r != −1 && m imps [j] . i != −1){

211 imp−>head = (struct Impact ∗) mal loc (s izeof (struct Impact)) ;

212 imp−>head−>r = m imps [j] . r ;

200

Appendix A. Applications Source Code

213 imp−>head−>i = m imps [j] . i ;

214 } else

215 imp−>head = NULL;

216

217 imp−>t a i l = NULL;

218 j++;

219 }

220 return imps ;

221 }

222

223 void printMappedRays (struct MappedRays ∗ m rays , int raysCount){

224 int i =0;

225 while (i < raysCount){

226 p r i n t f (”Ray %d :\n” , (i +1)) ;

227 p r i n t f (”CX: %f , CY: %f . CZ: %f , VA: %f , VB: %f , VC: %f \n” ,

228 m rays [i] . cx , m rays [i] . cy , m rays [i] . cz , m rays [i] . va , m rays [i] . vb , m rays [i] . vc) ;

229 i++;

230 }

231 }

232

233 struct Coord ∗ copyCoords (struct Coord ∗ c){

234 i f (c == NULL)

235 return NULL;

236 struct Coord ∗ new c = NULL;

237 struct Coord ∗ new c h = new c ;

238 while (c != NULL){

239 i f (new c == NULL){

240 new c = (struct Coord ∗) mal loc (s izeof (struct Coord)) ;

241 new c h = new c ;

242 } else{

243 new c h−>next = (struct Coord ∗) mal loc (s izeof (struct Coord)) ;

244 new c h = new c h−>next ;

245 }

246 new c h−>x = c−>x ;

247 new c h−>y = c−>y ;

248 new c h−>z = c−>z ;

249 new c h−>next = NULL;

250 c=c−>next ;

251 }

252 return new c ;

253 }

254

255 struct Vect ∗ copyVects (struct Vect ∗ v){

256 i f (v == NULL)

257 return NULL;

258 struct Vect ∗ new v = NULL;

259 struct Vect ∗ new v h = new v ;

260 while (v != NULL){

261 i f (new v == NULL){

262 new v = (struct Vect ∗) mal loc (s izeof (struct Vect)) ;

263 new v h = new v ;

264 } else{

265 new v h−>next = (struct Vect ∗) mal loc (s izeof (struct Vect)) ;

266 new v h = new v h−>next ;

267 }

268 new v h−>A = v−>A;

269 new v h−>B = v−>B;

270 new v h−>C = v−>C;

271 new v h−>next = NULL;

272 v=v−>next ;

273 }

274 return new v ;

275 }

201

Appendix A. Applications Source Code

276

277 struct Poly ∗ copyPolys (struct Poly ∗ p){

278 i f (p == NULL)

279 return NULL;

280 struct Poly ∗ new p = NULL;

281 struct Poly ∗ new p h = NULL;

282

283 while (p != NULL){

284 i f (new p == NULL){

285 new p = (struct Poly ∗) mal loc (s izeof (struct Poly)) ;

286 new p h = new p ;

287 } else{

288 new p h−>next = (struct Poly ∗) mal loc (s izeof (struct Poly)) ;

289 new p h = new p h−>next ;

290 }

291 new p h−>i = p−>i ;

292 new p h−>Vs = copyCoords (p−>Vs) ;

293 new p h−>N = copyVects (p−>N) ;

294 p=p−>next ;

295 }

296 return new p ;

297 }

298

299 void p r i n t i p r v a l s (struct i p r v a l s ∗ i){

300 p r i n t f (”%d %d %d %d %d %d\n” , i−>xbig , i−>xsmall , i−>ybig ,

301 i−>ysmall , i−>zbig , i−>zsmal l) ;

302 }

303

304 struct i p r v a l s ∗ i n po l y r ange (double p , double q ,

305 double r , struct Coord ∗Vs){

306 struct i p r v a l s ∗ r e s u l t s ;

307 r e s u l t s =(struct i p r v a l s ∗) mal loc (s izeof (struct i p r v a l s)) ;

308 r e s u l t s−>xbig=1;

309 r e s u l t s−>xsmal l =1;

310 r e s u l t s−>ybig=1;

311 r e s u l t s−>ysmal l =1;

312 r e s u l t s−>zb ig =1;

313 r e s u l t s−>zsmal l =1;

314 while (Vs!=NULL){

315 r e s u l t s−>xbig=r e su l t s−>xbig && p>Vs−>x+1E−8;

316 r e s u l t s−>xsmal l=r e su l t s−>xsmal l && p<Vs−>x−1E−8;

317 r e s u l t s−>ybig=r e su l t s−>ybig && q>Vs−>y+1E−8;

318 r e s u l t s−>ysmal l=r e su l t s−>ysmal l && q<Vs−>y−1E−8;

319 r e s u l t s−>zb ig=r e su l t s−>zb ig && r>Vs−>z+1E−8;

320 r e s u l t s−>zsmal l=r e su l t s−>zsmal l && r<Vs−>z−1E−8;

321 Vs=Vs−>next ;

322 }

323 return r e s u l t s ;

324 }

325

326 int c r o s s d o t s i g n (double a , double b , double c , double d , double e ,

327 double f , double A, double B, double C){

328 double P,Q,R, cd ;

329 P=b∗ f−e∗c ;

330 Q=d∗c−a∗ f ;

331 R=a∗e−d∗b ;

332 cd=P∗A+Q∗B+R∗C;

333 i f (cd<0.0)

334 return −1;

335 else

336 return 1 ;

337 }

338

202

Appendix A. Applications Source Code

339 struct r i p v a l ∗ r e a l l y i n p o l y (double p , double q , double r , double A,

340 double B, double C, struct Coord ∗ Vs){

341 struct r i p v a l ∗ r e s u l t s ;

342 int s1 ;

343 i f (Vs−>next−>next==NULL){

344 r e s u l t s =(struct r i p v a l ∗) mal loc (s izeof (struct r i p v a l)) ;

345 r e s u l t s−>b=1;

346 r e s u l t s−>s=c r o s s d o t s i g n (Vs−>next−>x−p ,Vs−>next−>y−q , Vs−>next−>z−r ,

347 Vs−>next−>x−Vs−>x , Vs−>next−>y−Vs−>y ,

348 Vs−>next−>z−Vs−>z ,A,B,C) ;

349 return r e s u l t s ;

350 }

351 r e s u l t s=r e a l l y i n p o l y (p , q , r ,A,B,C,Vs−>next) ;

352 i f (r e s u l t s−>b){

353 s1=c r o s s d o t s i g n (Vs−>next−>x−p ,Vs−>next−>y−q , Vs−>next−>z−r ,

354 Vs−>next−>x−Vs−>x , Vs−>next−>y−Vs−>y ,

355 Vs−>next−>z−Vs−>z ,A,B,C) ;

356 i f (s1==re su l t s−>s){

357 r e s u l t s−>b=1;

358 r e s u l t s−>s=s1 ;

359 } else{

360 r e s u l t s−>b=0;

361 r e s u l t s−>s=0;

362 }

363 }

364 return r e s u l t s ;

365 }

366

367 int i n p o l y t e s t (double p , double q , double r , double A,

368 double B, double C, struct Coord ∗ Vs){

369 struct i p r v a l s ∗ i p rcheck ;

370 struct r i p v a l ∗ r ipcheck ;

371 iprcheck = in po l y r ange (p , q , r , Vs) ;

372 i f (iprcheck−>xbig | | iprcheck−>xsmal l | |

373 iprcheck−>ybig | | iprcheck−>ysmal l | |

374 iprcheck−>zb ig | | iprcheck−>zsmal l){

375 f r e e (ip rcheck) ;

376 return 0 ;

377 }

378 r ipcheck=r e a l l y i n p o l y (p , q , r ,A,B,C, Vs) ;

379 int b = ripcheck−>b ;

380 f r e e (r ipcheck) ;

381 return b ;

382 }

383

384 void TestForImpact (struct Ray ∗ ray , struct Poly ∗ poly , struct Impact ∗ imp){

385 double px , py , pz ;

386 double u , v ,w, l ,m, n ;

387 double d i s tance ;

388 double p , q , r ;

389 u=ray−>c−>x ;

390 v=ray−>c−>y ;

391 w=ray−>c−>z ;

392 l=ray−>v−>A;

393 m=ray−>v−>B;

394 n=ray−>v−>C;

395 px=poly−>Vs−>x ;

396 py=poly−>Vs−>y ;

397 pz=poly−>Vs−>z ;

398 d i s t ance=(poly−>N−>A∗(px−u)+poly−>N−>B∗(py−v)+poly−>N−>C∗(pz−w)) /

399 (poly−>N−>A∗ l+poly−>N−>B∗m+poly−>N−>C∗n) ;

400 p=u+d i s tance ∗ l ;

401 q=v+di s tance ∗m;

203

Appendix A. Applications Source Code

402 r=w+di s tance ∗n ;

403 i f (! i n p o l y t e s t (p , q , r , poly−>N−>A, poly−>N−>B, poly−>N−>C, poly−>Vs)){

404 imp−>r = −1;

405 imp−>i = −1;

406 } else {

407 imp−>r=d i s t ance ;

408 imp−>i=poly−>i ;

409 }

410 }

411

412 void e a r l i e r (struct Impact ∗ currentImpact , struct Impact ∗ newImpact){

413 i f (currentImpact−>r != −1 && newImpact−>r != −1){

414 i f (currentImpact−>r > newImpact−>r){

415 currentImpact−>r = newImpact−>r ;

416 currentImpact−>i = newImpact−>i ;

417 }

418 }

419 i f (currentImpact−>r == −1 && newImpact−>r != −1){

420 currentImpact−>r = newImpact−>r ;

421 currentImpact−>i = newImpact−>i ;

422 }

423 }

424

425 struct Impact ∗ i n s e r t (struct Impacts ∗ i){

426 struct Impact ∗ e = NULL;

427 while (i != NULL){

428 e a r l i e r (i−>head , e) ;

429 i = i−>t a i l ;

430 }

431 i f (e == NULL)

432 return NULL;

433 else{

434 struct Impact ∗ i e ;

435 i e=(struct Impact ∗) mal loc (s izeof (struct Impact)) ;

436 ie−>r=e−>r ;

437 ie−>i=e−>i ;

438 return i e ;

439 }

440 }

441

442 struct Impact ∗ First Impact (struct Poly ∗ os , struct Ray ∗ r){

443 i f (os==NULL)

444 return NULL;

445 struct Poly ∗ o = os ;

446 struct Impact∗ currentImpact = (struct Impact ∗) mal loc (s izeof (struct Impact)) ;

447 struct Impact∗ newImpact = (struct Impact ∗) mal loc (s izeof (struct Impact)) ;

448 TestForImpact (r , o , currentImpact) ;

449 o = o−>next ;

450

451 while (o != NULL){

452 TestForImpact (r , o , newImpact) ;

453 e a r l i e r (currentImpact , newImpact) ;

454 o = o−>next ;

455 }

456 return currentImpact ;

457 }

458

459 double root (double x , double r){

460 i f (x<0.00000001 && −0.00000001<x)

461 return 0 . 0 ;

462 while (fabs ((r∗r−x) /x) >=0.0000001)

463 r=(r+x/ r) / 2 . 0 ;

464 return r ;

204

Appendix A. Applications Source Code

465 }

466

467 struct Vect ∗ VAdd(struct Vect ∗ v1 , struct Vect ∗ v2){

468 struct Vect ∗ v ;

469 v=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

470 v−>A=v1−>A+v2−>A;

471 v−>B=v1−>B+v2−>B;

472 v−>C=v1−>C+v2−>C;

473 return v ;

474 }

475

476 struct Vect ∗ VMult (double n , struct Vect ∗ v1){

477 struct Vect ∗ v ;

478 v=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

479 v−>A=n∗v1−>A;

480 v−>B=n∗v1−>B;

481 v−>C=n∗v1−>C;

482 return v ;

483 }

484

485 struct Vect ∗ r ay po in t s (int i , int j , int Detai l , struct Vect ∗ v ,

486 struct Vect ∗ Vx, struct Vect ∗ Vy){

487 struct Vect ∗ iVx ,∗ jVy ,∗ newv ;

488 i f (j==Deta i l)

489 return NULL;

490 i f (i==Deta i l)

491 return r ay po in t s (0 , j +1,Deta i l , v ,Vx ,Vy) ;

492 iVx=VMult (((double) i) / ((double) (Deta i l −1)) ,Vx) ;

493 jVy=VMult (((double) j) / ((double) (Deta i l −1)) ,Vy) ;

494 newv=VAdd(VAdd(v , iVx) , jVy) ;

495 newv−>next=ray po in t s (i +1, j , Deta i l , v ,Vx ,Vy) ;

496 return newv ;

497 }

498

499 struct Ray ∗ GenerateRays (int Det , double X, double Y, double Z){

500 double d ;

501 double Vza ,Vzb , Vzc ;

502 double ab ;

503 double ya , yb , yc ;

504 double y s i z e ;

505 struct Vect ∗ v ;

506 struct Vect ∗ rps ,∗ VX,∗ VY;

507 struct Ray ∗ newrays ,∗ t ;

508 d=root (X∗X+Y∗Y+Z∗Z , 1 . 0) ;

509 Vza=(−4.0∗X/d) ; Vzb=(−4.0∗Y/d) ; Vzc=(−4.0∗Z/d) ;

510 ab=root (Vza∗Vza+Vzb∗Vzb , 1 . 0) ;

511 VX=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

512 VX−>A=Vzb/ab ;VX−>B=(−Vza/ab) ;VX−>C=0.0;

513 ya=Vzb∗VX−>C−VX−>B∗Vzc ;

514 yb=VX−>A∗Vzc−Vza∗VX−>C;

515 yc=Vza∗VX−>B−VX−>A∗Vzb ;

516 y s i z e=root (ya∗ya+yb∗yb+yc∗yc , 1 . 0) ;

517 VY=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

518 VY−>A=ya/ y s i z e ;VY−>B=yb/ y s i z e ;VY−>C=yc/ y s i z e ;

519 i f (VY−>C>0.0){

520 VX−>A=(−VX−>A) ;VX−>B=(−VX−>B) ;VX−>C=(−VX−>C) ;

521 VY−>A=(−VY−>A) ;VY−>B=(−VY−>B) ;VY−>C=(−VY−>C) ;

522 }

523

524 v=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

525 v−>A=X+Vza−(VX−>A+VY−>A) /2 . 0 ;

526 v−>B=Y+Vzb−(VX−>B+VY−>B) / 2 . 0 ;

527 v−>C=Z+Vzc−(VX−>C+VY−>C) /2 . 0 ;

205

Appendix A. Applications Source Code

528 rps=ray po in t s (0 ,0 , Det , v ,VX,VY) ;

529

530 i f (rps==NULL)

531 return NULL;

532 newrays=(struct Ray ∗) mal loc (s izeof (struct Ray)) ;

533 newrays−>c=(struct Coord ∗) mal loc (s izeof (struct Coord)) ;

534 newrays−>c−>x=X;

535 newrays−>c−>y=Y;

536 newrays−>c−>z=Z ;

537 newrays−>v=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

538 newrays−>v−>A=rps−>A−X;

539 newrays−>v−>B=rps−>B−Y;

540 newrays−>v−>C=rps−>C−Z ;

541 t=newrays ;

542 rps=rps−>next ;

543

544 while (rps !=NULL){

545 t−>next=(struct Ray ∗) mal loc (s izeof (struct Ray)) ;

546 t=t−>next ;

547 t−>c=(struct Coord ∗) mal loc (s izeof (struct Coord)) ;

548 t−>c−>x=X;

549 t−>c−>y=Y;

550 t−>c−>z=Z ;

551 t−>v=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

552 t−>v−>A=rps−>A−X;

553 t−>v−>B=rps−>B−Y;

554 t−>v−>C=rps−>C−Z ;

555 rps=rps−>next ;

556 }

557 t−>next=NULL;

558 return newrays ;

559 }

560

561 void showimps (int dv , int i , struct Impacts ∗ imps){

562 FILE ∗ f r e s = fopen (” f i n a lR e s u l t . txt ” , ”w”) ;

563 while (imps != NULL){

564 i f (i==0){

565 f p r i n t f (f r e s , ”\n”) ;

566 i=dv ;

567 }

568 i f (imps−>head == NULL){

569 f p r i n t f (f r e s , ”%2c” , ’ . ’) ;

570 } else{

571 f p r i n t f (f r e s , ”%2d” , imps−>head−>i) ;

572 }

573 f p r i n t f (f r e s , ” ”) ;

574 i=i −1;

575 imps=imps−>t a i l ;

576 }

577 f p r i n t f (f r e s , ”\n”) ;

578 f c l o s e (f r e s) ;

579 }

580

581 struct Poly ∗ getPoly (FILE ∗ s c e n e f i l e , int id){

582 struct Poly ∗ p ;

583 struct Coord ∗ t ;

584 p=(struct Poly ∗) mal loc (s izeof (struct Poly)) ;

585 p−>i=id ;

586 p−>N=(struct Vect ∗) mal loc (s izeof (struct Vect)) ;

587 int numOfI = −1;

588 numOfI = f s c an f (s c e n e f i l e , ”%l f %l f %l f ” ,&(p−>N−>A) ,&(p−>N−>B) ,&(p−>N−>C)) ;

589 numOfI = f s c an f (s c e n e f i l e , ”%d”,& id) ;

590 p−>Vs=(struct Coord ∗) mal loc (s izeof (struct Coord)) ;

206

Appendix A. Applications Source Code

591 t=p−>Vs ;

592 numOfI = f s c an f (s c e n e f i l e , ”%l f %l f %l f ” ,&(t−>x) ,&(t−>y) ,&(t−>z)) ;

593 t=p−>Vs ;

594 while(−− id){

595 t−>next=(struct Coord ∗) mal loc (s izeof (struct Coord)) ;

596 t=t−>next ;

597 numOfI = f s c an f (s c e n e f i l e , ”%l f %l f %l f ” ,&(t−>x) ,&(t−>y) ,&(t−>z)) ;

598 }

599 t−>next=NULL;

600 return p ;

601 }

602

603 struct Poly ∗ getScene (char ∗ s c ene f i l e name , int l im i t){

604 FILE ∗ s c e n e f i l e = fopen (s c ene f i l e name , ” r ”) ;

605 i f (s c e n e f i l e == NULL){

606 p r i n t f (”can ’ t open %s\n” , s c en e f i l e n ame) ;

607 e x i t (0) ;

608 }

609

610 struct Poly ∗ s ,∗ t ;

611 int id ;

612 i f (f s c a n f (s c e n e f i l e , ”%d”,& id) == EOF){

613 f c l o s e (s c e n e f i l e) ;

614 return NULL;

615 }

616 s = getPoly (s c e n e f i l e , id) ;

617 t=s ;

618 int i =0;

619 while (f s c a n f (s c e n e f i l e , ”%d”,& id) != EOF){

620 i f (l im i t <= i++)

621 break ;

622 t−>next = getPoly (s c e n e f i l e , id) ;

623 t = t−>next ;

624 }

625 t−>next = NULL;

626 f c l o s e (s c e n e f i l e) ;

627 return s ;

628 }

629

630 void hwfarm rt (hwfarm task data∗ t data , chFM checkForMobi l i ty){

631 struct Ray ∗ rays = unmapRays(t data−>input data , t data−>i npu t l en) ;

632 i f (rays==NULL)

633 return ;

634 //Get t h e coun te r v a l u e

635 int ∗main index = (t data−>counter) ;

636 //The head o f t h e imapct array

637 struct Impacts ∗ imps = NULL;

638 // An a u x i l i a r y p o i n t e r

639 struct Impacts ∗ t = imps ;

640 int i =0;

641 // Nav i ga t e to t h e unproces sed ray (to c on s i d e r t h e moved t a s k s)

642 while (rays !=NULL && i < ∗main index){

643 rays=rays−>next ;

644 i++;

645 }

646 while (rays !=NULL){

647 i f (imps == NULL){

648 imps = (struct Impacts ∗) mal loc (s izeof (struct Impacts)) ;

649 t = imps ;

650 } else{

651 t−>t a i l =(struct Impacts ∗) mal loc (s izeof (struct Impacts)) ;

652 t=t−>t a i l ;

653 }

207

Appendix A. Applications Source Code

654 t−>head = First Impact (Scene , rays) ;

655 rays=rays−>next ;

656 mapImpactsItem (t data−>output data , t , ∗main index) ;

657 ∗main index = (∗main index) + 1 ;

658 checkForMobi l i ty () ;

659 }

660 t−>t a i l=NULL;

661 }

662

663 int main (int argc , char∗∗ argv){

664 initHWFarm(argc , argv) ;

665

666 // De t a i l s r e f e r s to t h e number o f rays in one dimension

667 int Deta i l s = a to i (argv [1]) ;

668 int chunk = ato i (argv [2]) ;

669 char∗ s c e n e f i l e = (argv [3]) ;

670 int s c e n e l im i t = a to i (argv [4]) ;

671 int mobi l i ty = a to i (argv [5]) ;

672 int prob l em s i z e = Deta i l s ∗ Deta i l s ;

673 int ta sks = prob l em s i z e / chunk ;

674 f loat ViewX = 10 . 0 ;

675 f loat ViewY = 10 . 0 ;

676 f loat ViewZ = 10 . 0 ;

677 // inpu t

678 void ∗ input data = NULL;

679 int i n pu t da t a s i z e = s izeof (struct MappedRays) ;

680 int i npu t da ta l en = chunk ;

681 // ou tpu t

682 void ∗ output data = NULL;

683 int ou tpu t da ta s i z e = s izeof (struct MappedImpacts) ;

684 int output data l en = chunk ;

685 hwfarm state main state ;

686 main state . counter = 0 ;

687 main state . max counter = chunk ;

688 main state . s t a t e da t a = NULL;

689 main state . s t a t e l e n = 0 ;

690 i f (rank == 0){

691 // Inpu t data

692 struct Ray ∗ rays ;

693 rays=GenerateRays (Deta i l s , ViewX ,ViewY , ViewZ) ;

694 struct MappedRays ∗ mapped rays ;

695 mapped rays = mapRays(rays , De ta i l s ∗Deta i l s) ;

696 input data = mapped rays ;

697 //Output Data

698 output data = malloc (ou tpu t da ta s i z e ∗ prob l em s i z e) ;

699 } else{

700 Scene = getScene (s c e n e f i l e , s c e n e l im i t) ;

701 }

702

703 hwfarm(hwfarm rt , tasks ,

704 input data , i npu t da ta s i z e , i nput data l en ,

705 NULL, 0 , 0 ,

706 output data , ou tput data s i z e , output data len ,

707 main state , mob i l i ty) ;

708

709 i f (rank == 0){

710 struct Impacts ∗ new imps = unmapImpacts (output data , p rob l em s i z e) ;

711 // Pr in t impact to a f i l e

712 showimps (Deta i l s , Deta i l s , new imps) ;

713 }

714

715 finalizeHWFarm () ;

716 return 1 ;

208

Appendix A. Applications Source Code

717 }

Listing A.3: The Raytracer application C source code

A.4 Molecular Dynamics Application

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <math . h>

4 #include ”hwfarm . h”

5

6 #define N 100000

7 #define G 6.673 e−11

8 #define TIMESTAMP 1e11

9

10 struct Pa r t i c l e {

11 double rx , ry ; // p o s i t i o n components

12 double vx , vy ; // v e l o c i t y components

13 double fx , fy ; // f o r c e components

14 double mass ; //mass o f t h e p a r t i c l e

15 } ;

16

17 struct Pa r t i c l e Update (struct Pa r t i c l e p , double timestamp){

18 p . vx += timestamp∗p . fx / p . mass ;

19 p . vy += timestamp∗p . fy / p . mass ;

20 p . rx += timestamp∗p . vx ;

21 p . ry += timestamp∗p . vy ;

22 return p ;

23 }

24

25 void Pr i n tPa r t i c l e (struct Pa r t i c l e p){

26 p r i n t f (”[%d] . %f \n%f \n%f \n%f \n%f \n%f \n%f \n\n” , rank , p . rx , p . ry , p . vx , p . vy , p . fx , p . fy , p . mass) ;

27 }

28

29 struct Pa r t i c l e CopyPart ic le (struct Pa r t i c l e p to , struct Pa r t i c l e p from){

30 p to . fx = p from . fx ;

31 p to . fy = p from . fy ;

32 p to . rx = p from . rx ;

33 p to . ry = p from . ry ;

34 p to . vx = p from . vx ;

35 p to . vy = p from . vy ;

36 p to . mass = p from . mass ;

37 return p to ;

38 }

39

40 // Reset t h e f o r c e s on p a r t i c l e

41 struct Pa r t i c l e ResetForce (struct Pa r t i c l e p){

42 p . fx = 0 . 0 ;

43 p . fy = 0 . 0 ;

44 return p ;

45 }

46

47 //Add f o r c e to p a r t i c l e a by p a r t i c l e b

48 struct Pa r t i c l e AddForce (struct Pa r t i c l e a , struct Pa r t i c l e b){

49 //To avo id i n f i n i t i e s

50 double EPS = 3E4 ;

51 double dx = b . rx − a . rx ;

52 double dy = b . ry − a . ry ;

209

Appendix A. Applications Source Code

53 double d i s t = sq r t (dx∗dx + dy∗dy) ;

54 double F = (G ∗ a . mass ∗ b . mass) / (d i s t ∗ d i s t + EPS∗EPS) ;

55 a . fx += F ∗ dx / d i s t ;

56 a . fy += F ∗ dy / d i s t ;

57 return a ;

58 }

59

60 void hwfarm nbody (hwfarm task data∗ t data , chFM checkForMobi l i ty){

61 int ∗ i = t data−>counter ;

62 int ∗ i max = t data−>counter max ;

63 int sha r ed l en = t data−>sha r ed l en ;

64 int c u r i = 0 , j = 0 ;

65 struct Pa r t i c l e ∗ shared p = (struct Pa r t i c l e ∗) t data−>shared data ;

66 struct Pa r t i c l e ∗output p = (struct Pa r t i c l e ∗) t data−>output data ;

67 while (∗ i < ∗ i max){

68 c u r i = (∗ i) + (∗ (t data−>counter max) ∗ t data−>t a s k i d) ;

69 output p [∗ i] = CopyPart ic le (output p [∗ i] , shared p [c u r i]) ;

70 output p [∗ i] = ResetForce (output p [∗ i]) ;

71 for (j = 0 ; j < sha r ed l en ; j++){

72 i f (c u r i != j){

73 output p [∗ i] = AddForce (output p [∗ i] , shared p [j]) ;

74 }

75 }

76 output p [∗ i] = Update (output p [∗ i] , TIMESTAMP) ;

77 (∗ i)++;

78 checkForMobi l i ty () ;

79 }

80 }

81

82 void r e adPa r t i c l e s (struct Pa r t i c l e ∗ pa r t i c l e s , int n){

83 FILE∗ f ;

84 i f ((f=fopen (” t e s t da t a ” , ” r ”)) == NULL){

85 p r i n t f (”Cannot open f i l e .\n”) ;

86 e x i t (0) ;

87 }

88 double d = 0 . 0 ;

89

90 int l = 0 ;

91 int i = 0 ;

92 while (i<n){

93 l = f s c an f (f , ”%l f \n” , &d) ;

94 p a r t i c l e s [i] . rx = d ;

95 l = f s c an f (f , ”%l f \n” , &d) ;

96 p a r t i c l e s [i] . ry = d ;

97 l = f s c an f (f , ”%l f \n” , &d) ;

98 p a r t i c l e s [i] . vx = d ;

99 l = f s c an f (f , ”%l f \n” , &d) ;

100 p a r t i c l e s [i] . vy = d ;

101 l = f s c an f (f , ”%l f \n” , &d) ;

102 p a r t i c l e s [i] . fx = d ;

103 l = f s c an f (f , ”%l f \n” , &d) ;

104 p a r t i c l e s [i] . fx = d ;

105 l = f s c an f (f , ”%l f \n” , &d) ;

106 p a r t i c l e s [i] . mass = d ;

107 i++;

108 }

109 f c l o s e (f) ;

110 }

111

112 int main (int argc , char∗∗ argv){

113 initHWFarm(argc , argv) ;

114

115 int prob l em s i z e = N;

