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Abstract
Ornaments express relations between inductive types with the same inductive structure. We
implement fully automatic proof reuse for a particular class of ornaments in a Coq plugin, and show
how such a tool can give programmers the rewards of using indexed inductive types while automating
away many of the costs. The plugin works directly on Coq code; it is the first ornamentation tool
for a non-embedded dependently typed language. It is also the first tool to automatically identify
ornaments: To lift a function or proof, the user must provide only the source type, the destination
type, and the source function or proof. In taking advantage of the mathematical properties of
ornaments, our approach produces faster functions and smaller terms than a more general approach
to proof reuse in Coq.
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1 Introduction

Indexed inductive types make it possible to internalize data into the type level, eliminating
the need for certain functions and proofs. Consider, for example, a theorem from the Coq
standard library [17] which states that mapping a function over lists preserves length:

map_length T1 T2 (f : T1 → T2) : ∀ (l : list T), length (List.map f l) = length l.
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26:2 Ornaments for Proof Reuse in Coq

list (T : Type) : Type :=
| nil : list T
| cons :

T → list T → list T.

vector (T : Type) : nat → Type :=
| nilV : vector T 0
| consV :
∀ (n : nat), T → vector T n → vector T (S n).

Figure 1 A vector (right) is a list (left) indexed by its length (highlighted in orange).

One way to eliminate the need for this theorem is to internalize the length of a list into its
type, creating a dependently typed vector (Figure 1). The map function for vectors in Coq’s
standard library, for example, carries a proof that it preserves length:

Vector.map {T1} {T2} (f : T1 → T2) : ∀ (n : nat) (v : vector T1 n), vector T2 n.

so that a theorem like map_length is no longer necessary.
Unfortunately, for all of the benefits they bring, indexed inductive types are notoriously

difficult to use. Dependently typed vectors, for example, impose proof obligations about
their lengths on the user; these can quickly spiral out of control. In recent coq-club threads
asking for advice on how to use dependently typed vectors, experts called them “not suitable
for extended use” [7] and noted that “almost no one should be using [them] for anything” [8].

We show how proof reuse – reusing existing proofs to derive new proofs – can tackle
many of the challenges posed by indexed inductive types, allowing the user to move between
unindexed and indexed versions of a type (for example, lists and vectors) and reap the
benefits of indexed types without many of the costs. We focus in particular on the benefits of
this approach in deriving functions and proofs for fully-determined indexed types, when the
index is a fold over the unindexed version (such as the length of a list). In our approach, the
user writes functions and proofs over the unindexed version, and a tool then automatically
lifts those functions and proofs to the indexed version. The user can then switch back to
working with the unindexed version by running the tool in the opposite direction. In that
way, the user can use lists when lists are convenient, and vectors when vectors are convenient.

Our approach uses ornaments [23], which express relations between types that preserve
inductive structure, and which enable lifting of functions and proofs along those relations.
Recent work introduced ornaments to a subset of ML and was heavily focused on automatically
lifting functions [33]; until now, such an approach was not available in a dependently typed
language. Existing implementations of ornaments in dependently typed languages work only
in embedded languages, and have little to no automation [20, 23, 11].

Our main contribution is a Coq plugin for automatic function and proof reuse using
ornaments. Our plugin Devoid (Dependent Equivalences Via Ornamenting Inductive
Definitions) works directly on Coq code, rather than on an embedded language. Devoid
automates lifting functions and proofs along algebraic ornaments [23], a particular class of
ornaments that represent fully-determined indexed types like lists and vectors. Devoid
implements an algorithm to search for ornaments between these types – to the best of our
knowledge, the first search algorithm for ornaments – and an algorithm to lift functions and
proofs along the ornaments it discovers.

We motivate (Section 2), specify (Section 3), and formalize (Section 4) the search and
lifting algorithms that Devoid implements (Section 5). A comparison to a more general
proof reuse approach (Section 6) demonstrates the benefits of using ornaments: Devoid
imposes less of a proof burden on the user, and produces smaller terms and faster functions.
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2 Motivating Example: Porting a Library

Devoid is a plugin for Coq 8.8; it can be found in the repository linked to as Supplement
Material under the abstract of this paper. To see how it works, consider an example using
the types from Figure 1, the code for which is in Example.v. In this example, we lift two list
zip functions and a proof of a theorem relating them from the Haskell CoreSpec library [29]:
zip {T1 T2}: list T1 → list T2 → list (T1 * T2).
zip_with {T1 T2 T3} (f : T1 → T2 → T3): list T1 → list T2 → list T3.
zip_with_is_zip {T1 T2}: ∀(l1:list T1)(l2:list T2), zip_with pair l1 l2 = zip l1 l2.

Devoid runs a preprocessing step before lifting, which we describe in Section 5; we assume
this step has already run. We use the cyan background color to denote tool-produced terms
and the names that refer to them. We run Devoid to lift functions and proofs from lists to
vectors, but it can also lift in the opposite direction.

Step 1: Search. We first use Devoid’s Find ornament command to search for the relation
between lists and vectors:
Find ornament list vector.

This produces functions which together form an equivalence (denoted '):
list T ' Σ (n : nat).vector T n

Step 2: Lift. We then lift our functions and proofs along that equivalence using Devoid’s
Lift command. For example, to lift zip, we run the command:
Lift list vector in zip as zipV_p.

This produces a function with this type:
zipV_p {T1 T2} : Σ n.vector T1 n → Σ n.vector T2 n → Σ n.vector (T1 * T2) n.

that behaves like zip, but whose body no longer refers to lists. We lift our proof similarly:
Lift list vector in zip_with_is_zip as zip_with_is_zipV_p.

This produces a proof of the analogous result (denoting projections by πl and πr):
zip_with_is_zipV_p {T1 T2} : ∀ (v1 : Σ n.vector T1 n) (v2 : Σ n.vector T2 n),

zip_withV_p pair (∃ (πl v1) (πr v1)) (∃ (πl v2) (πr v2)) =
zipV_p (∃ (πl v1) (πr v1)) (∃ (πl v2) (πr v2)).

that no longer refers to lists, zip, or zip_with in any way.

