
Computational model validation
using a novel multiscale

multidimensional spatio-temporal
meta model checking approach

A thesis submitted
for the degree of Doctor of Philosophy

by
Ovidiu Pârvu

Department of Computer Science
Brunel University London

August 2015

ii

BLANK

iii

Computational model validation using a novel
multiscale multidimensional spatio-temporal

meta model checking approach

Ovidiu Pârvu

Department of Computer Science
Brunel University London

Abstract

Computational models of complex biological systems can provide a better under-
standing of how living systems function but need to be validated before they are
employed for real-life (e.g. clinical) applications.

One of the most frequently employed in silico approaches for validating such
models is model checking. Traditional model checking approaches are limited
to uniscale non-spatial computational models because they do not explicitly
distinguish between different scales, and do not take properties of (emergent)
spatial structures (e.g. density of multicellular population) into account.

This thesis defines a novel multiscale multidimensional spatio-temporal meta
model checking methodology which enables validating multiscale (spatial) compu-
tational models of biological systems relative to how both numeric (e.g. concentra-
tions) and spatial system properties are expected to change over time and across
multiple scales. The methodology has two important advantages. First it supports
computational models encoded using various high-level modelling formalisms be-
cause it is defined relative to time series data and not the models used to produce
them. Secondly the methodology is generic because it can be automatically recon-
figured according to case study specific types of spatial structures and properties
using the meta model checking approach. In addition the methodology could
be employed for multiple domains of science, but we illustrate its applicability
here only against biological case studies. To automate the computational model
validation process, the approach was implemented in software tools, which are
made freely available online. Their efficacy is illustrated against two uniscale and
four multiscale quantitative computational models encoding phase variation in
bacterial colonies and the chemotactic aggregation of cells, respectively the rat
cardiovascular system dynamics, the uterine contractions of labour, the Xenopus
laevis cell cycle and the acute inflammation of the gut and lung.

This novel model checking approach will enable the efficient construction of
reliable multiscale computational models of complex systems.

iv

The predictive power of a model is dependent on the rigour of its validation.
(Walpole et al., 2013)

Contents

Contents v

List of Figures x

List of Tables xii

List of Abbreviations xiv

Acknowledgements xvi

Author’s declaration xviii

1 Introduction 1
1.1 Systems biology . 1
1.2 Computational models in systems biology 2

1.2.1 Development . 3
1.2.2 Types of models . 4
1.2.3 Standards . 4
1.2.4 Validation . 5

1.3 Motivation . 5
1.4 Contributions . 7

1.4.1 Description . 8
1.4.2 Publications . 9

1.5 Structure . 10

2 Model checking 13
2.1 Preliminaries . 13

2.1.1 Formal verification methods 13
2.1.2 Model checking background 14

2.2 Model construction . 15
2.2.1 Labelled state transition systems 16
2.2.2 Probabilistic labelled state transition systems 19

2.3 Formal specification . 21
2.3.1 Linear time temporal logics 21

2.3.1.1 Linear Temporal Logic 22
2.3.1.2 Bounded Linear Temporal Logic 24
2.3.1.3 Probabilistic Linear Temporal Logic 25

2.3.2 Branching time temporal logics 26

v

vi

2.3.2.1 Computation Tree Logic 26
2.3.2.2 Extended Computation Tree Logic 29
2.3.2.3 Bounded and probabilistic branching time logics 32

2.4 Model verification . 32
2.4.1 Model checking labelled state transition systems 33

2.4.1.1 LTL model checking 33
2.4.1.2 CTL model checking 33
2.4.1.3 CTL* model checking 34
2.4.1.4 State space explosion problem 34

2.4.2 Model checking probabilistic labelled state transition sys-
tems . 37
2.4.2.1 Computing probabilities over computation paths 37
2.4.2.2 Exhaustive probabilistic model checking 40
2.4.2.3 Approximate probabilistic model checking . . . 40
2.4.2.4 Comparing probabilistic model checking ap-

proaches . 42
2.5 Model checking computational models of biological systems . . . 43

2.5.1 Computational modelling formalisms 44
2.5.2 Formal specification . 45
2.5.3 Computational model checking approaches 45
2.5.4 Limitations . 46

3 Multidimensional spatio-temporal model checking 48
3.1 Spatial computational models of biological systems 48
3.2 Multidimensional spatio-temporal model checking workflow . . . 50
3.3 Model construction . 51

3.3.1 Explicitly encoding space 52
3.3.2 Stochastic spatial discrete-event systems 54

3.4 Spatio-temporal detection and analysis 58
3.4.1 Spatial entity types . 58

3.4.1.1 Regions . 58
3.4.1.2 Clusters . 60

3.4.2 Spatial measures . 61
3.4.2.1 Computing spatial measures values for regions . 62
3.4.2.2 Computing spatial measures values for clusters 64

3.4.3 Spatial Temporal Markup Language 65
3.5 Formal specification . 67

3.5.1 Bounded Linear Spatial Temporal Logic 67
3.5.1.1 Syntax . 69
3.5.1.2 Semantics . 73
3.5.1.3 Illustrative examples of BLSTL statements . . . 77

3.5.2 Probabilistic Bounded Linear Spatial Temporal Logic . . 79
3.6 Model checking . 79

3.6.1 Proof that the multidimensional model checking problem
is well-defined . 81
3.6.1.1 Finite number of required simulations 81
3.6.1.2 Finite number of state transitions 83

vii

3.6.1.3 Well-defined model checking problem 85
3.7 Implementation . 86

3.7.1 Spatio-temporal detection and analysis modules 88
3.7.2 Model checker Mudi . 88
3.7.3 Availability . 92

3.8 Related work . 92
3.8.1 Epidemiology . 92
3.8.2 Spatial information theory 93

4 Validation of multidimensional computational models of bio-
logical systems 97
4.1 Description . 97
4.2 Phase variation patterning in bacterial colony growth 98

4.2.1 Model construction . 99
4.2.2 Spatio-temporal analysis 99
4.2.3 Formal specification . 99
4.2.4 Model checking . 102

4.3 Chemotactic aggregation of cells 104
4.3.1 Model construction . 105
4.3.2 Spatio-temporal analysis 105
4.3.3 Formal specification . 106
4.3.4 Model checking . 109

4.4 Discussion . 110
4.4.1 Supported modelling formalisms 110
4.4.2 Spatio-temporal analysis based on image processing . . . 111
4.4.3 STML files generated on demand 111
4.4.4 Supported model checking algorithms 111
4.4.5 Scalability . 112
4.4.6 Limitations . 112

5 Multiscale multidimensional spatio-temporal meta model
checking 114
5.1 Multiscale computational models of biological systems 114
5.2 Multiscale multidimensional spatio-temporal model checking

workflow . 120
5.3 Model construction . 122

5.3.1 Encoding the hierarchical system structure 123
5.3.2 Multiscale stochastic spatial discrete-event systems . . . 127

5.4 Multiscale spatio-temporal analysis 132
5.4.1 Detection and analysis of spatial entities from multiple

scales . 132
5.4.2 Multiscale Spatial Temporal Markup Language 133

5.5 Formal specification . 136
5.5.1 Bounded Linear Multiscale Spatial Temporal Logic . . . 136

5.5.1.1 Syntax . 138
5.5.1.2 Semantics . 143
5.5.1.3 Illustrative examples of BLMSTL statements . 150

viii

5.5.2 Probabilistic Bounded Linear Multiscale Spatial Temporal
Logic . 151

5.6 Model checking . 152
5.7 Meta model checking . 152
5.8 Implementation . 155

5.8.1 Multiscale spatio-temporal detection and analysis module 156
5.8.2 Model checker Mule . 156
5.8.3 Availability . 158

5.9 Related work . 159
5.9.1 Pattern recognition . 159
5.9.2 Spatial information theory 160

6 Validation of multiscale computational models of biological
systems 162
6.1 Description . 162
6.2 Model construction . 165

6.2.1 Rat cardiovascular system dynamics 165
6.2.2 Uterine contractions of labour 166
6.2.3 Xenopus laevis cell cycle 167
6.2.4 Acute inflammation of the gut and lung 167

6.3 Multiscale spatio-temporal analysis 168
6.4 Formal specification . 169

6.4.1 Rat cardiovascular system dynamics 169
6.4.2 Uterine contractions of labour 171
6.4.3 Xenopus laevis cell cycle 173
6.4.4 Acute inflammation of the gut and lung 176

6.5 Model checking . 178
6.6 Discussion . 181

6.6.1 Model validation and experimental data analysis 182
6.6.2 Automatic reconfiguration according to case study specific

spatial entity types and measures 182
6.6.3 Scalability . 183

7 Conclusions, open problems and future work 185
7.1 Summary and conclusions . 185

7.1.1 Multidimensional spatio-temporal model checking 186
7.1.2 Multiscale multidimensional spatio-temporal meta model

checking . 188
7.2 Open problems and future work 191

7.2.1 Analysis of time series data recorded in the in vitro envi-
ronment . 191

7.2.2 Validation of computational models from other domains
of science . 191

7.2.3 Parameter estimation, model construction and robustness
computation . 192

7.2.4 Distributed multiscale model checking web service 192

ix

7.2.5 Alternative model representations and spatio-temporal
analysis modules . 193

7.2.6 Usability improvement 193

Appendix A Approximate probabilistic model checking ap-
proaches 194

A.1 Chernoff-Hoeffding bounds based model checking 194
A.2 Frequentist statistical model checking 195

A.2.1 Single acceptance sampling plan 196
A.2.2 Sequential acceptance sampling plan 197

A.3 Statistical black-box model checking 198
A.4 Bayesian mean and variance estimate based model checking . . 198
A.5 Bayesian statistical model checking 199

Appendix B Existing model checking approaches for computa-
tional models of biological systems 201

Appendix C Multidimensional spatio-temporal model checking
supplementary materials 209

C.1 Mapping between subalgorithms of region detection mechanism
and OpenCV functions . 209

C.2 Numeric measures for encoding formal specifications 210
C.3 Subset measures for encoding formal specifications 211
C.4 Improved frequentist statistical model checking 213

C.4.1 Notations . 214
C.4.2 Description of initialisation error 214
C.4.3 Solution . 215

C.5 Proof that the semantics of a BLSTL statement can be defined
based on a finite prefix of an infinite execution 217

Appendix D Multiscale multidimensional spatio-temporal
meta model checking supplementary materials 224

D.1 Proof that the multiscale multidimensional spatio-temporal
model checking problem is well-defined 224
D.1.1 Finite number of required simulations 224
D.1.2 Finite number of state transitions 225
D.1.3 Well-defined model checking problem 233

References 234

List of Figures

1.1 Thesis structure . 11

2.1 Description of the model checking process 15
2.2 Dictyostelium discoideum labelled state transition system 18
2.3 Dictyostelium discoideum probabilistic labelled state transition system 20
2.4 Linear time structure example . 21
2.5 Branching time structure example 27
2.6 Well-known approaches for tackling the state space explosion problem 35

3.1 Workflow for constructing and validating multidimensional spatio-
temporal computational models of biological systems 52

3.2 Initial state of SSpDES encoding the growth of a population of cells
in a fixed size environment . 55

3.3 State space of SSpDES encoding the growth of a population of cells
in a fixed size environment . 56

3.4 Detection of sector-like patterns in bacterial colonies 59
3.5 Detection of clusters in multicellular populations 62
3.6 Visual description of spatial measures computed for regions and

clusters . 63
3.7 Computational model validation relative to how both numeric and

spatial properties are expected to change over time using the model
checker Mudi and the spatio-temporal detection and analysis modules 87

3.8 Multidimensional spatio-temporal model checking use case diagram 89
3.9 Architecture of the multidimensional spatio-temporal model checker

Mudi . 90
3.10 Class diagram corresponding to the model checking approaches

considered, and the PBLSTL logic property parser and evaluator . 91
3.11 A graphical description of the topological spatial relations in RCC-8 94

4.1 Spatio-temporal detection and analysis for a phase variation model
simulation . 100

4.2 Spatio-temporal detection and analysis for a chemotaxis model sim-
ulation . 106

5.1 Multiscale multidimensional spatio-temporal model checking workflow 122
5.2 Illustrative example on how to construct a multiscale architecture

graph . 125

x

xi

5.3 Initial state of the MSSpDES encoding the movement of a unicellular
organism . 128

5.4 The state space of the MSSpDES encoding the movement of a
unicellular organism . 129

5.5 The multiscale architecture graph corresponding to the MSSpDES
encoding the movement of a unicellular organism 131

5.6 The multiscale spatio-temporal analysis workflow 134
5.7 Workflow for creating multiscale multidimensional spatio-temporal

model checking methodology instances 155
5.8 Implementation of workflow for generating multiscale multidimen-

sional model checker instances . 157

6.1 MA graph representing the multiscale organization of the rat cardio-
vascular system dynamics computational model 166

6.2 MA graph representing the multiscale organization of the uterine
contractions of labour computational model 166

6.3 MA graph representing the multiscale organization of the Xenopus
laevis cell cycle computational model 167

6.4 MA graph representing the multiscale organization of the acute
inflammation of the gut and lung computational model 168

6.5 Average execution times (measured in seconds) corresponding to the
validation of the rat cardiovascular system dynamics, the uterine
contractions of labour, the Xenopus laevis cell cycle and the acute
inflammation of the gut and lung computational models 181

List of Tables

2.1 Considered approximate probabilistic model checking approaches . 42

3.1 Translation between full and abbreviated BLSTL symbol names . . 73
3.2 Interval Algebra relations . 95

4.1 Model checking statistical analysis results for the phase variation
case study . 103

4.2 Model checking statistical analysis results for the chemotaxis case
study . 109

5.1 Problem independent multiscale modelling approaches for computa-
tional models of biological systems 117

5.2 Translation of full BLMSTL symbol names to abbreviated forms . . 144

6.1 Considered multiscale systems biology computational models against
which the multiscale multidimensional spatio-temporal meta model
checking methodology and implementation were validated 163

6.2 Model simulation and analysis execution times for the rat cardio-
vascular system dynamics, the uterine contractions of labour, the
Xenopus laevis cell cycle and the acute inflammation of the gut and
lung case studies . 169

6.3 Model checking statistical analysis results for the rat cardiovascular
system dynamics, the uterine contractions of labour, the Xenopus
laevis cell cycle and the acute inflammation of the gut and lung case
studies . 179

6.4 Comparison of average model checker execution times when PBLM-
STL statements corresponding to a computational model are stored
in a single, respectively multiple separate files 180

B.1 Existing model checking approaches employed for validating compu-
tational models of biological systems 201

C.1 Mapping between subalgorithms employed by Algorithm 1 and func-
tions from the Open source Computer Vision library OpenCV . . . 209

C.2 Description of unary numeric measures which can be employed for
writing formal specifications . 210

C.3 Description of binary numeric measures which can be employed for
writing formal specifications . 211

xii

xiii

C.4 Description of unary subset measures which can be employed for
writing formal specifications . 211

C.5 Description of binary subset measures which can be employed for
writing formal specifications . 211

C.6 Description of ternary subset measures which can be employed for
writing formal specifications . 213

C.7 Description of quaternary subset measures which can be employed
for writing formal specifications . 213

C.8 Valid intervals of δ values for improved frequentist statistical model
checking . 216

xiv

List of Abbreviations

ABM Agent Based Model
AP Approximate Probabilistic
APC Anaphase-Promoting Complex
apLTL abstraction-preserved Linear Temporal Logic
ARCTL Action Restricted Computation Tree Logic
ATL Alternating-time Temporal Logic
BDD Binary Decision Diagram
BLMSTL Bounded Linear Multiscale Spatial Temporal Logic
BLSTL Bounded Linear Spatial Temporal Logic
BLTL Bounded Linear Temporal Logic
BNF Backus-Naur Form
BOSL Biological Oscillators Synchronisation Logic
BSTL Bounded Spatio-Temporal Logic
CA Cellular Automata
cAMP cyclic Adenosine Monophosphate
CDK1 Cyclin-Dependent Kinase 1
CellML Cell Markup Language
CPM Cellular Potts Model
CSL Continuous-time Stochastic Logic
CSMMR Coloured Stochastic Multilevel Multiset Rewriting
CTL Computation Tree Logic
CTL* Extended Computation Tree Logic
DBSCAN Density Based Spatial Clustering of Applications with

Noise
DDE Delay Differential Equations
DNA Deoxyribonucleic Acid
DSD Deoxyribonucleic Acid Strand Displacement
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
EN Exhaustive Non-probabilistic
EP Exhaustive Probabilistic
ERK Extracellular Signal-Regulated Kinase
FGF Fibroblast Growth Factor
FieldML Field Markup Language
gp130/JAK/STAT glycoprotein 130/Janus Kinase/Signal Transducer

and Activator of Transcription
GUI Graphical User Interface
HASL Hybrid Automata Stochastic Logic
HMGB1 High-Mobility Group Box 1
IA Interval Algebra
LSTS Labelled State Transition System
LTL Linear Temporal Logic
LTLc Linear Temporal Logic with constraints

xv

MA Multiscale Architecture
MAPK Mitogen-Activated Protein Kinase
MC Model Construction
MITL Metric Interval Temporal Logic
MLC Myosin Light Chain
MSSpDES Multiscale Stochastic Spatial Discrete-Event System
MSTML Multiscale Spatial Temporal Markup Language
MV Model Validation
NGF Nerve Growth Factor
NME Not Mentioned Explicitly
ODE Ordinary Differential Equation
PBL Probabilistic Bounded Linear Temporal Logic
PBLMSTL Probabilistic Bounded Linear Multiscale Spatial Tem-

poral Logic
PBLSTL Probabilistic Bounded Linear Spatial Temporal Logic
PBLTL Probabilistic Bounded Linear Temporal Logic
PBMTL Probabilistic Bounded Metric Temporal Logic
PCTL Probabilistic Computation Tree Logic
PDE Partial Differential Equation
PEPA Performance Evaluation Process Algebra
PHML Physiological Hierarchy Markup Language
PI Parameter Identification
PLSTS Probabilistic Labelled State Transition System
PLTL Probabilistic Linear Temporal Logic
PLTLc Probabilistic Linear Temporal Logic with constraints
QFCTL Quantifier Free Computation Tree Logic
QFLTL Quantifier Free Linear Temporal Logic
RA Rectangle Algebra
RC Robustness Computation
RCC Region Connection Calculus
RKIP Raf Kinase Inhibitor Protein
SDES Stochastic Discrete-Event System
SSpDES Stochastic Spatial Discrete-Event System
SSTL Signal Spatio-Temporal Logic
STL Signal Temporal Logic
STML Spatial Temporal Markup Language
TCTL Timed Computation Tree Logic
TJ Tight Junction
UML Unified Modelling Language

xvi

Acknowledgements

I am grateful to everyone who has supported me throughout my doctoral
studies.

First of all I would like to thank my principal supervisor, Professor David
Gilbert, for introducing me to the interdisciplinary area of systems biology, for all
the provided guidance and support, and for allowing me to freely explore my own
ideas. I would also like to thank you for giving me the opportunity to interact and
collaborate with many people outside the department by financially supporting
my attendance to multiple scientific seminars, conferences and summer schools
throughout the years. In addition I am grateful that you always made time to
discuss with me about my project, in spite of your very busy schedule.

Secondly I would like to thank my second supervisor, Professor Nigel Saunders,
for all the provided help on the biologically relevant aspects of my work, and for
the insightful contributions and comments on the manuscripts related to phase
variation in bacterial colony growth. Moreover I would like to thank you and the
members of your team, namely Piyali Basu, Dr. Antima Gupta, Arshad Khan
and Dr. Carlos Pires, for making me feel as part of the group when I moved from
St John’s to the Heinz Wolff building.

I would also like to thank all the academic members of staff in the Department
of Computer Science who supported me, patiently read early drafts of my work,
and provided insightful comments which helped me improve: Dr. Julie Eatock, Dr.
Crina Gros,an, Professor Xiaohui Liu, Dr. Alessandro Pandini, Professor Martin
Shepperd, Dr. Larisa Soldatova and Dr. Allan Tucker. I would like to especially
thank Dr. Crina Gros,an for giving me the opportunity to get involved in research
projects ever since I was an undergraduate student, for all the provided support
since, and for encouraging me to apply for the current PhD position straight after
my undergraduate studies. Without your help and advice I would not have been
here today.

In addition I would like to thank the collaborators with whom I have been
fortunate to work, namely Professor Monika Heiner and current/former members
of her team (Christian Rohr, Dr. Mostafa Herajy and Dr. Fei Liu), Professor
Wolfgang Marwan, Mary Ann Blätke and Dr. Simon Shaw, for introducing me
to the concept of modelling using Petri nets, for involving me in their ongoing
projects on the phase variation in bacterial colony growth and the Dictyostelium
discoideum case studies, for all the intellectually provoking discussions, and for
taking the time to read early drafts of my manuscripts and providing feedback on
my work. Furthermore I would like to thank Dr. Matthias Maischak for giving me
the opportunity to run computational model simulations on the computer cluster
of the Mathematics department.

Moreover I would like to thank Professor Joseph O’Rourke who has always
provided timely feedback and support on the implementation of the solution to
the minimal area enclosing triangle problem.

In addition I would like to thank the thesis examiners, Dr. Larisa Soldatova
and Professor Adelinde Uhrmacher, for their insightful comments which helped

xvii

improve the quality of this thesis.
I would also like to thank all the PhD students in the Department of Computer

Science who I have been fortunate to meet, and which have made the PhD journey
a more enjoyable experience. I would like to especially thank Dr. Qian Gao, a
former PhD student supervised by Professor David Gilbert, who provided many
useful insights during my first year as a PhD student.

In addition I would like to thank Teresa Czachowska and Ela Heaney for
always providing support regarding administrative and teaching issues.

I would also like to thank Brunel University London for financially supporting
my PhD studies.

Finally, and most importantly, I would like to thank my girlfriend, my brother,
and my parents, for their unconditional love, support and encouragement. This
thesis is dedicated to you.

xviii

Author’s declaration

This thesis is the result of my own work carried out in the Computer Science
department of Brunel University London. The presented results are my own
unless otherwise stated in the text. Partial results described in this thesis have
been previously published as conference and journal papers. The work presented
in this thesis has not been, in full or in part, submitted for any other academic
qualification.

London,
August 2015

Ovidiu Pârvu

CHAPTER 1
Introduction

1.1 Systems biology

According to Noble (Noble, 2008) the concept of systems biology dates back to

1865 when Claude Bernard emphasized the need to study biological organisms as

collections of interacting rather than independent subsystems (Bernard, 1865).

Bernard claimed that new insights could be potentially gained by studying

interacting biological subsystems in the context of the entire organism and/or

across multiple levels of organization (Dada and Mendes, 2011). Moreover he

predicted that the complexity of biological organisms could be overcome by

employing mathematical models which abstract away from all biological details

irrelevant to the problem one tries to address.

However the term systems biology as we know it today was coined only in 1960

by Dennis Noble who published the first systems level mathematical model of a

biological system (Noble, 1960). The model encoded the action and pacemaker

potentials of the cardiac muscle and served as an initial proof that new insights

can be gained by studying biological organisms at the entire system level using

mathematical (and computational) modelling.

In spite of its early development systems biology, as a scientific field, has

started receiving significant attention only after the beginning of the 21st century

due to the advancements in high-throughput sequencing technologies (Ghosh

et al., 2011), which led to an explosion in the amounts of available biological data

(e.g. the first human genome sequences (Lander et al., 2001; Venter et al., 2001)),

and the increasing availability of computational power, which enabled building

more complex computational models.

Although it is now more than ten years since systems biology has gained

momentum there is still no single definition for it in the literature (Ideker et al.,

1

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 2

2001; Kitano, 2002a,b). However for the purposes of this thesis we will interpret

systems biology as the interdisciplinary field of science whose main aim is to gain

a systems level understanding of how natural biological organisms function. For

achieving this aim, due to the same reasons as in 1865, one of the main employed

approaches is computational modelling.

1.2 Computational models in systems biology

The main benefits of employing computational models in systems biology is that

they can provide a better understanding of the mechanisms underlying biological

systems, and they can predict how the behaviour of a biological system changes

when the system is perturbed (Kell and Knowles, 2006).

One of the main advantages of computational models is that they can be

simulated in the in silico environment usually faster and cheaper than the cor-

responding in vitro experiments. Moreover biological systems state changes can

be observed and/or recorded easier during model simulations than in vitro ex-

periments. Conversely the main disadvantage of computational models is that

they cannot fully replace in vitro experiments when proving biological hypothe-

ses (Kaazempur-Mofrad et al., 2003). Therefore a mixed in vitro-in silico approach

is usually employed where computational models are used to predict which in

vitro experiments will provide the most biologically relevant information, and the

results obtained from those in vitro experiments are used to refine the model such

that it can make better predictions (Di Ventura et al., 2006).

Another advantage of employing computational models is that by running in

silico simulations the number of required in vitro human/animal tests could be

potentially reduced (Mone, 2014). For instance in scientific fields such as toxicology

computational models could replace animals for predicting the potential adverse

response of an organism to different chemicals (Andersen and Krewski, 2009;

Kleinstreuer et al., 2013).

Similarly computational models could be employed in synthetic biology (Andri-

anantoandro et al., 2006; Cheng and Lu, 2012; Endy, 2005) studies for predicting

how to (genetically) modify a biological system in order to obtain a desired be-

haviour. Inspired by the success of predictive computational models in engineering

(e.g. where a Boeing 777 jet airliner was entirely designed and tested in silico before

manufacturing (Selick et al., 2002)) some of the envisaged synthetic biology appli-

cations are biofuel production using synthetically engineered microorganisms (Lee

et al., 2008), microbiome engineering (Ruder et al., 2011) (e.g. using natural

commensal microorganisms as a vector for deploying synthetic gene circuits in an

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 3

attempt to cure diseases), treatment and prevention of infections (Ruder et al.,

2011) (e.g. using bacteriophage viruses to infect specific bacteria and disrupt their

antibiotic defence mechanisms), and the development of novel cancer therapies

which can distinguish between healthy and cancerous cells (Cheng and Lu, 2012)

(e.g. synthetically engineered bacteria could selectively invade tumour tissues and

partially inhibit the division of cancerous cells (Weber and Fussenegger, 2012)).

1.2.1 Development

To minimize their complexity, computational models are usually built such that

they contain sufficient details about the real system to answer the biological

question considered while disregarding any additional information (as per Occam’s

razor principle). The main advantage of this approach is that model simulations

can be executed in reasonable time and the simulation output is easier to interpret.

Conversely one of the main disadvantages of this approach is that as many

computational models need to be developed as there are biological questions.

The behaviour of computational models is defined by a set of rules which

are derived from existing literature and/or new experimental data. Therefore

the ability to construct a computational model depends on the availability of

prior knowledge and/or the possibility to run new in vitro experiments. For lower

organisms (e.g. the Escherichia coli bacterium) running in vitro experiments and

obtaining the required information is usually constrained by the availability of

physical equipment and/or financial resources. Conversely for higher organisms

(e.g. humans) there are additional complexity, ethical and/or legal constraints

preventing certain types of in vitro/in vivo experiments to be run (e.g. testing

the effect of potentially toxic chemicals on humans). Therefore one of the main

limitations when modelling higher organisms is the inability to obtain the required

information through in vitro/in vivo experimentation.

To address this limitation representative lower organisms, called model or-

ganisms, are employed instead. Usually the criteria for choosing the model

organism are that it is sufficiently genetically/mechanistically similar to the higher

organism and relevant in vitro experiments can be run. Examples of model

organisms which have been successfully used in the past for studying human

diseases and/or identifying potential drug targets include the Caenorhabditis

elegans round worm (Kaletta and Hengartner, 2006), the Drosophila melanogaster

fruit fly (Pandey and Nichols, 2011) and the Danio rerio zebrafish (Lieschke and

Currie, 2007).

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 4

1.2.2 Types of models

Once the biological question and organism considered are fixed, different types

of relevant computational models can be constructed ranging from deterministic

to stochastic, discrete- to continuous-time, non-spatial to spatial, respectively

spanning one or multiple levels of organization. Moreover after choosing the

appropriate computational model type a corresponding modelling formalism is

employed for encoding the model (Heath and Kavraki, 2009; Machado et al., 2011).

Some of the most employed modelling formalisms in systems biology are agent

based modelling (An et al., 2009; Thorne et al., 2007), Boolean networks (Kauff-

man, 1969), Bayesian networks (Wilkinson, 2007), cellular automata (Deutsch

and Dormann, 2007; Ermentrout and Edelstein-Keshet, 1993), constraint-based

modelling (Becker et al., 2007; Orth et al., 2010), Glazier-Graner-Hogeweg models

(also known as Cellular Potts) (Balter et al., 2007; Graner and Glazier, 1992), in-

teracting state machines (Kugler et al., 2010), P (or membrane) systems (Barbuti

et al., 2011; Besozzi et al., 2008), ordinary/partial differential equations (Hoops

et al., 2006; Schaff et al., 1997), Petri nets (Hardy and Robillard, 2004; Heiner

et al., 2008), process algebras (Feng and Hillston, 2014; John et al., 2010), and

rule based modelling (Blinov et al., 2004; Danos et al., 2007; John et al., 2011;

Maus et al., 2011; Nikolić et al., 2012). The large number of available modelling

formalisms led to the construction of many application-specific computational

models which cannot be reused in other applications and/or integrated with other

existing models.

1.2.3 Standards

To partially address this problem standard model representation formats and

ontologies have been developed which describe the model components and their

semantics in a generic manner. Systems biology relevant examples of some of the

most used model representation formats include the Systems Biology Markup

Language (Hucka et al., 2003) and the Systems Biology Graphical Notation (Novère

et al., 2009), respectively some of the most employed ontologies are the Gene

Ontology (Ashburner et al., 2000) and the Systems Biology Ontology (Courtot

et al., 2011). One of the main limitations of these standard notations is that they

were mainly designed for small scale systems (e.g. intracellular pathways) and

cannot explicitly encode properties specific to more complex multiscale biological

systems.

Large international projects which aim to scale up the existing modelling

methodologies and notations to the multiscale context include the International

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 5

Union of Physiological Sciences Physiome (Hunter and Borg, 2003), Virtual Phys-

iological Human (Kohl and Noble, 2009), High-Definition Physiology (Kurachi,

2014), Virtual Physiological Rat (Beard et al., 2012), Human Brain (Markram,

2012) and Virtual Liver (Holzhütter et al., 2012) projects. However a generic

multiscale modelling framework is yet to emerge (Hoekstra et al., 2014).

1.2.4 Validation

In spite of all their advantages computational models have one important drawback

— they are only abstractions of real systems. Therefore any prediction generated

by a model can be employed for real-life applications only if the model has been

validated first.

Traditionally this has been done by comparing the model simulation output

with biological observations recorded in the wet-lab. If significant inconsistencies

are detected the model needs to be updated and/or the experiments have to be

repeated. The main disadvantage of this approach is that it is both expensive

and time consuming.

In an attempt to reduce the costs and detect modelling errors as soon as possi-

ble in silico model validation methods could be additionally employed (Cheng and

Lu, 2012). Although useful, in silico model validation approaches complement

but cannot replace the corresponding in vitro validation experiments. Similarly

to computational modelling which reduces the number of required in vitro experi-

ments, in silico model validation approaches could potentially reduce the number

of required in vitro validation experiments.

In systems biology one of the most employed in silico model validation ap-

proaches is model checking, a formal method which automatically decides if a

computational model is valid relative to a specification describing the expected

system behaviour; see Chapter 2 for a more detailed description of model checking.

1.3 Motivation

Traditional model checking approaches employed in systems biology (see Chapter 2)

usually consider only how numeric properties (e.g. concentrations) change over

time and are appropriate for small scale biological systems (e.g. intracellular

pathways).

However when scaling up to more complex, large scale systems (e.g. multicellu-

lar populations) there is an additional need to explicitly consider how properties

of (emergent) spatial structures (e.g. area of multicellular population) change over

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 6

time, which are not taken into account by traditional non-spatial model checking

approaches.

Moreover when modelling biological systems that span multiple levels of

organization (e.g. cellular and organ) the relation between changes occurring at

different temporal and/or spatial scales needs to be additionally considered.

Therefore the identified limitations of traditional model checking approaches

employed for validating computational models of complex large scale biological

systems are:

1. The inability to validate models with respect to how spatial structures and

their properties change over time;

2. The inability to validate models with respect to how both numeric and spatial

properties change over time considering multiple levels of organization.

In order to address these limitations the following challenges are considered:

1. Developing theoretical models which explicitly:

1.1 Distinguish between variables encoding numeric values (called numeric

state variables) and the spatial domain (called spatial state variables),

including functions which compute the values of these variables (called

numeric, respectively spatial value assignment functions). The main

advantage of distinguishing between numeric and spatial state variables

is that state variable type specific analysis functions can be developed

(as illustrated by Challenge 2).

1.2 Define and map both numeric and spatial state variables to different

scales for reasoning about how changes at one scale reflect at another

scale and vice versa.

2. Defining spatio-temporal analysis approaches for automatically detect-

ing spatial structures and computing how their properties change over time.

These analysis approaches are required for reasoning about spatial structures

representing subsets of the spatial domain which were not explicitly encoded

in the model but emerge during the model simulation.

3. Creating a standard representation format for time series data describ-

ing how both numeric and spatial properties change over time with or

without explicitly considering different scales. Such a standard representa-

tion format is required to enable the exchange of model simulation results

across the research community.

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 7

4. Defining a quantitative formal logic for encoding the specification against

which the computational models are validated that enables reasoning about

how spatial and numeric properties change over time and across one or

multiple scales. There is a need for developing a new formal logic because,

to the best of my knowledge, most of the existing spatio-temporal logics

are either qualitative or semi-quantitative and are unable to capture how

biologically relevant quantitative properties change over time.

5. Adapting existing model checking algorithms to the new theoretical

model and formal logic, and proving that the algorithms are decidable.

1.4 Contributions

In order to tackle these challenges a novel model checking methodology is defined

in this thesis that enables validating multiscale computational models of complex

biological systems relative to formal specifications describing how both numeric

and spatial properties are expected to change over time and across multiple levels

of organization. Throughout this thesis it is assumed that biological systems which

span multiple levels of organization (i.e. are multilevel) inherently span multiple

spatio-temporal scales (i.e. are multiscale), where each level of organization has a

distinct corresponding spatio-temporal scale. Therefore the terms multilevel and

multiscale, respectively level and scale are used interchangeably.

The novel model checking methodology has two important advantages. First

of all it supports computational models encoded using various high-level modelling

formalisms because it is defined relative to time series data and not the models

used to produce them. Secondly the methodology is generic because it can

be automatically reconfigured according to case study specific types of spatial

structures and properties. In addition the methodology can be applied to multiple

domains of science (e.g. astrophysics, engineering, environmental science etc.), but

for the purpose of this thesis, its efficacy is illustrated only against computational

models of biological systems.

In order to automate the computational model validation procedure the model

checking method was implemented in model checking software, which is freely

available online. The efficacy of the approach is illustrated by employing the model

checking software to validate two uniscale spatial and four multiscale (spatial)

computational models of biological systems.

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 8

1.4.1 Description

The main contributions of this thesis are:

1. Multidimensional spatio-temporal model checking:

a) A multidimensional spatio-temporal model checking method-

ology which enables validating uniscale spatial computational models

relative to formal specifications. The methodology comprises a theo-

retical uniscale model for abstractly representing biological systems,

spatio-temporal analysis approaches for automatically detecting and

analysing specific types of spatial structures in time series data, a

standard representation format for the model simulation output, a

formal language for writing specifications describing the expected sys-

tem behaviour, and corresponding Bayesian and frequentist model

checking algorithms. Moreover a proof is provided indicating that

the multidimensional spatio-temporal model checking problem can be

solved considering a finite number of model simulations and simulation

time points i.e. it is well-defined (Chapter 3).

b) Cross-platform implementation of the multidimensional

spatio-temporal model checking approach in the software tool

Mudi made freely available online at http://mudi.modelchecking.org

(Section 3.7).

c) Validation of the multidimensional model checking method-

ology against two computational models of biological systems encoding

phase variation in bacterial colony growth and the chemotactic aggre-

gation of cells (Chapter 4).

2. Multiscale multidimensional spatio-temporal meta model check-

ing:

a) A multiscale multidimensional spatio-temporal model check-

ing methodology which extends the multidimensional model checking

methodology with mechanisms for explicitly representing the hierarchi-

cal structure of multiscale biological systems, automatically detecting

and analysing certain types of spatial structures from multiple scales,

and reasoning about how changes of biological subsystems from differ-

ent scales relate to each other. Similarly to the multidimensional case

a proof is provided to show that the corresponding multiscale model

checking problem is well-defined (Chapter 5).

http://mudi.modelchecking.org

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 9

b) A multiscale multidimensional spatio-temporal meta model

checking methodology that generalizes the multiscale model check-

ing methodology and enables automatically reconfiguring it according

to case study specific types of spatial structures and/or properties;

the term meta is used in meta model checking similarly to how it is

used in meta-programming (Sheard, 2001) (where instances of generic

meta-programs can be created to solve particular problems), which is

different from how the term meta is employed in other contexts (e.g.

meta data — data about data). From a theoretical point of view meta

model checking enables employing arbitrary spatial structure types

and properties for the validation of computational models. Conversely

from an implementation point of view a meta model checking program,

similarly to a meta-program, takes program templates and case study

specific types of spatial structures and properties as input and produces

a corresponding case study specific model checking program as output.

Multiscale multidimensional model checking problems corresponding to

different types of spatial structures and/or properties are well-defined

(Section 5.7).

c) Cross-platform implementation of the multiscale multidi-

mensional spatio-temporal meta model checking approach in

the software tool Mule made freely available online at http://mule.

modelchecking.org (Section 5.8).

d) Validation of the multiscale multidimensional meta model

checking methodology against four systems biology computational

models encoding the rat cardiovascular system dynamics, the uterine

contractions of labour, the Xenopus laevis oocytes cell cycle and the

acute inflammation of the gut and lung (Chapter 6).

1.4.2 Publications

Partial results presented in this thesis have been previously described in the

following publications:

1. Pârvu, O. and Gilbert, D. (submitted). A novel method to validate multilevel

computational models of biological systems using multiscale spatio-temporal

meta model checking. PLoS ONE

(Contributed to Chapters 5 and 6);

http://mule.modelchecking.org
http://mule.modelchecking.org

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 10

2. Pârvu, O., Gilbert, D., Heiner, M., Liu, F., Saunders, N., and Shaw, S.

(2015). Spatial-Temporal Modelling and Analysis of Bacterial Colonies with

Phase Variable Genes. ACM Trans. Model. Comput. Simul., 25(2):13:1–13:25

(Contributed to Chapters 3 and 4);

3. Pârvu, O. and Gilbert, D. (2014a). Automatic validation of computational

models using pseudo-3D spatio-temporal model checking. BMC Systems

Biology, 8(1):124

(Contributed to Chapters 3 and 4);

4. Pârvu, O. and Gilbert, D. (2014b). Implementation of linear minimum

area enclosing triangle algorithm. Computational and Applied Mathematics,

pages 1–16

(Contributed to Chapter 3);

5. Pârvu, O., Gilbert, D., Heiner, M., Liu, F., and Saunders, N. (2013). Mod-

elling and Analysis of Phase Variation in Bacterial Colony Growth. In

Gupta, A. and Henzinger, T. A., editors, Computational Methods in Systems

Biology, number 8130 in LNCS, pages 78–91. Springer Berlin Heidelberg

(Contributed to Chapter 4).

and at the following scientific events:

1. Pârvu, O., Formal validation of multidimensional computational models,

International Study Group for Systems Biology (ISGSB) 2014, Durham,

United Kingdom, 1st–5th September, 2014 (best presentation award);

2. Pârvu, O., Multidimensional model verification, Doctoral colloquium of the

Conference On Spatial Information Theory (COSIT) 2013, Scarborough,

United Kingdom, 2nd–6th September 2013 (best presentation award);

3. Pârvu, O., Gilbert, D., Heiner, M., Liu, F., Saunders, N., A systems biology

approach to modelling growth and phase variation in bacterial colonies,

Annual Computational Life and Medical Sciences (CLMS) Symposium 2013,

UCL, London, United Kingdom, 28th June 2013 (3rd best poster award).

1.5 Structure

The thesis is structured as depicted in Figure 1.1, and a description of the next

chapters is provided below.

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 11

Chapter 1
Introduction

Chapter 2
Model checking

Chapter 3
Multidimensional
model checking
methdodology

and software

Chapter 4
Multidimensional
model checking

validation

Chapter 5
Multiscale meta
model checking

methodology
and software

Chapter 6
Multiscale meta
model checking

validation

Chapter 7
Conclusions

Figure 1.1: Thesis structure where each chapter has an associated number and representative title.

Chapter 2 provides an introduction to model checking and its corresponding

model validation workflow comprising model construction, formal specification,

and model checker execution. In the beginning theoretical models for abstractly

representing real-life systems are presented. Afterwards the main types of formal

languages (i.e. linear and branching temporal logics) are described which are

employed to write the specifications against which the models are validated. The

two major classes of model checking approaches, non-probabilistic and proba-

bilistic, are described next with a focus on the latter due to its wide adoption

for the validation of computational models of biological systems. Traditional

model checking approaches specific to systems biology applications are reviewed

in the end emphasizing that they only consider how numeric properties such as

concentrations change over time.

The multidimensional spatio-temporal model checking methodology is intro-

duced in Chapter 3. First of all the theoretical model employed to represent

biological systems which evolve in time and space is defined. Secondly the spatio-

temporal analysis approaches are described which automatically detect spatial

structures in the model simulation output and describe how their properties

change over time. Next a standard model simulation output representation format

is introduced. Then a formal probabilistic multidimensional spatio-temporal

logic is defined for encoding the specifications against which the uniscale com-

putational models are validated. Afterwards the model checking procedure and

implementation are described. In the end related approaches are briefly presented.

The validation of the multidimensional spatio-temporal model checking method-

ology against the phase variation in bacterial colony growth and the chemotactic

aggregation of cells biological case studies is described in Chapter 4. The obtained

results and identified limitations of the methodology are discussed at the end of

the chapter.

Chapter 5 describes how the multidimensional model checking methodology

is extended to account for multiscale computational models, and how it can be

Pârvu O., 2015, CHAPTER 1. INTRODUCTION 12

parameterized such that the considered spatial structure types and/or properties

can be tailored to specific biological questions. The extended theoretical model

and the employed data structure for encoding the hierarchical organization of

multiscale biological systems are first described. Next the multiscale spatio-

temporal analysis approach and the standard simulation output representation

format are defined. Then a formal probabilistic multiscale spatio-temporal logic

is introduced which enables formally specifying how systems potentially spanning

multiple levels of organization are expected to change over time. Afterwards

the meta model checking methodology is introduced which enables validating

computational models with respect to case study specific types of spatial structures

and/or properties. Finally a brief description of the multiscale multidimensional

meta model checker implementation, and a comparison with related approaches

is given.

The multiscale multidimensional meta model checking methodology is validated

in Chapter 6 against four illustrative systems biology case studies encoding the rat

cardiovascular system dynamics, the uterine contractions of labour, the Xenopus

laevis oocytes cell cycle and the acute inflammation of the gut and lung.

Final conclusions, open problems and potential directions for future work are

presented in Chapter 7.

CHAPTER 2
Model checking

Introduction

This chapter provides a brief introduction to the formal method called model

checking employed to verify if computational models are valid relative to given

specifications. The first step for employing model checking approaches is to con-

struct a formal model of the system considered, which can be either probabilistic

or not. Afterwards the properties which are expected to hold for the system are

encoded as a formal specification using linear or branching time temporal logics.

Finally given a model and a specification, a model checking software tool auto-

matically verifies if the specification holds for the model or not. Details regarding

each one of these model checking steps are provided in this chapter. In the end

model checking approaches specifically employed for validating computational

models of biological systems are described.

2.1 Preliminaries

2.1.1 Formal verification methods

Formal verification methods are mathematical approaches employed to (dis)prove

the correctness of a system relative to a specification (Baier and Katoen, 2008,

Chapter 1). One of their main advantages compared to other verification ap-

proaches (e.g. testing) is that they usually consider all possible system behaviours

and therefore guarantee the (in)validity of the system relative to the specification.

However since all possible system behaviours are considered, formal verification

methods cannot usually be employed to validate complex systems in reasonable

time.

13

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 14

In the 1970s and early 1980s most formal verification methods involved writing

proofs by hand (Clarke, 2008). One of their main disadvantages was that they

were not scalable (Emerson, 2008). The main reason for this was that the difficulty

of manually writing a proof usually increased with the complexity of the system.

One type of complex systems which could not be verified using formal veri-

fication methods was concurrent systems. Moreover such systems could not be

verified using testing based approaches either because concurrency errors were

usually hard to reproduce.

2.1.2 Model checking background

In order to address the limitations of existing approaches a new concurrent

systems formal verification method was developed called model checking (Clarke

and Emerson, 1982; Queille and Sifakis, 1982). When it was initially proposed

model checking was a formal verification method for finite-state concurrent systems

i.e. concurrent systems whose possible behaviours could be described by a finite

number of states (e.g. the Alternating Bit network communication protocol (Clarke

et al., 1986)). Its novelty relied on the fact that it was an algorithmic approach

which could be employed to prove the correctness of a system relative to a

specification in an automatic manner without human intervention.

A graphical description of the model checking process is depicted in Figure 2.1.

The model checker is usually a software tool which takes as input a formal

specification and a mathematical representation of the system (i.e. a model),

and automatically decides if the model is valid relative to the specification.

Depending on the system considered different formal modelling (see Section 2.2)

and specification (see Section 2.3) languages can be employed. The output of

the model checker is either yes (i.e. the model is valid) or no (i.e. the model is

invalid). In the latter case a counterexample is additionally provided for model

debugging purposes.

The general steps for verifying a system using model checking are (Clarke

et al., 1999):

1. Model construction: Creating an abstract formal representation of the

system;

2. Formal specification: Encoding the specification using a formal language.

The specification should cover all properties that are expected to hold for

the system;

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 15

Formal
specification

Yes

No

Formal modelling
language

Formal specification
language

ModelSystem

Specification

Model
checker

Figure 2.1: Description of the model checking process. The system is encoded as a model using a
formal modelling language. Similarly the specification is translated to its formal representation using
a formal specification language. Both model and formal specification are taken as input by the model
checker which verifies if the model is valid relative to the specification. The output of the model checker
is either yes (i.e. the model is valid) or no (i.e. the model is invalid).

3. Verification: Ideally totally autonomous, but in reality whenever a coun-

terexample is provided there is typically the need for human intervention.

2.2 Model construction

Real world systems verified using model checking approaches are assumed to be

reactive (Clarke et al., 1999, Chapter 1) which means they have the possibility to

react to changes in their environment. Moreover the behaviour of such systems is

usually described as a sequence of discrete states where changes between states

occur instantaneously and are triggered by events.

Such reactive discrete systems are usually represented as state transition

systems. Formally these are directed graphs where the vertices represent system

states and the edges encode possible transitions between states.

Assuming a directed graph representation, at any given moment the system is

described by one vertex/state and can transition to the successor vertices/states

indicated by outgoing edges.

An execution/run of the system is described by a computation path through

the graph σ = {s0, s1, s2, ...}, where s0, s1, s2, ... represent states and for all

si ∈ σ, i ≥ 1 there exists a directed edge in the graph starting from si−1 ∈ σ and

ending in si.

The length of the execution can be finite or infinite. In case of the latter the

system either cycles infinitely often through a finite set of states, or the number

of states is infinite.

In order to reason about the behaviour of the system, semantic information is

associated with states and edges using labelling functions. Moreover the subset

of states from which the system execution could start is explicitly defined. This

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 16

particular type of system is called a labelled state transition system (LSTS).

2.2.1 Labelled state transition systems

Definition 1 Labelled state transition system (LSTS)

A labelled state transition system (Baier and Katoen, 2008, Chapter 2) is a 6-tuple

〈S, Act, −→, I, AP , L〉 where:

• S is the set of states;

• Act is the set of actions;

• −→ ⊆ S × Act× S is the relation encoding state transitions;

• I ⊆ S is the set of initial states;

• AP is the set of atomic propositions;

• L : S → 2AP is the function employed to label states with atomic proposi-

tions.

The set S represents the system states, and the vertices in the corresponding

directed graph. Actions executed when the system transitions between states

are described by the set Act. Transitions between states, and edges in the

corresponding directed graph, labelled by actions are encoded by the relation −→.

The set I represents the initial states from which the execution of the system

could start. AP is a set of atomic propositions i.e. Boolean expressions which

cannot be divided in simpler statements. Atomic propositions usually encode

the semantics of the system and are defined over variables describing the system

state (i.e. state variables), constants and predicate symbols. The subset of atomic

propositions which evaluate true for a given state is encoded by the labelling

function L.

An LSTS is denoted as finite if the sets S, Act and AP are finite (Baier and

Katoen, 2008, Chapter 2). Moreover if the number of initial states |I| = 1 and the

number of possible state transitions
∑

α∈Act
| −→ (si, α)| ≤ 1 for all states si ∈ S

then the LSTS is deterministic. Otherwise it is non-deterministic.

An execution of a LSTS starts in one of the initial states s0 ∈ I and proceeds

according to the state transition function −→. Whenever the system transitions

from one state si to another state sj the corresponding action α is executed ((si,

α, sj) ∈ −→). The set of atomic properties L(si) which hold in each state si are

computed using the labelling function L.

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 17

Example 1 LSTS encoding the life cycle of a Dictyostelium dis-

coideum population

Let us assume we would like to model the life cycle of a Dictyostelium dis-

coideum (Williams et al., 2006) cellular population using an LSTS. The initial

state of the population is “unicellular” when the cells are assumed to be sparsely

distributed in space. In the initial state cells can either divide if sufficient nutrients

are available in their environment, or start to starve otherwise. If cells divide the

population doubles in size and transitions back into the “unicellular” state. Oth-

erwise if cells starve the population transitions into the “aggregating” state. Once

cells start to aggregate they will move chemotactically (i.e. chemotact) towards a

common point and start forming a slug. When the slug formation is completed

the population is assumed to have transitioned from the “aggregating” to the

“slug” state. Afterwards cells in the population will start to differentiate and the

population transitions to the next “fruiting body” state. Finally the fruiting body

will release a new generation of cells and the population will transition back to

the initial “unicellular” state.