210

Appendix A. Applications Source Code

116 int chunk = ato i (argv [1]) ;

117 int ta sks = prob l em s i z e / chunk ;

118 int mobi l i ty = a to i (argv [2]) ;

119

120 // inpu t

121 void ∗ input data = NULL;

122 int i n pu t da t a s i z e = 0 ;

123 int i npu t da ta l en = 0 ;

124

125 // shared

126 struct Pa r t i c l e ∗ shared data = NULL;

127 int s h a r ed da t a s i z e = s izeof (struct Pa r t i c l e) ;

128 int sha r ed da ta l en = N;

129

130 // ou tpu t

131 struct Pa r t i c l e ∗ output data = NULL;

132 int ou tpu t da ta s i z e = s izeof (struct Pa r t i c l e) ;

133 int output data l en = chunk ;

134

135 hwfarm state main state ;

136 main state . counter = 0 ;

137 main state . max counter = chunk ;

138 main state . s t a t e da t a = NULL;

139 main state . s t a t e l e n = 0 ;

140

141 i f (rank == 0){

142 struct Pa r t i c l e ∗ p a r t i c l e s = (struct Pa r t i c l e ∗) mal loc (s izeof (struct Pa r t i c l e)∗N) ;

143

144 r e adPa r t i c l e s (p a r t i c l e s , N) ;

145

146 // Shared data

147 shared data = p a r t i c l e s ;

148

149 //Output Data

150 output data = malloc (prob l em s i z e ∗ ou tpu t da ta s i z e) ;

151 }

152

153 int numbero f i t e ra t i ons = 10 ;

154 int count = 0 ;

155 while (count < numbero f i t e ra t i ons){

156 hwfarm(hwfarm nbody , tasks ,

157 input data , i npu t da ta s i z e , i nput data l en ,

158 shared data , sha r ed da ta s i z e , shared data l en ,

159 output data , ou tput data s i z e , output data len ,

160 main state , mob i l i ty) ;

161

162 i f (rank == 0){

163 shared data = output data ;

164 }

165 count++;

166 }

167 i f (rank == 0){

168 // p r i n t t h e ou tpu t to a f i l e (ou t pu t da t a , p r o b l em s i z e)

169 }

170

171 finalizeHWFarm () ;

172

173 return 1 ;

174 }

Listing A.4: The Molecular Dynamics application C source code

211

Appendix A. Applications Source Code

A.5 BLAST Application

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <s t r i n g . h>

4 #include <math . h>

5 #include ”hwfarm . h”

6

7 #define WORDLEN 3

8

9 struct word{

10 //3 f o r n e c l u t i d e s

11 char value [WORDLEN] ;

12 } ;

13

14 // f i n d t h e g i v en pa t t e r n in t he s earch s t r i n g

15 int f i nd (char ∗ search , char ∗pattern , int s l en , int plen) {

16 int i , j , k ;

17 int s co r e = 0 ;

18 int ∗ s c o r e s = (int ∗) mal loc (s izeof (int) ∗(s l e n − plen + 1)) ;

19 for (i = 0 ; i <= s l en − plen ; i++) {

20 s co r e = 0 ;

21 for (j = 0 , k = i ; (j < plen) ; j++, k++){

22 i f (search [k] == pattern [j])

23 s co r e += 1 ;

24 else

25 s co r e += −3;

26 }

27 s c o r e s [i] = sco r e ;

28 i f (j == plen)

29 s co r e = i ;

30 }

31

32 int max score = s co r e s [0] ;

33 int max sco r e l o ca t i on = 0 ;

34

35 for (i =0; i<s l e n − plen + 1 ; i++){

36 i f (max score <= sco r e s [i]) {

37 max score = s co r e s [i] ;

38 max sco r e l o ca t i on = i ;

39 }

40 }

41

42 f r e e (s c o r e s) ;

43 return max score ;

44 }

45

46 int readGenes (char ∗ search , int n){

47 FILE∗ f ;

48 i f ((f=fopen (”db/ chr . f s a ” , ” r ”)) == NULL){

49 p r i n t f (”Cannot open f i l e .\n”) ;

50 e x i t (0) ;

51 }

52

53 char∗tmp = (char∗) mal loc (100) ;

54

55 int i = 0 , tmp i = 0 , l = 0 ;

56 l = f s c an f (f , ”%s\n” , tmp) ;

57 while (l != −1){

58 while (tmp [tmp i] != ’ \0 ’ && tmp [tmp i] != ’\n ’){

59 search [i] = tmp [tmp i] ;

60 tmp i++; i++;

212

Appendix A. Applications Source Code

61 i f (i >= n) break ;

62 }

63 i f (i >= n) break ;

64 tmp i = 0 ;

65 l = f s c an f (f , ”%s\n” , tmp) ;

66 }

67 f r e e (tmp) ;

68 f c l o s e (f) ;

69 return i ;

70 }

71

72 void printGenes (char ∗ search , int n){

73 int i = 0 ;

74 while (i < n){

75 p r i n t f (” i : %d − search : %c\n” , i , s earch [i]) ;

76 i++;

77 }

78 }

79

80 void printWords (struct word ∗ words , int l en){

81 int i =0;

82 for (i =0; i<l en ; i++){

83 p r i n t f (”word %d : %s\n” , i , words [i] . va lue) ;

84 }

85 }

86

87 struct word ∗ getSubs (char ∗pattern , int plen){

88 int words len = plen − WORDLEN + 1 ;

89 struct word ∗ words = (struct word ∗) mal loc (s izeof (struct word) ∗(words len)) ;

90 int i = 0 ;

91 for (i =0; i<words len ; i++){

92 words [i] . va lue [0] = pattern [i] ;

93 words [i] . va lue [1] = pattern [i +1] ;

94 words [i] . va lue [2] = pattern [i +2] ;

95 }

96 return words ;

97 }

98

99 void hwfarm blast (hwfarm task data∗ t data , chFM checkForMobi l i ty){

100 int ∗ i = t data−>counter ;

101 int ∗ i max = t data−>counter max ;

102 int ∗output p = (int ∗) t data−>output data ;

103 struct word ∗ words = t data−>input data ;

104 char ∗ shared p = (char ∗) t data−>shared data ;

105 int i npu t l en = t data−>i npu t l en ;

106

107 while (∗ i < ∗ i max){

108 output p [∗ i] = f i nd (shared p , words [∗ i] . value , input l en , WORDLEN) ;

109 (∗ i)++;

110 checkForMobi l i ty () ;

111 }

112 }

113

114 int main (int argc , char∗∗ argv){

115 initHWFarm(argc , argv) ;

116

117 int prob l em s i z e = a to i (argv [1]) ;

118 int ta sks = a to i (argv [2]) ;

119 int mobi l i ty = a to i (argv [3]) ;

120 // inpu t data

121 void ∗ input data = NULL;

122 int i n pu t da t a s i z e = s izeof (struct word) ;

123 int i npu t da ta l en = 0 ;

213

Appendix A. Applications Source Code

124 // shared data

125 char ∗ shared data = NULL;

126 int s h a r ed da t a s i z e = s izeof (char) ;

127 int sha r ed da ta l en = prob l em s i z e ;

128 // ou tpu t data

129 int ∗ output data = NULL;

130 int ou tpu t da ta s i z e = s izeof (int) ;

131 int output data l en = 0 ;

132

133 hwfarm state main state ;

134 main state . counter = 0 ;

135 main state . max counter = 0 ;

136 main state . s t a t e da t a = NULL;

137 main state . s t a t e l e n = 0 ;

138

139 i f (rank == 0){

140 // inpu t (t h e words t h a t would be d i s t r b u t e d i n t o t a s k s)

141 char ∗ pattern = ”CTGGCCATTACTAGAAGAAGAA” ;

142 int num of sub = s t r l e n (pattern) − WORDLEN + 1 ;

143 input data = getSubs (pattern , s t r l e n (pattern)) ;

144 int chunk = num of sub / tasks ;

145 inpu t da ta l en = chunk ;

146

147 // shared data i s t h e s e quence s o f genes

148 char ∗ b l a s t i npu t da t a = (char∗) mal loc (s izeof (char)∗ prob l em s i z e) ;

149 readGenes (b l a s t i nput da ta , p rob l em s i z e) ;

150 shared data = b l a s t i npu t da t a ;

151 sha r ed da ta l en = prob l em s i z e ;

152

153 //Output Data (in t h i s example t h e ou tpu t i s based on the s earch pa t t e r n)

154 output data = malloc (ou tpu t da ta s i z e ∗num of sub) ;

155 output data l en = chunk ;

156

157 //modi fy s t a t e data based on the s earch pa t t e r n

158 main state . max counter = chunk ;

159 }

160

161 hwfarm(hwfarm blast , tasks ,

162 input data , i npu t da ta s i z e , i nput data l en ,

163 shared data , sha r ed da ta s i z e , shared data l en ,

164 output data , ou tput data s i z e , output data len ,

165 main state , mob i l i ty) ;

166

167 i f (rank == 0){

168 // p r i n t t h e ou tpu t to a f i l e (ou t pu t da t a , num of sub)

169 }

170

171 finalizeHWFarm () ;

172

173 return 1 ;

174 }

Listing A.5: The BLAST application C source code

A.6 findWord Application

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

214

Appendix A. Applications Source Code

3 #include <s t r i n g . h>

4 #include <sys / s t a t . h>

5

6 #include ”hwfarm . h”

7

8 struct db f i l e p a t h {

9 int f i l e i d ;

10 char f i l e p a t h [5 0] ;

11 char f i l e o u t pu t p a t h [5 0] ;

12 } ;

13

14 void printPath (struct db f i l e p a t h p){

15 p r i n t f (”[%d] . F i l e i n f o {%d } \ nPath : %s\nOutput : %s\n\n” , rank ,

16 p . f i l e i d , p . f i l e p a t h , p . f i l e o u t pu t p a t h) ;

17 }

18

19 void pr intAl lPaths (struct db f i l e p a t h ∗ ps , int n){

20 int i = 0 ;

21 for (; i<n ; i++)

22 printPath (ps [i]) ;

23 }

24

25 int r eadLoca lF i l e (char ∗ f i l e name){

26 FILE∗ f ;

27 i f ((f=fopen (f i l e name , ” r ”)) == NULL){

28 p r i n t f (”Cannot open f i l e .\n”) ;

29 }

30 char∗tmp = (char∗) mal loc (1000) ;

31 int i = 0 ;

32 int l = 0 ;

33 l = f s c an f (f , ”%s\n” , tmp) ;

34 while (l != −1){

35 l = f s c an f (f , ”%s\n” , tmp) ;

36 }

37 f r e e (tmp) ;

38 f c l o s e (f) ;

39 return i ;

40 }

41

42 void p r i n tF i l e (char ∗ search , int n){

43 int i = 0 ;

44 while (i < n){

45 p r i n t f (” i : %d − search : %c\n” , i , s earch [i]) ;

46 i++;

47 }

48 }

49

50 char SMALL A = ’ a ’ ;

51 char SMALL Z = ’ z ’ ;

52 char CAP A = ’A ’ ;

53 char CAP Z = ’Z ’ ;

54 int TOTAL ALPH = 26 ;

55

56 void setAlph (int ∗ alph , int n , char c){

57 i f (c >= SMALL A && c <= SMALL Z){

58 c = c − 32 − 65 ;

59 alph [(int) c]++;

60 return ;

61 }

62 i f (c >= CAP A && c <= CAP Z){

63 c = c − 65 ;

64 alph [(int) c]++;

65 return ;

215

Appendix A. Applications Source Code

66 }

67 }

68

69 void printAlph (int ∗ alph , int n){

70 int i ;

71 for (i =0; i<n ; i++)

72 p r i n t f (”[%d] . %c %d\n” , rank , (i +65) , alph [i]) ;

73 }

74

75 void printAlphToFi le (char ∗ output path , int ∗ alph , int n){

76 FILE∗ f output ;

77 i f ((f output=fopen (output path , ”w”)) == NULL){

78 p r i n t f (”Cannot open f i l e (%s) .\n” , output path) ;

79 }

80 int i ;

81 for (i =0; i<n ; i++)

82 f p r i n t f (f output , ”%c %d\n” , (i +65) , alph [i]) ;

83 f c l o s e (f output) ;

84 }

85

86 void pr in tS ta t sToF i l e (char ∗ output path , char∗ caption , int value){

87 FILE∗ f output ;

88 i f ((f output=fopen (output path , ”a”)) == NULL){

89 p r i n t f (”Cannot open f i l e (%s) .\n” , output path) ;

90 }

91

92 f p r i n t f (f output , ”\n%s : %d\n” , caption , value) ;

93 f c l o s e (f output) ;

94 }

95

96 void resetAlph (int ∗ alph , int n){

97 int i ;

98 for (i =0; i<n ; i++)

99 alph [i] = 0 ;

100 }

101

102 int i sDot (char ∗ w){

103 int i =0;

104 for (i =0; i<s t r l e n (w) ; i++){

105 i f (w[i]== ’ . ’)

106 return 0 ;

107 }

108 return 1 ;

109 }

110

111 void countWords (struct db f i l e p a t h f i l e p){

112 FILE∗ f i n pu t ;

113 i f ((f i npu t=fopen (f i l e p . f i l e p a t h , ” r ”)) == NULL){

114 p r i n t f (”Cannot open f i l e (%s) .\n” , f i l e p . f i l e p a t h) ;

115 }

116 int c = 0 ;

117 char wordX [1 0 2 4] ;

118 while (f s c a n f (f i nput , ” %1023s ” , wordX) == 1) {

119 i f (i sDot (wordX))

120 c++;

121 }

122 f c l o s e (f i npu t) ;

123 pr in tS ta t sToF i l e (f i l e p . f i l e ou tpu t pa th , ”Count Words” , c) ;

124 }

125

126 struct f i l e wo r d {

127 char value [3 0] ;

128 int occurance ;

216

Appendix A. Applications Source Code

129 } ;

130

131 void resetAl lWords (struct f i l e wo r d ∗ a l l w , int n){

132 int i ;

133 for (i =0; i<n ; i++){

134 s t rcpy (a l l w [i] . value , ””) ;

135 a l l w [i] . occurance = 0 ;

136 }

137 }

138

139 void addWord(struct f i l e wo r d ∗ a l l w , int n , char ∗ word){

140 int i ;

141 for (i =0; i<n ; i++){

142 i f (a l l w [i] . occurance == 0){

143 s t rcpy (a l l w [i] . value , word) ;

144 a l l w [i] . occurance = 1 ;

145 return ;

146 }

147 i f (strcmp (word , a l l w [i] . va lue) == 0){

148 a l l w [i] . occurance++;

149 return ;

150 }

151 }

152 }

153

154 void addWordWithOcc (struct f i l e wo r d ∗ a l l w , int n , char ∗ word , int occ){

155 int i ;

156 for (i =0; i<n ; i++){

157 i f (a l l w [i] . occurance == 0){

158 s t rcpy (a l l w [i] . value , word) ;

159 a l l w [i] . occurance = occ ;

160 return ;

161 }

162 i f (strcmp (word , a l l w [i] . va lue) == 0){

163 a l l w [i] . occurance = a l l w [i] . occurance + occ ;

164 return ;

165 }

166 }

167 }

168

169 void printAllWords (struct f i l e wo r d ∗ a l l w , int n){

170 int i ;

171 for (i =0; i<n ; i++){

172 i f (a l l w [i] . occurance == 0){

173 i f (i==0) p r i n t f (”[%d] . No words . . . \ n” , rank) ;

174 return ;

175 }

176 p r i n t f (”[%d] . Word(%d) : %−20s with %d occurances . . \ n” , rank , i , a l l w [i] . value , a l l w [i] .

occurance) ;

177 }

178 }

179

180 void printAl lWordsToFi le (char ∗ output path , struct f i l e wo r d ∗ a l l w , int n){

181 FILE∗ f output ;

182 i f ((f output=fopen (output path , ”a”)) == NULL){

183 p r i n t f (”Cannot open f i l e (%s) .\n” , output path) ;

184 }

185

186 f p r i n t f (f output , ”\nLis t o f Words :\n”) ;

187

188 int i ;

189 for (i =0; i<n ; i++){

190 i f (a l l w [i] . occurance == 0)break ;

217

Appendix A. Applications Source Code

191 f p r i n t f (f output , ”%s : %d\n” , a l l w [i] . value , a l l w [i] . occurance) ;

192 }

193

194 f c l o s e (f output) ;

195 }

196

197 void printStage2WordsToFile (char ∗ output path , struct f i l e wo r d ∗ a l l w , int n){

198 FILE∗ f output ;

199 i f ((f output=fopen (output path , ”w”)) == NULL){

200 p r i n t f (”Cannot open f i l e (%s) .\n” , output path) ;

201 }

202

203 int i ;

204 for (i =0; i<n ; i++){

205 i f (a l l w [i] . occurance == 0)break ;

206 f p r i n t f (f output , ”%s : %d\n” , a l l w [i] . value , a l l w [i] . occurance) ;

207 }

208 f c l o s e (f output) ;

209 }

210

211 int va l i dS t a r t (char ∗ w){

212 int c = w [0] ;

213 i f ((c <= SMALL Z && c >= SMALL A) | | (c <= CAP Z && c >= CAP A)){

214 return 1 ;

215 }

216 return 0 ;

217 }

218

219 int validWord (char ∗ w){

220 int i = 0 ;

221 int c ;

222 i f (s t r l e n (w)>25) return 0 ;

223 for (i =0; i<s t r l e n (w) ; i++){

224 c = w[i] ;

225 i f (! ((c <= SMALL Z && c >= SMALL A)

226 | | (c <= CAP Z && c >= CAP A)

227 | | (c <= ’9 ’ && c >= ’0 ’))){

228 return 0 ;

229 }

230 }

231 return 1 ;

232 }

233

234 void f i l t e rWord (char ∗ w){

235 int c = w[s t r l e n (w) −1];

236 i f ((c == ’ : ’) | | (c == ’ ! ’) | | (c == ’ , ’) | | (c == ’ . ’) | | (c == ’ ? ’) | | (c == ’) ’) | | (c == ’ ” ’)){

237 w[s t r l e n (w)−1] = ’ \0 ’ ;

238 }

239 }

240

241 void getWords (struct db f i l e p a t h f i l e p){

242 FILE∗ f i n pu t ;

243 i f ((f i npu t=fopen (f i l e p . f i l e p a t h , ” r ”)) == NULL){

244 p r i n t f (”Cannot open f i l e (%s) .\n” , f i l e p . f i l e p a t h) ;

245 }

246 char wordX [1 0 2 4] ;

247 struct f i l e wo r d ∗ a l l wo rd s = (struct f i l e wo r d ∗) mal loc (s izeof (struct f i l e wo r d) ∗1000) ;

248 resetAl lWords (a l l words , 1000) ;

249 while (f s c a n f (f i nput , ”%1023s ” , wordX) == 1) {

250 i f (i sDot (wordX)){

251 f i l t e rWord (wordX) ;

252 i f (v a l i dS t a r t (wordX) && validWord (wordX))

253 addWord(a l l words , 1000 , wordX) ;

218

Appendix A. Applications Source Code

254 }

255 }

256 f c l o s e (f i npu t) ;

257 printAl lWordsToFile (f i l e p . f i l e ou tpu t pa th , a l l words , 1000) ;

258 f r e e (a l l wo rd s) ;

259 }

260

261 void calcLongestWord (struct db f i l e p a t h f i l e p){

262 FILE∗ f i n pu t ;

263 i f ((f i npu t=fopen (f i l e p . f i l e p a t h , ” r ”)) == NULL){

264 p r i n t f (”Cannot open f i l e (%s) .\n” , f i l e p . f i l e p a t h) ;

265 }

266 char wordX [1 0 2 4] ;

267 int l onge s t = 0 ;

268 while (f s c a n f (f i nput , ”%1023s ” , wordX) == 1) {

269 i f (i sDot (wordX)){

270 i f (l onge s t < s t r l e n (wordX)){

271 l onge s t = s t r l e n (wordX) ;

272 }

273 }

274 }

275 f c l o s e (f i npu t) ;

276 pr in tS ta t sToF i l e (f i l e p . f i l e ou tpu t pa th , ”Longest Words l ength ” , l onge s t) ;

277 }

278

279 void calcAlph (struct db f i l e p a t h f i l e p){

280 FILE∗ f i n pu t ;

281 i f ((f i npu t=fopen (f i l e p . f i l e p a t h , ” r ”)) == NULL){

282 p r i n t f (”Cannot open f i l e (%s) .\n” , f i l e p . f i l e p a t h) ;

283 }

284 int ∗ alph = (int ∗) mal loc (s izeof (int)∗TOTAL ALPH) ;

285 int c ;

286 resetAlph (alph , TOTAL ALPH) ;

287 while ((c = f g e t c (f i npu t)) != EOF) {

288 setAlph (alph , TOTAL ALPH, c) ;

289 }

290 f c l o s e (f i npu t) ;

291 pr intAlphToFi le (f i l e p . f i l e ou tpu t pa th , alph , TOTAL ALPH) ;

292 f r e e (alph) ;

293 }

294

295 void countLet te r s (struct db f i l e p a t h f i l e p){

296 FILE∗ f i n pu t ;

297 i f ((f i npu t=fopen (f i l e p . f i l e p a t h , ” r ”)) == NULL){

298 p r i n t f (”Cannot open f i l e (%s) .\n” , f i l e p . f i l e p a t h) ;

299 }

300

301 int count = 0 ;

302 int c ;

303 while ((c = f g e t c (f i npu t)) != EOF) {

304 count++;

305 }

306 f c l o s e (f i npu t) ;

307 pr in tS ta t sToF i l e (f i l e p . f i l e ou tpu t pa th , ”Count Le t t e r s ” , count) ;

308 }

309

310 void p r o c e s sF i l e (struct db f i l e p a t h f i l e p){

311 calcAlph (f i l e p) ;

312 countWords (f i l e p) ;

313 countLet te r s (f i l e p) ;

314 calcLongestWord (f i l e p) ;

315 getWords (f i l e p) ;

316 }

219

Appendix A. Applications Source Code

317

318 void hwfarm extract (hwfarm task data∗ t data , chFM checkForMobi l i ty){

319 int ∗ i = t data−>counter ;

320 int ∗ i max = t data−>counter max ;

321

322 struct db f i l e p a t h ∗ db paths = (struct db f i l e p a t h ∗) t data−>input data ;

323

324 while (∗ i < ∗ i max){

325 p r o c e s sF i l e (db paths [∗ i]) ;

326 (∗ i)++;

327 checkForMobi l i ty () ;

328 }

329 }

330

331 int i s F i l e E x i s t (const char ∗ f i l ename) {

332 struct s t a t s t ;

333 int r e s u l t = s t a t (f i l ename , &s t) ;

334 return r e s u l t == 0 ;

335 }

336

337 void readStage2Words (char ∗ a n a l y z e f i l e , struct f i l e wo r d ∗ a l l words , int n){

338 i f (i s F i l e E x i s t (a n a l y z e f i l e)){

339 FILE∗ f a na l y z e ;

340 char ∗ tmp word = (char∗) mal loc (s izeof (char) ∗200) ;

341 i f ((f ana l y z e=fopen (a n a l y z e f i l e , ” r ”)) == NULL){

342 p r i n t f (”Cannot open f i l e (%s) .\n” , a n a l y z e f i l e) ;

343 }

344 int tmp occ = 0 ;

345 int l = 0 ;

346 l = f s c an f (f ana lyze , ”%s : %d\n” , tmp word , &tmp occ) ;

347 while (l != −1){

348 addWordWithOcc (a l l words , 1000 , tmp word , tmp occ) ;

349 l = f s c an f (f ana lyze , ”%s : %d\n” , tmp word , &tmp occ) ;

350 }

351

352 f c l o s e (f ana l y z e) ;

353 f r e e (tmp word) ;

354 }

355 }

356

357 void proce s sF i l eAna lyze (char ∗ a n a l y z e f i l e , struct db f i l e p a t h f i l e p){

358 char ∗ tmp word = (char∗) mal loc (s izeof (char) ∗200) ;

359

360 struct f i l e wo r d ∗ a l l wo rd s = (struct f i l e wo r d ∗) mal loc (s izeof (struct f i l e wo r d) ∗10000) ;

361 resetAl lWords (a l l words , 10000) ;

362 readStage2Words (a n a l y z e f i l e , a l l words , 10000) ;

363

364 FILE∗ f s t a g e1 ou tpu t ;

365 i f ((f s t a g e1 ou tpu t=fopen (f i l e p . f i l e ou tpu t pa th , ” r ”)) == NULL){

366 p r i n t f (”Cannot open f i l e (%s) .\n” , f i l e p . f i l e o u t pu t p a t h) ;

367 }

368

369 char ∗ l i n e = (char∗) mal loc (s izeof (char) ∗200) ;

370 while (f g e t s (l i n e , 100 , f s t a g e1 ou tpu t)){

371 i f (! strcmp (l i n e , ” L i s t o f Words :\n”)) {

372 int l = 0 ;

373 int tmp occ ;

374 l = f s c an f (f s t age1 output , ”%s : %d\n” , tmp word , &tmp occ) ;

375 while (l != −1){

376 addWordWithOcc (a l l words , 1000 , tmp word , tmp occ) ;

377 l = f s c an f (f s t age1 output , ”%s : %d\n” , tmp word , &tmp occ) ;

378 }

379 }

220

Appendix A. Applications Source Code

380 }

381 f c l o s e (f s t a g e1 ou tpu t) ;

382 printStage2WordsToFile (a n a l y z e f i l e , a l l words , 10000) ;

383

384 f r e e (a l l wo rd s) ;

385 f r e e (tmp word) ;

386 f r e e (l i n e) ;

387 }

388

389 void hwfarm analyze (hwfarm task data∗ t data , chFM checkForMobi l i ty){

390 int ∗ i = t data−>counter ;

391 int ∗ i max = t data−>counter max ;

392 int t i d = t data−>t a s k i d ;

393 char ∗ ana l y z e f i l e name = (char∗) mal loc (s izeof (char) ∗50) ;

394 s p r i n t f (ana lyze f i l e name , ”db/ stage2 output/%d” , t i d) ;

395 struct db f i l e p a t h ∗ db paths = (struct db f i l e p a t h ∗) t data−>input data ;

396 while (∗ i < ∗ i max){

397 proce s sF i l eAna lyze (ana lyze f i l e name , db paths [∗ i]) ;

398 (∗ i)++;

399 checkForMobi l i ty () ;

400 }

401 }

402

403 struct db f i l e p a t h ∗ a s s i gnF i l ePath s (struct db f i l e p a t h ∗ ps , int n){

404 char ∗ o r i g pa th = ”db/ s tage1 input ” ;

405 char ∗ or i g output path = ”db/ stage1 output ” ;

406 char ∗ ls command = (char∗) mal loc (s izeof (char) ∗100) ;

407 s p r i n t f (ls command , ” l s %s −1” , o r i g pa th) ;

408

409 FILE ∗ fp1 ;

410 fp1 = popen (ls command , ” r ”) ;

411 i f (fp1 == 0)

412 per ro r (ls command) ;

413

414 char ∗ l i n e = (char∗) mal loc (35 ∗ s izeof (char)) ;

415 int i = 0 ;

416 while (f g e t s (l i n e , 35 , fp1)){

417 ps [i] . f i l e i d = i ;

418 s p r i n t f (ps [i] . f i l e p a t h , ”%s/%s” , or ig path , l i n e) ;

419 ps [i] . f i l e p a t h [s t r l e n (ps [i] . f i l e p a t h) − 1] =’ \0 ’ ;

420 s p r i n t f (ps [i] . f i l e ou tpu t pa th , ”%s/%s” , or ig output path , l i n e) ;

421 ps [i] . f i l e o u t pu t p a t h [s t r l e n (ps [i] . f i l e o u t pu t p a t h) − 1] =’ \0 ’ ;

422 i f (++i >= n) break ;

423 }

424 pc l o s e (fp1) ;

425 f r e e (l i n e) ;

426 f r e e (ls command) ;

427 return ps ;

428 }

429

430 int main (int argc , char∗∗ argv){

431 initHWFarm(argc , argv) ;

432

433 int prob l em s i z e = a to i (argv [1]) ;

434 int ta sks = a to i (argv [2]) ;

435 int mobi l i ty = a to i (argv [3]) ;

436 int chunk = prob l em s i z e / ta sks ;

437

438 // inpu t

439 struct db f i l e p a t h ∗ input data = NULL;

440 int i n pu t da t a s i z e = s izeof (struct db f i l e p a t h) ;

441 int i npu t da ta l en = chunk ;

442

221

Appendix A. Applications Source Code

443 // shared

444 void ∗ shared data = NULL;

445 int s h a r ed da t a s i z e = 0 ;

446 int sha r ed da ta l en = 0 ;

447

448 // ou tpu t

449 int ∗ output data = NULL;

450 int ou tpu t da ta s i z e = 0 ;

451 int output data l en = 0 ;

452

453 hwfarm state main state ;

454 main state . counter = 0 ;

455 main state . max counter = chunk ;

456 main state . s t a t e da t a = NULL;

457 main state . s t a t e l e n = 0 ;

458

459 i f (rank == 0){

460 input data = (struct db f i l e p a t h ∗) mal loc (s izeof (struct db f i l e p a t h)∗ prob l em s i z e) ;

461 input data = as s i gnF i l ePath s (input data , p rob l em s i z e) ;

462 }

463 // F i r s t s t a g e to read th e f i l e s and e x t r a c t t h e impor tan t data

464 hwfarm(hwfarm extract , tasks ,

465 input data , i npu t da ta s i z e , i nput data l en ,

466 shared data , sha r ed da ta s i z e , shared data l en ,

467 output data , ou tput data s i z e , output data len ,

468 main state , mob i l i ty) ;

469

470 main state . counter = 0 ;

471 main state . max counter = chunk ;

472

473 // Second s t a g e to do some a n a l y s i s

474 hwfarm(hwfarm analyze , tasks ,

475 input data , i npu t da ta s i z e , i nput data l en ,

476 shared data , sha r ed da ta s i z e , shared data l en ,

477 output data , ou tput data s i z e , output data len ,

478 main state , mob i l i ty) ;

479

480 finalizeHWFarm () ;

481

482 return 1 ;

483 }

Listing A.6: The findWord application C source code

222

Appendix B

The HWFarm Skeleton Source

Code

This appendix presents the full C code of the HWFarm skeleton. This code shows

all details related to mobility support, the cost model and the scheduler.

