697 research outputs found

    Gradual Certified Programming in Coq

    Full text link
    Expressive static typing disciplines are a powerful way to achieve high-quality software. However, the adoption cost of such techniques should not be under-estimated. Just like gradual typing allows for a smooth transition from dynamically-typed to statically-typed programs, it seems desirable to support a gradual path to certified programming. We explore gradual certified programming in Coq, providing the possibility to postpone the proofs of selected properties, and to check "at runtime" whether the properties actually hold. Casts can be integrated with the implicit coercion mechanism of Coq to support implicit cast insertion a la gradual typing. Additionally, when extracting Coq functions to mainstream languages, our encoding of casts supports lifting assumed properties into runtime checks. Much to our surprise, it is not necessary to extend Coq in any way to support gradual certified programming. A simple mix of type classes and axioms makes it possible to bring gradual certified programming to Coq in a straightforward manner.Comment: DLS'15 final version, Proceedings of the ACM Dynamic Languages Symposium (DLS 2015

    Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms

    Full text link
    We introduce Meta-F*, a tactics and metaprogramming framework for the F* program verifier. The main novelty of Meta-F* is allowing the use of tactics and metaprogramming to discharge assertions not solvable by SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate verified code automatically. Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides substantial gains in proof development, efficiency, and robustness.Comment: Full version of ESOP'19 pape

    Experimental Evaluation of Formal Software Development Using Dependently Typed Languages

    Get PDF
    We will evaluate three dependently typed languages, and their supporting tools and libraries, by implementing the same tasks in each language. One task will demonstrate the basic dependent type support of each language, the other task will show how to do basic imperative programming combined with theorem proving, to ensure both resource safety and functional correctness.info:eu-repo/semantics/publishedVersio

    Supporting dependently typed functional programming with proof automation and testing

    Get PDF
    Dependent types can be used to capture useful properties about programs at compile time. However, developing dependently typed programs can be difficult in current systems. Capturing interesting program properties usually requires the user to write proofs, where constructing the latter can be both a difficult and tedious process. Additionally, finding and fixing errors in program scripts can be challenging. This thesis concerns ways in which functional programming with dependent types can be made easier. In particular, we focus on providing help for developing programs that incorporate user-defined types and user-defined functions. For the purpose of supporting dependently typed programming, we have designed a framework that provides improved proof automation and error feedback. Proof automation is provided with the use of heuristic based tactics that automate common patterns of proofs that arise when programming with dependent types. In particular, we use heuristics for generalising goals and employ the rippling heuristic for guiding inductive and non-inductive proofs. The automation we describe includes features for caching and reusing lemmas proven during proof search and, whenever proof search fails, the user can assist the prover by providing high-level hints. We concentrate on providing improved feedback for the errors that occur when there is a mismatch between the specification of a program, described with the use of dependent types, and the behaviour of the program. We employ a QuickCheck-like testing tool for automatically identifying these forms of errors, where the counter examples generated are used as error messages. To demonstrate the effectiveness of our framework for supporting dependently typed programming, we have developed a prototype based around the Coq theorem prover. We demonstrate that the framework as a whole makes program development easier by conducting a series of case studies. In these case studies, which involved verifying properties of tail recursive functions, sorting functions and a binary adder, a significant number of the proofs required were automated

    Ornaments for Proof Reuse in Coq

    Get PDF
    Ornaments express relations between inductive types with the same inductive structure. We implement fully automatic proof reuse for a particular class of ornaments in a Coq plugin, and show how such a tool can give programmers the rewards of using indexed inductive types while automating away many of the costs. The plugin works directly on Coq code; it is the first ornamentation tool for a non-embedded dependently typed language. It is also the first tool to automatically identify ornaments: To lift a function or proof, the user must provide only the source type, the destination type, and the source function or proof. In taking advantage of the mathematical properties of ornaments, our approach produces faster functions and smaller terms than a more general approach to proof reuse in Coq

    A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions

    Full text link
    The paper describes the refinement algorithm for the Calculus of (Co)Inductive Constructions (CIC) implemented in the interactive theorem prover Matita. The refinement algorithm is in charge of giving a meaning to the terms, types and proof terms directly written by the user or generated by using tactics, decision procedures or general automation. The terms are written in an "external syntax" meant to be user friendly that allows omission of information, untyped binders and a certain liberal use of user defined sub-typing. The refiner modifies the terms to obtain related well typed terms in the internal syntax understood by the kernel of the ITP. In particular, it acts as a type inference algorithm when all the binders are untyped. The proposed algorithm is bi-directional: given a term in external syntax and a type expected for the term, it propagates as much typing information as possible towards the leaves of the term. Traditional mono-directional algorithms, instead, proceed in a bottom-up way by inferring the type of a sub-term and comparing (unifying) it with the type expected by its context only at the end. We propose some novel bi-directional rules for CIC that are particularly effective. Among the benefits of bi-directionality we have better error message reporting and better inference of dependent types. Moreover, thanks to bi-directionality, the coercion system for sub-typing is more effective and type inference generates simpler unification problems that are more likely to be solved by the inherently incomplete higher order unification algorithms implemented. Finally we introduce in the external syntax the notion of vector of placeholders that enables to omit at once an arbitrary number of arguments. Vectors of placeholders allow a trivial implementation of implicit arguments and greatly simplify the implementation of primitive and simple tactics

    Elaborator reflection : extending Idris in Idris

    Get PDF
    Many programming languages and proof assistants are defined by elaboration from a high-level language with a great deal of implicit information to a highly explicit core language. In many advanced languages, these elaboration facilities contain powerful tools for program construction, but these tools are rarely designed to be repurposed by users. We describe elaborator reflection, a paradigm for metaprogramming in which the elaboration machinery is made directly available to metaprograms, as well as a concrete realization of elaborator reflection in Idris, a functional language with full dependent types. We demonstrate the applicability of Idris’s reflected elaboration framework to a number of realistic problems, we discuss the motivation for the specific features of its design, and we explore the broader meaning of elaborator reflection as it can relate to other languages.Postprin
    • …
    corecore