The corresponding LSTS is defined as follows:

• S = {unicellular, aggregating, slug, fruiting body};

• Act = {divide, starve, chemotact, differentiate, release};

• −→ = {(unicellular, divide, unicellular), (unicellular, starve, aggregating),

(aggregating, chemotact, slug), (slug, differentiate, fruiting body), (fruiting

body, release, unicellular)};

• I = {unicellular};

• AP = {distance = short, distance = medium, distance = long, population =

homogeneous, population = heterogeneous}, where the atomic propositions

a ∈ AP were defined over the state variables:

– distance ∈ {short, medium, long} representing the average distance

between cells;

– population ∈ {homogeneous, heterogeneous} representing the cellular

population type.

• L = {(unicellular, (distance = long, population = homogeneous)), (aggre-

gating, (distance = medium, population = homogeneous)), (slug, (distance

= short, population = homogeneous)), (fruiting body, (distance = short,

population = heterogeneous))}.

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 18

unicellular

aggregating

slug

fruiting body

divide

starve

chemotactdi�erentiate

release

Figure 2.2: Labelled state transition system representing the life cycle of the Dictyostelium discoideum
cellular population. States are represented as ellipses, and transitions between states as directed arcs.
Arc labels describe the actions associated with the corresponding transitions. The initial state is
marked by an incoming directed arc which does not have a source state.

A graphical representation of the LSTS is provided in Figure 2.2.

∎

The main advantage of the LSTS as a formal representation is that it is generic

and can account for many types of real world systems. However due to its general

structure an LSTS cannot encode specific types of constraints (e.g. explicitly

accounting for time).

In order to address this limitation several modelling formalisms have been

developed which build on the concepts of LSTSs. These modelling formalisms

include Büchi automata (Büchi, 1962; Vardi and Wolper, 1986) (that additionally

specify a set of states called final states in which the system execution ends),

timed automata (Alur and Dill, 1994) (which extend Büchi automata with explicit

time constraints for modelling real-time systems), hybrid automata (Alur et al.,

1995; Henzinger, 1996) (employed to represent systems which have both discrete

and continuous semantics), process algebras (Baeten et al., 2010; Ceccarelli et al.,

2014) and Petri Nets (Heiner et al., 2008; Peterson, 1981; Petri, 1962) (employed

to represent concurrent interacting systems).

Finally one class of real world systems which cannot be represented neither by

LSTSs nor extensions thereof are probabilistic systems. The main distinguishing

characteristic of probabilistic systems is that transitions between states have an

associated probability which cannot be encoded by LSTS based formalisms. In

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 19

order to address this limitation probabilistic LSTSs (PLSTS) were defined.

2.2.2 Probabilistic labelled state transition systems

Definition 2 Probabilistic labelled state transition system (PLSTS)

A probabilistic labelled state transition system (Baier and Katoen, 2008, Chapter

10) is a 6-tuple 〈S, Act, −→prob, Iprob, AP , L〉 where:

• S, Act, AP and L have the same semantics as for an LSTS (see Definition 1);

• −→prob: S × Act× S → [0, 1] is the relation encoding state transitions;

• Iprob : S → [0, 1] is the function employed for encoding initial states.

There are two differences between the definitions of LSTSs and PLSTSs. First

of all the state transition function in a PLSTS (i.e. −→prob) compared to an LSTS

(i.e. −→) additionally associates to each state transition and action a probability

value p ∈ [0, 1]. Secondly initial states are chosen probabilistically in a PLSTS (see

Definition 2, Iprob) rather than deterministically as in an LSTS (see Definition 1,

I).

Example 2 PLSTS encoding the life cycle of a Dictyostelium dis-

coideum population

In contrast to Example 1 let us assume we would like to model the life cycle

of a Dictyostelium discoideum (Williams et al., 2006) cellular population in a

probabilistic manner using a PLSTS. Two differences will be considered in the

description of the case study. Firstly the probability of the system to start in

the “unicellular” state is 0.8, in the “fruiting body” state 0.2, and 0 for all other

states. Secondly the additional probability associated to the state transition

cycling through the “unicellular” state is 0.75, between the “unicellular” and

“aggregating” state is 0.25, and 1 for all other state transitions.

The corresponding PLSTS is defined as follows:

• S, Act, AP and L are defined identically to how they were defined for the

LSTS in Example 1;

• −→prob = {(unicellular, divide, unicellular, 0.75), (unicellular, starve, aggre-

gating, 0.25), (aggregating, chemotact, slug, 1), (slug, differentiate, fruiting

body, 1), (fruiting body, release, unicellular, 1)};

• Iprob = {(unicellular, 0.8), (aggregating, 0), (slug, 0), (fruiting body, 0.2)}.

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 20

A graphical representation of the PLSTS is provided in Figure 2.3.

unicellular

aggregating

slug

fruiting body

divide

starve

chemotactdi�erentiate

release

0.8

0.2

0.75

0.25

11

1

Figure 2.3: Probabilistic labelled state transition system representing the life cycle of the Dic-
tyostelium discoideum cellular population. States are represented as ellipses, and transitions between
states as directed arcs. Arc labels describe the actions (i.e. alphabetic strings) and probabilities (i.e.
numeric values) associated with the corresponding transitions. Potential initial states si (i.e. I(si) > 0)
are marked by incoming directed arcs which do not have a source state. Numeric values closest to the
incoming directed arcs represent the initial state probabilities I(si) of the corresponding states si.

Remark 1. The probabilities employed in Example 2 were chosen for explanatory

purposes and were not derived from experimental data or the literature.

∎

Similarly to LSTSs, PLSTSs have a general structure which does not allow en-

coding specific types of constraints (e.g. explicitly accounting for time). Modelling

formalisms developed to address this limitation include stochastic discrete-event

systems (SDES) (Cassandras and Lafortune, 2008, Chapter 6), (Younes, 2005b,

Section 2.3) (which can employ either a discrete or continuous time representation)

usually represented as discrete or continuous time Markov chains (Norris, 1998),

and probabilistic extensions of modelling formalisms employed for LSTSs, such as

probabilistic Büchi automata (Baier and Grosser, 2005) (that additionally specify

a set of states called final states in which the system execution ends), stochastic

timed automata (D’Argenio and Katoen, 2005) (used to represent real-time sys-

tems and encode time constraints explicitly), stochastic hybrid automata (Bartocci

et al., 2013; Hu et al., 2000) (employed to represent stochastic systems that have

both a discrete and continuous semantics), stochastic process algebras (Harrison

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 21

and Strulo, 1995; Hermanns et al., 2000) and stochastic Petri nets (Florin et al.,

1991) (used to encode stochastic concurrent interacting systems).

2.3 Formal specification

A computational model can be validated automatically by a model checker relative

to a specification. Since the model checking process is a formal verification method

the specification needs to be written in a formal language. Moreover the chosen

formal language needs to contain operators which enable reasoning about how a

system changes over time.

A class of formal languages which satisfy this requirement are called temporal

logics. Although their foundations were laid more than two millennia ago by

philosophers such as Aristotle and Cronus (Øhrstrøm and Hasle, 1995), modern

temporal logics, as known today, were formalized only in the second half of the

twentieth century by logicians such as Prior (Prior, 1967).

Following on from the development of modern temporal logics Pnueli was the

first to illustrate how they could be employed for the verification of concurrent

systems (Pnueli, 1977). Usually concurrent systems are formally represented

as (P)LSTSs (see Section 2.2) which assume a discrete representation of time.

Therefore formal specifications describing the expected behaviour of such systems

are usually encoded using temporal logics which similarly assume a point-wise (not

interval) and discrete (rather than continuous) representation of time (Emerson,

1995).

Depending on the underlying structure of time the employed point-wise discrete

temporal logics can be either linear or branching.

2.3.1 Linear time temporal logics

Linear time logics assume the time structure is linear which means that at each

moment a system state has at most one possible successor state (Emerson, 1995;

Konur, 2010) as shown in Figure 2.4. The sequence of states describing the

changes of the system over time is denoted as a computation path.

s0 s1si

Figure 2.4: Linear structure of time. At each moment a system state has at most one successor state.

One of the most employed temporal logics considering a linear time struc-

ture used for model checking (concurrent systems) is Linear Temporal Logic

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 22

(LTL) (Finkbeiner and Sipma, 2001; Pnueli, 1977).

2.3.1.1 Linear Temporal Logic

Logic statements written in LTL are composed of atomic, Boolean and temporal

logic propositions.

Similarly to the description provided in the definition of (P)LSTSs (see Defini-

tions 1 and 2) atomic propositions are Boolean expressions defined over variables,

constants and predicate symbols, which cannot be divided into simpler logic

statements.

Conversely a Boolean proposition is a compound statement comprising a

Boolean operator and one/two logic propositions (denoted here by φ):

• ∼ φ (not): The negation of logic proposition φ is true i.e. φ is false;

• φ1 ∧ φ2 (and): Logic proposition φ1 is true and logic proposition φ2 is true;

• φ1 ∨ φ2 (or): Logic proposition φ1 is true or logic proposition φ2 is true;

• φ1 ⇒ φ2 (implication): Logic proposition φ1 is true implies logic proposition

φ2 is true;

• φ1 ⇔ φ2 (equivalence): Logic proposition φ1 is true equivalent to logic

proposition φ2 is true,

where ∼ is a unary Boolean operator, and ∧,∨,⇒,⇔ are binary Boolean opera-

tors.

Finally temporal propositions are used to reason about how the system changes

over time. They comprise a temporal operator and logic proposition(s):

• Fφ (Future): Eventually logic proposition φ holds;

• Gφ (Globally): Logic proposition φ holds always;

• φ1Uφ2 (Until): Logic proposition φ1 holds until logic proposition φ2 holds;

• Xφ (neXt): Logic proposition φ holds in the next time point,

where F , G, U , X are temporal operators.

Syntax

Therefore the syntax of LTL formulae over a set of atomic propositions AP is

defined by the following grammar:

φ ::= true | a | φ1 ∧ φ2 | ∼ φ | Xφ | φ1Uφ2

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 23

where a ∈ AP , ∧ and ∼ are the usual Boolean operators, and X and U are

temporal operators.

Only two (X, U) out of four possible temporal operators were specified in the

grammar because the other two temporal operators (F , G) can be defined based

on the U temporal operator as follows:

Fφ ≡ true U φ;

Gφ ≡∼ F ∼ φ.

Similarly the Boolean operators ∨, ⇒ and ⇔ can be defined based on the

Boolean operators contained by the grammar (∼, ∧):

φ1 ∨ φ2 ≡∼ (∼ φ1∧ ∼ φ2);

φ1 ⇒ φ2 ≡∼ φ1 ∨ φ2;

φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

Semantics

An LTL formula encodes a property of the system with respect to a linear

computation path. Let us denote the computation path as σ = {s0, s1, ...}, where

s0, s1, ... is the sequence of states describing how the system changes over time,

and σi as the suffix of σ starting after the first i states (e.g. σ2 = s2, s3, ...).

According to this notation σ and σ0 are identical.

The semantics of an LTL formula with respect to a computation path σ

corresponding to a model of the system M is defined as follows:

• σ |= true;

• σ |= a if and only if a is true in s0;

• σ |= φ1 ∧ φ2 if and only if σ |= φ1 and σ |= φ2;

• σ |=∼ φ if and only if σ 6|= φ;

• σ |= Xφ if and only if σ1 |= φ;

• σ |= φ1Uφ2 if and only if there exists i ≥ 0 such that σi |= φ2, and for all

j, 0 ≤ j < i, it holds that σj |= φ1.

The extended semantics of an LTL formula with respect to a computation

path σ corresponding to a model of the system M is defined as follows:

• σ |= Fφ if and only if there exists i ≥ 0 such that σi |= φ;

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 24

• σ |= Gφ if and only if for all i ≥ 0 it holds that σi |= φ;

• σ |= φ1 ∨ φ2 if and only if σ |= φ1 or σ |= φ2;

• σ |= φ1 ⇒ φ2 if and only if σ |=∼ φ1 or σ |= φ2;

• σ |= φ1 ⇔ φ2 if and only if σ |= φ1 ⇒ φ2 and σ |= φ2 ⇒ φ1.

Example 3 LTL property corresponding to the Dictyostelium dis-

coideum life cycle case study

Let us assume that we would like to encode in LTL a logic property corresponding

to the Dictyostelium discoideum case study described in Example 1. The logic

property is defined over the set of atomic propositions AP provided in the LSTS

corresponding to the case study (see Example 1), and is described both in natural

language and LTL below.

Natural language: Always, if the population is in the “fruiting body”

state (identified by atomic propositions distance = short, population =

heterogeneous), then it will next transition into the “unicellular” state (iden-

tified by atomic propositions distance = long, population = homogeneous).

LTL: G (((distance = short) ∧ (population = heterogeneous)) ⇒
(X ((distance = long) ∧ (population = homogeneous)))).

∎

2.3.1.2 Bounded Linear Temporal Logic

One of the limitations of LTL is that it cannot specify logic properties relative to

finite sequences of states (e.g. the first 10 states) in a given computation path.

Such logic properties are called bounded and are usually employed for complex

systems whose behaviour is described as a potentially infinite sequence of states.

The evaluation of unbounded logic properties against infinite sequences of states

can prove intractable and therefore corresponding bounded logic properties are

usually employed instead.

To enable writing such bounded logic properties various extensions of LTL were

developed. One of these extensions is a sublogic of Koymans’s Metric Temporal

Logic (Koymans, 1990; Zuliani et al., 2010) and is called Bounded Linear Temporal

Logic (BLTL). As indicated by Jha et al. (Jha et al., 2009a) BLTL augments

classic LTL temporal operators F , G and U with an upper bound t ∈ Q≥0:

• F t φ: Eventually logic proposition φ holds within the time interval [0, t];

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 25

• Gt φ: Logic proposition φ holds always within the time interval [0, t];

• φ1 U
t φ2: Logic proposition φ1 holds until logic proposition φ2 holds within

the time interval [0, t].

Moreover as suggested later by Jha and Ramanathan (Jha and Ramanathan,

2012) it is possible to additionally augment the temporal operators F , G and

U with intervals [t1, t2], t1, t2 ∈ Q≥0, such that logic propositions are evaluated

against bounded time intervals which start at time point t1 6= 0.

Example 4 Bounded LTL property corresponding to the Dic-

tyostelium discoideum life cycle case study

Let us assume that we would like to transform the LTL property in Example 3 to

a bounded form as described both in natural language and BLTL below.

Natural language: Always within the first ten states (i.e. simulation time

interval [0, 9]), if the population is in the “fruiting body” state (identified

by atomic propositions distance = short, population = heterogeneous), then

it will next transition into the “unicellular” state (identified by atomic

propositions distance = long, population = homogeneous).

BLTL: G9 (((distance = short) ∧ (population = heterogeneous)) ⇒
(X ((distance = long) ∧ (population = homogeneous)))).

∎

One limitation of both LTL and BLTL is that they cannot express proba-

bilistic logic properties which are usually required for the formal specifications of

probabilistic systems.

2.3.1.3 Probabilistic Linear Temporal Logic

To address this limitation probabilistic extensions of LTL and BLTL were devel-

oped called Probabilistic Linear Temporal Logic (PLTL) (Baier, 1998), respectively

Probabilistic Bounded Linear Temporal Logic (PBLTL) (Langmead, 2009). The

difference between (B)LTL and P(B)LTL is that the latter has an additional

probabilistic specification associated with the (B)LTL property.

Syntactically a P(B)LTL property φ is defined as P./θ[ψ] where ./ ∈ {<,≤,≥
, >}, θ ∈ (0, 1) and ψ is a (B)LTL property. Considering a model of a system M,

the formal specification φ ≡ P./θ[ψ] evaluates to true (i.e. M |= P./θ[ψ]) if and

only if the probability of ψ to hold for an execution of M is ./ θ.

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 26

Example 5 Probabilistic BLTL property corresponding to the Dic-

tyostelium discoideum life cycle case study

Let us assume that we would like to translate the BLTL property in Example 4,

corresponding to the LSTS in Example 1, to a probabilistic form, applicable to the

PLSTS in Example 2. The resulting logic property is described both in natural

language and PBLTL below.

Natural language: The probability is greater than 90% that always within

the first ten states (i.e. simulation time interval [0, 9]), if the population

is in the “fruiting body” state (identified by atomic propositions distance

= short, population = heterogeneous), then it will next transition into

the “unicellular” state (identified by atomic propositions distance = long,

population = homogeneous).

PBLTL: P > 0.9 [G9 (((distance = short) ∧
(population = heterogeneous)) ⇒ (X ((distance = long) ∧
(population = homogeneous))))].

Remark 2. The probabilities employed in Example 5 were chosen for illustrative

purposes and were not derived from experimental data or the literature.

∎

2.3.2 Branching time temporal logics

Branching time logics assume the structure of time to be tree-like which means

that at each moment a system state has zero or more possible successor states

(Emerson, 1995; Konur, 2010) as shown in Figure 2.5. Similarly to linear time

temporal logics a sequence of states starting in the initial state and describing the

changes of the system over time is denoted as a computation path. However in

contrast to linear time logics, branching time logics allow reasoning about multiple

(or even infinitely many) computation paths branching out from each state.

One of the most well-known branching time logics used for model checking

concurrent systems was introduced by Clarke and Emerson (Clarke and Emerson,

1982) and is called Computation Tree Logic (CTL). At approximately the same

time a slightly different form of CTL was defined by Queille and Sifakis (Queille

and Sifakis, 1982).

2.3.2.1 Computation Tree Logic

In addition to the LTL temporal operators which enable reasoning about the

changes of system states over a single computation path, CTL contains new

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 27

s0 s0,1

...

...

...

...

s0,0

s0,2

s0,...,i

s0,2,0

s0,2,1

s0,2,2

...

...

Figure 2.5: Branching structure of time. At each moment a system state has zero or more successor
states. An example of a computation path was highlighted in dark red.

temporal operators which enable reasoning over multiple (branching) computation

paths:

• Eφ (Exists): There exists some computation path such that φ holds;

• Aφ (All): For all computation paths φ holds.

Syntax

CTL formulae can be of one of the following two types: state and path. State

formulae capture properties of atomic propositions in a state and its branching

structure. Conversely path formulae describe how the system states change over

time with respect to a particular computation path.

The syntax of CTL state formulae over a set of atomic propositions AP is

defined by the following grammar:

ψ ::= true | a | ψ1 ∧ ψ2 | ∼ ψ | Eφ

where φ is a CTL path formula, a ∈ AP , ∧ and ∼ are the usual Boolean operators,

and E is a CTL specific temporal operator.

The syntax of CTL path formulae over a set of atomic propositions AP is

defined by the following grammar:

φ ::= Xψ | ψ1Uψ2

where ψ, ψ1 and ψ2 are CTL state formulae, and X and U are temporal operators.

The extended syntax of CTL is defined similarly to the extended syntax of

LTL. For completeness purposes the syntax is given below for three additional

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 28

temporal operators (A, F , G):

Aφ ≡∼ E ∼ φ;

Fψ ≡ true U ψ;

Gψ ≡∼ F ∼ ψ,

and three additional Boolean connectives (∨,⇒,⇔):

ψ1 ∨ ψ2 ≡∼ (∼ ψ1∧ ∼ ψ2);

ψ1 ⇒ ψ2 ≡∼ ψ1 ∨ ψ2;

ψ1 ⇔ ψ2 ≡ (ψ1 ⇒ ψ2) ∧ (ψ2 ⇒ ψ1).

Semantics

A CTL formula encodes a property of the system with respect to a branching

computation structure. Let us denote a single computation path in this structure

as σ = {s0, s1, ...}, where s0, s1, ... is the sequence of states describing how the

system changes over time, σi as the suffix of σ starting after the first i states (e.g.

σ2 = s2, s3, ...), σ[i] as the (i+ 1)-th state in σ (e.g. σ[2] = s2), and Paths(si) as

the computation paths branching out of state si.

The semantics of a CTL state formula with respect to a state s corresponding

to a model of the system M is defined as follows:

• s |= true;

• s |= a if and only if a is true in s;

• s |= ψ1 ∧ ψ2 if and only if s |= ψ1 and s |= ψ2;

• s |=∼ ψ if and only if s 6|= ψ;

• s |= Eφ if and only if σ |= φ for some σ ∈ Paths(s).

The semantics of a CTL path formula with respect to a computation path σ

corresponding to a model of the system M is defined as follows:

• σ |= Xψ if and only if σ[1] |= ψ;

• σ |= ψ1Uψ2 if and only if there exists i ≥ 0 such that σ[i] |= ψ2, and for

all j, 0 ≤ j < i, it holds that σ[j] |= ψ1.

The extended semantics of CTL is defined similarly to the extended semantics

of LTL. For completeness purposes it will be stated below:

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 29

• s |= Aφ if and only if σ |= φ for all σ ∈ Paths(s);

• σ |= Fψ if and only if there exists i ≥ 0 such that σ[i] |= ψ;

• σ |= Gψ if and only if for all i ≥ 0 it holds that σ[i] |= ψ;

• s |= ψ1 ∨ ψ2 if and only if s |= ψ1 or s |= ψ2;

• s |= ψ1 ⇒ ψ2 if and only if s |=∼ ψ1 or s |= ψ2;

• s |= ψ1 ⇔ ψ2 if and only if s |= ψ1 ⇒ ψ2 and s |= ψ2 ⇒ ψ1.

Example 6 CTL property corresponding to the Dictyostelium dis-

coideum life cycle case study

Let us assume that we would like to encode in CTL a logic property corresponding

to the Dictyostelium discoideum case study described in Example 1. The logic

property is defined over the same set of atomic propositions AP as the LSTS,

and is described both in natural language and CTL below.

Natural language: For all computation paths at some point in the future

the population will transition into the “unicellular” state (identified by

atomic propositions distance = long, population = homogeneous).

CTL: A (F ((distance = long) ∧ (population = homogeneous))).

∎

2.3.2.2 Extended Computation Tree Logic

One of the main limitations of CTL with respect to LTL is that its syntax (see

Subsubsection 2.3.2.1) does not allow combining path formulae using Boolean

operators. For instance the following statement cannot be written in CTL:

A(Fψ1 ∧ Fψ2).

Conversely one of the main limitations of LTL with respect to CTL is that

its syntax (see Subsubsection 2.3.1.1) does not enable explicitly addressing the

branching structure of time. For example the following statement cannot be

expressed in LTL:

AG(ψ1 ⇒ EFψ2).

In order to overcome the limitations of CTL and LTL a more generic and

expressive temporal logic was developed called CTL* (Emerson and Halpern,

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 30

1986), also known as the extended CTL logic. Similarly to CTL it distinguishes

between state and path formulae. However in contrast to CTL it allows writing

Boolean propositions comprising path formulae (as in LTL). Therefore CTL* is a

variant of CTL in which path formulae are replaced by LTL formulae.

Syntax

The syntax of CTL* state formulae over a set of atomic propositions AP is defined

by the following grammar:

ψ ::= true | a | ψ1 ∧ ψ2 | ∼ ψ | Eφ

where φ is a CTL* path formula, a ∈ AP , ∧ and ∼ are the usual Boolean

operators, and E is a temporal operator.

The syntax of CTL* path formulae over a set of atomic propositions AP is

defined by the following grammar:

φ ::= ψ | φ1 ∧ φ2 | ∼ φ | Xφ | φ1Uφ2

where ψ is a CTL* state formula, φ, φ1 and φ2 are CTL* path formulae, ∧ and

∼ are the usual Boolean operators, and X and U are temporal operators.

The extended syntax of CTL* is defined similarly to LTL and CTL. For

completeness purposes the syntax is given below for both state and path formulae

considering three additional temporal operators (A, F , G):

Aφ ≡∼ E ∼ φ;

Fφ ≡ true Uφ;

Gφ ≡∼ F ∼ φ,

and three additional Boolean connectives (∨,⇒,⇔):

ψ1 ∨ ψ2 ≡∼ (∼ ψ1∧ ∼ ψ2);

ψ1 ⇒ ψ2 ≡∼ ψ1 ∨ ψ2;

ψ1 ⇔ ψ2 ≡ (ψ1 ⇒ ψ2) ∧ (ψ2 ⇒ ψ1);

φ1 ∨ φ2 ≡∼ (∼ φ1∧ ∼ φ2);

φ1 ⇒ φ2 ≡∼ φ1 ∨ φ2;

φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 31

Semantics

The semantics of a CTL* state formula with respect to a state s corresponding to

a model of the system M is defined as follows:

• s |= true;

• s |= a if and only if a is true in s;

• s |= ψ1 ∧ ψ2 if and only if s |= ψ1 and s |= ψ2;

• s |=∼ ψ if and only if s 6|= ψ;

• s |= Eφ if and only if σ |= φ for some σ ∈ Paths(s).

The semantics of a CTL* path formula with respect to a computation path σ

corresponding to a model of the system M is defined as follows:

• σ |= ψ if and only if σ[0] |= ψ;

• σ |= φ1 ∧ φ2 if and only if σ |= φ1 and σ |= φ2;

• σ |=∼ φ if and only if σ 6|= φ;

• σ |= Xφ if and only if σ1 |= φ;

• σ |= φ1Uφ2 if and only if there exists i ≥ 0 such that σi |= φ2, and for all

j, 0 ≤ j < i, it holds that σj |= φ1,

where σi is the suffix of σ starting after the first i states (e.g. σ2 = s2, s3, ...).

The extended semantics of CTL* is defined similarly to the extended semantics

of CTL and LTL:

• s |= Aφ if and only if σ |= φ for all σ ∈ Paths(s);

• σ |= Fφ if and only if there exists i ≥ 0 such that σi |= φ;

• σ |= Gφ if and only if for all i ≥ 0 it holds that σi |= φ;

• s |= ψ1 ∨ ψ2 if and only if s |= ψ1 or s |= ψ2;

• s |= ψ1 ⇒ ψ2 if and only if s |=∼ ψ1 or s |= ψ2;

• s |= ψ1 ⇔ ψ2 if and only if s |= ψ1 ⇒ ψ2 and s |= ψ2 ⇒ ψ1;

• σ |= φ1 ∨ φ2 if and only if σ |= φ1 or σ |= φ2;

• σ |= φ1 ⇒ φ2 if and only if σ |=∼ φ1 or σ |= φ2;

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 32

• σ |= φ1 ⇔ φ2 if and only if σ |= φ1 ⇒ φ2 and σ |= φ2 ⇒ φ1,

where σi is the suffix of σ starting after the first i states (e.g. σ2 = s2, s3, ...).

Example 7 CTL* property corresponding to the Dictyostelium dis-

coideum life cycle case study

Let us assume that we would like to encode in CTL* a logic property correspond-

ing to the Dictyostelium discoideum case study described in Example 1. The logic

property is defined over the same set of atomic propositions AP as the LSTS,

and is described both in natural language and CTL* below.

Natural language: There exists a computation path in which the popu-

lation will eventually transition into the “unicellular” state (identified by

atomic propositions distance = long, population = homogeneous), and will

eventually transition into the “fruiting body” state (identified by atomic

propositions distance = short, population = heterogeneous).

CTL*: E (F ((distance = long) ∧ (population = homogeneous)) ∧
F ((distance = short) ∧ (population = heterogeneous))).

∎

2.3.2.3 Bounded and probabilistic branching time logics

Following on from the same reasons as in the case of LTL (see Subsubsec-

tions 2.3.1.2 and 2.3.1.3) bounded (Emerson et al., 1992; Lewis, 1990; Ruf and

Kropf, 1997) and probabilistic (Aziz et al., 1996; Hansson and Jonsson, 1994)

extensions of CTL were developed.

The syntax and semantics of the bounded and probabilistic CTL extensions will

not be introduced here because they will not be explicitly used in the remainder

of this thesis; see corresponding references for details.

2.4 Model verification

Considering a model of a system M and a formal specification φ the model

checking problem is to algorithmically verify if M is valid relative to φ (i.e.

M |= φ) (Baier and Katoen, 2008).

The solution to the model checking problem varies with the considered model

type which can be represented either as an LSTS or PLSTS.

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 33

2.4.1 Model checking labelled state transition systems

If the system is represented as an LSTS M, the model checking problem is to

determine if the formal specification φ evaluates to true for all computation paths

starting from the initial states s0 ∈ I ⊆ S, where S and I are the sets of states,

respectively initial states corresponding to M (Clarke et al., 1999, Chapter 4).

In order to ensure that the provided answer is correct, algorithms solving the

model checking problem for an LSTS M explore the entire state space of M in a

brute-force manner. Since the size of the state space can become very large (e.g.

10120 (Miller et al., 2010)) efficient data structures and algorithms for state space

exploration were developed; they differ depending on the temporal logic used to

encode the formal specification φ.

2.4.1.1 LTL model checking

In case the specification is written in LTL (see Subsubsection 2.3.1.1), a structure is

usually constructed which records how atomic propositions and logic subformulae

of φ evaluate for each state of the model M. Typical examples of such structures

are tableaus (Lichtenstein and Pnueli, 1985) (i.e. graphs encoding which logic

formulae hold in each state and how the system can transition between states) or

Büchi automata (Vardi and Wolper, 1986) (i.e. an automaton which encodes how

a system transition between states when one or multiple logic subformulae hold).

Counterexample computation paths are searched in these structures and if found,

the model is declared invalid, otherwise it is declared valid. The computational

complexity of these LTL model checking algorithms (O(|M|2|φ|)) is linear in the

size of the model M and exponential in the size of the specification φ.

One of the most prominent LTL model checkers based on modelling the

LTL formula as a Büchi automaton (Vardi and Wolper, 1986) was developed by

Holzmann and is called SPIN (Holzmann, 1997). The model of the system is

described using the language PROMELA and LTL formulae are verified using

“on-the-fly” verification techniques (Gerth et al., 1996). Conversely, one of the most

well-known tableau-based (Clarke et al., 1997) model checkers is NuSMV (Cimatti

et al., 1999, 2002).

2.4.1.2 CTL model checking

Conversely in case of CTL specifications (see Subsubsection 2.3.2.1) labelling

functions are usually employed which evaluate atomic propositions and logic

subformulae of φ for each state of the model M (Clarke et al., 1986). The

corresponding model checking algorithms work in iterations by first labelling

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 34

states with logic formulae of length one, then of length two, and so on and so

forth until the length of the specification φ is reached. Based on the results of

the labelling functions the model is declared valid if and only if all initial states

of M are labelled with the specification φ (i.e. φ holds in these states). The

computational complexity of these CTL model checking algorithms (O(|M||φ|))
is linear in the size of both the model M and the specification φ.

The significant complexity difference between LTL (O(|M|2|φ|)) and CTL

(O(|M||φ|)) model checking algorithms is due to the type of properties which can

be expressed in each logic.

The first CTL model checker was developed and described by Clarke and

Emerson and was called EMC (Clarke and Emerson, 1982). Approximately at

the same time Queille and Sifakis presented the model checker CESAR (Queille

and Sifakis, 1982) which was taking as input properties formalised in a temporal

branching logic very similar to CTL. EMC was later optimised and extended to

support fairness constraints (Clarke et al., 1986).

2.4.1.3 CTL* model checking

Finally in case of CTL* specifications (see Subsubsection 2.3.2.2) the model

checking algorithms usually employ the labelling function based approach for

CTL state and path logic subformulae, and the structure based approach for LTL

path subformulae (Emerson and Lei, 1987). Similarly to LTL the computational

complexity of CTL* model checking algorithms (O(|M|2|φ|)) is linear in the size

of the model M and exponential in the size of the specification φ.

One of the first CTL* model checkers was described by Visser et al. (Visser

et al., 1997) and is called AltMC. The SPIN model checker could be also extended

to support CTL* specifications as suggested by Visser and Barringer (Visser and

Barringer, 2000).

2.4.1.4 State space explosion problem

In spite of the efficient data structures and independently of the temporal logic

employed to encode the formal specification, the complexity of the model checking

algorithms depends on the size of the state space (see complexity of LTL, CTL

and CTL* algorithms above). For complex systems the number of states usually

increases exponentially with the number of concurrent processes considered and

the domains of possible state variable values. This is known as the state space

explosion problem and is the cause for the main limitation of model checking

approaches i.e. poor scalability.

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 35

In an attempt to address this limitation multiple approaches for reducing

the size of the state space have been developed; several of the most employed

approaches are depicted in Figure 2.6.

On-the-fly
model checking

Symbolic
model checking

Partial order
reduction

Symmetry
reduction Abstraction Induction

State space reduction HeuristicsDesign guidelines

Methods for coping
with the state space
explosion problem

Figure 2.6: Well-known approaches for tackling the state space explosion problem. State space
reduction methods are traditional while heuristics and design guidelines are more recent.

State space reduction

Most approaches attempt to combat the state space explosion problem by reducing

the size of the state space and/or the memory footprint. The most well-known

methods of this type are:

• On-the-fly model checking: Compared to explicit state static (Rafe et al.,

2013) model checking, on-the-fly model checking dynamically constructs

only the required part of the state space (Gerth et al., 1996).

• Symbolic model checking: The state space is represented in a compact

form (symbolically) using binary decision diagrams (BDD) (Bryant, 1986).

Each symbolic state in the BDD represents a subset of states in the original

state space. Therefore a BDD representation of the state space can be

exponentially more compact than the original representation (Clarke et al.,

2001). Advances in BDD-based data structures enabled representing state

spaces of sizes up to 10120 states.

• Partial order reduction: When modelling concurrent systems there usu-

ally are sequences of events which occur in parallel. For completeness

purposes all possible permutations of the order in which the events occur

need to be considered. This leads to an exponential increase in the size of

the state space. However if the events are independent from each other (with

respect to the property to be checked) the order in which they are executed

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 36

does not influence the final outcome. Thus only one of the sequences needs

to be considered. Partial order methods reduce the size of the state space by

applying this principle and thus eliminating all redundant states (Godefroid,

1991; Peled, 1994; Valmari, 1991).

• Symmetry reduction: Systems usually comprise multiple subcomponents,

some of which might be identical. Symmetry reduction takes advantage of

this fact and simplifies the model by removing subcomponents from the

system which are identical with respect to an equivalence relation (Clarke

et al., 1996; Emerson and Sistla, 1996; Ip and Dill, 1996).

• Abstraction: From the point of view of the specification the model should

contain enough details to enable checking all the properties of the system

but not more. Abstraction is a state space reduction method which ab-

stracts away all unnecessary details of the model with respect to a formal

specification. Some of the most well-known methods involve eliminating

variables which do not have an effect on the variables described in the speci-

fication, and mapping the set of data values to a smaller set of abstract data

values (Baier and Katoen, 2008, Chapter 7),(Clarke et al., 1999, Chapter

13).

• Induction: Some systems can be described as the composition of multiple

copies of a single subsystem. If it is possible to show that one subsystem is

always valid (or invariant) with respect to the given formal specification,

and that the composition of this subsystem with the (i+ 1)-th copy is also

always valid, then by induction the composition of multiple copies of the

subsystem will be always valid (Clarke et al., 1986; Clarke, 2008; Kurshan

and McMillan, 1989).

Heuristics

An alternative category of methods for tackling the state space explosion problem

is based on heuristics. They are mainly used to explore the state space in a directed

manner to find states which violate the formal specification. An example of a model

checking approach using random-walks guided by heuristics is given by Bui and

Nymeyer (Bui and Nymeyer, 2009), and an example employing genetic algorithms

to explore large state spaces is given by Godefroid and Khurshid (Godefroid and

Khurshid, 2002).

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 37

Design guidelines

Finally the third distinct strand (in some respects) is to construct verifiable models

by following a set of five guidelines starting from the model design stage (Groote

et al., 2012). Some of the given rules (e.g. using data categories instead of explicit

data values) are similar to the more traditional methods (e.g. abstraction) while

others (e.g. information polling) are challenging them (e.g. information pushing).

Although multiple specific approaches for combating the state space explosion

problem were developed over the years a unified solution is yet to emerge.

2.4.2 Model checking probabilistic labelled state

transition systems

In case the system is represented as a PLSTS model M, the probabilistic model

checking problem is to determine if the formal specification ψ evaluates to true

with probability ./ θ for all computation paths starting from the initial states

s0 ∈ S (Iprob(s0) > 0), where ./ ∈ {<,≤,≥, >}, θ ∈ (0, 1), and S is the set of

states corresponding to M (Baier and Katoen, 2008, Chapter 10) (Vardi and

Wolper, 1986).

The main difference between model checking an LSTS and a PLSTS is that in

case of the latter probabilities over computation paths need to be additionally

computed.

2.4.2.1 Computing probabilities over computation paths

For calculating probabilities over computation paths a corresponding probability

measure needs to be defined which computes the likelihood of a subset of compu-

tation paths to be generated (representing events) considering the collection of

all possible computation paths (representing the sample space). The mathemati-

cal construct encoding a sample space, a corresponding subset of events and a

probability measure is denoted as a probability space.

Definition 3 Probability space

A probability space is a triple 〈Ω,F ,P〉 such that:

• Ω represents the entire sample space;

• F is a σ-algebra ⊆ 2Ω representing subsets of events;

• P is a probability measure defined on F with values in [0, 1].

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 38

For defining such a probability space the structure of the probabilistic models

used to generate all possible computation paths needs to be fixed. Since biological

systems are usually modelled as stochastic processes which transition from the

current state to the successor state when an event occurs (e.g. a biochemical

reaction) we will assume throughout this thesis that all probabilistic systems are

represented as SDESs.

Definition 4 Stochastic discrete-event system (SDES)

The factored representation of an SDES M (Younes, 2005b, Chapter 2) is a

5-tuple 〈S, T , µ, SV , V 〉 where:

• S is the set of all possible states of the system;

• T is the transition rates matrix which records the probability of the system

to transition from the current state si to the next state sj, ∀si, sj ∈ S;

• µ is a probability measure defined over sets of computation paths;

• SV is the set of state variables describing the state of the system;

• V is the value assignment function which computes the value ∈ R of each

state variable for a given computation path and state of the system.

From a structural point of view one of the main differences between a PLSTS

and an SDES is that in case of the latter states are not labelled with atomic

propositions but are described by a set of state variables (SV) which can be

evaluated (V) in each system state. Moreover actions (Act) and initial states

(Iprob) are not explicitly encoded in a SDES, and there is an additional function

(µ) for computing probabilities over computation paths.

The behaviour of an SDES M changing over time can be captured by a

sequence of pairs (s, t) where s is the current state of the system and t the amount

of time spent in state s. Therefore a computation path or trajectory

σ = (s0, t0), (s1, t1), ...

is a sequence of pairs (s, t) describing the evolution of M along the sequence of

states s0, s1, ... with t0, t1, ... ∈ R time durations spent in each state. For all

si the probability P (si, si+1) to make a transition to state si+1 is greater than

zero. Moreover it is assumed throughout that the behaviour of the system is time

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 39

divergent (non-Zeno) which means that it is not possible for an infinite number

of transitions to occur in a finite amount of time.

Therefore a constraint imposed on M is that it cannot make infinite numbers

of transitions between states in a finite amount of time. This means that for any

given sequence of times t0, t1, ... associated with a simulation of M,

∞∑
i=0

ti = t0 + t1 + ...

must be a divergent series.

Computation paths can be either finite or infinite. Similarly to the definition

provided for CTL let us denote the set of all paths starting from state s by

Paths(s). Moreover denote the set of all finite paths in M by Pathsfinite(M) and

the set of all infinite paths by Paths infinite(M). A prefix of a computation path

σ = (s0, t0), (s1, t1), ... is a sequence of pairs σ′ = (s′0, t
′
0), (s

′
1, t
′
1), ..., (s

′
k, t
′
k) such

that (s′i, t
′
i) = (si, ti) for all 0 ≤ i ≤ k.

Based on the collection of paths Paths(M) generated by a SDES model M a

probability space 〈ΩM,EM, µ〉 can be defined where:

• ΩM = Paths(M);

• The σ-algebra EM ⊆ 2ΩM associated with M contains all the cylinder sets

C(σfinite) ranging over the set of finite paths Pathsfinite(M), where

C(σfinite) = {σ ∈ Paths infinite(M) | σfinite is a prefix of σ}

for all σfinite ∈ Pathsfinite(M);

• The unique SDES probability measure µ is defined on the σ-algebra

EM (Baier and Katoen, 2008, Chapter 10) where the probabilities of cylinder

sets C(σfinite) defined over finite prefixes σfinite = (s0, t0), (s1, t1), ..., (sn, tn)

are computed as follows:

µ(C(σfinite)) = Iprob(s0) · Pr(s0, s1, ..., sn),

where

Pr(s0, s1, ..., sn) =
n−1∏
i=0

T (si, si+1),

and Iprob(si) denotes the probability of the system to start in state si. In

case of zero length computation paths Pr(s0) = 1.

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 40

Depending on the required level of accuracy for the model checking results,

the probabilistic model checking problem can be solved using either exhaustive or

approximate approaches.

2.4.2.2 Exhaustive probabilistic model checking

Exhaustive probabilistic (numerical) model checking algorithms explore the entire

state space in a brute-force manner to determine if the model is valid relative to

the specification.

Considering an SDES M with a well-defined probability space and a formal

specification φ ≡ P./θ[ψ], it holds that M |= P./θ[ψ] if and only if

µ{σ ∈ Paths(s) | σ |= ψ} ./ θ,

where s is an initial state in M.

In order to explicitly account for probabilities model checking algorithms

employed for LSTSs and LTL, CTL, or CTL* formal specifications have been

adapted to PLSTSs, and formal specifications encoded in PLTL (Courcoubetis

and Yannakakis, 1995), PCTL (Hansson and Jonsson, 1994), CSL (Aziz et al.,

2000) or PCTL* (Aziz et al., 1995).

Similarly to the algorithms employed for LSTSs exhaustive probabilistic model

checking approaches depend on the size of the state space, and therefore suffer

from the state space explosion problem. Potential solutions (e.g. state space

reduction techniques) applied to LSTSs have been adapted to PLSTSs (Baier

et al., 1999).

Two well-known model checkers which support exhaustive probabilistic model

checking approaches are MRMC (Katoen et al., 2011) and PRISM (Kwiatkowska

et al., 2011).

2.4.2.3 Approximate probabilistic model checking

Approximate probabilistic (statistical) model checking approaches explore the

state space in a partial manner and therefore determine if a model is valid relative

to a specification based only on a finite subset of simulations (Legay et al., 2010).

Approximate probabilistic model checking approaches are usually employed

whenever exhaustive alternatives are either too slow or cannot be used due to the

large (potentially infinite) size of the state space.

Similarly to exhaustive approaches approximate probabilistic model checking

algorithms decide if the probability p of a logic property ψ to hold for a model

M is ./ θ. However in contrast to exhaustive approaches they do not compute

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 41

the exact value of p by considering all possible model simulations, but instead

approximate it based on a finite subset of simulations. Although the correctness

of the result is not guaranteed an upper bound can be placed on the tolerated

approximation error.

To ensure that approximation errors are below the thresholds specified by the

user methods from statistics are usually employed. Using such methods requires

rephrasing the traditional model checking problem as a statistical problem.

Let us assume that an SDES M is validated relative to a temporal logic

property φ ≡ P./θ[ψ]. The model is declared valid if the probability p of a

randomly generated computation path σ to hold relative to ψ is ./ θ, and invalid

otherwise. For approximating the value of p the model M is simulated multiple

times.

Each model simulation can be represented as an experiment which evaluates

to true relative to specification ψ with probability p, and false with probability

1− p. Therefore the evaluation of each model simulation can be represented as a

Bernoulli random variable X which takes the value 1 (i.e. success) with probability

p and 0 (i.e. failure) with probability 1 − p. In general n simulations can be

represented as a sequence of independent, identically distributed (iid) Bernoulli

variables X1, X2, ..., Xn, where each Xi is a Bernoulli variable with the success

probability p. The sum of a sequence of iid Bernoulli variables Y =
n∑
i=1

Xi is a

random variable that follows a binomial distribution with parameters n and p.

Based on the Bernoulli or binomial distribution representation several frequen-

tist and Bayesian approximate probabilistic model checking approaches have been

developed (Grosu and Smolka, 2005; Hérault et al., 2004; Jha et al., 2009a,b;

Langmead, 2009; Sen et al., 2004; Younes et al., 2006; Younes and Simmons, 2002;

Younes, 2005a,b). A comparison of the main approaches was previously given

by Reijsbergen et al. (Reijsbergen et al., 2014, 2015) and therefore will not be

restated here.

Depending on the employed method and temporal logic the expected complex-

ity of the model checking algorithms differs. In contrast to exhaustive approaches,

the complexity of approximate probabilistic model checking algorithms is pro-

portional to the length of the computation paths instead of the size of the state

space.

A classification of approximate probabilistic model checking approaches con-

sidered throughout this thesis is given in Table 2.1 and a brief description of each

approach in Appendix A.

To determine if a formal specification φ ≡ P./θ[ψ] holds for a system model

M the approximate probabilistic model checking approaches considered estimate

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 42

Table 2.1: Classification of considered approximate probabilistic model checking approaches. Bayesian
methods consider prior knowledge about the parameters and variables in the model when deciding if
a logic property holds. Conversely frequentist approaches assume no prior knowledge is available. All
methods except probabilistic black-box take as input a user-defined upper bound on the approximation
error. They request additional model executions until the result is sufficiently accurate. Probabilistic
black-box model checking takes a fixed number of model simulations as input and computes a p-value
as the confidence measure of the result.

Frequentist Bayesian

Estimate
Chernoff-Hoeffding bounds

(Hérault et al., 2004)
Mean and variance (Langmead,

2009)

Hypothesis
testing

Statistical (Younes et al., 2006;
Younes, 2005b)

Statistical (Jha et al., 2009a,b)Probabilistic black-box (Sen et al.,
2004; Younes, 2005a)

the probability p of φ evaluating true as the number of model simulations for

which φ holds divided by the total number of model simulations. Depending on

the model checking approach considered the total number of model simulations,

and the way in which p is afterwards compared to θ considering a user-defined

tolerated approximation error differ.

Illustrative examples of approximate probabilistic model checkers include

APMC (Hérault et al., 2004), MC2 (Donaldson and Gilbert, 2008b) and

PRISM (Kwiatkowska et al., 2011).

2.4.2.4 Comparing probabilistic model checking approaches

The main advantage of exhaustive probabilistic model checking approaches is

that they compute highly accurate values of the probabilities when deciding if a

logic property φ holds for a model M. The state space is explored exhaustively

or until enough evidence is provided that φ does not hold. Therefore the main

disadvantage of exhaustive approaches is that their complexity is proportional to

the size of the state space. Although state space reduction techniques have been

developed (see Subsubsection 2.4.1.4) models with large state spaces cannot be

verified in reasonable time (e.g. a tandem queuing network computational model

with state space of size approximately 107 was validated in more than 5 · 105

seconds i.e. approximately 6 days (Younes et al., 2006, Figure 5a)).

Conversely the main advantage of approximate probabilistic model checking

approaches is that their complexity does not scale up with the size of the state

space. Therefore they can be employed for both small and large scale models.

Moreover approximate model checking approaches are model independent. Their

main disadvantage is that the provided answer is an approximation and is not

guaranteed to be correct. However all approximate methods considered provide

an upper bound on the approximation error or compute the confidence level of

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 43

the answer. In theory setting the approximation error to minimum, and the

measure of confidence to maximum, would yield the same results as the exhaustive

approaches.

Thus exhaustive approaches are appropriate for models with a manageable state

space for which exact probabilities need to be computed. Approximate approaches

are suitable for both small and large scale models for which approximate probability

values suffice.

2.5 Model checking computational models of

biological systems

In computational (systems) biology, model checking approaches have been em-

ployed to solve four different classes of problems:

• Model validation problems: The main aim is to check if a computational

model is valid relative to a given formal specification (e.g. (Calder et al.,

2006; Chabrier-Rivier et al., 2004; Heath et al., 2008)).

• Robustness computation problems: The main aim is to estimate the

robustness (Kitano, 2007) of the system to perturbations (e.g. (Bartocci

et al., 2015; Česka et al., 2014; Fages and Rizk, 2009; Rizk et al., 2009)).

Perturbations are usually induced by changing the model parameter values

and model checking is employed to verify if the updated model conforms to

the formal specification.

• Parameter identification problems: One of the inverse problems in

systems biology (Engl et al., 2009) whose main aim is to find suitable

parameter values for the model such that the behaviour of the model

(approximately) matches experimental data, or the model is valid relative to a

given formal specification (e.g. (Barnat et al., 2010b; Batt et al., 2007a; Brim

et al., 2013a; Donaldson and Gilbert, 2008a; Islam et al., 2015; Liu et al., 2015;

Mancini et al., 2015; Rizk et al., 2008)). Related concepts employed in the

literature for parameter identification are parameter estimation or parameter

synthesis. The difference between these concepts is defined differently by

various authors. For instance Brim et al. define parameter estimation as

the problem of finding parameter values such that the model behaviour

(approximately) matches experimental data, and parameter synthesis as a

parameter estimation approach based on model checking (Brim et al., 2013b).

Conversely Zuliani states that parameter estimation problems attempt to

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 44

find a single combination of parameter values such that the model is valid,

and parameter synthesis problems aim to find sets of parameter values

combinations such that the model is valid (Zuliani, 2014).

• Model construction problems: The main aim is to modify both the

parameter values and the structure of the model until the model becomes

valid according to a given formal specification (e.g. (Calzone et al., 2006)).

In case of model validation problems the structure and parameter values of

the model are fixed and the output of the model checker execution can be either

true (i.e. the model is valid) or false (i.e. the model is invalid). Similarly for

robustness computation problems the model checker output can be true/false but

the parameter values of the model are modified. In case of parameter identification

problems the parameter values of the model are modified but the model checking

output is (eventually) expected to be true. Similarly in case of model construction

problems the (eventually) expected model checking output is true but both

parameter values and model structure can be changed.

For readability purposes only several of the references considered were explicitly

included in this section; see Appendix B for a complete list, and the recent review

papers (Brim et al., 2013b; Fisher and Piterman, 2014; Zuliani, 2014) for a more

detailed description.

2.5.1 Computational modelling formalisms

Computational models of biological systems validated using model checking

approaches are usually encoded using (non-)probabilistic high level modelling

formalisms which can be translated to a corresponding (P)LSTS representation.