B.1 The HWFarm Function Header File

1 #include <mpi . h>

2 #include <pthread . h>

3

4 int numprocs ;

5 int namelen ;

6 char processor name [MPI MAX PROCESSOR NAME] ;

7 int rank ; // p ro c e s s rank

8

9 //For a l l p r o c e s s

10 double startTime ;

11 double startTaskTime ;

12 double s t a r t t ime ;

13

14 typedef struct hwfarm state{

15 int counter ;

16 int max counter ;

17 void∗ s t a t e da t a ;

18 int s t a t e s i z e ;

19 } hwfarm state ;

20

21 typedef struct hwfarm task data{

22 int t a s k i d ;

23 void∗ input data ;

24 int i npu t l en ;

25 void∗ shared data ;

26 int sha r ed l en ;

27 void∗ s t a t e da t a ;

28 int s t a t e l e n ;

29 void∗ output data ;

223

Appendix B. The HWFarm Skeleton Source Code

30 int output l en ;

31 int∗ counter ;

32 int∗ counter max ;

33 } hwfarm task data ;

34

35 typedef void (chFM) () ;

36

37 typedef void (fp) (hwfarm task data ∗ , void (checkForMobi l i ty) ()) ;

38

39 void initHWFarm(int argc , char ∗∗ argv) ;

40

41 void finalizeHWFarm () ;

42

43 void hwfarm(fp worker , int tasks ,

44 void ∗ input , int i nS i ze , int inLen ,

45 void ∗ shared data , int sha r ed da ta s i z e , int shared data l en ,

46 void ∗output , int outSize , int outLen , hwfarm state main state ,

47 int mobi l i ty) ;

Listing B.1: The HWFarm Skeleton header file

B.2 The HWFarm Function Source Code

1 /∗∗∗

2 ∗ HWFarm Sk e l e t on us ing C, MPI and PThread .

3 ∗ Turkey A l s a l k i n i & Greg Michae l son

4 ∗ Heriot−Watt Un i v e r s i t y , Edinburgh , United Kingdom .

5 ∗∗∗/

6 #define GNU SOURCE

7 #ifde f WIN32

8 #define WIN32 LEAN AND MEAN

9 #include <windows . h>

10 #else

11 #include <unis td . h>

12 #endif

13

14 #include <errno . h>

15 #include <s t d i o . h>

16 #include <s t d l i b . h>

17 #include <math . h>

18 // He lpe r s

19 #include <s t r i n g . h>

20 #include <time . h>

21 #include <sys / timeb . h>

22 #include <s i g n a l . h>

23 //For RUSAGE

24 #include <sys / time . h>

25 #include <sys / r e sou r c e . h>

26

27 //Thread g e t t i d

28 #include <sys / types . h>

29 #include <unis td . h>

30 #include <sys / s y s c a l l . h>

31 //Top In f o

32 #include <sys / s y s i n f o . h>

33 #include <sys /un . h>

34 #include <unis td . h>

35 //MPI & PThread

224

Appendix B. The HWFarm Skeleton Source Code

36 #include <mpi . h>

37 #include <pthread . h>

38 //Header F i l e

39 #include ”hwfarm . h”

40 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ COMMUNICATION TAGS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

41 //Master to workers Tags

42 #define INIT LOAD FROM WORKER 1

43 #define MOVEREPORTFROMWORKER 2

44 #define LATEST LOAD REQUEST 3

45 //#d e f i n e LOAD REPORT FROM WORKER 6

46 #define RESULTS FROM WORKER 7

47 #define MOBILITY CONFIRMATION FROM WORKER 9 // Shared w i th worker t a g s

48 #define MOBILITY NOTIFICATION FROM WORKER 10

49 //Worker t a g s

50 #define LOAD REQUEST FROM MASTER 1

51 #define TERMINATETHEWORKER 2

52 #define LOAD INFO FROM MASTER 3

53 #define SENDING CONFIRMATION FROM MASTER 4

54 #define MOBILITY ACCEPTANCE FROM WORKER 5

55 #define UPDATE LOAD REPORT REQUEST 6

56 #define TASK FROM MASTER 7

57 #define MOBILITY REQUEST FROM WORKER 8

58 #define TASKFROMWORKER 10

59 #define SHARED DATA FROM MASTER 11

60

61 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SKELETON CONSTANTS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

62 #define MSG LIMIT 400000000

63 #define ESTIMATOR BREAK TIME 3

64 #define NET LAT THRESHOLD 1.5

65 #define MAXMOVES 20 //MAX MOVES

66 typedef enum {M TO W, W TO W, W TO M} sendType ;

67 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ GLOBAL VARIABLES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

68 double s t a r t t ime ; // ho l d s t h e s t a r t t ime

69 double end time ; // ho l d s t h e end t ime

70 int i s F i r s t C a l l = 1 ; //@Master to check i f h t e s k e l e t o n i s c a l l e d

71 f loat Master FREQ = 0 . 0 ; // Current Node Ch a r a c t e r s t i c s

72 int currentCores = 0 ; // Current Node Ch a r a c t e r s t i c s

73 int moving task = 0 ; //The worker i s s end ing a t a s k now

74 int worker sending = 0 ; //The worker i s moving a t a s k now

75 int ∗masterRece iv ing ; //To avo id c o l l i s i o n a t t h e master

76 int ∗masterSending ; //To avo id c o l l i s i o n a t t h e master

77 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MPI GLOBAL VARIABLES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

78 MPI Status s t a tu s ; // s t o r e s t a t u s o f a MPI Recv

79 MPI Request r eques t ; // cap tu r e r e q u e s t o f a MPI Isend

80

81 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ POSIX GLOBAL VARIABLES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

82 //@Master

83 pthread t w load r epo r t th ;

84 pthread t w network latency th ;

85 //@Worker

86 //Thread to run the worker l oad agen t which c o l l e c t s t h e

87 // worker l oad and sends i t t o t h e master

88 pthread t w load pth ;

89 //Thread to run the worker e s t ima t o r which i s r e s p o n s i b l e

90 // f o r e s t ima t i n g t h e e s t ima t ed e x e cu t i on t ime f o r t h e t a s k s

91 // running on the t h i s worker . Then i t w i l l send th e

92 //move r e o r t to t h e s e r v e r to make t h e moving i f n e c e s s a r y .

93 pthread t w est imator pth ;

94 //To pr e v en t l o c k i n g

95 pthread mutex t mut ex l oad c i r cu l a t i ng = PTHREAD MUTEX INITIALIZER;

96 pthread mutex t mutex w sending = PTHREAD MUTEX INITIALIZER;

97

98 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SKELETON DATA STRUCTURES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

225

Appendix B. The HWFarm Skeleton Source Code

99 // s t a t s o f t h e moving t a s k to p r e d i c t t h e mo b i l i t y c o s t

100 struct ta sk move s ta t s {

101 double s tar t move t ime ;

102 double end move time ;

103 double move time ;

104 double R source ;

105 double R dest ;

106 double R 1 ;

107 double R 2 ;

108 double net t ime ;

109 int da t a s i z e ;

110 } ;

111 // mo b i l e t a s k : da ta s t r u c t u r e f o r s t o r i n g a l l d e t a i l s about t h e t a s k

112 struct mobi l e ta sk {

113 int m task id ; // tag f o r t a s k index

114 void ∗ input data ; //The inpu t data b u f f e r

115 int i nput da ta l eng th ; //The inpu t data l e n g t h

116 int i n pu t da t a i t em s i z e ; //The inpu t data un i t s i z e

117 void ∗ shared data ; //The shared data b u f f e r

118 int sha r ed data l eng th ; //The shared data l e n g t h

119 int s ha r ed da t a i t em s i z e ; //The shared data un i t s i z e

120 void ∗ output data ; //The ou tpu t data b u f f e r

121 int output data l ength ; //The ou tpu t data l e n g t h

122 int ou tpu t da ta i t em s i z e ; //The ou tpu t data un i t s i z e

123 int counter ; //The main index i t e r a t i o n s

124 int counter max ; //The t o t a l number o f i t e r a t i o n s f o r one t a s k

125 void ∗ s t a t e da t a ; //The s t a t e b u f f e r

126 int s t a t e da t a l e n g th ; //The s t a t e l e n g t h

127 long s h i f t ; // s h i f t v a l u e from the s t a r t

128 int moves ; //The numbers o f moves f o r t h i s t a s k

129 int m dest [MAXMOVES] ; // the workers who p ro c e s s ed t h e t a s k

130 double m start t ime [MAXMOVES] ; // the s t a r t t imes a t t h e workers who p roc e s s ed t h e t a s k

131 double m end time [MAXMOVES] ; // the end t imes a t t h e workers who p roc e s s ed t h e t a s k

132 f loat m avg power [MAXMOVES] ; //The average computing power when the t a s k l e a v e t h e

machine

133 f loat m work start [MAXMOVES] ; //The s t a r t work when the t a s k a r r i v e s

134 int moving ; // l a b e l f o r ch e c k i n g t h e t a s k movement s t a t e

135 int done ; // l a b e l i f t h e t a s k i s comp le ted

136 struct ta sk move s ta t s move stats ;

137 fp ∗ ta sk fun ; // p o i n t e r to t h e t a s k f u n c t i o n

138 } ;

139

140 // data s t r u c t u r e to s t o r e t h e run−t ime t a s k in f o rma t i on a t t h e master

141 struct mob i l e t a sk r epo r t {

142 int t a s k i d ; //Task No(ID)

143 int t a s k s t a t u s ; // Current t a s k s t a t u s (0 : wa i t i n g ; 1 : on p r o c e s s i n g ; 2 :

comp le ted ; 3 : on move)

144 double t a s k s t a r t ; //The t ime o f s t a r t e x e c u t i on

145 double task end ; //The t ime o f end e x e cu t i on

146 int task worker ; //The cu r r en t worker where t h i s t a s k runs

147 int mob i l i t i e s ; //Number o f movements f o r t h e t a s k

148 double m dep time [MAXMOVES] ; //The depa r t u r e t ime from the source worker

149 double m arr t ime [MAXMOVES] ; //The a r r i v a l t ime to t h e d e s t i n a t i o n worker

150 struct mobi l e ta sk ∗ m task ; //Next r ecord

151 } ;

152 // data s t r u c t u r e to s t o r e a l l t a s k s a t t h e master

153 struct t a sk poo l {

154 struct mob i l e t a sk r epo r t ∗ m task report ;

155 struct t a sk poo l ∗ next ;

156 } ;

157 // data s t r u c t u r e to s t o r e a h i s t o r y o f t h e l aod s t a t e wh i l e e x e c u t i n g t h i s t a s k

158 struct work e r l o c a l l o ad {

159 f loat per ;

226

Appendix B. The HWFarm Skeleton Source Code

160 f loat sec ;

161 f loat l oad avg ;

162 int e s t l o ad avg ;

163 long double w cpu ut i ;

164 int w running procs ;

165 struct work e r l o c a l l o ad ∗ next ;

166 } ;

167 // data s t r u c t u r e to s t o r e d e t a i l s o f t h i s t a s k on the worker

168 struct worker task {

169 int t a s k i d ;

170 double w ta sk s t a r t ;

171 double w task end ;

172 pthread t task pth ;

173 pthread t moving pth ;

174 struct mobi l e ta sk ∗ m task ;

175 f loat l o ca l R ;

176 int move ;

177 int go move ;

178 int go to ;

179 int move status ;

180 struct work e r l o c a l l o ad ∗ w l l oad ;

181 struct e s t imat ion ∗ est imating move ;

182 struct worker task ∗ next ;

183 } ;

184 // data s t r u c t u r e to s t o r e a t he network d e l a y s a t a l l o c a t i o n t ime and the cu r r en t t ime

185 struct network t imes{

186 double i n i t n e t t im e ;

187 double cu r ne t t ime ;

188 } ;

189 // data s t r u c t u r e to s t o r e t h e l oad s t a t e o f a l l workers

190 struct worker load {

191 int w rank ;

192 char w name [MPI MAX PROCESSOR NAME] ;

193 int m id ;

194 int cu r r en t t a s k s ;

195 int t o t a l t a s k ;

196 int s t a tu s ; // 0 : f r e e , 1 : working , 2 : Requs t ing , 3 : wa i t ing , 4 : envo l v ed in moving

197 int w cores ; // S t a t i c me t r i c

198 int w cache s i z e ; // S t a t i c me t r i c

199 f loat w cpu speed ; // S t a t i c me t r i c

200 f loat w load avg 1 ;

201 f loat w load avg 2 ;

202 int e s t imated load ;

203 long double w cpu ut i 1 ;

204 long double w cpu ut i 2 ;

205 int w running procs ;

206 int l ocked ;

207 struct network t imes net t imes ;

208 } ;

209 // data s t r u c t u r e to s t o r e t h e move r e p o r t i s s u e d by t he e s t ima t o r agen t

210 struct worker move report{

211 int w id ;

212 int num of tasks ;

213 int ∗ l i s t o f t a s k s ;

214 } ;

215 // data s t r u c t u r e to s t o r e d e t a i l s when a worker becomes busy in r e c e i v i n g a t a s k from a worker

216 struct worker hold{

217 int on hold ; // s e t t o i n d i c a t e t h a t t h i s worker i s on ho l d to comp le t e t h e move from

the source worker

218 int holded on ; //number o f t a s k s which t h e worker i s wa i t i n g f o r

219 int holded from ; // the worker who i am ho lded to

220 f loat hold t ime ; // the t ime o f ho l d . f o r c a n c e l a t i o n i f t h e r e q u e s t t imed out

221 } ;

227

Appendix B. The HWFarm Skeleton Source Code

222 // data s t r u c t u r e to s t o r e r e f r e n c e s f r o o t h e r s t r u c t u r e s in t h e worker

223 struct worke r l oad ta sk {

224 struct worker hold hold ;

225 p id t worke r t id ;

226 p id t s t a t u s t i d ;

227 p id t e s t ima t o r t i d ;

228 struct worker load w l o c a l l o ad s ;

229 struct worker load ∗ w loads ;

230 struct worker task ∗ w tasks ;

231 struct worker move report ∗ move report ;

232 } ;

233 // data s t r u c t u r e to s t o r e t h e r e p o r t o f t h e e s t ima t e d t imes

234 struct e s t imat ion {

235 f loat ∗ e s t ima t i on c o s t s ;

236 int chosen des t ;

237 f loat ga in pe r c ;

238 int done ;

239 int on d e s t r e c a l c ;

240 } ;

241 // data s t r u c t u r e to s t o r e t h e e s t ima t ed t imes on remote workers

242 struct o th e r e s t ima t ed co s t s {

243 int w no ;

244 f loat ∗ c o s t s ;

245 f loat move cost ;

246 } ;

247 // data s t r u c t u r e to s t o r e d e t a i l e d r e p o r t o f e s t ima t ed t imes f o r t h i s t a s k

248 struct e s t imat ed co s t {

249 int task no ;

250 f loat cur EC ;

251 f loat spent he re ;

252 f loat ∗ cur EC af te r ;

253 struct o th e r e s t ima t ed co s t s ∗ other ECs ;

254 int to w ;

255 f loat to EC ;

256 } ;

257

258 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ GLOBAL DATA STRUCTURES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

259 ///−−−−−Worker−−−−−−−

260 struct worke r l oad ta sk ∗ w l t = NULL;

261 struct worker load ∗ worke r s l o ad r epo r t = NULL;

262 struct worker task ∗ w tasks ;

263 ///−−−−−Master−−−−−−−

264 struct worker load ∗ w load repor t = 0 ;

265 struct worker load ∗ w load report tmp = 0 ;

266

267 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ LINUX/OS FUNCTIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

268

269 void systemCal l (char∗ b , char∗ r e s){

270 FILE ∗ fp1 ;

271 char ∗ l i n e = (char∗) mal loc (130 ∗ s izeof (char)) ;

272 fp1 = popen (b , ” r ”) ;

273 i f (fp1 == 0)

274 per ro r (b) ;

275 r e s [0]= ’ \0 ’ ;

276 while (f g e t s (l i n e , 130 , fp1))

277 s t r c a t (res , l i n e) ;

278 r e s [s t r l e n (r e s)−1]= ’ \0 ’ ;

279 pc l o s e (fp1) ;

280 f r e e (l i n e) ;

281 return ;

282 }

283 void systemCallNoRes (char∗ b){

284 // Execute System c a l l

228

Appendix B. The HWFarm Skeleton Source Code

285 FILE ∗ fp ;

286 fp = popen (b , ” r ”) ;

287 pc l o s e (fp) ;

288 }

289 // send p ing message to t h e s e l e c t e d worker

290 double sendPing (char ∗ node name){

291 char ∗ pre ping command = ”ping %s −c 1 | grep \” r t t \” | awk ’{ s p l i t ($0 , a ,\” \”) ; p r i n t a

[4] } ’ | awk ’{ s p l i t ($0 , b ,\”/\”) ; p r i n t b [2] } ’ ” ;

292 char ∗ping command = (char∗) mal loc (s izeof (char) ∗200) ;

293 s p r i n t f (ping command , pre ping command , node name) ;

294 char ∗ r t t l a t e n c y s t r = (char∗) mal loc (s izeof (char) ∗20) ;

295 systemCal l (ping command , r t t l a t e n c y s t r) ;

296 double ne t l a t ency = ato f (r t t l a t e n c y s t r) ;

297 i f (n e t l a t en cy != 0 . 0) {

298 f r e e (ping command) ;

299 f r e e (r t t l a t e n c y s t r) ;

300 return ne t l a t ency ;

301 } else {

302 f r e e (ping command) ;

303 f r e e (r t t l a t e n c y s t r) ;

304 return 0 . 0 ;

305 }

306 }

307

308 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ LOAD STATE FUNCTIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

309

310 int conta ins (char t a r g e t [] , int m, char source [] , int n){

311 int i , j =0;

312 for (i =0; i<n ; i++){

313 i f (t a r g e t [j] == source [i]) j++;

314 else j =0;

315 i f (j == m) return 1 ;

316 }

317 return 0 ;

318 }

319

320 f loat getCoresFreq () {

321 FILE ∗ f ;

322 int LINE MAX = 128;

323 char ∗ l i n e = (char∗) mal loc (LINE MAX ∗ s izeof (char)) ;

324 char ∗tmp = (char∗) mal loc (10 ∗ s izeof (char)) ;

325 f loat t o t a l c o r e s f r e q = 0 ;

326

327 f = fopen (”/proc / cpu in fo ” , ” r ”) ;

328 i f (f == 0){

329 per ro r (”Could open the f i l e : / proc / cpu in fo ”) ;

330 return 0 ;

331 }

332

333 f loat c o r e f r e q = 0 , m in co r e f r eq = 0 ;

334 int c o r e s cn t = 0 ;

335 char c ;

336 while (f g e t s (l i n e , LINE MAX, f)){

337 i f (conta in s (”cpu MHz” , 7 , l i n e , LINE MAX)){

338 s s c an f (l i n e , ”%s %s %c %f \n” , tmp , tmp , &c , &c o r e f r e q) ;

339 i f (c o r e s cn t == 0)

340 min co r e f r eq = c o r e f r e q ;

341 else i f (m in co r e f r eq > c o r e f r e q)

342 min co r e f r eq = c o r e f r e q ;

343 t o t a l c o r e s f r e q += co r e f r e q ;

344 c o r e s cn t++;

345 }

346 }

229

Appendix B. The HWFarm Skeleton Source Code

347 f c l o s e (f) ;

348 f r e e (tmp) ;

349 f r e e (l i n e) ;

350 return min co r e f r eq ∗ c o r e s cn t ;

351 }

352

353 int getNumberOfCores () {

354 long nprocs = −1;

355 long nprocs max = −1;

356 #i f d e f WIN32

357 #i f n d e f SC NPROCESSORS ONLN

358 SYSTEM INFO in f o ;

359 GetSystemInfo(& in f o) ;

360 #de f i n e sy scon f (a) i n f o . dwNumberOfProcessors

361 #de f i n e SC NPROCESSORS ONLN

362 #end i f

363 #end i f

364 #i f d e f SC NPROCESSORS ONLN

365 nprocs = syscon f (SC NPROCESSORS ONLN) ;

366 i f (nprocs < 1){

367 f p r i n t f (s tder r , ”Could not determine number o f CPUs on l i n e :\n%s\n” ,

368 s t r e r r o r (errno)) ;

369 return nprocs ;

370 }

371 nprocs max = syscon f (SC NPROCESSORS CONF) ;

372 i f (nprocs max < 1){

373 f p r i n t f (s tder r , ”Could not determine number o f CPUs con f i gured :\n%s\n” ,

374 s t r e r r o r (errno)) ;

375 return nprocs ;

376 }

377 return nprocs ;

378 #else

379 f p r i n t f (s tder r , ”Could not determine number o f CPUs”) ;

380 return nprocs ;

381 #end i f

382 }

383

384 int ge tProce s sS ta t e (int p id , int i s t a s k , int t i d){

385 FILE ∗ f ;

386 char ∗ l i n e = (char∗) mal loc (1000 ∗ s izeof (char)) ;

387 char ∗ s t a t eF i l e = (char∗) mal loc (s izeof (char) ∗200) ;

388 i f (i s t a s k == 1)

389 s p r i n t f (s t a t eF i l e , ”/proc/%u/ task/%u/ s t a t ” , p id , t i d) ;

390 else

391 s p r i n t f (s t a t eF i l e , ”/proc/%u/ s t a t ” , p id) ;

392 f = fopen (s t a t eF i l e , ” r ”) ;

393 i f (f == 0)

394 return 0 ;

395 int s t a t e = 0 , i = 0 ;

396 do{

397 i f (s t r l e n (l i n e) == 1){

398 char c = ∗ ((char ∗) l i n e) ;

399 i f ((c == ’S ’) | | (c == ’D’) | | (c == ’T ’) | | (c == ’W’) | | (c == ’Z ’)){

400 s t a t e = 0 ;

401 break ;

402 }

403 i f (c == ’R ’){

404 s t a t e = 1 ;

405 break ;

406 }

407 }

408 }while (i++ != 10) ;

409 f c l o s e (f) ;

230

Appendix B. The HWFarm Skeleton Source Code

410 f r e e (l i n e) ;

411 f r e e (s t a t eF i l e) ;

412 return s t a t e ;

413 }

414

415 int getRunningProc () {

416 FILE ∗ f ;

417 char ∗ l i n e = (char∗) mal loc (1000 ∗ s izeof (char)) ;

418 int run proc = 0 ;

419

420 f = fopen (”/proc / s t a t ” , ” r ”) ;

421 i f (f == 0)

422 per ro r (”/proc / s t a t ”) ;

423

424 int l = 0 , numOfI = 0 ;

425 do{

426 l = f s c an f (f , ”%s\n” , l i n e) ;

427 i f (strcmp (l i n e , ” procs runn ing ”) == 0){

428 numOfI = f s c an f (f , ”%d\n” , &run proc) ;

429 break ;

430 }

431 }while (l != 0) ;

432 f c l o s e (f) ;

433 f r e e (l i n e) ;

434 return run proc ;

435 }

436

437 void getCPUValues (long double ∗ a){

438 FILE ∗ f ;

439 f = fopen (”/proc / s t a t ” , ” r ”) ;

440 int r = −1;

441 r = f s c an f (f , ”%∗s %Lf %Lf %Lf %Lf %Lf” ,&a [0] ,& a [1] ,& a [2] ,& a [3] ,& a [4]) ;

442 f c l o s e (f) ;

443 }

444

445 double calculateCPUUti (long double ∗ a , long double ∗ b){

446 long double user = b [0] − a [0] ;

447 long double n i c e = b [1] − a [1] ;

448 long double system = b [2] − a [2] ;

449 long double i d l e = b [3] − a [3] ;

450 long double wa = b [4] − a [4] ;

451 long double t o t a l = user + n i c e + system + i d l e + wa ;

452 long double per = 0 . 0 ;

453 i f (t o t a l != 0 . 0)

454 per = ((user + n i ce + system) ∗ 100) / t o t a l ;

455 return per ;

456 }

457

458 f loat getLoad () {

459 struct s y s i n f o s y s i n f o ;

460 i f (s y s i n f o (& s y s i n f o) != 0)

461 per ro r (” s y s i n f o ”) ;

462 return s y s i n f o . l oads [0] / 6 5 5 3 6 . 0 ;

463 }

464

465

466 void se tLoca lLoadIn fo (long double ∗ a , long double ∗ b , long double ∗ per , int ∗rp , f loat ∗

l oad avg){

467 double l oad overhead 1 = 0 . 0 ;

468 double l oad overhead 2 = 0 . 0 ;

469 double load overhead sum = 0 . 0 ;

470 long double tmp per = 0 ;

471 int tmp rp = 0 ;

231

Appendix B. The HWFarm Skeleton Source Code

472 int READCOUNT = 5 ;

473 int READ DELAY = 1000000 / READCOUNT;

474 int i =0;

475 for (i = 0 ; i < READCOUNT; i++){

476 us l e ep (READ DELAY) ;

477 a [0] = b [0] ;

478 a [1] = b [1] ;

479 a [2] = b [2] ;

480 a [3] = b [3] ;

481 a [4] = b [4] ;

482 load overhead 1 = MPI Wtime () ;

483 getCPUValues (b) ;

484 tmp per += calculateCPUUti (a , b) ;

485 tmp rp += getRunningProc ()−1;

486 load overhead 2 = MPI Wtime () ;

487 load overhead sum += (load overhead 2 − l oad overhead 1) ;

488 }

489

490 ∗per = tmp per / READCOUNT;

491 ∗ rp = tmp rp / READCOUNT;

492 load overhead 1 = MPI Wtime () ;

493 ∗ l oad avg = getLoad () ;

494 load overhead 2 = MPI Wtime () ;

495 }

496

497 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SKELETON FUNCTIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

498 struct t a sk poo l ∗ addTasktoPool (

499 struct t a sk poo l ∗ pool , int task no , void ∗ input data , int i nput data l en ,

500 int i n pu t da t a un i t s i z e , void ∗ output data , int output data len ,