Step 3: Unpack. The lifted terms operate over vectors whose lengths are packed inside
of a sigma type. While this lets Lift provide strong theoretical guarantees, it can make it
difficult to interface with the lifted code. We can recover unpacked terms using Devoid’s
Unpack command. For example, to unpack zipV_p, we run the command:
Unpack zipV_p as zipV.

This produces functions and proofs that operate directly over vectors, like zipV:
zipV {T1 T2} {n1} (v1 : vector T1 n1) {n2} (v2 : vector T2 n2) :

vector (T1 * T2) (πl (zipV_p (∃ n1 v1) (∃ n2 v2))).

ITP 2019
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and zip_with_is_zipV:

zip_with_is_zipV : ∀ {T1 T2} {n1} (v1 : vector T1 n1) {n2} (v2 : vector T2 n2),
eq_dep _ _ _ (zip_withV pair v1 v2) _ (zipV v1 v2).

Step 4: Interface. For any two inputs of the same length, zipV and zipV_with contain
proofs that the output has the same length as the inputs. However, the types obscure this
information. Example.v explains how to recover more user-friendly types, like that of zipV_uf:

zipV_uf {T1 T2} {n} : vector T1 n → vector T2 n → vector (T1 * T2) n.

and that of zip_withV_uf:

zip_withV_uf {T1 T2 T3} (f : T1 → T2 → T3) {n} :
vector T1 n → vector T2 n → vector T3 n.

which both restrict input lengths. We can then use our lifted functions and proofs in client
code. For example, we can write a different version of Coq’s BVand function for bitvectors:

BVand {n} (v1 : vector bool n) (v2 : vector bool n) : vector bool n :=
zip_withV_uf andb v1 v2.

By working over lists, we are able to reason about only the interesting pieces, thinking
about indices only when relevant; in contrast, when writing proofs over vectors, even simple
theorems can generate tricky proof obligations. With Devoid, the programmer can use the
lifted functions and proofs to interface with code that uses vectors, then switch back to lists
when vectors are unmanageable. In essence, ornaments form the glue between these types.

3 Specification

This section specifies the two commands that Devoid implements:

1. Find ornament searches for ornaments (specified in Section 3.1, described in Section 4.1).
2. Lift lifts along those ornaments (specified in Section 3.2, described in Section 4.2).

Algebraic Ornaments. Devoid searches for and lifts along algebraic ornaments in particular.
An algebraic ornament relates an inductive type A to an indexed version of that type B with
a new index of type IB, where the new index is fully determined by a unique fold over A.
For example, vector is exactly list with a new index of type nat, where the new index is
fully determined by the length function. Consequentially, there are two functions:

ltv : list T → Σ(n : nat).vector T n.
vtl : Σ(n : nat).vector T n → list T.

that are mutual inverses:

∀ (l : list T), vtl (ltv l) = l.
∀ (v : Σ(n : nat).vector T n), ltv (vtl v) = v.

and therefore form the type equivalence from Section 2. Moreover, since the new index is
fully determined by length, we can relate length to ltv:

∀ (l : list T), length l = πl (ltv l).

http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/coq/examples/Example.v
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In general, we can view an algebraic ornament as a type equivalence:

A ~i ' Σ(n : IB ~i ).B (index n ~i )

where~i are the indices of A, IB is a function over those indices, and the index operation inserts
the new index n at the right offset. Such a type equivalence consists of two functions [32]:

promote : A ~i → Σ(n : IB ~i ).B (index n ~i ).
forget : Σ(n : IB ~i ).B (index n ~i ) → A ~i.

that are mutual inverses:1

section : ∀ (a : A ~i ), forget (promote a) = a.
retraction : ∀ (bΣ : Σ(n : IB ~i ).B (index n ~i )), promote (forget bΣ) = bΣ.

An algebraic ornament is additionally equipped with an indexer, which is a unique fold:

indexer : A ~i → IB ~i.

which projects the promoted index:

coherence : ∀(a : A ~i ), indexer a = πl (promote a).

Following existing work [20], we call this equivalence the ornamental promotion isomorphism;
when it holds and the indexer exists, we say that B is an algebraic ornament of A.

Find ornament searches for algebraic ornaments between types and is, to the best of our
knowledge, the first search algorithm for ornaments. Lift then lifts functions and proofs
along those ornaments, removing all references to the old type. Both commands make some
additional assumptions for simplicity; detailed explanations for these are in Assumptions.v.

3.1 Find ornament
In their original form, ornaments are a programming mechanism: Given a type A, an
ornament determines some new type B. We invert this process for algebraic ornaments:
Given types A and B, Devoid searches for an ornament between them. This is possible for
algebraic ornaments precisely because the indexer is extensionally unique. For example, all
possible indexers for list and vector must compute the length of a list; if we were to try
doubling the length instead, we would not be able to satisfy the equivalence.

Find ornament takes two inductive types and searches for the components of the ornamental
promotion isomorphism between them:

Inputs: Inductive types A and B, assuming:
B is an algebraic ornament of A,
B has the same number of constructors in the same order as A,
A and B do not contain recursive references to themselves under products, and
for every recursive reference to A in A, there is exactly one new hypothesis in B, which
is exactly the new index of the corresponding recursive reference in B.

Outputs: Functions promote, forget, and indexer, guaranteeing:
the outputs form the ornamental promotion isomorphism between the inputs.

Find ornament includes an option to generate a proof that the outputs form the ornamental
promotion isomorphism; by default, this option is false, since Lift does not need this proof.

1 The adjunction condition follows from section and retraction.
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3.2 Lift
Lift lifts a term along the ornamental promotion isomorphism between A and B. That is, it
lifts types to corresponding types and terms of those types to corresponding terms:

Lift list vector in list as vector_p. (* vector_p T := Σ (n : nat).vector T n *)
Lift list vector in (cons 5 nil) as v_p. (* v_p := ∃ 1 (consV O 5 nilV) *)

Furthermore, it recursively preserves this equivalence, lifting non-dependent functions like
zip so that they map equivalent inputs to equivalent outputs:

∀ {T1 T2} l1 l2, promote (zip l1 l2) = zipV_p (promote l1) (promote l2).