In case of non-probabilistic systems several of the most employed high level

modelling formalisms are (extended) Boolean networks (Gong and Feng, 2014;

Miskov-Zivanov et al., 2013), hybrid (Liu et al., 2014a) or (oscillator) timed

automata (Bartocci et al., 2010; Siebert and Bockmayr, 2006; Van Goethem

et al., 2013), Petri nets (Gilbert et al., 2007; Heiner et al., 2008), piecewise multi-

affine/linear (ordinary) differential equations (Barnat et al., 2009a; Batt et al.,

2007a, 2005; Monteiro et al., 2008; Yordanov and Belta, 2011), (weighted/logic)

regulatory graphs (Bérenguier et al., 2013; Bernot et al., 2004; Giacobbe et al.,

2015), and software-specific (e.g. BIOCHAM (Chabrier and Fages, 2003)) rule-

based modelling languages.

Conversely for probabilistic systems some of the most employed high level

modelling formalisms are continuous/discrete time Markov chains encoded us-

ing software-specific modelling languages (e.g. iBioSim (Madsen et al., 2012),

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 45

PRISM (Ballarini and Guerriero, 2010; Češka et al., 2014; Kwiatkowska et al.,

2008)), dynamic Bayesian networks (Liu et al., 2012), generalized stochastic (Bal-

larini et al., 2014) or hybrid functional (Li et al., 2011) Petri nets, stochastic hybrid

automata (David et al., 2012), software-specific (e.g. BIOCHAM (Calzone et al.,

2006), BioNetGen (Clarke et al., 2008; Gong et al., 2012)) rule-based modelling

languages and stochastic process algebras (e.g. Bio-PEPA (Ciocchetta et al., 2009;

Guerriero, 2009)).

Therefore the high level modelling formalisms considered are either specific

to non-probabilistic (e.g. ordinary differential equations) or probabilistic (e.g.

continuous time Markov chains) systems, or can support both systems types

(e.g. rule-based languages, process algebras, Petri nets). The main advantage

of the latter is that computational models can be easily translated from the

non-probabilistic to the probabilistic setting and vice versa.

2.5.2 Formal specification

The computational models are validated against formal specifications encoded

using (non-)probabilistic temporal logics.

Non-probabilistic temporal logics usually employed for encoding biological

systems’ formal specifications are (quantifier-free (Fages and Rizk, 2009; Rizk et al.,

2009)) LTL (Batt et al., 2008; Giacobbe et al., 2015) or CTL (Chabrier and Fages,

2003; Gong and Feng, 2014) and extensions thereof including numerical (Gilbert

et al., 2007) and/or temporal contraints (David et al., 2012; Gong et al., 2012;

Schivo et al., 2012).

Conversely some of the most employed probabilistic temporal logics for en-

coding biological systems’ formal specifications are the probabilistic extensions

of LTL and CTL, namely PLTL (Calzone et al., 2006), CSL (Heath et al., 2008;

Kwiatkowska et al., 2007) and PCTL (Barbuti et al., 2012) similarly extended

with numerical (Donaldson and Gilbert, 2008a) and/or temporal (Hussain et al.,

2014a; Palaniappan et al., 2013) constraints.

2.5.3 Computational model checking approaches

Depending on the computational model and formal specification considered the

employed model checking algorithm is exhaustive non-probabilistic (Antoniotti

et al., 2003; Barnat et al., 2009b; Fages and Rizk, 2009; Monteiro et al., 2014;

Siebert and Bockmayr, 2006), exhaustive probabilistic (Ballarini and Guerriero,

2010; Braz et al., 2013; Calder et al., 2006; Heath et al., 2008; Madsen et al.,

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 46

2012) or approximate probabilistic (Ballarini et al., 2014; Cavaliere et al., 2014;

Clarke et al., 2008; David et al., 2012; Jha and Langmead, 2011).

Exhaustive (non-)probabilistic model checking approaches are employed when-

ever the state space corresponding to the computational model can be explored

in reasonable time. Conversely for computational models with intractable, poten-

tially infinite state spaces, approximate probabilistic model checking approaches

are usually used.

Several of the most employed model checkers supporting exhaustive non-

probabilistic, and exhaustive and approximate probabilistic model checking ap-

proaches are MARCIE (Heiner et al., 2013) and PRISM (Calder et al., 2006;

Češka et al., 2014; Heath et al., 2008; Kwiatkowska et al., 2011; Lakin et al., 2012).

Conversely two of the most employed model checkers for both exhaustive non-

probabilistic and approximate probabilistic model checking are BIOCHAM (Cal-

zone et al., 2006; Chabrier and Fages, 2003; Fages and Soliman, 2008; Maria

et al., 2009; Rizk et al., 2009) and UPPAAL (Behrmann et al., 2011; Bulychev

et al., 2012; David et al., 2012; Siebert and Bockmayr, 2006; Van Goethem et al.,

2013). Prominent model checkers implementing only exhaustive non-probabilistic

model checking algorithms are NuSMV (Batt et al., 2008; Bérenguier et al.,

2013; Cimatti et al., 2002; Fages and Soliman, 2008; Monteiro et al., 2014) and

(Bio-)DiVinE (Barnat et al., 2009a, 2010a, 2013). Conversely one of the most

employed model checking tools supporting exhaustive probabilistic model check-

ing is MRMC (Katoen et al., 2011). Approximate probabilistic model checkers

usually employed for validating computational models of biological systems are

APMC (Calzone et al., 2006; Hérault et al., 2004), COSMOS (Ballarini et al.,

2011, 2012, 2014), MC2 (Donaldson and Gilbert, 2008a,b), MIRACH (Koh et al.,

2011) and PLASMA (Boyer et al., 2013; Cavaliere et al., 2014).

2.5.4 Limitations

Computational (systems) biology models validated using model checking ap-

proaches usually encode biological processes/subsystems from the (intra-)cellular

level (e.g. cell cycle (Brim et al., 2013a; Chabrier and Fages, 2003; Fages and Rizk,

2009; Gong and Feng, 2014; Maria et al., 2009; Rizk et al., 2008; Van Goethem

et al., 2013), gene (expression/regulatory) networks (Batt et al., 2008, 2005; Cioc-

chetta et al., 2009; Giacobbe et al., 2015; Yordanov and Belta, 2011), signalling

pathways (Ballarini et al., 2014; Calder et al., 2006; Clarke et al., 2008; Donaldson

and Gilbert, 2008a; Gilbert et al., 2007; Gong et al., 2012; Guerriero, 2009; Heath

et al., 2008; Heiner et al., 2008; Kwiatkowska et al., 2007; Rizk et al., 2008))

Pârvu O., 2015, CHAPTER 2. MODEL CHECKING 47

where most experimental data is available. One common characteristic of these

computational models is that the system behaviour is described as numeric values

(e.g. concentrations) changing over time, without explicitly considering the system

representation in space and/or across multiple levels of organization.

Consequently one of the main limitations of the corresponding model checking

approaches is that they have been similarly defined only relative to how numeric

values change over time. However in order to gain a systems level understanding

of how biological organisms function it is essential to consider computational

models of larger scale systems (e.g. multicellular populations). Such computational

models additionally capture how properties of (emergent) spatial structures (e.g.

area of multicellular population) change over time and/or across multiple levels

of organization, which are not considered by existing non-spatial uniscale model

checking approaches.

To address this limitation existing model checking methods need to be extended

with two types of functions, namely functions that enable describing how properties

of spatial structures change over time, and functions that enable associating both

numeric and spatial state variables with specific levels of organization.

Summary

This chapter has provided a brief description of the formal method called model

checking employed to validate models of reactive systems relative to formal speci-

fications. Non-probabilistic systems were represented as labelled state transition

systems (LSTS), and probabilistic systems were represented as probabilistic LSTSs

(PLSTS). Two classes of temporal logics were described for encoding the formal

specifications, linear time logics (e.g. LTL, BLTL and P(B)LTL) which assume a

linear representation of time, and branching time logics (e.g. CTL, CTL*, PCTL,

CSL) which assume a branching structure of time. Depending on the model

and formal specification considered different types of model checking algorithms

have been presented for both non-probabilistic and probabilistic systems, which

were either exhaustive (i.e. considering the entire state space) or approximate (i.e.

exploring the state space only partially). Model checking approaches specifically

employed for validating computational models of biological systems were described

in the end, including one of their main limitations i.e. that they only capture

how numeric values (e.g. concentrations) change over time, without explicitly

considering the evolution of the system in space and/or across multiple levels of

organization.

CHAPTER 3
Multidimensional

spatio-temporal model checking

Introduction

In this chapter a novel multidimensional spatio-temporal model checking method-

ology is introduced which enables validating computational models of biological

systems with respect to how both numeric and spatial properties change over

time. The methodology comprises a theoretical model for abstractly representing

biological systems, a spatio-temporal analysis method for automatically detecting

and analysing spatial structures in the model simulation output, a standard

representation format for time series data comprising numeric and spatial prop-

erties, a formal language for encoding the specification against which the model

is validated, and corresponding model checking algorithms. A brief description

of the model checking method implementation, and a comparison with related

approaches from other domains of science are provided in the end.

3.1 Spatial computational models of biological

systems

Different types of computational models are employed to represent biological

systems depending on the level of organization considered.

At intracellular or more fine-grained levels it is often assumed that species (e.g.

proteins/molecules) are uniformly distributed in space. Therefore computational

models only capture how their average concentration changes over time without

explicitly taking space into account.

48

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 49

Conversely at cellular and more coarse-grained levels it is assumed that the het-

erogeneity of species (e.g. cells) is important because it can lead to the development

of different structures in space. Therefore corresponding computational models

usually explicitly record how the number/density of species evolves both over time

and space and are called (multidimensional) spatial(-temporal) computational

models.

In order to support the development of such spatial computational models

appropriate modelling formalisms have been developed; they represent the spatial

domain in either a continuous or discrete fashion.

Continuous spatial models are usually encoded as partial differential equa-

tions (Schaff et al., 1997) and have been used to represent variations of reaction-

diffusion (Kondo and Miura, 2010) or predator-prey (Arditi et al., 2001) systems,

and the chemotactic movement of cells (Hillen and Painter, 2009). The main

reason for modelling processes such as diffusion (reaction-diffusion) or population

variation (predator-prey, chemotaxis) using continuous approaches is that only

the average density of the species is of interest for each time point and position

in space.

Conversely, if the interactions between individual species are of interest discrete

spatial models could be employed instead. Representative discrete spatial mod-

elling formalisms which employ a lattice-based representation of space and local

rules to specify how the system changes from one state to the next are Cellular

Automata (Deutsch and Dormann, 2007, Chapters 5-11) and Glazier-Graner-

Hogeweg (Balter et al., 2007; Graner and Glazier, 1992) models (also known as

Cellular Potts). In contrast individual-based models (An et al., 2009; Thorne et al.,

2007) can employ either an on-lattice or off-lattice spatial representation, and

their evolution over time is determined by rules specific to individuals (or agents)

instead of lattice positions. Modelling formalisms which are not inherently spatial

but have been extended with spatial attributes recording the species’ position in

space (e.g. coordinates in Euclidean space) include Petri nets (Gao et al., 2013;

Gilbert et al., 2013; Liu et al., 2014b; Pârvu et al., 2013), process algebras (Feng

and Hillston, 2014; John et al., 2010), rule-based modelling languages (Blinov

et al., 2004; Danos et al., 2007; John et al., 2011; Maus et al., 2011; Nikolić et al.,

2012) and P (or membrane) systems (Barbuti et al., 2011; Besozzi et al., 2008).

Examples of biologically relevant case studies encoded using these spatial

modelling formalisms include the cardiac and gastrointestinal tissue electrophysiol-

ogy (Corrias et al., 2012), chemo-/photo-taxis (John et al., 2008, 2010), the growth

of microbial populations (Ferrer et al., 2008; Pârvu et al., 2015), host-pathogen

interactions (Bauer et al., 2009), organisms development or morphogenesis (Marée

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 50

et al., 2007; Merks and Glazier, 2005) and tumour growth (Mallet and De Pillis,

2006; Moreira and Deutsch, 2002; Norton and Popel, 2014).

Similarly to computational models of intracellular networks, spatial computa-

tional models of biological systems need to be validated before they are employed

for real-life applications. However there is a lack of corresponding model checking

approaches.

The main reason why existing model checking approaches cannot be em-

ployed to validate spatial computational models is that they do not consider how

properties of (emergent) spatial structures change over time.

These spatial structures are not hardcoded into the models but are emergent

behaviours i.e. they are dynamic behaviours that occur at simulation time as a

result of the interaction between their constituent entities (e.g. cells). Therefore

one of the main challenges of validating spatial computational models is to

automatically detect spatial structures in the model simulation output and analyse

how their properties change over time. Moreover a suitable spatio-temporal formal

language needs to be defined for encoding the specifications against which the

models are validated. Finally the employed model checking algorithms need to be

updated accordingly.

3.2 Multidimensional spatio-temporal model

checking workflow

To address these challenges a multidimensional spatio-temporal model checking

methodology was developed which enables validating spatial computational models

with respect to both how numeric values (e.g. concentrations) and (quantitative)

properties of spatial structures change over time.

One of the main assumptions made here is that biological systems are inher-

ently stochastic. Therefore only probabilistic models, formal logics and model

checking algorithms are employed throughout. Moreover by considering both

numeric and spatial properties it is expected that the size of the state space

will be usually larger for spatial compared to non-spatial computational models.

Due to the higher complexity inherent to spatial computational models only

approximate probabilistic model checking approaches will be considered here;

employing exhaustive probabilistic approaches requires replacing the approximate

with exhaustive probabilistic model checking algorithms.

The main contributions of this chapter are:

• Definition of stochastic spatial discrete-event systems (SSpDES) as an

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 51

abstract representation for describing how stochastic biological systems

evolve in time and space (Section 3.3).

• A formal Probabilistic Bounded Linear Spatial Temporal Logic (PBLSTL)

for specifying spatio-temporal logic statements (Section 3.5).

• Implementation of the approach in the multidimensional model checking

platform Mudi which enables validating spatio-temporal models against

PBLSTL properties. Mudi comprises both Bayesian and frequentist, esti-

mate and hypothesis testing based validation approaches (Section 3.7).

• Definition of a spatio-temporal analysis module for automatically detecting

and analysing spatial structures and clusters of such structures in time

series data. The output of this module is formatted according to the Spatial

Temporal Markup Language (STML) introduced here (Section 3.4).

The general workflow for constructing and validating spatial computational

models using the multidimensional spatio-temporal model checking methodology

is depicted in Figure 3.1 and comprises the following steps:

1. Model construction: Building the computational model from biological

observations and/or relevant information from the literature.

2. Spatio-temporal detection and analysis: The model is simulated to

generate time series data in which spatial structures and clusters of such

structures are automatically detected and analysed. The output of the

spatio-temporal analysis is formatted according to the STML standard

representation format.

3. Formal specification: Natural language properties representing the

specification of the system are translated into formal PBLSTL statements.

4. Model checking: The model checker Mudi takes the spatio-temporal

analysis output and the PBLSTL statements as input and decides if the

model is valid or not using the validation method chosen by the user (e.g.

frequentist statistical model checking). In case the model is invalid it is

updated and then checked again.

3.3 Model construction

Due to their inherent probabilistic nature biological systems are usually encoded

as stochastic processes which transition from one state to the next only when

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 52

1 3

4

2

LiteratureBiological
observations

Construct
model

Simulate
model

Natural language
specification

Translate
specification

to PBLSTL
Spatio-temporal

analysis

Model checking
using Mudi

Model is
VALID

Model is
INVALID

Update model

Figure 3.1: Workflow comprising all steps from construction to validation of multidimensional spatio-
temporal computational models of biological systems. The first step (1) describes how the model is
constructed from biological observations and/or information from the literature. In the second step
(2) the model is simulated to generate time series data which is passed to the spatio-temporal analysis
module. The main purpose of this module is to automatically detect and analyse how (clusters of)
spatial structures and their properties change over time. The types of spatial structures and properties
considered in the spatio-temporal analysis correspond to the spatial structures and properties described
in the natural language specification; the dependency between the natural language specification and
the spatio-temporal analysis is represented by a dashed arrow. The third step (3) comprises the manual
translation of the natural language system specification to a formal PBLSTL specification. Finally the
fourth step (4) describes the validation of the model with respect to the PBLSTL specification using
the model checker Mudi. In case the model is invalid it is updated and steps (2) and (4) are repeated.

an event occurs (e.g. a biochemical reaction). This specific class of stochastic

processes are called SDESs (see Subsection 2.4.2.1, Definition 4).

3.3.1 Explicitly encoding space

Our aim is to reason about properties of spatial structures produced by such

systems, and to quantify how these properties change over time. The following

assumptions are made regarding the representation of space:

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 53

1. In the following only the discretised version of the 2D and pseudo-3D

Euclidean space is considered. A pseudo-3D space extends a 2D Euclidean

space with a density measure for each position. The density measure

indicates the proportion of occupied positions on the Oz axis for a fixed (x, y)

position. Compared to a full 3D representation it does not specify explicitly

which positions of the Oz axis are occupied but only their proportion.

Changing the spatial representation from pseudo-3D to 1/2/3D requires

only updating the number of spatial dimensions considered. This can be done

automatically using the meta model checking concept, which is introduced

later in Chapter 5.

2. The 2D Euclidean space is discretised by splitting it into m rows and n

columns obtaining an m× n regular grid where m and n are finite, natural,

positive numbers. The resolution of the results depends on the values of m

and n. Higher values guarantee a fine-grained resolution while lower values

account for a coarse-grained resolution.

The evolution of an SDES in space could be represented using one/multiple

collections of m · n state variables such that each state variable represents one

discretised position in space. The main advantage of this is that the structure of

SDESs does not change when adding spatial information to a model. However the

main disadvantage is that semantically different state variables (e.g. concentrations,

value of discretised position in space) belong to the same set without the possibility

to explicitly distinguish between them at the entire set level.

In the following we would like to reason about how emergent spatial struc-

tures occupying subsets of positions in the discretised space (e.g. representing

subpopulations of cells) and their properties change over time. Therefore there is

a need to define detection and analysis methods which are specific to the collection

of state variables encoding space, and do not apply to state variables encoding

numeric values such as concentrations. For this reason the state variables encoding

spatial information will be extracted in a separate set denoted as spatial state

variables (SpSV). Moreover instead of representing space using m ·n spatial state

variables such that the value of each state variable ∈ R+, a single spatial state

variable whose value ∈ Rm×n
+ is employed. The evaluation of such state variables

to m× n real-valued non-negative matrices cannot be performed by the existing

value assignment function V whose codomain is R. Thus a corresponding spatial

value assignment function (SpV) is defined.

The main advantage of explicitly distinguishing between numeric and spa-

tial state variables is that state variable type specific functions can be defined.

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 54

Conversely the main disadvantage is that SDESs need to be extended with an

additional set of spatial state variables SpSV and a spatial value assignment

function SpV . An alternative approach that could overcome this disadvantage

is to represent all state variables as spatial state variables. The reason for not

considering this alternative approach is that it introduces redundancy because

state variables which were previously of numeric type and inherently encoded a

single real value would be evaluated to matrices containing m · n copies of the

real value.

3.3.2 Stochastic spatial discrete-event systems

Considering the above notations we define stochastic spatial discrete-event systems

(SSpDES) as an extension of SDES with a set of spatial state variables SpSV and

a spatial value assignment function SpV .

Definition 5 Stochastic spatial discrete-event system (SSpDES)

An SSpDES M is a 7-tuple 〈S, T , µ, NSV , SpSV , NV , SpV 〉 where:

• 〈S, T , µ, NSV , NV 〉 is a SDES (see Subsection 2.4.2.1, Definition 4);

• SpSV is the set of spatial state variables ;

• SpV is the spatial value assignment function.

The set SpSV contains all spatial state variables i.e. the variables recording

the configuration of the discretised space in the current system state. The value

of these variables is computed using the spatial value assignment function SpV :

SpV : E × S × SpSV → Rm×n
+ ,

where E denotes the set of all possible model executions/simulations, S the set

of states, SpSV the set of spatial state variables, and m and n the dimensions

of the discretised space. Given a model simulation σ at state s and a spatial

state variable spsv, SpV (σ, s, spsv) = sv such that sv ∈ Rm×n
+ returns a m× n

matrix of real non-negative values, where each element of the matrix corresponds

to a position in the discretised space. For explanatory purposes an illustrative

example of a simple SSpDES is provided below.

Example 8 Illustrative example of an SSpDES encoding the growth

of a population of cells

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 55

Let us assume that we would like to model the growth of a population of cells

in a fixed size environment. For simplicity purposes let us consider that the

environment comprises 2 × 2 spatial compartments where each compartment

can hold at most one cell. Cells can be of two types, wild type (A) or mutant

(B). The probability of obtaining a type A/B offspring cell when a parent cell

of type A/B divides is 70%, respectively 30% if the parent cell is of type B/A.

Since each compartment can be occupied by at most one cell, whenever a parent

cell divides the offspring cell is displaced to a neighbouring compartment. Two

compartments are neighbouring if the Manhattan distance between them is at

most 1. Finally the cell population survival condition is that the concentration of

O2 in the environment is greater or equal to 50%. Each new type A cell reduces

the O2 concentration with 20%, and type B cell by 15%.

Although the above described scenario is not realistic for practical applications,

it is sufficient to illustrate how an SSpDES model can be constructed for a

biological system which evolves in time and space. The reason for strongly

constraining the size of the environment, the neighbourhood relation between

different compartments and the behaviour of the cells was to limit the number of

possible system states such that they can all be explicitly enumerated.

The behaviour of this simple system is characterised at each moment in time

by a set of state variables. Spatial state variables of interest are Cells A and

Cells B representing the number of type A, respectively type B cells in the

environment. Conversely the numeric state variable O 2 is used to record the

concentration of O2 in the environment. Considering these spatial and numeric

state variables the initial state/configuration S0 of the system is depicted in

Figure 3.2.

State S0

Cells_A Cells_B O_2

80%
0

0 1

0 0

0

0

0

Figure 3.2: Initial state of SSpDES encoding the growth of a population of cells in a fixed size
environment. Cells A and Cells B are the spatial state variables representing the number of type A,
respectively type B cells in the environment. O 2 represents the current concentration of O2 in the
environment.

Starting from S0 the system probabilistically transitions from one state to the

next until it reaches its final configuration; see Figure 3.3 for all possible states

which can be reached starting from the initial state.

Considering the initial state S0 the system can transition to four possible

states described by the following behaviours: the type A cell from the lower right

corner either divides and the offspring is of the same type (S1, S3) or of type B

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 56

State S0

Cells_A Cells_B O_2

80%
0

0 1

0 0

0

0

0

State S1

Cells_A Cells_B O_2

60%
0

1 1

0 0

0

0

0

State S3

Cells_A Cells_B O_2

60%
0

0 1

1 0

0

0

0

State S2

Cells_A Cells_B O_2

65%
0

0 1

0 0

1

0

0

State S4

Cells_A Cells_B O_2

65%
0

0 1

0 0

0

1

0

State S6

Cells_A Cells_B O_2

50%
0

0 1

0 0

1

1

0

State S5

Cells_A Cells_B O_2

50%
0

0 1

0 1

1

0

0

State S7

Cells_A Cells_B O_2

50%
0

0 1

0 1

0

1

0

35% 35%15% 15%

30% 30%70% 70%

Figure 3.3: The state space of SSpDES encoding the growth of a population of cells in a fixed
size environment i.e. all possible states which can be reached from the initial state S0. Cells A
and Cells B are the spatial state variables representing the number of type A, respectively type B
cells in the environment. O 2 represents the current concentration of O2 in the environment. The
percentages associated with the arrows connecting each pair of states represent the probability of
transitioning between states.

(S2, S4). In both cases the offspring can be either displaced above the parent

(S3, S4) or to its left (S1, S2). Given that the overall probability of a cell to

produce offspring of the same type is 70% and in our case there are 2 relevant

state transitions (S0 → S1, S0 → S3), the probability associated with each of

these state transitions is 70% / 2 = 35%. Analogously the probability associated

with each state transition where the offspring cell is of different type (S0 → S2,

S0 → S4) is equal to 30% / 2 = 15%. The concentration of O2 has been decreased

by 20% in states S1 and S3 due to a new type A cell, respectively by 15% in

states S2 and S4 due to a new type B cell. Therefore the O2 level is 80% - 20%

= 60% in states S1 and S3, and 80% - 15% = 65% in states S2 and S4. Since

the birth of a new cell reduces the O2 concentration by at least 15%, and the

minimal O2 concentration required by the cell population to survive is 50%, no

further cellular division can occur starting from states S1 and S3 (60% - 15% <

50%). Conversely starting from states S2 and S4 at most one new type B cell can

be created (65% - 15% ≥ 50%). Given state S2 a type B cell can be produced

either from the existing type A (S2 → S6, probability 30%) or type B (S2 → S5,

probability 70%) cell. Similarly given state S4 a type B cell can be produced

either from the existing type A (S4 → S6, probability 30%) or type B (S4 → S7,

probability 70%) cell.

Using the above descriptions the formal SSpDESM = 〈S, T , µ, NSV , SpSV ,

NV , SpV 〉 corresponding to the system is defined as follows:

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 57

• S = {S0, S1, S2, S3, S4, S5, S6, S7}.

• T =

S0 S1 S2 S3 S4 S5 S6 S7



S0 0 35% 15% 35% 15% 0 0 0

S1 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 70% 30% 0

S3 0 0 0 0 0 0 0 0

S4 0 0 0 0 0 0 30% 70%

S5 0 0 0 0 0 0 0 0

S6 0 0 0 0 0 0 0 0

S7 0 0 0 0 0 0 0 0

.

• µ is the function used to compute probabilities associated with cylinder

sets C(σfinite) defined over finite computation path prefixes σfinite . The

probability value associated with C(σfinite) is computed by multiplying the

probabilities of the state transitions encoded by σfinite . For instance, if

σfinite = {S0, S2, S6} then µ(C(σfinite)) = P (S0, S2) · P (S2, S6) = T [S0, S2] ·
T [S2, S6] = 15% · 30% = 4.5%.

• NSV = {O 2}, and NV is the function used to compute the value of O 2

in the current system state.

• SpSV = {Cells A,Cells B}, and SpV is the function used to evaluate

Cells A and Cells B in the current system state.

Although only a simple example was considered here the same modelling

principles are employed to construct SSpDES models of more complex (realistic)

systems. One of the main differences is that due to the high complexity associated

with some real systems the number of possible system states is very large, even

potentially infinite. Therefore in such cases explicitly enumerating all possible

paths starting from the initial state is not feasible in reasonable time.

Remark 3. The probabilities employed in Example 8 were chosen for explanatory

purposes and were not derived from experimental data or the literature.

∎

The size of the discretised space and the semantics of the values stored for each

spatial compartment depend on the addressed biological problem. In general the

granularity of the discretised spatial domain should be sufficiently fine to enable

answering the biological problem of interest but not finer than that. The main

reason for this is that increasing the resolution of the discretised space through

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 58

fine-graining leads to a potential increase in the size of the state space and/or

model simulation time. Conversely reducing the resolution of the discretised space

too much may lead to large approximation errors and/or biologically irrelevant

conclusions.

Finally one of the main advantages of defining SSpDESs as an extension of

SDESs is backwards compatibility i.e. existing SDES models can be interpreted as

SSpDESs having an empty set of spatial state variables SpSV . Moreover SSpDESs

enable scaling up the development of computational models by extending existing

non-spatial models, typical for subcellular scales (e.g. intracellular networks), with

spatial information relevant to potentially higher scales (e.g. cellular/tissue level).

3.4 Spatio-temporal detection and analysis

Simulations of an SSpDES (see Definition 5) generate time series data describing

how both numeric values encoded by numeric state variables, and values of the

positions in the discretised space encoded by spatial state variables change over

time. To reason about emergent spatial structures an automatic mechanism for

detecting and analysing the corresponding subsets of positions in the discretised

space is required. A spatio-temporal analysis module is developed for this purpose

comprising two parameterised mechanisms; one for spatial structures denoted in

the rest of the thesis as regions, and the other for clusters. Depending on the

values of the detection parameters a more fine- or coarse-grained subset of the

discretised space is considered.

For clarity purposes we will refer throughout to spatial structures as spatial

entities, and to the different types of spatial structures, namely regions and

clusters, as spatial entity types.

3.4.1 Spatial entity types

3.4.1.1 Regions

One of the main assumptions of the region detection mechanism is that subsets

and not individual positions of the discretised space are considered. Secondly

the value of each position in the discretised space records the number/density of

entities of interest. Each position can hold 0 or more entities without pileup and

the identity of the elements forming the region is not explicitly taken into account.

It is assumed that the shape and size of the entities is constant throughout the

entire space. Therefore the region detection mechanism operates in a homogeneous

context with respect to the entities considered. If the system comprises multiple

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 59

types of entities each type should be represented by a different spatial state

variable. Therefore different types of regions can be detected by repeatedly

applying the region detection mechanism for each corresponding spatial state

variable.

Given a model execution/simulation σ and a spatial state variable spsv, let

us denote the i-th state of the model execution σ by σ[i], 0 ≤ i ≤ |σ|, where |σ|
represents the length of σ.

Definition 6 Region

A region reg with respect to σ[i] and spsv is a subset of neighbouring positions in

SpV (σ, σ[i], spsv) such that ∀x ∈ reg, value(x) ≥ εvalue and |reg| > εsize, where

εvalue, εsize ∈ R are user-defined parameters.

Two positions in the discretised space are neighbouring if they share at least

one corner/border.

The problem of finding regions is similar to the segmentation problem in

the Computer Vision literature (Szeliski, 2010). 2D images can be represented

as vectors or matrices where each position records the colour (multi-channel)

or intensity (single channel) of the image. In order to apply Computer Vision

methods for finding regions the matrix encoding the current state of the discretised

spatial domain is translated to a greyscale image. The value of each position in

the matrix is normalised and converted to the intensity value of the corresponding

pixel in the resulting image. Examples of greyscale images in which sector-like

patterns have been detected in bacterial colonies are depicted in Figure 3.4.

Figure 3.4: In silico generated greyscale images depicting bacterial colonies containing “wild type”
(dark grey) and “mutant” (light grey) cells. Sector-like patterns corresponding to high-proportions of
“mutant” cells are automatically detected, analysed and outlined in blue.

The parameterised mechanism for detecting regions in greyscale images is

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 60

described in Algorithm 1. All mentioned subalgorithms are implemented in the

open source Computer Vision library OpenCV (Bradski and Kaehler, 2008); see

Appendix C.1 for a mapping between the subalgorithms described in Algorithm 1

and the OpenCV functions. Detailed descriptions of the OpenCV function

parameters are provided in the official OpenCV documentation (Itseez, 2013) and

will not be restated here.

Algorithm 1 Algorithm for region detection

Require: image is a greyscale image
Ensure: regions defines the set of regions detected in the image

1: ChangeBrightnessAndContrast(image, alpha, beta); . Adjust brightness
2: and contrast
3: MorphologicalCloseOperation(image, morphCloseNrOfIter); . Connect
4: discontinued but
5: close regions and
6: remove noise
7: GaussianBlur(image, kernelSize, standardDev); . Remove remaining noise
8: Threshold(image, εvalue); . Apply binary threshold method to
9: image considering threshold value εvalue
10:

11: contours = DetectAndApproximateContours(image, approximationLevel);
. Detect regions contours

12:

13: for all contour ∈ contours do
14: if size(contour) < εsize then
15: Mark the region defined by contour as noise;
16: end if
17: end for
18:

19: regions = {reg | reg ∈ contours, reg not marked as noise}; . The set of
20: regions is defined by
21: the subset of contours
22: not marked as noise
23: with size greater or
24: equal to εsize
25:

26: return regions;

3.4.1.2 Clusters

Given a collection of regions, the cluster detection mechanism constructs groups

of sufficiently similar regions. During this procedure no assumption is made

regarding the size and type of the regions. In contrast to the region detection

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 61

mechanism, the mechanism for detecting clusters operates in a heterogeneous

context where both fixed and variable size subsets of the discretised space are

considered.

Our assumption is that two regions are similar and should belong to the same

cluster if the distance between them is below a certain threshold. A distance

pseudometric dist is defined for this purpose:

dist : REG × REG → R, dist(A,B) =
√

(xB − xA)2 + (yB − yA)2,

where REG is the set of all regions, and dist(A,B) computes the Euclidean

distance between the centroids of two regions A,B ∈ REG . The Euclidean

distance measure is considered because we are interested in detecting and analysing

how groups of entities that are sufficiently close to each other in space (i.e.

the Euclidean distance between them is bounded above) change over time; see

Section 4.3 for an illustrative case study describing how single cells chemotactically

aggregate into groups, and how these groups change over time.

Definition 7 Cluster

A cluster clust with respect to a set of regions REG , and a pseudometric dist,

is a subset of regions in REG such that ∀x, y ∈ clust, dist(x, y) ≤ ζdistance and

|clust| > ζsize, where ζdistance ∈ R and ζsize ∈ N are user-defined parameters.

The problem of grouping entities into clusters is addressed by the cluster

analysis literature (Jain, 2010). A popular algorithm which considers distance

(not necessarily Euclidean) as a criterion for grouping objects is DBSCAN (Ester

et al., 1996). The original algorithm has a known issue because the assignment of

border objects (i.e. objects between multiple clusters) to clusters depends on the

order in which the set of objects is iterated. An improved version of the DBSCAN

algorithm was introduced by Tran et al. (Tran et al., 2013) for addressing this issue

and is employed by our cluster detection mechanism considering the pseudometric

dist as the distance function. Illustrative examples of greyscale images in which

clusters of cells are automatically detected and analysed are depicted in Figure 3.5.

3.4.2 Spatial measures

Each detected region/cluster is characterised by the set of pseudo-3D spatial

measures {clusteredness, density, area, perimeter, distance from origin, angle

(degrees), triangle measure, rectangle measure, circle measure, centroid (x-coord),

centroid (y-coord)}. A detailed description of the semantics specific to regions

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 62

Figure 3.5: In silico generated greyscale images representing the distribution of cells in space. Clusters
comprising at least 5 sufficiently close cells are automatically detected and outlined using different
colours. Cells are represented as grey points if they do not belong to a cluster. Otherwise they are
represented as coloured points such that the colour of the cell matches the colour of the cluster it is
a member of. Each cluster is enclosed by a polygon whose shape (triangular, rectangular or circular)
best matches the shape of the cluster.

and clusters is provided below; see Figure 3.6 for a graphical illustration.

The collection of spatial measures was defined such that it is sufficiently generic

to be applied to a wide range of case studies, and sufficiently comprehensive to

enable reasoning about how relevant properties of spatial structures change over

time.

3.4.2.1 Computing spatial measures values for regions

The clusteredness of a set of regions represents the inverse of the average Euclidean

distance between the centroids of the regions. Conversely the clusteredness of a

single region is computed as follows:

clusteredness(reg) =
area(reg)

area(reg) +
∑

h∈holes
area(h)

,

where reg is a region and holes is the set of holes contained by reg. As the area

of the holes contained by regions increases the value of the clusteredness degree

decreases and vice versa.

The density of a set of regions is equal to the average density of the regions

divided by the average Euclidean distance between the centroids of the regions.

Conversely the density of a single region represents the average density value of

the positions defining the region in the discretised space.

The area of the region is equal to the area of the polygon defined by the

neighbouring positions in the Euclidean plane (subtracting the area of holes).

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 63

a) Clusteredness b) Density c) Area

d) Perimeter f) Anglee) Distance from origin

g) Shape h) Centroid

Centre pointCentre point

Figure 3.6: The clusteredness (a) computes how close regions/neighbouring positions are to each
other in a cluster/region. Density (b) measures the average value (e.g. concentration) of the positions
considered in the discretised space. Area (c) and perimeter (d) have the usual meaning from discrete
2D geometry. Distance from the origin (e) represents the minimum distance between the point from
the centre of the discretised space and the considered region/cluster. The angle (f) associated to a
region/cluster is determined by three points: the origin, and the points found at the intersections of
the region/cluster convex hull with the line perpendicular on the line determined by the origin and
the centroid of the region/cluster. The shape (g) is determined by computing the degree of similarity
between the shape of the region/cluster and a triangle, rectangle and circle. The centroid (h) is the
geometric centre of the considered region/cluster.

The perimeter of the region is equal to the perimeter of the polygon defined

by the neighbouring positions in the Euclidean plane. Holes contained by the

region are ignored in this case.

The distance from the origin is equal to the minimum distance between the

polygon defined by the region and the centre point of the discretised space (origin).

The angle (degrees) is equal to the angle determined by the centre point of

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 64

the discretised space and the points obtained from the intersection of the line

perpendicular on the line determined by the centre point of the discretised space

and the centroid of the region, and the convex hull of the polygon defined by the

region.

The shape of the region is determined in a fuzzy manner by the triangular,

rectangular and circular measures. Each one of these measures computes the

likelihood of the region to have a triangular, rectangular or circular shape using

the following formula:

measuresh(reg) =
area(reg)

area(minimum area sh-shaped polygon enclosing reg)
,

where reg is a region, and the value of measuresh(reg) ∈ [0, 1],∀sh ∈ {triangular,

rectangular, circular}. Algorithms for computing minimum area enclosing trian-

gles (O’Rourke et al., 1986; Pârvu and Gilbert, 2014b), rectangles (Freeman and

Shapira, 1975; Toussaint, 1983) and circles (Gärtner, 1999) which were previously

published in the literature are considered here.

The x/y-coordinates of the centroid are computed using moments of the

polygon defined by the neighbouring positions in the Euclidean plane (Steger,

1996).

3.4.2.2 Computing spatial measures values for clusters

The clusteredness of a set of clusters represents the inverse of the average Euclidean

distance between the centroids of the clusters.

Remark 4. The clusteredness of a set of clusters is additionally computed using

the Silhouette (Rousseeuw, 1987) cluster validity index. Although there is no

index which performs best for all scenarios Silhouette obtains good/best results in

the majority of cases (Arbelaitz et al., 2013). The Silhouette value is computed

with respect to the regions in all clusters. Thus in our case it could be determined

only at cluster detection and analysis time when the information about individual

regions is available. At a particular time point we associate to a set of clusters

a unique Silhouette value which means we could encode it as a numeric state

variable in our model.

Conversely the clusteredness of a single cluster represents the inverse of the

average Euclidean distance between the centroids of the regions in the cluster.

The density of a set of clusters is equal to the average density of the clusters

divided by the average Euclidean distance between the centroids of the clusters.

Conversely the density of a single cluster represents the average density value of

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 65

the spatial entities defining the cluster in the discretised space.

The area of a cluster is equal to the area of the polygon defined by the convex

hull of all regions in the cluster (ignoring the holes between regions).

The perimeter, distance from the origin, angle (degrees), shape and x/y-

coordinates of the centroid of the cluster are determined using the same methods

employed for regions. The main difference is that the polygon used to determine

the outer boundary of the cluster is the convex hull computed for a group of

regions instead of a single one.

The output of the spatio-temporal analysis module is time series data describing

how the spatial measures values change over time for the detected spatial entities.

3.4.3 Spatial Temporal Markup Language

The output of the spatio-temporal analysis merged with time series data describing

how numeric state variable values change over time represents the model simulation

output. To represent this model simulation output in a uniform and consistent

manner which facilitates exchange of data sets and integration of software tools a

corresponding standard data representation format is required.

The main requirement for the data representation format is that it supports

recording different numbers of values at different time points because the collection

of (emergent) spatial structures considered could potentially change over time.

Traditional tabular (e.g. csv) representation formats are not suitable because they

assume that the number of recorded values is constant throughout the entire

time series. Moreover defining a representation format similar to csv that does

not annotate numeric values with their meaning could be potentially difficult to

interpret.

For portability, structuring and readability purposes an eXtensible Markup

Language (xml) based standard data representation format is defined called

Spatial Temporal Markup Language (STML). The rules and constraints for the

structure of the xml files are formalised in XML Schema Definition (xsd) files with

the filename format STML LxVy.xsd (i.e. Spatial Temporal Markup Language

Level x, Version y); see http://mudi.modelchecking.org/stml for the latest version

of the format. An example of an xml file recording experimental spatio-temporal

data is depicted in Listing 3.1.

The results of an (in silico/in vitro/in vivo) experiment are recorded as

a list of time points. The constraint imposed on experiment elements is that

they must contain at least one time point.

Each timepoint element contains an optional value attribute which indicates

http://mudi.modelchecking.org/stml

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 66

Listing 3.1: An example STML file recording spatio-temporal data

1 <?xml version=” 1 .0 ” encoding=”utf−8”?>
2 <experiment>
3 <t imepoint>
4 <s p a t i a lEn t i t y>
5 <pseudo3D type=” c l u s t e r ”>
6 <c l u s t e r e dn e s s>0 .01</ c l u s t e r e dn e s s>
7 <dens i ty>5</ dens i ty>
8 <area>15</ area>
9 <per imeter>28</ per imeter>

10 <distanceFromOrigin>81</ distanceFromOrigin>
11 <ang le>10 .5</ ang le>
12 <t r i ang l eMeasure>0 .5</ t r iang l eMeasure>
13 <rectang leMeasure>1 .0</ rectang leMeasure>
14 <c i r c l eMeasure>0 .1</ c i r c l eMeasure>
15 <c en t r o id>
16 <x>703.4999</x>
17 <y>118.087</y>
18 </ c en t r o id>
19 </pseudo3D>
20 </ spa t i a lEn t i t y>
21 <numer icStateVar iab le>
22 <name>avgClus t e r edne s sC lu s t e r s</name>
23 <value>0 .4</ value>
24 </ numer icStateVar iab le>
25 </ t imepoint>
26 . . .
27 </ experiment>

the moment in time when the measurement was taken. If the timepoint value

can be inferred, then it should not be defined explicitly in order to reduce the size

of the STML file. For instance if the computational model considered assumes

a discrete representation of time, the time difference between consecutive time

points is typically constant and equal to 1. Consequently the value of each time

point can be inferred to be equal to the value of the preceding time point + 1,

with the exception of the first time point whose value is 0. Conversely if the

computational model considered assumes a continuous representation of time, the

time difference between consecutive time points is typically variable. Consequently

the value of each time point needs to be defined explicitly. Therefore in general

the value valueti corresponding to time point ti is computed using the following

formula:

valueti =


val, if the value val was defined explicitly for ti

0, if no value was defined explicitly for ti and i = 0

valueti−1
+ 1, otherwise.

The information stored in timepoint elements is a list of zero or more unique

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 67

spatial entities (i.e. spatialEntity elements) and/or numeric state variables

(i.e. numericStateVariable elements).

A spatialEntity element currently comprises only one element called

pseudo3D which stores a pseudo-3D spatial description of the entity. In the

future if 2D or full 3D representations are of interest the pseudo3D element

could be renamed accordingly.

Every pseudo3D element has an associated type which can be either cluster

or region. Similarly to the detected regions/clusters every pseudo3D element is

characterised by a set of spatial measures constrained as described below:

• clusteredness, density, triangleMeasure, rectangleMeasure and circleMeasure

- real non-negative values between 0 and 1;

• angle - a real non-negative value between 0 and 360;

• area, perimeter, distanceFromOrigin, centroidX and centroidY - real non-

negative values.

The basic shapes considered by the current version of STML are appropriate

to describe simple spatial patterns such as patches which spread outwards as they

develop (triangular), ordered structures/streams (rectangular), and (uniform)

groups/clusters (circular). In contrast complex patterns comprising multiple basic

shapes cannot be described appropriately by the current shape similarity measures.

In order to address this issue a potential future version of STML could include a

more complex suite of shape descriptors.

Finally numericStateVariable elements contain a name and a value

child element where the name is a string and the value a real number.

STML files encoding the simulation output of SSpDES models are evaluated

by the model checker against formal specifications describing how both numeric

and spatial properties are expected to change over time.

3.5 Formal specification

3.5.1 Bounded Linear Spatial Temporal Logic

To enable writing such specifications a corresponding formal language called

Bounded Linear Spatial Temporal Logic (BLSTL) is defined. BLSTL is an

extension of BLTL with spatial, arithmetic and statistical functions. The Boolean

propositions specific to BLTL remain unchanged, and temporal operators F , G

and U are augmented by bounded time intervals (e.g. [0, 10]). Moreover the

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 68

temporal operator X (i.e. next) and its variant X[k] are considered which enable

reasoning about the immediately next, respectively the next k-th state (Clarke

et al., 2010). In addition new functions are introduced enabling to reason about

how (distributions of) regions/clusters and their spatial properties change over

time.

The same non-dimensional properties, spatial entities (regions and clusters)

and measures (clusteredness, density, area, perimeter, distance from origin, angle

(degrees), triangle measure, rectangle measure, circle measure, centroid (x-coord)

and centroid (y-coord)) are considered both by the STML specification and the

BLSTL formal language. Therefore BLSTL enables encoding logic statements

with respect to both non-dimensional (e.g. species/proteins concentrations) and

spatial properties, and correlations between the two.

To enable the construction of more complex logic statements BLSTL addi-

tionally enables specifying how arithmetic expressions comprising numeric or

spatial properties change over time. The considered functions which enable the

construction of complex logic statements are either unary (e.g. absolute value,

round, square root etc.) or binary (e.g. addition, division, power etc.).

These arithmetic functions take a single real-valued variable as input and

are directly applicable to non-dimensional properties. However in order to apply

the same functions to collections of regions/clusters, the distribution of spatial

measures characterising the regions/clusters has to be reduced to a single real

value. A set of statistical functions is made available in the specification of

BLSTL in order to address this problem. The statistical functions considered

are either unary (e.g. count), binary (e.g. median with respect to a user specified

spatial measure), ternary (e.g. percentile with respect to a user specified spatial

measure) or quaternary (e.g. covariance between two potentially different types of

spatial entities and measures). One of the main differences between BLSTL and

traditional BLTL-based formal languages is that the former enables reasoning

about dynamic sets of spatial entities whose cardinality changes over time, whereas

the latter usually only consider static sets of numeric state variables.

Although the arithmetic and statistical functions described above enable the

construction of more complex logic statements, there is a need for a mechanism

which enables reasoning about particular subsets of the detected regions/clusters.

For instance it may be the case that only regions with the area greater than a

certain value, or clusters close to a particular point in space are of interest. In

order to address this challenge BLSTL comprises a constraint-based mechanism

which filters out all regions/clusters whose spatial measures do not meet a set of

user-defined conditions.

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 69

3.5.1.1 Syntax

The syntax of BLSTL is defined by a context-free grammar using the Backus-Naur

Form (BNF) notation. A definition of a non-terminal symbol (element) in such

grammars has the following form:

〈defined-element〉 ::= 〈element1 〉
| 〈element2 〉
| ...

where ::= introduces a new definition and | represents an alternative. In natural

language this reads 〈defined -element〉 is either an 〈element1 〉 or 〈element2 〉 or

(...).

In contrast to the BLTL definition the symbol φ was replaced by the non-

terminal symbol 〈logic-property〉 throughout.

Definition 8 BLSTL syntax

The syntax of BLSTL is given by the following grammar formally expressed in

BNF:

〈logic-property〉 ::= 〈numeric-spatial-measure〉 〈comparator〉 〈numeric-measure〉
| 〈numeric-state-variable〉 〈comparator〉 〈numeric-measure〉
| d(〈numeric-measure〉) 〈comparator〉 〈numeric-measure〉
| ∼ 〈logic-property〉
| 〈logic-property〉 ∧ 〈logic-property〉
| 〈logic-property〉 ∨ 〈logic-property〉
| 〈logic-property〉 ⇒ 〈logic-property〉
| 〈logic-property〉 ⇔ 〈logic-property〉
| 〈logic-property〉 U[〈unsigned-real-number〉,〈unsigned-real-number〉]
〈logic-property〉

| F[〈unsigned-real-number〉,〈unsigned-real-number〉] 〈logic-property〉
| G[〈unsigned-real-number〉,〈unsigned-real-number〉] 〈logic-property〉
| X 〈logic-property〉
| X [〈natural-number〉] 〈logic-property〉
| (〈logic-property〉)

〈numeric-measure〉 ::= 〈numeric-spatial-measure〉
| 〈real-number〉
| 〈numeric-state-variable〉
| 〈unary-numeric-measure〉(〈numeric-measure〉)
| 〈binary-numeric-measure〉(〈numeric-measure〉, 〈numeric-measure〉)

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 70

〈numeric-spatial-measure〉 ::= 〈unary-subset-measure〉(〈subset〉)
| 〈binary-subset-measure〉(〈subset〉, 〈spatial-measure〉)
| 〈ternary-subset-measure〉(〈subset〉, 〈spatial-measure〉, 〈real-number〉)
| 〈quaternary-subset-measure〉(〈subset〉, 〈spatial-measure〉, 〈subset〉,
〈spatial-measure〉)

〈unary-subset-measure〉 ::= count

| clusteredness

| density

〈binary-subset-measure〉 ::= avg

| geomean

| harmean

| kurt

| max

| median

| min

| mode

| product

| skew

| stdev

| sum

| var

〈ternary-subset-measure〉 ::= percentile

| quartile

〈quaternary-subset-measure〉 ::= covar

〈unary-numeric-measure〉 ::= abs

| ceil

| floor

| round

| sign

| sqrt

| trunc

〈binary-numeric-measure〉 ::= add

| div

| log

| mod

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 71

| multiply

| power

| subtract

〈subset〉 ::= 〈subset-specific〉
| filter(〈subset-specific〉, 〈constraint〉)

〈subset-specific〉 ::= regions

| clusters

〈constraint〉 ::= 〈spatial-measure〉 〈comparator〉 〈filter-numeric-measure〉
| ∼ 〈constraint〉
| 〈constraint〉 ∧ 〈constraint〉
| 〈constraint〉 ∨ 〈constraint〉
| 〈constraint〉 ⇒ 〈constraint〉
| 〈constraint〉 ⇔ 〈constraint〉
| (〈constraint〉)

〈filter-numeric-measure〉 ::= 〈numeric-measure〉
| 〈spatial-measure〉
| 〈unary-numeric-measure〉(〈filter-numeric-measure〉)
| 〈binary-numeric-measure〉(〈filter-numeric-measure〉,
〈filter-numeric-measure〉)

〈spatial-measure〉 ::= clusteredness

| density

| area

| perimeter

| distanceFromOrigin

| angle

| triangleMeasure

| rectangleMeasure

| circleMeasure

| centroidX

| centroidY

〈real-number〉 ::= 〈unsigned-real-number〉
| 〈sign〉 〈unsigned-real-number〉

〈unsigned-real-number〉 ::= 〈fractional-part〉
| 〈fractional-part〉 〈exponent-part〉

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 72

〈fractional-part〉 ::= 〈digit-sequence〉 . 〈digit-sequence〉
| . 〈digit-sequence〉
| 〈digit-sequence〉 .

| 〈digit-sequence〉

〈digit-sequence〉 ::= 〈digit〉
| 〈digit〉 〈digit-sequence〉

〈digit〉 ::= 0

| 1

| 2

| 3

| 4

| 5

| 6

| 7

| 8

| 9

〈natural-number〉 ::= 〈digit-sequence〉
| + 〈digit-sequence〉

〈exponent-part〉 ::= e 〈digit-sequence〉
| E 〈digit-sequence〉
| e 〈sign〉 〈digit-sequence〉
| E 〈sign〉 〈digit-sequence〉

〈sign〉 ::= +

| −

〈comparator〉 ::= <

| <=

| =

| >=

| >

〈numeric-state-variable〉 ::= 〈state-variable〉

〈state-variable〉 ::= {〈string〉}

〈string〉 ::= 〈character〉 | 〈character〉 〈string〉

〈character〉 ::= based on the Unicode character set except “{” and “}”

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 73

The operators’ order of precedence is given by the definition of the BLSTL

syntax. In the absence of parentheses the logic expressions are evaluated from

left to right.