501 int ou tpu t da ta un i t s i z e , int tag , int s h i f t , void ∗ s tate ,

502 int s t a t e s i z e , int main index , int main index max){

503

504 struct t a sk poo l ∗ pl = pool ;

505 i f (pool == 0){

506 pool = (struct t a sk poo l ∗) mal loc (s izeof (struct t a sk poo l)) ;

507 pool−>m task report = (struct mob i l e t a sk r epo r t ∗) mal loc (s izeof (struct mob i l e t a sk r epo r t

)) ;

508 pool−>m task report−>t a s k i d = task no ;

509 pool−>m task report−>t a s k s t a t u s = 0 ;

510 pool−>m task report−>t a s k s t a r t = 0 ;

511 pool−>m task report−>task end = 0 ;

512 pool−>m task report−>task worker = 0 ;

513 pool−>m task report−>mob i l i t i e s = 0 ;

514 pool−>m task report−>m task = (struct mobi l e ta sk ∗) mal loc (s izeof (struct mobi l e ta sk)) ;

515 i f (input data != NULL){

516 pool−>m task report−>m task−>input data = input data + s h i f t ;

517 pool−>m task report−>m task−>i nput da ta l eng th = input da ta l en ;

518 pool−>m task report−>m task−>i n pu t da t a i t em s i z e = i npu t d a t a un i t s i z e ;

519 }

520 pool−>m task report−>m task−>output data = output data ;

521 pool−>m task report−>m task−>output data l ength = output data l en ;

522 pool−>m task report−>m task−>ou tpu t da ta i t em s i z e = ou tpu t da t a un i t s i z e ;

523 pool−>m task report−>m task−>m task id = tag ;

524 pool−>m task report−>m task−>s h i f t = s h i f t ;

525 pool−>m task report−>m task−>s t a t e da t a = s t a t e ;

526 pool−>m task report−>m task−>s t a t e da t a l e n g th = s t a t e s i z e ;

527 pool−>m task report−>m task−>counter = main index ;

528 pool−>m task report−>m task−>counter max = main index max ;

529 pool−>m task report−>m task−>moves = 0 ;

530 pool−>m task report−>m task−>done = 0 ;

531 pool−>m task report−>m task−>moving = 0 ;

532 pool−>next = 0 ;

533 } else {

232

Appendix B. The HWFarm Skeleton Source Code

534 while (pl−>next != 0)

535 pl = pl−>next ;

536

537 pl−>next = (struct t a sk poo l ∗) mal loc (s izeof (struct t a sk poo l)) ;

538 pl = pl−>next ;

539 pl−>m task report = (struct mob i l e t a sk r epo r t ∗) mal loc (s izeof (struct mob i l e t a sk r epo r t))

;

540 pl−>m task report−>t a s k i d = task no ;

541 pl−>m task report−>t a s k s t a t u s = 0 ;

542 pl−>m task report−>t a s k s t a r t = 0 ;

543 pl−>m task report−>task end = 0 ;

544 pl−>m task report−>task worker = 0 ;

545 pl−>m task report−>mob i l i t i e s = 0 ;

546 pl−>m task report−>m task = (struct mobi l e ta sk ∗) mal loc (s izeof (struct mobi l e ta sk)) ;

547 i f (input data != NULL){

548 pl−>m task report−>m task−>input data = input data + s h i f t ;

549 pl−>m task report−>m task−>i nput da ta l eng th = input da ta l en ;

550 pl−>m task report−>m task−>i n pu t da t a i t em s i z e = i npu t d a t a un i t s i z e ;

551 }

552 pl−>m task report−>m task−>output data = output data ;

553 pl−>m task report−>m task−>output data l ength = output data l en ;

554 pl−>m task report−>m task−>ou tpu t da ta i t em s i z e = ou tpu t da t a un i t s i z e ;

555 pl−>m task report−>m task−>m task id = tag ;

556 pl−>m task report−>m task−>s h i f t = s h i f t ;

557 pl−>m task report−>m task−>s t a t e da t a = s t a t e ;

558 pl−>m task report−>m task−>s t a t e da t a l e n g th = s t a t e s i z e ;

559 pl−>m task report−>m task−>counter = main index ;

560 pl−>m task report−>m task−>counter max = main index max ;

561 pl−>m task report−>m task−>moves = 0 ;

562 pl−>m task report−>m task−>done = 0 ;

563 (pl−>m task report−>m task−>moving) = 0 ;

564 pl−>next = 0 ;

565 }

566 return pool ;

567 }

568

569 struct t a sk poo l ∗ c r e a t e t a s k po o l (

570 int tasks , void∗ input , int i nput l en , int i npu t s i z e , void∗ output ,

571 int output len , int output s i z e , void∗ s tate , int s t a t e s i z e ,

572 int main index , int chunk s i z e){

573

574 int t a s k i = 0 ;

575 int t a s k s h i f t = 0 ;

576 struct t a sk poo l ∗ pool = 0 ;

577 while (t a s k i < ta sks){

578 t a s k s h i f t = (t a s k i ∗ i npu t l en) ∗ i n p u t s i z e ;

579 pool = addTasktoPool (pool , t a s k i , input , input l en , i npu t s i z e ,

580 output , output len , output s i z e , t a sk i , t a s k s h i f t ,

581 state , s t a t e s i z e , main index , chunk s i z e) ;

582 t a s k i++;

583 }

584 return pool ;

585 }

586

587 ///This f u n c t i o n i s used to check t h e mo b i l i t y and perform a c h e c k p o i n t i n g

588 /// i f t h e r e i s a need to t r a n s f e r t h i s computat ion

589 void checkForMobi l i ty () {

590 pthread t pth id = p th r e ad s e l f () ;

591 i f (w tasks == NULL) return ;

592 struct worker task ∗ wT = w tasks−>next ;

593 for (;wT!=0;wT=wT−>next){

594 i f (pth id == wT−>task pth)

595 i f ((wT−>move == 1) && (moving task == 0)){

233

Appendix B. The HWFarm Skeleton Source Code

596 wT−>go move = 1 ;

597 while (wT−>move status == 0) us l e ep (1) ;

598 i f (wT−>move status == 1)

599 pth r ead ex i t (NULL) ;

600 }

601 }

602 }

603

604 void printMobileTask (struct mobi l e ta sk ∗ mt){

605 p r i n t f (”Task id : %d @ %d\n−−−\n” , mt−>m task id ,

rank) ;

606 p r i n t f (” Input : (l en : %d) − (u s i z e : %d)\n” , mt−>i nput data l ength , mt−>i n pu t da t a i t em s i z e)

;

607 p r i n t f (”Output : (l en : %d) − (u s i z e : %d)\n” , mt−>output data length , mt−>

ou tpu t da ta i t em s i z e) ;

608 p r i n t f (” State : (u s i z e : %d)\n” , mt−>s t a t e da t a l e n g th) ;

609 p r i n t f (”Main Counter : (i n i t : %d) − (max : %d)\n” , mt−>counter , mt−>counter max) ;

610

611 double f i n a l e x t im e = 0 . 0 ;

612 int i ;

613 for (i =0; i<mt−>moves ; i++){

614 f i n a l e x t im e += mt−>m end time [i] − mt−>m start t ime [i] ;

615 p r i n t f (”−−@ %d (F : %f − to : %f [% f]) \n” , mt−>m dest [i] , mt−>m start t ime [i] , mt−>

m end time [i] , mt−>m end time [i] − mt−>m start t ime [i]) ;

616 }

617 p r i n t f (”−−@ X (Total Ex Time : %f)\n” , f i n a l e x t im e) ;

618 for (i =0; i<mt−>moves ; i++)

619 p r i n t f (”%f \n%f \n” , mt−>m start t ime [i] , mt−>m end time [i]) ;

620 p r i n t f (”\n−−\n”) ;

621 }

622

623 void printTaskPool (struct t a sk poo l ∗ pool){

624 struct t a sk poo l ∗ p = pool ;

625 while (p != 0){

626 printMobileTask (p−>m task report−>m task) ;

627 p = p−>next ;

628 }

629 }

630

631 void sendMobileMultiMsgs (void ∗ input , int dataLen , int l im i t , int proc , int tag){

632 i f (dataLen == 0) return ;

633 int msgCount = (dataLen/ l im i t) ;

634 i f ((dataLen % l im i t) != 0) msgCount++;

635 int msgSize ;

636 int i =0;

637 MPI Ssend(&msgCount , 1 , MPI INT , proc , tag , MPICOMMWORLD) ;

638 for (i = 0 ; i<msgCount ; i++){

639 i f (dataLen < l im i t)

640 msgSize = dataLen ;

641 else

642 msgSize = l im i t ;

643 MPI Ssend (input + (i ∗ l im i t) , msgSize , MPI CHAR, proc , tag + i + 1 , MPICOMMWORLD) ;

644 dataLen = dataLen − msgSize ;

645 }

646 }

647

648 void recvMobileMultiMsgs (void ∗ input , int dataLen , int l im i t , int source , int tag){

649 i f (dataLen == 0) return ;

650 int msgSize ;

651 int msgCount ;

652 int i =0;

653 MPI Recv(&msgCount , 1 , MPI INT , source , tag , MPI COMMWORLD, &s ta tu s) ;

654 for (i = 0 ; i<msgCount ; i++){

234

Appendix B. The HWFarm Skeleton Source Code

655 i f (dataLen < l im i t)

656 msgSize = dataLen ;

657 else

658 msgSize = l im i t ;

659 MPI Recv (input + (i ∗ l im i t) , msgSize , MPI CHAR, source , tag + i + 1 , MPI COMMWORLD, &

s ta tu s) ;

660 dataLen = dataLen − msgSize ;

661 }

662 }

663

664 int getTaskResu l tS ize (struct mobi l e ta sk ∗ w mt){

665 int t a s k s t r u c t s i z e = s izeof (struct mobi l e task) ;

666 int t a s k ou tpu t s i z e = w mt−>i nput da ta l eng th ∗w mt−>i n pu t da t a i t em s i z e ;

667 return t a s k s t r u c t s i z e + ta s k ou tpu t s i z e ;

668 }

669

670 int g e t I n i t i a lTa s kS i z e (struct mobi l e ta sk ∗ w mt){

671 int t a s k s t r u c t s i z e = s izeof (struct mobi l e task) ;

672 int t a s k i n pu t s i z e = w mt−>i nput da ta l eng th ∗w mt−>i n pu t da t a i t em s i z e ;

673 int t a s k s t a t e s i z e = w mt−>s t a t e da t a l e n g th ;

674 return t a s k s t r u c t s i z e + t a s k i n pu t s i z e + t a s k s t a t e s i z e ;

675 }

676

677 int getTota lTaskSize (struct mobi l e ta sk ∗ w mt){

678 int t a s k ou tpu t s i z e = w mt−>output data l ength ∗w mt−>ou tpu t da ta i t em s i z e ;

679 int t a s k i n i t s i z e = g e t I n i t i a lTa s kS i z e (w mt) ;

680 return t a s k ou tpu t s i z e + t a s k i n i t s i z e ;

681 }

682

683 void sendMobileTask (struct mobi l e ta sk ∗ mt , int w, sendType t){

684 int send code = 0 ;

685

686 i f (t == WTOW)

687 send code = TASKFROMWORKER;

688 else i f (M TO W)

689 send code = TASK FROM MASTER;

690 else i f (W TO M)

691 send code = RESULTS FROM WORKER;

692

693 i f (t == W TO M)

694 worker sending = 0 ;

695

696 MPI Ssend(&send code , 1 , MPI INT , w, send code , MPICOMMWORLD) ;

697

698 i f (t == W TO M)

699 while (worker sending == 0) us l e ep (1) ;

700

701 i f (t == M TO W){

702 while (∗ (masterRece iv ing + (w) − 1) == 1) us l e ep (1) ;

703 ∗(masterSending + w − 1) = 1 ;

704 }

705

706 i f (t == W TO M)

707 MPI Ssend(&(mt−>m task id) , 1 , MPI INT , w, send code , MPICOMMWORLD) ;

708

709 MPI Ssend (mt , s izeof (struct mobi l e task) , MPI CHAR, w, send code , MPICOMMWORLD) ;

710

711 i f (t != W TO M)

712 sendMobileMultiMsgs (mt−>input data , mt−>i nput da ta l eng th ∗mt−>i npu t da ta i t em s i z e ,

MSG LIMIT, w, send code) ;

713 i f (t != M TO W)

714 sendMobileMultiMsgs (mt−>output data , mt−>output data l ength ∗mt−>output data i t em s i z e ,

MSG LIMIT, w, send code) ;

235

Appendix B. The HWFarm Skeleton Source Code

715 i f (t != W TO M)

716 sendMobileMultiMsgs (mt−>s ta te data , mt−>s t a t e da ta l eng th , MSG LIMIT, w, send code) ;

717 i f (t == M TO W)

718 ∗(masterSending + w − 1) = 0 ;

719 }

720

721 void sendMobileTaskM (struct mob i l e t a sk r epo r t ∗ mtr , int w){

722 mtr−>m task−>move stats . s tar t move t ime = MPI Wtime () ;

723 mtr−>m task−>move stats . R source = Master FREQ ;

724 sendMobileTask (mtr−>m task , w, M TO W) ;

725 mtr−>t a s k s t a t u s = 1 ;

726 mtr−>t a s k s t a r t = MPI Wtime () ;

727 mtr−>task worker = w;

728 }

729

730 void∗ recvSharedData (void∗ shared data , int ∗ w shared len , int source , int send code){

731 MPI Status s t a tu s ;

732 int sha r ed l en ;

733 MPI Recv(&shared len , 1 , MPI INT , source , send code , MPI COMMWORLD, &s ta tu s) ;

734 ∗w shared len = sha r ed l en ;

735 i f (sha r ed l en != 0){

736 shared data = (void∗) mal loc (sha r ed l en) ;

737 recvMobileMultiMsgs (shared data , shared len , MSG LIMIT, source , send code) ;

738 return shared data ;

739 }

740 return NULL;

741 }

742

743 void recvMobileTask (struct mobi l e ta sk ∗ w mt , int source , sendType t , int send code){

744 MPI Status s t a tu s ;

745 void ∗ p input ;

746 void ∗ p s t a t e ;

747 i f (t == W TO M){

748 p input = w mt−>input data ;

749 p s t a t e = w mt−>s t a t e da t a ;

750 }

751

752 MPI Recv (w mt , s izeof (struct mobi l e ta sk) , MPI CHAR, source , send code , MPI COMMWORLD,&

s ta tu s) ;

753

754 i f (t != W TO M){

755 // A l l o c a t i n g & r e c e i v i n g inpu t data

756 w mt−>input data = (void∗) mal loc (w mt−>i nput da ta l eng th ∗w mt−>i n pu t da t a i t em s i z e) ;

757 recvMobileMultiMsgs (w mt−>input data , w mt−>i nput da ta l eng th ∗w mt−>i npu t da ta i t em s i z e ,

MSG LIMIT, source , send code) ;

758 } else

759 w mt−>input data = p input ;

760 // A l l o c a t i n g & r e c e i v i n g ou tpu t data

761 w mt−>output data = (void∗) mal loc (w mt−>output data l ength ∗w mt−>ou tpu t da ta i t em s i z e) ;

762 i f (t != M TO W)

763 recvMobileMultiMsgs (w mt−>output data , w mt−>output data l ength ∗w mt−>

output data i t em s i z e , MSG LIMIT, source , send code) ;

764 i f (t != W TO M){

765 // A l l o c a t i n g & r e c e i v i n g s t a t e s data

766 w mt−>s t a t e da t a = (void∗) mal loc (w mt−>s t a t e da t a l e n g th) ;

767 recvMobileMultiMsgs (w mt−>s ta te data , w mt−>s t a t e da ta l eng th , MSG LIMIT, source ,

send code) ;

768 } else

769 w mt−>s t a t e da t a = p s t a t e ;

770

771 i f (t != W TO M){

772 w mt−>moves++;

773 w mt−>m dest [w mt−>moves−1] = rank ;

236

Appendix B. The HWFarm Skeleton Source Code

774 }

775 }

776 // r e c e v i e r e s u l t s o f t h e t a s k

777 void recvMobileTaskM (struct t a sk poo l ∗ t p , int w, int msg code){

778 int t a s k i d = −1;

779 MPI Recv(&task id , 1 , MPI INT , w, msg code , MPI COMMWORLD, &s ta tu s) ;

780 struct t a sk poo l ∗ p = t p ;

781 while (p != NULL){

782 i f (p−>m task report−>t a s k i d == ta sk i d){

783 recvMobileTask (p−>m task report−>m task , w, W TO M, msg code) ;

784 p−>m task report−>t a s k s t a t u s = 2 ;

785 p−>m task report−>task end = MPI Wtime () ;

786 p−>m task report−>task worker = 0 ;

787 break ;

788 }

789 p = p−>next ;

790 }

791 }

792

793 void recvMsgCode (int ∗ recv w , int ∗msg code){

794 MPI Request req ;

795 int msgType = −1;

796 int f l a g = 0 ;

797 MPI Status s t a tu s ;

798 ///Non−Block ing MPI Irecv

799 MPI Irecv(&msgType , 1 , MPI INT , MPI ANY SOURCE, MPI ANY TAG, MPI COMMWORLD, &req) ;

800 do {

801 MPI Test(&req , &f l ag , &s ta tu s) ;

802 us l e ep (10) ;

803 } while (f l a g != 1) ;

804 ∗ recv w = sta tu s .MPI SOURCE;

805 ∗msg code = s ta tu s .MPI TAG;

806 }

807

808 void ∗workerMobileTask (void ∗arg){

809 struct mobi l e ta sk ∗w mt = ((struct mobi l e ta sk ∗) arg) ;

810 w mt−>m start t ime [w mt−>moves−1] = MPI Wtime () ;

811 int i = w mt−>counter ;

812 f loat Wd before = ((i ∗ 100) / (f loat)w mt−>counter max) ;

813 w mt−>m work start [w mt−>moves−1] = Wd before ;

814

815 hwfarm task data ∗ t data = (hwfarm task data ∗) mal loc (s izeof (hwfarm task data)) ;

816 t data−>input data = w mt−>input data ;

817 t data−>i npu t l en = w mt−>i nput da ta l eng th ;

818 t data−>shared data = w mt−>shared data ;

819 t data−>sha r ed l en = w mt−>sha r ed data l eng th ;

820 t data−>s t a t e da ta = w mt−>s t a t e da t a ;

821 t data−>s t a t e l e n = w mt−>s t a t e da t a l e n g th ;

822 t data−>output data = w mt−>output data ;

823 t data−>output l en = w mt−>output data l ength ;

824 t data−>counter = &w mt−>counter ;

825 t data−>counter max = &w mt−>counter max ;

826 t data−>t a s k i d = w mt−>m task id ;

827

828 w mt−>ta sk fun (t data , checkForMobi l i ty) ;

829 w mt−>done = 1 ;

830 w mt−>m end time [w mt−>moves−1] = MPI Wtime () ;

831

832 pthread mutex lock (&mutex w sending) ;

833 sendMobileTask (w mt , 0 , W TO M) ;

834 pthread mutex unlock (&mutex w sending) ;

835

836 f r e e (w mt−>s t a t e da t a) ;

237

Appendix B. The HWFarm Skeleton Source Code

837 f r e e (w mt−>output data) ;

838 f r e e (w mt−>input data) ;

839

840 return NULL;

841 }

842

843 f loat getActua lRunningprocessors (f loat cpu ut i , int e s t l oad avg , int runn ing proce s s e s , int

co r e s){

844 f loat np per = −1;

845 i f (cpu ut i < 75)

846 np per = cpu ut i ;

847 else{

848 i f (runn ing proc e s s e s <= core s)

849 np per = cpu ut i ;

850 else

851 np per = (cpu ut i + ((runn ing proc e s s e s) ∗ 100) / (co r e s ∗ 1 . 0)) / 2 ;

852 }

853 f loat base = 100 / (co r e s ∗ 1 . 0) ;

854 int np = (int) (np per / base) ;

855 i f (np < (np per / base))

856 np++;

857 return (np per /base) ;

858 }

859

860 f loat getActualRelat ivePower (f loat P, f loat cpu ut i , int e s t l oad avg , int runn ing proce s s e s ,

int cores , int added np , int worker){

861 f loat np f = getActualRunningprocessors (cpu ut i , e s t l oad avg , runn ing proce s s e s , c o r e s) ;

862 //Add/ s u b t r a c t t h e number o f p r o c e s s

863 i f (added np != 0)

864 np f += added np ;

865 f loat Rhn = P/ np f ;

866 f loat MAX R = P/ core s ;

867 i f (Rhn > MAX R)

868 Rhn = MAX R;

869 return Rhn ;

870 }

871

872 f loat getRForWorker (struct worke r l oad ta sk ∗w l t , int worker){

873 f loat remote power = (w l t−>w loads + worker − 1)−>w cpu speed ;

874 f loat remote cpu ut i = (w l t−>w loads + worker − 1)−>w cpu ut i 2 ;

875 int r emote ext load avg = (w l t−>w loads + worker − 1)−>e s t imated load ;

876 int remote running procs = (w l t−>w loads + worker − 1)−>w running procs ;

877 int r emote core s = (w l t−>w loads + worker − 1)−>w cores ;

878 f loat R = getActualRelat ivePower (remote power , remote cpu ut i , r emote ext load avg ,

remote running procs + 1 , remote cores , 0 , (w l t−>w loads + worker − 1)−>w rank) ;

879 return R;

880 }

881

882 f loat getPredictedMoveTime (struct mobi l e ta sk ∗ w mt , struct worke r l oad ta sk ∗ w l t , int worker

){

883 f loat R 1 = w mt−>move stats . R source ;

884 i f (R 1 > w mt−>move stats . R dest)

885 R 1 = w mt−>move stats . R dest ;

886 w mt−>move stats . R 1 = R 1 ;

887 int da t a s i z e 1 = w mt−>move stats . d a t a s i z e ;

888 double net t ime 1 = w l t−>w loads−>net t imes . i n i t n e t t im e ;

889 double move time 1 = w mt−>move stats . move time ;

890 int da t a s i z e 2 = getTota lTaskSize (w mt) ;

891 double net t ime 2 = w l t−>w loads−>net t imes . cu r ne t t ime ;

892 f loat R 2 s = getRForWorker (w l t , rank) ;

893 f loat R 2 d = getRForWorker (w l t , worker) ;

894 f loat R 2 = R 2 s ;

895 i f (R 2 > R 2 d)

238

Appendix B. The HWFarm Skeleton Source Code

896 R 2 = R 2 d ;

897 w mt−>move stats . R 2 = R 2 ;

898

899 f loat W DS = 1 . 023 ;

900 f loat W R = 1 . 0 4 ;

901 f loat W L = 0 . 907 ;

902

903 double R e f f e c t = pow((R 1 / R 2) , W R) ;

904 double SD e f f e c t = pow((1 . 0∗ da t a s i z e 2 / d a t a s i z e 1) , W DS) ;

905

906 double ne t t ime mob i l i t y = (net t ime 2 < NET LAT THRESHOLD) ? NET LAT THRESHOLD : net t ime 2 ;

907 double net t ime a = (net t ime 1 < NET LAT THRESHOLD) ? NET LAT THRESHOLD : net t ime 1 ;

908 double Ne t e f f e c t = pow((ne t t ime mob i l i t y / net t ime a) , W L) ;

909

910 return (R e f f e c t ∗ SD e f f e c t ∗ Ne t e f f e c t) ∗ move time 1 ;

911 }

912

913 void taskOutput (struct t a sk poo l ∗ t p , void∗ output , int outLen , int outS i ze){

914 int t a s k i = 0 , output i = 0 , t a s k ou tpu t i = 0 ;

915 int ou tpu t s h i f t ;

916 struct t a sk poo l ∗ p = t p ;

917 while (p != NULL){

918 ou tpu t s h i f t = (t a s k i ∗ outLen) ∗ outS i ze ;

919 for (t a s k ou tpu t i = 0 ; t a s k ou tpu t i < outLen∗ outS i ze ; t a s k ou tpu t i++)

920 ∗ ((char∗) output + output i++) = ∗ ((char∗)p−>m task report−>m task−>output data +

ta sk ou tpu t i) ;

921 p = p−>next ;

922 t a s k i++;

923 }

924 }

925

926 void printWorkerLoadReport (struct worker load ∗ report , int n){

927 int i ;

928 p r i n t f (”

−−−\

n”) ;

929 p r i n t f (” [M/W]− W | no | t s | t o t t | Locked | s | co r e s | cache | CPU Freq | l . avg1 | l .

avg2 | e s t | ut i . 1 | ut i . 2 | run pro [%.3 f] \n” , (MPI Wtime () − startTime)) ;

930 p r i n t f (”

−−−\

n”) ;

931 for (i =1; i<n ; i++){

932 p r i n t f (”[%d]− %3d | %2d | %2d | %2d | %c | %c | %2d | %2d | %.2 f | ”

933 ” %2.2 f | %2.2 f | %2d | %3.2Lf | %3.2Lf | %d\n” ,

934 rank , r epor t [i −1] . w rank , r epor t [i −1] .m id ,

935 repor t [i −1] . cu r r en t ta sk s , r epor t [i −1] . t o t a l t a s k , (r epor t [i −1] . locked == 1 ? ’Y ’ :

’N ’) ,

936 ((r epor t [i −1] . s t a tu s == 1) ? ’B ’ : ((r epor t [i −1] . s t a tu s == 4) ? ’M’ : ’F ’)) , r epor t

[i −1] . w cores , r epor t [i −1] . w cache s i ze ,

937 repor t [i −1] . w cpu speed , r epor t [i −1] . w load avg 1 , r epor t [i −1] . w load avg 2 , r epor t

[i −1] . e s t imated load ,

938 repor t [i −1] . w cpu ut i 1 , r epor t [i −1] . w cpu ut i 2 , r epor t [i −1] . w running procs) ;

939 }

940 p r i n t f (”

−−−\

n”) ;

941 }

942

943 void updateWorkerStatus (struct worker load ∗ report , int n , int worker , int new status){

944 int i ;

945 for (i =1; i<n ; i++)

946 i f (r epor t [i −1] . w rank == worker)

947 repor t [i −1] . s t a tu s = new status ;

239

Appendix B. The HWFarm Skeleton Source Code

948 }

949

950 void updateWorkerStatusMoving (struct worker load ∗ report , int n , int source , int dest){

951 updateWorkerStatus (report , n , source , 4) ;

952 updateWorkerStatus (report , n , dest , 4) ;

953 }

954

955 void updateWorkerStatusWorking (struct worker load ∗ report , int n , int source , int dest){

956 updateWorkerStatus (report , n , source , 1) ;

957 updateWorkerStatus (report , n , dest , 1) ;

958 }

959

960 void r ecvMov ingNot i f i ca t ion (struct worker load ∗ report , int n , int w source , int msg code){

961 int∗ data = (int ∗) mal loc (s izeof (int) ∗2) ;

962 MPI Recv (data , 2 , MPI INT , w source , msg code , MPI COMMWORLD, &s ta tu s) ;

963 updateWorkerStatusMoving (report , n , w source , ∗(data+1)) ;

964 }

965

966 //Get t h e worker who w i l l r e c i e v e t h e nex t t a s k

967 void getValidWorker (int ∗ tasksPerWorker , int n , int ∗w){

968 int w i = 0 ;

969 for (w i = 0 ; w i < n ; w i++)

970 i f (tasksPerWorker [w i] > 0){

971 tasksPerWorker [w i]−−;

972 ∗w = w i+1;

973 return ;

974 }

975 }

976

977 struct mob i l e t a sk r epo r t ∗ getReadyTask (struct t a sk poo l ∗ t p){

978 struct t a sk poo l ∗ p = t p ;

979 while (p != NULL){

980 i f (p−>m task report−>t a s k s t a t u s == 0)

981 return p−>m task report ;

982 p = p−>next ;

983 }

984 return NULL;

985 }

986

987 ///Send t e rmina to r message to t h e f i n i s h e d worker

988 void terminateWorker (int w){

989 int msg code = TERMINATETHEWORKER;