This intuition breaks down with dependent types. With equivalence alone, we can’t state the
relationship between zip_with_is_zip and zip_with_is_zipV_p, since the unlifted conclusion:

zip_with pair l1 l2 = zip l1 l2.

does not have the same type as the conclusion of the lifted version applied to promoted
arguments; any relation between these terms must be heterogenous.

In particular, Lift preserves the univalent parametric relation [30], a heterogenous
parametric relation that strengthens an existing parametric relation for dependent types [2]
to make it possible to state preservation of an equivalence: Two terms t and t′ are related by
the univalent parametric relation [[Γ]]u ` [t]u : [[T ]]u t t′ at type T in environment Γ if they
are equivalent up to transport. The details of this relation can be found in the cited work.

Lift preserves this relation using the components that Find ornament discovers, and
additionally guarantees that the lifted term does not refer to the old type in any way:

Inputs: The inputs to and outputs from Find ornament, along with a term t, assuming:
the assumptions and guarantees from Find ornament hold,
IB is not A,
t is well-typed and fully η-expanded,
t does not apply promote or forget, and
t does not reference B.

Outputs: A term t′, guaranteeing:
if t is A~i, then t′ is Σ(n : IB ~i ).B (index n ~i ),
t′ does not reference A, and
if in the current environment Γ ` t : T , then [[Γ]]u ` [t]u : [[T ]]u t t′.

Lift does not require a proof that the input components form the ornamental promotion
isomorphism, but they must for the guarantees to hold. It can operate in either direction,
promoting from A to packed B or forgetting in the opposite direction; the specification for
the forgetful direction is similar, with extra restrictions on how B is used within t.

4 Algorithms

This section describes the algorithms that implement the specifications from Section 3.

Presentation. We present both algorithms relationally, using a set of judgments; to turn
these relations into algorithms, prioritize the rules by running the derivations in order, falling
back to the original term when no rules match. The default rule for a list of terms is to run
the derivation on each element of the list individually.
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〈i〉 ∈ N, 〈v〉 ∈ Vars, 〈s〉 ∈ { Prop, Set, Type〈i〉 }

〈t〉 ::= 〈v〉 | 〈s〉 | Π (〈v〉 : 〈t〉) . 〈t〉 |
λ (〈v〉 : 〈t〉) . 〈t〉 | 〈t〉 〈t〉 |
Ind (〈v〉 : 〈t〉){〈t〉,. . . ,〈t〉} | Constr (〈i〉, 〈t〉) |
Elim(〈t〉, 〈t〉){〈t〉,. . . ,〈t〉}

Γ ` t : T // type checking
Γ ` t1 ≡βδι t2 // definitional equality
tβ // beta-reduction
tβδι // normalization
t [y / x] // substitution
ξ (I, Q, c, C) // type of eliminator

Figure 2 CICω syntax (left, from existing work [31]) and judgments and operations (right).

A := Ind(TyA : Π( ~iA : ~XA).sA){CA1 , . . . ,CAn}
B := Ind(TyB : Π( ~iB : ~XB).sB){CB1 , . . . ,CBn}
∀1 ≤ i ≤ n,

EAi (pA : PA) := ξ(A, pA, Constr(i, A), CAi )
EBi (pB : PB) := ξ(B, pB , Constr(i, B), CBi )

PA := Π( ~iA : ~XA)(a : A ~iA).sA
PB := Π( ~iB : ~XB)(b : B ~iB).sB

index := insert (off A B)
deindex := remove (off A B)

Figure 3 Common definitions for both algorithms.

Notes on Syntax. The language the algorithms operate over is CICω with primitive elim-
inators; this is a simplified version of the type theory underlying Coq. Figure 2 contains
the syntax (which includes variables, sorts, product types, functions, inductive types, con-
structors, and eliminators), as well as the syntax for some judgments and operations, the
rules for which are standard and thus omitted. For simplicity of presentation, we assume
variables are names; we assume that all names are fresh. As in Coq, we assume the existence
of an inductive type Σ for sigma types with projections πl and πr; for simplicity, we assume
projections are primitive. Throughout, we use ~i and {t1, . . . , tn} to denote lists of terms, and
we use ~i[j] to denote accessing the element of the list ~i at offset j.

Common Definitions. The algorithms assume list insertion and removal functions insert
and remove, plus two functions Devoid implements: off computes the offset of the new
index of type IB in B’s indices, and new determines whether a hypothesis in a case of the
eliminator type of B is new. Figure 3 contains other common definitions, the names for
which are reserved: The index and deindex functions insert an index into and remove an
index from a list at the index computed by off. Input type A expands to an inductive type
with indices of types ~XA, sort sA, and constructors {CA1 , . . . ,CAn}. PA denotes the type of
the motive of the eliminator of A, and each EAi denotes the type of the eliminator for the
ith constructor of A. Analogous names are also reserved for input type B.

4.1 Find ornament
The Find ornament algorithm implements the specification from Section 3.1. It builds on three
intermediate steps: one to generate each of indexer, promote, and forget. Figure 4 shows
the algorithm for generating indexer. The algorithms for generating promote and forget are
similar; Figure 5 shows only the derivations for generating promote that are different from
those for generating indexer, and the derivations for generating forget are omitted.

4.1.1 Searching for the Indexer
Search generates the indexer by traversing the types of the eliminators for A and B in parallel
using the algorithm from Figure 4, which consists of three judgments: one to generate the
motive, one to generate each case, and one to compose the motive and cases.