3.5.1.2 Semantics

The semantics of BLSTL is defined with respect to executions/simulations of an

SSpDES M. Let us assume that

σ = (s0, t0), (s1, t1), ...

is an execution ofM along the sequence of states s0, s1, ... with t0, t1, ... ∈ R time

durations spent in each state. Given an execution trace σ = {(s0, t0), (s1, t1), ...},
a time value t ∈ R+ and a natural number i, the length of (or the number of states

in) the execution trace is denoted by |σ|, the i-th state of the execution trace

by σ[i], the execution trace suffix starting at the i-th state by σi, the execution

trace suffix starting after t time by σ(t) = σi, where i ∈ N is the minimum index

such that t ≤
∑i

j=0 tj , and the fact that the execution σ satisfies a property φ by

σ |= φ. For an execution σ at state s the value of a numeric state variable nsv is

given by NV (σ, s, nsv) and the value of a spatial state variable spsv is given by

SpV (σ, s, spsv).

In order to have a compact and easy to follow semantics description the full

symbol names provided in the BLSTL syntax definition were replaced with shorter

abbreviations as described in Table 3.1.

Table 3.1: Translation of full BLSTL symbol names to abbreviated forms. The left column contains
the full BLSTL symbol name. The right column contains the corresponding abbreviated form.

Full BLSTL symbol name Abbreviated BLSTL symbol name

<logic-property> ψ
<numeric-measure> nm
<numeric-spatial-measure> nspm
<unary-subset-measure> usm
<binary-subset-measure> bsm
<ternary-subset-measure> tsm
<quaternary-subset-measure> qsm
<unary-numeric-measure> unm
<binary-numeric-measure> bnm
<spatial-measure> sm
<subset> ss
<filter-numeric-measure> fnm
<comparator> �
<real-number> re
<numeric-state-variable> nsv
<spatial-state-variable> spsv

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 74

Definition 9 BLSTL semantics

Let M = 〈S, T , µ, NSV , SpSV , NV , SpV 〉 be an SSpDES and σ an execution

of M. The semantics of BLSTL for σ is defined as follows:

• σ |= nspm � nm if and only if nspm � nm, where nspm and nm ∈ R,

and � ∈ {<, <=, =, >=, >};

• σ |= nsv � nm if and only if NV (σ, σ[0], nsv) � nm, where nsv ∈ NSV ,

nm ∈ R, and � ∈ {<, <=, =, >=, >};

• σ |= d(nm1) � nm2 if and only if |σ| > 1 and d(nm1) � nm2, where

d(nm1) and nm2 ∈ R, and � ∈ {<, <=, =, >=, >};

• σ |= ∼ ψ if and only if σ 6|= ψ;

• σ |= ψ1 ∧ ψ2 if and only if σ |= ψ1 and σ |= ψ2;

• σ |= ψ1 ∨ ψ2 if and only if σ |= ψ1 or σ |= ψ2;

• σ |= ψ1 ⇒ ψ2 if and only if σ |=∼ ψ1 or σ |= ψ2;

• σ |= ψ1 ⇔ ψ2 if and only if σ |= ψ1 ⇒ ψ2 and σ |= ψ2 ⇒ ψ1;

• σ |= ψ1 U [a, b] ψ2 if and only if there exists i, i ∈ [a, b], such that σ(i) |= ψ2,

and for all j, j ∈ [a, i), it holds that σ(j) |= ψ1 with a, b ∈ R+;

• σ |= F [a, b] ψ if and only if there exists i, i ∈ [a, b], such that σ(i) |= ψ

with a, b ∈ R+;

• σ |= G[a, b] ψ if and only if for all i, i ∈ [a, b], it holds that σ(i) |= ψ with

a, b ∈ R+;

• σ |= Xψ if and only if |σ| > 1 and σ1 |= ψ;

• σ |= X[k] ψ if and only if |σ| > k and σk |= ψ;

• σ |= (ψ) if and only if σ |= ψ.

The nm symbol represents the category of real-valued numeric measures.

Considering a given model execution σ, nm is evaluated according to one of the

definitions described below:

• Numeric spatial measure: nm = nspm;

• Real number: nm = re ∈ R;

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 75

• Numeric state variable: nm = NV (σ, σ[0], nsv), where nsv is a numeric

state variable;

• Unary numeric measure: nm = unm(nm′), where nm′ is a numeric

measure;

• Binary numeric measure: nm = bnm(nm′, nm′′), where nm′ and nm′′

are numeric measures.

The values of the unary (unm) and binary (bnm) numeric measures are

computed as described in Appendix C.2 (Tables C.2 and C.3).

The nspm symbol represents the category of numeric (real-valued) spatial

measures. Considering a given execution σ, nspm is evaluated according to one

of the definitions described below:

• Unary subset measure: nspm = usm(ss), where ss is a subset of the

considered spatial entities (clusters or regions);

• Binary subset measure: nspm = bsm(ss, sm), where ss is a subset of

the considered spatial entities (clusters or regions) and sm is a spatial

measure;

• Ternary subset measure: nspm = tsm(ss, sm, re), where ss is a subset

of the considered spatial entities (clusters or regions), sm is a spatial measure

and re is a real value;

• Quaternary subset measure: nspm = qsm(ss, sm, ss′, sm′), where ss

and ss′ are subsets of the considered spatial entities (clusters or regions),

and sm and sm′ are spatial measures.

If the considered subset of spatial entities is empty the numeric spatial measures

are evaluated to zero.

Spatial measures sm are defined over the set {clusteredness, density, area,

perimeter, distanceFromOrigin, angle, triangleMeasure, rectangleMeasure, cir-

cleMeasure, centroidX, centroidY} which is identical to the set of spatial measures

recorded in an STML file for each detected region/cluster.

The value of unary (usm), binary (bsm), ternary (tsm) and quaternary (qsm)

subset measures are computed as described in Appendix C.3 (Tables C.4, C.5, C.6

and C.7). Some of the binary and all ternary and quaternary subset measures are

statistical functions which can be employed for reasoning about the distribution

of the regions/clusters measures at a particular time point. In contrast to

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 76

traditional logic formalisms BLSTL allows specifying properties of both single

spatial properties and/or distributions of spatial properties.

Subsets of the collections of regions/clusters are represented by the ss symbol.

Considering a given execution σ, ss is evaluated according to one of the definitions

described below:

• Specific subset: ss = specificSubset , where specificSubset represents either

the collection of all clusters (see Definition 7) or the collection of all regions

(see Definition 6) corresponding to σ[0];

• Filtered specific subset: ss = filter(specificSubset , constraints), where

specificSubset has the semantics defined above, and constraints is a set of

logic properties restricting the spatial entities considered to a subset of

specificSubset .

Given an execution σ the value of the specificSubset symbol is computed using

one of the definitions described below:

• Regions: specificSubset =
⋃

spsv∈SpSV

{reg | reg ∈ regionDetectionMecha-

nism(spsv)} considering the state σ[0];

• Clusters: specificSubset = clustersDetectionMechanism(se), where se =⋃
spsv∈SpSV

{reg | reg ∈ regionDetectionMechanism(spsv)} considering the

state σ[0].

Subsets of the collection returned by specificSubset can be computed using the

filter predicate. Considering an execution σ filter is evaluated using the definition

described below:

filter = {e ∈ specificSubset | e |= c,∀c ∈ constraints}.

The semantics of the constraint satisfaction problem considering a region/cluster

e and a constraint c is defined below:

• e |= sm � fnm if and only if sm(e) � fnm, where sm(e) evaluates the

spatial measure sm for the given spatial entity e, sm ∈ {clusteredness,

density, area, perimeter, distanceFromOrigin, angle, triangleMeasure, rect-

angleMeasure, circleMeasure, centroidX, centroidY}, fnm is a filter numeric

measure ∈ R, and � ∈ { <, <=, =, >=, >};

• e |=∼ c if and only if e 6|= c;

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 77

• e |= c1 ∧ c2 if and only if e |= c1 and e |= c2;

• e |= c1 ∨ c2 if and only if e |= c1 or e |= c2;

• e |= c1 ⇒ c2 if and only if e |=∼ c1 or e |= c2;

• e |= c1 ⇔ c2 if and only if e |= c1 ⇒ c2 and e |= c2 ⇒ c1.

The fnm symbol represents the (real-valued) numeric measure computed for

the filter predicate. Given an execution σ and a region/cluster e, the value of

fnm is computed using one of the definitions given below:

• Numeric measure: fnm = nm, where nm is a numeric measure;

• Spatial measure: fnm = sm(e), where sm ∈ {clusteredness, density, area,

perimeter, distanceFromOrigin, angle, triangleMeasure, rectangleMeasure,

circleMeasure, centroidX, centroidY};

• Unary filter numeric measure: fnm = unm(fnm ′), where unm is a

unary numeric measure, and fnm ′ is a filter numeric measure;

• Binary filter numeric measure: fnm = bnm(fnm ′, fnm ′′), where bnm is

a binary numeric measure, respectively fnm ′ and fnm ′′ are filter numeric

measures.

The d symbol stands for derivative. Considering a given execution σ, such that

|σ| > 1, and a numeric measure nm, the value of d(nm) is computed as follows:

d(nm) =
nm1 − nm0

time1 − time0
,

where nmi represents the result of evaluating nm against σi, and timei represents

the value of the first time point in σi.

3.5.1.3 Illustrative examples of BLSTL statements

Illustrative examples of natural language statements which can be encoded in

BLSTL are defined below:

• Natural language: At some point in the future, considering the time

interval [0, 100], the concentration of cAMP is less than 20, and the number

of cell clusters emerging in the environment is greater than zero.

BLSTL: F [0, 100] (({cAMP} < 20) ∧ (count(clusters) > 0)).

A detailed description of the mapping between natural and formal BLSTL

constructs considering the previous statement is given below.

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 78

Natural language BLSTL

“At some point in the future” F

“considering the time interval [0, 100]” [0, 100]

“the concentration of cAMP is less than 20” ({cAMP} < 20)

“and” ∧
“the number of cell clusters emerging in the

environment is greater than zero”

(count(clusters) > 0)

The mapping is done in a similar manner for the next statements and

therefore will not be stated explicitly.

• Natural language: The mean area of all cancerous regions grows through-

out the entire simulation interval [5, 25].

BLSTL: G[5, 25] (d(mean(regions, area)) > 0).

Remark 5. If the computational model considered is stochastic the evolution

of state variables values (e.g. area of cancerous regions) over time is typically

characterized by fluctuations or noise. Due to such fluctuations state

variables values do not constantly increase or decrease between consecutive

time points but alternate between the two, although the general trend

considering multiple time points is decreasing/increasing. Consequently

logic statements which specify that a state variable value always increases

over a particular time interval (e.g. [5, 25]) evaluate to false. To specify that

state variables values are expected to increase over multiple time points

one potential solution is to state that the values are within certain bounds

in particular time subintervals (e.g. area of cancerous regions is between

22.3 and 22.9 in time subinterval [5, 10], between 22.8 and 30.1 in time

subinterval [10, 20], and between 30.0 and 40.0 in time subinterval [20, 25]).

• Natural language: Within the time interval [0, 300] the number of mutant

cell populations emerging at a distance smaller than 10 from the area of

inflammation (origin) is greater than 0 until the concentration of X drops

below 5.

BLSTL: (count(filter(clusters, distanceFromOrigin < 10)) > 0)

U [0, 300] ({X} < 5).

To enable specifying the probability with which a formal BLSTL statement is

expected to hold a probabilistic extension of BLSTL called Probabilistic BLSTL

(PBLSTL) is defined.

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 79

3.5.2 Probabilistic Bounded Linear Spatial Temporal

Logic

Definition 10 Probabilistic Bounded Linear Spatial Temporal Logic

(PBLSTL)

A Probabilistic Bounded Linear Spatial Temporal Logic property φ is a logic

property of the form P./θ[ψ] where ./ ∈ {<,<=, >=, >}, θ ∈ (0, 1) and ψ is a

BLSTL property.

An illustrative example of a natural language probabilistic statement mapped

into PBLSTL is defined below:

Natural language: The probability is greater than 0.7 that at some point

in the future, considering the time interval [0, 100], the concentration of

cAMP is less than 20, and the number of cell clusters emerging in the

environment is greater than zero.

PBLSTL: P > 0.7 [F [0, 100] (({cAMP} < 20) ∧ (count(clusters) > 0))].

Remark 6. The probability employed in the immediately above example was

chosen for illustrative purposes and was not derived from experimental data or

the literature.

A PBLSTL property φ ≡ P./θ[ψ] holds for an SSpDES M (i.e. M |= P./θ[ψ])

if and only if the probability of ψ to hold for an execution ofM is ./ θ. Therefore

in order to determine the truth value of a PBLSTL property φ the likelihood of

ψ being true is computed.

As in the case of Jha et al. (Jha et al., 2009a) evaluating the truth value of

a PBLSTL property φ is harder than determining the truth value of a BLSTL

property ψ. One counterexample for a BLSTL property is sufficient to decide

that the property does not hold. Conversely one counterexample for a PBLSTL

property φ does not necessarily imply that φ is not satisfied. A PBLSTL property

φ does not hold if the likelihood of all counterexamples provides sufficient evidence

to invalidate φ.

3.6 Model checking

Definition 11 Multidimensional spatio-temporal model checking

problem

The multidimensional spatio-temporal model checking problem is to automatically

verify if an SSpDES M satisfies a PBLSTL property φ ≡ P./θ[ψ].

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 80

Different approximate probabilistic model checking algorithms can be employed

depending on the method of constraining the approximation error and the approach

for deciding if a logic property holds. For flexibility and completeness purposes

both Bayesian and frequentist, estimate and hypothesis testing based model

checking methods are considered; see Subsection 2.4.2, Table 2.1 for references to

the corresponding algorithms.

All methods except probabilistic black-box take a user-defined (set of) pa-

rameter(s) as input representing the maximum tolerated approximation error.

Such methods are employed to evaluate a variable number of model simulations

until a result can be provided considering the user-defined approximation error

constraints. Conversely, the probabilistic black-box model checking approach

decides based on a fixed number of model simulations if the logic property is

satisfied. However in this case the confidence measure of the provided result is

not specified by the user and varies depending on the number of available model

simulations.

Bayesian approaches should be used when information about the prior prob-

ability distribution of parameters in the model is available. This could lead

to a reduced number of required samples in order to decide if a logic property

holds. Conversely if no prior knowledge is available frequentist methods could be

employed instead.

Statistical hypothesis test based approaches should be employed whenever

deciding between two hypotheses where usually the null hypothesis represents the

PBLSTL logic property φ, and the alternative hypothesis ∼ φ. Conversely if the

true probability of φ being true is computed and then compared to θ estimate

based methods should be considered.

The algorithms provided in the original papers describing the model checking

methods (see Subsection 2.4.2, Table 2.1) were employed for all approaches

except frequentist statistical. An improved version of this model checking method

requiring less input parameters was introduced by Koh et al. (Koh et al., 2012).

However the initialisation step of the improved algorithm could potentially lead to

invalid arithmetic expressions if extra conditions are not added to the algorithm

implementation (C.H. Koh, personal communication, 2nd June, 2014). Therefore a

variant of the improved algorithm is proposed which has a modified initialisation

step that no longer requires adding extra conditions to the implementation. A

more detailed description of the proposed solution is given in Appendix C.4.

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 81

3.6.1 Proof that the multidimensional model checking

problem is well-defined

To show that the model checking problem is well-defined we will first prove that

the number of required simulations and state transitions within each simulation

are finite.

3.6.1.1 Finite number of required simulations

Probabilistic black-box model checking is the only approach considered which

can provide an answer regardless of the number of available model simulations.

Conversely all other methods considered require a minimum number of model

simulations, which can be computed at the beginning (Chernoff-Hoeffding bounds)

or not (frequentist and Bayesian statistical, Bayesian mean and variance estimate),

to provide an answer considering a user-defined confidence level. Although

all model checking methods require a finite number of model simulations the

expected time required for an answer to be provided varies with the value of

the true probability p and the user-defined probability θ. However for practical

applications users might want to set an upper bound on the time to wait until an

answer is provided. Thus we employ the wrapper Algorithm 2 to execute each

specific model checking algorithm in Subsection 2.4.2, Table 2.1. If an answer can

be provided using the requested approach within the specified extra evaluation

time interval then it is reported to the user. Otherwise probabilistic black-box

model checking is employed to report the answer based on the model simulations

generated and evaluated so far.

In the initialisation step of Algorithm 2 nrOfTimeoutSeconds, the number

of seconds to wait between re-executing the extra evaluation program is fixed.

The reason for introducing such a variable is to temporarily wait and allow

the model simulator to finish its execution before verifying if new simulations

were provided. Afterwards the collection of valid model simulations is ini-

tialised based on the given simulationsInputSet. The model checker of

type modelCheckingType is then executed to verify if the logic property

logicProperty holds considering the available simulations and set of

modelCheckingParameters. While the number of elapsed minutes is less

than extraEvaluationTime and the number of available model simulations

is insufficient to evaluate logicProperty the loop comprising the following

steps is executed:

1. Run extraEvaluationProgram to generate new simulations;

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 82

Algorithm 2 The wrapper algorithm employed to call specific model checking algorithms (see Sub-
section 2.4.2, Table 2.1 for the considered approaches). If sufficient model simulations are available, or
generated and evaluated within extraEvaluationT imeminutes, then the chosen specific model checking
algorithm is used to provide an answer. Otherwise the user is informed that the maximum extra eval-
uation time threshold was reached and the answer is provided using the probabilistic black-box model
checking approach. Model simulations are generated and stored in an input set simulationsInputSet
using the external model simulation program extraEvaluationProgram. The logic property to be
verified is stored in the variable logicProperty.

Require: modelCheckingType is the specific model checking approach,
modelCheckingParameters is the collection of parameters required by the
chosen modelCheckingType, extraEvaluationT ime is the maximum number
of minutes allowed for generating and evaluating additional model simula-
tions, extraEvaluationProgram is the model simulation program which is
called whenever new simulations are required, simulationsInputSet is the set
containing the simulations and logicProperty is the PBLSTL logic property
to be verified

Ensure: A true/false answer together with a measure of confidence is provided

1: nrOfTimeoutSeconds ← 30; . The default number of seconds to wait
2: between re-executing the extra
3: evaluation program and evaluating
4: the generated traces
5:

6: simulations← GetSimulations(simulationsInputSet);
7:

8: RunModelChecker(modelCheckingType, modelCheckingParameters,
9: simulations, logicProperty, result, confidence);
10:

11: while (elapsed number of minutes < extraEvaluationT ime) AND
12: (more model simulations are required) do
13: GenerateModelSimulations(extraEvaluationProgram);
14: Wait(nrOfTimeoutSeconds);
15: UpdateCollectionOfSimulations(simulations, simulationsInputSet);
16: RunModelChecker(modelCheckingType, modelCheckingParameters,
17: simulations, logicProperty, result, confidence);
18: end while
19:

20: if more model simulations are required then
21: RunProbBlackBoxModelChecker(simulations, logicProperty,
22: result, confidence);
23: end if
24:

25: Output result and confidence;

2. Wait for nrOfTimeoutSeconds to give the extra evaluation program

enough time to output results;

3. The collection of simulations is updated considering valid and previously

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 83

unevaluated simulation input files;

4. The modelCheckingType model checker execution is resumed considering

the additional simulations.

The loop is exited when either extraEvaluationTime minutes elapsed or

enough model simulations have been provided. In the former case the probabilistic

black-box model checker is executed to provide a result. Otherwise the result

is computed using the modelCheckingType model checker. In the end both

result and confidence measure are reported to the user.

The main advantages of Algorithm 2 are:

• The model checking execution time and number of generated and evaluated

simulations is finite. Depending on the parameters of the model checker,

the distribution of the data and the number of required simulations the

answer will be provided using the desired model checker type or the default

probabilistic black-box model checker.

• In contrast to traditional model checking methods in our approach the

model checking task is decoupled from a specific model and model simulation

environment (e.g. Matlab (Palaniappan et al., 2013)). An external program

which can generate simulations is provided as input to the model checker.

Whenever additional model simulations are required this external program

is executed. For the algorithm implementation our recommendation is that

the external program employed should be a script (e.g. Bash [UNIX], Batch

[Windows]) which calls the model simulator and stores the output into the

specified location.

3.6.1.2 Finite number of state transitions

Logic properties are evaluated with respect to simulations of computational models.

For deciding if the logic property is satisfied, the model simulation must cover

a sufficiently long time frame. Stopping the simulation early could potentially

render the evaluation of temporal logic properties undecidable. Therefore there is

a need for a mechanism to decide when a simulation execution can be stopped.

When verifying BLSTL logic properties an upper bound can be placed on the

required simulation time because all temporal logic operators are bounded. Let

us denote the upper bound corresponding to a BLSTL logic property ψ by dψe.

Definition 12 Model simulation time upper bound for BLSTL logic

statement

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 84

The upper bound dψe ∈ R+ corresponding to a BLSTL logic property ψ consider-

ing an execution σ is defined recursively on the structure of the logic property as

follows:

• dnspm � nme = 0 because the value of nspm and nm is computed consid-

ering only σ[0];

• dnsv � nme = 0 because the value of nsv and nm is computed considering

only σ[0];

• dd(nm1) � nm2e = 1 because the value of nm1 is computed considering

both σ[0] and σ[1];

• d∼ ψe = dψe;

• dψ1 ∧ ψ2e = max(dψ1e, dψ2e);

• dψ1 ∨ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇒ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇔ ψ2e = max(dψ1e, dψ2e);

• dψ1 U [a, b] ψ2e = max(b− 1 + dψ1e, b+ dψ2e) ≤ b+ max(dψ1e, dψ2e);

• dF [a, b] ψe = b+ dψe;

• dG[a, b] ψe = b+ dψe;

• dXψe = 1 + dψe;

• dX[k] ψe = k + dψe;

• d(ψ)e = dψe.

Thus the minimum upper bound for the simulation time interval to be covered

by model executions when verifying a BLSTL logic property ψ is dψe.

Lemma 1 BLSTL semantics based on finite prefix of infinite execution

Let us assume that a BLSTL logic property ψ is verified against an infinite

execution σ = {(s0, t0), (s1, t1), (s2, t2), ...}. Moreover let us denote a finite prefix

of σ by σ̂ = {(ŝ0, t̂0), (ŝ1, t̂1), ..., (ŝm, t̂m)}, where

ŝi = si and t̂i = ti,∀i = 0,m with
m∑
i=0

ti ≥ dψe and
m−1∑
i=0

ti < dψe.

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 85

Then σ |= ψ if and only if σ̂ |= ψ.

Proof 1 BLSTL semantics based on finite prefix of infinite execution

(proof sketch)

As per Definition 12 a BLSTL statement ψ is evaluated against a model execution

σ considering only the time interval [0, dψe]. Following on from the assumptions

of Lemma 1 the states and time points associated with σ and σ̂ are equivalent over

the time interval [0, dψe]. Hence σ |= ψ if and only if σ̂ |= ψ; see Appendix C.5

for a complete version of this proof defined recursively on the structure of the

logic statement ψ.

Lemma 2 Finite number of state transitions to evaluate BLSTL logic

statement

The number of state transitions required to verify a BLSTL logic property is

finite.

Proof 2 Finite number of state transitions to evaluate BLSTL logic

statement

From Lemma 1 it follows that a BLSTL logic property ψ can be verified against

a model simulation σ based on a finite prefix σ̂. The minimum time interval

captured by σ̂ is bounded and can be computed using Definition 12. Since we

assume the time divergence property (see Subsubsection 2.4.2.1) holds for all

the systems considered, only a finite number of state transitions can occur in a

bounded interval of time.

3.6.1.3 Well-defined model checking problem

Theorem 1 Well-defined multidimensional spatio-temporal model

checking problem

The multidimensional spatio-temporal model checking problem is well-defined.

Proof 3 Well-defined multidimensional spatio-temporal model check-

ing problem

It was shown that the number of required model executions in order to verify if a

PBLSTL logic property φ holds is finite. Moreover considering Lemmas 1 and 2

only a finite prefix and a finite number of state transitions has to be considered

for each model execution. Thus the evaluation of φ is reduced to the problem of

evaluating non-temporal properties over a finite number of states for each model

execution. This implies evaluating arithmetic expressions and/or detecting spatial

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 86

entities which are both decidable problems. Hence the model checking problem is

well-defined.

3.7 Implementation

To automate the computational model validation process the spatio-temporal

detection and analysis approaches and the multidimensional spatio-temporal

model checking method were implemented in software tools. The name of the

model checking software tool is Mudi, and it is composed from the uppercase

letters in the word “MUltiDImensional”. Using the model checker Mudi and

the spatio-temporal detection and analysis modules a computational model can

be validated relative to a PBLSTL specification as described in Figure 3.7. In

contrast to Figure 3.1, Figure 3.7 focusses on the implementation specific rather

than conceptual details of the multidimensional spatio-temporal model checking

approach.

Given a computational model and a corresponding model simulator, the

computational model is simulated to generate time series data. If the resulting

time series data is encoded in a format different from csv then it is converted

to csv. The csv formatted time series is then split into two time subseries, one

recording the values of numeric state variables, and the other recording the values

of spatial state variables. The former is converted to STML. Conversely the latter

is provided as input to the spatio-temporal detection and analysis modules which

detect and analyse how regions and/or clusters change over time. The output of

the spatio-temporal detection and analysis modules is merged with the STML

formatted time subseries recording how numeric state variables values change

over time and is stored in an STML file.

The workflow steps employed to generate STML files (i.e. model simulation,

conversion of time series data to the csv format, spatio-temporal detection and

analysis) are integrated and executed using a script (in our case a Bash script).

For reproducibility purposes the specification of the model simulation and analysis

could be encoded using a standardized representation format in the future (e.g.

SESSL (Ewald and Uhrmacher, 2014)).

The STML files and a PBLSTL specification are provided as input to the

model checker Mudi which evaluates the specification against the STML files to

determine the correctness of the corresponding computational model. The number

of STML files required to determine the model correctness depends on the model

checking algorithm considered; Mudi supports all approximate probabilistic model

checking algorithms given in Table 2.1. If the number of STML files available is

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 87

Computational
model

Computational
model

simulator

Simulate
computational

model

Time series
data

Time series
data in csv

format?

Spatio-temporal
analysis of spatial

time subseries

STML
file

Formal PBLSTL
specification

Convert
time series

to csv format

Script

Convert numeric
time subseries
to STML format

No

Execute
model checker

Mudi

Model is
INVALID

Model is
VALID

Yes

Figure 3.7: Workflow for the validation of computational models relative to PBLSTL specifications
encoding how both numeric and spatial properties are expected to change over time using the model
checker Mudi and the spatio-temporal detection and analysis modules. Given a computational model
and a corresponding computational model simulator the model is simulated to generate time series
data. If the resulting time series data is not csv formatted then it is converted to csv. Next the time
subseries encoding the evolution of spatial state variables over time are provided as input to the spatio-
temporal detection and analysis modules, whereas the time subseries encoding the evolution of numeric
state variables over time are converted to STML. The STML formatted numeric time subseries are
then merged with the output of the spatio-temporal detection and analysis modules, which describes
how the detected spatial entities change over time. The resulting time series is stored into an STML
file. The workflow steps employed to generate STML files (i.e. model simulation, conversion of time
series data to csv format and spatio-temporal detection and analysis) are executed using a script. The
model checker Mudi takes the formal PBLSTL specification and STML files as input, and evaluates
the specification against sufficiently many STML files to decide if the model is valid relative to the
specification. Depending on the specific model checking algorithm considered the number of STML
files required during the model checker execution differs. However Mudi can take the path to the STML
file generation script as input and execute the script on demand.

not sufficient Mudi can generate new STML files on demand if the path to the

STML generation script is additionally provided as input.

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 88

3.7.1 Spatio-temporal detection and analysis modules

Two spatio-temporal detection and analysis modules were implemented corre-

sponding to the two spatial entity types considered i.e. regions and clusters.

The region spatio-temporal detection and analysis module is called

RectangularDetectRegions and it implements Algorithm 1 using the

OpenCV functions given in Table C.1. Conversely the cluster spatio-temporal

detection and analysis module is called SimulationDetectClusters and it

implements the improved DBSCAN algorithm described by Tran et al. (Tran

et al., 2013).

Both spatio-temporal detection and analysis modules were implemented in

C++ for efficiency purposes. In order to avoid recompilation the parameter values

for the spatio-temporal detection and analysis modules are loaded at runtime

from xml configuration files. The contents of these xml files can either be changed

by hand or via the Graphical User Interface (GUI) of the corresponding module

which displays in real time how the detected regions/clusters change when altering

the values of the parameters. A description of the command line arguments and

execution syntax is given when running the spatio-temporal detection and analysis

modules with the “--help” command line argument.

3.7.2 Model checker Mudi

The main use case considered for the model checker Mudi is to validate a given

computational model relative to a PBLSTL specification describing how both

numeric and spatial properties are expected to change over time. Other use

cases considered include choosing the model checking algorithm (see Table 2.1)

and the maximum tolerated model checking approximation error, and providing

as input the maximum number of minutes to wait for new STML files to be

generated and the paths to the file containing the PBLSTL specification, the

folder containing STML files and the script used to generate STML files on

demand (see Algorithm 2). A graphical description of the use cases is given in

Figure 3.8 as a Unified Modelling Language (UML) use case diagram.

The architecture of Mudi was designed to be modular and is conceptually

separated into the model checking and the inference engine layers as depicted in

Figure 3.9. The main advantage of this design choice is that changes of the model

checking layer do not require updates of the inference engine layer and vice versa.

The model checking layer comprises all model checking approaches supported

by Mudi. Independently of the chosen model checking approach the same inference

engine is employed to evaluate formal PBLSTL statements against executions

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 89

Figure 3.8: Use case diagram for multidimensional spatio-temporal model checking using the model
checker Mudi. The user can validate a computational model relative to a PBLSTL specification de-
scribing how both numeric and spatial properties are expected to change over time. The validation
of the computational model relative to a PBLSTL specification includes choosing the model checking
algorithm and the maximum tolerated model checking approximation error, and providing as input
the maximum number of minutes to wait for new STML files to be generated and the paths to the file
containing the PBLSTL specification, the folder containing STML files, and the script used to generate
STML files on demand. Conversely the model checker Mudi employs the model checking algorithm cho-
sen by the user to verify if a PBLSTL specification holds for the computational model considered. The
validation of the computational model includes evaluating the PBLSTL specification against STML
files and outputting the model validation results. The evaluation of the PBLSTL specification against
STML files includes parsing the PBLSTL specification, checking if the STML files are syntactically
correct and generating STML files on demand.

of the model considered. For explanatory purposes the integration of the model

checking approaches, and the PBLSTL logic property parser and evaluator is

described by the UML class diagram in Figure 3.10.

For both efficiency and cross platform compatibility purposes Mudi was im-

plemented in C++. The current version of the model checker was designed to

be executed only from the command line. The user chooses the desired model

checking algorithm and enters the required parameters via command line flags; run

Mudi with the “--help” command line argument for more details. The model

checking approaches supported were implemented without any external library

dependencies. Conversely the PBLSTL logic property parsing and evaluation

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 90

Chernoff-Hoeffding
bounds

Frequentist
statistical

Probabilistic
black-box

Bayesian mean
and variance estimate Bayesian statistical

M
od

el
 c

he
ck

in
g

PBLSTL logic
property parser

PBLSTL logic
property evaluator

In
fe

re
nc

e
en

gi
ne

Figure 3.9: The modular architecture of Mudi comprises the model checking and inference engine
layers. The model checking layer contains all model checking approaches supported by Mudi. Con-
versely the inference engine layer consists of the PBLSTL logic property parser (considering the BLSTL
syntax) and evaluator (considering the BLSTL semantics). Every model checking approach supported
by Mudi employs the PBLSTL logic property evaluator to determine if PBLSTL logic properties hold
for executions of the model considered.

modules depend on the Boost Spirit C++ parser generator library (Guzman and

Kaiser, 2015). The main reason for choosing this specific parser generator as

opposed to more established ones (e.g. Bison and yacc) is its ability to generate the

parser and construct the abstract syntax tree corresponding to the logic property

using inline C++ code. Parsers generated with this library are top-down recursive

descent.

Mudi was implemented as an offline model checker and takes as input model

simulation traces (i.e. time series data) rather than computational models. The

offline model checking approach has two main advantages. First of all the model

checker implementation is decoupled from the specific modelling formalisms em-

ployed to encode the computational models. Consequently Mudi can be employed

to verify computational models encoded using various modelling formalisms pro-

vided that the corresponding computational models satisfy the constraints of an

SSpDES model. Secondly Mudi can be employed to evaluate PBLSTL specifica-

tions against time series data recorded both during in silico model simulations and

in vitro experiments. Therefore the model checker can be employed for systems

biology applications to check if executions of computational models match observa-

tions of the real-life systems they encode, and for synthetic biology applications to

check if the behaviour of synthetically engineered biological systems matches the

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 91

Figure 3.10: Class diagram corresponding to the model checking approaches considered (see Ta-
ble 2.1), and the PBLSTL logic property parser and evaluator. The ModelCheckingManager class is
employed to run the model checking tasks. It stores a collection of (PBLSTL) logic properties rep-
resented as strings of characters, and a collection of paths to STML files. For each logic property
considered a separate model checker instance is created (e.g. StatisticalModelChecker) using a model
checker factory class (e.g. StatisticalModelCheckerFactory) corresponding to the model checking ap-
proach chosen by the user. The supported model checking approaches and corresponding factories are
implemented in classes which realize the ModelChecker, respectively the ModelCheckerFactory inter-
face. An instance of a model checking class can be used to evaluate a logic property, represented as
an instance of the AbstractSyntaxTree class, relative to a given execution of the model, represented
as an instance of the SpatialTemporalTrace class. The classes used to encode the model checking
approaches correspond to the model checking layer in Figure 3.9. To evaluate logic properties, the
logic properties need to be first parsed to check if they are syntactically correct using the Parser class,
which corresponds to the PBLSTL logic property parser in Figure 3.9. If the PBLSTL logic prop-
erty is syntactically correct then it is stored as an instance of the AbstractSyntaxTree class and can
be evaluated against executions of the model considered (i.e. spatio-temporal traces). Therefore the
AbstractSyntaxTree class corresponds to the PBLSTL logic property evaluator in Figure 3.9.

in silico predictions of the computational models employed for their design. Con-

versely the main disadvantage of implementing Mudi as an offline model checker

is efficiency, because model simulation traces cannot be generated on-demand,

in-memory and potentially stopped early. Moreover the model simulation traces

need to be stored and loaded from disk which leads to increased model checker

execution times.

To check for the presence of bugs in the implementation of Mudi both black- and

white-box testing was employed. Unit tests were implemented using the Google

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 92

Test unit testing framework (Google, 2015) and covered all the main functionalities

of the model checker, namely parsing, evaluation and model checking. The case

studies considered in the unit tests were illustrative examples chosen for validation

purposes and were not derived from experimental studies or the literature. As

per the principles of test-driven development unit tests were typically written

first, and then the corresponding features were implemented such that the unit

tests executed successfully. Moreover when releasing a new version of Mudi the

minimum requirement was that all unit tests needed to execute successfully.

3.7.3 Availability

The source code for the spatio-temporal detection and analysis modules is made

freely available online via https://github.com/IceRage/Mule, in the GitHub reposi-

tory of the model checker Mule (see Section 5.8). Conversely the model checker

Mudi is made freely available online in binary format via the official Mudi web-

site http://mudi.modelchecking.org. In addition the official Mudi website contains

the xsd schema for STML, the datasets of STML files and PBLSTL specifications

for the case studies against which the efficacy of Mudi is illustrated (see Chapter 4),

a tutorial on how to download, install and use Mudi, and a link to the Mudi issue

tracking webpage.

3.8 Related work

Although there is currently a lack of multidimensional spatio-temporal model

checking approaches for computational models of biological systems, the need for

spatio-temporal models and corresponding analysis and validation approaches

was mentioned previously in other fields of science. Illustrative examples of such

approaches employed in epidemiology and spatial information theory are provided

below.

3.8.1 Epidemiology

A quantitative spatio-temporal model checking approach was described by Jha

and Ramanathan (Jha and Ramanathan, 2012) for reasoning about uncertainty

in epidemiological models. The authors define a Bounded Spatio-Temporal Logic

(BSTL) which extends BLTL with two spatial functions, namely P (A,C) for

computing the number of type A entities present in the compartment C, and

N(A,B, rad) for computing the number of type A entities lying within a radius

rad of one or more type B entities. More recently this work was extended by

https://github.com/IceRage/Mule
http://mudi.modelchecking.org

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 93

Hussain et al. (Hussain et al., 2014b) who define the probabilistic spatio-temporal

specification language EpiSpec. Compared to the previous approach, EpiSpec is

based on first-order logic, defines functions with a similar semantics to P and

N and additionally enables the use of potentially complex arithmetic (e.g. dE
dt

,∫ t2
t1
Edt) expressions.

Another quantitative spatio-temporal model checking approach was introduced

by Nenzi and Bortolussi (Nenzi and Bortolussi, 2014; Nenzi, 2014) and its ap-

plicability was illustrated based on an epidemiology case study describing the

spreading of cholera. The formal logic underlying the approach is called Signal

Spatio-Temporal Logic (SSTL) and it extends Signal Temporal Logic (STL) with

two spatial operators �[w1,w2]φ and ⧈[w1,w2]φ. Translated into natural language the

semantics of �[w1,w2]φ and ⧈[w1,w2]φ is that there exists (�) a location, respectively

for all (⧈) locations at a distance d ∈ [w1, w2] from the current location, logic

statement φ holds.

From a spatial point of view these approaches enable reasoning only about

properties (e.g. number of entities) in specific locations (BSTL/EpiSpec) and/or

some/all locations at a bounded distance from the current location (BSTL/EpiS-

pec, SSTL). Therefore they do not support reasoning about how emergent spatial

entities and their properties (e.g. area) change over time.

3.8.2 Spatial information theory

The spatial information theory literature describes several formal languages called

spatial logics which enable reasoning about the representation of systems in space

and potentially how this representation changes over time (Aiello et al., 2007,

Chapter 9).

Depending on the considered application the employed spatial logic can be

qualitative (e.g. (McKinsey and Tarski, 1944; Montanari et al., 2009; Randell

et al., 1992; Tarski, 1938)), (semi-)quantitative (e.g. (Condotta, 2000; Xu, 2007))

or a combination thereof (i.e. hybrid) (e.g. (Kor and Bennett, 2013; Liu et al.,

2009b)). Due to the uncertainty or lack of precision usually associated with spatial

information, qualitative spatial logics are usually employed (Bresolin et al., 2010).

Most qualitative spatial logics are defined using constraint based techniques, which

were initially developed for temporal reasoning (Aiello et al., 2007, Chapter 4).

The constraints often considered are topology, orientation and distance (Aiello

et al., 2007, Chapter 4) considering a 2D representation of space.

Topological qualitative spatial logics enable describing topological relations

between spatial entities. One of the most employed topological qualitative spatial

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 94

logics is RCC-8 which is an instance of the Region Connection Calculus (RCC)
proposed by Randell et al. (Randell et al., 1992). The primitive relation of RCC
is C(x, y) read as “region x connects to region y” and which holds when x and y

share at least one common point. RCC-8 is an instance of RCC that contains 8

topological relations, namely DC(x, y) (i.e. x is disconnected from y), PO(x, y)

(i.e. x and y are partially overlapping), EC(x, y) (i.e. x is externally connected

with y), EQ(x, y) (i.e. x is equal to y), TPP (x, y) (i.e. x is a tangential proper

part of y), NTPP (x, y) (i.e. x is a non-tangential proper part of y), TPP−1(x, y)

(i.e. x is an inverse tangential proper part of y), NTPP−1(x, y) (i.e. x is an inverse

non-tangential proper part of y); see Figure 3.11 for a graphical description of

these relations.

(a) DC(A,B) (b) PO(A,B) (c) EC(A,B) (d) EQ(A,B)

(e) TPP (A,B) (f) NTPP (A,B) (g) TPP−1(A,B) (h) NTPP−1(A,B)

Figure 3.11: A graphical description of the topological spatial relations in RCC-8. DC(x, y) states
that regions x and y are disconnected. PO(x, y) states that x and y are partially overlapping. EC(x, y)
states that x and y are externally connected. EQ(x, y) states that x and y are equal. TPP (x, y) states
that x is a tangential proper part of y. NTPP (x, y) states that x is a non-tangential proper part of
y. TPP−1(x, y) states that x is an inverse tangential proper part of y. NTPP−1(x, y) states that x is
an inverse non-tangential proper part of y.

Directional qualitative spatial logics enable reasoning about the relative posi-

tioning/orientation of entities in space. An illustrative example of such a logic is

Rectangle Algebra (RA). In RA the relative positioning of regions in 2D space

is defined with respect to the relative positioning of the regions’ projections on

the Ox and Oy axes. The projection of a 2D region on a one-dimensional axis

is an interval. To determine the relative positioning of two intervals the set of

13 relations defined in Allen’s Interval Algebra (IA) (Allen and Hayes, 1989) are

employed {before, after, meets, met by, overlaps, overlapped by, starts, started

by, during, contains, finishes, finished by, equals}; see Table 3.2 for a description

of these relations. Since the number of IA relations is 13, the number of relations

employed to describe the relative positioning of two regions in 2D space is 13

(considering the Ox axis) · 13 (considering the Oy axis) = 169.

Finally qualitative spatial logics considering distance constraints describe the

relative distance between two entities in space using relations such as “very far”,

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 95

Table 3.2: Interval Algebra relations defined over two intervals A and B, where A− and A+ are the
endpoints of A, respectively B− and B+ are the endpoints of B.

Relation Example Meaning

Before(A,B) A− < A+ < B− < B+

After(B,A) A− < A+ < B− < B+

Meets(A,B) A− < A+ = B− < B+

MetBy(B,A) A− < A+ = B− < B+

Overlaps(A,B) A− < B− < A+ < B+

OverlappedBy(B,A) A− < B− < A+ < B+

Starts(A,B) A− = B− < A+ < B+

StartedBy(B,A) A− = B− < A+ < B+

During(A,B) B− < A− < A+ < B+

Contains(B,A) B− < A− < A+ < B+

Finishes(A,B) B− < A− < A+ = B+

FinishedBy(B,A) B− < A− < A+ = B+

Equals(A,B) A− = B− < A+ = B+

“far”, “commensurate”, “close” and “very close”. Depending on the problem

considered the number of different distance levels varies. For instance assuming a

coarse grained representation of space two distance levels such as “far” and “close”

could potentially suffice. An example of a qualitative spatial logic considering

distance constraints is described by Clementini et al. (Clementini et al., 1997).

One of the main advantages of qualitative spatial logics is that they enable

reasoning about the spatial representation of a system in the presence of un-

certainty. Conversely one of the main disadvantages is that qualitative spatial

logic descriptions are often imprecise. Therefore it could be potentially difficult

using such logics to accurately describe how emergent spatial entities and their

properties change over time.

PBLSTL inherently supports only quantitative spatial properties. However

qualitative spatial properties can be additionally expressed in PBLSTL if they

are rewritten in a quantitative manner. For instance if we would like to specify

in PBLSTL that a point-wise region A at position (x, y) in 2D space is a non-

tangential proper part of a rectangular region B defined by the points M(0, 10),

N(10, 10), O(10, 20) and P (0, 20) (e.g. corresponding to NTPP (A,B) in RCC-8),

then we could write that the coordinates of the region A lie within and do not

touch the border of region B (i.e. 0 < x < 10 and 10 < y < 20). Moreover high-

level spatial functions could be added to PBLSTL to enable encoding quantitative

Pârvu O., 2015, CHAPTER 3. MULTIDIMENSIONAL SPATIO-TEMPORAL 96

spatial properties in a compact form (e.g. inside(A, B) if and only if 0 < x < 10

and 10 < y < 20); PBLSTL could be adapted automatically to the new type of

spatial functions using the meta model checking concept, which is introduced

later in Chapter 5.

Summary

This chapter introduced a novel multidimensional spatio-temporal model checking

methodology which enables validating computational models of biological systems

with respect to how both their numeric and spatial properties change over time

considering a single level of organization. In the beginning SSpDESs are defined

as theoretical models for abstractly representing biological systems. Next spatio-

temporal analysis modules are introduced for automatically detecting regions or

clusters in time series data and computing how their spatial properties (e.g. area,

perimeter etc.) change over time. Time series data describing how both numeric

and spatial properties change over time are formatted according to the standard

representation format STML introduced here. Then the temporal logic (P)BLSTL

is defined for encoding the formal specification against which SSpDES models

are validated. Afterwards corresponding Bayesian and frequentist, estimate and

hypothesis testing based model checking algorithms are described. Moreover a

proof is provided illustrating that the multidimensional spatio-temporal model

checking problem is well-defined. Implementation details and a concise comparison

of the approach with other spatio-temporal model checking methods from the

epidemiology and spatial information theory literature are presented in the end.

CHAPTER 4
Validation of multidimensional

computational models of

biological systems

Introduction

This chapter illustrates how the multidimensional spatio-temporal model checking

methodology described in Chapter 3 can be employed to validate computational

models of biological systems. The biological case studies considered are phase

variation in bacterial colony growth and the chemotactic aggregation of cells. Cor-

responding computational models have been validated against relevant PBLSTL

specifications using the model checker Mudi. Conclusions and limitations of the

multidimensional model checking methodology are described at the end.

4.1 Description

The efficiency and expressivity of the multidimensional spatio-temporal model

checking methodology was assessed based on two biological case studies encod-

ing phase variation patterning in bacterial colony growth, and the chemotactic

aggregation of cells.

The corresponding computational models are stochastic and have been encoded

using high-level modelling formalisms which can be translated to an equivalent

SSpDES representation.

For generalizability purposes the stochastic computational models have been

encoded using different high-level modelling formalisms, namely Coloured Stochas-

97

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 98

tic Petri Nets for phase variation in bacterial colony growth, and Cellular Potts

and partial differential equations for the chemotactic aggregation of cells.

Results generated via model simulation were processed by the spatio-temporal

analysis modules and were translated to STML. The spatial entity types considered

for the phase variation and the chemotactic aggregation of cells case studies were

regions, respectively clusters.

STML files representing the model behaviour were evaluated against formal

PBLSTL specifications. The main purpose of these specifications was to illustrate

the expressivity of the methodology and not to test novel biological hypotheses.

Probability values considered in the PBLSTL statements are only approximations

of corresponding qualitative natural language descriptions (e.g. high probability

⇒ 0.9) and were chosen for illustrative purposes.

For model checking purposes no prior information was employed other than

the computational model and the PBLSTL specification. Therefore the frequen-

tist rather than the Bayesian statistical model checking approach was employed

throughout. Relevant comparisons between different approximate probabilistic

model checking approaches are provided in the original papers introducing the

approaches (see Subsubsection 2.4.2.3). Since the comparison results are indepen-

dent of particular model representations and logic formalisms they will not be

restated here.

For reproducibility purposes the generated STML files, and the formal PBLSTL

specification corresponding to both computational models have been made avail-

able at http://mudi.modelchecking.org/case-studies.

4.2 Phase variation patterning in bacterial

colony growth

Phase variation is a stochastic gene expression switching mechanism employed by

microbial populations to potentially develop variants (i.e. mutants) which adapt

to foreseeable frequent environmental or selective conditions (e.g. host immune

responses) (Salaün et al., 2003, 2005; Saunders et al., 2003).

One of the most readily observable compositional effects of phase variation in

cultures grown in vitro is the development of sector-like patterns (Pârvu et al.,

2013). The geometric properties (e.g. angle, area, shape) of these sector-like

patterns are potentially correlated with the mutation and/or fitness rates of the

bacteria.

http://mudi.modelchecking.org/case-studies

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 99

4.2.1 Model construction

To investigate the potential relationship between the mutation and/or fitness rates

of bacteria with phase variables genes and the geometric properties of the emerging

sector-like patterns a Coloured Stochastic Petri Net model was constructed using

the modelling software Snoopy (Heiner et al., 2012); the model is made freely

available online (Pârvu et al., 2015, Supplementary materials).

In this model the spatial domain is represented explicitly as a 101×101 regular

square lattice where the values recorded for each lattice position are the number

of type A (i.e. wild type) and type B (i.e. mutant) bacteria. Starting from a single

type A bacteria model simulations describe the growth of the colony according to

predefined bacterial mutation and fitness rates. The resulting sector-like patterns

are defined by lattice positions in which the proportion of type B relative to type

A bacteria is higher than a user-defined threshold.

4.2.2 Spatio-temporal analysis

The computational model was unfolded using Snoopy and simulated on a Unix

cluster using the Gillespie Stochastic Simulation Algorithm (Gillespie, 1977)

implemented in MARCIE (Heiner et al., 2013). The average model simulation

time was approximately 50 minutes.

For model checking purposes the simulation output was processed using the

spatio-temporal analysis and translated to STML. For this case study the region

detection and analysis module was employed because sector-like patterns (and not

clusters of such patterns) are of interest. An illustrative example of the translation

steps applied to each spatio-temporal time series is depicted in Figure 4.1.

4.2.3 Formal specification

The generated STML dataset was evaluated against the formal specification

comprising PBLSTL logic properties. Depending on the modelled microorganism

and the associated mutation/fitness rates the values and/or parameters of the logic

properties varied. We describe here a generic set of logic statements to illustrate the

expressivity of the formal language PBLSTL. Therefore the structure of PBLSTL

statements is emphasized and not particular parameter values. For comprehension

purposes the specification will be described both in natural language and PBLSTL

below.