990 MPI Send(&msg code , 1 , MPI INT , w, msg code , MPICOMMWORLD) ;

991 }

992

993 ///Send Terminator message to a l l p r o c e s s e s

994 void terminateWorkers (int ws){

995 int i =0;

996 for (i =1; i < ws ; i++)

997 terminateWorker (i) ;

998 }

999

1000 struct worker task ∗ newWorkerTask (struct worker task ∗ w t header , struct worker task ∗ w t){

1001 i f (w t header == NULL){

1002 w t header = w t ;

1003 w t header−>next = NULL;

1004 return w t header ;

1005 }

1006 struct worker task ∗ p = w t header ;

1007 while (p−>next != NULL)

1008 p = p−>next ;

1009 p−>next = w t ;

1010 p−>next−>next = NULL;

240

Appendix B. The HWFarm Skeleton Source Code

1011 return w t header ;

1012 }

1013

1014 void sendInit ia lWorkerLoad (struct worker load ∗ l l o ad , int master){

1015 int msg code = INIT LOAD FROM WORKER;

1016 MPI Send(&msg code , 1 , MPI INT , master , msg code , MPICOMMWORLD) ;

1017 MPI Send (l l o ad , s izeof (struct worker load) , MPI CHAR, master , msg code , MPICOMMWORLD) ;

1018 }

1019

1020 void sendWorkerLoad (void ∗ d , int l o a d i n f o s i z e , int master){

1021 int msg code = 1 ;

1022 MPI Send(&msg code , 1 , MPI INT , master , msg code , MPICOMMWORLD) ;

1023 MPI Send (&l o a d i n f o s i z e , 1 , MPI INT , master , msg code , MPICOMMWORLD) ;

1024 MPI Send (d , l o a d i n f o s i z e , MPI CHAR, master , msg code , MPICOMMWORLD) ;

1025 }

1026

1027 void obtainLatestLoad (int master){

1028 int msg code = LATEST LOAD REQUEST;

1029 MPI Send(&msg code , 1 , MPI INT , master , msg code , MPICOMMWORLD) ;

1030 }

1031

1032 void sendMoveReport (int∗ move report , int r e p o r t s i z e , int t a r g e t){

1033 int msg code = MOVEREPORTFROMWORKER;

1034 MPI Send(&msg code , 1 , MPI INT , target , msg code , MPICOMMWORLD) ;

1035 MPI Send (&r epo r t s i z e , 1 , MPI INT , target , msg code , MPICOMMWORLD) ;

1036 MPI Send (move report , r e p o r t s i z e , MPI INT , target , msg code , MPICOMMWORLD) ;

1037 }

1038

1039 void sendMoveReportToWorker (int target , int numTasks , int l oad no){

1040 int msg code = MOBILITY REQUEST FROM WORKER;

1041 MPI Send(&msg code , 1 , MPI INT , target , msg code , MPICOMMWORLD) ;

1042 int∗msg numTasks load no = (int ∗) mal loc (s izeof (int) ∗2) ;

1043 ∗msg numTasks load no = numTasks ;

1044 ∗(msg numTasks load no + 1) = load no ;

1045 MPI Send (msg numTasks load no , 2 , MPI INT , target , msg code , MPICOMMWORLD) ;

1046 f r e e (msg numTasks load no) ;

1047 }

1048

1049 void sendMoveReportToWorkers (struct worker move report ∗ w m report , struct worker load ∗ r epor t

){

1050 int i w = 0 ;

1051 for (; i w<numprocs−1; i w++){

1052 i f (i w != rank−1){

1053 i f ((w m report + i w)−>num of tasks > 0){

1054 int w = (w m report + i w)−>w id ;

1055 sendMoveReportToWorker ((w m report + i w)−>w id+1, (w m report + i w)−>num of tasks ,

(r epor t + w)−>m id) ;

1056 }

1057 }

1058 }

1059 }

1060

1061 // t ype : 1 −− mobi l e r e q u e s t r e c i e v e d

1062 // t ype : 2 −− mobi l e con f i rma t i on r e c e i v e d

1063 void updateMobileTaskReport (struct t a sk poo l ∗ t poo l , int task no , int type , int w){

1064 struct t a sk poo l ∗ p = t poo l ;

1065 for (; p!=NULL; p=p−>next){

1066 i f (p−>m task report−>t a s k i d == task no){

1067 i f (type == 1){

1068 p−>m task report−>t a s k s t a t u s = 3 ;

1069 p−>m task report−>m dep time [p−>m task report−>mob i l i t i e s] = MPI Wtime () ;

1070 break ;

1071 } else i f (type == 2){

241

Appendix B. The HWFarm Skeleton Source Code

1072 p−>m task report−>t a s k s t a t u s = 1 ;

1073 p−>m task report−>m arr t ime [p−>m task report−>mob i l i t i e s] = MPI Wtime () ;

1074 p−>m task report−>mob i l i t i e s++;

1075 p−>m task report−>task worker = w;

1076 }

1077 }

1078 }

1079 }

1080

1081 struct work e r l o c a l l o ad ∗ addWorkerLocalLoad (

1082 struct work e r l o c a l l o ad ∗ wlLoad ,

1083 f loat t per , f loat t s e c , f loat t l oad avg ,

1084 int t e s t l o ad avg , long double t cpu ut i , int t run proc){

1085 i f (wlLoad == 0){

1086 wlLoad = (struct work e r l o c a l l o ad ∗) mal loc (s izeof (struct work e r l o c a l l o ad)) ;

1087 wlLoad−>per = t pe r ;

1088 wlLoad−>sec = t s e c ;

1089 wlLoad−>l oad avg = t l oad avg ;

1090 wlLoad−>e s t l o ad avg = t e s t l o a d a v g ;

1091 wlLoad−>w cpu ut i = t cpu u t i ;

1092 wlLoad−>w running procs = t run proc ;

1093 wlLoad−>next = NULL;

1094 } else {

1095 struct work e r l o c a l l o ad ∗ pl = wlLoad ;

1096 while (pl−>next != NULL)

1097 pl = pl−>next ;

1098 pl−>next = (struct work e r l o c a l l o ad ∗) mal loc (s izeof (struct work e r l o c a l l o ad)) ;

1099 pl−>next−>per = t pe r ;

1100 pl−>next−>sec = t s e c ;

1101 pl−>next−>l oad avg = t l oad avg ;

1102 pl−>next−>e s t l o ad avg = t e s t l o a d a v g ;

1103 pl−>next−>w cpu ut i = t cpu u t i ;

1104 pl−>next−>w running procs = t run proc ;

1105 pl−>next−>next = 0 ;

1106 }

1107 return wlLoad ;

1108 }

1109

1110 void recordLocalR (struct worker task ∗ w ts , f loat P, int cores , double t cpu ut i , int

t run proc){

1111 struct worker task ∗ p = w ts−>next ;

1112 while (p != NULL){

1113 i f (! p−>m task−>done && p−>move status != 1){

1114 i f (p−>l o ca l R == 0)

1115 p−>l o ca l R = getActualRelat ivePower (P, t cpu ut i , 0 , t run proc , cores , 0 , rank) ;

1116 else

1117 p−>l o ca l R = (p−>l o ca l R + getActualRelat ivePower (P, t cpu ut i , 0 , t run proc , cores

, 0 , rank)) /2 ;

1118 }

1119 p = p−>next ;

1120 }

1121 }

1122

1123 void recordLocalLoad (struct worker task ∗ w ts , f loat t l oad avg ,

1124 int t e s t l o ad avg , long double t cpu ut i , int t run proc){

1125 struct worker task ∗ p = w ts−>next ;

1126 f loat t p e r = 0 ;

1127 f loat t s e c = 0 ;

1128 while (p != NULL){

1129 i f (! p−>m task−>done && p−>move status != 1){

1130 int i = p−>m task−>counter ;

1131 t p e r = ((i ∗ 100) / (f loat)p−>m task−>counter max) ;

1132 t s e c = MPI Wtime () − p−>w ta sk s t a r t ;

242

Appendix B. The HWFarm Skeleton Source Code

1133 p−>w l l oad = addWorkerLocalLoad (p−>w l load , t per , t s e c , t l oad avg , t e s t l o ad avg ,

t cpu ut i , t run proc) ;

1134 }

1135 p = p−>next ;

1136 }

1137 }

1138

1139 f loat ∗ getEstimatedExecutionTime (struct worke r l oad ta sk ∗ w l t , int n , struct worker task ∗ p

, int ∗ dest nps , struct e s t imat ed co s t ∗ e c , int cu r t a sk s){

1140 struct worker load w l o c a l l o ad s = w l t−>w l o c a l l o ad s ;

1141 int i = p−>m task−>counter ;

1142 //The work done b e f o r e

1143 f loat Wd before = p−>m task−>m work start [p−>m task−>moves−1] ;

1144 f loat Wd = ((i ∗ 100) / (f loat)p−>m task−>counter max) − p−>m task−>m work start [p−>m task−>

moves−1] ;

1145 //The t ime spen t here to p r o c e s s t h e work done

1146 f loat Te = MPI Wtime () − p−>w ta sk s t a r t ;

1147 // the work l e f t

1148 f loat Wl = 100 − Wd − Wd before ;

1149 // Tota l machine power (P=speed ∗ co r e s)

1150 f loat P = w l o c a l l o ad s . w cpu speed ;

1151 //Number o f co r e s f o r t h i s machine

1152 int co r e s = w l o c a l l o ad s . w cores ;

1153 f loat CPU UTI = w l o c a l l o ad s . w cpu ut i 2 ;

1154 int ESTIMATED LOAD AVG = w lo c a l l o ad s . e s t imated load ;

1155 int RUNNING PROCESSES = w l o c a l l o ad s . w running procs ;

1156 f loat Rhn = getActualRelat ivePower (P, CPU UTI , ESTIMATED LOAD AVG, RUNNING PROCESSES, cores ,

∗(des t nps + rank −1) , rank) ;

1157 f loat Rhe = p−>l o ca l R ;

1158 f loat Th = (Wl ∗ Rhe ∗ Te) /(Wd ∗ Rhn) ;

1159 //n : number o f workers

1160 //T: Array o f a l l e s t ima t ed e x e cu t i on t imes

1161 f loat ∗T = (f loat ∗) mal loc (s izeof (f loat) ∗ n) ;

1162 struct worker load ∗ w loads = w l t−>w loads ;

1163 int i T = 0 ;

1164 f loat Tn;

1165 for (; i T < n ; i T++){

1166 i f (i T == rank−1)

1167 T[i T] = Th ;

1168 else {

1169 f loat remote power = (w loads + i T)−>w cpu speed ;

1170 f loat remote cpu ut i = (w loads + i T)−>w cpu ut i 2 ;

1171 int r emote ext load avg = (w loads + i T)−>e s t imated load ;

1172 int remote running procs = (w loads + i T)−>w running procs ;

1173 int r emote core s = (w loads + i T)−>w cores ;

1174 f loat Rnn = getActualRelat ivePower (remote power , remote cpu ut i , r emote ext load avg ,

remote running procs + 1 , remote cores , ∗(des t nps + i T) , (w loads + i T)−>w rank) ;

1175 Tn = (Wl ∗ Rhe ∗ Te) /(Wd ∗ Rnn) ;

1176 T[i T] = Tn ;

1177 }

1178 }

1179 e c−>task no = p−>m task−>m task id ;

1180 e c−>cur EC = Th;

1181 e c−>spent he re = Te ;

1182 int i t = 0 , i w = 0 ;

1183 for (i t = 0 ; i t < cur ta sks −1; i t++){

1184 f loat Rhn = getActualRelat ivePower (P, CPU UTI , ESTIMATED LOAD AVG, RUNNING PROCESSES,

cores , (i t ∗−1)−1, rank) ;

1185 f loat Th = (Wl ∗ Rhe ∗ Te) /(Wd ∗ Rhn) ;

1186 i f ((Wd ∗ Rhn) != 0)

1187 e c−>cur EC af te r [i t] = Th ;

1188 else

1189 e c−>cur EC af te r [i t] = 0 ;

243

Appendix B. The HWFarm Skeleton Source Code

1190 }

1191 for (i T = 0 ; i T < n ; i T++){

1192 i f (i T != rank−1 && (w loads + i T)−>l ocked == 0){

1193 (e c−>other ECs + i w)−>w no = i T ;

1194 (e c−>other ECs + i w)−>move cost = getPredictedMoveTime (p−>m task , w l t , i T + 1) ;

1195 f loat remote power = (w loads + i T)−>w cpu speed ;

1196 f loat remote cpu ut i = (w loads + i T)−>w cpu ut i 2 ;

1197 int r emote ext load avg = (w loads + i T)−>e s t imated load ;

1198 int remote running procs = (w loads + i T)−>w running procs ;

1199 int r emote core s = (w loads + i T)−>w cores ;

1200 // A l l Es t imated c o s t s f o r a l l workers

1201 for (i t = 0 ; i t < cu r t a sk s ; i t++){

1202 f loat Rnn = getActualRelat ivePower (remote power , remote cpu ut i , r emote ext load avg

, remote running procs , remote cores , (i t + 1) , (w loads + i T)−>w rank) ;

1203 i f ((Wd ∗ Rnn) != 0)

1204 Tn = (Wl ∗ Rhe ∗ Te) /(Wd ∗ Rnn) ;

1205 else

1206 Tn = 0 ;

1207 (e c−>other ECs + i w)−>c o s t s [i t] = Tn ;

1208 }

1209 i w++;

1210 }

1211 }

1212 return T;

1213 }

1214

1215 void pr intEst imat ionCost (struct e s t imat ed co s t ∗ e c , int cur ta sks , int other worker count){

1216 int i t = 0 , i t 2 = 0 , i w = 0 ;

1217 p r i n t f (”∗∗\n”) ;

1218 p r i n t f (”∗∗∗∗∗∗∗∗ ESTIMATION COST FOR %d ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” , rank) ;

1219 p r i n t f (”∗∗\n”) ;

1220 for (i t =0; i t <cu r t a sk s ; i t++){

1221 p r i n t f (” task : %d , EC: %.3 f , Spent Here : %.3 f \n” , (e c + i t)−>task no , (e c + i t)−>

cur EC , (e c + i t)−>spent he re) ;

1222 p r i n t f (”\tEC HERE: ”) ;

1223 for (i t 2 =0; i t 2<cur ta sks −1; i t 2++)

1224 p r i n t f (”%10.3 f ” , (e c + i t)−>cur EC af te r [i t 2]) ;

1225 p r i n t f (”\n”) ;

1226 for (i w=0; i w<other worker count ; i w++){

1227 p r i n t f (”\tECs @ %d : ” , (((e c + i t)−>other ECs + i w)−>w no)) ;

1228 for (i t 2 =0; i t 2<cu r t a sk s ; i t 2++)

1229 p r i n t f (”%10.3 f ” , (((e c + i t)−>other ECs + i w)−>c o s t s [i t 2])) ;

1230 p r i n t f (” [Move Cost : %.4 f] ” , ((e c + i t)−>other ECs + i w)−>move cost) ;

1231 p r i n t f (”\n”) ;

1232 }

1233 p r i n t f (”\tNew Al l o ca t i on : w: %d , EC: %.3 f \n” , (e c + i t)−>to w , (e c + i t)−>to EC) ;

1234 }

1235 p r i n t f (”\n∗∗\n\n”) ;

1236 }

1237 // f i n d t h e b e s t mappin f o t t a s k s based on the e s t ima t ed c o s t s

1238 void findBestTaskMapping (struct e s t imat ed co s t ∗ e c , int cur ta sks , int w count){

1239 int ∗ task mapping = (int ∗) mal loc (s izeof (int) ∗(w count)) ;

1240 int i =0, i t =0, i new w=0;

1241 // i n i t i a l i z e t a s k mapping

1242 for (i =0; i<w count+1; i++)

1243 task mapping [i]=0;

1244 task mapping [rank−1] = cu r t a sk s ;

1245 // i n i t i a l i z e t h e t a s k a l l o c a t i o n

1246 for (i t =0; i t <cu r t a sk s ; i t++){

1247 (e c + i t)−>to w = rank −1;

1248 (e c + i t)−>to EC = (e c + i t)−>cur EC ;

1249 //Add the move c o s t

1250 for (i =0; i<w count ; i++)

244

Appendix B. The HWFarm Skeleton Source Code

1251 for (i new w=0; i new w<cu r t a sk s ; i new w++)

1252 ((e c + i t)−>other ECs+i)−>c o s t s [i new w] = ((e c + i t)−>other ECs+i)−>c o s t s [

i new w] + ((e c + i t)−>other ECs+i)−>move cost ;

1253 }

1254 int t r i a l = 0 , improved = 1 ;

1255 do{

1256 //Find the s l ow e s t t a s k ;

1257 int s t = −1;

1258 f loat s e c = −1;

1259 //To s e l e c t t h e f i r s t t a s k which i s t h e s l ow s t

1260 for (i t =0; i t <cu r t a sk s ; i t++){

1261 // to ga ran t e e t h a t t h e cu r r en t t a s k has spen t over than 2 sec f o r hav ing good

e s t ima t i on c o s t

1262 i f ((e c + i t)−>spent he re > 2){

1263 s t = (e c + i t)−>task no ;

1264 s e c = (e c + i t)−>to EC ;

1265 break ;

1266 }

1267 }

1268 // break i f t h e r e i s no t a s k whose spen t t ime here noe exceed 2 sec

1269 i f (s t == −1) break ;

1270 for (i t =0; i t <cu r t a sk s ; i t++){

1271 i f ((e c + i t)−>spent he re > 2){

1272 i f ((e c + i t)−>to EC > s e c){

1273 s e c = (e c + i t)−>to EC ;

1274 s t = (e c + i t)−>task no ;

1275 }

1276 }

1277 }

1278 //Find the b e s t new l o c a t i o n f o r t h e s l ow e s t t a s k

1279 for (i t =0; i t <cu r t a sk s ; i t++){

1280 i f ((e c + i t)−>task no == s t){

1281 int new w = (e c + i t)−>to w ;

1282 f loat new EC = s e c ;

1283 for (i =0; i<w count ; i++){

1284 int w = ((e c + i t)−>other ECs + i)−>w no ;

1285 i f (((e c + i t)−>other ECs + i)−>c o s t s [task mapping [w]] < new EC){

1286 new EC = ((e c + i t)−>other ECs + i)−>c o s t s [task mapping [w]] ;

1287 new w = w;

1288 }

1289 }

1290 i f (new w != (e c + i t)−>to w){

1291 (e c + i t)−>to w = new w ;

1292 (e c + i t)−>to EC = new EC ;

1293 // change t he mapping depend ing on the new f i n d i n g s

1294 task mapping [rank−1] = task mapping [rank−1] − 1 ;

1295 task mapping [(e c + i t)−>to w] = task mapping [(e c + i t)−>to w] + 1 ;

1296 } else

1297 improved = 0 ;

1298 break ;

1299

1300 }

1301 }

1302 i f (improved == 1){

1303 //Update t h e t a s k a l l o c a t i o n d e t a i l s depending on the new f i n d i n g s

1304 for (i t =0; i t <cu r t a sk s ; i t++){

1305 i f ((e c + i t)−>spent he re > 2)

1306 i f ((e c + i t)−>task no != s t){

1307 i f ((e c + i t)−>to w == rank −1)

1308 (e c + i t)−>to EC = (e c + i t)−>cur EC af te r [cu r t a sk s − task mapping [(

e c + i t)−>to w] − 1] ;

1309 else{

1310 int i n ew ec = 0 ;

245

Appendix B. The HWFarm Skeleton Source Code

1311 for (i new ec =0; i new ec<w count ; i new ec++)

1312 i f (((e c + i t)−>other ECs + i new ec)−>w no == task mapping [(e c + i t)

−>to w])

1313 (e c + i t)−>to EC = ((e c + i t)−>other ECs + i new ec)−>c o s t s [

task mapping [(e c + i t)−>to w] − 1] ;

1314 }

1315 }

1316 }

1317 }

1318 t r i a l ++;

1319 }while (improved == 1) ;

1320 }

1321

1322 void ∗worker es t imator (void ∗ arg){

1323 double est imator mid = 0 ;

1324 struct worke r l oad ta sk ∗ w l t = (struct worke r l oad ta sk ∗) (arg) ;

1325 struct worker task ∗ p ;

1326 int cu r t a sk s =0;

1327 #i f d e f SYS gett id

1328 p id t t i d = s y s c a l l (SYS gett id) ;

1329 #else

1330 #e r r o r ” SYS gett id unava i l ab l e on t h i s system”

1331 #end i f

1332 w l t−>e s t ima t o r t i d = t id ;

1333 struct worker move report ∗ w m report = w l t−>move report ;

1334 est imator mid = MPI Wtime () ;

1335 int i d = 0 ;

1336 p = w l t−>w tasks−>next ;

1337 cu r t a sk s = 0 ;

1338 while (p != NULL){

1339 i f (! p−>m task−>done && (p−>move status != 1))

1340 cu r t a sk s++;

1341 p = p−>next ;

1342 }

1343 p = w l t−>w tasks−>next ;

1344 i f (cu r t a sk s > 0){

1345 //new w i g h t s a f t e r chang ing t h e t a s k mapping

1346 int ∗ des t nps = (int ∗) mal loc (s izeof (int) ∗(numprocs−1)) ;

1347 for (i d =0; i d<numprocs−1; i d++)

1348 ∗(des t nps + i d) = 0 ;

1349 // i n i t t h e e s t ima t i on r e p o r t

1350 int i t = 0 , i w = 0 ;

1351 int other worker count = 0 ;

1352 for (i w=0; i w<numprocs−1; i w++){

1353 i f (i w != rank−1)

1354 i f ((w l t−>w loads + i w)−>l ocked == 0)

1355 other worker count++;

1356 }

1357 struct e s t imat ed co s t ∗ e c = (struct e s t imat ed co s t ∗) mal loc (s izeof (struct e s t imat ed co s t

) ∗ cu r t a sk s) ;

1358 for (i t =0; i t <cu r t a sk s ; i t++){

1359 (e c + i t)−>cur EC af te r = (f loat ∗) mal loc (s izeof (f loat) ∗ (cu r t a sk s − 1)) ;

1360 (e c + i t)−>other ECs = (struct o th e r e s t ima t ed c o s t s ∗) mal loc (s izeof (struct

o th e r e s t ima t ed c o s t s) ∗ other worker count) ;

1361 for (i w=0; i w<other worker count ; i w++){

1362 ((e c + i t)−>other ECs + i w)−>c o s t s = (f loat ∗) mal loc (s izeof (f loat) ∗ cu r t a sk s) ;

1363 }

1364 }

1365 i t = 0 ;

1366 int report done = 0 ;

1367 do{

1368 p = w l t−>w tasks−>next ;

1369 i t = 0 ;

246

Appendix B. The HWFarm Skeleton Source Code

1370 while (p != NULL){

1371 i f (! p−>m task−>done && (p−>move status != 1)){

1372 i f (p−>est imating move == NULL){

1373 // g e t t h e e s t ima t ed e x e cu t i on t ime f o r t h i s t a s k

1374 f loat ∗ T = getEstimatedExecutionTime (w l t , numprocs−1, p , dest nps , (e c + (

i t++)) , cu r t a sk s) ;

1375 // Se t t h e e s t ima t i on c o s t s on a l l o t h e r worker f o r t h i s t a s k

1376 p−>est imating move = (struct e s t imat ion ∗) mal loc (s izeof (struct e s t imat ion)) ;

1377 p−>estimating move−>e s t ima t i on c o s t s = T;

1378 p−>estimating move−>done = 0 ;

1379 p−>estimating move−>chosen des t = −1;

1380 p−>estimating move−>ga in pe r c = 0 ;

1381 p−>estimating move−>on d e s t r e c a l c = −1;

1382 } else{

1383 i f (p−>estimating move−>done != 1){

1384 // g e t t h e e s t ima t ed e x e cu t i on t ime f o r t h i s t a s k

1385 f loat ∗ T = getEstimatedExecutionTime (w l t , numprocs−1, p , dest nps , (e c

+ (i t++)) , cu r t a sk s) ;

1386 // Se t t h e e s t ima t i on c o s t s on a l l o t h e r worker f o r t h i s t a s k

1387 p−>est imating move = (struct e s t imat ion ∗) mal loc (s izeof (struct e s t imat ion))

;

1388 p−>estimating move−>e s t ima t i on c o s t s = T;

1389 p−>estimating move−>done = 0 ;

1390 p−>estimating move−>chosen des t = −1;

1391 p−>estimating move−>ga in pe r c = 0 ;

1392 p−>estimating move−>on d e s t r e c a l c = −1;

1393 }

1394 }

1395 }

1396 p = p−>next ;

1397 }

1398 est imator mid = MPI Wtime () ;

1399 findBestTaskMapping (e c , cur ta sks , o ther worker count) ;

1400 est imator mid = MPI Wtime () ;

1401 // I n i t move r e p o r t

1402 int i r = 0 ;

1403 for (i r =0; i r <numprocs−1; i r++){

1404 (w m report + i r)−>w id = i r ;

1405 (w m report + i r)−>num of tasks = 0 ;

1406 (w m report + i r)−> l i s t o f t a s k s = (int ∗) mal loc (s izeof (int)∗ cu r t a sk s) ;

1407 }

1408 for (i t =0; i t <cu r t a sk s ; i t++){

1409 for (i r =0; i r <numprocs−1; i r++){

1410 i f ((w m report + i r)−>w id == (e c + i t)−>to w){

1411 (w m report + i r)−> l i s t o f t a s k s [(w m report + i r)−>num of tasks] = (e c +

i t)−>task no ;

1412 (w m report + i r)−>num of tasks = (w m report + i r)−>num of tasks + 1 ;

1413 }

1414 }

1415 }

1416 report done = 1 ;

1417 }while (repor t done == 0) ;

1418 // c r e a t e move r e p o r t

1419 p = w l t−>w tasks−>next ;

1420 while (p != NULL){

1421 i f (! p−>m task−>done && (p−>move status != 1))

1422 p−>est imating move = NULL;

1423 p = p−>next ;

1424 }

1425 }

1426 i f (cu r t a sk s > 0)

1427 sendMoveReportToWorkers (w l t−>move report , w l t−>w loads) ;

1428 return NULL;

247

Appendix B. The HWFarm Skeleton Source Code

1429 }

1430

1431 void ∗worker s ta tus (void ∗arg){

1432 struct worke r l oad ta sk ∗ w l t = (struct worke r l oad ta sk ∗) (arg) ;

1433 //Get t h e t h r ead number (Thread/ Process ID)

1434 #i f d e f SYS gett id

1435 p id t t i d = s y s c a l l (SYS gett id) ;

1436 #else

1437 #e r r o r ” SYS gett id unava i l ab l e on t h i s system”

1438 #end i f

1439 w l t−>s t a t u s t i d = t id ;

1440 struct worker load ∗ l o c a l l o a d = (struct worker load ∗) mal loc (s izeof (struct worker load)) ;

1441 f loat l oad avg = getLoad () , p rev load avg ;

1442 int w cores = getNumberOfCores () ;

1443 f loat cpu f r eq = getCoresFreq () ;

1444 l o c a l l o ad−>w rank = rank ;

1445 s t rcpy (l o c a l l o ad−>w name , processor name) ;

1446 l o c a l l o ad−>m id = 0 ;

1447 l o c a l l o ad−>cu r r en t t a s k s = 0 ;

1448 l o c a l l o ad−>t o t a l t a s k = 0 ;

1449 l o c a l l o ad−>s t a tu s = 0 ;

1450 l o c a l l o ad−>w cores = w cores ;

1451 l o c a l l o ad−>w cache s i z e = 0 ;

1452 l o c a l l o ad−>w cpu speed = cpu f r eq ;

1453 l o c a l l o ad−>w load avg 1 = load avg ;

1454 l o c a l l o ad−>w load avg 2 = load avg ;

1455 l o c a l l o ad−>l ocked = 0 ;

1456 l o c a l l o ad−>e s t imated load = 0 ;

1457 l o c a l l o ad−>w cpu ut i 2 = 0 ;

1458

1459 int s ta t e worke r = getProce s sS ta te (w l t−>worker t id , 0 , 0) ;

1460 int s t a t e e s t ima t o r = getProce s sS ta t e (w l t−>worker t id , 1 , w l t−>e s t ima t o r t i d) ;