ITP 2019



26:8 Ornaments for Proof Reuse in Coq

Γ ` (TA, TB) ⇓im t
Index-Motive

Γ ` (A,B) ⇓im λ( ~iA : ~XA)(a : A ~iA).(IB ~iA)β

Γ ` (TA, TB) ⇓ic t
Index-Conclusion

Γ ` (pA ~iA a, pB ~iB b) ⇓ic ~iB [off A B]

Index-Hypothesis
new nB bB Γ, nB : tB ` (Π(nA : tA).bA, bB) ⇓ic t

Γ ` (Π(nA : tA).bA, Π(nB : tB).bB) ⇓ic t

Index-IH
Γ ` (A,B) ⇓im p

Γ, nA : p ~iA a ` (bA, bB [nA/ ~iB [off A B]]) ⇓ic t
Γ ` (Π(nA : pA ~iA a).bA, Π(nB : pB ~iB b).bB)
⇓ic λ(nA : p ~iA a).t

Index-Prod
Γ, nA : tA ` (bA, bB [nA/nB ]) ⇓ic t
Γ ` (Π(nA : tA).bA, Π(nB : tB).bB)
⇓ic λ(nA : tA).t

Γ ` (TA, TB) ⇓i t
Index-Ind
Γ ` (A, B) ⇓im p Γ, pA : PA, pB : PB ` {(EA1 pA, EB1 pB), . . . , (EAn pA, EBn pB)} ⇓ic ~f

Γ ` (A, B) ⇓i λ(~ia : ~XA)(a : A ~ia).Elim(a, p)~f

Figure 4 Identifying the indexer function.

Generating the Motive. The (TA, TB) ⇓im t judgment consists of only the derivation Index-
Motive, which computes the indexer motive from the types A and B (expanded in Figure 3).
It does this by constructing a function with A and its indices as premises, and the type IB in
the conclusion with the appropriate indices. Consider list and vector:

list T := Ind (TyA : Type) {. . .} vector T := Ind (TyB : Π(n : nat).Type) {. . .}

For these types, Index-Motive computes the motive:

λ (l:list T) . nat

Generating Each Case. The Γ ` (TA, TB) ⇓ic t judgment generates each case of the indexer
by traversing in parallel the corresponding cases of the eliminator types for A and B. It consists
of four derivations: Index-Conclusion handles base cases and conclusions of inductive
cases, while Index-Hypothesis, Index-IH, and Index-Prod recurse into products.

Index-Hypothesis handles each new hypothesis that corresponds to a new index in an
inductive hypothesis of an inductive case of the eliminator type for B. It adds the new index
to the environment, then recurses into the body of only the type for which the index already
exists. For example, in the inductive case of list and vector, new determines that n is the
new hypothesis. Index-Hypothesis then recurses into the body of only the vector case:

Π (tl:T) (l:list T) (IHl:pA l), . . . Π (tv:T) (v:vector T n) (IHv:pB n v), . . .

Index-Prod is next. It recurses into product types when the hypothesis is neither a
new index nor an inductive hypothesis. Here, it runs twice, recursing into the body and
substituting names until it hits the inductive hypothesis for both types:

Π (IHl:pA l), pA (cons tl l) Π (IHv:pB n l), pB (S n) (consV n tl l)
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Γ ` (TA, TB) ⇓pm t
Promote-Motive

Γ ` (A, B) ⇓i π
Γ ` (A, B) ⇓pm λ(~ia : ~XA)(a : A ~ia).B (index (π ~ia a) ~ia)

Γ ` (TA, TB) ⇓pc t

Promote-Conclusion

Γ ` (pA ~iA a, pB ~iB b) ⇓pc b

Promote-IH
Γ ` (A, B) ⇓i π Γ ` (A, B) ⇓pm p

Γ, nA : p ~iA a ` (bA, bB [nA/b][π ~iA a/ ~iB [off A B]]) ⇓pc t

Γ ` (Π(nA : pA ~iA a).bA, Π(nB : pB ~iB b).bB)
⇓pc λ(nA : p ~iA a).t

Γ ` (TA, TB) ⇓p t
Promote-Ind
Γ ` (A, B) ⇓i π Γ ` (A, B) ⇓pm p

Γ, pA : PA, pB : PB ` {(EA1 pA, EB1 pB), . . . , (EAn pA, EBn pB)} ⇓pc
~f

Γ ` (A, B) ⇓p λ( ~iA : ~XA)(a : A ~iA).∃ (π ~iA a) (Elim(a, p)~f)

Figure 5 Identifying the promotion function.

Index-IH then takes over. It substitutes the new motive in the inductive hypothesis, then
recurses into both bodies, substituting the new inductive hypothesis for the index in the
eliminator type for B. Here, it substitutes the new motive for pA in the type of IHl, extends
the environment with IHl, then substitutes IHl for n, so that it recurses on these types:

pA (cons tl l) pB (S IHl) (consV IHl tl l)

Finally, Index-Conclusion computes the conclusion by taking the index of motive pB at
off A B, here S IHl. In total, this produces a function that computes the length of cons t l:

λ (tl:T) (l:list T) (IHl:(λ (l:list T).nat) l).S IHl

Composing the Result. The Γ ` (TA, TB) ⇓i t judgment consists of only Index-Ind, which
identifies the motive and each case using the other two judgments, then composes the result.
In the case of list and vector, this produces a function that computes the length of a list:

λ (l:list T).Elim(l, λ (l:list T).nat)
{0, λ (tl:T) (l:list T) (IHl:(λ (l:list T).nat) l).S IHl}

4.1.2 Searching for Promote and Forget
Figure 5 shows the interesting derivations for the judgment (TA, TB) ⇓p t that searches for
promote: Promote-Motive identifies the motive as B with a new index (which it computes
using indexer, denoted by metavariable π). When Promote-IH recurses, it substitutes the
inductive hypothesis for the term rather than for its index, and it substitutes the new index
(which it also computes using indexer) inside of that term. Promote-Conclusion returns
the entire term, rather than its index. Finally, Promote-Ind not only recurses into each
case, but also packs the result.
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↑ {~ia : ~XA} := promote ~ia. ↓ {~ib : ~XB} := forget ~ib.
πIB {~ia : ~XA} := indexer ~ia. ∃IB {~ib : ~XB} (b : B ~ib) := ∃ ~ib[off] b.
↑B := πr ◦ ↑. ↓A := ↓ ◦ ∃IB .
↑IB := πl ◦ ↑. ↓IB := πIB ◦ ↓A.

Figure 6 Common definitions for the core lifting algorithm.