1. Natural language: One of the first requirements is that the probability

of the number of sector-like patterns to increase or stay constant (but

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 100

Figure 4.1: Spatio-temporal detection and analysis for a phase variation model simulation. Each
column corresponds to a different time point from the simulation (t = 20, 30 and 40). The rows
considered from top to bottom represent the stages of translating time series data to STML output
files (model simulation, automatic detection and analysis of regions/sector-like patterns, and output
in STML format).

never decrease) during the bacterial colony growth is greater or equal to a

threshold value. In our case we set this threshold to 0.95. The reason for

this requirement is that we do not expect developed sectors to disappear.

PBLSTL: P >= 0.95 [G [0, 100] (d(count(regions)) >= 0)].

2. Natural language: In case sector-like patterns emerge the probability

that one of them will contain holes is less than 0.05. This statement can be

rewritten using the clusteredness measure of the regions i.e. the probability

that the minimum clusteredness degree of all sectors is less than a certain

threshold value (in our case 0.9) is less than 0.05.

PBLSTL: P < 0.05 [F [0, 100] ((count(regions) > 0) ∧
(min(regions, clusteredness) < 0.9))].

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 101

3. Natural language: The average density of the detected sectors, represent-

ing the concentration of “mutant” (type B) cells relative to “normal” (type

A) cells, should be greater than 0.5 with probability greater than 0.95.

PBLSTL: P > 0.95 [(F [0, 100] (G [0, 100] ((count(regions) > 0) ∧
(avg(regions, density) > 0.5)))) ∨ (G [0, 100] (count(regions) = 0))].

4. Natural language: Moreover the average area of the sectors oscillates at

least one time during the growth of the bacterial colony with probability

greater than 0.5. By oscillations we mean an increase of the average area

followed eventually by a decrease or vice versa. In PBLSTL oscillations can

be represented using the difference operator d. For this particular statement

we will specify that at some point in the future the rate of change (difference)

of the average area will be positive and then eventually negative or vice

versa. Such oscillations are expected because the relative density of “mutant”

cells with respect to “normal” cells is considered when detecting sectors.

Therefore as the colony grows it may be the case that at the most outward

edge of a sector initially the “mutant” cells dominate a position in the

discretised space but then they are overrun by the “normal” cells. In other

words it may be the case that a position which is contained by a sector will

no longer do so in the future.

PBLSTL: P > 0.5 [(F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, area)) > 0) ∧
F [0, 100] ((d(avg(regions, area)) < 0)))) ∨
(F [0, 100] ((d(avg(regions, area)) < 0) ∧
F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, area)) > 0)))) ∨
(G [0, 100] (count(regions) = 0))].

5. Natural language: Following the same reasoning we also specify that the

average perimeter value of the sectors oscillates at least five times during the

growth of the bacterial colony with probability greater than 0.6. The number

of oscillations was chosen to illustrate the rate at which the model checker

execution time increases when nesting multiple temporal logic propositions.

PBLSTL: P > 0.6 [(F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, perimeter)) > 0) ∧
F [0, 100] ((d(avg(regions, perimeter)) < 0) ∧
F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, perimeter)) > 0) ∧
F [0, 100] ((d(avg(regions, perimeter)) < 0) ∧

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 102

F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, perimeter)) > 0) ∧
F [0, 100] ((d(avg(regions,perimeter)) < 0)))))))) ∨
(F [0, 100] ((d(avg(regions, perimeter)) < 0) ∧
F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, perimeter)) > 0) ∧
F [0, 100] ((d(avg(regions, perimeter)) < 0) ∧
F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, perimeter)) > 0) ∧
F [0, 100] ((d(avg(regions, perimeter)) < 0) ∧
F [0, 100] ((count(regions) > 0) ∧
(d(avg(regions, perimeter)) > 0)))))))) ∨
(G [0, 100] (count(regions) = 0))].

6. Natural language: The maximum angle described by any sector with

respect to the origin is expected to be greater than 120o with probability

less than 0.1.

PBLSTL: P < 0.1 [F [0, 100] ((count(regions) > 0) ∧
(max(regions, angle) > 120))].

7. Natural language: Moreover sectors are expected to develop from the

origin outwards. Therefore the minimum distance from the origin would be

expected to be greater than 100 (relative to scale of analysed images) with

probability greater or equal to 0.95.

PBLSTL: P >= 0.95 [(F [0, 100] (G [0, 100] ((count(regions) > 0) ∧
(min(regions, distanceFromOrigin) > 100)))) ∨
(G [0, 100] (count(regions) = 0))].

8. Natural language: Finally on average most of the sectors should develop

and maintain a triangular-like shape throughout the entire bacterial colony

growth with probability greater than 0.8.

PBLSTL: P > 0.8 [(F [0, 100] (G [0, 100] ((count(regions) > 0) ∧
(min(regions, triangleMeasure) > max(regions, rectangleMeasure)) ∧
(min(regions, triangleMeasure) > max(regions, circleMeasure))))) ∨
(G [0, 100] (count(regions) = 0))].

4.2.4 Model checking

Each PBLSTL statement, stored in a separate input file, was individually evaluated

against the STML files representing the model behaviour 500 times using the

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 103

frequentist statistical model checking approach with the probability of type I (i.e.

false positives) and type II (i.e. false negatives) errors set to 5%; see Appendix A.2

for a more detailed description of type I and type II errors in the context of

statistical model checking. Conclusions drawn from the statistical analysis of the

model checking results corresponding to each PBLSTL statement are summarized

in Table 4.1.

Table 4.1: Model checking statistical analysis results for the phase variation case study. Entries in
the “id” column represent the numeric identifiers associated with each PBLSTL statement. The “%
true PBLSTL” column describes what percentage of the 500 executions concluded that the PBLSTL
statement is true. “#total STML” represents the total number of STML files evaluated for the PBLSTL
statement; columns “#true STML” and “#false STML” represent the number of STML files for which
the PBLSTL statement was evaluated true, respectively false. “Execution times” presents the average
model checking execution time for each PBLSTL evaluation using the “minutes:seconds” format. “µ”
and “σ” represent the mean and standard deviation.

id
% true
PBLSTL

#total
STML

#true
STML

#false
STML

Execution
times

µ σ µ σ µ σ µ σ

1 100 67.95 12.51 67.12 11.52 0.83 0.98 0:2.87 0:0.57
2 100 103.21 57.70 0.81 1.18 102.40 56.56 0:4.40 0:2.60
3 100 63.05 8.43 62.62 7.74 0.43 0.69 0:2.75 0:0.43
4 99.6 3.29 12.79 1.84 7.51 1.45 5.36 0:0.22 0:0.83
5 74.6 15.35 14.17 6.98 5.94 8.36 8.72 0:0.99 0:0.92
6 99.8 982.63 111.18 10.74 1.62 971.88 109.59 0:43.71 0:9.70
7 100 106.21 42.53 102.53 39.42 3.68 3.11 0:4.67 0:2.02
8 99.8 30.04 63.24 24.87 51.40 5.17 11.99 0:1.33 0:2.59

For half of the PBLSTL statements (id = 1, 2, 3, 7) 100% of the 500 model

checker executions concluded with the answer true. However in case of PBLSTL

statements 6 and 8 the percentage was 99.8%, respectively 99.6% for PBLSTL

statement 4 and 75.6% for PBLSTL statement 5. It is important to note that

this does not mean that the model checking results are incorrect. Moreover in

the approximate probabilistic setting if the model checking result is false for

a logic property φ this does not imply that ∼φ is true. The variation in the

results obtained for PBLSTL statements 4, 5, 6 and 8 is due to the fact that the

model checker was executed with the maximum probability of type I and type II

errors equal to 5%. Under these assumptions the evaluation result for a PBLSTL

statement depends on the order and number of obtained true/false evaluations

for individual STML files.

To reduce the variation of the PBLSTL evaluations the value of the probability

of type I/II errors needs to be decreased. The required number of evaluated

simulations is indirectly proportional to the type I/II error probability. Thus

more simulation evaluations are required as the error probabilities are decreased.

In the extreme case if the probability of both type I and type II errors is set to

zero the expected number of evaluated simulations is potentially infinite because

the entire state space of the model would be potentially investigated.

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 104

Similarly there is a significant difference in the average total number of STML

files against which the PBLSTL statements were evaluated. Depending on the

comparison operator (<,<=, >=, >) and the specificity of the probability θ corre-

sponding to each PBLSTL statement more/less evidence is required to prove that

the statement is true/false. In our case the logic statement 6 required on average

more than 950 STML evaluations and most of the time more than the maximum

number of available simulations 1000. Since no path to an external model simula-

tor was specified the model checker did not have enough evidence to decide using

the frequentist statistical model checking approach if the PBLSTL statement holds.

Therefore the provided answer was computed using the probabilistic black-box

model checking approach.

The considerable difference in the number of required STML files is additionally

reflected in the average execution times of the model checker. Thus the highest

average execution time was recorded for the evaluation of PBLSTL statement 6.

Since the formal specification for this case study comprises all PBLSTL statements

the average execution time for the entire specification is computed as the sum of

all average execution times (see Table 4.1, column 9):

Execution timespecification = 0 : 2.87 + 0 : 4.40 + 0 : 2.75 + 0 : 0.22

+ 0 : 0.99 + 0 : 43.71 + 0 : 4.67 + 0 : 1.33

= 01 : 0.94 (minutes:seconds).

In order to decrease the overall execution time the model checker was extended

such that it can evaluate the specification comprising all PBLSTL statements

in a single run. In this case each STML file is read into memory only once and

thus reduces the number of required input/output (I/O) operations. Under these

conditions the average execution time for the entire specification considering

500 runs was 0:44.41 (minutes:seconds), compared to 01:0.94 when the PBLSTL

statements were evaluated individually.

4.3 Chemotactic aggregation of cells

Chemotaxis is the process through which cells detect concentration changes in

chemical gradients and move towards chemical attractants, respectively away from

chemical repellents. It is employed both by prokaryotic and eukaryotic cells and

underpins many biological processes (e.g. human leukocytes migrate to sites of

inflammation, cancer cells metastasize to other organs) (Cai and Devreotes, 2011;

Jin, 2013).

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 105

In an attempt to better understand the intracellular mechanisms underly-

ing chemotaxis computational models for various types of cells have been con-

structed (Jilkine and Edelstein-Keshet, 2011). Although such models differ at

the intracellular level they exhibit relatively similar behaviours at the population

level i.e. cells aggregate in the area with the highest concentration of chemical

attractants.

4.3.1 Model construction

To gain a better understanding of the chemotactic aggregation of cells at the

entire population level a corresponding computational model was constructed

using the modelling and simulation software Morpheus (Starruß et al., 2014). The

cells and their movement in the environment was represented using a Cellular

Potts model and the distribution of the chemical gradient was encoded using

partial differential equations; the model is made freely available online (Pârvu

et al., 2015, Supplementary materials).

The discretised 2D space was represented using a 100× 100 square lattice on

which 100 cells were randomly distributed; cells’ positions are recomputed for

each model simulation. In order to activate the chemotactic behaviour of the

cells a chemical attractant gradient was added in the environment according to a

Gaussian distribution with parameters µx = µy = 50 and σx = σy = 10.

4.3.2 Spatio-temporal analysis

Each model simulation was generated in approximately 5 seconds and was trans-

lated to STML using the cluster detection mechanism because groups of (and not

individual) cells were of interest. Cells occupied only one position of the discretised

space and therefore their detection in images was straightforward. Instead of

employing the region detection mechanism we implemented a custom lightweight

cell detector which verifies the presence/absence of cells in each position (including

pileup) considering the average pixel intensity; see Figure 4.2 for an example

of the translation steps performed by the cluster detection mechanism for each

model simulation.

To illustrate the integration of Mudi with a model simulator the model checker

was executed initially without making available any STML files. Instead an

external script responsible for simulating the model and converting the output

to STML was provided as a command-line parameter. Thus Mudi executed the

script on demand whenever extra model simulations were required. In general if

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 106

Figure 4.2: Spatio-temporal detection and analysis for a chemotaxis model simulation. Each column
corresponds to a different time point from the simulation (t = 1, 30 and 195). The rows considered
from top to bottom represent the stages of translating time series data to STML output files (model
simulation, automatic detection and analysis of clusters, and output in STML format). The colour
employed in the first row plots represents degree of pileup. “Yellow” positions in the discretised 2D
space are occupied by 1 cell, “green” positions by 2 cells, and “teal” positions by 3 cells. The colours
employed in the second row plots are used only to distinguish between different clusters. Each cluster
is surrounded by a polygon whose shape (triangular/rectangular/circular) best matches the shape of
the cluster.

a large number of simulations is required the maximum model checking time can

be bounded via a user-defined parameter.

4.3.3 Formal specification

The generated STML files are evaluated against a formal PBLSTL specification

describing the expected system behaviour. Similarly to the phase variation case

study the logic statements considered are generic and were chosen to illustrate

the expressivity of PBLSTL and not the phenotypic characteristics specific to a

particular type of cells. Both a natural language and PBLSTL description of the

specification is provided below.

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 107

9. Natural language: One of the most important properties is that cells

aggregate in the area with highest concentration of chemical attractant.

This means that at least one cluster is formed at a distance smaller than

εdistance > 0 from the chemical gradient centre. Let us assume that the

cluster centroid is the point (x, y), and the centroid of the chemical gradient

is (703.5, 678.5). Then a cluster is at a distance smaller or equal to εdistance

from (703.5, 678.5) if and only if:

dist((x, y), (703.5, 678.5)) =
√

(x− 703.5)2 + (y − 678.5)2 < εdistance.

Considering that y ∈ (678.5− εdistance, 678.5 + εdistance) this means that:

x < 703.5 +
√
ε2distance − (678.5− y)2

x > 703.5−
√
ε2distance − (678.5− y)2

y < 678.5 + εdistance

y > 678.5− εdistance.

For this particular case study we set the value of εdistance to 50.

PBLSTL: P >= 0.9 [F [0, 200] (count(filter(clusters,

(centroidX < add(703.5, sqrt(subtract(2500,

power(subtract(678.5, centroidY), 2))))) ∧
(centroidX > subtract(703.5, sqrt(subtract(2500,

power(subtract(678.5, centroidY), 2))))) ∧
(centroidY < add(678.5, 50)) ∧
(centroidY > subtract(678.5, 50)))) >= 1)].

10. Natural language: In addition the average clusteredness degree of indi-

vidual clusters increases at least 5 times during the simulation time interval

[0, 200] with probability greater than 0.8. This means that the average

distance between cells in the clusters is reduced at least five times during

the specified time interval.

PBLSTL: P >= 0.8 [F [0, 200] (d(avg(clusters, clusteredness)) > 0) ∧
(X (F [0, 200] (d(avg(clusters, clusteredness)) > 0) ∧
(X (F [0, 200] (d(avg(clusters, clusteredness)) > 0) ∧
(X (F [0, 200] (d(avg(clusters, clusteredness)) > 0) ∧
(X (F [0, 200] (d(avg(clusters, clusteredness)) > 0)))))))))].

11. Natural language: In order to quantify the degree of clusteredness within

and between different clusters a cluster validity index such as the Silhouette

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 108

can be employed. The value of the Silhouette is recorded for each time point

by the avgClusterednessClusters numeric state variable. The probability

of the avgClusterednessClusters to decrease under a threshold value (in

our case 0.5) during the time interval [0, 50] is less than 0.05. Note that

avgClusterednessClusters could be replaced by any other numeric state

variable representing the concentration of a species/protein. Therefore our

approach can be employed to reason about both spatial and non-spatial

properties, and how changes of non-spatial properties reflect on the spatial

properties and vice versa.

PBLSTL: P <= 0.05 [F [0, 50] ({avgClusterednessClusters} < 0.5)].

12. Natural language: Similarly the number of clusters is expected to decrease

and remain throughout the entire simulation less than 5 with probability

greater than 0.75. The reason for this is that simulations start with multiple

small clusters which are then expected to merge and form larger clusters

close to the area where the chemical attractant concentration is highest.

PBLSTL: P > 0.75 [F [0, 200] (count(clusters) <= 5 ∧
G [0, 200] (count(clusters) <= 5))].

13. Natural language: The chemical gradient is distributed such that the

areas of approximately equal chemical concentration have a circular/ring

shape. Therefore the shape of at least one aggregated cells cluster should

be eventually circular with probability greater or equal to 0.6.

PBLSTL: P >= 0.6 [F [0, 200] (count(filter(clusters,

(circleMeasure > triangleMeasure) ∧
(circleMeasure > rectangleMeasure))) > 0)].

14. Natural language: Finally the probability of the average clusters’ density

to never oscillate is less than 0.1. Oscillations of the density are expected

because sometimes cells pile up.

PBLSTL: P < 0.1 [∼ ((F [0, 200] ((count(clusters) > 0) ∧
(d(avg(clusters, density)) > 0) ∧
F [0, 200] ((d(avg(clusters, density)) < 0)))) ∨
(F [0, 200] ((count(clusters) > 0) ∧
(d(avg(clusters, density)) < 0) ∧
F [0, 200] ((d(avg(clusters, density)) > 0)))))].

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 109

4.3.4 Model checking

Each PBLSTL statement, stored in a separate input file, was individually evaluated

against the STML dataset 500 times using the frequentist statistical model checking

approach. The output of the statistical analysis of the model checking results

corresponding to each PBLSTL statement is reported in Table 4.2.

Table 4.2: Model checking statistical analysis results for the chemotaxis case study. Entries in
the “id” column represent the numeric identifiers associated with each PBLSTL statement. The “%
true PBLSTL” column describes what percentage of the 500 executions concluded that the PBLSTL
statement is true. “#total STML” represents the total number of STML files evaluated for the PBLSTL
statement; columns “#true STML” and “#false STML” represent the number of STML files for which
the PBLSTL statement was evaluated true, respectively false. “Execution time” presents the average
model checking execution time for each PBLSTL evaluation using the “minutes:seconds” format. “µ”
and “σ” represent the mean and standard deviation.

id
% true
PBLSTL

#total
STML

#true
STML

#false
STML

Execution
time

µ σ µ σ µ σ µ σ

9 100 28 0 28 0 0 0 0:22.04 0:0.13
10 100 14 0 14 0 0 0 0:11.50 0:0.08
11 100 58 0 0 0 58 0 0:44.87 0:0.44
12 100 10.96 0.18 10.92 0.37 0.03 0.18 0:9.27 0:0.16
13 95.6 17.04 73.33 9.57 40.67 7.46 32.73 0:13.73 0:55.45
14 100 28 0 0 0 28 0 0:22.10 0:0.20

Similarly to the phase variation case study there are fluctuations in the

evaluation results of some PBLSTL statements. Moreover the number of required

STML files to reach a conclusion differs depending on the specificity of the logic

statement and the distribution of PBLSTL truth evaluations. In contrast to

the phase variation case study for many PBLSTL statements the variation in

the number of required STML files, and the number of true and false STML

evaluations is equal to zero. Furthermore although the average number of required

STML files for the evaluation of a PBLSTL statement (≈ 26) is less than for

the phase variation case study (≈ 171.47), the average execution time is higher

(chemotaxis: 20.585s, phase variation: 7.6175s). The reason for this is that most

of the execution time of the model checker is spent on I/O operations. Thus the

execution time depends on both the number and size of STML files which are

read into memory. The average STML file size for the phase variation case study

is 64759.2 bytes, respectively 1397460 bytes for the chemotaxis case study. Thus

the ratio between the file size for the phase variation and chemotaxis case study

is 0.04, but the ratio between their average execution times is only 0.37.

Finally the average execution time for the entire specification is computed as

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 110

the sum of all average execution times (see Table 4.2, column 9):

Execution timespecification = 0 : 22.04 + 0 : 11.50 + 0 : 44.87 + 0 : 9.27

+ 0 : 13.73 + 0 : 22.10

= 02 : 3.51 (minutes:seconds).

Similarly to the phase variation case study evaluating the specification comprising

all PBLSTL statements in the same model checker run leads to a decrease in

the execution time. The average execution time recorded for the entire chemo-

taxis specification considering 500 runs of the model checker was 0:56.18 (min-

utes:seconds) i.e. less than 50% of the average execution time when each PBLSTL

statement was evaluated separately (02:3.51 minutes:seconds).

4.4 Discussion

The multidimensional spatio-temporal model checking methodology is an extension

of the existing model checking approaches because it enables the validation of

models with respect to (clusters of) spatial entities and how their properties

change over time. The ability to reason about spatial entities and the interactions

between them proves useful for the automatic in silico validation of complex spatio-

temporal models. Stochastic biological systems are represented as SSpDESs and

the formal specification is encoded in PBLSTL. The model checking approach

has been implemented in the model checker Mudi which is made freely available

via the official web page http://mudi.modelchecking.org.

4.4.1 Supported modelling formalisms

The presented methodology and the model checker Mudi can be employed to vali-

date computational models encoded using various high-level modelling formalisms

because only the model simulation output and not the computational model used

to produce it is considered.

To illustrate the generalizability of our approach the computational model for

the phase variation case study was formalised as a Coloured Stochastic Petri Net,

and the computational model for the chemotaxis case study as a Cellular Potts

model integrated with a system of partial differential equations.

Although Mudi is not dependent on the model type it does place a restriction

on the simulation output format. All time series data need to be translated to the

standard data representation format STML. In our approach this conversion is

http://mudi.modelchecking.org

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 111

carried out automatically by scripts calling the parameterised region (e.g. phase

variation) and cluster (e.g. chemotaxis) detection mechanisms.

4.4.2 Spatio-temporal analysis based on image

processing

The main reason for choosing image processing functions for detecting and

analysing spatial entities in time series data is that images could be generated from

in silico simulations but also recorded during wet-lab experiments. Therefore our

methodology could be potentially used in the future to automatically determine

if certain spatio-temporal properties hold for both in silico and in vitro generated

datasets.

Quantifying how many logic statements hold for computational models vs

wet-lab datasets could prove to be useful as a measure of similarity/fitness

and therefore be employed in automatic model construction and/or parameter

estimation/synthesis algorithms.

Although image processing functions were employed here to detect and analyse

spatial entities in time series data the system was designed in a modular fashion

such that the model checker Mudi (and the associated binary) is decoupled from

the region/cluster detection mechanism (and its implementation). Thus potential

users of the model checker could extend our implementation with their own

customized spatial entity detection and analysis modules.

4.4.3 STML files generated on demand

In addition Mudi supports validating models based on pre-generated STML files

(e.g. phase variation) or it can generate STML files on demand (e.g. chemotaxis).

In case STML files are generated on demand a user-defined script calling the

model simulator needs to be made available. For the chemotaxis case study a Bash

script was created to execute the Linux version of the Morpheus model simulator

and translate the simulation output to STML. Although writing scripts for the

integration of Mudi with various model simulators requires expert knowledge, the

scripts, if designed properly, need to be potentially written only once.

4.4.4 Supported model checking algorithms

The efficiency and complexity of the methodology was illustrated for the phase

variation and chemotaxis case studies by employing only the frequentist statistical

model checking algorithm. However Mudi comprises both Bayesian and frequentist,

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 112

estimate and statistical hypothesis testing based model validation approaches.

Depending on the availability of prior knowledge and the preferred method to

formulate the model validity problem different algorithms could be used.

4.4.5 Scalability

The scalability of the methodology depends on the size and representation of the

modelled system. An increase in the size of the system will negatively impact

the model simulation time directly, and the spatio-temporal analysis and the

evaluation of logic properties indirectly. The rate at which the model simulation

time changes, with respect to the system size, can vary considerably depending

on the employed model representation and simulation algorithm. For instance the

systems considered by the phase variation and chemotaxis case studies were of

similar size (discretised space of size 101×101 for phase variation, and 100×100 for

chemotaxis) and complexity, but their simulation time was significantly different

(average model simulation time was 50 minutes for phase variation, and 5 seconds

for chemotaxis). In contrast both the spatio-temporal analysis and evaluation of

logic properties depend on the size of the simulation traces, and not the models

used to produce them. Therefore they are expected to scale well (polynomially)

with respect to the size of the system. To conclude, one potential bottleneck, if

any, for the scalability of the methodology is the model representation and/or

simulation algorithm, and not the model validation.

4.4.6 Limitations

In spite of the above described features our approach has the following limitations,

which will be addressed in Chapter 5.

First of all the collections of spatial entity types (e.g. regions) and properties

(e.g. area) considered are hardcoded into the methodology and the model checker

Mudi. Therefore the current version of the model checker cannot be employed for

validating models which correspond to other spatial entity types (e.g. 3D structure)

and properties (e.g. volume, 3D shape). For instance adapting the methodology

to the full 3D scenario would require changing the definition of SSpDESs such

that spatial state variables are evaluated to three- instead of two-dimensional

arrays of real values, defining a set of 3D specific spatial properties, including

them in the logic PBLSTL and developing algorithms for automatically extracting

such spatial properties from 3D images.

Secondly the presented methodology is limited to spatio-temporal uniscale

models i.e. it assumes that all spatial properties correspond to the same spatial

Pârvu O., 2015, CHAPTER 4. VALIDATION OF MULTIDIMENSIONAL 113

scale. However for real-life applications there is a need to build and integrate

models across multiple temporal and/or spatial scales which are not covered here.

Multiple spatial scale models are not currently supported because the methodology

does not include a mechanism to explicitly distinguish between spatial patterns

from different scales.

Finally our approach has been validated only on simulated data but it should be

applicable to real-life datasets as well. Moreover the usefulness of our methodology

was illustrated only on biological case studies. However there is nothing inherent

to the methodology which limits it to the biological and/or medical scenarios.

Therefore one potential direction for future work is to apply this approach to

non-biological case studies as well in an attempt to test its applicability limits

and/or discover new features which should be included.

Summary

In this chapter the efficiency and applicability of the multidimensional spatio-

temporal model checking methodology was assessed against two biological case

studies encoding phase variation in bacterial colony growth and the chemotactic

aggregation of cells. The conclusions drawn were that the methodology is general

because it can be employed for computational models encoded using various

high-level modelling formalisms, it employs spatio-temporal analysis methods

which can be applied to time series data potentially originating from outside

the in silico environment, and it supports both Bayesian and frequentist model

checking approaches. Conversely one of the main limitations of the methodology

is that the collections of spatial entity types and properties considered are fixed.

Therefore the methodology cannot be employed in its current form for case

studies in which other spatial entity types (e.g. 3D structure) and properties

(e.g. volume) are relevant. Moreover the methodology is currently limited to

uniscale computational models and therefore does not enable reasoning about

how properties corresponding to biological subsystems from different scales relate

to each other. Both of these limitations are addressed in Chapter 5.

CHAPTER 5
Multiscale multidimensional

spatio-temporal meta model

checking

Introduction

In this chapter the multidimensional spatio-temporal model checking methodology

and implementation are extended such that they can be employed to validate both

uniscale and multiscale computational models of biological systems with respect

to case study specific spatial entity types and measures. The resulting approach

is called multiscale multidimensional spatio-temporal meta model checking and

is described and compared with the multidimensional model checking approach

throughout the chapter. Related approaches for reasoning about how systems

evolve over space, time and across multiple scales are described in the end.

5.1 Multiscale computational models of

biological systems

Most of the existing computational models of biological systems are uniscale and

therefore abstract away all biologically relevant details from more fine- and/or

coarse-grained levels of organization (Sloot and Hoekstra, 2010). The main

reason for this is that by minimizing the amount of details included in the model

its complexity, simulation and analysis times are reduced. However the main

disadvantage of uniscale computational models is that they do not enable gaining

a truly systems level understanding of how biological systems function (Dada

114

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 115

and Mendes, 2011) i.e. how changes at fine-grained scales are responsible for the

behaviours observed at coarse-grained scales and vice versa, which is one of the

main aims of systems biology.

To overcome this limitation multiscale computational models of biological

systems need to be developed instead (Schnell et al., 2007).

The importance of multiscale computational models has been recognized at an

international level as shown by the large number of active multiscale modelling

projects in the European Union and the United States alone, which has reached at

least a few hundred in 2014 and is currently following an increasing trend (Groen

et al., 2014), and by the 2013 Nobel prize in chemistry awarded to Martin Karplus,

Michael Levitt and Arieh Warshel for their contributions to the development of

multiscale computational models of complex chemical systems (Thiel and Hummer,

2013).

The minimum requirements for a model to be considered multiscale

are (Bernard, 2013):

• The model covers two or more spatial and/or temporal scales;

• There is interaction between scales.

When studying biological systems the spatial and/or temporal scales considered

usually correspond to a subset of the following ten levels of biological organiza-

tion (Southern et al., 2008) (ordered from fine- to coarse-grained):

1. Quantum: Modelling electron-electron interactions.

2. Molecular: Representing the interactions between atoms (and ions) of

interest.

3. Macro-molecular: Considering the interactions between several molecules.

4. Subcellular: When the number of molecules/particles considered is large

it is too computationally expensive to simulate the interactions between

them explicitly. The entire process can be modelled as a single continuum

capturing how the average number of molecules/particles changes over time.

The natural upper bound of this continuum is the cell membrane.

5. Cellular: Cells are the basic structural and functional component of an

organism and lie at the interface between most micro- and macro-scale

biological processes. Therefore this is the level from which most middle-out

multiscale modelling integration procedures start.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 116

6. Tissue: Modelling how large groups of connected cells of the same type

perform a specific function (e.g. myocardium).

7. Organ: Integrating multiple tissue models of potentially different types

into a discrete entity performing a function or group of functions (e.g. heart).

Such models usually account for the explicit geometry of the organ.

8. Organ system: Representing a group of organs which perform a common

function together (e.g. cardiovascular system).

9. Organism: Modelling an individual life form (e.g. human).

10. Environment: Considering the external factors (e.g. temperature, humid-

ity) and their influence on the development of the organism.

Depending on the organism considered and its inherent complexity (e.g. lower vs.

higher organisms) some of these levels might not be present. For instance lower

organisms such as bacteria do not have organs, whereas higher organisms such

as primates do. Moreover the spatial and temporal scales corresponding to each

level of biological organization can vary significantly depending on the biological

system considered. For instance the spatial and temporal scales associated with

the organism level of organization are much smaller for a mayfly (i.e. u 105s,

u 10−3m) than for a human (i.e. u 109s, u 100m).

The construction of a multiscale computational model usually starts from the

level of biological organization where the most data and knowledge are available.

Once a single scale model is built and validated, the construction continues with

the integration of models from the subsequent levels of organization, which are

either above or below depending on the chosen model construction strategy (i.e.

top-down, bottom-up or middle-out). Integrating computational models across

scales represents one of the biggest challenges of multiscale modelling (Dada and

Mendes, 2011; Groen et al., 2014). Several reasons for this are:

• The uniscale computational models considered have been potentially encoded

using different formalisms and their integration is not straightforward;

• The complexity of the multiscale model could increase nonlinearly when

integrating multiple uniscale models to the point where model simulations

and/or parameterizations cannot be executed in reasonable time;

• Quantifying the magnitude of errors in the multiscale model can prove

challenging especially when the submodels have been developed considering

different levels of approximation (Yang, 2013).

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 117

In order to tackle these challenges and enable the systematic construction

of multiscale models there is a need to develop a generic multiscale modelling

methodology which will be adopted by most of the scientific community (Hoekstra

et al., 2014).

Although such a generic community-wide adopted approach does not yet exist

various multiscale modelling approaches have been developed for computational

models of biological systems. They are either tailored to a particular biological

problem (i.e. problem specific) or generic (i.e. problem independent). An example

of a problem specific modelling approach for cancer systems biology is described

by Chaudhary et al. (Chaudhary et al., 2013). Conversely some of the most

employed problem independent multiscale modelling approaches are described in

Table 5.1.

Table 5.1: Several of the most employed problem independent multiscale modelling approaches
for constructing computational models of biological systems. For each problem independent multiscale
modelling approach considered the table columns record (from left to right) the name of a corresponding
software tool, description, supported model types and references.

Software Description Model types Ref.

Chaste

A generic open source multiscale modelling

and simulation framework for biological and

physiological problems. The current version of

the framework contains two modules, namely

the Cardiac and the Cell-based module.

Ordinary/partial

differential

equations

(ODE/PDE),

rule-based models,

Cellular Potts

models (CPM),

cellular automata,

lattice-free models

(Mirams

et al.,

2013)

Coloured

Stochastic

Multilevel

Multiset

Rewriting

(CSMMR)

model

simulator

A multilevel multiset rewriting modelling

approach which enables the construction of

computational models with parameters,

dynamic compartments and multilevel

compartmental structures.

CSMMR models

(Oury

and

Plotkin,

2011)

Compu-

Cell3D

A multiscale modelling framework for

representing cellular (using Cellular Potts

models) and subcellular behaviours (when

interfaced with numerical solvers such as

BionetSolver).

CPMs, model

types (e.g. ODE)

supported by

various numerical

solvers

(Swat

et al.,

2012)

FLAME

A generic multi-agent modelling platform

employed, amongst others, to construct a

multiscale 3D model of the epidermis (Adra

et al., 2010).

Agent-based

models (ABM)

(Kiran

et al.,

2010)

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 118

Software Description Model types Ref.

JAMES II

A multilevel rule-based modelling framework

developed to support the construction of

computational models of cell biological

systems which span multiple levels of

organization (Helms et al., 2014).

ML-Rules models

(Maus

et al.,

2011)

ManyCell

A multiscale cellular modelling environment

encoding cells as agents, and subcellular

processes as systems of ODEs that are solved

using COPASI Web Services (Hoops et al.,

2006).

ABMs, ODEs

(Dada

and

Mendes,

2012)

MOBI and

PK-Sim

Commercial multiscale modelling tools

employed for developing physiologically-based

pharmacokinetic whole-body models.

ODEs, metabolic

network models

simulated using

Dynamic Flux

Balance Analysis

(Krauss

et al.,

2012)

Morpheus

A multiscale cell-based modelling and

simulation environment which enables

integrating Cellular Potts (for cell behaviour)

with ordinary, stochastic and delay differential

equation (DDE) based models.

Reaction-diffusion systems are also supported

and encoded using PDEs.

CPMs, ODEs,

DDEs, PDEs

(Starruß

et al.,

2014)

Multiscale

Modelling

and

Simulation

Framework

A domain-independent multiscale modelling

framework based on complex

automata (Hoekstra et al., 2007), validated

against case studies from different domains of

science (Borgdorff et al., 2014a). Single scale

models can be encoded using different

modelling formalisms, are integrated according

to the Multiscale Modelling Language (Falcone

et al., 2010) specification, and simulated (in a

distributed fashion) using the MUSCLE

2 (Borgdorff et al., 2014b) model coupling and

simulation library; see (Caiazzo et al., 2011)

for an illustrative biomedical application.

Modelling

formalism

independent

(Chopard

et al.,

2014)

NetLogo

A multi-agent modelling environment which

can be integrated with deterministic

continuous (ODE) models via a Matlab

extension called MatNet. Illustrative

biomedical examples include a model of acute

inflammation (An, 2008) and Pseudomonas

aeruginosa biofilm formation (Biggs and

Papin, 2013).

ABMs, ODEs

(Wilen-

sky,

2015)

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 119

Software Description Model types Ref.

Open-

CMISS

An open source multiscale modelling

framework implemented in Fortran which

supports models encoded in Cell Markup

Language (CellML) (Lloyd et al., 2004) and

Field Markup Language (FieldML) (Christie

et al., 2009), standard model representations

developed within the VPH and Physiome

projects.

CellML models,

FieldML models

(Bradley

et al.,

2011)

PhysioDe-

signer

A multilevel modelling framework based on

the Physiological Hierarchy Markup Language

(PHML), a standard modelling language for

the integration of single scale models.

PHML models

(Asai

et al.,

2014)

Snoopy

A unified Petri nets based modelling

framework employed to construct both

uniscale (Pârvu et al., 2015) and

multiscale(Gao et al., 2013; Liu and Heiner,

2013) computational models of biological

systems.

Qualitative,

deterministic,

stochastic and

hybrid (coloured)

Petri nets

(Heiner

et al.,

2012)

Using such modelling approaches various multiscale computational models

of biological systems have been constructed, covering different organisms (e.g.

microorganisms (Biggs and Papin, 2013), plants (Grafahrend-Belau et al., 2013),

humans (Krauss et al., 2012)), organ systems (e.g. cardiovascular system (Caiazzo

et al., 2011; Formaggia et al., 1999; Laganà et al., 2005), digestive system (Du

et al., 2013a; Graudenzi et al., 2014), nervous system (Bouteiller et al., 2011))

and diseases (e.g. thrombus formation (Xu et al., 2010), cancer (Deisboeck et al.,

2011; Masoudi-Nejad et al., 2014), Crohn’s disease (Dwivedi et al., 2014)).

To use results generated by multiscale computational models outside the

in silico environment the models need to be validated first. However generic

methodologies for multiscale model validation and error quantification have not

yet been developed (Hoekstra et al., 2014). Moreover validating multiscale

computational models against real-life data is often not possible due to the lack of

relevant information from and between all relevant levels of organization (Walpole

et al., 2013).

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 120

5.2 Multiscale multidimensional

spatio-temporal model checking workflow

To overcome these limitations a multiscale multidimensional spatio-temporal model

checking methodology is defined which enables the validation of computational

models of biological systems in the in silico environment with respect to both how

numeric and spatial properties change over time and across multiple scales. In

contrast to the multidimensional model checking approach described in Chapter 3

which assumes that the modelled systems cover a single scale, the multiscale

approach enables reasoning about how changes from different scales relate to one

another.

However similarly to the multidimensional model checking approach (see

Chapter 3) the multiscale model checking methodology is general and supports

computational models encoded using various modelling formalisms because it is

not defined relative to models but to model simulation traces. Moreover due to the

large state spaces usually associated with complex multiscale computational models

of biological systems only approximate probabilistic model checking approaches

(see Subsection 2.4.2, Table 2.1) are considered throughout.

The main contributions of this chapter are:

• Definition of multiscale stochastic spatial discrete-event systems (MSSpDES)

as theoretical models for describing how a system evolves over time, space and

multiple scales. MSSpDESs extend SSpDESs with multiscale architecture

(MA) graphs that explicitly encode the hierarchical organization of multiscale

systems, and a state variable scale and subsystem (SVSS) assignment

function which maps state variables to scales and subsystems encoded as

vertices in MA graphs (Section 5.3).

• A formal Probabilistic Bounded Linear Multiscale Spatial Temporal Logic

(PBLMSTL) for encoding the multiscale multidimensional spatio-temporal

specifications against which the models are validated. One of the most

significant extensions of PBLMSTL with respect to PBLSTL are the mech-

anisms which enable explicitly distinguishing between state variables from

different scales (Section 5.5).

• Generalization of the multiscale model checking approach such that it is

independent of case study specific spatial entity types and corresponding

properties; the generalized approach is called multiscale meta model checking

(Section 5.7).

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 121

• Implementation of the multiscale multidimensional spatio-temporal meta

model checking approach in the model checker Mule (http://mule.

modelchecking.org) which is freely available online in binary and source

code format, and as a Docker image. Mule is an extension of Mudi and

therefore supports the same Bayesian and frequentist, hypothesis testing

and estimate based approximate probabilistic model checking algorithms

(Section 5.8).

• Definition of multiscale spatio-temporal analysis module as a multiscale

extension of the spatio-temporal analysis module introduced in Section 3.4

which automatically detects and analyses regions (see Subsubsection 3.4.1.1)

and clusters (see Subsubsection 3.4.1.2) from multiple scales. The output

of this analysis module is formatted according to the constraints of the

Multiscale Spatial Temporal Markup Language (MSTML) introduced here.

MSTML adapts the STML standard representation format (see Subsec-

tion 3.4.3) to the multiscale scenario (Section 5.4).

The multiscale multidimensional spatio-temporal model checking workflow

is depicted in Figure 5.1 and comprises the same steps as the multidimensional

model checking approach but adapted to the multiscale context:

1. Model construction: Using biological observations and/or relevant refer-

ences from the literature to construct the multiscale computational model.

2. Multiscale spatio-temporal analysis: Each time the model is simulated

time series data are generated in which spatial entities from multiple scales

are automatically detected and analysed. The output of the multiscale

spatio-temporal analysis is formatted according to MSTML.

3. Formal specification: The specification of the system is mapped from

natural (e.g. English) language into formal PBLMSTL statements.

4. Model checking: The model checker takes the processed time series data

(formatted according to MSTML) and the PBLMSTL specification as input

and decides if the model is valid relative to the specification using the model

checking algorithm chosen by the user (e.g. frequentist statistical model

checking). In case the model is invalid it is updated and validated again.

http://mule.modelchecking.org
http://mule.modelchecking.org

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 122

1 3

4

2

LiteratureBiological
observations

Construct
model

Simulate
model

Natural language
specification

Translate
specification
to PBLMSTL

Multiscale
spatio-temporal

analysis

Model checking
using Mule

Model is
VALID

Model is
INVALID

Update model

Figure 5.1: Multiscale multidimensional spatio-temporal model checking workflow. The first step (1)
in the workflow is using biological observations and/or information from the literature to construct the
multiscale computational model of a biological system. Next (2) the model is simulated to produce time
series data in which spatial entities from multiple scales are automatically detected and analysed using
the multiscale spatio-temporal analysis module. The scales, spatial entity types and spatial measures
considered in the multiscale spatio-temporal analysis correspond to the scales, spatial entities and
spatial measures described in the natural language specification; the dependency between the natural
language specification and the multiscale spatio-temporal analysis is represented by a dashed arrow.
Then (3) the specification against which the model is validated is translated manually from natural to
formal PBLMSTL language. Finally (4) using the model checker Mule the model is validated relative
to the given PBLMSTL specification. If the model is declared invalid then it is updated and steps (2)
and (4) are repeated.

5.3 Model construction

The biological systems modelled here are assumed to be inherently complex,

stochastic and to span multiple levels of organization (Southern et al., 2008),

where each level of organization has an associated spatio-temporal scale. Moreover

it is assumed in the following that biological systems which are multilevel (i.e.

span multiple levels of biological organization) are inherently multiscale (i.e. span

multiple spatio-temporal scales). Therefore the terms multiscale and multilevel,

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 123

respectively scale and level are used interchangeably in this thesis. Similarly to

the multidimensional model checking approach in the following we assume that

spatial domains are discretised and represented in pseudo-3D. However adapting

the methodology to other numbers of dimensions requires minor changes which

are described later. Moreover we consider here that the modelled systems are

discrete-event systems i.e. they transition from the current to the next state only

when an event occurs (e.g. a biochemical reaction).

Although SSpDESs (see Subsection 3.3.2) enable reasoning about how stochas-

tic discrete-event systems change over time and space, they are not suitable for

multiscale systems due to two main limitations. First of all in an SSpDES it is

assumed that the size of the discretised spatial domain, which is encoded by the

spatial value assignment function SpV , is the same for all spatial state variables.

Secondly SSpDESs do not store any information regarding the scale to which each

state variable corresponds. Therefore it is not possible to explicitly distinguish

between state variables representing processes occurring at different levels of

organization.

For addressing the first limitation the spatial value assignment function SpV in

an SSpDES can be replaced with a collection of spatial value assignment functions

CSpV = {SpV | SpV is defined identically as for an SSpDES},

where each spatial value assignment function SpV ∈ CSpV corresponds to discre-

tised spatial domains of a particular size m× n. In order to extend the spatial

representation from two to, for instance three dimensions, the codomain of each

SpV ∈ CSpV would be Rm×n×p instead of Rm×n.

5.3.1 Encoding the hierarchical system structure

To address the second limitation the hierarchical organization (Southern et al.,

2008) of biological systems needs to be represented explicitly in the models.

Throughout we assume that biological systems can be decomposed in a top-

down manner from coarse-grained (e.g. population/organism) to fine-grained (e.g.

intracellular/molecular) scales. Moreover at each scale (e.g. organ) one or multiple

biological subsystems (e.g. heart and kidney) could be explicitly considered.

The number and type of biological subsystems and/or scales considered differs

depending on the addressed biological question.

To formally encode this hierarchical top-down structure a rooted (directed)

tree (Bondy and Murty, 2010, Chapter 4) is employed called the multiscale

architecture graph MA = (VMA, EMA), where VMA represents the set of vertices

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 124

and EMA the set of directed edges. Each vertex v ∈ VMA is encoded as a tuple (sc,

subsys) where subsys represents a particular biological subsystem (e.g. heart) and

sc its corresponding scale (e.g. organ). The root vertex (e.g. (organism, human))

corresponds to the most coarse-grained representation of the biological system

considered. Directed edges (v, vi) ∈ EMA, i = 1,m, link the biological subsystem

represented by vertex v to all its m constituent subsystems from finer-grained

scales represented by vertices vi.

The main reason for choosing the rooted directed tree representation is that

its structure is inherently hierarchical and represents the organization of biological

organisms. Moreover it can be used to encode how the behaviour of a subsystem

from a higher scale is determined by the behaviour of one or multiple subsystems

from lower scales.

Given a biological system BS the corresponding MA graph is constructed as

follows; see Figure 5.2 for an illustrative example. First of all both BS and its

corresponding subsystems relevant to the addressed biological question, together

with their associated scale, are encoded as a set of vertices VMA (see Figure 5.2(a)).

Secondly starting from the vertices at the most coarse-grained scales directed

edges are added towards their constituent subsystems. This step is repeated

for all finer-grained scales considered until the entire hierarchical structure of

BS is explicitly represented. Depending on the hierarchical representation of

BS, vertices at the same depth in MA could correspond to different scales (see

Figure 5.2(b)). The resulting MA graph should be a directed connected rooted

acyclic graph, which means there exists a unique path from the root to every

vertex, respectively MA should not contain any cycles.

However for some systems it is possible that the resulting MA graph is a

directed acyclic graph but not a rooted directed tree because it contains vertices

that have multiple incoming directed edges, which means they are part of more

than one biological subsystem. For instance in Figure 5.2(b) the vertex (Tissue,

CardiacMuscle) has two parent vertices, namely (OrganSystem, Cardiovascular)

and (OrganSystem, Musculoskeletal). Vertices having more than one parent vertex

in a directed acyclic graph are similar to classes which inherit from multiple parent

classes (i.e. multiple inheritance) in object oriented programming. In our approach

multiple inheritance is resolved by transforming the directed acyclic graph in a

rooted directed tree. Every vertex with n incoming directed edges is replicated

n− 1 times such that each instance of the vertex has only one incoming directed

edge. In order to distinguish between the n vertex instances either the associated

scale or subsystem label needs to be renamed accordingly (see Figure 5.2(c)).

The main advantages of resolving multiple inheritance by transforming a

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 125

(d) Ensure there is only one root vertex

(c) Replicate and update vertices with more than one incoming directed edge

(b) Add directed edges between vertices

OrganSystem, Cardiovascular OrganSystem, MusculoskeletalOrgan, Liver

Tissue, CardiacMuscle

OrganSystem, Cardiovascular OrganSystem, MusculoskeletalOrgan, Liver

CardiovascularTissue, CardiacMuscle MusculoskeletalTissue, CardiacMuscle

OrganSystem, Cardiovascular OrganSystem, MusculoskeletalOrgan, Liver

Organism, Human

CardiovascularTissue, CardiacMuscle MusculoskeletalTissue, CardiacMuscle

OrganSystem, Cardiovascular OrganSystem, MusculoskeletalOrgan, Liver

Tissue, CardiacMuscle

(a) Encode biological subsystems as vertices

Figure 5.2: Illustrative example on how to construct a multiscale architecture graph. Let us assume
that the biological subsystems considered are the human liver, the cardiac muscle tissue, and the car-
diovascular and musculoskeletal organ systems. First of all (a) the biological subsystems and their asso-
ciated scales are encoded as vertices (OrganSystem, Cardiovascular), (OrganSystem, Musculoskeletal),
(Organ, Liver) and (Tissue, CardiacMuscle). Next (b) directed edges are added between each system
and its constituent subsystems. The considered directed edges are ((OrganSystem, Cardiovascular),
(Tissue, CardiacMuscle)) and ((OrganSystem, Musculoskeletal), (Tissue, CardiacMuscle)). The next
step (c) is to eliminate vertices with multiple incoming directed edges from the graph. Therefore the
vertex (Tissue, CardiacMuscle) is duplicated, each resulting instance (i.e. (CardiovascularTissue, Car-
diacMuscle) and (MusculoskeletalTissue, CardiacMuscle)) is renamed according to its corresponding
parent vertex, and the directed edges are updated accordingly. The last step (d) is to ensure that
the MA graph’s root vertex is unique. For this purpose the (Organism, Human) vertex and the corre-
sponding directed edges ((Organism, Human), (OrganSystem, Cardiovascular)), ((Organism, Human),
(OrganSystem, Musculoskeletal)) and ((Organism, Human), (Organ, Liver)) are added to MA.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 126

directed acyclic graph in a rooted directed tree are clarity and simplicity because

each vertex in the tree will have only one parent, and implicitly the path from

the root of the tree to each vertex is unique. Conversely the main disadvantage

is that vertices need to be replicated and this leads to an increase in the size of

the MA graph. Alternative approaches for resolving multiple inheritance which

do not require increasing the number of vertices in the graph are graph-oriented

and linear solutions (Snyder, 1986). In graph-oriented solutions the structure of

the directed acyclic graph is preserved, whereas in linear solutions the directed

acyclic graph is flattened and transformed into a linear sequence of vertices such

that each vertex has at most one parent and/or child vertex. However whenever

employing graph-oriented and linear solutions vertex descriptions are lengthier

because the parent vertex (i.e. context) considered for each vertex needs to be

defined explicitly.

Finally it may happen that in the updated MA graph multiple vertices

v1, v2, ..., vp do not have any incoming directed edge and should therefore be

labelled as root vertices (see Figure 5.2(c)). However in a rooted directed tree

there can only be one root vertex. To address this issue an artificial root vertex

vroot can be created and added to VMA, whose corresponding scale is higher than

that of v1, v2, ..., vp, and which will be connected via a directed outgoing edge with

each vertex vi, i = 1, p. Although the vertex vroot will not be explicitly considered

in the model it ensures that the structure of MA is tree-like (see Figure 5.2(d)).