1461 l o c a l l o ad−>w running procs = getRunningProc () ;

1462

1463 l o c a l l o ad−>w running procs = l o c a l l o ad−>w running procs − s ta t e worke r − s t a t e e s t ima t o r −

1 ;

1464 i f (l o c a l l o ad−>w running procs < 0)

1465 l o c a l l o ad−>w running procs = 0 ;

1466

1467 long double ∗ a = (long double ∗) mal loc (s izeof (long double) ∗ 5) ;

1468 long double ∗ b = (long double ∗) mal loc (s izeof (long double) ∗ 5) ;

1469

1470 getCPUValues (b) ;

1471 long double per = 0 ;

1472 int rp ;

1473 l o c a l l o ad−>w cpu ut i 1 = per ;

1474 l o c a l l o ad−>w cpu ut i 2 = per ;

1475 w l t−>w l o c a l l o ad s = ∗ l o c a l l o a d ;

1476 sendInit ia lWorkerLoad (l o c a l l o ad , 0) ;

1477 prev load avg = load avg ;

1478 recordLocalR (w tasks , cpu freq , w cores , per , l o c a l l o ad−>w running procs) ;

1479 int l o a d i n f o s i z e = s izeof (int) + s izeof (int) + s izeof (f loat) + s izeof (long double) ;

1480 int i n t s i z e = s izeof (int) ;

1481 int f l o a t s i z e = s izeof (f loat) ;

1482 int e s t l o ad = −1;

1483 void ∗ d = (void∗) mal loc (l o a d i n f o s i z e) ;

1484 struct worker task ∗ p ;

1485 int cu r t a sk s =0;

1486 long double per 1 = per ;

1487 long double per 2 = per ;

1488 long double per 3 = per ;

1489 f loat POWER BASE = cpu f r eq / w cores ;

1490 f loat POWER LIMIT = 95 . 0 ;

248

Appendix B. The HWFarm Skeleton Source Code

1491 f loat cur arp = −1;

1492 f loat arp 1 = −1;

1493 f loat arp 2 = −1;

1494 while (1) {

1495 prev load avg = load avg ;

1496 // Obta in ing t h e l o c a l l oad

1497 setLoca lLoadIn fo (a , b , &per , &rp , &load avg) ;

1498 i f (w l t){

1499 w l t−>w l o c a l l o ad s . w load avg 1 = prev load avg ;

1500 w l t−>w l o c a l l o ad s . w load avg 2 = load avg ;

1501 w l t−>w l o c a l l o ad s . e s t imated load = e s t l o ad ;

1502 w l t−>w l o c a l l o ad s . w running procs = rp ;

1503 w l t−>w l o c a l l o ad s . w cpu ut i 1 = w l t−>w loads [rank −1] . w cpu ut i 2 ;

1504 w l t−>w l o c a l l o ad s . w cpu ut i 2 = per ;

1505 }

1506

1507 per 3 = per 2 ;

1508 per 2 = per 1 ;

1509 per 1 = per ;

1510

1511 ∗ ((int ∗)d) = rp ;

1512 ∗ ((int ∗) (d + i n t s i z e)) = e s t l o ad ;

1513 ∗ ((f loat ∗) (d + 2 ∗ i n t s i z e)) = load avg ;

1514 ∗ ((long double∗) (d + 2 ∗ i n t s i z e + f l o a t s i z e)) = per ;

1515

1516 recordLocalR (w tasks , cpu freq , w cores , per , rp) ;

1517

1518 //Get t h e cuuren t running t a s k s

1519 p = w l t−>w tasks−>next ;

1520 cu r t a sk s = 0 ;

1521 while (p != NULL){

1522 i f (! p−>m task−>done && (p−>move status != 1))

1523 cu r t a sk s++;

1524 p = p−>next ;

1525 }

1526 i f (cu r t a sk s > 0){

1527 cur arp = getActualRelat ivePower (cpu freq , per , e s t l oad , rp , w cores , 0 , rank) ;

1528 i f ((cur arp ∗ 100 / POWER BASE) < POWER LIMIT){

1529 i f (arp 1 == −1){

1530 arp 1 = cur arp ;

1531 } else {

1532 i f (arp 2 == −1){

1533 arp 2 = cur arp ;

1534 } else{

1535 //TRIGGER

1536 obtainLatestLoad (0) ;

1537 arp 1 = −1;

1538 arp 2 = −1;

1539 }

1540 }

1541 } else {

1542 arp 1 = −1;

1543 arp 2 = −1;

1544 }

1545 }

1546 }

1547 }

1548 ///Send g e t i n i t i a l l o ad r e q u e s t

1549 void not i fyMaster (int t i d , int target w , int master){

1550 int send code = MOBILITY NOTIFICATION FROM WORKER;

1551 int ∗ data = (int ∗) mal loc (s izeof (int) ∗2) ;

1552 ∗data = t i d ;

1553 ∗(data + 1) = target w ;

249

Appendix B. The HWFarm Skeleton Source Code

1554 MPI Send(&send code , 1 , MPI INT , master , send code , MPICOMMWORLD) ;

1555 MPI Send (data , 2 , MPI INT , master , send code , MPICOMMWORLD) ;

1556 }

1557

1558 void ∗ move mobi le task (void ∗ arg){

1559 struct worker task ∗ w t = (struct worker task ∗) arg ;

1560 while (w t−>go move == 0) us l e ep (1) ;

1561 w t−>m task−>m end time [w t−>m task−>moves−1] = MPI Wtime () ;

1562 pthread mutex lock (&mutex w sending) ;

1563 not i fyMaster (w t−>ta sk id , w t−>go to , 0) ;

1564 moving task = 1 ;

1565 sendMobileTask (w t−>m task , w t−>go to , WTOW) ;

1566 moving task = 0 ;

1567 pthread mutex unlock (&mutex w sending) ;

1568 return NULL;

1569 }

1570 ///Send g e t i n i t i a l l o ad r e q u e s t

1571 void sendInit ia lWorkerLoadRequest (int proc){

1572 int send code = LOAD REQUEST FROM MASTER;

1573 MPI Ssend(&send code , 1 , MPI INT , proc , send code , MPICOMMWORLD) ;

1574 }

1575

1576 // t ype : 0 −> send t a s k

1577 // t ype : 1 −> r ecv t a s k

1578 void modifyWorkerLoadReportM (struct worker load ∗ report , int source , int t a r g e t){

1579 repor t [source −1] . cu r r en t ta sk s −−;

1580 repor t [source −1] . m id++;

1581 repor t [source −1] . s t a tu s = 1 ;

1582 i f (r epor t [source −1] . c u r r en t t a s k s == 0)

1583 repor t [source −1] . s t a tu s = 0 ;

1584 repor t [target −1] . c u r r en t t a s k s++;

1585 repor t [target −1] . m id++;

1586 repor t [target −1] . s t a tu s = 1 ;

1587 }

1588

1589 // t ype : 0 −> send t a s k

1590 // t ype : 1 −> r ecv t a s k

1591 void modifyWorkerLoadReport (int w, struct worker load ∗ report , int n , int type){

1592 i f (type == 0){

1593 repor t [w−1] . c u r r en t t a s k s++;

1594 repor t [w−1] . s t a tu s = 1 ;

1595 } else i f (type == 1){

1596 repor t [w−1] . cu r r en t ta sk s −−;

1597 repor t [w−1] . t o t a l t a s k++;

1598 i f (r epor t [w−1] . c u r r en t t a s k s == 0)

1599 repor t [w−1] . s t a tu s = 0 ;

1600 }

1601 }

1602

1603 // send p ing message to t h e s e l e c t e d worker

1604 void getInitNetworkLatency (struct worker load ∗ w report){

1605 double p ing va lue = sendPing (w report−>w name) ;

1606 i f (p ing va lue != 0 . 0)

1607 w report−>net t imes . i n i t n e t t im e = ping va lue ;

1608 }

1609

1610 void get In i t ia lWorkerLoad (struct worker load ∗ report , int n){

1611 int i =0;

1612 for (i =1; i<n ; i++)

1613 sendInit ia lWorkerLoadRequest (i) ;

1614 int msg code = −1;

1615 int w = 0 ;

1616 for (i =1; i<n ; i++){

250

Appendix B. The HWFarm Skeleton Source Code

1617 MPI Recv(&msg code , 1 , MPI INT , MPI ANY SOURCE, MPI ANY TAG, MPI COMMWORLD, &s ta tu s) ;

1618 w = sta tu s .MPI SOURCE;

1619 i f (msg code == 1){

1620 MPI Recv(&repor t [w−1] , s izeof (struct worker load) , MPI CHAR, w, MPI ANY TAG,

MPI COMMWORLD, &s ta tu s) ;

1621 getInitNetworkLatency(&repor t [w−1]) ;

1622 }

1623 }

1624 printWorkerLoadReport (report , n) ;

1625 }

1626

1627 void setWorkerLoad (struct worker load ∗ report , int n , int source , int tag){

1628 int l o a d i n f o s i z e = 0 ;

1629 MPI Recv(& l o a d i n f o s i z e , 1 , MPI INT , source , tag , MPI COMMWORLD, &s ta tu s) ;

1630 void ∗ l o a d i n f o = (void ∗) mal loc (l o a d i n f o s i z e) ;

1631 MPI Recv (l o ad in f o , l o a d i n f o s i z e , MPI CHAR, source , tag , MPI COMMWORLD, &s ta tu s) ;

1632 repor t [source −1] . m id++;

1633 repor t [source −1] . w load avg 1 = repor t [source −1] . w load avg 2 ;

1634 repor t [source −1] . w load avg 2 = ∗ ((f loat ∗) (l o a d i n f o + 2 ∗ s izeof (int))) ;

1635 repor t [source −1] . e s t imated load = ∗ ((int ∗) (l o a d i n f o + s izeof (int))) ;

1636 repor t [source −1] . w cpu ut i 1 = repor t [source −1] . w cpu ut i 2 ;

1637 repor t [source −1] . w cpu ut i 2 = ∗ ((long double ∗) (l o a d i n f o + 2 ∗ s izeof (int) + s izeof (f loat))

) ;

1638 repor t [source −1] . w running procs = ∗ ((int ∗) l o a d i n f o) ;

1639 }

1640

1641 void c i r cu la t eWorkerLoadRepor t In i t i a l (struct worker load ∗ report , int n){

1642 int i = 1 ;

1643 int send code = UPDATE LOAD REPORT REQUEST;

1644 int r e p o r t s i z e = s izeof (struct worker load) ∗(n−1) ;

1645 while (∗ (masterRece iv ing + (i) − 1) == 1) us l e ep (1) ;

1646 ∗(masterSending + i − 1) = 1 ;

1647 double l o ad agen t t 1 ;

1648 l oad agen t t 1 = MPI Wtime () ;

1649 double new net l a t = MPI Wtime () ;

1650 MPI Ssend(&send code , 1 , MPI INT , i , send code , MPICOMMWORLD) ;

1651 new net l a t = MPI Wtime () − new net l a t ;

1652 MPI Send(& r ep o r t s i z e , 1 , MPI INT , i , send code , MPICOMMWORLD) ;

1653 MPI Send (report , r e p o r t s i z e , MPI CHAR, i , send code , MPICOMMWORLD) ;

1654 ∗(masterSending + i − 1) = 0 ;

1655 }

1656

1657 void sendLatestLoad (struct worker load ∗ report , int n , int worker){

1658 int i = worker ;

1659 int send code = LOAD INFO FROM MASTER;

1660 int r e p o r t s i z e = s izeof (struct worker load) ∗(n−1) ;

1661 while (∗ (masterRece iv ing + (i) − 1) == 1) us l e ep (1) ;

1662 ∗(masterSending + i − 1) = 1 ;

1663 MPI Send(&send code , 1 , MPI INT , i , send code , MPICOMMWORLD) ;

1664 MPI Send(& r ep o r t s i z e , 1 , MPI INT , i , send code , MPICOMMWORLD) ;

1665 MPI Send (report , r e p o r t s i z e , MPI CHAR, i , send code , MPICOMMWORLD) ;

1666 ∗(masterSending + i − 1) = 0 ;

1667 }

1668

1669 void circulateWorkerLoadReport (struct worker load ∗ report , int to worker , int n){

1670 int i = to worker ;

1671 int send code = UPDATE LOAD REPORT REQUEST;

1672 int r e p o r t s i z e = s izeof (struct worker load) ∗(n−1) ;

1673 pthread mutex lock (&mutex l oad c i r cu l a t i ng) ;

1674 MPI Send(&send code , 1 , MPI INT , i , send code , MPICOMMWORLD) ;

1675 MPI Send(& r ep o r t s i z e , 1 , MPI INT , i , send code , MPICOMMWORLD) ;

1676 MPI Send (report , r e p o r t s i z e , MPI CHAR, i , send code , MPICOMMWORLD) ;

1677 pthread mutex unlock (&mutex l oad c i r cu l a t i ng) ;

251

Appendix B. The HWFarm Skeleton Source Code

1678 }

1679

1680 void recvWorkerLoadReport (struct worker load ∗ report , int source , int tag){

1681 int r e p o r t s i z e = 0 ;

1682 MPI Recv(& r ep o r t s i z e , 1 , MPI INT , source , tag , MPI COMMWORLD, &s ta tu s) ;

1683 MPI Recv (report , r e p o r t s i z e , MPI CHAR, source , tag , MPI COMMWORLD, &s ta tu s) ;

1684 }

1685

1686 int selectWorkerToCheckLatency (struct worker load ∗ report , int n){

1687 int w = −1;

1688 int i ;

1689 for (i = 0 ; i < n ; i++){

1690 i f (r epor t [i] . s t a tu s != 4){

1691 w = repor t [i] . w rank ;

1692 break ;

1693 }

1694 }

1695 return w;

1696 }

1697

1698 void∗ networkLatencyFun (void ∗ arg){

1699 struct worker load ∗ w load repor t = (struct worker load ∗) arg ;

1700 double new net l a t = 0 ;

1701 int w = −1;

1702 while (1) {

1703 for (w=0;w<numprocs−1;w++){

1704 new net l a t = sendPing (w load repor t [w] . w name) ;

1705 w load repor t [w] . ne t t imes . cu r ne t t ime = new net l a t ;

1706 }

1707 printWorkerLoadReport (w load report , numprocs) ;

1708 s l e ep (3) ;

1709 }

1710 }

1711

1712 void∗ workerLoadReportFun (void ∗ arg){

1713 struct worker load ∗ w load repor t = (struct worker load ∗) arg ;

1714 int i =0;

1715 while (1) {

1716 s l e ep (1) ;

1717 double c i r c s t a r t = MPI Wtime () ;

1718 c i r cu la t eWorke rLoadRepor t In i t i a l (w load report , numprocs) ;

1719 i f (i++ == 3)

1720 sendLatestLoad (w load report , numprocs , 1) ;

1721 double c i r c end = MPI Wtime () ;

1722 p r i n t f (”[%d] . c i r c t ime : %l f \n” , rank , c i r c end − c i r c s t a r t) ;

1723 }

1724 }

1725

1726 /// send con f i rma t i on to worker f o r a c c e p t i n g r e c e i v i n g t h e r e s u l t from the worker

1727 void sendRecvConfirmation (int w){

1728 int send code = SENDING CONFIRMATION FROM MASTER;

1729 MPI Send(&send code , 1 , MPI INT , w, send code , MPICOMMWORLD) ;

1730 }

1731

1732 void sendMobileConfirmationToWorker (int w, int permi t t ed ta sk s){

1733 int send code = MOBILITY ACCEPTANCE FROM WORKER;

1734 //Send con f i rma t i on to t h e source worker

1735 MPI Send(&send code , 1 , MPI INT , w, send code , MPICOMMWORLD) ;

1736 MPI Send(&permit ted tasks , 1 , MPI INT , w, send code , MPICOMMWORLD) ;

1737 }

1738

1739 void sendMobileConfirmation (int t i d , int source , int master){

1740 int send code = MOBILITY CONFIRMATION FROM WORKER;

252

Appendix B. The HWFarm Skeleton Source Code

1741 //Send con f i rma t i on to t h e master

1742 MPI Send(&send code , 1 , MPI INT , master , send code , MPICOMMWORLD) ;

1743 int move conf irmation [2] ;

1744 move conf irmation [0] = source ;

1745 move conf irmation [1] = t i d ;

1746 MPI Send (move confirmation , 2 , MPI INT , master , send code , MPICOMMWORLD) ;

1747 //Send Conf i rmat ion to t h e source worker

1748 MPI Send(&send code , 1 , MPI INT , source , send code , MPICOMMWORLD) ;

1749 MPI Send(&t id , 1 , MPI INT , source , send code , MPICOMMWORLD) ;

1750 }

1751

1752 void recvMobileConfirmationM (struct worker load ∗ report , struct t a sk poo l ∗ pool , int w, int

msg code){

1753 int move conf irmation [2] ;

1754 MPI Recv (move confirmation , 2 , MPI INT , w, msg code , MPI COMMWORLD, &s ta tu s) ;

1755 //Update t h e worker r e p o r t .

1756 modifyWorkerLoadReportM (report , move conf irmation [0] , w) ;

1757 //Update t h e t a s k poo l r e p o r t

1758 updateMobileTaskReport (pool , move conf irmation [1] , 2 , move conf irmation [0]) ;

1759 }

1760

1761 void sendMultiMsgs (void ∗ input , int dataLen , int l im i t , int proc , int tag , MPI Datatype dataType

){

1762 int msgCount = (dataLen/ l im i t) ;

1763 i f ((dataLen % l im i t) != 0) msgCount++;

1764 int msgSize ;

1765 int i =0;

1766 MPI Ssend(&msgCount , 1 , MPI INT , proc , tag , MPICOMMWORLD) ;

1767 for (i = 0 ; i<msgCount ; i++){

1768 i f (dataLen < l im i t)

1769 msgSize = dataLen ;

1770 else

1771 msgSize = l im i t ;

1772 MPI Ssend (input + (i ∗ l im i t) , msgSize , dataType , proc , tag + i + 1 , MPICOMMWORLD) ;

1773 dataLen = dataLen − msgSize ;

1774 }

1775 }

1776

1777 void recvMultiMsgs (void ∗ input , int dataLen , int l im i t , int source , MPI Datatype dataType , int

tag){

1778 int msgSize ;

1779 int msgCount ;

1780 int i =0;

1781 MPI Recv(&msgCount , 1 , MPI INT , source , tag , MPI COMMWORLD, &s ta tu s) ;

1782 for (i = 0 ; i<msgCount ; i++){

1783 i f (dataLen < l im i t)

1784 msgSize = dataLen ;

1785 else

1786 msgSize = l im i t ;

1787 MPI Recv (input + (i ∗ l im i t) , msgSize , dataType , source , tag + i + 1 , MPI COMMWORLD, &

s ta tu s) ;

1788 dataLen = dataLen − msgSize ;

1789 }

1790 }

1791 //Send the shared data to a worker

1792 void sendSharedData (void ∗ shared data , int data len , int w){

1793 i f (da ta l en != 0){

1794 int send code = SHARED DATA FROM MASTER;

1795 MPI Ssend(&send code , 1 , MPI INT , w, send code , MPICOMMWORLD) ;

1796 MPI Ssend(&data len , 1 , MPI INT , w, send code , MPICOMMWORLD) ;

1797 sendMultiMsgs (shared data , data len , MSG LIMIT, w, send code , MPI CHAR) ;

1798 }

1799 }

253

Appendix B. The HWFarm Skeleton Source Code

1800 //Send the shared data to a l l workers

1801 void sendSharedDataToAll (void ∗ shared data , int sha r ed da ta s i z e , int shared data l en , int n){

1802 int i =0;

1803 for (i =1; i<n ; i++)

1804 sendSharedData (shared data , s h a r ed da t a s i z e ∗ shared data l en , i) ;

1805 }

1806

1807 void initHWFarm(int argc , char ∗∗ argv){

1808 int provided ;

1809 MPI In i t thread(&argc , &argv , MPI THREAD MULTIPLE, &provided) ;

1810 MPI Comm size (MPI COMMWORLD, &numprocs) ;

1811 MPI Comm rank(MPI COMMWORLD, &rank) ;

1812 MPI Get processor name (processor name , &namelen) ;

1813 startTime = MPI Wtime () ;

1814 }

1815

1816 void finalizeHWFarm () {

1817 MPI Final ize () ;

1818 }

1819

1820 void hwfarm(fp worker , int tasks ,

1821 void ∗ input , int i nS i ze , int inLen ,

1822 void ∗ shared data , int sha r ed da ta s i z e , int shared data l en ,

1823 void ∗output , int outSize , int outLen , hwfarm state main state ,

1824 int mobi l i ty){

1825

1826 MPI Barrier (MPICOMMWORLD) ;

1827 //MASTER PROCESS

1828 i f (rank == 0){

1829 s t a r t t ime = MPI Wtime () ;

1830 int m cores = getNumberOfCores () ;

1831 i f (m cores == 0)

1832 m cores = 1 ;

1833 Master FREQ = getCoresFreq () / m cores ;

1834 int w=0, w msg code = 0 , mR = 0 , dest w = −1, w i = 0 ;

1835 i f (i s F i r s t C a l l){

1836 w load repor t = (struct worker load ∗) mal loc (s izeof (struct worker load)∗ (numprocs − 1)

) ;

1837 w load report tmp = (struct worker load ∗) mal loc (s izeof (struct worker load)∗ (numprocs

− 1)) ;

1838 get In i t ia lWorkerLoad (w load report , numprocs) ;

1839 }

1840 struct t a sk poo l ∗ pool = 0 ;

1841 pool = c r e a t e t a s k po o l (tasks , input , inLen , inS i ze ,

1842 output , outLen , outSize ,

1843 main state . s ta t e data , main state . s t a t e l e n ,

1844 main state . counter , main state . max counter) ;

1845 masterRece iv ing = (int ∗) mal loc ((s izeof (int) ∗ (numprocs − 1))) ;

1846 masterSending = (int ∗) mal loc ((s izeof (int) ∗ (numprocs − 1))) ;

1847 for (mR = 0 ; mR < numprocs − 1 ; mR++){

1848 ∗(masterRece iv ing + mR) = 0 ;

1849 ∗(masterSending + mR) = 0 ;

1850 }

1851

1852 struct mob i l e t a sk r epo r t ∗ m t r ;

1853 int p r o c e s s i n g t a s k s = 0 ;

1854

1855 // D i s t r i b u t i n g t a s k s based on l oad on workers based on the a l l o c a t i o n model

1856 int WORKERSCOUNT = numprocs − 1 ;

1857 int ∗ tasksPerWorker = (int ∗) mal loc (s izeof (int) ∗ WORKERSCOUNT) ;

1858 int d i s t a s k s = tasks ;

1859 for (w i = 0 ; w i < WORKERSCOUNT; w i++)

1860 tasksPerWorker [w i] = 0 ;

254

Appendix B. The HWFarm Skeleton Source Code

1861

1862 int C=0;// Tota l number o f co r e s f o r a l l workers

1863 for (w i = 0 ; w i < WORKERSCOUNT; w i++)

1864 C += w load repor t [w i] . w cores ;

1865 i f (C > 0 && d i s t a s k s > 0){

1866 for (w i = 0 ; w i < WORKERSCOUNT; w i++){

1867 int d i s t a s k i = c e i l (w load repor t [w i] . w cores ∗ d i s t a s k s ∗ 1 .0 / C) ;

1868 tasksPerWorker [w i] = d i s t a s k i ;

1869 d i s t a s k s −= d i s t a s k i ;

1870 C −= w load repor t [w i] . w cores ;

1871 i f (d i s t a s k s <= 0) break ;

1872 }

1873 }

1874 ///Send the shared data to t h e workers

1875 sendSharedDataToAll (shared data , sha r ed da ta s i z e , shared data l en , numprocs) ;

1876 ///Send the t a s k s to t h e workers

1877 while ((m t r = getReadyTask (pool)) != NULL){

1878 ///Get t h e numbers o f t a s k s a l l o c a t e d to each worker

1879 getValidWorker (tasksPerWorker , WORKERSCOUNT, &dest w) ;

1880 i f (dest w == −1)

1881 break ;

1882 ///Send the t a s k to t h e s e l e c t e d worker ’ d e s t w ’

1883 sendMobileTaskM (m t r , dest w) ;

1884 ///Modify t h e s t a t u s o f t h e worker

1885 modifyWorkerLoadReport (dest w , w load report , numprocs , 0) ;

1886 p r o c e s s i n g t a s k s++;

1887 }

1888

1889 i f (i s F i r s t C a l l){

1890 pthread c r ea t e (&w load repor t th , NULL, workerLoadReportFun , w load repor t) ;

1891 pth read c r ea t e (&w network latency th , NULL, networkLatencyFun , w load repor t) ;

1892 i s F i r s t C a l l = 0 ;

1893 }

1894

1895 do{

1896 ///Rece ive t h e msg code f i r s t ; depend ing on t h i s code ,

1897 /// the t ype o f da ta w i l l be d e t e c t e d

1898 recvMsgCode(&w,&w msg code) ;

1899 ///Load comes from a worker

1900 i f (w msg code == INIT LOAD FROM WORKER){

1901 setWorkerLoad (w load report , numprocs , w, w msg code) ;

1902 } else i f (w msg code == LATEST LOAD REQUEST){

1903 sendLatestLoad (w load report , numprocs , w) ;

1904 } else i f (w msg code == UPDATE LOAD REPORT REQUEST){

1905 recvWorkerLoadReport (w load report tmp , w, w msg code) ;

1906 int i =0;

1907 for (i =0; i<numprocs−1; i++){

1908 w load repor t [i] . m id = w load report tmp [i] . m id ;

1909 w load repor t [i] . w load avg 1 = w load report tmp [i] . w load avg 1 ;

1910 w load repor t [i] . w load avg 2 = w load report tmp [i] . w load avg 2 ;

1911 w load repor t [i] . e s t imated load = w load report tmp [i] . e s t imated load ;

1912 w load repor t [i] . w running procs = w load report tmp [i] . w running procs ;

1913 w load repor t [i] . w cpu ut i 1 = w load report tmp [i] . w cpu ut i 1 ;

1914 w load repor t [i] . w cpu ut i 2 = w load report tmp [i] . w cpu ut i 2 ;

1915 w load repor t [i] . l ocked = w load report tmp [i] . l ocked ;

1916 }

1917

1918 printWorkerLoadReport (w load report , numprocs) ;

1919 } else i f (w msg code == RESULTS FROM WORKER){

1920 ∗(masterRece iv ing + w − 1) = 1 ;

1921 while (∗ (masterSending + (w) − 1) == 1) us l e ep (1) ;

1922 ///Send con f i rma t i on to t h e worker ’w ’ to p r o c e s s

1923 sendRecvConfirmation (w) ;

255

Appendix B. The HWFarm Skeleton Source Code

1924 ///modi fy t h e l oad s t a t u s f o r t h e sender ;w : worker who

1925 /// f i n i s h e d e x e c u t i n g t h e t a s k

1926 modifyWorkerLoadReport (w, w load report , numprocs , 1) ;

1927 printWorkerLoadReport (w load report , numprocs) ;

1928 p ro c e s s i ng t a sk s −−;

1929 ///Rece ive t h e t a s k r e s u l t s

1930 recvMobileTaskM (pool , w, w msg code) ;

1931 ///Unlock t h e r e c e i v i n g from t h a t worker ’w ’

1932 ∗(masterRece iv ing + w − 1) = 0 ;

1933 /// I f t h e r e are t a s k s in t h e t a s k poo l

1934 i f ((m t r = getReadyTask (pool)) != NULL){

1935 dest w = w;

1936 sendMobileTaskM (m t r , dest w) ;

1937 modifyWorkerLoadReport (dest w , w load report , numprocs , 0) ;

1938 printWorkerLoadReport (w load report , numprocs) ;

1939 p r o c e s s i n g t a s k s++;

1940 }

1941

1942 } else i f (w msg code == MOBILITY CONFIRMATION FROM WORKER){

1943 ///Rece ive a con f i rma t i on from the workers who made the

1944 ///movements to modi fy t h e worker s t a t u s

1945 recvMobileConfirmationM (w load report , pool , w, w msg code) ;

1946 printWorkerLoadReport (w load report , numprocs) ;

1947 } else i f (w msg code == MOBILITY NOTIFICATION FROM WORKER){

1948 ///Rece ive moving op e r a t i on occurs now

1949 recvMov ingNot i f i ca t ion (w load report , numprocs , w, w msg code) ;

1950 }

1951 }while (p r o c e s s i n g t a s k s > 0) ;

1952 terminateWorkers (numprocs) ;

1953 taskOutput (pool , output , outLen , outS i ze) ;

1954 f r e e (pool) ;

1955 end time = MPI Wtime () ;

1956 p r i n t f (”Total Time : %.5 f \n” , end time − s t a r t t ime) ;

1957

1958 } else {//WORKER PROCESS

1959 int w = 0 , w msg code = 0 ;

1960 w tasks = (struct worker task ∗) mal loc (s izeof (struct worker task)) ;

1961 w tasks−>t a s k i d = −1;

1962 w tasks−>next = NULL;

1963 i f (i s F i r s t C a l l){

1964 worke r s l o ad r epo r t = (struct worker load ∗) mal loc (s izeof (struct worker load) ∗ (

numprocs−1)) ;

1965 w l t = (struct worke r l oad ta sk ∗) mal loc (s izeof (struct worke r l oad ta sk)) ;

1966 w l t−>w loads = worke r s l o ad r epo r t ;

1967 w l t−>move report = (struct worker move report ∗) mal loc (s izeof (struct

worker move report) ∗(numprocs−1)) ;

1968 i s F i r s t C a l l = 0 ;

1969 }

1970 w l t−>w tasks = w tasks ;

1971 w l t−>hold . on hold = 0 ;

1972 w l t−>hold . holded on = 0 ;

1973 w l t−>hold . holded from = 0 ;

1974 w l t−>hold . ho ld t ime = 0 ;

1975 w l t−>worker t id = getp id () ;

1976 /// Po in t e r to t h e shared data which w i l l be a c c e b i l e amongst a l l t a s k s

1977 void ∗ shared data = NULL;

1978 int w sha r ed t o t a l s i z e = 0 ;

1979 do{

1980 ///Rece ive t h e message code from the master or from the

1981 /// source worker who wants to send the t a s k to i t .