The omitted derivations to search for forget are similar, except that the domain and
range are switched. Consequentially, indexer is never needed; Forget-Motive removes the
index rather than inserting it, and Forget-IH no longer substitutes the index. Additionally,
Forget-Hypothesis adds the hypothesis for the new index rather than skipping it, and
Forget-Ind eliminates over the projection rather than packing the result.

4.1.3 Core Search Algorithm
The core search algorithm produces indexer, promote, and forget, then composes them into a
tuple. This tuple is how Devoid represents ornaments internally. Devoid includes an option
to generate a proof that these components form the ornamental promotion isomorphism; by
default, this is disabled, since Lift does not need this proof. The implementation of this
option gives intuition for correctness of the search algorithm, and is described in Section 5.3.

4.2 Lift
The Lift algorithm implements the specification from Section 3.2. We show only one direction
of the algorithm, promoting from A to packed B; the forgetful direction is similar. The core
algorithm (Figure 9) builds on a set of common definitions (Figure 6) and two intermediate
judgments: one to lift eliminators (Figure 7) and one to lift constructors (Figure 8).

Common Definitions. The common definitions (Figure 6) define some useful syntax: ↑
applies promote, ↓ applies forget, and πIB applies indexer. ∃IB packs a term of type B into
an existential with the index at the appropriate offset. ↑B and ↑IB promote and then project;
↓A packs and forgets, and ↓IB packs, forgets, and then applies indexer to project the index.

4.2.1 Lifting Eliminators
The Γ ` t ⇑E t′ judgment (Figure 7) defines rules for lifting the motive and case of an elimi-
nator, changing the domain of induction from A to B. The intuition is that any term of type
A is the result of forgetting some term of type packed B. Then, since A and B have the same
inductive structure, we can lift the eliminator of A to the eliminator of B, and move that
forgetfulness inside of each case. For example, the following terms are propositionally equal:

Elim((↓A b), pA){
fnil,
(λ(tl:T)(l:list T)(IHl:pA l).

fcons tl l IHl)
}

Elim(b, λ(n:nat)(v:vector T n).pA (↓A v)){
fnil,
(λ(n:nat)(tv:T)(v:vector T n)(IHv:pA (↓A v)).

fcons tv (↓A v) IHv)
}

The induction rules implement this transformation. Case lifts a case of the eliminator by
first recursively lifting the motive, then using the lifted motive to compute the type of the
new case, and then using that type to compute the body of the new case. In the example
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Γ ` (t, T ) ⇑Ex t′

Drop-Index
new n b Γ, n : t ` (f, b) ⇑Ex b

′

Γ ` (f, Π(n : t).b) ⇑Ex λ(n : t).b′

Forget-Arg
Γ `~i : ~XB Γ, n : B ~i ` ((f (↓A n))β , b) ⇑Ex b

′

Γ ` (f, Π(n : B ~i).b) ⇑Ex λ(n : B ~i).b′

Arg
Γ, n : t ` ((f n)β , b) ⇑Ex b

′

Γ ` (f, Π(n : t).b) ⇑Ex λ(n : t).b′

Concl

Γ ` (t, pB ~y) ⇑Ex t

Γ ` t ⇑E t′

Motive
Γ ` pA : PA

Γ ` pA ⇑E λ(~i : ~XB)(b : B ~i).(pA (deindex ~i) (↓A b))β

Case
Γ ` pA : PA Γ ` fi : EAi pA
Γ ` pA ⇑E pB Γ ` (fi, EBi pB) ⇑Ex f

′
i

Γ ` fi ⇑E f ′
i

Figure 7 Lifting eliminators.

Γ ` t ⇑C t′

Normalize

Γ ` Constr(j, A) ~x ⇑C (↑ (Constr(j, A) ~x))βδι

Figure 8 Lifting constructors.

above, when lifting the inductive case, it first recursively lifts the motive pA using Motive,
which drops the index, packs and forgets the argument of type B, and then β-reduces the
result, eliminating references to B. This produces the new motive:

λ(n:nat)(v:vector T n).pA (↓A v)

which Case then uses to compute the type of the inductive case of the eliminator for B:

Π(tv:T)(n:nat)(v:vector T n)(IHv:pA (↓A v)).pA (↓A (consV tv (S n) v))

The Γ ` (t, T ) ⇑Ex t′ judgment then uses that type to compute the lifted function body. It
computes this in a similar way to Motive, except that there are as many indices to drop
and arguments to pack and forget as there are inductive hypotheses, and these do not occur
in predictable places, so more rules are involved. This computes the new function:

λ(n:nat)(tv:T)(v:vector T n)(IHv:pA (↓A v)).fcons tv (↓A v) IHv

4.2.2 Lifting Constructors
The Γ ` t ⇑C t′ judgment (Figure 8) lifts applications of constructors of A to applications of
constructors of B. This judgment computes one step of the promotion, leaving the recursive
lifting of the arguments to the final algorithm. Using the same types, in the base case:

↑ nil ≡βδι ∃ O nilV

and in the inductive case:

↑ (cons t l) ≡βδι ∃ (S (↑IB l)) (consV (↑IB l) t (↑B l))
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Γ ` t ⇑ t′

Lift-Elim
Γ `~i : ~XA Γ ` a : A~i
Γ ` pa ⇑E p′ Γ ` ~fa ⇑E ~f ′

Γ ` p′ ⇑ pb Γ ` ~f ′ ⇑ ~fb Γ ` a ⇑ bΣ
Γ ` Elim(a, pa) ~fa ⇑ Elim(πr bΣ, pb)~fb

Lift-Constr
Γ `~i : ~XA Γ ` Constr(j, A) ~ta : A~i
Γ ` Constr(j, A) ~ta ⇑C t′

Γ ` t′ ⇑ t′′

Γ ` Constr(j, A) ~ta ⇑ t′′

Internalize
Γ ` a ⇑ bΣ

Γ ` ↑ a ⇑ bΣ

Retraction
Γ ` bΣ ⇑ b′

Σ

Γ ` ↓ bΣ ⇑ b′
Σ

Coherence
Γ `~i : ~XA Γ ` a : A~i Γ ` a ⇑ bΣ

Γ ` πIB a ⇑ (πl bΣ)β

Equivalence
Γ `~i : ~XA

Γ ` A~i ⇑ Σ(n : (IB ~i)β).B (index n ~i)