Considering that the resulting MA graph is a rooted directed tree, a strict

partial order < can be defined over the set of vertices VMA, where v1 < v2, for all

v1, v2 ∈ VMA, if the unique path from the root to v1 passes through v2. Similarly

a non-strict partial order ≤ can be defined over VMA, where v1 ≤ v2 if the unique

path from the root to v1 passes through v2, or v1 = v2. One of the main practical

benefits of defining these partial orders is that they enable writing expressions

for referring to all subsystems vi of a system vj (vi ≤ vj), and all ancestor/parent

systems vk of a subsystem vl (vl < vk) in a concise manner. Therefore such

expressions could be employed to write shorter formal specifications against which

MSSpDES models are validated.

To enable mapping both numeric and spatial state variables to particular

scales and subsystems encoded as vertices in the MA graph the state variable

scale and subsystem assignment function SVSS is introduced:

SVSS : NSV ∪ SpSV → VMA,

where NSV and SpSV are sets of numeric, respectively spatial state variables,

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 127

and VMA is the set of vertices corresponding to MA.

5.3.2 Multiscale stochastic spatial discrete-event systems

Using the above notations we define multiscale stochastic spatial discrete-event

systems (MSSpDES) as an extension of SSpDESs where the spatial value as-

signment function SpV is replaced by a collection of spatial value assignment

functions CSpV , the multiscale architecture graph MA is defined to encode the

hierarchical representation of the systems considered, and the state variable scale

and subsystem assignment function SVSS is introduced to associate state variables

with particular scales and subsystems encoded as vertices in the MA graph.

Definition 13 Multiscale stochastic spatial discrete-event system

(MSSpDES)

An MSSpDES M is a 9-tuple 〈S, T , µ, NSV , SpSV , NV , CSpV , MA, SVSS 〉
where:

• S, T , µ, NSV , SpSV and NV have the same semantics as for an SSpDES

(see Definition 5);

• CSpV is the collection of spatial value assignment functions;

• MA is the multiscale architecture graph encoding the hierarchical structure

of the system considered;

• SVSS is the state variable scale and subsystem assignment function which

associates state variables with particular scales and subsystems.

For explanatory purposes an illustrative example of a simple MSSpDES is

given below.

Example 9 Illustrative example of an MSSpDES encoding the move-

ment of a unicellular organism

Let us assume that we would like to model the movement of a unicellular mi-

croorganism in a fixed size environment (here a discretised rectangular grid of

size 2 × 2). For simplicity the cell can only move up/down and left/right. In

order to move the cell requires energy which it can chemically convert from an

abstractly denoted nutrient A; the chemical reaction for converting A to energy

is A→ Energy. If nutrient A is available intracellularly then it can be converted

directly to energy. Otherwise it has to be assimilated from the environment first;

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 128

the cell can only assimilate nutrients from the position of the discretised space

which it currently occupies. The probability of the cell to move is 20%, 30% to

convert A to energy and 50% to assimilate A from the environment.

Although the system considered in this example is much simpler than a real-life

one, it suffices to illustrate the principles of abstractly representing an MSSpDES

as follows.

The spatial state variables employed to describe the behaviour of the sys-

tem are Cell — encoding the position of the cell in the discretised space, and

A extracellular — representing the distribution of nutrient A in the environ-

ment. Conversely the employed numeric state variables are A intracellular —

encoding the intracellular availability of nutrient A, and Energy — representing

the cell’s energy supply. The subsystems considered and their corresponding

scales are energy production reaction network at the intracellular scale, microor-

ganism at the cellular scale, and growth media at the environment scale. State

variables associated with the energy production network (intracellular scale) are

A intracellular and Energy, respectively Cell with the microorganism (cellular

scale), and A extracellular with the growth media (environment scale). In the

initial state of the system S0, depicted in Figure 5.3, the cell is positioned in the

lower right part of the environment, A extracellular is uniformly distributed

across the entire environment (i.e. A extracellular[i, j] = 1, for all i, j = 1, 2),

and the initial levels of A intracellular and Energy are zero.

State S0

Cell A_extracellular

0

0 1

0 1

1

1

1
A_intracellular Energy

00

Figure 5.3: Initial state of the MSSpDES encoding the movement of a unicellular organism. Cell
and A extracellular are the spatial state variables representing the position of the cell, respectively
distribution of nutrient A in the environment. A intracellular and Energy represent the intracellular
availability of nutrient A, respectively energy.

Starting from the initial state S0 the system can (in)directly transition to any

of the states depicted in Figure 5.4.

Given that in S0 the cell has no supplies of intracellular nutrient A or energy,

the only possible action is for it to assimilate A from its environment (S0 → S1,

probability 100%). Since only one supply of nutrient A is available the only

possible next action is to convert the newly gained intracellular A supply to

energy (S1 → S2, probability 100%). Once a supply of energy is available the

cell can move either above (S2 → S4) or to its left (S2 → S3). The probability of

moving to either of the neighbouring positions is therefore equal to 100% / 2 =

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 129

State S0

Cell A_extracellular

0

0 1

0 1

1

1

1
A_intracellular Energy

00

State S1

Cell A_extracellular

0

0 1

0 1

1

1

0
A_intracellular Energy

01

State S2

Cell A_extracellular

0

0 1

0 1

1

1

0
A_intracellular Energy

10

State S3

Cell A_extracellular

0

1 0

0 1

1

1

0
A_intracellular Energy

00

State S4

Cell A_extracellular

0

0 0

1 1

1

1

0
A_intracellular Energy

00

State S5

Cell A_extracellular

0

1 0

0 1

0

1

0
A_intracellular Energy

01

State S6

Cell A_extracellular

0

0 0

1 1

1

0

0
A_intracellular Energy

01

State S7

Cell A_extracellular

0

1 0

0 1

0

1

0
A_intracellular Energy

10

State S8

Cell A_extracellular

0

0 0

1 1

1

0

0
A_intracellular Energy

10

State S9

Cell A_extracellular

1

0 0

0 1

0

1

0
A_intracellular Energy

00

State S10

Cell A_extracellular

0

0 1

0 1

0

1

0
A_intracellular Energy

00

State S11

Cell A_extracellular

0

0 1

0 1

1

0

0
A_intracellular Energy

00

State S12

Cell A_extracellular

1

0 0

0 1

1

0

0
A_intracellular Energy

00

State S13

Cell A_extracellular

1

0 0

0 0

0

1

0
A_intracellular Energy

01

State S14

Cell A_extracellular

1

0 0

0 0

1

0

0
A_intracellular Energy

01

State S15

Cell A_extracellular

1

0 0

0 0

0

1

0
A_intracellular Energy

10

State S16

Cell A_extracellular

1

0 0

0 0

1

0

0
A_intracellular Energy

10

State S17

Cell A_extracellular

0

0 0

1 0

0

1

0
A_intracellular Energy

00

State S19

Cell A_extracellular

0

0 0

1 0

1

0

0
A_intracellular Energy

00

State S18

Cell A_extracellular

0

1 0

0 0

0

1

0
A_intracellular Energy

00

State S20

Cell A_extracellular

0

1 0

0 0

1

0

0
A_intracellular Energy

00

State S21

Cell A_extracellular

0

0 0

1 0

0

0

0
A_intracellular Energy

01

State S22

Cell A_extracellular

0

1 0

0 0

0

0

0
A_intracellular Energy

01

State S23

Cell A_extracellular

0

0 0

1 0

0

0

0
A_intracellular Energy

10

State S24

Cell A_extracellular

0

1 0

0 0

0

0

0
A_intracellular Energy

10

State S25

Cell A_extracellular

1

0 0

0 0

0

0

0
A_intracellular Energy

00

State S26

Cell A_extracellular

0

0 1

0 0

0

0

0
A_intracellular Energy

00

100%

100%

50%50%

100% 100%

100%100%

50%50% 50% 50%

100%

100%

50% 50% 50%50%

100%

100%

100%

100%

50% 50% 50% 50%

100%

100%

Figure 5.4: The state space of the MSSpDES encoding the movement of a unicellular organism i.e.
all possible states which can be reached from the initial state S0. Cell and A extracellular are the
spatial state variables representing the position of the cell, respectively distribution of nutrient A in
the environment. A intracellular and Energy represent the intracellular availability of nutrient A,
respectively energy. The percentage associated with the arrows connecting each pair of states represents
the probability of transitioning from one state to the other. A high resolution digital copy of the image
is made available at http://mule.modelchecking.org/illustrative example msspdes system state space.
tif?attredirects=0&d=1.

http://mule.modelchecking.org/illustrative_example_msspdes_system_state_space.tif?attredirects=0&d=1
http://mule.modelchecking.org/illustrative_example_msspdes_system_state_space.tif?attredirects=0&d=1

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 130

50%. Continuing from either state S3 or S4 the cell will try to assimilate new A

nutrient supplies, which can be converted to energy and then used to move in the

environment. This process is repeated multiple times until the cell reaches a state

in which it has no A nutrients available extracellularly/intracellularly, and no

supplies of energy (i.e. S10, S11, S18, S19, S25, S26). In such cases the cell becomes

dormant and the system reaches its final state.

Using the notations above we formally define the corresponding MSSpDES

model M = 〈S, T , µ, NSV , SpSV , NV , CSpV , MA, SVSS 〉 as follows:

• S = {S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16,

S17, S18, S19, S20, S21, S22, S23, S24, S25, S26}.

• T is the transition rates matrix which records the probability of transitioning

between any two system states si, sj ∈ S. Since in our example T is a sparse

matrix, only its non-zero entries are explicitly given below: T [S0, S1] = 100%,

T [S1, S2] = 100%, T [S2, S3] = 50%, T [S2, S4] = 50%, T [S3, S5] = 100%,

T [S4, S6] = 100%, T [S5, S7] = 100%, T [S6, S8] = 100%, T [S7, S9] = 50%,

T [S7, S10] = 50%, T [S8, S11] = 50%, T [S8, S12] = 50%, T [S9, S13] = 100%,

T [S12, S14] = 100%, T [S13, S15] = 100%, T [S14, S16] = 100%,

T [S15, S17] = 50%, T [S15, S18] = 50%, T [S16, S19] = 50%,

T [S16, S20] = 50%, T [S17, S21] = 100%, T [S20, S22] = 100%,

T [S21, S23] = 100%, T [S22, S24] = 100%, T [S23, S25] = 50%,

T [S23, S26] = 50%, T [S24, S25] = 50%, T [S24, S26] = 50%.

• µ is the function used to compute probabilities associated with cylinder

sets C(σfinite) defined over finite computation path prefixes σfinite . The

probability value associated with C(σfinite) is computed by multiplying

the probabilities of the state transitions encoded by σfinite . For instance, if

σfinite = {S0, S1, S2, S3, S5, S7, S10} then µ(C(σfinite)) = P (S0, S1)·P (S1, S2)·
P (S2, S3) ·P (S3, S5) ·P (S5, S7) ·P (S7, S10) = T [S0, S1] ·T [S1, S2] ·T [S2, S3] ·
T [S3, S5] ·T [S5, S7] ·T [S7, S10] = 100% ·100% ·50% ·100% ·100% ·50% = 25%.

• NSV = {A intracellular, Energy}, and NV is the function used to com-

pute the value of A intracellular and Energy in a given state of a compu-

tation path.

• SpSV = {Cell, A extracellular}, and CSpV = {SpV } is the collection

containing the spatial value assignment function SpV used to evaluate Cell

and A extracellular in a given state of a computation path.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 131

• MA is the multiscale architecture graph depicted in Figure 5.5 encoding the

hierarchical organization of the subsystems considered, namely the growth

media (environment scale), the microorganism (cellular scale) and the energy

production reaction network (intracellular scale).

• SVSS is the state variable scale and subsystem assignment function which

associates state variables to particular subsystems encoded as vertices

in the MA graph. The values returned by SVSS for the considered

state variables are: SVSS (A intracellular) = (Intracellular, EnergyPro-

ductionReactionNetwork), SVSS (Energy) = (Intracellular, EnergyPro-

ductionReactionNetwork), SVSS (Cell) = (Cellular, Microorganism), and

SVSS (A extracellular) = (Environment, GrowthMedia).

Cellular, Microorganism

Environment, GrowthMedia

Intracellular, EnergyProductionReactionNetwork

Figure 5.5: The multiscale architecture graph corresponding to the MSSpDES encoding the movement
of a unicellular organism. Each vertex in the graph (e.g. (Environment, GrowthMedia)) corresponds to
a subsystem (e.g. growth media) and its associated scale (e.g. environment). Directed edges between
vertices (e.g. ((Environment, GrowthMedia), (Cellular, Microorganism))) indicate how one subsystem
from a coarse-grained scale (e.g. (Environment, GrowthMedia)) can be decomposed in one or multiple
subsystems from more fine-grained scales (e.g. (Cellular, Microorganism)).

In spite of the simplicity of the scenario described above the same model

development principles apply for more complex multiscale real-life systems. How-

ever due to the inherent complexity of such systems the size of the state space is

expected to be larger.

Remark 7. The probabilities employed in Example 9 were chosen for explanatory

purposes and were not derived from experimental data or the literature.

∎

The reason for defining MSSpDESs as extensions of SSpDESs is backwards

compatibility. SSpDESs can be represented as MSSpDESs with a collection of

spatial value assignment functions containing a single element, and a multiscale

architecture graph containing only one vertex to which all state variables are

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 132

assigned using the state variable scale and subsystem assignment function. Due

to this, multiple SSpDESs can be easily integrated into a single MSSpDES by

gathering all spatial value assignment functions into a single collection, construct-

ing a corresponding multiscale architecture graph and mapping state variables to

appropriate vertices in the graph, and adding interactions between submodels.

5.4 Multiscale spatio-temporal analysis

5.4.1 Detection and analysis of spatial entities from

multiple scales

Time series data generated by MSSpDES model simulations record how values of

both numeric and spatial state variables, potentially corresponding to multiple

scales, change over time.

Similarly to the multidimensional scenario, to reason about how numeric

properties (e.g. concentrations) or properties of all positions in a discretised spatial

domain change over time the values of the corresponding numeric, respectively

spatial state variables can be employed without further processing. However

in order to reason about how properties of emergent spatial entities potentially

occupying only a subset of positions in the discretised space change over time,

there is a need for an additional processing step which automatically detects and

analyses the spatial entities of interest considering the values of a given set of

spatial state variables.

The spatio-temporal analysis module (see Section 3.4) defined for multidi-

mensional spatio-temporal models enables automatically detecting and analysing

how specific types of emergent spatial entities change over time. However one of

its main limitations is that it does not enable to explicitly distinguish between

spatial entities corresponding to different subsystems and/or scales.

To overcome this limitation the multiscale spatio-temporal analysis module

extends the spatio-temporal analysis module with relevant pre- and post-processing

steps (similarly to the MapReduce (Dean and Ghemawat, 2004) algorithm) as

follows.

The pre-processing step is responsible for splitting up time series data cor-

responding to all spatial state variables in multiple time subseries, where each

subseries corresponds to state variables from a single subsystem and scale.

During the main processing step each time subseries can be processed (in

parallel) using the existing uniscale spatio-temporal analysis module for detect-

ing, analysing and annotating spatial entities with their corresponding scale

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 133

and subsystem. Since the existing spatio-temporal analysis module is reused

the collections of spatial entity types and measures considered are {clusters, re-

gions} and {clusteredness, density, area, perimeter, distanceFromOrigin, angle,

triangleMeasure, rectangleMeasure, circleMeasure, centroidX, centroidY}.
Finally the post-processing step is responsible for merging the results from

all executions of the spatio-temporal analysis module such that spatial entities

corresponding to the same time point are grouped together. A graphical depiction

of the multiscale spatio-temporal analysis workflow is given in Figure 5.6.

Extending the spatial representation from two to, for instance three dimensions,

requires employing appropriate types of spatial entities (e.g. 3D structure) and

measures (e.g. volume), and updating the multiscale spatio-temporal analysis

module accordingly. Moreover (the value corresponding to) each position in the

discretised space is mapped to (the intensity of) a voxel, rather than a pixel in an

image.

The output of the multiscale spatio-temporal analysis is time series data

describing how the values of the considered spatial measures change over time for

each detected spatial entity, scale and subsystem.

5.4.2 Multiscale Spatial Temporal Markup Language

The MSSpDES model simulation results are represented by time series data

produced by the multiscale spatio-temporal analysis and time series data describing

the evolution over time of numeric state variables values.

To easily share these results across the research community a standard portable

representation format is required. STML (see Subsection 3.4.3) is a standard

representation format which was designed for the same purpose but it is limited

to uniscale spatio-temporal model simulations. Therefore it does not support

associating state variables with particular scales and subsystems.

To overcome this limitation we define the Multiscale Spatial Temporal Markup

Language (MSTML) as an extension of STML which enables mapping values

of both numeric state variables and spatial entities to particular subsystems

and their corresponding scales. From a structural point of view this is achieved

by adding an optional scaleAndSubsystem attribute to both spatialEntity

and numericStateVariable element definitions. The reason for making the

attribute optional is to enable both multiscale and multidimensional uniscale

datasets to be encoded in the MSTML format.

To easily adapt the multiscale model checking methodology to case study

specific spatial entity types and measures — and we will come back to this later

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 134

1

3

2

Create
MSSpDES model

Simulate
MSSpDES model

Split
time series data

Start

Analyse time series
subsystem 1

Analyse time series
subsystem 2

Analyse time series
subsystem n

...

Merge
analysis results

More
simulations?

Stop

No

Yes

Figure 5.6: The multiscale spatio-temporal analysis workflow. An MSSpDES model of the consid-
ered system is constructed and simulated to generate time series data. The time series data subset
corresponding to all spatial state variables is split during the pre-processing step into time subseries (1)
such that each subseries corresponds to a single subsystem and its corresponding scale. The time sub-
series are then passed to the uniscale spatio-temporal analysis module (2) which automatically detects,
analyses and annotates spatial entities with their corresponding scale and subsystem. The results of
the uniscale spatio-temporal analysis are then merged during the post-processing step (3) such that
spatial entities corresponding to the same time point are grouped together. If more simulations are
required, a new time series dataset is generated, for which steps (1)–(3) are repeated.

in Section 5.7 — the following additional changes were considered when extending

STML to MSTML:

• The pseudo3D element was removed from the schema, and the type

attribute, now renamed to spatialType, was moved in the parent element

spatialEntity. All child elements of the pseudo3D element are now

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 135

Listing 5.1: An example MSTML file recording multiscale spatio-temporal time series data

1 <?xml version=” 1 .0 ” encoding=”utf−8”?>
2 <experiment>
3 <t imepoint va lue=”1”>
4 <s p a t i a lEn t i t y spat ia lType=” c l u s t e r ” scaleAndSubsystem=”

Organ . L iver ”>
5 <c l u s t e r e dn e s s>0 .01</ c l u s t e r e dn e s s>
6 <dens i ty>0 .4</ dens i ty>
7 <area>15</ area>
8 <per imeter>28</ per imeter>
9 <distanceFromOrigin>81</ distanceFromOrigin>

10 <ang le>10 .5</ ang le>
11 <t r i ang l eMeasure>0 .5</ t r iang l eMeasure>
12 <rectang leMeasure>1 .0</ rectang leMeasure>
13 <c i r c l eMeasure>0 .1</ c i r c l eMeasure>
14 <centroidX>703.4999</ centroidX>
15 <centroidY>118.087</ centroidY>
16 </ spa t i a lEn t i t y>
17 <numer icStateVar iab le scaleAndSubsystem=” Ce l l u l a r .

Hepatocyte ”>
18 <name>dys funct ion</name>
19 <value>0 .1</ value>
20 </ numer icStateVar iab le>
21 </ t imepoint>
22 . . .
23 </ experiment>

child elements of the spatialEntity element.

• The hierarchical structure of the centroid element was flattened. Thus

the centroid element was replaced by its child elements x and y, now

renamed to centroidX, respectively centroidY.

All rules and constraints for the structure of MSTML files are formalised in

xsd files with the filename format MSTML LxVy.xsd (i.e. Multiscale Spatial

Temporal Markup Language Level x, Version y). The latest version of the

MSTML format is made available at http://mule.modelchecking.org/standards, and

an example of a MSTML formatted file is depicted in Listing 5.1.

For model checking purposes the number of MSTML files #MSTML generated

for an MSSpDES model assuming fixed parameter values varies depending if the

model is deterministic (#MSTML = 1) or stochastic (#MSTML ≥ 1), and if the

required level of confidence for the model checking result is high (e.g. 99%) or low

(e.g. 70%).

To determine if a model is valid the model checker verifies if its behaviour

captured by a corresponding set of MSTML files conforms to a given formal

specification.

http://mule.modelchecking.org/standards

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 136

5.5 Formal specification

The temporal logic employed to write the formal specification needs to enable

reasoning about how values of numeric state variables and/or spatial measures,

which are the considered state variables, are expected to change over time and

multiple scales.

Although BLSTL (see Subsection 3.5.1) was introduced for reasoning about

how both numeric and spatial properties change over time, one of its main

limitations is that it does not enable to explicitly distinguish between different

scales. Therefore it is not possible to relate how changes at one scale reflect at

another scale and vice versa.

5.5.1 Bounded Linear Multiscale Spatial Temporal Logic

To address the issue of relating changes between scales Bounded Linear Multiscale

Spatial Temporal Logic (BLMSTL) is defined as a multiscale extension of BLSTL

which enables to explicitly distinguish between state variables corresponding to

different scales and subsystems.

Although, to the best of our knowledge, BLMSTL is the first formal logic

defined to encode specifications of how numeric and/or spatial properties of

multiscale computational models are expected to change over time, other types of

languages have been developed previously to describe multiscale computational

model simulations. For instance Helms et al. (Helms et al., 2012) introduced an

instrumentation language for specifying what data should be observed during

multiscale computational model simulation studies. The main difference between

the instrumentation language introduced by Helms et al. and BLMSTL is that

the former was mainly designed to describe what data should be collected for the

entities in the computational model and/or corresponding computation algorithms,

whereas the latter is designed to describe how the values of state variables in the

computational model and/or emerging spatial structures are expected to change

over time.

Statements which can be expressed in BLSTL, and implicitly BLMSTL, have

been previously described in Subsection 3.5.1 and therefore will not be restated

here. Instead only the (significant) changes of BLMSTL relative to BLSTL are

described in natural language below.

First of all BLMSTL enables referring to scale specific state variables by

explicitly associating to each state variable its corresponding scale and subsys-

tem from the considered MA graph. This is achieved using either the notation

“(scaleAndSubsystem = explicitScale1.explicitSubsystem1)” which reads state

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 137

variable corresponding to scale explicitScale1 (e.g. organ), and subsystem ex-

plicitSubsystem1 (e.g. heart), or the notation “(scaleAndSubsystem � explic-

itScale2.explicitSubsystem2)”, � ∈ {<,<=,=, >=, >}, which reads the collection

of state variables whose scale and subsystem is � explicitScale2 and explicitSub-

system2. In the latter case the partial ordering of the scales and subsystems is

taken into account as defined by the MA graph of the corresponding MSSpDES

model.

To reduce the ambiguity in formal BLMSTL specifications numeric state

variables, which evaluate to single values, can be associated only with single scales

and subsystems (i.e. using “=”), whereas spatial measures, which evaluate to as

many values as there are spatial entities, can be associated with one or multiple

scales and subsystems (i.e. using � ∈ {<,<=,=, >=, >}).
Secondly since BLMSTL enables distinguishing between state variables from

different scales it is possible to define transfer functions over these state variables

describing how changes from one scale reflect at another scale and vice versa. To

encode such transfer functions, unary (e.g. square root) and binary (e.g. add)

arithmetic functions can be employed. For instance if the value of a state variable

svcg from a coarse-grained scale is equal to the arithmetic mean of four state

variables svfg1
, svfg2

, svfg3
, svfg4

from a more fine-grained scale, this can be written

as svcg = (svfg1
+ svfg2

+ svfg3
+ svfg4

)/4; in BLMSTL “+” and “/” would be

replaced by the arithmetic functions add, respectively div.

Moreover BLMSTL enables reasoning not only about the values of state

variables corresponding to single time points but the distribution of values corre-

sponding to multiple time points. This allows encoding transfer functions that

describe how values corresponding to a single time point (e.g. and a coarse-grained

scale) relate to the values corresponding to multiple time points (e.g. and a

fine-grained scale), or vice versa.

Finally BLMSTL introduces set operators \ (difference), ∩ (intersection) and

∪ (union) which enable reasoning about multiple collections of spatial entities.

For instance it is possible to describe (using union) how spatial entities either of

type region or of type cluster, and potentially corresponding to different scales

and subsystems, change over time.

As in the case of MSSpDESs, for clarity purposes, in BLMSTL we explicitly

distinguish between numeric and spatial state variables. The main advantage

of this is that state variable type specific functions can be defined. Conversely

the main disadvantage is replication because the BLMSTL grammar needs to

define structurally similar constructs once for numeric and once for spatial state

variables. An alternative approach, which we do not consider here, is to employ a

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 138

single state variable type by converting all numeric into spatial state variables.

The main advantage of this approach is that the number of constructs in the

BLMSTL grammar would be reduced. Conversely the main disadvantage is the

lack of clarity in BLMSTL statements because it would no longer be possible

to determine directly from the BLMSTL statements syntax if a state variable

inherently encodes a single (numeric) or multiple (spatial) real values.

A formal definition of the BLMSTL syntax and semantics, and corresponding

illustrative examples are given next.

5.5.1.1 Syntax

To enable comparing BLMSTL with BLSTL, significant syntax changes introduced

by the former relative to the latter are emphasized using bold text formatting

below.

Definition 14 BLMSTL syntax

The syntax of BLMSTL is given by the following grammar expressed in BNF:

〈logic-property〉 ::= 〈temporal-numeric-measure〉 〈comparator〉
〈temporal-numeric-measure〉

| 〈change-measure〉(〈temporal-numeric-measure〉) 〈comparator〉
〈temporal-numeric-measure〉

| ∼ 〈logic-property〉
| 〈logic-property〉 ∧ 〈logic-property〉
| 〈logic-property〉 ∨ 〈logic-property〉
| 〈logic-property〉 ⇒ 〈logic-property〉
| 〈logic-property〉 ⇔ 〈logic-property〉
| 〈logic-property〉 U[〈unsigned-real-number〉,〈unsigned-real-number〉]
〈logic-property〉

| F[〈unsigned-real-number〉,〈unsigned-real-number〉] 〈logic-property〉
| G[〈unsigned-real-number〉,〈unsigned-real-number〉] 〈logic-property〉
| X 〈logic-property〉
| X [〈natural-number〉] 〈logic-property〉
| (〈logic-property〉)

〈temporal-numeric-measure〉 ::= 〈real-number〉
| 〈numeric-state-variable〉
| 〈numeric-statistical-measure〉
| 〈unary-numeric-measure〉(〈temporal-numeric-measure〉)

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 139

| 〈binary-numeric-measure〉(〈temporal-numeric-measure〉,
〈temporal-numeric-measure〉)

〈numeric-statistical-measure〉 ::= 〈unary-statistical-measure〉(
〈numeric-measure-collection〉)

| 〈binary-statistical-measure〉(〈numeric-measure-collection〉,
〈numeric-measure-collection〉)

| 〈binary-statistical-quantile-measure〉(
〈numeric-measure-collection〉, 〈real-number〉)

〈numeric-measure-collection〉 ::= 〈spatial-measure-collection〉
| [〈unsigned-real-number〉,〈unsigned-real-number〉]
〈numeric-measure〉

〈numeric-measure〉 ::= 〈primary-numeric-measure〉
| 〈unary-numeric-measure〉(〈numeric-measure〉)
| 〈binary-numeric-measure〉(〈numeric-measure〉,〈numeric-measure〉)

〈primary-numeric-measure〉 ::= 〈numeric-spatial-measure〉
| 〈real-number〉
| 〈numeric-state-variable〉

〈numeric-spatial-measure〉 ::= 〈unary-statistical-measure〉(
〈spatial-measure-collection〉)

| 〈binary-statistical-measure〉(〈spatial-measure-collection〉,
〈spatial-measure-collection〉)

| 〈binary-statistical-quantile-measure〉(〈spatial-measure-collection〉,
〈real-number〉)

〈unary-statistical-measure〉 ::= avg

| count

| geomean

| harmean

| kurt

| max

| median

| min

| mode

| product

| skew

| stdev

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 140

| sum

| var

〈binary-statistical-measure〉 ::= covar

〈binary-statistical-quantile-measure〉 ::= percentile

| quartile

〈unary-numeric-measure〉 ::= abs

| ceil

| floor

| round

| sign

| sqrt

| trunc

〈binary-numeric-measure〉 ::= add

| div

| log

| mod

| multiply

| power

| subtract

〈spatial-measure-collection〉 ::= 〈spatial-measure〉(〈subset〉)
| 〈unary-numeric-measure〉(〈spatial-measure-collection〉)
| 〈binary-numeric-measure〉(〈spatial-measure-collection〉,
〈spatial-measure-collection〉)

〈spatial-measure〉 ::= clusteredness

| density

| area

| perimeter

| distanceFromOrigin

| angle

| triangleMeasure

| rectangleMeasure

| circleMeasure

| centroidX

| centroidY

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 141

〈subset〉 ::= 〈subset-specific〉
| filter(〈subset-specific〉,〈constraint〉)
| 〈subset-operation〉(〈subset〉,〈subset〉)

〈subset-specific〉 ::= regions

| clusters

〈constraint〉 ::= scaleAndSubsystem 〈comparator〉
〈scale-and-subsystem〉

| 〈spatial-measure〉 〈comparator〉 〈filter-numeric-measure〉
| ∼ 〈constraint〉
| 〈constraint〉 ∧ 〈constraint〉
| 〈constraint〉 ∨ 〈constraint〉
| 〈constraint〉 ⇒ 〈constraint〉
| 〈constraint〉 ⇔ 〈constraint〉
| (〈constraint〉)

〈filter-numeric-measure〉 ::= 〈primary-numeric-measure〉
| 〈spatial-measure〉
| 〈unary-numeric-measure〉(〈filter-numeric-measure〉)
| 〈binary-numeric-measure〉(〈filter-numeric-measure〉,
〈filter-numeric-measure〉)

〈subset-operation〉 ::= difference

| intersection

| union

〈change-measure〉 ::= d

| r

〈real-number〉 ::= 〈unsigned-real-number〉
| 〈sign〉 〈unsigned-real-number〉

〈unsigned-real-number〉 ::= 〈fractional-part〉
| 〈fractional-part〉 〈exponent-part〉

〈fractional-part〉 ::= 〈digit-sequence〉 . 〈digit-sequence〉
| . 〈digit-sequence〉
| 〈digit-sequence〉 .

| 〈digit-sequence〉

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 142

〈digit-sequence〉 ::= 〈digit〉
| 〈digit〉 〈digit-sequence〉

〈digit〉 ::= 0

| 1

| 2

| 3

| 4

| 5

| 6

| 7

| 8

| 9

〈natural-number〉 ::= 〈digit-sequence〉
| + 〈digit-sequence〉

〈exponent-part〉 ::= e 〈digit-sequence〉
| E 〈digit-sequence〉
| e 〈sign〉 〈digit-sequence〉
| E 〈sign〉 〈digit-sequence〉

〈sign〉 ::= +

| -

〈comparator〉 ::= <

| <=

| =

| >=

| >

〈numeric-state-variable〉 ::=

〈state-variable〉 〈state-variable-scale-and-subsystem〉

〈state-variable〉 ::= {〈string〉}

〈state-variable-scale-and-subsystem〉 ::= ε

| (scaleAndSubsystem = 〈scale-and-subsystem〉)

〈string〉 ::= 〈character〉 | 〈character〉 〈string〉

〈character〉 ::= based on the Unicode character set except “{” and “}”

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 143

〈scale-and-subsystem〉 ::= 〈primary-scale-and-subsystem〉 .

〈primary-scale-and-subsystem〉

〈primary-scale-and-subsystem〉 ::= 〈scale-and-subsystem-character〉
| 〈scale-and-subsystem-character〉
〈primary-scale-and-subsystem〉

〈scale-and-subsystem-character〉 ::= 〈basic-latin-script-character〉
| 〈digit〉

〈basic-latin-script-character〉 ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o

| p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Similarly to BLSTL the order of precedence of the operators is given by

the definition of the BLMSTL syntax. In the absence of parentheses the logic

expressions are evaluated from left to right.

5.5.1.2 Semantics

The semantics of BLMSTL is defined with respect to executions σ of an MSSpDES

M, where the meaning of the notations |σ|, σ[i], σi and σ(t) are the same as

for BLSTL (see Subsubsection 3.5.1.2). Given an execution σ at state s the

value of a numeric state variable nsv is computed using NV (σ, s, nsv) and its

associated scale and subsystem using SVSS (nsv), respectively the value of a

spatial state variable spsv is computed using SpV (σ, s, spsv) and its associated

scale and subsystem using SVSS (spsv).

Moreover in order to minimize the length of the semantics description the full

symbol names specific to BLMSTL were replaced with shorter abbreviations as

described in Table 5.2. To facilitate comparisons with BLSTL (see Table 3.1)

symbol names which were introduced exclusively by BLMSTL are emphasized

using bold text formatting.

Definition 15 BLMSTL semantics

Let M = 〈S, T , µ, NSV , SpSV , NV , SpV , MA, SVSS 〉 be an MSSpDES and σ

an execution of M. The semantics of BLMSTL for σ is defined as follows:

• σ |= tnm1 � tnm2 if and only if tnm1 � tnm2, where tnm1 and tnm2 ∈
R, and � ∈ {<, <=, =, >=, >};

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 144

Table 5.2: Translation of full BLMSTL symbol names to abbreviated forms. The left column con-
tains the full BLMSTL symbol name. The right column contains the corresponding abbreviated form.
Symbols which were introduced exclusively in BLMSTL and do not exist in BLSTL are highlighted
using bold text formatting.

Full BLMSTL symbol name Abbreviated BLMSTL symbol name

<logic-property> ψ
<temporal-numeric-measure> tnm
<numeric-statistical-measure> nstm
<numeric-measure-collection> nmc
<numeric-measure> nm
<primary-numeric-measure> pnm
<numeric-spatial-measure> nspm
<unary-statistical-measure> ustm
<binary-statistical-measure> bstm
<binary-statistical-quantile-measure> bstqm
<unary-numeric-measure> unm
<binary-numeric-measure> bnm
<spatial-measure-collection> smc
<spatial-measure> sm
<subset> ss
<filter-numeric-measure> fnm
<comparator> �
<change-measure> cm
<real-number> re
<scale-and-subsystem> scsubsys
<state-variable> sv
<numeric-state-variable> nsv
<spatial-state-variable> spsv

• σ |= cm(nm1) � nm2 if and only if |σ| > 1 and cm(nm1) � nm2, where

cm(nm1) and nm2 ∈ R, and � ∈ {<, <=, =, >=, >};

• σ |= ∼ ψ if and only if σ 6|= ψ;

• σ |= ψ1 ∧ ψ2 if and only if σ |= ψ1 and σ |= ψ2;

• σ |= ψ1 ∨ ψ2 if and only if σ |= ψ1 or σ |= ψ2;

• σ |= ψ1 ⇒ ψ2 if and only if σ |=∼ ψ1 or σ |= ψ2;

• σ |= ψ1 ⇔ ψ2 if and only if σ |= ψ1 ⇒ ψ2 and σ |= ψ2 ⇒ ψ1;

• σ |= ψ1 U [a, b] ψ2 if and only if there exists i, i ∈ [a, b], such that σ(i) |= ψ2,

and for all j, j ∈ [a, i), it holds that σ(j) |= ψ1 with a, b ∈ R+;

• σ |= F [a, b] ψ if and only if there exists i, i ∈ [a, b], such that σ(i) |= ψ

with a, b ∈ R+;

• σ |= G[a, b] ψ if and only if for all i, i ∈ [a, b], it holds that σ(i) |= ψ with

a, b ∈ R+;

• σ |= X ψ if and only if |σ| > 1 and σ1 |= ψ;

• σ |= X[k] ψ if and only if |σ| > k and σk |= ψ with k ∈ N;

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 145

• σ |= (ψ) if and only if σ |= ψ.

The tnm symbol represents the category of temporal numeric measures. Con-

sidering a model execution σ tnm is evaluated based on one of the definitions

below:

• Real number: tnm = re ∈ R;

• Numeric state variable: tnm = nsv;

• Numeric statistical measure: tnm = nstm;

• Unary numeric measure: tnm = unm(tnm′), where tnm′ is a temporal

numeric measure;

• Binary numeric measure: tnm = bnm(tnm′, tnm′′), where tnm′ and

tnm′′ are temporal numeric measures.

The values of the unary (unm) and binary (bnm) numeric measures are

computed in the same manner as for BLSTL (see Appendix C.2, Tables C.2

and C.3).

The category of numeric statistical measures is represented by the nstm symbol.

For a given model execution σ the nstm symbol is evaluated considering one of

the definitions below:

• Unary statistical numeric measure: nstm = ustm(nmc), where nmc

is a numeric measure collection;

• Binary statistical numeric measure: nstm = bstm(nmc′, nmc′′),

where nmc′ and nmc′′ are numeric measure collections;

• Binary statistical quantile numeric measure: nstm = bstqm(nmc′,

re), where nmc′ is a numeric measure collection, and re is a real number.

The value of unary statistical (ustm), binary statistical (bstm) and binary

statistical quantile (bstqm) measures considering a collection of real values is

computed similarly to how values of unary, binary, ternary and quaternary subset

measures were computed in BLSTL (see Appendix C.3, Tables C.4, C.5, C.6

and C.7). The main difference between the BLMSTL statistical measures and

BLSTL subset measures is that the former are defined considering generic col-

lections of real numbers, whereas the latter were restricted to collections of real

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 146

numbers encoding the values of spatial measures evaluated against spatial enti-

ties collections. The matching between statistical and subset measures is done

based on their name i.e. measures with the same semantics have identical names.

Moreover by replacing each pair of (spatial measure, spatial entities collection)

parameters from subset measures with a single parameter (collection of real

values) in statistical measures, the number of different categories of measures

was reduced from four (subset measures) to three (statistical measures). Finally

to remove any dependency between statistical measures and case study specific

spatial measures the unary BLSTL subset measures “clusteredness” and “density”

have no corresponding statistical measures in BLMSTL.

The nmc symbol represents numeric measure collections. Given a model

simulation σ nmc is evaluated according to one of the following definitions:

• Spatial measure collection: nmc = smc;

• Temporal numeric measure collection: nmc = [a, b] nm is the collec-

tion of numeric measures obtained by evaluating the numeric measure nm

against the subtrace σ(i), for all i ∈ [a, b] with a, b ∈ R+.

The nm symbol represents the category of real-valued numeric measures.

Considering a given execution σ nm is evaluated according to one of the definitions

described below:

• Primary numeric measure: nm = pnm;

• Unary numeric measure: nm = unm(nm′), where nm′ is a numeric

measure;

• Binary numeric measure: nm = bnm(nm′, nm′′), where nm′ and nm′′

are numeric measures.

The pnm symbol corresponds to primary numeric (real-valued) measures.

Considering a given execution σ pnm is evaluated according to one of the following

definitions:

• Numeric spatial measure: nm = nspm;

• Real number: nm = re ∈ R;

• Numeric state variable: nm = nsv.

The nspm symbol represents the category of numeric (real-valued) spatial

measures. Considering a given execution σ nspm is evaluated according to one of

the definitions described below:

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 147

• Unary statistical spatial measure: nspm = ustm(smc), where smc is

a spatial measure collection;

• Binary statistical spatial measure: nspm = bstm(smc′, smc′′), where

smc′ and smc′′ are spatial measure collections;

• Binary statistical quantile spatial measure: nspm = bstqm(smc, re),

where smc is a spatial measure collection, and re is a real value.

The smc symbol represents spatial measure collections and is evaluated con-

sidering a model execution σ as follows:

• Primary spatial measure collection: smc = sm(ss) = {value | value =

sm(ssi), ∀i, 1 ≤ i ≤ |ss|}, where sm is a spatial measure, and ss is the

subset of considered spatial entities against which sm is evaluated;

• Unary numeric spatial measure collection: smc = unm(smc′), where

unm is a unary numeric measure, and smc′ is a spatial measure collection;

• Binary numeric spatial measure collection: smc = bnm(smc′, smc′′),

where bnm is a binary numeric measure, respectively smc′ and smc′′ are

spatial measure collections.

Spatial measures sm are defined over the set {clusteredness, density, area,

perimeter, distanceFromOrigin, angle, triangleMeasure, rectangleMeasure, cir-

cleMeasure, centroidX, centroidY} which is identical to the set of spatial measures

computed for each detected region/cluster during the multiscale spatio-temporal

analysis step of the model checking workflow.

Subsets of spatial entities are represented by the ss symbol. Considering a

given execution σ ss is evaluated according to one of the definitions described

below:

• Specific subset: ss = specificSubset , where specificSubset represents the

collection of all clusters/regions corresponding to σ[0];

• Filtered specific subset: ss = filter(specificSubset , constraint), where

specificSubset has the semantics defined above, and constraint is a com-

plex logic property that specifies which clusters/regions from specificSubset

should be considered (e.g. regions with area > 10);

• Subset operation result: ss = subsetOperation(ss1, ss2), where ss1 and

ss2 are spatial entities subsets, and subsetOperation is the subset operation

applied to ss1 and ss2.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 148

Given an execution σ the value of the specificSubset symbol is computed using

one of the definitions described below:

• Regions: specificSubset =
⋃

spsv∈SpSV

{reg | reg ∈ regionDetectionMecha-

nism(spsv)} considering the state σ[0];

• Clusters: specificSubset = clustersDetectionMechanism(se), where se =⋃
spsv∈SpSV

{reg | reg ∈ regionDetectionMechanism(spsv)} considering the

state σ[0].

Subsets of collections returned by specificSubset can be computed using the

filter predicate. Considering an execution σ, filter is evaluated using the definition

described below:

filter = {e ∈ specificSubset | e |= c, where c is a constraint}.

The semantics of the constraint satisfaction problem considering a spatial entity

e and a constraint c is defined as follows:

• e |= scaleAndSubsystem � scsubsys if and only if there exists a vertex

vscsubsys ∈ VMA encoding the scale and subsystem scsubsys, e was annotated

with a scale and subsystem escaleAndSubsystem which has a corresponding

vertex vescaleAndSubsystem ∈ VMA, and vescaleAndSubsystem � vscsubsys, where VMA

is the set of vertices in the multiscale architecture graph MA, and � ∈ {<,

<=, =, >=, >}. To determine the truth value of expressions of the form

vescaleAndSubsystem � vscsubsys the partial orders < and ≤ defined over the set

of vertices VMA are considered. Therefore vescaleAndSubsystem < vscsubsys holds

if the path from the root of MA to vescaleAndSubsystem passes through vscsubsys.

Conversely vescaleAndSubsystem > vscsubsys holds if the path from the root of MA

to vscsubsys passes through vescaleAndSubsystem . Expressions vescaleAndSubsystem ≤
vscsubsys and vescaleAndSubsystem ≥ vscsubsys hold if vescaleAndSubsystem < vscsubsys

or vescaleAndSubsystem = vscsubsys, respectively if vescaleAndSubsystem > vscsubsys or

vescaleAndSubsystem = vscsubsys.

• e |= sm � fnm if and only if sm(e) � fnm, where sm(e) evaluates the

spatial measure sm for the given spatial entity e, sm ∈ {clusteredness,

density, area, perimeter, distanceFromOrigin, angle, triangleMeasure, rect-

angleMeasure, circleMeasure, centroidX, centroidY}, fnm is a filter numeric

measure ∈ R, and � ∈ {<, <=, =, >=, >}.

• e |=∼ c if and only if e 6|= c.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 149

• e |= c1 ∧ c2 if and only if e |= c1 and e |= c2.

• e |= c1 ∨ c2 if and only if e |= c1 or e |= c2.

• e |= c1 ⇒ c2 if and only if e |=∼ c1 or e |= c2.

• e |= c1 ⇔ c2 if and only if e |= c1 ⇒ c2 and e |= c2 ⇒ c1.

• e |= (c) if and only if e |= c.

The fnm symbol represents the (real-valued) numeric measure computed for

the filter predicate. Given an execution σ and a spatial entity e the value of fnm

is computed using one of the definitions given below:

• Primary numeric measure: fnm = pnm;

• Spatial measure: fnm = sm(e), where sm ∈ {clusteredness, density, area,

perimeter, distanceFromOrigin, angle, triangleMeasure, rectangleMeasure,

circleMeasure, centroidX, centroidY};

• Unary filter numeric measure: fnm = unm(fnm ′), where unm is a

unary numeric measure, and fnm ′ is a filter numeric measure;

• Binary filter numeric measure: fnm = bnm(fnm ′, fnm ′′), where bnm is

a binary numeric measure, respectively fnm ′ and fnm ′′ are filter numeric

measures.

The semantics of the considered subset operation subsetOperation ∈ {differ-

ence, intersection, union} is described below with respect to the spatial entities

subsets ss1 and ss2:

• Difference: difference(ss1, ss2) = {se | se ∈ ss1 and se 6∈ ss2};

• Intersection: intersection(ss1, ss2) = {se | se ∈ ss1 and se ∈ ss2};

• Union: union(ss1, ss2) = {se | se ∈ ss1 or se ∈ ss2}.

The cm ∈ {d, r} symbol represents the collection of measures which compute

the rate at which the value of a temporal numeric measure tnm changes from

the current state to the next. Considering a given execution σ, such that |σ| > 1,

and a temporal numeric measure tnm, the logic statement cm(tnm) is evaluated

according to one of the definitions below:

• Derivative: cm(tnm) = d(tnm), such that

d(tnm) =
tnm1 − tnm0

time1 − time0
;

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 150

• Ratio: cm(tnm) = r(tnm), such that

r(tnm) =
tnm1

tnm0

time1 − time0
,

where tnmi represents the result of evaluating tnm against σi, and timei represents

the value of the first time point in σi.

Finally the symbol nsv represents real-valued numeric state variables. Given

an execution σ nsv is evaluated according to one of the following definitions:

• Numeric state variable without an associated scale and subsystem:

nsv = sv, where sv is the identifier of a numeric state variable having no

associated scale and subsystem (i.e. SVSS (sv) = ∅), and which evaluates to

NV (σ, σ[0], sv);

• Numeric state variable with an associated scale and subsystem:

nsv = sv(scaleAndSubsystem = scsubsys), where sv is the identifier of a

numeric state variable having the associated scale and subsystem SVSS (sv)

= scsubsys and value NV (σ, σ[0], sv).

5.5.1.3 Illustrative examples of BLMSTL statements

Illustrative examples of statements written both in natural language and BLMSTL

are provided below. For simplicity purposes the number of explicitly specified

scales and subsystems is two in all examples.

• Natural language: Always during the time interval [0, 95] if the con-

centration of EGFR (corresponding to scale and subsystem (Intracellular,

RasERKPathway)) increases over 20, then the cancerous cell (corresponding

to scale and subsystem (Cellular, Cancerous)) will divide i.e. the cell count

will increase.

BLMSTL: G[0, 95] (({EGFR}(scaleAndSubsystem =

Intracellular.RasERKPathway) > 20) ⇒
(d(count(density(filter(regions, scaleAndSubsystem =

Cellular.Cancerous)))) > 0)).

• Natural language: If the concentration of drug X (corresponding to

scale and subsystem (Organism, Human)) eventually increases during time

interval [5, 10], then the area of the aorta cross section (corresponding

to scale and subsystem (OrganSystem, Aorta)) will be larger during time

interval [10, 30] than [0, 10].

BLMSTL: (F [5, 10] d({X}(scaleAndSubsystem =

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 151

Organism.Human)) > 0) ⇒
(min([10, 30] min(area(filter(regions, scaleAndSubsystem =

OrganSystem.Aorta)))) >

max([0, 10] max(area(filter(regions, scaleAndSubsystem =

OrganSystem.Aorta))))).

• Natural language: Always during the time interval [0, 100] the liver

dysfunction (corresponding to scale and subsystem (Organ, Liver)) is equal

to the average degree of damage suffered by its constituent tissues (corre-

sponding to scales and subsystems ≤ (Tissue, DamagedLiverTissue)).

BLMSTL: G[0, 100] ({LiverDysfunction} (scaleAndSubsystem =

Organ.Liver) = avg(density(filter(regions, scaleAndSubsystem ≤
Tissue.DamagedLiverTissue)))).

To enable explicitly encoding the probability with which a BLMSTL statement

is expected to hold, a probabilistic extension of BLMSTL called Probabilistic

Bounded Linear Multiscale Spatial Temporal Logic is defined.

5.5.2 Probabilistic Bounded Linear Multiscale Spatial

Temporal Logic

Definition 16 Probabilistic Bounded Linear Multiscale Spatial Tem-

poral Logic (PBLMSTL)

A Probabilistic Bounded Linear Multiscale Spatial Temporal Logic property φ is

a logic property of the form P./θ[ψ] where ./ ∈ {<,<=, >=, >}, θ ∈ (0, 1) and ψ

is a BLMSTL property.

An illustrative example of a natural language probabilistic statement mapped

into PBLMSTL is given below:

Natural language: The probability is greater than 0.9 that always during

the time interval [0, 95] if the concentration of EGFR (corresponding to

scale and subsystem (Intracellular, RasERKPathway)) increases over 20,

then the cancerous cell (corresponding to scale and subsystem (Cellular,

Cancerous)) will divide i.e. the cell count will increase.

PBLMSTL: P > 0.9 [G[0, 95] (({EGFR}(scaleAndSubsystem =

Intracellular.RasERKPathway) > 20) ⇒
(d(count(density(filter(regions, scaleAndSubsystem =

Cellular.Cancerous)))) > 0))].

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 152

Remark 8. The probability employed in the immediately above example was

chosen for illustrative purposes and was not derived from experimental data or

the literature.

A PBLMSTL property φ ≡ P./θ[ψ] holds for an MSSpDES M (i.e. M |=
P./θ[ψ]) if and only if the probability of ψ to hold for an execution of M is ./ θ.

Therefore in order to determine the truth value of a PBLMSTL property φ the

likelihood of ψ being true needs to be computed.

5.6 Model checking

Definition 17 Multiscale multidimensional spatio-temporal model

checking problem

The multiscale multidimensional spatio-temporal model checking problem is

to automatically verify if an MSSpDES M satisfies a PBLMSTL property

φ ≡ P./θ[ψ].

Due to the high complexity associated with probabilistic computational models

of biological systems only approximate probabilistic model checking approaches

are considered throughout. As illustrated in Table 2.1 the approaches considered

are either Bayesian or frequentist, estimate or hypothesis testing based.