1982 recvMsgCode(&w, &w msg code) ;

1983 ///Run the worker l aod agen t

1984 i f (w msg code == LOAD REQUEST FROM MASTER){

256

Appendix B. The HWFarm Skeleton Source Code

1985 pthread c r ea t e (&w load pth , NULL, worker s tatus , w l t) ;

1986 } else i f (w msg code == TERMINATETHEWORKER){

1987 p r i n t f (”[%d] . TERMINATETHEWORKER.\n” , rank) ;

1988 break ;

1989 } else i f (w msg code == LOAD INFO FROM MASTER){

1990 recvWorkerLoadReport (w l t−>w loads , w, w msg code) ;

1991 printWorkerLoadReport (w l t−>w loads , numprocs) ;

1992 i f (mob i l i ty == 1)

1993 pthread c r ea t e (&w est imator pth , NULL, worker est imator , w l t) ;

1994 } else i f (w msg code == SENDING CONFIRMATION FROM MASTER){

1995 worker sending = 1 ;

1996 } else i f (w msg code == MOBILITY ACCEPTANCE FROM WORKER){

1997 int num tasks = 0 ;

1998 MPI Recv(&num tasks , 1 , MPI INT , w, w msg code , MPI COMMWORLD, &s ta tu s) ;

1999 i f (num tasks > 0){

2000 i f (w l t−>move report != NULL){

2001 int cur num of tasks = (w l t−>move report + w − 1)−>num of tasks ;

2002 int ∗ c u r l i s t o f t a s k s = (w l t−>move report + w − 1)−> l i s t o f t a s k s ;

2003 i f (cur num of tasks > 0 && cur num of tasks >= num tasks)

2004 i f (c u r l i s t o f t a s k s != NULL){

2005 int i t t = 0 ;

2006 for (i t t =0; i t t <num tasks ; i t t++){

2007 p r i n t f (”%d\n” , ∗(c u r l i s t o f t a s k s + i t t)) ;

2008 struct worker task ∗ wT = w tasks−>next ;

2009 for (;wT!=0;wT=wT−>next){

2010 i f ((∗ (c u r l i s t o f t a s k s + i t t) == wT−>t a s k i d) && (wT−>

move status != 1)){

2011 wT−>move = 1 ;

2012 wT−>go to = w;

2013 i f (wT−>moving pth == 0)

2014 pthread c r ea t e (&wT−>moving pth , NULL, move mobile task , wT) ;

2015 break ;

2016 }

2017 }

2018 }

2019 }

2020 }

2021 } else {

2022 printWorkerLoadReport (w l t−>w loads , numprocs) ;

2023 }

2024 } else i f (w msg code == UPDATE LOAD REPORT REQUEST){

2025 recvWorkerLoadReport (w l t−>w loads , w, w msg code) ;

2026 w l t−>w loads [rank −1] . m id++;

2027 w l t−>w loads [rank −1] . w load avg 1 = w l t−>w l o c a l l o ad s . w load avg 1 ;

2028 w l t−>w loads [rank −1] . w load avg 2 = w l t−>w l o c a l l o ad s . w load avg 2 ;

2029 w l t−>w loads [rank −1] . e s t imated load = w l t−>w l o c a l l o ad s . e s t imated load ;

2030 w l t−>w loads [rank −1] . w running procs = w l t−>w l o c a l l o ad s . w running procs ;

2031 w l t−>w loads [rank −1] . w cpu ut i 1 = w l t−>w l o c a l l o ad s . w cpu ut i 1 ;

2032 w l t−>w loads [rank −1] . w cpu ut i 2 = w l t−>w l o c a l l o ad s . w cpu ut i 2 ;

2033 w l t−>w loads [rank −1] . locked = w l t−>w l o c a l l o ad s . locked ;

2034 i f (rank+1 < numprocs)

2035 circulateWorkerLoadReport (worke r s l oad repor t , rank+1, numprocs) ;

2036 else

2037 circulateWorkerLoadReport (worke r s l oad repor t , 0 , numprocs) ;

2038 } else i f (w msg code == TASK FROM MASTER){

2039 double t a s k n e t t = MPI Wtime () ;

2040 struct worker task ∗ w task = (struct worker task ∗) mal loc (s izeof (struct worker task)

) ;

2041 w task−>m task = (struct mobi l e ta sk ∗) mal loc (s izeof (struct mobi l e ta sk)) ;

2042 w task−>m task−>move stats . s tar t move t ime = MPI Wtime () ;

2043

2044 recvMobileTask (w task−>m task , w, M TO W, w msg code) ;

2045

257

Appendix B. The HWFarm Skeleton Source Code

2046 w task−>m task−>move stats . net t ime = ta s k n e t t − w task−>m task−>move stats .

s tar t move t ime ;

2047

2048 w task−>m task−>ta sk fun = worker ;

2049 // Se t Shared v a l u e s

2050 i f (shared data != NULL){

2051 w task−>m task−>shared data = shared data ;

2052 w task−>m task−>sha r ed data l eng th = w sha r ed t o t a l s i z e / sha r ed da t a s i z e ;

2053 w task−>m task−>s ha r ed da t a i t em s i z e = sha r ed da t a s i z e ;

2054 }

2055

2056 w task−>t a s k i d = w task−>m task−>m task id ;

2057 w task−>w ta sk s t a r t = MPI Wtime () ;

2058 w task−>w l l oad = NULL;

2059 w task−>move = 0 ;

2060 w task−>go move = 0 ;

2061 w task−>go to = 0 ;

2062 w task−>move status = 0 ;

2063 w task−>est imating move = NULL;

2064 w task−>moving pth = 0 ;

2065 w task−>l o ca l R = 0 ;

2066 w tasks = newWorkerTask (w tasks , w task) ;

2067 pth read c r ea t e (&w task−>task pth , NULL, workerMobileTask , w task−>m task) ;

2068 } else i f (w msg code == MOBILITY REQUEST FROM WORKER){

2069 int∗msg numTasks load no = (int ∗) mal loc (s izeof (int) ∗2) ;

2070 MPI Recv (msg numTasks load no , 2 , MPI INT , w, w msg code , MPI COMMWORLD, &s ta tu s) ;

2071 printWorkerLoadReport (w l t−>w loads , numprocs) ;

2072 int num task = ∗msg numTasks load no ;

2073 i f (w l t−>hold . on hold == 0){

2074 w l t−>hold . on hold = 1 ;

2075 w l t−>hold . holded on = num task ;

2076 w l t−>hold . holded from = w;

2077 w l t−>hold . ho ld t ime = MPI Wtime () ;

2078 w l t−>w l o c a l l o ad s . locked = 1 ;

2079 sendMobileConfirmationToWorker (w, num task) ;

2080 } else {

2081 s l e ep (1) ;

2082 sendMobileConfirmationToWorker (w, 0) ;

2083 }

2084 } else i f (w msg code == MOBILITY CONFIRMATION FROM WORKER){

2085 int t i d = −1;

2086 MPI Recv(&t id , 1 , MPI INT , w, w msg code , MPI COMMWORLD, &s ta tu s) ;

2087 w l t−>w loads [rank −1] . m id++;

2088 struct worker task ∗ wT = w tasks−>next ;

2089 for (;wT!=0;wT=wT−>next)

2090 i f (t i d == wT−>t a s k i d)

2091 i f (wT−>move == 1 && wT−>go move == 1 && wT−>move status == 0){

2092 wT−>move status = 1 ;

2093 break ;

2094 }

2095 } else i f (w msg code == TASKFROMWORKER){

2096 struct worker task ∗ w task = (struct worker task ∗) mal loc (s izeof (struct worker task)

) ;

2097 w task−>m task = (struct mobi l e ta sk ∗) mal loc (s izeof (struct mobi l e ta sk)) ;

2098 recvMobileTask (w task−>m task , w, W TO W, w msg code) ;

2099 w task−>m task−>ta sk fun = worker ;

2100 w task−>m task−>shared data = shared data ;

2101 w task−>t a s k i d = w task−>m task−>m task id ;

2102 w task−>w ta sk s t a r t = MPI Wtime () ;

2103 w task−>w l l oad = NULL;

2104 w task−>move = 0 ;

2105 w task−>go move = 0 ;

2106 w task−>go to = 0 ;

258

Appendix B. The HWFarm Skeleton Source Code

2107 w task−>move status = 0 ;

2108 w task−>est imating move = NULL;

2109 w task−>moving pth = 0 ;

2110 w task−>l o ca l R = 0 ;

2111 w tasks = newWorkerTask (w tasks , w task) ;

2112 // Sending a con f i rma t i on to t h e source worker . . .

2113 sendMobileConfirmation (w task−>ta sk id , w, 0) ;

2114 //Update t h e l oad no on l o c a l

2115 w l t−>w loads [rank −1] . m id++;

2116 w l t−>hold . holded on−−;

2117 i f (w l t−>hold . holded on == 0){

2118 w l t−>hold . on hold = 0 ;

2119 w l t−>hold . holded on = 0 ;

2120 w l t−>hold . ho ld t ime = 0 ;

2121 w l t−>w l o c a l l o ad s . locked = 0 ;

2122 }

2123 pthread c r ea t e (&w task−>task pth , NULL, workerMobileTask , w task−>m task) ;

2124 } else i f (w msg code == SHARED DATA FROM MASTER){

2125 shared data = recvSharedData (shared data , &w sha r ed t o t a l s i z e , w, w msg code) ;

2126 }

2127 }while (w msg code != TERMINATETHEWORKER) ;

2128 }

2129 MPI Barrier (MPICOMMWORLD) ;

2130 }

Listing B.2: The HWFarm Skeleton C source code

259

Bibliography

[1] Vmotion. VMware, inc. http://www.vmware.com/products/vcenter-server.

[2] Platform Computing, Inc. LSF 6.0 User’s Guide., ”2003. http://www-

03.ibm.com/systems/services/platformcomputing/lsf.html”.

[3] Recursion Software, Inc .2591 North Dallas Parkway, Suit 200, Frisco, TX

75034, Voyager User Guide, 2005. http://www.recursionsw.com.

[4] J. Abawajy. Autonomic Job Scheduling Policy for Grid Computing. In V. Sun-

deram, G. van Albada, P. Sloot, and J. Dongarra, editors, Computational Sci-

ence ICCS 2005, volume 3516 of Lecture Notes in Computer Science, pages

213–220. Springer Berlin Heidelberg, 2005.

[5] A. Aggarwal, A. K. Chandra, and M. Snir. On Communication Latency in

PRAM Computations. In Proceedings of the First Annual ACM Symposium

on Parallel Algorithms and Architectures, SPAA ’89, pages 11–21, New York,

NY, USA, 1989. ACM.

[6] A. Aggarwal, A. K. Chandra, and M. Snir. Communication Complexity of

PRAMs. Theor. Comput. Sci., 71(1):3–28, Mar. 1990.

[7] A. D. I. Al Zain. Implementing high-level parallelism on computational GRIDs.

PhD thesis, School of Mathematical and Computer Sciences, Heriot-Watt Uni-

versity, 2006.

[8] E. Alba, F. Almeida, M. Blesa, J. Cabeza, C. Cotta, M. Dı́az, I. Dorta,

J. Gabarró, C. León, J. Luna, et al. MALLBA: A library of skeletons for

260

BIBLIOGRAPHY

combinatorial optimisation. In Euro-Par 2002 Parallel Processing, pages 927–

932. Springer, 2002.

[9] M. Aldinucci, M. Danelutto, and P. Dazzi. Muskel: an expandable skeleton

environment. Scalable Computing: Practice and Experience, 8(4), 2001.

[10] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Skeletons for multi/many-core

systems. In Parallel Computing: From Multicores and GPU’s to Petascale

(Proc. of PARCO 2009, Lyon, France), pages 265–272, 2010.

[11] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati.

Accelerating code on multi-cores with FastFlow. In Euro-Par 2011 Parallel

Processing, pages 170–181. Springer, 2011.

[12] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment support-

ing structured parallel programming in Java. Future Generation Computer

Systems, 19(5):611–626, 2003.

[13] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:

Incorporating Long Messages into the LogP Model-One Step Closer Towards

a Realistic Model for Parallel Computation. In Proceedings of the Seventh

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA

’95, pages 95–105, New York, NY, USA, 1995. ACM.

[14] M. Ålind, M. V. Eriksson, and C. W. Kessler. BlockLib: a skeleton library

for Cell broadband engine. In Proceedings of the 1st international workshop

on Multicore software engineering, pages 7–14. ACM, 2008.

[15] M. Alt and S. Gorlatch. A prototype grid system using Java and RMI. In

Parallel Computing Technologies, pages 401–414. Springer, 2003.

[16] M. Alt and S. Gorlatch. Using skeletons in a Java-based grid system. In

Euro-Par 2003 Parallel Processing, pages 742–749. Springer, 2003.

261

BIBLIOGRAPHY

[17] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic

local alignment search tool. Journal of Molecular Biology, 215(3):403–410,

1990.

[18] L. O. Andersen. Program analysis and specialization for the C programming

language. PhD thesis, University of Cophenhagen, 1994.

[19] G. R. Andrews. Foundations of Parallel and Distributed Programming.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edi-

tion, 1999.

[20] J. N. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and

P. Stephan. Dome: Parallel Programming in a Heterogeneous Multi-User

Environment. Technical report, Pittsburgh, PA, USA, 1995.

[21] K. A. Armih. Toward Optimised Skeletons for Heterogeneous Parallel Archi-

tecture With Performance Cost Model. PhD thesis, School of Mathematical

and Computer Sciences, Heriot-Watt University, 2013.

[22] J. Arndt and C. Haenel. Pi-unleashed. Springer Science & Business Media,

2001.

[23] P. Au, J. Darlington, M. Ghanem, Y.-k. Guo, H. To, and J. Yang. Co-

ordinating heterogeneous parallel computation. In L. Boug, P. Fraigniaud,

A. Mignotte, and Y. Robert, editors, Euro-Par’96 Parallel Processing, volume

1123 of Lecture Notes in Computer Science, pages 601–614. Springer Berlin

Heidelberg, 1996.

[24] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a heterogeneous

environment for HPC applications. Parallel Computing, 25(13):1827–1852,

1999.

[25] A. Barak, S. Guday, and R. G. Wheeler. The MOSIX Distributed Operating

System: Load Balancing for UNIX. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 1993.

262

BIBLIOGRAPHY

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In ACM SIGOPS

Operating Systems Review, volume 37, pages 164–177. ACM, 2003.

[27] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A User’s

Guide to PVM Parallel Virtual Machine. Technical report, Knoxville, TN,

USA, 1991.

[28] E. Belloni and C. Marcos. Modeling of mobile-agent applications with UML.

In Proceedings of the Fourth Argentine Symposium on Software Engineering

(ASSE 2003), volume 32, pages 1666–1141, 2003.

[29] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible skeletal programming

with eSkel. In Euro-Par 2005 Parallel Processing, pages 761–770. Springer,

2005.

[30] F. Berman and R. Wolski. The AppLeS Project: A Status Report. In Pro-

ceedings of the 8th NEC Research Symposium, Berlin, Germany, May 1997.

[31] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP

vs LogP. In Proceedings of the eighth annual ACM symposium on Parallel

algorithms and architectures, pages 25–32. ACM, 1996.

[32] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1997.

[33] K. Birman. The promise, and limitations, of gossip protocols. ACM SIGOPS

Operating Systems Review, 41(5):8–13, 2007.

[34] H. Bischof, S. Gorlatch, and E. Kitzelmann. Cost optimality and pre-

dictability of parallel programming with skeletons. Parallel Processing Letters,

13(04):575–587, 2003.

[35] H. Bischof, S. Gorlatch, and R. Leshchinskiy. Generic parallel programming

using C++ templates and skeletons. In Domain-Specific Program Generation,

pages 107–126. Springer, 2004.

263

BIBLIOGRAPHY

[36] R. H. Bisseling. Parallel Scientific Computation: A Structured Approach Using

BSP and MPI. Oxford University Press, 2004.

[37] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. Journal of

Parallel and Distributed Computing, 37(1):55 – 69, 1996.

[38] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations

by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[39] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,

E. Adeagbo, and B. Baas. Kilocore: A 32 nm 1000-processor array. In IEEE

HotChips Symposium on High-Performance Chips, Aug. 2016.

[40] A. R. D. Bois. Mobile Computation in a Purely Functional Language. PhD

thesis, School of Mathematical and Computer Science,Heriot-Watt University,

United Kingdom, Aug 2005.

[41] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou,

S. Lanteri, J. Leduc, N. Melab, et al. Grid’5000: a large scale and highly

reconfigurable experimental grid testbed. International Journal of High Per-

formance Computing Applications, 20(4):481–494, 2006.

[42] J. L. Bosque and L. Pastor. A Parallel Computational Model for Heteroge-

neous Clusters. IEEE Trans. Parallel Distrib. Syst., 17(12):1390–1400, Dec.

2006.

[43] G. H. Botorog and H. Kuchen. Skil: An imperative language with algorithmic

skeletons for efficient distributed programming. In High Performance Dis-

tributed Computing, 1996., Proceedings of 5th IEEE International Symposium

on, pages 243–252. IEEE, 1996.

[44] T. A. Bratvold. Skeleton-based parallelisation of functional programs. PhD

thesis, Heriot-Watt University, 1994.

264

BIBLIOGRAPHY

[45] T. D. Braun, H. J. Siegel, N. Beck, L. L. Blni, M. Maheswaran, A. I. Reuther,

J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A

Comparison of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems. Journal of Parallel

and Distributed Computing, 61(6):810 – 837, 2001.

[46] C. Brown, M. Danelutto, K. Hammond, P. Kilpatrick, and A. Elliott. Cost-

Directed Refactoring for Parallel Erlang Programs. International Journal of

Parallel Programming, 42(4):564–582, 2014.

[47] A. Buss, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase, N. Thomas, X. Xu,

M. Bianco, N. M. Amato, L. Rauchwerger, et al. STAPL: standard template

adaptive parallel library. In Proceedings of the 3rd Annual Haifa Experimental

Systems Conference, page 14. ACM, 2010.

[48] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1997.

[49] R. Buyya. High Performance Cluster Computing: Programming and Appli-

cations , Volume 2. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st

edition, 1999.

[50] D. K. G. Campbell. Clumps: A Candidate Model Of Efficient, General Pur-

pose Parallel Computation. PhD thesis, Department of Computer Science,

University of Exeter, United Kingdom, Oct 1994.

[51] D. Caromel and M. Leyton. Fine tuning algorithmic skeletons. In Euro-Par

2007 Parallel Processing, pages 72–81. Springer, 2007.

[52] A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed applications

with mobile code paradigms. In Proceedings of the 19th international confer-

ence on Software engineering, ICSE ’97, pages 22–32, New York, NY, USA,

1997. ACM.

[53] H. Casanova, A. Legrand, and M. Quinson. SimGrid: A Generic Framework

for Large-Scale Distributed Experiments. In Computer Modeling and Simula-

265

BIBLIOGRAPHY

tion, 2008. UKSIM 2008. Tenth International Conference on, pages 126–131.

IEEE, 2008.

[54] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-purpose

Distributed Computing Systems. IEEE Trans. Softw. Eng., 14(2):141–154,

Feb. 1988.

[55] M. Chalabine and C. Kessler. Parallelisation of sequential programs by invasive

composition and aspect weaving. In Advanced Parallel Processing Technolo-

gies, pages 131–140. Springer, 2005.

[56] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and the

Chapel Language. Int. J. High Perform. Comput. Appl., 21(3):291–312, Aug.

2007.

[57] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared Mem-

ory Parallel Programming (Scientific and Engineering Computation). The

MIT Press, 2007.

[58] S. Chatterjee and A. S. Hadi. Regression analysis by example. John Wiley &

Sons, 2015.

[59] N. Chechina, P. King, and P. Trinder. Redundant movements in autonomous

mobility: Experimental and theoretical analysis. Journal of Parallel and Dis-

tributed Computing, 71(10):1278–1292, 2011.

[60] G. S. Choi, J.-H. Kim, D. Ersoz, A. B. Yoo, and C. R. Das. Coscheduling in

clusters: Is it a viable alternative? In Proceedings of the 2004 ACM/IEEE

conference on Supercomputing, page 16. IEEE Computer Society, 2004.

[61] P. Ciechanowicz and H. Kuchen. Enhancing Muesli’s Data Parallel Skele-

tons for Multi-core Computer Architectures. In High Performance Computing

and Communications (HPCC), 2010 12th IEEE International Conference on,

pages 108–113. IEEE, 2010.

266

BIBLIOGRAPHY

[62] P. Ciechanowicz, M. Poldner, and H. Kuchen. The Münster skeleton library

Mueslia comprehensive overview (2009). Technical report, ERCIS Working

Paper.

[63] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi,

A. Mohanti, Y. Yao, and D. Chavarŕıa-Miranda. An Evaluation of Global

Address Space Languages: Co-array Fortran and Unified Parallel C. In Pro-

ceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’05, pages 36–47, New York, NY, USA, 2005.

ACM.

[64] J. Cohen and A. Weitzman. Software Tools for Micro-analysis of Programs.

Softw. Pract. Exper., 22(9):777–808, Sept. 1992.

[65] M. Cole. Algorithmic skeletons: structured management of parallel computa-

tion. Research monographs in parallel and distributed computing. Pitman,

1989.

[66] M. Cole. eSkel: The edinburgh Skeleton library. Tutorial Introduction. Inter-

nal Paper, School of Informatics, University of Edinburgh, 2002.

[67] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for

skeletal parallel programming. Parallel computing, 30(3):389–406, 2004.

[68] M. I. Cole. Parallel programming with list homomorphisms. Parallel Process-

ing Letters, 5(02):191–203, 1995.

[69] R. Cole and O. Zajicek. The APRAM: Incorporating Asynchrony into the

PRAM Model. In Proceedings of the First Annual ACM Symposium on Parallel

Algorithms and Architectures, SPAA ’89, pages 169–178, New York, NY, USA,

1989. ACM.

[70] S. A. Cook and R. A. Reckhow. Time-bounded Random Access Machines. In

Proceedings of the Fourth Annual ACM Symposium on Theory of Computing,

STOC ’72, pages 73–80, New York, NY, USA, 1972. ACM.

267

BIBLIOGRAPHY

[71] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Sub-

ramonian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel

Computation. SIGPLAN Not., 28(7):1–12, July 1993.

[72] M. Danelutto and M. Aldinucci. Algorithmic skeletons meeting grids. Parallel

Computing, 32(7):449–462, 2006.

[73] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi.

A methodology for the development and the support of massively parallel

programs. Future Generation Computer Systems, 8(1):205–220, 1992.

[74] M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons

in C. In Euro-Par 2000 Parallel Processing, pages 1175–1184. Springer, 2000.

[75] M. Danelutto and M. Torquati. Loop parallelism: a new skeleton perspective

on data parallel patterns. In Parallel, Distributed and Network-Based Process-

ing (PDP), 2014 22nd Euromicro International Conference on, pages 52–59.

IEEE, 2014.

[76] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, and

Q. Wu. Parallel Programming Using Skeleton Functions. In Proceedings of the

5th International PARLE Conference on Parallel Architectures and Languages

Europe, PARLE ’93, pages 146–160, London, UK, 1993. Springer-Verlag.

[77] J. Darlington, Y.-k. Guo, H. W. To, and J. Yang. Functional skeletons for

parallel coordination. In EURO-PAR’95 Parallel Processing, pages 55–66.

Springer, 1995.

[78] P. De la Torre and C. P. Kruskal. Submachine locality in the bulk synchronous

setting. In Euro-Par’96 Parallel Processing, pages 352–358. Springer, 1996.

[79] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[80] X. Y. Deng. Cost-Driven Autonomous Mobility. PhD thesis, Heriot-Watt

University, United Kingdom, May 2007.

268

BIBLIOGRAPHY

[81] X. Y. Deng, G. Michaelson, and P. Trinder. Autonomous Mobility Skeletons.

Parallel Comput., 32:463–478, September 2006.

[82] J. Diaz, C. Munoz-Caro, and A. Nino. A Survey of Parallel Programming

Models and Tools in the Multi and Many-Core Era. Parallel and Distributed

Systems, IEEE Transactions on, 23(8):1369–1386, Aug 2012.

[83] M. Dieterle, J. Berthold, and R. Loogen. A skeleton for distributed work pools

in eden. In International Symposium on Functional and Logic Programming,

pages 337–353. Springer, 2010.

[84] M. Dieterle, T. Horstmeyer, J. Berthold, and R. Loogen. Iterating Skeletons.

In Symposium on Implementation and Application of Functional Languages,

pages 18–36. Springer, 2012.

[85] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and

A. White, editors. Sourcebook of Parallel Computing. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2003.

[86] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark: past,

present and future. Concurrency and Computation: Practice and Experience,

15(9):803–820, 2003.

[87] A. J. Dorta, J. A. Gonzalez, C. Rodriguez, and F. De Sande. llc: A parallel

skeletal language . Parallel Processing Letters, 13(03):437–448, 2003.

[88] F. Douglis and J. Ousterhout. Transparent Process Migration: Design Alter-

natives and the Sprite Implementation. Software: Practice and Experience,

21(8):757–785, 1991.

[89] A. R. Du Bois, P. Trinder, and H.-W. Loidl. Towards Mobility Skeletons.

Parallel Processing Letters, 15(03):273–288, 2005.

[90] O. Dubuisson, J. Gustedt, and E. Jeannot. Validating Wrekavoc: a tool for

heterogeneity emulation. In Parallel & Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.

269

BIBLIOGRAPHY

[91] J. Dünnweber and S. Gorlatch. HOC-SA: A grid service architecture for

higher-order components. In Services Computing, 2004.(SCC 2004). Proceed-

ings. 2004 IEEE International Conference on, pages 288–294. IEEE, 2004.

[92] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing in

homogeneous distributed systems. IEEE Trans. Softw. Eng., 12:662–675, May

1986.

[93] H. El-Rewini and M. Abd-El-Barr. Advanced Computer Architecture and Par-

allel Processing (Wiley Series on Parallel and Distributed Computing). Wiley-

Interscience, 2005.