Constr
Γ ` T ⇑ T ′ Γ ` ~t ⇑ ~t′

Γ ` Constr(j, T ) ~t ⇑ Constr(j, T ′) ~t′

Ind
Γ ` T ⇑ T ′ Γ ` ~C ⇑ ~C′

Γ ` Ind(Ty : T )~C ⇑ Ind(Ty : T ′) ~C′

Elim
Γ ` c ⇑ c′ Γ ` Q ⇑ Q′ Γ ` ~f ⇑ ~f ′

Γ ` Elim(c,Q)~f ⇑ Elim(c′, Q′)~f ′

App
Γ ` f ⇑ f ′ Γ ` t ⇑ t′

Γ ` ft ⇑ f ′t′

Lam
Γ ` T ⇑ T ′ Γ, t : T ` b ⇑ b′

Γ ` λ(t : T ).b ⇑ λ(t : T ′).b′

Prod
Γ ` T ⇑ T ′ Γ, t : T ` b ⇑ b′

Γ ` Π(t : T ).b ⇑ Π(t : T ′).b′

Figure 9 Core lifting algorithm.

This derivation consists of only one rule: Normalize, which normalizes the promotion of
the constructor. This is guaranteed to succeed because the application of the constructor is
fully η-expanded. The core algorithm later internalizes the promotion functions in the result.

4.2.3 Core Lifting Algorithm
The core algorithm (Figure 9) builds on these intermediate judgments. The interesting
derivations for correctness are the first six: Lift-Elim and Lift-Constr use the judgments
for lifting eliminators and constructors of A. Internalize internalizes the explicit promote
functions from the lifted constructors to recursive applications of the algorithm. Retraction
and Coherence use the respective properties of the ornamental promotion isomorphism
metatheoretically: the first to drop the explicit forget functions from the lifted eliminators,
and the second to lift the indexer to a projection (in the forgetful direction, Section replaces
Retraction). Finally, Equivalence lifts A along the equivalence to packed B. The
remaining derivations recurse predictably.

5 Implementation

The Devoid Coq plugin implements the algorithms from Section 4; the link to the code is in
Supplement Material. Devoid cannot produce an ill-typed term, since Coq type checks all
terms that plugins produce and rejects ill-typed terms. The implementations of Find ornament
(search.ml) and Lift (lift.ml) are mostly the same as the algorithms, but with changes to
address implementation challenges that scale the algorithms to a Coq tool for proof engineers.
This section describes a sample of these changes from each of three categories: addressing
differences between Coq and the type theory that the algorithms assume (Section 5.1),
optimizing for efficiency (Section 5.2), and improving usability (Section 5.3).

http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/src/automation/search.ml
http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/src/automation/search.ml
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5.1 Addressing Language Differences
Fixpoints. Coq implements eliminators in terms of pattern matching and fixpoints. To
handle terms that use these features, Devoid includes a Preprocess command that translates
these terms into equivalent eliminator applications. This command can preprocess a definition
(like zip from Section 2) or an entire module (like List, as shown in ListToVect.v) for lifting.
It currently supports fixpoints that are structurally recursive on only immediate substructures.
To translate such a fixpoint, it first extracts a motive, then generates each case by partially
reducing the function’s body under a hypothetical context for the constructor arguments.
This is enough to preprocess List; Section 8 discusses possible extensions.

Non-Primitive Projections. By default, projections in Coq are non-primitive. That is, this:
∀ (T : Type) (v : Σ (n : nat).vector T n), v = ∃ (πl v) (πr v).

cannot be proven by reflexivity alone (see Projections.v). Therefore, Devoid must pack
terms like v into existentials; otherwise, lifting will sometimes fail. This is why the type
of zip_with_is_zipV_p in the example from Section 2 packs v1 and v2. For the sake of
performance and readability of lifted code, Devoid is strategic about when it packs.

Constants. Because Coq has constants, the implementation of Normalize refolds [3] after
normalizing. That is, it acts like the simpl tactic in Coq, but with special support for sigma
types. For example, to lift the cons constructor of a list, after normalizing the promotion of
cons t l, Devoid substitutes the projections of the promotion of l for their normal forms,
which determines and saves the following fact:
∀ {T} (l : list T), ↑ (cons t l) = ∃ (S (↑IB l)) (consV (↑IB l) t (↑B l)).

Refolding helps produce more readable lifted code. It also improves lifting performance, since
it occurs just once for each constructor.

5.2 Optimizing for Efficiency
Delayed Reduction. When lifting eliminators, Devoid computes a list of arguments and
delays reduction. It computes this list backwards, storing the new indices that inductive
hypotheses refer to as it recurses. This removes the call to new in the premise of Drop-Index.

Lazy η-Expansion. The lifting algorithm assumes that all terms are fully η-expanded.
Sometimes, however, η-expansion is not necessary. For efficiency, rather than fully η-expand
ahead of time, Devoid η-expands lazily, only when it is necessary for correctness.

Caching. To prevent extra recursion, Devoid caches the outputs of search, as well as lifted
constants, inductive types, and constructors. Since these are constants, lookup is low-cost.

5.3 Improving Usability
Correctness Proofs. Devoid has options (used in Example.v) that tell search to generate
proofs that its outputs are correct, thereby increasing confidence in and usefulness of those
outputs. The proof of coherence is reflexivity. The intuition behind the automation to prove
section and retraction (equivalence.ml) is that promote and forget map along corresponding
constructors, so inductive cases preserve equalities. Thus, each inductive case of these proofs
is generated by a fold that rewrites each recursive reference, with reflexivity as identity.
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http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/coq/examples/ListToVect.v
http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/coq/examples/Projections.v
http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/coq/examples/Example.v
http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/src/automation/equivalence.ml
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Unpacking. Devoid includes an Unpack command (used in Example.v) that unpacks packed
types in functions and proofs. This way, users may access unpacked terms without writing
boilerplate code. For simple functions, this command packs arguments and projects results.
It splits higher-order functions into two functions. For proofs that use equality, it applies one
lemma convert to dependent equality, and one lemma to deal with non-primitive projections.