Using approximate probabilistic model checking approaches MSSpDES models

can be validated relative to PBLMSTL formal specifications using a finite number

of steps. Therefore the multiscale multidimensional spatio-temporal model check-

ing problem is well-defined. The corresponding proof is similar to the one provided

for the multidimensional model checking problem (see Subsubsection 3.6.1.3) and

therefore will be given in Appendix D.1 rather than the main matter of the thesis.

Intuitively the main idea behind the proof is to show that in order to validate an

MSSpDES model the number of required model simulations is finite, and that the

number of time points considered for each model simulation is bounded. Therefore

the PBLMSTL specification is evaluated against a finite number of time points

and model simulations, which can be done in a finite number of steps.

5.7 Meta model checking

One of the main limitations of the multiscale model checking methodology, as

described up to this point, is that the evolution over time of spatial properties

can be described only with respect to the predefined collections of spatial entity

types SET considered = {clusters, regions} and spatial measures SM considered =

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 153

{clusteredness, density, area, perimeter, distanceFromOrigin, angle, triangleMea-

sure, rectangleMeasure, circleMeasure, centroidX, centroidY}. Therefore the

methodology cannot be applied without further modifications to case studies

where other types of spatial entities (e.g. 3D spatial structures) and/or measures

(e.g. volume) are relevant.

The main reason for this limitation is that several components of the multiscale

model checking methodology depend directly on the collections of spatial entity

types and measures considered. These components are the multiscale spatio-

temporal analysis approach, MSTML and (P)BLMSTL. In case of the multiscale

spatio-temporal analysis for each spatial entity type sety ∈ SET considered and

spatial measure sm ∈ SM considered a corresponding spatial detection mechanism

and evaluation function are defined. Conversely in MSTML each possible value for

the spatialType attribute (see spatialEntity element) corresponds to a spatial

entity type sety ∈ SET considered. Moreover the information describing the state of

a spatialEntity element is described by child elements corresponding to the

spatial measures sm ∈ SM considered. Finally (P)BLMSTL enables writing formal

specifications that describe how the values of spatial measures sm ∈ SM considered

evaluated against spatial entities of type sety ∈ SET considered are expected to

change over time.

In order to overcome this limitation we define a generalized version of the

multiscale multidimensional spatio-temporal model checking methodology called

multiscale multidimensional spatio-temporal meta model checking; the term meta

is used in multiscale multidimensional spatio-temporal meta model checking

similarly to how it is used in meta-programming. From a theoretical point of

view multiscale multidimensional spatio-temporal meta model checking enables

employing arbitrary spatial entity types and measures for the validation of com-

putational models. Conversely from an implementation point of view a multiscale

multidimensional spatio-temporal meta model checking program, similarly to a

meta-program, takes program templates and case study specific spatial entity

types and measures as input and produces a corresponding case study specific

multiscale multidimensional spatio-temporal model checking program as output.

The main difference between the multiscale multidimensional spatio-temporal

and multiscale multidimensional spatio-temporal meta model checking method-

ologies is that in the latter SET considered and SM considered are replaced with meta

collections of spatial entity types SET , respectively spatial measures SM , defined

as follows:

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 154

• SET = {sety | sety is a spatial entity type for which there

exists a corresponding spatial detection mechanism fsety,

fsety : SpSV p → {0, 1}m1×n1 × {0, 1}m2×n2 × ...× {0, 1}mp×np ,

which detects sets of spatial entities SE of type sety in the

discretised spatial domain}.
Considering the spatial state variable tuples spsvt ∈ SpSV p, fsety computes

which positions of the discretised space are occupied (1) by spatial entities

or not (0); see Subsection 3.4.1 for examples of spatial detection mechanisms

corresponding to the spatial entity types clusters and regions.

• SM = {sm | sm is a spatial measure, sm : SE → SMV ⊆ R, where SE is a

set of spatial entities and SMV is the corresponding domain of valid spatial

measure values}; see Subsection 3.4.2 for examples of spatial measures

corresponding to the spatial entity types clusters and regions.

These collections are called meta because they provide only a description of the

conditions which should hold for each type of spatial entity and measure but do

not explicitly define instances thereof. Since SET and SM do not contain specific

spatial entity types and spatial measures, the multiscale spatio-temporal analysis,

MSTML and (P)BLMSTL can be only partially defined.

The multiscale meta model checking methodology enables the creation of

different multiscale model checking methodology instances by replacing SET and

SM with case study specific collections of spatial entity types and spatial measures,

and updating the multiscale spatio-temporal analysis, MSTML and (P)BLMSTL

accordingly. These instances can then be used to validate MSSpDES models

considering case study specific types of spatial entities and/or measures. For

instance, in order to validate computational models considering a 3D representation

of space a corresponding model checking methodology instance could be created

that replaces SET and SM with SET 3D = {cuboid, cylinder, sphere} and SM 3D

= {volume, centroidX, centroidY , centroidZ}.
A graphical description of the workflow employed to create instances of multi-

scale multidimensional spatio-temporal model checking methodologies is provided

in Figure 5.7.

The workflow depicted in Figure 5.7 enables automatically creating multiscale

model checking methodology instances tailored to specific spatial representations

(e.g. 3D), and types of spatial entities and measures. However the workflow does

not automatically define the image processing functions required to automatically

detect and analyse spatial entities in time series data. Such functions can often

be defined based on existing approaches from the image processing literature.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 155

Spatial entity types
collection m

Spatial measures
collection m

Generic (meta) level

Speci�c (instance) level

...

Spatial entity types
meta collection

Spatial measures
meta collection

Multiscale multidimensional spatio-temporal
meta model checking methodology

Spatial entity types
collection 1

Spatial measures
collection 1

Spatial entity types
collection 1

Spatial measures
collection 1

Instance 1 of multiscale multidimensional
spatio-temporal model checking methodology

Model is
VALID

Model is
INVALID

Case study 1

Model 1,1

Speci�cation 1,1 Spatial entity types
collection m

Spatial measures
collection m

Instance m of multiscale multidimensional
spatio-temporal model checking methodology

Model is
VALID

Model is
INVALID

Case study n

Model m,n

Speci�cation m,n

...

Instantiation 1 Instantiation m

Figure 5.7: Workflow for creating multiscale multidimensional spatio-temporal model checking
methodology instances. The workflow comprises two levels, the upper generic (meta) level, and the
lower specific (instance) level. The upper level comprises the multiscale multidimensional spatio-
temporal meta model checking methodology. Conversely the lower level consists of the specific col-
lections of spatial entity types and measures employed to create multiscale multidimensional spatio-
temporal model checking methodology instances. For each pair (e.g. m) of spatial entity types and
spatial measures collections considered a corresponding multiscale model checking methodology in-
stance is created. The resulting methodology instances (e.g. m) can then be employed for various case
studies (e.g. n) to decide if computational models (e.g. m,n) are valid relative to corresponding formal
specifications (e.g. m,n) or not. Rounded rectangles and arrows having the same border/line colour
correspond to the same collections of spatial entity types and spatial measures.

Finally following on from Appendix D.1 when validating an MSSpDES model

relative to a formal PBLMSTL specification the number of required model simu-

lations, and the number of required state transitions for each model simulation

do not depend directly on the considered collections of spatial entity types and

spatial measures. Therefore regardless of the instances of SET and SM considered

the multiscale spatio-temporal model checking problem is well-defined.

5.8 Implementation

To automate the validation of computational models relative to how both numeric

and spatial properties are expected to change over time and across multiple

scales the multiscale spatio-temporal detection and analysis approach and the

multiscale multidimensional spatio-temporal meta model checking method were

implemented in software tools. The name of the model checking software is Mule

and is a concatenation of the first and last two letters of the word “Multiscale”.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 156

Using the model checker Mule and the multiscale spatio-temporal detection and

analysis module computational models can be validated relative to PBLMSTL

specifications by adapting the workflow given in Figure 3.7 to the multiscale

context i.e. the (uniscale) spatio-temporal analysis is replaced by the multiscale

spatio-temporal analysis (see Subsection 5.4.1), STML is replaced with MSTML,

PBLSTL is replaced with PBLMSTL and Mudi is replaced with Mule.

5.8.1 Multiscale spatio-temporal detection and analysis

module

The multiscale spatio-temporal detection and analysis module was implemented

as a Bash script which executes the (uniscale) spatio-temporal detection and

analysis modules (see Subsection 3.7.1) for each scale and subsystem considered.

Given that scales and subsystems are case study specific the multiscale spatio-

temporal detection and analysis Bash script must be adapted for each case study.

For usability purposes the script was designed such that only particular steps

emphasized by “TODO” comments need to changed between case studies.

5.8.2 Model checker Mule

Mule builds on the implementation of the model checker Mudi (see Subsec-

tion 3.7.2). Consequently the use cases for Mule are the same as for Mudi (see

Figure 3.8) but adapted to the multiscale context i.e. computational models

are validated relative to PBLMSTL instead of PBLSTL specifications, STML

files are replaced with MSTML files, and the user can additionally provide as

input to Mule an MA graph. Similarly the architecture of Mule is the same as

the architecture of Mudi (see Figure 3.9) with the exception that a PBLMSTL

instead of a PBLSTL logic property parser and evaluator is employed. In addition,

similarly to Mudi, Mule was implemented in C++ and supports all approximate

probabilistic model checking approaches described in Table 2.1. Moreover all unit

tests were implemented using the Google Test unit testing framework.

In contrast to Mudi, Mule can be adapted to case study specific spatial

entity types and/or measures. The workflow for generating instances of the

multiscale multidimensional spatio-temporal model checker Mule was implemented

as described in Figure 5.8. The main idea behind the implementation is to use

two instead of one compilation (or translation) steps. The first compilation step

takes a description of the spatial entity types and measures as input and produces

C++ source code as output. The second compilation step translates the generated

C++ source code in binary (i.e. executable) format. Conceptually this approach

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 157

Choose problem
to solve

Specify spatial entity
types and spatial

measures (xml file)

Generate
corresponding

Mule source files

Start

Stop

Mule source code
templates

Python generator
module

Compile source code
and generate Mule
instance executable

Are valid
spatial entity types and

measures?

Spatial entity types
and measures

constraints (xsd file)

Yes

No

Figure 5.8: Implementation of workflow for generating multiscale multidimensional model checker
instances according to user-defined spatial entity types and spatial measures. Starting from the problem
one tries to solve, an xml file is created describing the collections of spatial entity types and spatial
measures of interest. These collections are then validated with respect to relevant constraints captured
by an xsd file; see http://mule.modelchecking.org/standards for the latest version of the xsd file. If the
xml file validation fails then the specification of the spatial entity types and measures needs to be
updated accordingly. Otherwise the xml file is employed by a C++ source code generator written in
Python to generate the corresponding Mule source files based on a set of predefined templates. The
source files are compiled to produce an executable version of the corresponding Mule instance. This
instance can then be employed to validate relevant computational models.

is called “meta” because Mule is an abstract (meta) model checker that can be

instantiated according to case study specific spatial entity types and measures.

From a practical point of view the user modifies only the description of the

spatial entity types and measures, while the source code and the corresponding

executables are automatically generated for him/her.

http://mule.modelchecking.org/standards

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 158

One of the main advantages of the workflow depicted in Figure 5.8 is that it

enables generating different instances of Mule corresponding to various spatial

entity types and spatial measures without negatively impacting the efficiency of

the model checker. Conversely its main disadvantage is that it requires recompiling

the model checker whenever the collections of spatial entity types and spatial

measures change; this could be especially challenging for non-technical users. In

order to address this issue a web service could be set up in the future where users

upload the xml specification file and receive the corresponding model checking

executable as output.

Similarly to Mudi, Mule can be executed only from the command line but, to

improve its usability, a corresponding graphical user interface could be designed

and implemented in the future.

The instance of Mule considered throughout this thesis is defined with re-

spect to the collection of spatial entity types SET considered and spatial measures

SM considered. However, for simplicity purposes the angle spatial measure is no

longer computed as described in Subsection 3.4.2; the angle of a spatial entity is

now determined by the lines that pass through the discretised spatial domain’s

centre point and are tangent to the spatial entity’s outer contour.

5.8.3 Availability

The multiscale spatio-temporal detection and analysis Bash scripts correspond-

ing to the case studies against which the efficacy of the model checker Mule is

illustrated (see Chapter 6) are made freely available online at https://github.com/

IceRage/Mule/tree/master/Multiscale/script/analysis/case study specific. Con-

versely the source code and the executable corresponding to the Mule instance

employed throughout the thesis are made freely available online via the official

Mule website http://mule.modelchecking.org. Moreover a Docker image has been

created to provide a self-contained environment for executing/updating model

checker instances on all major operating systems without additional setup (except

installing Docker (Docker, 2015)). The official Mule website additionally contains

the xsd schemas for MA graphs, MSTML files and meta model checking config-

uration files, the computational models, datasets of MSTML files, PBLMSTL

specifications and MA graphs corresponding to the case studies considered (see

Chapter 6), text and video based tutorials on how to download, install and use

Mule, respectively on how to generate a case study specific instance of Mule, and

a link to the Mule issue tracking webpage.

https://github.com/IceRage/Mule/tree/master/Multiscale/script/analysis/case_study_specific
https://github.com/IceRage/Mule/tree/master/Multiscale/script/analysis/case_study_specific
http://mule.modelchecking.org

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 159

5.9 Related work

Although the problem of validating multiscale spatio-temporal computational

models of biological systems using model checking approaches has not been

addressed previously in the literature, the need for reasoning about the evolution

of systems across multiple scales has been considered in other fields of science.

Relevant approaches from the areas of pattern recognition and spatial information

theory are described below. To the best of our knowledge there is no related work

on meta model checking approaches.

5.9.1 Pattern recognition

A model checking approach which explicitly distinguishes between multiple spatial

scales without (initially) accounting for time was introduced by Grosu (Grosu

et al., 2009) for pattern detection. The multiscale representation of space was

created by recursively splitting a spatial domain in quadrants (a finite number

of times) and representing the resulting hierarchy as a quadtree. For reasoning

about spatial subdomains along a linear path through the quadtree a formal logic

called Linear Spatial Superposition Logic and a corresponding model checking

algorithm were introduced.

More recently both the formal logic and corresponding model checking algo-

rithm were extended by Gol et al. (Gol et al., 2014) to account for branching

paths through quadtrees (Tree Spatial Superposition Logic), and by Haghighi et

al. (Haghighi et al., 2015) to account for the evolution of the quadtrees over time

(SpaTel).

Similarly to BLMSTL SpaTel enables writing formal specifications about how

both numeric and spatial properties are expected to change over time and across

multiple scales. In SpaTel numeric properties are encoded as binary expressions

comparing (using ≤ or ≥) the value of a numeric state variable to a real value.

Conversely spatial properties are encoded by stating in which of the four possible

quadrants (i.e. NW , NE , SW , SE) numeric properties should hold. In addition

SpaTel enables specifying at which scale(s) numeric and/or spatial properties

should hold using the Uk (i.e. bounded until) and© (i.e. next) operators. However

in contrast to BLMSTL SpaTel does not enable reasoning about general multiscale

systems since only one spatial domain is considered and the (quadrants) relation

between consecutive levels/scales is fixed. Moreover it is not possible to describe

how spatial entities and their properties potentially spanning multiple quadrants

of the spatial domain change over time.

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 160

5.9.2 Spatial information theory

In the area of spatial information theory several existing directional and topological

qualitative uniscale spatial logics (see Subsection 3.8.2) have been adapted to the

multiscale context to enable reasoning about how regions evolve in space, time

and across multiple scales (Du et al., 2013b, 2014; Su et al., 2011).

The hierarchical organization of the spatial domain considered is usually

encoded using tree-like data structures (Plumejeaud et al., 2011) where the root

of the tree corresponds to the most coarse-grained representation, and the leaves

to the most fine-grained representation. Each region is encoded by a different

vertex, and (directional/topological) relations between regions are represented

using edges.

The main difference between uniscale and multiscale qualitative spatial logics

is that in case of the latter the employed spatial representation is hierarchical

instead of flat, where each level in the hierarchy corresponds to a different spatial

resolution/scale. Moreover spatial relations can be defined with respect to regions

from different scales.

Despite enabling to reason about the evolution of systems over space, time

and across multiple scales, such multiscale spatial logics are limited to qualitative

descriptions and therefore cannot numerically describe how (biological) systems

are expected to change over time.

Summary

This chapter has described a novel methodology and model checker implementation

for validating multiscale computational models of biological systems with respect

to both how numeric and case study specific spatial properties are expected to

change over time and across multiple scales. Biological systems are abstractly

represented as MSSpDESs which explicitly encode the hierarchical organization

of real-life systems using MA graphs, and map state variables to particular scales

and subsystems using the SVSS assignment function. The simulation output

of MSSpDES models is processed by the multiscale spatio-temporal analysis

module for automatically detecting and analysing how emergent spatial patterns,

potentially from multiple scales, change over time. Formal specifications against

which MSSpDES models are validated are encoded using the formal language

PBLMSTL introduced here. Given an MSSpDES model and a formal PBLMSTL

specification corresponding model checking algorithms decide if the MSSpDES

model is valid relative to the given specification. To enable adapting the multiscale

Pârvu O., 2015, CHAPTER 5. MULTISCALE MULTIDIMENSIONAL META 161

model validation approach to case study specific spatial entity types and measures,

a generalization of the multiscale model checking methodology is defined; the

resulting approach is called multiscale multidimensional spatio-temporal meta

model checking. Implementation details and a comparison with related approaches

from the areas of pattern recognition and spatial information theory were provided

in the end.

CHAPTER 6
Validation of multiscale

computational models of

biological systems

Introduction

This chapter illustrates how to employ the multiscale multidimensional spatio-

temporal model checking methodology described in Chapter 5 to validate four

multiscale computational models of biological systems previously published in the

literature. The computational models are of different complexity, were encoded

using different modelling formalisms and software, are deterministic, stochastic

or hybrid, and represent space explicitly or not. The corresponding case studies

are the rat cardiovascular system dynamics, the uterine contractions of labour,

the Xenopus laevis cell cycle and the acute inflammation of the gut and lung.

The computational models have been validated using the model checker Mule

against formal PBLMSTL specifications which were derived from the original

papers introducing the computational models. Conclusions drawn from validating

the computational models are provided in the end.

6.1 Description

The efficiency and applicability of the multiscale multidimensional spatio-temporal

meta model checking methodology was assessed considering four systems biology

case studies published in the literature. The case studies were chosen such that

the corresponding computational models are of different types (i.e. determinis-

162

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 163

tic/hybrid/stochastic), span different levels of organization (e.g. cellular/organ)

and are encoded using different modelling formalisms (e.g. ordinary differential

equations/cellular automata) and software (e.g. Morpheus/NetLogo); see Table 6.1

for a brief comparison of the computational models considered.

Table 6.1: Considered multiscale systems biology computational models against which the multiscale
multidimensional spatio-temporal meta model checking methodology and implementation were vali-
dated. Each model (M1–M4) has an associated description and type (i.e. deterministic, stochastic or
hybrid), was encoded using specific modelling formalisms and software, represents space explicitly or
not (Y = Yes, N = No), spans different levels of organization, and has a corresponding reference paper
and download link.

M1 M2 M3 M4

Description

Rat
cardiovascular

system
dynamics

Uterine
contractions of

labour

Xenopus laevis
cell cycle

Acute
inflammation of

gut and lung

Model type Deterministic Deterministic Hybrid Stochastic

Modelling
formalism(s)

Ordinary
differential
equations
(ODE)

Cellular
automata (CA)

ODEs +
Cellular Potts
model (CPM)

Agent based
modelling
(ABM)

Modelling
software

JSim Mathematica Morpheus NetLogo

Explicit spatial
representation

N Y Y Y

Levels of
organization

Cellular +
Organ system

Cellular +
Tissue

Intracellular +
Cellular

Cellular +
Tissue + Organ

Case study
reference

(Beard et al.,
2012)

(Young and
Barendse, 2014)

(Ferrell Jr.
et al., 2011)

(An, 2008)

Model download
link

http:
//wiki.virtualrat.
org/VPRWiki/
images/6/67/

Workflow
Model Files.rar

http:
//s3-eu-west-1.

amazonaws.
com/files.

figshare.com/
1720626/

Supporting
Information S1

http://imc.zih.
tu-dresden.de/

wiki/morpheus/
doku.php?id=

examples:
multiscale#

odes in cpm
cellscell cycle

and
proliferation

http:
//bionetgen.org/

SCAI-wiki/
images/7/7d/

GutLungAxis2.1.
nlogo

For generalizability purposes two of the models considered in Table 6.1 are

deterministic (i.e. M1 and M2), one is hybrid (i.e. M3) and one is stochastic (i.e.

M4). As per Definition 13 the proposed model checking approach assumes that

the computational models considered are represented as MSSpDESs. Translating

stochastic computational models to an MSSpDES representation is straightforward.

However in order to translate deterministic/hybrid computational models to an

MSSpDES representation two potential changes are required.

First of all, in order to preserve the decidability of the model checking al-

gorithms the behaviour of any continuous-time model component needs to be

described by a finite sequence of states, which can be encoded in the MSSpDES

http://wiki.virtualrat.org/VPRWiki/images/6/67/Workflow_Model_Files.rar
http://wiki.virtualrat.org/VPRWiki/images/6/67/Workflow_Model_Files.rar
http://wiki.virtualrat.org/VPRWiki/images/6/67/Workflow_Model_Files.rar
http://wiki.virtualrat.org/VPRWiki/images/6/67/Workflow_Model_Files.rar
http://wiki.virtualrat.org/VPRWiki/images/6/67/Workflow_Model_Files.rar
http://wiki.virtualrat.org/VPRWiki/images/6/67/Workflow_Model_Files.rar
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 164

representation. Our assumption is that considering a discrete approximation of

the model behaviour is potentially appropriate for biological systems since the in

vitro observations used to build the model were also recorded considering a finite

number of discrete time points (He et al., 2008; Liu et al., 2009a; Palaniappan

et al., 2013). For minimizing losses in accuracy the time step employed during the

discretisation process was set equal to the time step ∆h chosen originally by the

model authors for the in silico numerical model simulators; in case of adaptive

time stepping the minimum time step could be considered.

Secondly, a probability value needs to be associated to each state transition

encoded in the models. In case of deterministic state transitions a probability

value of 1 is associated, and in case of stochastic state transitions the probabilities

initially encoded in the (hybrid) models are preserved.

One of the main differences between stochastic/hybrid and deterministic

models translated to an MSSpDES representation is that in case of the former, the

probability of the system under consideration to transition from the current to the

next state is a real value p ∈ [0, 1], and in case of the latter p ∈ {0, 1}. Similarly,

the probability of a BLMSTL logic statement to hold for a stochastic/hybrid

model is a real value p ∈ [0, 1], while in case of a deterministic model it is a real

value p ∈ {0, 1}.
The other steps of the multiscale model checking workflow (i.e. multiscale

spatio-temporal analysis, formal specification, model checking) do not need to be

modified when employing deterministic/hybrid models because they are defined

relative to simulation traces rather than the models themselves.

The natural language and corresponding formal specifications, against which

the models were validated, have been derived from the original papers intro-

ducing the case studies. Quotes from the original papers have been employed

to create initial natural language statements describing the expected system

behaviour. The initial natural language statements were then rephrased to match

the constructs and structure typical to formal PBLMSTL statements; the result-

ing statements are called rephrased natural language statements. Finally the

rephrased natural language statements were manually mapped into corresponding

PBLMSTL statements. Where insufficient information was available (e.g. proba-

bilities) the numeric values employed in the formal specification are quantitative

approximations of the corresponding natural language descriptions (e.g. with high

probability ⇒ 0.9). The main purpose of the PBLMSTL statements considered is

to illustrate the expressivity of the methodology and not to predict previously

unknown biologically relevant properties.

The computational models have been simulated, analysed and validated using

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 165

the same regular desktop computer (Linux x64, Intel Core i5-2500 CPU @1.6 GHz,

16 GB DDR3 RAM memory). To assess the performance of the approach execution

times have been recorded for all relevant steps of the model checking workflow.

Moreover, for comparison purposes, the case studies and the corresponding

computational models will not be described individually but in parallel considering

the steps of the model checking workflow (i.e. model construction, multiscale

spatio-temporal analysis, formal specification, model checking).

For reproducibility purposes the MA graph, the generated MSTML file(s), and

the formal PBLMSTL specification corresponding to all computational models

are made available at http://mule.modelchecking.org/case-studies.

6.2 Model construction

6.2.1 Rat cardiovascular system dynamics

The cardiovascular system comprises the heart, blood and blood vessels, and

is the organ system responsible for delivering oxygen and nutrients to, and

removing waste products from the entire organism. Its dynamics changes in case

of a transient increase of the thoracic pressure (e.g. by performing the Valsalva

manoeuvre) which leads to reduced blood flow in the right atrium, reduced cardiac

output and decreased aortic pressure (Beard et al., 2012).

In order to describe the behavioural changes of the cardiovascular system

during the Valsalva manoeuvre Beard et al. built a multiscale non-spatial ODE

model (Beard et al., 2012) by integrating two previously existing models. The

first model is an abstract representation of the cardiovascular system (Smith

et al., 2004). Conversely the second model encodes the baroreflex mechanism (Bu-

genhagen et al., 2010) which is employed to maintain the blood pressure of an

organism at approximately constant levels. One of the main advantages of the

integrated multiscale model is that it enables relating changes at the entire car-

diovascular system level with changes at the baroreflex mechanism level and vice

versa, which was not possible when employing the constituent models separately.

The hierarchical organization of the resulting model is encoded by the MA graph

depicted in Figure 6.1.

For validation purposes the numeric state variables considered at the organ

system scale are the thoracic pressure and the heart rate, and the aortic pressure

at the cellular scale.

http://mule.modelchecking.org/case-studies

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 166

OrganSystem, Cardiovascular

Cellular, Baroreceptor

Figure 6.1: MA graph representing the multiscale organization of the rat cardiovascular system
dynamics computational model.

6.2.2 Uterine contractions of labour

Although it is known that usually during human labour regions across the entire

uterus contract in a coordinated fashion the underlying mechanisms by which

an initial local contraction propagates to the entire organ level are not fully

understood (Young and Barendse, 2014).

One hypothesis is that a positive feedback loop is created between the tissue

level contractions and the intrauterine pressure as follows: an initial tissue

level contraction increases the intrauterine pressure and adds tension to the

neighbouring regions, which in response start to contract, thus increasing the

intrauterine pressure even further and adding tension to their corresponding

neighbouring regions which also start to contract, and the entire process is

repeated until all contractible regions across the entire organ are recruited.

In order to test this hypothesis Young and Barendse developed a corresponding

predictive deterministic computational model (Young and Barendse, 2014). The

model was encoded as a cellular automaton in Mathematica and spans two levels

of organization, the organ level for the uterus, and the tissue level for the uterine

regions; see Figure 6.2 for the corresponding MA graph.

Tissue, BurstActivity Tissue, RefractoryActivityTissue, ContractileActivity

Organ, Uterus

Figure 6.2: MA graph representing the multiscale organization of the uterine contractions of labour
computational model.

At the organ (i.e. uterus) scale the numeric state variable considered is the

intrauterine pressure and space is encoded explicitly as a 4× 4 grid, where each

grid position represents a tissue (i.e. uterine region). Conversely at the tissue

level there is no explicit representation of space and the recorded numeric state

variables are the contractile, burst and refractory activities of the uterine regions.

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 167

6.2.3 Xenopus laevis cell cycle

The cell cycle is a fundamental biological process which is responsible for the

replication/division of cells and is involved in the development and partial renewal

of organisms. Its complexity usually increases with the complexity of the organism

considered. Therefore it is studied in lower and less complex organisms such as

the Xenopus laevis frog.

To gain a better understanding of the Xenopus laevis embryonic cell cycle and

how it affects cellular population growth the developers of the modelling software

Morpheus (Starruß et al., 2014) built a corresponding multiscale computational

model (Starruß and Back, 2014). The computational model describes how three

proteins CDK1, Plk1 and APC regulate the cell cycle at the intracellular level

using ODEs (Ferrell Jr. et al., 2011), respectively how cells divide and are

displaced in 2D space at the cellular level using a CPM. The corresponding MA

graph is depicted in Figure 6.3.

Intracellular, Plk1 Intracellular, APCIntracellular, CDK1

Cellular, Embryo

Figure 6.3: MA graph representing the multiscale organization of the Xenopus laevis cell cycle
computational model.

At the cellular level space is represented explicitly as a 52× 52 grid recording

the spatial distribution of the population of cells. Conversely at the intracellular

level there is no explicit representation of space and the numeric state variables

considered are the concentrations of CDK1, Plk1 and APC.

6.2.4 Acute inflammation of the gut and lung

There is no single definition of inflammation in the literature (Scott et al., 2004)

but in this thesis we will interpret it as the response of a biological system to bodily

damaging stimuli. Depending on the intensity of the stimulus an inflammatory

response initiated in one organ can propagate to other organs and eventually lead

to multiple organ failure (An, 2008).

To gain a better understanding of the relation between inflammatory responses

and multiple organ failure, G. An (An, 2008) built a multiscale agent-based compu-

tational model using the software NetLogo which describes how the inflammation

of either the gut (i.e. gut ischemia) or lung (i.e. pneumonia) could potentially

lead to the failure of both organs. The levels of organization considered in the

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 168

computational model are cellular (for representing endothelial and epithelial cells),

tissue (for representing the organ luminal space, the blood vessel luminal space,

and the endothelial and epithelial layers), and organ (for representing the gut and

lung); see Figure 6.4 for the corresponding MA graph.

Organ, LungOrgan, Gut

Organism, Human

Tissue, GutEndothelium Tissue, GutEpithelium Tissue, LungEpithelium Tissue, LungEndothelium

Cellular, GutEndotheliumIschemia Cellular, LungEndotheliumIschemia

Figure 6.4: MA graph representing the multiscale organization of the acute inflammation of the gut
and lung computational model.

The organism level is not modelled explicitly and the corresponding vertex

(Organism, Human) was added to the MA graph in Figure 6.4 only to ensure that

its structure is tree-like. At the organ level space is not represented explicitly and

the numeric state variables considered represent the amount of solute which leaked

into the gut and lung. Conversely at the tissue level space is represented explicitly

as a 31×31 grid where each grid position represents a cell. The tissue level numeric

state variables considered for both gut and lung are the total concentration of

cytoplasm and cell wall occludin, and the total cell damage by-product. At the

cellular level the numeric state variables considered encode the level of ischemia

for both gut and lung endothelial cells.

6.3 Multiscale spatio-temporal analysis

The computational models M1–M4 were simulated and the simulation outputs

were translated to MSTML. The translation operation comprises converting

the simulation output to csv format, generating an MSTML subfile for each

considered time point, numeric state variable and spatial region comprising one or

multiple grid positions, and in the end merging all subfiles into a single MSTML

file. Execution times for the model simulation and subsequent translation steps

corresponding to all computational models are provided in Table 6.2.

The most time consuming step for the rat cardiovascular system dynamics

(i.e. u37.22s) and the acute inflammation of the gut and lung (i.e. u329.60s) case

studies was the model simulation due to the large number of time points considered

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 169

Table 6.2: Model simulation and analysis execution times for the rat cardiovascular system dynamics,
the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut
and lung case studies. The steps considered are model simulation, conversion of the simulation output
to csv format, generating an MSTML subfile for each considered time point, numeric state variable
and spatial region comprising one or multiple grid positions, and merging subfiles into a single MSTML
file. Depending on the computational model type (i.e. deterministic/stochastic/hybrid) and the formal
specification against which it was validated, the number of considered model simulations, respectively
time points per model simulation differed. Computational models are distinguished by their model id
(i.e. M1–M4). The number of model simulations considered was 1 for computational models M1 and
M2, 1500 for M3, and 500 for M4. The number of time points recorded for each model simulation was
30001 for computational model M1, 330 for M2, 103 for M3, and 1000 for M4.

Execution time (seconds)

M1 M2 M3 M4

Model simulation 37.2183 1.1339 1.7860 329.5979
Convert simulation output to csv format 0.3333 0.0185 1.3125 2.6153

Generate MSTML subfiles 25.5179 25.1534 12.0642 64.8183
Merge subfiles into single MSTML file 31.2068 0.4352 1.6562 2.8784

(i.e. 30001), and the stochastic nature and high complexity associated with the

model. Conversely the most time consuming step for the uterine contractions of

labour (i.e. 25.1534s) and Xenopus laevis cell cycle (i.e. 12.0642s) case studies

was generating the MSTML subfiles due to the spatial regions which have been

automatically detected and analysed for each spatial state variable considered.

The least time consuming step for all case studies was converting the model

simulation output to csv format.

6.4 Formal specification

The generated MSTML files representing the behaviour of the computational

models are employed during the evaluation of the formal specification described

below using quotes from the original paper introducing the models, derived natural

language statements and corresponding PBLMSTL statements.

6.4.1 Rat cardiovascular system dynamics

1. Quote from paper: “During the interval marked Valsalva the thoracic

pressure is increased from the baseline value of -4 mmHg to the value of 16

mmHg. After 10 s of elevated pressure, thoracic pressure is returned to the

baseline value” (Beard et al., 2012).

Natural language: The probability is greater than 0.9 that after initiating

the Valsava manoeuvre (time = 5000 ms) the thoracic pressure increases from

the baseline value -4 to 16 for 10 seconds (time interval [5001 ms, 14999 ms]),

and then drops back to the baseline value -4. The corresponding rephrased

natural language statement is that the probability is greater than 0.9 that

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 170

after initiating the Valsava manoeuvre (time = 5000 ms) the thoracic pressure

{P th} (corresponding to scale and subsystem OrganSystem.Cardiovascular)

increases from the baseline value -4 to 16 for 10 seconds (time interval [5001

ms, 14999 ms]), and then drops back to the baseline value -4.

PBLMSTL: P > 0.9 [(G [0, 5000] ({P th} (scaleAndSubsystem =

OrganSystem.Cardiovascular) = −4)) ∧
(G [5001, 14999] ({P th} (scaleAndSubsystem =

OrganSystem.Cardiovascular) = 16)) ∧
(G [15000, 30000] ({P th} (scaleAndSubsystem =

OrganSystem.Cardiovascular) = −4))].

2. Quote from paper: “During the initial phase of the response” ... “the

increase in aortic pressure causes a transient decrease in heart rate via the

baroreflex” (Beard et al., 2012).

Natural language: The probability is greater than 0.9 that during the

initial phase of the response (time interval [5001 ms, 6500 ms]) the aortic

pressure increases and the heart rate decreases. The corresponding rephrased

natural language statement is that the probability is greater than 0.9 that

during the initial phase of the response (time interval [5001 ms, 6500

ms]) the aortic pressure {P ao} (corresponding to scale and subsystem

Cellular.Baroreceptor) increases and the heart rate {HR} (corresponding

to scale and subsystem OrganSystem.Cardiovascular) decreases. Since the

values of {P ao} and {HR} are continuously oscillating we check if the

maximum {P ao} value in time interval [5001 ms, 6500 ms] is larger than

the maximum {P ao} value in time interval [4800 ms, 5000 ms], and if the

minimum {HR} value in time interval [5001 ms, 6500 ms] is smaller than

the minimum {HR} value in time interval [4800 ms, 5000 ms].

PBLMSTL: P > 0.9 [(max([5001, 6500] {P ao} (

scaleAndSubsystem = Cellular.Baroreceptor)) >

max([4800, 5000] {P ao} (scaleAndSubsystem =

Cellular.Baroreceptor))) ∧
(min([5001, 6500] {HR} (scaleAndSubsystem =

OrganSystem.Cardiovascular)) <

min([4800, 5000] {HR} (scaleAndSubsystem =

OrganSystem.Cardiovascular)))].

3. Quote from paper: “Following the initial response of increased” (aortic)

“pressure, pressure begins to drop as a result of elevated thoracic pressure

impeding venous flow to the heart. Heart rate increases in response to

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 171

the reduction in pressure predicted over the second phase of the Valsalva

interval” (Beard et al., 2012).

Natural language: The probability is less than 0.1 that after the initial

response phase (time interval [5001 ms, 6500 ms]) the aortic pressure con-

tinues to increase or stay constant, and the heart rate continues to decrease

or stay constant throughout the remainder of the Valsava interval (time in-

terval [6501 ms, 14999 ms]). The corresponding rephrased natural language

statement is that the probability is less than 0.1 that after the initial re-

sponse phase (time interval [5001 ms, 6500 ms]) the aortic pressure {P ao}
(corresponding to scale and subsystem Cellular.Baroreceptor) continues to

increase or stay constant, and the heart rate {HR} (corresponding to scale

and subsystem OrganSystem.Cardiovascular) continues to decrease or stay

constant throughout the remainder of the Valsava interval (time interval

[6501 ms, 14999 ms]). This statement can be rewritten as the minimum

{P ao} value in time interval [6501 ms, 14999 ms] is greater or equal to

the maximum {P ao} value in time interval [5001 ms, 6500 ms], and the

maximum {HR} value in time interval [6501 ms, 14999 ms] is smaller or

equal to the minimum {HR} value in time interval [5001 ms, 6500 ms] with

probability less than 0.1.

PBLMSTL: P < 0.1 [(min([6501, 14999] {P ao}(
scaleAndSubsystem = Cellular.Baroreceptor)) >=

max([5001, 6500] {P ao}(scaleAndSubsystem =

Cellular.Baroreceptor))) ∧
(max([6501, 14999] {HR}(scaleAndSubsystem =

OrganSystem.Cardiovascular)) <=

min([5001, 6500] {HR}(scaleAndSubsystem =

OrganSystem.Cardiovascular)))].

6.4.2 Uterine contractions of labour

4. Quote from paper: As indicated by the first rule in the “Formal presen-

tation of the rules of the simulation” subsection of (Young and Barendse,

2014) the intrauterine pressure (pressure) is computed as the sum of all

contractile activities (act) divided by the total number of regions (#regions)

and their corresponding constant anatomic sensitivities (anatomysens):

pressure(t) =
∑

act(i, j)/(#regions ∗ anatomysens(i, j)),

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 172

where t represents the current time point, respectively i and j encode Ox

and Oy coordinates in the discretised 2D spatial domain.

Since both the total number of uterus regions and the associated anatomic

sensitivities are constant throughout individual model simulations, the in-

trauterine pressure is directly proportional to the contractile activities of

the uterine regions.

Natural language: The probability is greater than 0.9 that the intrauter-

ine pressure increases/decreases with the contractile activity of uterine

regions. The corresponding rephrased natural language statement is that

the intrauterine pressure {Pressure} (corresponding to scale and subsystem

Organ.Uterus) increases/decreases with the contractile activities (denoted

in PBLMSTL as densities) of the uterine regions (corresponding to scale

and subsystem Tissue.ContractileActivity) with probability greater than

0.9.

PBLMSTL: P > 0.9 [G [1, 329] (((d({Pressure}
(scaleAndSubsystem = Organ.Uterus)) > 0) ∧
((d(sum(density(filter(regions, scaleAndSubsystem =

Tissue.ContractileActivity)))) > 0))) ∨
((d({Pressure} (scaleAndSubsystem = Organ.Uterus)) < 0) ∧
((d(sum(density(filter(regions, scaleAndSubsystem =

Tissue.ContractileActivity)))) < 0))) ∨
(d({Pressure}(scaleAndSubsystem = Organ.Uterus)) = 0))].

5. Quote from paper: “When a region is experiencing an action potential

burst, the contractile activity is calculated by multiplying the passive tension

by the action potential multiplier (a factor > 1)” (Young and Barendse,

2014).

Following on from the quote(s) corresponding to statement 4 the intrauterine

pressure increases/decreases with the contractile activity.

Natural language: The probability is less than 0.1 that the intrauterine

pressure decreases when the entire uterus experiences an action potential

burst. The corresponding rephrased natural language statement is that

the probability is less than 0.1 that the intrauterine pressure {Pressure}
(corresponding to scale and subsystem Organ.Uterus) decreases when the

entire uterus comprising all 16 regions (corresponding to scale and subsystem

Tissue.BurstActivity) experiences an action potential burst.

PBLMSTL: P < 0.1 [F [1, 329] ((d({Pressure}(
scaleAndSubsystem = Organ.Uterus)) < 0) ∧
(min(area(filter(regions, scaleAndSubsystem =

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 173

Tissue.BurstActivity))) = 16))].

6. Quote from paper: “When a region is in the refractory period, the tension”

(or pressure) “is decreased by multiplying the passive tension by a factor <

1 (refractory multiplier)” (Young and Barendse, 2014).

Natural language: The probability is greater than 0.9 that the intrauter-

ine pressure decreases when the entire uterus is in the refractory period.

The corresponding rephrased natural language statement is that the proba-

bility is greater than 0.9 that the intrauterine pressure {Pressure} (corre-

sponding to scale and subsystem Organ.Uterus) decreases when the entire

uterus comprising all 16 regions (corresponding to scale and subsystem

Tissue.RefractoryActivity) is in the refractory period.

PBLMSTL: P > 0.9 [G [1, 329] (((max(area(filter(regions,

scaleAndSubsystem = Tissue.RefractoryActivity))) = 0)) ⇒
((d({Pressure}(scaleAndSubsystem = Organ.Uterus)) < 0) ∨
((d({Pressure}(scaleAndSubsystem = Organ.Uterus)) = 0) ∧
({Pressure}(scaleAndSubsystem = Organ.Uterus) = 0.5))))].

6.4.3 Xenopus laevis cell cycle

7. Quote from paper: “The activation of CDK1 drives the cell into mito-

sis” (Ferrell Jr. et al., 2011).

Natural language: The probability is greater than 0.9 that whenever the

concentration of CDK1 reaches very high levels (in our case >96% of its

maximum value) all cells will divide. The corresponding rephrased natural

language statement is that the probability is greater than 0.9 that if the

concentration (denoted in PBLMSTL as density) of CDK1 (corresponding

to scale and subsystem Intracellular.CDK1) increases above 0.96 then all

cells will divide i.e. the sum of the (densities · areas) of all regions covered by

cells (corresponding to scale and subsystem Cellular.Embryo) will increase.

The value of 96% corresponds to the normalized threshold concentration 0.5

for CDK1 ([CDK1] ∈ [0, 0.515]) chosen by the developers of the multiscale

model (Starruß and Back, 2014) to trigger cellular division. Moreover the

time interval considered in the PBLMSTL statements corresponds to the

time interval considered in the model simulation.

PBLMSTL: P > 0.9 [G [0, 100] (((

count(density(filter(regions, scaleAndSubsystem =

Intracellular.CDK1 ∧ density < 0.96))) =

count(density(filter(regions, scaleAndSubsystem =

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 174

Intracellular.CDK1)))) ∧
(X (count(density(filter(regions, scaleAndSubsystem =

Intracellular.CDK1 ∧ density > 0.96))) =

count(density(filter(regions, scaleAndSubsystem =

Intracellular.CDK1)))))) ⇒
(d(sum(multiply(area(filter(regions, scaleAndSubsystem =

Cellular.Embryo)), density(filter(regions, scaleAndSubsystem =

Cellular.Embryo))))) > 0))].

8. Quote from paper: “the activation of APC, which generally lags behind

CDK1, drives the cell back out of mitosis” (Ferrell Jr. et al., 2011).

Natural language: The probability is greater than 0.9 that whenever the

average concentration of APC increases and reaches its local maximum value

no cell will divide. The corresponding rephrased natural language statement

is that the probability is greater than 0.9 that if the average concentration

(represented in PBLMSTL as density) of APC (corresponding to scale and

subsystem Intracellular.APC) reaches a local maximum value i.e. increases

and then decreases, then no cell will divide i.e. the sum of the (densities ·
areas) of all regions covered by cells (corresponding to scale and subsystem

Cellular.Embryo) will remain constant.

The time interval considered in the PBLMSTL statements corresponds to

the time interval considered in the model simulation.

PBLMSTL: P > 0.9 [G [0, 100] (((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC)))) > 0) ∧
(X (d(avg(density(filter(regions, scaleAndSubsystem =

Intracellular.APC)))) < 0))) ⇒
(X (d(sum(multiply(area(filter(regions, scaleAndSubsystem =

Cellular.Embryo)), density(filter(regions, scaleAndSubsystem =

Cellular.Embryo))))) = 0)))].

9. Quote from paper: Figure 5C in the reference paper considered (Ferrell Jr.

et al., 2011) illustrates the oscillatory behaviour of the concentrations of

APC, CDK1 and Plk1. This behaviour is additionally emphasized in the

figure caption “Time course of the system, showing sustained limit cycle

oscillations” (Ferrell Jr. et al., 2011).

Natural language: The probability is greater than 0.9 that the average

concentrations of CDK1, Plk1 and APC increase and then decrease (i.e.

oscillate) over time at least three times. The corresponding rephrased

natural language statement is that the probability is greater than 0.9 that

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 175

the average concentrations (represented in PBLMSTL as densities) of CDK1,

Plk1 and APC (corresponding to scale and subsystem Intracellular.CDK1,

Intracellular.Plk1, and Intracellular.APC) increase and then decrease over

time at least three times.

The minimum number of oscillations (in our case three) was chosen according

to the number of oscillations displayed in Figure 5C of the reference paper

considered (Ferrell Jr. et al., 2011). Moreover the time interval considered

in the PBLMSTL statements corresponds to the time interval considered in

the model simulation.

PBLMSTL: P > 0.9 [(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1)))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1)))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.CDK1)))) < 0))))))))))))) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1)))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1)))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.Plk1)))) < 0))))))))))))) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC)))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 176

scaleAndSubsystem = Intracellular.APC)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC)))) < 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC)))) > 0) ∧
(F [0, 100] ((d(avg(density(filter(regions,

scaleAndSubsystem = Intracellular.APC)))) < 0)))))))))))))].

6.4.4 Acute inflammation of the gut and lung

10. Quotes from paper:

• “tight junction (TJ) proteins are involved in the integrity of gut ep-

ithelial barrier function” ... “The TJ proteins that seem to be most

affected in this situation are occludin ...” (An, 2008).

• “pulmonary epithelial cells behave very similarly to gut epithelial

cells with respect to tight junction metabolism and epithelial barrier

function” (An, 2008).

• “The impaired systemic oxygenation due to pulmonary leak arises from

pulmonary epithelial barrier failure” (An, 2008).

• “impaired oxygenation into the endothelial lumen, which is summed

across the surface of the model to produce a measure of systemic

arterial oxygen content. This value will now represent the baseline

”oxy” level for all other systemic endothelial agents” (An, 2008).

• “ischemia was modeled as a percentage of the total endothelial surface

rendered ”ischemic,” a state defined in the rules for the endothelial

cell agents as an ”oxy” level < 60” (An, 2008).

Natural language: The probability is greater than 0.9 that if the level

of cytoplasm occludin in the lung decreases then eventually the number of

ischemic endothelial lung cells will increase. The corresponding rephrased

natural language statement is that the probability is greater than 0.9 that if

the value of {LungOccludinCytoplasm} (corresponding to scale and subsys-

tem Tissue.LungEpithelium) decreases then eventually the total area of the

regions defined by ischemic endothelial lung cells (corresponding to scale

and subsystem Cellular.LungEndotheliumIschemia) will increase.

PBLMSTL: P > 0.9 [F [1, 999] ((d({LungOccludinCytoplasm}(
scaleAndSubsystem = Tissue.LungEpithelium)) < 0) ⇒

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 177

(F [1, 999] (d(sum(area(filter(regions, scaleAndSubsystem =

Cellular.LungEndotheliumIschemia)))) > 0)))].

11. Quotes from paper:

• “this variable is termed ”cell-damage-byproduct,” and it is calculated

as a function of total endothelial damage” (An, 2008).

• “the levels of ”cell-damage-byproduct” will be the proxy for the uniden-

tified compound that is produced in the ischemic gut and circulated

to the lung, leading to inflammation of pulmonary endothelium” (An,

2008).

Natural language: The probability is greater than 0.9 that always an

increase of the cell damage by-product in the gut will lead to an increase

of the cell damage by-product in the lung. The corresponding rephrased

natural language statement is that the probability is greater than 0.9 that

always if the value of {GutCellDamageByproduct} (corresponding to scale

and subsystem Tissue.GutEndothelium) increases, then eventually the value

of {LungCellDamageByproduct} (corresponding to scale and subsystem

Tissue.LungEndothelium) increases.

PBLMSTL: P > 0.9 [G [1, 999] ((d({GutCellDamageByproduct}(
scaleAndSubsystem = Tissue.GutEndothelium)) > 0) ⇒
(F [1, 999] (d({LungCellDamageByproduct}(scaleAndSubsystem =

Tissue.LungEndothelium)) > 0)))].

12. Quotes from paper:

• “tight junction (TJ) proteins are involved in the integrity of gut ep-

ithelial barrier function” ... “The TJ proteins that seem to be most

affected in this situation are occludin ...” (An, 2008).

• “A luminal compound that diffuses in response to TJ barrier failure” ...

“is represented by ”gut-leak,” which is equal to the ”solute”” ... “that

penetrates the failed barrier” (An, 2008).

Natural language: The probability is greater than 0.9 that if the level

of cell wall occludin in the gut decreases then eventually the amount of

solute leaking in the gut lumen will increase. The corresponding rephrased

natural language statement is that the probability is greater than 0.9 that if

the value of {GutOccludinCellwall} (corresponding to scale and subsystem

Tissue.GutEpithelium) decreases then eventually the value of {GutLeak}
(corresponding to scale and subsystem Organ.Gut) will increase.

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 178

PBLMSTL: P > 0.9 [F [1, 999] ((d({GutOccludinCellwall}(
scaleAndSubsystem = Tissue.GutEpithelium)) < 0) ⇒
(F [1, 999] (d({GutLeak}(scaleAndSubsystem = Organ.Gut)) > 0)))].

6.5 Model checking

Each PBLMSTL statement (stored in a separate file) was evaluated 500 times

against the relevant MSTML file(s) considering the corresponding MA graphs. The

main reason for evaluating each PBLMSTL statement against the corresponding

MSTML file(s) 500 times is to compute the variation of the model checker

execution time between runs for the deterministic computational models (M1

and M2), respectively the variation of the model checker results for the hybrid

(M3) and stochastic (M4) computational models. In the case of the deterministic

computational models (M1 and M2) the probabilistic black-box model checking

algorithm was employed because it does not place a lower bound on the required

number of model simulations and therefore is suitable for computational models

which are simulated only once. Conversely, in case of the hybrid (M3) and

stochastic (M4) computational models the frequentist statistical model checking

algorithm was employed setting the probability of both type I and type II errors

equal to 5%. The output of the statistical analysis of the model checking results

is summarized in Table 6.3.