[94] J. Enmyren and C. W. Kessler. SkePU: a multi-backend skeleton programming

library for multi-GPU systems. In Proceedings of the Fourth International

Workshop on High-level Parallel Programming and Applications, pages 5–14.

ACM, 2010.

[95] Y. Etsion and D. G. Feitelson. User-level communication in a system with gang

scheduling. In Parallel and Distributed Processing Symposium., Proceedings

15th International. IEEE, 2001.

[96] J. Faik. A model for resource-aware load balancing on heterogeneous and non-

dedicated clusters. PhD thesis, Rensselaer Polytechnic Institute, 2005.

[97] J. Falcou, J. Sérot, T. Chateau, and J.-T. Lapresté. QUAFF: efficient C++

design for parallel skeletons. Parallel Computing, 32(7):604–615, 2006.

[98] J. a. F. Ferreira, J. a. L. Sobral, and A. J. Proenca. JaSkel: A Java Skeleton-

Based Framework for Structured Cluster and Grid Computing. In CCGRID

’06: Proceedings of the Sixth IEEE International Symposium on Cluster Com-

puting and the Grid (CCGRID’06), volume 1, pages 301–304. IEEE, 2006.

[99] J. Fischer, S. Gorlatch, and H. Bischof. Foundations of Data-parallel Skeletons,

pages 1–27. Springer, London, UK, 2003.

270

BIBLIOGRAPHY

[100] M. Flynn. Some Computer Organizations and Their Effectiveness. Computers,

IEEE Transactions on, C-21(9):948–960, Sept 1972.

[101] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceed-

ings of the Tenth Annual ACM Symposium on Theory of Computing, STOC

’78, pages 114–118, New York, NY, USA, 1978. ACM.

[102] I. Foster. What is the Grid? A Three Point Checklist. GRIDtoday, 1(6), June

2002.

[103] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2003.

[104] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: A virtual data sys-

tem for representing, querying, and automating data derivation. In Scientific

and Statistical Database Management, 2002. Proceedings. 14th International

Conference on, pages 37–46. IEEE, 2002.

[105] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE

Trans. Softw. Eng., 24:342–361, May 1998.

[106] F. Gava. BSP functional programming: Examples of a cost based methodol-

ogy. In Computational Science–ICCS 2008, pages 375–385. Springer, 2008.

[107] J. Gehring and A. Reinefeld. MARS: A framework for minimizing the job

execution time in a metacomputing environment. Future Generation Computer

Systems, 12(1):87 – 99, 1996.

[108] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In ACM

SIGOPS operating systems review, volume 37, pages 29–43. ACM, 2003.

[109] L. F. W. Góes, C. P. Ribeiro, M. Castro, J.-F. Méhaut, M. Cole, and M. Cintra.

Automatic skeleton-driven memory affinity for transactional worklist applica-

tions. International Journal of Parallel Programming, 42(2):365–382, 2014.

271

BIBLIOGRAPHY

[110] H. Gonzalez-Velez and M. Cole. An adaptive parallel pipeline pattern for grids.

In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pages 1–11. IEEE, 2008.

[111] H. González-Vélez and M. Leyton. A Survey of Algorithmic Skeleton Frame-

works: High-level Structured Parallel Programming Enablers. Softw. Pract.

Exper., 40(12):1135–1160, Nov. 2010.

[112] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-

ming with the Message-passing Interface. MIT Press, Cambridge, MA, USA,

1999.

[113] E. Hagersten, A. Landin, and S. Haridi. DDM: A Cache-Only Memory Archi-

tecture. Computer, 25(9):44–54, Sep 1992.

[114] K. Hammond, J. Berthold, and R. Loogen. Automatic skeletons in template

haskell. Parallel Processing Letters, 13(03):413–424, 2003.

[115] K. Hammond and G. Michaelson, editors. Research Directions in Parallel

Functional Programming. Springer-Verlag, London, UK, UK, 2000.

[116] J. G. Hansen. Virtual Machine Mobility with Self-Migration. PhD thesis,

Department of Computer Science, University of Copenhagen, Apr 2009.

[117] Y. Hayashi and M. Cole. Automated cost analysis of a parallel maximum

segment sum program derivation. Parallel Processing Letters, 12(01):95–111,

2002.

[118] S. Hemminger. Network emulation with NetEm. In Proceedings of the 6th

Australia’s National Linux Conference (LCA2005), pages 18–23, 2005.

[119] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 5th edition, 2011.

[120] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

272

BIBLIOGRAPHY

[121] C. A. Herrmann and C. Lengauer. HDC: A Higher-Order Language for Divide-

and-Conquer. Parallel Processing Letters, 10(2-3):239–250, 2000.

[122] T. Heywood and S. Ranka. A practical hierarchical model of parallel computa-

tion II. Binary tree and FFT algorithms . Journal of Parallel and Distributed

Computing, 16(3):233 – 249, 1992.

[123] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B.

Rao, T. Suel, T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP Program-

ming Library, 1998.

[124] A. Holmes. Hadoop in practice. Manning Publications Co., 2012.

[125] W.-M. Hwu, K. Keutzer, and T. Mattson. The Concurrency Challenge. Design

Test of Computers, IEEE, 25(4):312–320, July 2008.

[126] F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: A Parallel Computational

Model for Synchronization Analysis. SIGPLAN Not., 36(7):133–142, June

2001.

[127] V. Janjic, C. BROWN, and K. Hammond. Lapedo: Hybrid Skeletons for Pro-

gramming Heterogeneous Multicore Machines in Erlang. Parallel Computing:

On the Road to Exascale, 27:185, 2016.

[128] N. Javed and F. Loulergue. Parallel programming and performance pre-

dictability with Orléans Skeleton Library. In High Performance Computing

and Simulation (HPCS), 2011 International Conference on, pages 257–263.

IEEE, 2011.

[129] C. B. Jay, M. Cole, M. Sekanina, and P. Steckler. A monadic calculus for

parallel costing of a functional language of arrays. In Euro-Par’97 Parallel

Processing, pages 650–661. Springer, 1997.

[130] N. R. Jennings. An Agent-based Approach for Building Complex Software

Systems. Commun. ACM, 44(4):35–41, Apr. 2001.

273

BIBLIOGRAPHY

[131] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained Mobility in the

Emerald System. ACM Trans. Comput. Syst., 6(1):109–133, Feb. 1988.

[132] B. H. Juurlink and H. A. Wijshoff. The E-BSP Model: Incorporating general

locality and unbalanced communication into the BSP Model. In Euro-Par’96

Parallel Processing, pages 339–347. Springer, 1996.

[133] B. H. H. Juurlink and H. A. G. Wijshoff. A Quantitative Comparison of

Parallel Computation Models. ACM Trans. Comput. Syst., 16(3):271–318,

Aug. 1998.

[134] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. F. Skovira. Workload

management with loadleveler. IBM Redbooks, 2:2, 2001.

[135] A. Kao and S. R. Poteet. Natural language processing and text mining. Springer

Science & Business Media, 2007.

[136] Y. Karasawa and H. Iwasaki. A parallel skeleton library for multi-core clusters.

In Parallel Processing, 2009. ICPP’09. International Conference on, pages 84–

91. IEEE, 2009.

[137] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia. Learning spark:

lightning-fast big data analysis. ” O’Reilly Media, Inc.”, 2015.

[138] H. Kasim, V. March, R. Zhang, and S. See. Survey on Parallel Program-

ming Model. In Proceedings of the IFIP International Conference on Network

and Parallel Computing, NPC ’08, pages 266–275, Berlin, Heidelberg, 2008.

Springer-Verlag.

[139] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Com-

puter, 36(1):41–50, Jan. 2003.

[140] B. W. Kernighan, D. M. Ritchie, and P. Ejeklint. The C programming lan-

guage, volume 2. prentice-Hall Englewood Cliffs, 1988.

274

BIBLIOGRAPHY

[141] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid

resource management systems for distributed computing. Software-Practice

and Experience, 32(2):135–64, 2002.

[142] Z. D. Krl. Mobile Computation with Functions. PhD thesis, Laboratory for

Foundations of Computer Science, University of Edinburgh, Edinburgh, UK,

2001.

[143] D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Commun.

ACM, 42:88–89, March 1999.

[144] D. Lavenier et al. PLAST: parallel local alignment search tool for database

comparison. BMC bioinformatics, 10(1):1, 2009.

[145] K. Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. A. Fernandes, and

G. Mehta. Adaptive workflow processing and execution in pegasus. Con-

currency and Computation: Practice and Experience, 21(16):1965–1981, 2009.

[146] J. Legaux, Z. Hu, F. Loulergue, K. Matsuzaki, and J. Tesson. Programming

with BSP homomorphisms. In Euro-Par 2013 Parallel Processing, pages 446–

457. Springer, 2013.

[147] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library.

In Acm Sigplan Notices, volume 44, pages 227–242. ACM, 2009.

[148] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The

OCaml system release 4.02. Institut National de Recherche en Informatique

et en Automatique, 2014.

[149] M. Leyton and J. M. Piquer. Skandium: Multi-core programming with al-

gorithmic skeletons. In Parallel, Distributed and Network-Based Processing

(PDP), 2010 18th Euromicro International Conference on, pages 289–296.

IEEE, 2010.

[150] H. Liu. A Component-Based Programming Model for Autonomic Applications.

In Proceedings of the First International Conference on Autonomic Comput-

275

BIBLIOGRAPHY

ing, ICAC ’04, pages 10–17, Washington, DC, USA, 2004. IEEE Computer

Society.

[151] H.-W. Loidl. Granularity in Large-Scale Parallel Functional Programming.

PhD thesis, Department of Computing Science, University of Glasgow, Mar.

1998.

[152] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel functional program-

ming in Eden. Journal of Functional Programming, 15(03):431–475, 2005.

[153] F. Loulergue. Parallel juxtaposition for bulk synchronous parallel ML. In

Euro-Par 2003 Parallel Processing, pages 781–788. Springer, 2003.

[154] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers:

modeling the characteristics of rigid jobs. Journal of Parallel and Distributed

Computing, 63(11):1105–1122, 2003.

[155] B. Maggs, L. Matheson, and R. Tarjan. Models of parallel computation: a

survey and synthesis. In System Sciences, 1995. Proceedings of the Twenty-

Eighth Hawaii International Conference on, volume 2, pages 61–70, Jan 1995.

[156] S. Makineni and R. Iyer. Measurement-based Analysis of TCP/IP Processing

Requirements. In 10th International Conference on High Performance Com-

puting (HiPC 2003), Hyderabad, India., 2003.

[157] A. Marletta. cpulimit, May 2012, https://github.com/opsengine/cpulimit.

[158] R. Marques, H. Paulino, F. Alexandre, and P. D. Medeiros. Algorithmic

skeleton framework for the orchestration of GPU computations. In Euro-Par

2013 Parallel Processing, pages 874–885. Springer, 2013.

[159] M. Marr. Descriptive simplicity in parallel computing. PhD thesis, University

of Edinburgh. College of Science and Engineering. School of Informatics., 1997.

[160] K. Matsuzaki and K. Emoto. Implementing fusion-equipped parallel skeletons

by expression templates. In Implementation and Application of Functional

Languages, pages 72–89. Springer, 2010.

276

BIBLIOGRAPHY

[161] K. Matsuzaki, Z. Hu, and M. Takeichi. Parallelization with tree skeletons. In

European Conference on Parallel Processing, pages 789–798. Springer, 2003.

[162] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A library of constructive

skeletons for sequential style of parallel programming. In Proceedings of the

1st international conference on Scalable information systems, page 13. ACM,

2006.

[163] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming.

Addison-Wesley Professional, 2004.

[164] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,

J. Howard, S. Vangal, N. Borkar, G. Ruhl, et al. The 48-core SCC processor:

the programmer’s view. In Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Anal-

ysis, pages 1–11. IEEE Computer Society, 2010.

[165] H. Menon and L. Kalé. A Distributed Dynamic Load Balancer for Itera-

tive Applications. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’13, pages

15:1–15:11, New York, NY, USA, 2013. ACM.

[166] A. Merlin and G. Hains. A Generic Cost Model for Concurrent and Data-

parallel Meta-computing. Electronic Notes in Theoretical Computer Science,

128(6):3 – 19, 2005. Proceedings of the Fouth International Workshop on

Automated Verification of Critical Systems (AVoCS 2004).

[167] G. Michaelson. Dynamic Farm Skeleton Task Allocation Through Task Mobil-

ity. In Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA), volume 1, pages 262–232.

The Steering Committee of The World Congress in Computer Science, Com-

puter Engineering and Applied Computing (WorldComp), 2012.

[168] R. Miller and L. Boxer. Algorithms Sequential & Parallel: A Unified Approach.

An Alan R. Apt book. Prentice Hall, 2000.

277

BIBLIOGRAPHY

[169] D. Milojici, F. Douglis, and R. Wheeler. Mobility: processes, computers, and

agents. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,

1999.

[170] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Automatic

inversion generates divide-and-conquer parallel programs. In ACM SIGPLAN

Notices, volume 42, pages 146–155. ACM, 2007.

[171] R. Murch. Autonomic Computing. IBM Press, 2004.

[172] C. S. R. Murthy and G. Manimaran. Resource Management in Real-Time

Systems and Networks. MIT Press, Cambridge, MA, USA, 2001.

[173] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das. Alternatives to

coscheduling a network of workstations. Journal of Parallel and Distributed

Computing, 59(2):302–327, 1999.

[174] NAS Parallel Benchmarks, Oct 2015, https://www.nas.nasa.gov /publication-

s/npb.html.

[175] B. Nichols, D. Buttlar, and J. Farrell. Pthreads programming: A POSIX

standard for better multiprocessing. O’Reilly Media, Inc., 1996.

[176] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Program-

ming with CUDA. Queue, 6(2):40–53, Mar. 2008.

[177] H. Nishikawa and P. Steenkiste. A general architecture for load balancing in a

distributed-memory environment. In Distributed Computing Systems, 1993.,

Proceedings the 13th International Conference on, pages 47–54, May 1993.

[178] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU

Computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[179] D. Padua. Encyclopedia of parallel computing, volume 4. Springer Science &

Business Media, 2011.

278

BIBLIOGRAPHY

[180] D. Pasetto and M. Vanneschi. Machine-independent analytical models for

cost evaluation of template-based programs. In PDP, pages 485–492. IEEE

Computer Society, 1997.

[181] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface (The Morgan Kaufmann Series in Computer

Architecture and Design). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 4th edition, 2008.

[182] S. Perarnau and G. Huard. KRASH: Reproducible CPU load generation on

many-core machines. In Parallel & Distributed Processing (IPDPS), 2010

IEEE International Symposium on, pages 1–10. IEEE, 2010.

[183] A. D. Pereira, L. Ramos, and L. F. Góes. PSkel: A stencil programming

framework for CPU-GPU systems. Concurrency and Computation: Practice

and Experience, 2015.

[184] E. Pitt and K. McNiff. Java. RMI: The Remote Method Invocation Guide.

Addison-Wesley Longman Publishing Co., Inc., 2001.

[185] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed shared memory:

concepts and systems. Parallel Distributed Technology: Systems Applications,

IEEE, 4(2):63–71, Summer 1996.

[186] K. Qureshi and M. Hatanaka. An introduction to load balancing for parallel

raytracing on HDC systems. Current Science, Tutorials, 78(7):818 – 820, 2000.

[187] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and

Distributed Computing. Springer-Verlag, London, UK, 2003.

[188] R. Rangaswami. A Cost Analysis for a Higher-order Parallel Programming

Model. PhD thesis, Department of Computing Science, University of Edin-

burgh, 1996.

[189] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Eval-

uating mapreduce for multi-core and multiprocessor systems. In High Perfor-

279

BIBLIOGRAPHY

mance Computer Architecture, 2007. HPCA 2007. IEEE 13th International

Symposium on, pages 13–24. Ieee, 2007.

[190] M. Reid-Miller, G. L. Miller, and F. Modugno. List Ranking and Parallel Tree

Contraction. In J. Reif, editor, Synthesis of Parallel Algorithms, chapter 3,

pages 115–194. Morgan Kaufmann, 1993.

[191] J. Reinders. Intel threading building blocks: outfitting C++ for multi-core

processor parallelism. O’Reilly Media, Inc., 2007.

[192] R. Reiner. Next Generation Packet Processing: RM9000x2 Integrated Multi-

processor with Hypertransport. In Platform Conference, PMC-Sierra, pages

1–17, Jan 2002.

[193] B. Reistad and D. K. Gifford. Static Dependent Costs for Estimating Execu-

tion Time. SIGPLAN Lisp Pointers, VII(3):65–78, July 1994.

[194] R. Reyes, A. J. Dorta, F. Almeida, and F. de Sande. Automatic hybrid mpi+

openmp code generation with llc. In European Parallel Virtual Machine/Mes-

sage Passing Interface Users Group Meeting, pages 185–195. Springer, 2009.

[195] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall series in artificial intelligence. Prentice Hall, 2010.

[196] T. Sakamoto, T. Sekiguchi, and A. Yonezawa. Bytecode transformation for

portable thread migration in Java. In Agent Systems, Mobile Agents, and

Applications, pages 16–28. Springer, 2000.

[197] S. Sato and K. Matsuzaki. A Generic Implementation of Tree Skeletons. In-

ternational Journal of Parallel Programming, 44(3):686–707, 2016.

[198] J. Sérot and D. Ginhac. Skeletons for parallel image processing: an overview

of the skipper project. Parallel computing, 28(12):1685–1708, 2002.

[199] M. Sheikhalishahi, L. Grandinetti, R. M. Wallace, and J. L. Vazquez-Poletti.

Autonomic resource contention-aware scheduling. Software: Practice and Ex-

perience, 45(2):161–175, 2015.

280

BIBLIOGRAPHY

[200] B. Shirazi, M. Wang, and G. Pathak. Analysis and evaluation of heuristic

methods for static task scheduling. Journal of Parallel and Distributed Com-

puting, 10(3):222–232, 1990.

[201] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, editors. Scheduling and Load

Balancing in Parallel and Distributed Systems. IEEE Computer Society Press,

Los Alamitos, CA, USA, 1995.

[202] N. G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally

distributed systems. Computer, 25(12):33–44, 1992.

[203] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard tem-

plate library. In Euro-Par 2007 Parallel Processing, pages 682–694. Springer,

2007.

[204] D. B. Skillicorn and W. Cai. A cost calculus for parallel functional program-

ming. Journal of Parallel and Distributed Computing, 28(1):65–83, 1995.

[205] D. B. Skillicorn, J. Hill, and W. F. McColl. Questions and answers about

BSP. Scientific Programming, 6(3):249–274, 1997.

[206] M. Snir. MPI–the Complete Reference: The MPI core, volume 1. MIT press,

1998.

[207] M. Sottile, T. G. Mattson, and C. E. Rasmussen. Introduction to Concurrency

in Programming Languages. Chapman & Hall/CRC, 1st edition, 2009.

[208] A. Stegmeier, M. Frieb, R. Jahr, and T. Ungerer. Algorithmic skeletons for

parallelization of embedded real-time systems. In submitted to 3rd Workshop

on High-performance and Real-time Embedded Systems (HiRES), 2015.

[209] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, and

C. V. Packer. Beowulf: A Parallel Workstation For Scientific Computation.

In In Proceedings of the 24th International Conference on Parallel Processing,

pages 11–14, Urbana-Champain, Illinois, USA, 1995. CRC Press.

281

BIBLIOGRAPHY

[210] M. Steuwer, P. Kegel, and S. Gorlatch. Skelcl-a portable skeleton library for

high-level gpu programming. In Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages

1176–1182. IEEE, 2011.

[211] J. Stewart, P. Nixon, T. Walsh, and I. Ferguson. Towards Strong Mobility

in the Shared Source CLI. In Communicating Process Architectures, pages

363–373, 2005.

[212] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard

for heterogeneous computing systems. Computing in Science & Engineering,

12(1-3):66–73, 2010.

[213] X.-H. Sun and D. T. Rover. Scalability of parallel algorithm-machine combina-

tions. Parallel and Distributed Systems, IEEE Transactions on, 5(6):599–613,

1994.

[214] K. P. Sycara. The Many Faces of Agents. AI Magazine, 19(2):11–12, 1998.

[215] A. S. Tanenbaum and H. Bos. Modern operating systems. Prentice Hall Press,

2014.

[216] A. S. Tanenbaum and M. v. Steen. Distributed Systems: Principles and

Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2006.

[217] P. Tosic and G. Agha. Towards a hierarchical taxonomy of autonomous agents.

In Systems, Man and Cybernetics, 2004 IEEE International Conference on,

volume 4, pages 3421–3426 vol.4, Oct 2004.

[218] M. Trenti and P. Hut. N-body simulations (gravitational). Scholarpedia,

3(5):3930, 2008.

[219] P. W. Trinder, M. I. Cole, K. Hammond, H.-W. Loidl, and G. J. Michaelson.

Resource analyses for parallel and distributed coordination. Concurrency and

Computation: Practice and Experience, 25(3):309–348, 2013.

282

BIBLIOGRAPHY

[220] UPC Consortium. UPC Language Specifications, v1.2. Tech Report LBNL-

59208, Lawrence Berkeley National Lab, 2005.

[221] L. G. Valiant. A bridging model for parallel computation. Communications

of the ACM, 33(8):103–111, 1990.

[222] L. G. Valiant. A Bridging Model for Multi-core Computing. J. Comput. Syst.

Sci., 77(1):154–166, Jan. 2011.

[223] M. Vanneschi. The programming model of ASSIST, an environment for parallel

and distributed portable applications. Parallel computing, 28(12):1709–1732,

2002.

[224] S. Vazhkudai, J. M. Schopf, and I. Foster. Predicting the performance of

wide area data transfers. In Parallel and Distributed Processing Symposium.,

Proceedings International, IPDPS 2002, Abstracts and CD-ROM, pages 10–

pp. IEEE, 2001.

[225] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I. Raicu. Optimizing load

balancing and data-locality with data-aware scheduling. In Big Data (Big

Data), 2014 IEEE International Conference on, pages 119–128, Oct 2014.

[226] A. Waterland. stress, 2012. http://people.seas.harvard.edu/ãpw/stress/.

[227] M. Weske and G. Vossen. Workflow languages. In Handbook on Architectures

of Information Systems, pages 359–379. Springer, 1998.

[228] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[229] P. T. Wojciechowski. Nomadic Pict: language and infrastructure design for

mobile computation. PhD thesis, University of Cambridge, Computer Labo-

ratory, UK, April 2000.

[230] M. Wooldridge. Agent-based software engineering. Software Engineering. IEE

Proceedings, 144(1):26–37, Feb 1997.

[231] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice.

Knowledge Engineering Review, 10:115–152, 1995.

283

BIBLIOGRAPHY

[232] E. Wu and Y. Liu. Emerging technology about GPGPU. In Circuits and

Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, pages 618–

622. IEEE, 2008.

[233] C. Xu, F. C. Lau, and R. Diekmann. Decentralized remapping of data parallel

applications in distributed memory multiprocessors. Concurrency - Practice

and Experience, 9(12):1351–1376, 1997.

[234] G. Yaikhom, M. Cole, and S. Gilmore. Combining measurement and stochastic

modelling to enhance scheduling decisions for a parallel mean value analysis

algorithm. In Computational Science–ICCS 2006, pages 929–936. Springer,

2006.

[235] L. T. Yang, X. Ma, and F. Mueller. Cross-platform performance prediction of

parallel applications using partial execution. In Supercomputing, 2005. Pro-

ceedings of the ACM/IEEE SC 2005 Conference, pages 40–40. IEEE, 2005.

[236] F. Zambonelli. How to improve local load balancing policies by distorting load

information. In High Performance Computing, 1998. HIPC’98. 5th Interna-

tional Conference On, pages 318–325. IEEE, 1998.

[237] A. Zavanella. Skel-BSP: Performance portability for skeletal programming. In

High Performance Computing and Networking, pages 290–299. Springer, 2000.

[238] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource

contention in multicore processors via scheduling. In ACM SIGARCH Com-

puter Architecture News, volume 38, pages 129–142. ACM, 2010.

[239] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Sur-

vey of Scheduling Techniques for Addressing Shared Resources in Multicore

Processors. ACM Computing Surveys (CSUR), 45(1):1–28, 2012.

[240] A. Y. Zomaya and Y.-H. Teh. Observations on Using Genetic Algorithms for

Dynamic Load-Balancing. IEEE Trans. Parallel Distrib. Syst., 12:899–911,

September 2001.

284

BIBLIOGRAPHY

[241] J. A. Zukas, W. Walters, and W. P. Walters. Explosive effects and applications.

Springer Science & Business Media, 2002.

[242] A. Zunino, M. Campo, and C. Mateos. Reactive mobility by failure: When

fail means move. Information Systems Frontiers, 7(2):141–154, 2005.

285

	Introduction
	Context
	Contribution
	Thesis Structure
	Publications

	Literature Review
	Parallel Computing
	Parallel Architectures
	Distributed Memory Architectures
	Shared Memory Architecture
	Multi/Many-core Architectures

	Parallel Programming Patterns
	Parallel Programming Models
	Distributed Memory Systems
	Shared Memory Systems

	Skeletons for Parallel Computing
	Skeleton Types
	Advantage of Using Skeletons
	Skeletons in Parallel Environments

	Parallel Cost models
	Constrained Parallel Programming Paradigms
	Cost Models
	PRAM Cost Models
	LogP Cost Models
	BSP Cost Models
	DRUM Cost Models
	System-Oriented Cost Models
	Skeleton Cost Models

	Scheduling
	Scheduling Model
	Challenges of Application Scheduling
	Load Management
	Static and Dynamic Load Management
	Strategies of Dynamic Load Management

	Mobility
	Mobility Models
	Properties of Mobile Systems
	Advantages of Mobility
	Code Mobility
	Agent-based Systems
	Autonomic Systems

	Summary

	Self-Mobile Skeleton
	Pragmatic Manifesto
	HWFarm Skeleton
	Motivation
	Skeleton Design
	Static Skeleton
	Mobility Support

	Host Language
	Skeleton Implementation
	Dealing with Data
	Allocating Model
	Implementation Summary
	Mobility
	Prototype
	Skeleton Initialisation and Finalization

	Using the HWFarm Skeleton
	Skeleton Assessment

	Experiments
	Platform
	Skeletal Experiments

	Summary

	Measurement-based Performance Cost Model
	Performance Cost Model
	Cost Model Design
	The HWFarm Cost Model
	Mobility Cost

	Changes to the HWFarm skeleton

	Cost Model Validation
	Execution Time Validation
	Regular Computations
	Irregular Computations

	Mobility Decision Validation
	Mobility Cost Validation

	Summary

	Optimising HWFarm Scheduling
	HWFarm Scheduler
	HWFarm Scheduler Components
	HWFarm Scheduler Properties
	Scheduling Policies
	Load Information Exchange
	Transfer Policy
	Mobility Policy

	HWFarm Scheduling Optimisation
	Accurate Relative Processing Power
	Movement Confirmation

	Overhead
	Allocation Overhead
	Load Diffusion Overhead
	Overhead at the Load Agent
	Overhead at the Workers
	Overhead at the Master

	Mobility Overhead
	Overhead Summary

	Scheduling Evaluation
	Mobility Behaviour Validation
	Mobility Performance Validation

	Summary

	Generating Load Patterns
	Introduction
	Design and Implementation
	Load and Scheduling
	Load Function Design
	The Implementation

	Load Function Evaluation
	The Load Function Impact
	Load Balancing
	Work Stealing
	Mobility

	Summary

	Evaluation
	Introduction
	Parallel Pipeline
	Scalability
	Adaptivity
	Summary

	Conclusion and Future Work
	Summary
	Limitations
	MPI Compatible Platforms
	Program Pattern
	Granularity
	GPU Architectures

	Future Work
	Data Locality and Mobility
	Fault Tolerance
	Memory and Cache
	New Skeletons
	Dynamic Allocation Model

	Applications Source Code
	Square Numbers Application
	Matrix Multiplication Application
	Raytracer Application
	Molecular Dynamics Application
	BLAST Application
	findWord Application

	The HWFarm Skeleton Source Code
	The HWFarm Function Header File
	The HWFarm Function Source Code

	Bibliography