User-Friendly Types. Example.v describes how the user can recover user-friendly types after
unpacking. For example, to recover a function with an output of type vector T n, the user
lifts a proof that the length of the output of the unlifted list version of that function is n,
then rewrites by that lifted proof. The intuition behind this is that this equivalence holds:

{ l : list T & length l = n } ' vector T n

Recovering a user-friendly type for a proof relating these functions is more complex, since it
necessitates reasoning at some point about equalities between equalities. For some index
types like nat, this follows simply from the fact that the type forms an h-set [32]: all proofs
of equality between the same two terms of that type are equal. There is preliminary work on
determining a general methodology for deriving user-friendly types for proofs that does not
rely on any properties of the index type. The idea is to use the adjunction condition along
with the proof of coherence by reflexivity; see GitHub issue #39 for the status of this work.

6 Case Study

We used Devoid to automatically discover and lift along ornaments for two scenarios:

1. Single Iteration: from binary trees to sized binary trees
2. Multiple Iterations: from binary trees to binary search trees to AVL trees

For comparison, we also used the ornaments that Devoid discovered to lift functions
and proofs using Equivalences for Free! [30] (EFF), a more general framework for lifting
across equivalences. Devoid produced faster functions and smaller terms, especially when
composing multiple iterations of lifting. In addition, Devoid imposed little burden on the
user, and the ornaments Devoid discovered proved useful to EFF.

We chose EFF for comparison because Devoid is the only tool for ornaments in Coq,
and because doing so demonstrates the benefits of specialized automation for ornaments.
Devoid can handle only a small class of equivalences compared to EFF, and it can currently
handle only incremental changes to types (one new index at a time). Our experiences suggest
that it is possible to use both tools in concert. Section 7 discusses EFF in more detail.

Setup. The case study code is in the eval folder of the repository. For each scenario, we ran
Devoid to search for an ornament, and then lifted functions and proofs along that ornament
using both Devoid and EFF. We noted the amount of user interaction (Section 6.1), as well
as the performance of lifted terms (Section 6.2). To test the performance of lifted terms,
we tested runtime by taking the median of ten runs using Time Eval vm_compute with test
values in Coq 8.8.0, and we tested size by normalizing and running coqwc on the result.2

2 i5-5300U, at 2.30GHz, 16 GB RAM

http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/coq/examples/Example.v
http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/coq/examples/Example.v
http://github.com/uwplse/ornamental-search/issues/39
http://github.com/uwplse/ornamental-search/tree/itp+equiv/plugin/eval
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In the first scenario, we lifted traversal functions along with proofs that their outputs
are permutations of each other from binary trees (tree) to sized binary trees (Sized.tree).
In the second scenario, we lifted the traversal functions to AVL trees (avl) through four
intermediate types (one for each new index), and we lifted a search function from BSTs (bst)
to AVL trees through one intermediate type. Both scenarios considered only full binary trees.

To fit bst and avl into algebraic ornaments for Devoid, we used boolean indices to track
invariants. While the resulting types are not the most natural definitions, this scenario
demonstrates that it is possible to express interesting changes to structured types as algebraic
ornaments, and that lifting across these types in Devoid produces efficient functions.

6.1 User Experience
For each intermediate type in each scenario, we used Devoid to discover the components of
the equivalence. These components were enough for Devoid to lift functions and proofs with
no additional proof burden and no additional axioms. To use EFF, we also had to prove
that these components form an equivalence; we set the appropriate option to generate these
proofs using Devoid. In addition, to use EFF, we had to prove univalent parametricity of
each inductive type; these proofs were small, but required specialized knowledge. To lift
the proof of the theorem pre_permutes using EFF, we had to prove the univalent parametric
relation between the unlifted and lifted versions of the functions that the theorem referenced;
this pulled in the functional extensionality axiom, which was not necessary using Devoid.

In the second scenario, to simulate the incremental workflow Devoid requires, we lifted
to each intermediate type, then unpacked the result. For example, the ornament from bst to
avl passed through an intermediate type; we lifted search to this type first, unpacked the
result, and then repeated this process. In this scenario, using EFF differently could have
saved some work relative to Devoid, since with EFF, it is possible to skip the intermediate
type;3 Devoid is best fit where an incremental workflow is desirable.

6.2 Performance
Relative to EFF, Devoid produced faster functions. Table 1 summarizes runtime in the first
scenario for preorder, and Table 2 summarizes runtime in the second scenario for preorder
and search. The inorder and postorder functions performed similarly to preorder. The
functions Devoid produced imposed modest overhead for smaller inputs, but were tens
to hundreds of times faster than the functions that EFF produced for larger inputs. This
performance gap was more pronounced over multiple iterations of lifting.

Devoid also produced smaller terms: in the first scenario, 13 vs. 25 LOC for preorder,
12 vs. 24 LOC for inorder, and 17 vs. 29 LOC for postorder; and in the second scenario,
21 vs. 120 LOC for preorder, 20 vs. 119 LOC for inorder, 24 vs. 125 LOC for postorder,
and 31 vs. 52 LOC for search. In the first scenario, the lifted proof of pre_permutes using
Devoid was 85 LOC; the lifted proof of pre_permutes using EFF was 1463184 LOC.

We suspect Devoid provided these performance benefits because it directly lifted induction
principles, whereas EFF produced lifted functions in terms of unlifted functions. The multiple
iteration case in particular highlights this, since EFF’s approach makes lifted terms much
slower and larger as the number of iterations increases, while Devoid’s approach does not.

3 The performances of the terms that EFF produces are sensitive to the equivalence used; for a 100 node
tree, this alternate workflow produced a search function which is hundreds of times slower and traversal
functions which are thousands of times slower than the functions that Devoid produced. In addition,
the lifted proof of pre_permutes using EFF failed to normalize with a timeout of one hour.
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Table 1 Median runtime (ms) of unlifted (tree) and lifted (Sized.tree) preorder over ten runs
with test inputs ranging from about 10 to about 10000 nodes.

