1,931 research outputs found

    Automatic verification of reliability requirements of spatio-temporal analysis using Three-Valued Spatio-Temporal Logic

    Get PDF
    In this paper we present the recently introduced Three-Valued Spatio-Temporal Logic (TSTL), which extends the available spatio-temporal analysis of stochastic systems, and an automatic procedure to verify whether this analysis satisfies given reliability requirements. The novel spatio-temporal logic TSTL enriches the analysis of properties expressed in Signal Spatio-Temporal Logic (SSTL), providing further insight into the dynamic behaviour of systems. Starting from the estimated satisfaction probabilities of given SSTL properties, it enables the analysis of their temporal and spatial evolution. We use a three-valued approach in our verification procedure to include the uncertainty associated with the simulation-based statistical method used to estimate the satisfaction probabilities. In relation to this aspect, we introduce a reliability specification for the TSTL analysis and we present a specific algorithm to automatically assess whether it is satisfied by the evaluation of TSTL formulas. \ua9 2017 ACM

    Analysis of spatio-temporal properties of stochastic systems using TSTL

    Get PDF
    In this article, we present Three-Valued spatio-temporal Logic (TSTL), which enriches the available spatiotemporal analysis of properties expressed in Signal spatio-temporal Logic (SSTL), to give further insight into the dynamic behavior of systems. Our novel analysis starts from the estimation of satisfaction probabilities of given SSTL properties and allows the analysis of their temporal and spatial evolution. Moreover, in our verification procedure, we use a three-valued approach to include the intrinsic and unavoidable uncertainty related to the simulation-based statistical evaluation of the estimates; this can be also used to assess the appropriate number of simulations to use depending on the analysis needs. We present the syntax and three-valued semantics of TSTL and specific extended monitoring algorithms to check the validity of TSTL formulas. We introduce a reliability requirement for TSTL monitoring and an automatic procedure to verify it. Two case studies demonstrate how TSTL broadens the application of spatio-temporal logics in realistic scenarios, enabling analysis of threat monitoring and privacy preservation based on spatial stochastic population models

    Continuous-time temporal logic specification and verification for nonlinear biological systems in uncertain contexts

    Get PDF
    In this thesis we introduce a complete framework for modelling and verification of biological systems in uncertain contexts based on the bond-calculus process algebra and the LBUC spatio-temporal logic. The bond-calculus is a biological process algebra which captures complex patterns of interaction based on affinity patterns, a novel communication mechanism using pattern matching to express multiway interaction affinities and general kinetic laws, whilst retaining an agent-centric modelling style for biomolecular species. The bond-calculus is equipped with a novel continuous semantics which maps models to systems of Ordinary Differential Equations (ODEs) in a compositional way. We then extend the bond-calculus to handle uncertain models, featuring interval uncertainties in their species concentrations and reaction rate parameters. Our semantics is also extended to handle uncertainty in every aspect of a model, producing non-deterministic continuous systems whose behaviour depends either on time-independent uncertain parameters and initial conditions, corresponding to our partial knowledge of the system at hand, or time-varying uncertain inputs, corresponding to genuine variability in a system’s behaviour based on environmental factors. This language is then coupled with the LBUC spatio-temporal logic which combines Signal Temporal Logic (STL) temporal operators with an uncertain context operator which quantifies over an uncertain context model describing the range of environments over which a property must hold. We develop model-checking procedures for STL and LBUC properties based on verified signal monitoring over flowpipes produced by the Flow* verified integrator, including the technique of masking which directs monitoring for atomic propositions to time regions relevant to the overall verification problem at hand. This allows us to monitor many interesting nested contextual properties and frequently reduces monitoring costs by an order of magnitude. Finally, we explore the technique of contextual signal monitoring which can use a single Flow* flowpipe representing a functional dependency to complete a whole tree of signals corresponding to different uncertain contexts. This allows us to produce refined monitoring results over the whole space and to explore the variation in system behaviour in different contexts

    Assisted history matching using pattern recognition technology

    Get PDF
    Reservoir simulation and modeling is utilized throughout field development in different capacities. Sensitivity analysis, history matching, operations optimization and uncertainty assessment are the conventional analyses in full field model studies. Realistic modeling of the complexities of a reservoir requires a large number of grid blocks. As the complexity of a reservoir increases and consequently the number of grid blocks, so does the time required to accomplish the abovementioned tasks.;This study aims to examine the application of pattern recognition technologies to improve the time and efforts required for completing successful history matching projects. The pattern recognition capabilities of Artificial Intelligence and Data Mining (AI&DM;) techniques are used to develop a Surrogate Reservoir Model (SRM) and use it as the engine to drive the history matching process. SRM is a prototype of the full field reservoir simulation model that runs in fractions of a second. SRM is built using a small number of geological realizations.;To accomplish the objectives of this work, a three step process was envisioned:;• Part one, a proof of concept study: The goal of first step was to prove that SRM is able to substitute the reservoir simulation model in a history matching project. In this part, the history match was accomplished by tuning only one property (permeability) throughout the reservoir.;• Part two, a feasibility study: This step aimed to study the feasibility of SRM as an effective tool to solve a more complicated history matching problem, particularly when the degrees of uncertainty in the reservoir increase. Therefore, the number of uncertain reservoir properties increased to three properties (permeability, porosity, and thickness). The SRM was trained, calibrated, and validated using a few geological realizations of the base reservoir model. In order to complete an automated history matching workflow, the SRM was coupled with a global optimization algorithm called Differential Evolution (DE). DE optimization method is considered as a novel and robust optimization algorithm from the class of evolutionary algorithm methods.;• Part three, a real-life challenge: The final step was to apply the lessons learned in order to achieve the history match of a real-life problem. The goal of this part was to challenge the strength of SRM in a more complicated case study. Thus, a standard test reservoir model, known as PUNQ-S3 reservoir model in the petroleum engineering literature, was selected. The PUNQ-S3 reservoir model represents a small size industrial reservoir engineering model. This model has been formulated to test the ability of various methods in the history matching and uncertainty quantification. The surrogate reservoir model was developed using ten geological realizations of the model. The uncertain properties in this model are distributions of porosity, horizontal, and vertical permeability. Similar to the second part of this study, the DE optimization method was connected to the SRM to form an automated workflow in order to perform the history matching. This automated workflow is able to produce multiple realizations of the reservoir which match the past performance. The successful matches were utilized to quantify the uncertainty in the prediction of cumulative oil production.;The results of this study prove the ability of the surrogate reservoir models, as a fast and accurate tool, to address the practical issues of reservoir simulation models in the history matching workflow. Nevertheless, the achievements of this dissertation are not only aimed at the history matching procedure, but also benefit the other time-consuming operations in the reservoir management workflow (such as sensitivity analysis, production optimization, and uncertainty assessment)

    Dagstuhl News January - December 2008

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Short-term wind power forecasting: probabilistic and space-time aspects

    Get PDF
    • …
    corecore