10 100 1000 10000 100000

preorder
Unlifted 0.0 0.0 0.0 3.0 (1.00x) 37.0 (1.00x)
Devoid 0.0 0.0 0.0 3.0 (1.00x) 35.0 (0.95x)
EFF 0.0 1.0 27.0 486.5 (162.17x) 8078.5 (218.33x)

Table 2 Median runtime (ms) of unlifted (tree) and lifted (avl) preorder, plus unlifted (bst)
and lifted (avl) search, over ten runs with inputs ranging from about 10 to about 100000 nodes.

10 100 1000 10000 100000

preorder
Unlifted 0.0 0.0 0.0 3.0 (1.00x) 37.0 (1.00x)
Devoid 71.5 71.0 69.0 75.0 (25.00x) 109.0 (2.95x)
EFF 1.0 11.0 152.0 2976.5 (992.17x) 56636.5 (1530.72x)

search
Unlifted 0.0 0.0 2.0 (1.00x) 3.0 (1.00x) 29.0 (1.00x)
Devoid 12.0 14.0 12.0 (6.00x) 15.0 (5.00x) 50.0 (1.72x)
EFF 1.0 5.0 67.0 (33.50x) 1062.0 (354.00x) 15370.5 (530.02x)

7 Related Work

Ornaments. Devoid automates discovery of and lifting across algebraic ornaments in
a higher-order dependently typed language. In the decade since the discovery of orna-
ments [23], there have been a number of formalizations and embedded implementations of
ornaments [10, 19, 11, 20, 9]. Devoid is the first tool for ornamentation to operate over
a non-embedded dependently typed language. It essentially moves the automation-heavy
approach of Ornamentation in ML [33], which operates on non-embedded ML code, into the
type theory that forms the basis of theorem provers like Coq. In doing so, it takes advantage
of the properties of algebraic ornaments [23]. It also introduces the first search algorithm to
identify ornaments, which in the past was identified as a “gap” in the literature [20].

Lifting Proofs. Devoid identifies and lifts proofs along a specific equivalence similar to
that from existing ornaments work [20]. The need to automatically lift functions and proofs
across equivalences and other relations is a long-standing challenge for proof engineers [22, 1,
21, 16, 34, 6]. The univalence axiom from Homotopy Type Theory [32] enables transparent
transport of proofs; cubical type theory [5] gives univalence a constructive interpretation.

Our work is closely related to Equivalences for Free! [30], which brings this full circle, using
mathematical properties of univalence to enable lifting across equivalences in a substantial
subset of CICω without relying on the univalence axiom. In doing so, it introduces and
formalizes the relation that our specification depends upon, and implements a framework for
lifting in Coq. This framework is more general than Devoid: It lifts along any equivalence,
not just ornamental promotions, and can handle opaque terms, with the caveat that users
must prove each equivalence themselves; Devoid requires non-opaque terms and lifts along
the class of equivalences that correspond to ornamental promotions, taking advantage of
the mathematical properties of ornaments to eliminate the need for explicit applications of
section and retraction, and to discover and prove certain equivalences automatically. These
mathematical properties allow us to automatically lift the induction principle and eliminate
references to old terms, which is beneficial for performance.
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Similarly, our work is related to CoqEAL [6], which transfers functions along arbitrary
relations between types. As these relations do not necessarily need to be equivalences,
this framework is more general than our work. Similar tradeoffs between automation and
generality apply: CoqEAL produces functions that refer to the old type, and does not yet
support automatic inference of relations. In addition, CoqEAL currently only supports
automatic transfer of functions, and does not yet handle proofs.

These tools may provide an alternative backend for Devoid. Furthermore, our search
algorithm may help discover relations that make these tools easier to use, and our lifting
algorithm may help improve automation and efficiency for certain relations in these tools.

Program and Proof Reuse. The problem that we solve is fundamentally about proof reuse,
which applies software reuse principles to ITPs. There is a wealth of work in proof reuse,
from tactic languages [15] and logical frameworks [4], to tools for proof abstraction and
generalization [26, 18], to domain-specific methodologies [12] and frameworks [13].

Devoid focuses on the specific problem of reuse when adding fully-determined indices to
types. Other approaches to this problem include combinators which definitionally reduce to
desirable terms [14] in the language Cedille, and automatic generation of conversion functions
in Ghostbuster [24] for GADTs in Haskell. Our work focuses on a type theory different from
both of these, in which the properties that allow for such combinators in Cedille are not
present, and in which dependent types introduce challenges not present in Haskell.

Devoid is not the first tool to combine search with reuse. Optician [25] synthesizes
bidirectional string transformations; a similar approach may help extend tooling to handle
transformations for low-level data. Pumpkin Patch [27] searches the difference in proofs for
patches that can be used to repair proofs broken by changes; Devoid uses a similar approach
to identify functions that form an equivalence. The resulting tools are complementary:
Devoid supports the addition of indices and hypotheses, which Pumpkin Patch does not
support; Pumpkin Patch supports changes in values, which Devoid does not support.

8 Conclusions & Future Work

We presented Devoid: a tool for searching for and lifting across algebraic ornaments in
Coq. Devoid is the first tool to lift across ornaments in a non-embedded dependently typed
language, and to automatically infer certain kinds of ornaments from types alone. Our
algorithms give efficient transport across equivalences arising from algebraic ornaments; our
case study demonstrates that such automation can make lifted terms smaller and faster as
part of an incremental workflow.

Future Work. A future version may support other ornaments beyond algebraic ornaments,
with additional user interaction as needed; this may help support, for example, the ornament
between nat and list, where list has a new element in the cons case. A future version may
loosen restrictions on input types to support adding constructors while preserving inductive
structure, recursive references under products, and coinductive types. Integrating with
Pumpkin Patch [27] may help remove restrictions Devoid makes about the hypotheses
of B. Preprocess currently supports only certain fixpoints; a more general translation may
help Devoid support more terms, and discussions with Coq developers suggest that the
implementation of such a translation building on work from the equations [28] plugin is in
progress. Extending Devoid to generate proofs of coherence conditions for lifted terms
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may increase user confidence. Proofs that the commands that Devoid implements satisfy
their specifications may also increase user confidence. Better automating the recovery of
user-friendly types may improve user experience.
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