Empirical evidence shows that all computational models are valid relative

to the formal specifications derived from the original papers introducing the

models. Due to the deterministic nature of computational models M1 and M2,

the corresponding model checking results were obtained by considering a single

MSTML file, and therefore were identical across all 500 model checker executions.

The main difference between the PBLMSTL statements considered is that in

case of statements 1, 2, 4 and 6 the estimated probability p for them to hold,

computed as #true MSTML divided by #total MSTML, was p = (1 / 1) = 1,

respectively for the PBLMSTL statements 3 and 5 it was p = (0 / 1) = 0. However

since the associated probabilistic specification for the PBLMSTL statements 1,

2, 4 and 6 was p > 0.9 (i.e. 1 > 0.9), respectively p < 0.1 (i.e. 0 < 0.1) for the

PBLMSTL statements 3 and 5, all PBLMSTL statements hold. Conversely in

case of the hybrid, respectively stochastic computational models M3 and M4, the

model checking results were obtained by considering multiple MSTML files, and

therefore in some cases (see Table 6.3, row corresponding to SId 7) variations

between model checker executions were observed.

The average execution times corresponding to the validation of the deter-

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 179

Table 6.3: Model checking statistical analysis results for the rat cardiovascular system dynamics, the
uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and
lung case studies. Entries in the “MId” and “SId” columns represent the numeric identifiers associated
with each computational model and its corresponding PBLMSTL statements. The “% true PBLMSTL”
column describes what percentage of the 500 executions concluded that the PBLMSTL statement is
true. “#total MSTML” represents the total number of MSTML files evaluated for the PBLMSTL
statement; columns “#true MSTML” and “#false MSTML” represent the number of MSTML files
for which the PBLMSTL statement was evaluated true, respectively false. “Execution time” presents
the average model checking execution time for each PBLMSTL evaluation using the “minutes:seconds”
format. “µ” and “σ” represent the mean and standard deviation.

MId SId
% true

PBLMSTL

#total
MSTML

#true
MSTML

#false
MSTML

Execution
time

µ σ µ σ µ σ µ σ

1

1 100 1 0 1 0 0 0 0:17.67 0:0.12

2 100 1 0 1 0 0 0 0:17.61 0:0.13

3 100 1 0 0 0 1 0 0:17.80 0:0.36

2

4 100 1 0 1 0 0 0 0:0.55 0:0.01

5 100 1 0 0 0 1 0 0:0.54 0:0.01

6 100 1 0 1 0 0 0 0:0.54 0:0.01

3

7 100 28.79 2.04 28.61 1.62 0.19 0.44 0:35.35 0:2.44

8 100 28 0 28 0 0 0 0:34.29 0:0.09

9 100 28 0 28 0 0 0 0:35.36 0:0.99

4

10 100 28 0 28 0 0 0 1:27.39 0:0.72

11 100 28 0 28 0 0 0 1:30.27 0:2.23

12 100 28 0 28 0 0 0 1:27.03 0:0.65

ministic computational models M1 and M2 were smaller than for the hybrid,

respectively stochastic computational models M3 and M4. This is due to the

difference in the number of MSTML files considered which was one for computa-

tional models M1 and M2, respectively u28 for computational models M3 and

M4. Moreover the variation in the average model checker execution times between

the computational models M1 and M2, respectively M3 and M4 is due to the

difference in the number of time points considered per model simulation which

was 30001 for M1 and 330 for M2, respectively 103 for M3 and 1000 for M4.

Average model checker execution times corresponding to the same computational

model but different PBLMSTL statements were approximately equal throughout

because most of the execution time is spent on reading the MSTML file(s) from

disk and not the evaluation of the PBLMSTL statements.

By storing the PBLMSTL statements corresponding to a computational model

in separate files each MSTML file read by the model checker from disk is evaluated

against only one rather than all PBLMSTL statements. Therefore in order to

reduce the average model checker execution time all PBLMSTL statements

corresponding to the same computational model could be written into a single

file. A comparison between average execution times obtained for 500 model

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 180

checker executions considering all PBLMSTL statements written into single,

respectively multiple separate files are provided in Table 6.4. Regardless of the

computational model considered the average execution time was approximately

three times smaller when storing PBLMSTL statements in single rather than

multiple separate files. The main reason for this is that the total number of

MSTML files read from disk, which takes up most of the model checker execution

time, was reduced by a factor equal to the number of PBLMSTL statements

considered (i.e. 3).

Table 6.4: Comparison of average model checker execution times when PBLMSTL statements cor-
responding to a computational model are stored in a single, respectively multiple separate files. The
“MId” column records the numeric identifiers associated with each computational model. Average
model checker execution times corresponding to PBLMSTL statements stored in a single, respectively
multiple separate files are provided in columns “Single file” and “Separate files”.

MId
Execution times (minutes:seconds)

Single file Separate files

1 0:17.902 0:53.072
2 0:00.560 0:01.625
3 0:36.302 1:45.003
4 1:27.505 4:24.682

A comparison between the average execution times recorded for simulating the

model, translating the output to MSTML and validating it using model checking

is given in Figure 6.5.

The most time consuming step in the model checking workflow for both the

cardiovascular system dynamics and acute inflammation of the gut and lung case

studies is the model simulation. This is due to the large number of time points

considered in case of the former, and the high complexity associated with the

stochastic computational model in case of the latter. Conversely for the uterine

contractions of labour case study the most time consuming step in the model

checking workflow is generating the MSTML subfiles due to the additional need to

automatically detect and analyse spatial regions of three types (i.e. corresponding

to the contractile, burst and refractory activities) for each simulation time point.

In contrast, the most time consuming step in the model checking workflow for

the Xenopus laevis cell cycle case study is model checking due to the need to

evaluate each PBLMSTL statement against multiple MSTML files. The least time

consuming step in the model checking workflow for all case studies is converting

the simulation output to csv format.

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 181

Rat cardiovascular system dynamics (M1) Uterine contractions of labour (M2)

Xenopus laevis cell cycle (M3) Acute inflammation of the gut and lung (M4)

1.786s 1.312s

12.064s

1.656s

36.302s

0

10

20

30

40

Model
simulation

Conversion
to csv
format

Generating
MSTML
subfiles

Merging
MSTML
subfiles

Model
checking

Model checking workflow step

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

329.597s

2.615s

64.818s

2.878s

87.505s

0

100

200

300

Model
simulation

Conversion
to csv
format

Generating
MSTML
subfiles

Merging
MSTML
subfiles

Model
checking

Model checking workflow step

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

37.218s

0.333s

25.517s

31.206s

17.902s

0

10

20

30

40

Model
simulation

Conversion
to csv
format

Generating
MSTML
subfiles

Merging
MSTML
subfiles

Model
checking

Model checking workflow step

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

1.133s 0.018s

25.153s

0.435s 0.56s
0

10

20

Model
simulation

Conversion
to csv
format

Generating
MSTML
subfiles

Merging
MSTML
subfiles

Model
checking

Model checking workflow step

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Figure 6.5: Average execution times (measured in seconds) corresponding to the validation of the rat
cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and
the acute inflammation of the gut and lung computational models. Execution times were recorded for
the computational model simulation, converting the output to csv format, generating MSTML subfiles
for each considered time point, numeric state variable and spatial entity, merging the subfiles into a
single MSTML file, and model checking.

6.6 Discussion

The multiscale multidimensional spatio-temporal meta model checking method-

ology enables the validation of multiscale computational models of biological

systems relative to specifications describing the expected system behaviour. Com-

putational models are either encoded directly as MSSpDESs or translated from a

high-level modelling formalism into an equivalent MSSpDES representation. Time

series data representing the model behaviour are pre-generated or generated on

demand by the model checker and are processed by the multiscale spatio-temporal

analysis module to automatically detect and analyse spatial entities across multi-

ple levels of organization. The processed time series data are stored in MSTML

files. Formal specifications against which the models are validated are encoded in

PBLMSTL, and depending on the chosen model checking algorithm, are evaluated

multiple times against MSTML files to determine the (in)correctness of the model.

Although only the probabilistic black box (see rat cardiovascular system dynamics

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 182

and uterine contractions of labour case studies) and frequentist statistical model

checking algorithms (see Xenopus laevis cell cycle and acute inflammation of the

gut and lung case studies) were employed here, additional frequentist (i.e. based

on Chernoff-Hoeffding bounds) and Bayesian (i.e. hypothesis testing, mean and

variance estimate based) model checking algorithms are supported. To automate

the entire validation process the approach was implemented in the model checker

Mule which is made freely available online (source code, binary, Docker image)

at http://mule.modelchecking.org.

6.6.1 Model validation and experimental data analysis

The multiscale multidimensional spatio-temporal meta model checking methodol-

ogy is generic and supports computational models encoded using various high-level

modelling formalisms because it is defined relative to time series data rather than

the computational models used to produce them.

The only requirement is that the computational models can be translated from

the high-level modelling formalism used initially to encode them into an equivalent

MSSpDES representation. This is illustrated by the case studies considered which

were formally encoded using ODEs (rat cardiovascular system dynamics), CAs

(uterine contractions of labour), CPMs (Xenopus laevis cell cycle), ABMs (acute

inflammation of the gut and lung) or combinations thereof.

In addition since the multiscale multidimensional spatio-temporal meta model

checking methodology is defined relative to time series data, in principle, it could

be employed to analyse experimental time series data recorded in the wet lab

against given formal specifications, but this is beyond the scope of this thesis.

6.6.2 Automatic reconfiguration according to case study

specific spatial entity types and measures

The meta model checking concept enables automatically reconfiguring the model

checking method and its implementation according to case study specific spatial

entity types (e.g. 3D spatial structure) and/or properties (e.g. minimum distance

to a fixed point) not covered by our multiscale spatio-temporal analysis module.

The only requirement is that a corresponding multiscale spatio-temporal analysis

module is defined which can automatically detect and analyse the considered

types of spatial entities. Such modules can be usually defined based on existing

functions from the image processing literature.

The meta model checking approach was implemented using two instead of

one compilation step. The first compilation step automatically translates a

http://mule.modelchecking.org

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 183

configuration file recording the considered spatial entity types and properties into

C++ source code. The second compilation step translates the C++ source code

into an executable. The main reason for employing an additional compilation step

rather than loading the configuration file at runtime and dynamically updating

the behaviour of the model checker accordingly is that the latter approach could

potentially negatively impact the performance of the model checker.

Using the meta model checking concept it is also possible to adapt the mul-

tiscale model checking approach to other domains of science where multiscale

computational models are employed (e.g. astrophysics, energy, engineering, envi-

ronmental science and materials science (Groen et al., 2014)). However this is

beyond the scope of this thesis.

In addition the meta model checking concept could be additionally employed

to reconfigure the model checker according to non-spatial (atomic) properties (e.g.

second order derivative) previously not considered, and to employ representations

different from rooted trees to encode the hierarchical structure of multiscale

systems.

6.6.3 Scalability

The scalability of the entire multiscale model validation workflow depends on

the scalability of the model simulation, multiscale spatio-temporal analysis and

model checking steps. The execution time of the model simulation depends on

the complexity of the system considered. Conversely the execution times of both

the multiscale spatio-temporal analysis and the model checker depend on the

size of the simulation output. In addition, the model checker execution time also

depends on the formal specification. Our expectation is that scaling up to more

complex systems will lead to an increase of the computational model complexity

but not necessarily the size of the simulation output and/or formal specification.

Therefore the expected scalability bottleneck of the entire model checking workflow

is the model simulation and not the model validation step. This is supported by

empirical evidence obtained from the case studies; the ratio between the maximum

and minimum execution times for the model simulation step was u290, u5 for

the multiscale spatio-temporal analysis and u156 for the model checking step. In

addition it would be possible to speed up the model checking step by evaluating

MSTML files against the formal specification in parallel rather than sequentially

as it is done now.

Pârvu O., 2015, CHAPTER 6. VALIDATION OF MULTISCALE 184

Summary

The efficacy and usefulness of the multiscale multidimensional spatio-temporal

meta model checking methodology was illustrated against four multiscale com-

putational models of biological systems encoding the rat cardiovascular system

dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and

the acute inflammation of the gut and lung. One of the conclusions drawn is

that the methodology is generic and supports computational models encoded

using various high-level modelling formalisms because it is defined relative to time

series data and not the models used to generate them. Moreover using the meta

model checking approach the methodology can be reconfigured automatically

according to case study specific spatial entity types and measures, which can

correspond to different numbers of spatial dimensions, or are characteristic to

other domains of science. Finally empirical evidence shows that the approach

scales well and therefore is expected to be also applicable to computational models

of more complex systems.

CHAPTER 7
Conclusions, open problems and

future work

This concluding chapter highlights the main contributions of the thesis and its

potential practical applications. Corresponding open problems that could be

addressed in the future are described in the end.

7.1 Summary and conclusions

Due to the decreasing costs of computational power and increasing amount of

biological data available, there is an unprecedented opportunity to build and use

multiscale (spatial) computational models of complex biological systems to gain a

systems level understanding of how biological organisms function.

However insights gained from such computational models can be employed

for real-life applications only if the models have been validated first. One of

the most frequently employed in silico approaches for validating computational

models of biological systems is called model checking. The main limitation of

the existing model checking approaches (see Chapter 2) is that they cannot

be employed to validate (multiscale) spatial computational models of complex

biological systems. The main reason for this is that they do not consider how

properties of (emergent) spatial structures (e.g. area of multicellular population)

change over time and across multiple scales (e.g. cellular and organ). Moreover

validating such computational models in the in vitro environment is often difficult

due to the lack of biological data from all scales, and the interactions between

scales.

This thesis addresses the limitations of existing model checking approaches by

introducing a novel multiscale multidimensional spatio-temporal meta model check-

185

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 186

ing methodology that enables validating both uniscale and multiscale (spatial)

computational models of complex biological systems relative to formal specifica-

tions describing how both numeric properties (e.g. concentrations) and properties

of (emergent) spatial structures are expected to change over time and/or across

multiple scales.

The description of the methodology is separated into two parts. The first

part presents the multidimensional spatio-temporal model checking methodol-

ogy which enables the validation of uniscale spatial computational models (see

Chapters 3 and 4), whereas the second part builds on the first and describes the

multiscale multidimensional spatio-temporal meta model checking methodology

that enables the validation of both uniscale and multiscale computational models

(see Chapters 5 and 6).

7.1.1 Multidimensional spatio-temporal model checking

The multidimensional spatio-temporal model checking methodology (see Chap-

ter 3) was developed to enable the validation of spatial computational models of

biological systems with respect to both how numeric properties and properties of

(emergent) spatial structures are expected to change over time. Existing model

checking approaches cannot be employed to validate such models because they

only consider how numeric properties change over time.

Using the multidimensional spatio-temporal model checking approach, spatial

computational models are validated relative to a given formal PBLSTL specifi-

cation as follows. First of all the computational model is simulated to generate

time series data. The resulting time series data is passed as input to the spatio-

temporal analysis module which can automatically detect and analyse how specific

types of spatial entities change over time. The output of the spatio-temporal

analysis module is merged with time series data encoding the evolution of numeric

properties over time and is formatted according to the standard xml-based data

representation format STML. The formal PBLSTL specification and the STML

files encoding the modelled system behaviour are taken as input by the model

checker which uses an approximate probabilistic model checking algorithm to

determine if the computational model is valid relative to the formal specification

(considering the minimum confidence level specified by the user). The output

of the model checker indicates if the model is valid relative to the given formal

specification, and records for which STML files the formal specification evaluated

true, respectively false.

The novel components introduced by the multidimensional spatio-temporal

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 187

model checking methodology are:

• The theoretical model SSpDES for encoding how stochastic (biological)

systems evolve over time and space;

• The spatio-temporal analysis modules for automatically detecting and

analysing how spatial properties of clusters/regions change over time;

• The standard representation format STML for recording time series data

describing how both numeric and spatial properties change over time;

• The quantitative probabilistic spatio-temporal logic PBLSTL for encoding

formal specifications describing how systems are expected to change over

time and space.

The approximate probabilistic model checking algorithms considered were intro-

duced in the papers referenced in Table 2.1.

To enable the automatic validation of computational models, the multidimen-

sional model checking approach was implemented in the model checker Mudi

which is made freely available online at http://mudi.modelchecking.org.

The applicability and efficacy of the model checker was illustrated against

two uniscale spatial computational models encoding phase variation in bacterial

colony growth and the chemotactic aggregation of cells (see Chapter 4).

The computational model corresponding to the former case study describes how

sector-like patterns (i.e. regions) emerge in bacterial colonies with phase variable

genes, and how their properties change over time. Understanding the potential

relationship between the development of sector-like patterns and the mutation

and/or fitness rates of bacteria could enable automatically predicting the latter

by only observing the former. In principle the parameters of the computational

model could be changed until the in silico generated sector-like patterns match

the ones observed in vitro/in vivo. If such a parameter combination is found,

the corresponding mutation and/or fitness rates of the bacteria could be directly

extracted from the computational model. Using the multidimensional spatio-

temporal model checking approach it would be possible to verify if the sector-like

patterns develop as expected, and if they evolve similarly in the in silico and in

the in vitro environment. Due to the lack of experimental data it was not possible

to check if a relationship between sector-like patterns and the mutation and/or

fitness rates of the bacteria truly exists, and this could be a potential direction

for future work.

Conversely the computational model corresponding to the latter case study

describes the chemotactic aggregation of a population of cells randomly distributed

http://mudi.modelchecking.org

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 188

in the environment. This case study does not have a specific intended practical

application. It was chosen mainly to illustrate the applicability of the multidi-

mensional model checking approach for the automatic detection and analysis of

clusters in time series data. The constituent elements of the clusters are not

explicitly constrained. Therefore other types of entities different from cells (e.g.

molecules, tissues etc.) are supported.

Following on from the considered case studies, one of the main advantages

of the model checker Mudi is that it supports computational models encoded

using various modelling formalisms because it is defined relative to time series

data and not the computational models used to generate them. For instance

the computational model corresponding to the phase variation case study was

encoded using Coloured Stochastic Petri Nets, whereas the computational model

corresponding to the chemotactic aggregation of cells case study was encoded as

a Cellular Potts model integrated with a system of partial differential equations.

Therefore the model checker Mudi could be integrated with various existing model

development workflows, and enable computational biologists to efficiently build

reliable spatial computational models of biological systems.

Conversely one of the main disadvantages of the multidimensional spatio-

temporal model checking approach is that it enables validating spatial compu-

tational models only relative to a fixed set of spatial entity types and measures.

Therefore any computational model where different types of spatial entities (e.g.

3D structure) and/or measures (e.g. volume) are of interest cannot be validated

using this approach. Moreover the multidimensional spatio-temporal model check-

ing approach does not enable to explicitly distinguish between different scales.

Therefore multiscale computational models cannot be validated by considering

how changes at one scale reflect at another scale and vice versa. These limitations

are addressed by the multiscale multidimensional spatio-temporal meta model

checking methodology described below.

7.1.2 Multiscale multidimensional spatio-temporal meta

model checking

The multiscale multidimensional spatio-temporal meta model checking methodol-

ogy (see Chapter 5) was developed to enable the validation of both uniscale and

multiscale (spatial) computational models relative to formal specifications describ-

ing how numeric properties and/or properties of case study specific (emergent)

spatial structures are expected to change over time and across multiple scales.

Therefore the main advantage of this methodology, compared to the multidimen-

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 189

sional spatio-temporal model checking approach, is that it can be automatically

reconfigured to enable the validation of spatial computational models considering

spatial entity types and/or measures specific to particular case studies, and it is

possible to explicitly distinguish between different scales.

The procedure for validating a multiscale (spatial) computational model

relative to a formal PBLMSTL specification using the multiscale multidimensional

spatio-temporal meta model checking approach comprises the following steps. First

of all the case study specific spatial entity types and measures need to be specified

in a configuration file. This configuration file is then taken as input by a module

which automatically generates a corresponding instance of the meta model checker

Mule. Secondly the computational model is simulated to generate time series data.

These time series data are then processed and translated to MSTML, which is a

multiscale extension of STML. In contrast to the uniscale multidimensional model

checking approach, spatial entities are detected and analysed using multiscale

rather than uniscale spatio-temporal analysis modules. The formal PBLMSTL

specification and the collection of MSTML files representing the modelled system

behaviour are taken as input by the generated instance of the meta model checker

Mule which decides if the formal specification holds for the computational model.

Similarly to Mudi, the output of the generated meta model checker instance

indicates if the computational model is valid or not, and for which MSTML files

the formal PBLMSTL specification evaluated true, respectively false.

The novel components introduced by the multiscale multidimensional spatio-

temporal meta model checking methodology are:

• The theoretical model MSSpDES for encoding how multiscale stochastic

(biological) systems evolve over time and space;

• The multiscale spatio-temporal analysis modules for automatically detecting

and analysing how case study specific spatial entities and their properties

change over time;

• The standard representation format MSTML for recording time series data

describing both how numeric and spatial properties change over time and

across multiple scales;

• The quantitative probabilistic multiscale spatio-temporal logic PBLMSTL

for encoding formal specifications describing how systems are expected to

change over time, space, and across multiple scales;

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 190

• The meta model checking approach which enables automatically reconfigur-

ing the model checker according to case study specific spatial entity types

and/or measures.

Similarly to the multidimensional spatio-temporal model checking approach, the

approximate probabilistic model checking algorithms considered were introduced

in the papers referenced in Table 2.1.

The multiscale multidimensional spatio-temporal meta model checking ap-

proach was implemented in the model checker Mule which is made freely available

online at http://mule.modelchecking.org in executable and source code format, as

well as a Docker image.

The efficacy and applicability of the meta model checker Mule was illustrated

against four systems biology computational models previously published in the lit-

erature encoding the rat cardiovascular system dynamics, the uterine contractions

of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and

lung (see Chapter 6). The potential practical applications of the computational

models have been previously described by their original authors, and therefore

will not be restated here. Moreover the formal specifications against which the

computational models were validated have been derived from the original papers

introducing the models. The main reason for choosing computational models

that encode different biological systems and/or organisms was to illustrate the

wide applicability of the multiscale multidimensional spatio-temporal meta model

checking approach.

Following on from the validation of the four computational models, and

due to the same reasons as for the multidimensional spatio-temporal model

checking approach, the multiscale multidimensional spatio-temporal meta model

checking methodology enables the validation of computational models encoded

using different modelling formalisms. Moreover the methodology is generic because

it can be automatically reconfigured according to case study specific types of

spatial entities (e.g. 3D structure) and/or measures (e.g. volume).

Using the multiscale multidimensional spatio-temporal meta model check-

ing methodology computational biologists will be able to efficiently construct

reliable multiscale computational models of complex biological systems. These

computational models could then be used in systems biology to gain a systems

level understanding of biological systems, and to generate new hypotheses for

driving experiments in the wet-lab. Moreover such computational models could

be potentially translated into systems medicine where they could be employed

to generate patient specific predictions of how a disease and its treatment reflect

across multiple levels of biological organization (Boissel et al., 2015).

http://mule.modelchecking.org

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 191

7.2 Open problems and future work

The multiscale multidimensional spatio-temporal meta model checking methodol-

ogy could be extended in the future to address the following open problems.

7.2.1 Analysis of time series data recorded in the in

vitro environment

The model checking approach is defined relative to time series data and not

computational models. Therefore, in principle, it could be employed to check if a

given formal PBLMSTL specification holds for any time series data, regardless

if it was generated through computational model simulation or recorded in the

wet-lab.

Since in this thesis model checking was employed to validate computational

models, formal PBLMSTL specifications were evaluated only against in silico

generated time series data.

However the ability to check if the same formal PBLMSTL specification holds

for in silico and in vitro/in vivo generated time series data could be employed

as a comparison measure between computational models and the corresponding

living organisms. Such a comparison measure could be useful for systems biology

applications to ensure that the computational model behaves similarly to the

corresponding real-life system, and for synthetic biology applications to check

if the behaviour of a computational model employed as a prototype/design is

reproduced in a reliable manner by the corresponding synthetically modified living

organism.

7.2.2 Validation of computational models from other

domains of science

Considering that the model checking methodology can be automatically recon-

figured according to case study specific types of spatial entities and measures,

it could be potentially employed to validate multiscale computational models of

non-biological systems.

Other domains of science where multiscale computational models are employed,

and therefore the model checking methodology could be potentially useful, include

astrophysics, chemistry, engineering and environmental science. As highlighted by

Hoekstra (Hoekstra et al., 2014), there is a need for a general multiscale model

validation framework in these scientific domains.

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 192

Therefore building on from the model checking methodology introduced here

a potential long term aim could be the development of a unified general-purpose

multiscale computational model checking framework that can be employed to

validate multiscale computational models from a wide range of scientific disciplines.

Such a unified model validation framework could enable verifying the reliability

of multiscale computational models in a standard reproducible manner.

7.2.3 Parameter estimation, model construction and

robustness computation

Existing model checking approaches have been employed in systems biology to

solve model validation, parameter estimation, model construction and robustness

computation problems. Conversely, in this thesis the efficacy of the multiscale mul-

tidimensional spatio-temporal meta model checking methodology was illustrated

only against model validation problems.

Therefore an additional direction for future work could be extending the

methodology to address the other three classes of problems. If successful, these ex-

tensions could enable fitting (semi-)automatically the parameters and/or structure

of models to experimental data, and estimating their robustness to perturbations.

A specific practical application of the extended methodology could be the

(semi-)automatic construction of multiscale computational models that are fitted

to the characteristics of specific (groups of) individuals, and could be used to

deliver personalized treatments.

7.2.4 Distributed multiscale model checking web service

Due to the increasing availability of experimental data and decreasing costs of

computational power more complex multiscale computational models of biological

systems could be potentially developed in the (near) future.

In order to ensure that the execution of the model checkers Mudi and Mule

will scale well with the increasing complexity of the computational models, formal

PBLMSTL specifications could be evaluated against time series data in parallel

rather than sequentially as they are now. Therefore the execution of the model

checkers could be distributed across multiple processing units/devices.

Moreover, a cloud based multiscale multidimensional spatio-temporal meta

model checking web service could be set up to enable users to validate their

computational models online without the need to install additional software.

Pârvu O., 2015, CHAPTER 7. CONCLUSIONS 193

7.2.5 Alternative model representations and

spatio-temporal analysis modules

It is assumed throughout that computational models are encoded as MSSpDESs

which means that any computational model encoded using a different formalism

must be translated to a corresponding MSSpDES representation subject to poten-

tial approximation errors (e.g. consider continuous computational models). To

overcome this limitation alternative representations could be employed instead.

Similarly, the spatio-temporal analysis modules are currently restricted to

pseudo-3D spatial entity types and measures but could be extended in the future

to other numbers of dimensions. Such modules can often be implemented using

existing functions from the image processing literature.

7.2.6 Usability improvement

Finally users of the model checkers Mudi and Mule could potentially find it

difficult to write PBLSTL, respectively PBLMSTL specifications due to the

low-level constructs employed in these formal languages.

To improve the usability of the model checkers and enable writing complex

statements in a clear and concise manner high-level language constructs could

be added to PBLSTL and PBLMSTL. For instance the oscillatory behaviour

of a numeric state variable X could be encoded using a high-level function

oscillate(X,n) instead of specifying explicitly that the value of X increas-

es/decreases and then decreases/increases n times; see PBLMSTL statement 9 in

Subsection 6.4.3 for an example.

In addition a questionnaire could be designed to investigate how difficult/easy

it is for computational modellers to use the model checkers Mudi and Mule, what

changes (if any) are required, and what new features should be added in the

future. Moreover in order to ensure that the model checkers continue to address

computational modellers’ needs on the long term a multiscale computational

model validation working group could be additionally set up. Such a working

group could enable having relevant discussions/meetings with users on a regular

basis, and promoting the model checkers within the research community.

APPENDIX A
Approximate probabilistic model

checking approaches

A description of the approximate probabilistic model checking approaches consid-

ered in this thesis is provided below.

In order for such approaches to be employed the following properties must be

satisfied (Reijsbergen et al., 2014):

1. The computational model can be simulated according to a well-defined

probability measure;

2. The resulting computation paths are generated in a finite amount of time;

similarly the considered formal specification ψ can be evaluated against

each computation path in a finite amount of time;

3. There is either no nondeterminism in the model or it is resolved by a

well-defined policy or scheduler.

For consistency purposes model simulation evaluations are represented through-

out as a sequence X1, X2, . . . , Xn of iid Bernoulli variables.

A.1 Chernoff-Hoeffding bounds based model

checking

Approximate probabilistic model checking (Hérault et al., 2004) is a simulation-

based approach which estimates the true probability p of a logic property being

true.

194

Pârvu O., 2015, APPENDIX A. APPROX. PROB. MODEL CHECKING 195

The approximation error of the method is controlled using a derived form of

the Chernoff-Hoeffding inequalities (Hoeffding, 1963):

P [| X − p |> ε] < 2e−
Nε2

4 , (A.1)

where X is the sample mean,

X =
1

n

n∑
i=1

Xi,

and 0 < ε < 1.

Equation A.1 states that the probability of X to deviate from the true proba-

bility p more than ε is bounded above by δ = 2e−
Nε2

4 . The number of simulations

N required to meet the constraints of Equation A.1 is computed with respect to

parameters ε and δ:

N =
4

ε2
log

(
2

δ

)
,

where 0 < ε, δ < 1. Therefore ε and δ are input parameters of the algorithm.

A detailed description of the approach and corresponding examples are given by

Hérault et al. (Hérault et al., 2004). From the point of view of the computational

complexity the algorithm is linear with respect to the value of δ and quadratic

with respect to the value of ε.

A.2 Frequentist statistical model checking

Frequentist statistical model checking methods (Younes et al., 2006; Younes,

2005b) verify if a logic property φ holds for a modelM using acceptance sampling

tests (Younes and Simmons, 2002).

Let us assume that φ is a logic property of the form P≥θ[ψ]. The null hypothesis

H0 : p ≥ θ is tested against the alternative hypothesis H1 : p < θ and model

simulations are evaluated until one of the hypotheses is accepted. In case φ

is of the form P≤θ[ψ] the roles of the null and alternative hypotheses switch.

Moreover in terms of hypothesis testing P>θ[ψ] is equivalent to P≥θ[ψ], and P<θ[ψ]

is equivalent to P≤θ[ψ].

The approximation error of this method is determined by the strength 〈α, β〉
of the acceptance sampling test, where

• α = P [H1 is accepted | H0 is true] (Probability of type I error);

Pârvu O., 2015, APPENDIX A. APPROX. PROB. MODEL CHECKING 196

• β = P [H0 is accepted | H1 is true] (Probability of type II error).

In case the probability θ specified in the logic property φ is close to the true

probability p a large number of simulations is required to validate a hypothesis

and it is impossible to ensure a low probability of type I and type II errors

simultaneously; see (Younes and Simmons, 2006) for details.

Therefore the hypothesis testing problem constraints are relaxed. An indif-

ference region (p− δ, p + δ) of width 2δ is introduced where neither of the two

hypotheses is true. In this new setting three hypotheses are considered:

• The null hypothesis H ′0 : p ≥ θ + δ;

• The alternative hypothesis: H ′1 : p < θ − δ;

• The undecided hypothesis: H2 : θ − δ ≤ p < θ + δ.

Using two acceptance sampling tests it is possible to decide if φ ≡ P≥θ[ψ] holds:

Test 1 with strength 〈α, γ〉 (H0 : p ≥ θ,H ′1 : p < θ − δ);

Test 2 with strength 〈γ, β〉 (H ′0 : p ≥ θ + δ,H1 : p < θ),

where γ represents the probability of undecided results. Whenever H0 and H ′0

are accepted φ is declared to hold. Conversely if H1 and H ′1 are accepted then φ

is declared not to hold. Otherwise the validity of φ is undecided.

Two types of acceptance sampling plans can be employed to determine the

true hypothesis:

• Single acceptance sampling plan;

• Sequential acceptance sampling plan.

A.2.1 Single acceptance sampling plan

Single sampling plan methods compute the values of the acceptance number c

and the smallest number of required simulations n which ensure that the strength

of the test 〈α, β〉 is guaranteed. The number of simulations n is fixed in the

beginning and the hypothesis H0 is accepted if

n∑
i=1

xi > c,

where xi represents an observation of the i-th Bernoulli variable (1 = true, 0 =

false). Otherwise the hypothesis H1 is true. Values for c and n can be obtained

Pârvu O., 2015, APPENDIX A. APPROX. PROB. MODEL CHECKING 197

from a precomputed table of values (Grubbs, 1949) or approximated using binary

search (Younes, 2005b, p. 21).

The disadvantage of employing single sampling plans is that the number of

required simulations is fixed and not updated while evaluating the simulations.

This means that although sufficient evidence is available to validate one of the

hypotheses the method will not stop early. For instance if the first c < n

simulations have been evaluated true H0 is validated and further simulations

are irrelevant to the final result. However since n is fixed the remaining n − c
simulations will be generated and evaluated as well.

A.2.2 Sequential acceptance sampling plan

Sequential acceptance sampling plans address this issue by verifying after each

simulation evaluation if sufficient evidence is available to validate one of the

hypotheses. An efficient sequential acceptance sampling plan is Wald’s sequential

probability ratio test (Wald, 1945).

After evaluating each simulation a value is computed

fm =
m∏
i=1

P [Xi = xi | p = p1]

P [Xi = xi | p = p0]
=
pd1(1− p1)m−d

pd0(1− p0)m−d
,

where m is the number of simulations evaluated so far, d =
m∑
i=1

xi is the number

of true evaluations, p0 = θ + δ and p1 = θ − δ. The hypothesis H0 is accepted if

fm ≤ B, and hypothesis H1 is accepted if fm ≥ A. Otherwise, if B ≤ fm ≤ A,

then insufficient evidence is available and additional simulations are required.

In practical applications an approximation of the optimal A and B values is

used in order to reduce the overall complexity of the method (Wald, 1945, Section

3.4):

A =
1− β
α

; B =
β

1− α
.

The strength of the test 〈α′, β′〉 given by the approximated A and B values closely

matches the initial strength 〈α, β〉. Wald (Wald, 1945) has shown that

α′ ≤ α

1− β
; β′ ≤ β

1− α
; α′ + β′ ≤ α + β,

which means that at least one of the inequalities α′ ≤ α and β′ ≤ β must hold.

Moreover if the values of α and β are small (e.g. less than 5%) then α
1−β ≈ α and

β
1−α ≈ β which means both inequalities hold.

Pârvu O., 2015, APPENDIX A. APPROX. PROB. MODEL CHECKING 198

The input parameters of the algorithm are α, β and δ. A detailed description of

the statistical model checking algorithm is given by Younes and Simmons (Younes

and Simmons, 2006) and an example of a model checker implementing the algo-

rithm is described by Younes (Younes, 2005c).

A.3 Statistical black-box model checking

Statistical black-box model checking, initially introduced by Sen et al. (Sen et al.,

2004) and further extended by Younes (Younes, 2005a), verifies if a logic property

φ holds for a model M using statistical hypothesis testing based on p-values.

In contrast to statistical model checking (see Section A.2) a fixed number of

simulations is provided and the model cannot be simulated on demand.

Let us denote the sum of all Bernoulli variables by Y =
n∑
i=1

Xi. Then Y has a

binomial distribution with the cumulative distribution function:

F (c;n, p) =
c∑
i=0

(
n

i

)
pi(1− p)n−i.

If φ is a logic property of the form P≥θ[ψ] then the null hypothesis H0 : p ≥ θ

is tested against the alternative hypothesis H1 : p < θ. A p-value is computed for

each hypothesis and the hypothesis with the lowest p-value is accepted (Younes,

2005a):

pH0 = 1− F (d− 1;n, θ);

pH1 = F (d;n, θ),

where n is the number of Bernoulli variables, d =
m∑
i=1

xi is the number of true

evaluations, and θ is the probability specified within the logic property φ. In case

the p-values are equal the alternative hypothesis H1 is accepted.

More details and usage examples regarding the extended statistical black-box

model checking method are given by Younes (Younes, 2005a).

A.4 Bayesian mean and variance estimate

based model checking

Bayesian mean and variance estimate based model checking (Langmead, 2009)

verifies if a logic property φ holds for a modelM by estimating the true probability

p of φ being true. In contrast to the frequentist model checking approach (see

Pârvu O., 2015, APPENDIX A. APPROX. PROB. MODEL CHECKING 199

Section A.1) the present approach uses prior information during the estimation

process.

Simulation evaluations are represented as iid Bernoulli variables with the

probability of the logic property φ being true equal to p. Therefore we can assume

that the posterior has a Bernoulli distribution with parameter p. The conjugate

prior of a Bernoulli distribution is a beta distribution with shape parameters α

and β. Thus the prior information considered during the estimation process is

represented by a beta distribution. If prior information is unavailable an unbiased

prior can be used (α = 1, β = 1). Both shape parameters are provided by the

user as input to the algorithm.

Considering the user-defined beta distribution shape parameters α and β the

algorithm updates the estimate of the true probability ρ and variance ν after

evaluating φ for each newly generated sample. The formulae for computing the

estimates ρ and ν are:

ρ =
k + α

α + β + n
;

ν =
(α + k)(n− k + β)

(α + n+ β)2(α + n+ β + 1)
,

where n represents the number of generated samples, k represents the number

of samples for which φ was evaluated true, and α > 0 and β > 0 are the beta

distribution shape parameters.

New samples are generated and the estimates ρ and ν are updated until the

condition ν < T is true, where T > 0 is a user-defined threshold value provided

as input to the algorithm. Considering that the logic property φ is of the form

P≥θ[ψ] (P≤θ[ψ]) φ will be evaluated true if ρ ≥ θ (ρ ≤ θ).

A detailed description of the algorithm and usage examples are given by

Langmead (Langmead, 2009).

A.5 Bayesian statistical model checking

Bayesian statistical model checking (Jha et al., 2009a,b) verifies if a logic property φ

holds for a modelM using statistical hypothesis testing. In contrast to frequentist

statistical model checking approaches (see Section A.2) the present approach

employs prior information for validating one of the hypotheses.

Let us assume that φ is a logic property of the form P≥θ[ψ]. The null hypothesis

H0 : p ≥ θ is tested against the alternative hypothesis H1 : p < θ and model

simulations are evaluated until one of the hypotheses is accepted. In case φ is of

Pârvu O., 2015, APPENDIX A. APPROX. PROB. MODEL CHECKING 200

the form P≤θ[ψ] the roles of the null and alternative hypotheses switch.

A measure of relative confidence in H0 with respect to H1 is defined called

Bayes factor B. The value of B considering a sequence of simulation evaluations s

= (x1, x2, . . . , xn) and hypotheses H0 and H1 is computed as follows:

B =
P (s | H0)

P (s | H1)
=
P (H0 | s)P (H1)

P (H1 | s)P (H0)
.

Similarly to the Bayesian mean and variance estimation based model checking

approach the posterior is assumed to have a Bernoulli distribution. Therefore the

conjugate prior has a beta distribution with shape parameters α > 0 and β > 0.

Both beta distribution shape parameters are provided as input to the algorithm.

Considering these assumptions Jha et al. (Jha et al., 2009b) show that the

value of B can be computed with respect to the cumulative beta distribution

function:

B =
1

F(x+α,n−x+β)(θ)
− 1,

where n represents the total number of simulation evaluations, x represents the

number of simulations for which φ was evaluated true, and

F(α′,β′)(θ) = Iθ(α
′, β′)

is the cumulative beta distribution function with shape parameters α′ = x+ α

and β′ = n−x+β such that Iθ(α
′, β′) is the regularized incomplete beta function.

The null hypothesis H0 is accepted if B > T where T is a user-defined threshold

value provided as input to the algorithm. Conversely the alternative hypothesis

H1 is accepted if B < 1/T . Otherwise if 1/T ≤ B ≤ T insufficient evidence

is available and additional simulations need to be generated and evaluated. A

threshold value T = 10−2 suggests to provide decisive evidence against H0 and in

favour of H1 (Jeffreys, 1961, Appendix B). Conversely a threshold value T = 102

suggests to provide decisive evidence in favour of H0.

A detailed description of the algorithm and usage examples are given by Jha

et al. (Jha et al., 2009b). Moreover an example of applying Bayesian statistical

model checking to Simulink/Stateflow is given by Zuliani et al. (Zuliani et al.,

2010).

APPENDIX B
Existing model checking

approaches for computational

models of biological systems

A concise description of the reviewed references underpinning Section 2.5 is

provided in Table B.1. None of the approaches consider how biological systems

evolve in space and/or across multiple levels of organization.

Table B.1: Description of the existing model checking approaches employed for the validation of
computational models of biological systems. The first column records references considered from the
literature. The modelling formalism employed to encode the computational model is given in column
two; if the computational model was represented in a software-specific modelling language the name of
the software is additionally provided in parentheses. The third column specifies the temporal logic used
to write the formal specification. The employed model checking algorithm type (AP - Approximate
probabilistic, EN - Exhaustive non-probabilistic, EP - Exhaustive probabilistic) is provided in column
four. The name of the model checker and the case studies against which it was validated are provided
in columns five and six. Finally the model checking application type (MC - Model construction, MV -
Model validation, PI - Parameter identification, RC - Robustness computation) is recorded in column
seven. Throughout if the value corresponding to a particular column is unknown the NME (Not
mentioned explicitly) abbreviation is used instead.

Reference Model Logic Alg Tool Case study App

(Antoniotti

et al., 2003)
XS-System

ASySA

(based on

CTL)

EN XSSYS

Repressilator,

Purine

metabolism

MV

(Ballarini

et al., 2014)

Generalized

stochastic

Petri nets

HASL AP COSMOS

Wnt/β-catenin

signalling

pathway

MV

(Ballarini and

Guerriero,

2010)

Continuous

Time

Markov

Chain

(PRISM)

CSL, LTL EP PRISM

Generic

biochemical

systems

MV

201

Pârvu O., 2015, APPENDIX B. EXISTING MODEL CHECKING APPR. 202

Reference Model Logic Alg Tool Case study App

(Ballarini

et al., 2012)

Generalized

stochastic

Petri nets

HASL AP COSMOS

Single gene

expression

with stochastic

delayed

dynamics

MV

(Ballarini

et al., 2009)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP PRISM
3-way

oscillator
MV

(Barbuti et al.,

2012)

Interval

Discrete-

Time

Markov

Chain

PCTL

fragment
EP PRISM

Tumour

growth
MV

(Barnat et al.,

2009b)

Piecewise

linear

differential

equations

apLTL EN

GeNeSim

(based on

DiVinE)

Synthetic

genetic

regulatory

networks

MV

(Barnat et al.,

2010b)

Piecewise

multi-affine

ordinary

differential

equations

LTL EN NME

Ammonium

transport from

external

environment

into the cells of

Escherichia

coli

PI,

RC

(Barnat et al.,

2009a)

Piecewise

multi-affine

ordinary

differential

equations

LTL EN

BioDiVinE

(based on

DiVinE)

Ammonium

transport in

Escherichia

coli

MV

(Barnat et al.,

2010a)

Ordinary

differential

equations

LTL EN DiVinE

Sporulation of

a soil bacteria

Bacillus

subtilis,

Escherichia

coli ammonium

assimilation

MV

(Bartocci

et al., 2010)

Oscillator

timed

automata

BOSL EN

BOSL

model

checker

Pacemaker

cells
MV

Pârvu O., 2015, APPENDIX B. EXISTING MODEL CHECKING APPR. 203

Reference Model Logic Alg Tool Case study App

(Bartocci

et al., 2015)

Continuous

Time

Markov

Chain,

Stochastic

Hybrid

Automata

STL AP Breach

Schlögl

bistable

system,

Circadian clock

of Ostreococcus

tauri,

feed-forward

motif of a gene

regulatory

network

PI,

RC

(Batt et al.,

2008)

Piecewise

multi-affine

differential

equations

LTL EN

RoVerGeNe

(based on

NuSMV)

Synthetic gene

network in

Escherichia

coli

PI

(Batt et al.,

2007a)

Piecewise

multi-affine

differential

equations

LTL EN

RoVerGeNe

(based on

NuSMV)

Synthetic gene

network in

Escherichia

coli

MV,

PI

(Batt et al.,

2005)

Piecewise

linear

differential

equations

CTL EN NuSMV

Gene

regulatory

network

controlling the

nutritional

stress response

in Escherichia

coli

MV

(Batt et al.,

2007b)

Piecewise

multi-affine

differential

equations

LTL EN

RoVerGeNe

(based on

NuSMV)

Synthetic

transcriptional

cascade built

in Escherichia

coli

PI

(Bérenguier

et al., 2013)

Logic

regulatory

graph

NME EN NuSMV

Regulatory

network

controlling

T-helper cell

differentiation

MV

(Bernot et al.,

2004)

Regulatory

graph
CTL EN

SMBioNet

(based on

SMV)

The mucus

production in

Pseudomonas

aeruginosa

MV

(Braz et al.,

2013)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP PRISM

Palytoxin

effects on the

sodium-

potassium

pump, a trans-

membrane

ionic transport

system

MV

Pârvu O., 2015, APPENDIX B. EXISTING MODEL CHECKING APPR. 204

Reference Model Logic Alg Tool Case study App

(Brim et al.,

2013a)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP
Based on

PRISM

Generic system

of biochemical

reactions

exhibiting

bistability,

Mammalian

cell cycle gene

regulatory

control

PI

(Calder et al.,

2006)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP PRISM

RKIP

inhibited ERK

signalling

pathway

MV

(Calzone

et al., 2006)

Rule-based

(BIOCHAM)

CTL, LTL,

PLTL

EN,

EP

NuSMV,

BIOCHAM,

APMC

Cell cycle

control
MC

(Cavaliere

et al., 2014)

Membrane

systems

PLASMA

formal logic

(based on

BLTL)

AP

NME

(based on

PLASMA-

lab)

The Role of

Estrogen in

Cellular

Mitosis and

DNA Damage

MV

(Češka et al.,

2014)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP PRISM
SIR epidemic,

DNA walkers
PI

(Česka et al.,

2014)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP PRISM

Gene

regulation of

mammalian

cell cycle,

Response of

two-component

signalling

systems

RC

(Chabrier and

Fages, 2003)

Rule-based

(BIOCHAM)
CTL EN

NuSMV,

DMC

Mammalian

cell cycle and

gene

expression

regulation

MV

(Chabrier-

Rivier et al.,

2004)

Rule-based

(BIOCHAM)
CTL EN NuSMV

Mammalian

cell cycle
MV

(Ciocchetta

et al., 2009)
Bio-PEPA CSL EP PRISM

General

genetic

networks with

a negative

feedback

MV

Pârvu O., 2015, APPENDIX B. EXISTING MODEL CHECKING APPR. 205

Reference Model Logic Alg Tool Case study App

(Clarke et al.,

2008)

Rule-based

(BioNetGen)
PBLTL AP BioLab

The dynamics

of the T-cell

receptor

signalling

network

MV

(David et al.,

2012)

Stochastic

hybrid

automata,

Domain

specific

Weighted

MITL,

MITL

AP

UPPAAL-

SMC,

PLASMA

A genetic

circadian

oscillator

MV

(Donaldson

and Gilbert,

2008a)

Ordinary

differential

equations

PLTLc AP MC2

MAPK

signalling

pathway

PI

(Fages and

Rizk, 2009)

Ordinary

differential

equations

QFCTL EN BIOCHAM

Budding yeast

cell cycle,

MAPK

signalling

pathway,

synthetic gene

transcriptional

cascade system

MC,

PI,

RC

(Giacobbe

et al., 2015)

Weighted

regulatory

graph

LTL EN NME

Gene

regulatory

networks

PI,

RC

(Gilbert et al.,

2007)
Petri nets

CTL, CSL,

LTLc

EN,

EP

Model

Checking

Kit,

PRISM,

BIOCHAM

The MAPK

signalling

pathway

MV

(Gong and

Feng, 2014)

Extended

Boolean

networks

CTL EN SMV

The role of

Endoplasmic

Reticulum-

Golgi-

regulated

signalling

pathway on

the cell cycle

MV

(Gong et al.,

2012)

Rule-based

(BioNetGen)
BLTL AP NME

The HMGB1

signalling

pathway

MV

(Guerriero,

2009)
Bio-PEPA CSL EP PRISM

gp130/JAK/-

STAT

signalling

pathway

MV

Pârvu O., 2015, APPENDIX B. EXISTING MODEL CHECKING APPR. 206

Reference Model Logic Alg Tool Case study App

(Heath et al.,

2008)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP PRISM
FGF signalling

pathway
MV

(Heiner et al.,

2008)
Petri nets

CTL, CSL,

(P)LTLc

EN,

EP,

AP

PRISM,

MC2,

BIOCHAM,

idd-ctl,

Model

Checking

Kit

ERK/MAPK

signalling

pathway

MV

(Hussain

et al., 2014a)

Stochastic

discrete-

event

system

PBLTL AP NME

Glucose and

insulin

metabolism

PI

(Islam et al.,

2015)

Ordinary

differential

equations

NME EN NME

Tap

withdrawal in

Caenorhabditis

elegans

PI

(Jha and

Langmead,

2011)

Continuous

Time

Markov

Chain

PBLTL,

PBMTL
AP NME

FGF signalling

pathway and

cell cycle

PI

(Koh et al.,

2012)

Stochastic

discrete-

event

system

PLTL AP NME

Cell fate

determination

model of

gustatory

neurons of

Caenorhabditis

elegans

MV

(Kwiatkowska

et al., 2007)

Continu-

ous/Discrete

Time

Markov

Chain

(PRISM)

PCTL,

CSL
EP PRISM

FGF signalling

pathway
MV

(Kwiatkowska

et al., 2008)

Continuous

Time

Markov

Chain

(PRISM)

CSL EP PRISM

MAPK

signalling

pathway

MV

(Lakin et al.,

2012)

Continuous

Time

Markov

Chain

(Visual

DSD)

CTL, CSL
EN,

EP
PRISM

DNA strand

displacement

devices

MV

Pârvu O., 2015, APPENDIX B. EXISTING MODEL CHECKING APPR. 207

Reference Model Logic Alg Tool Case study App

(Li et al.,

2011)

Hybrid

functional

Petri nets

with

extensions

PLTL AP MIRACH

Neuronal cell

fate decision

model in

Caenorhabditis

elegans

PI

(Li et al.,

2009)

Hybrid

functional

Petri nets

with

extensions

ATL EN MOCHA

Biological

pathways

involved in

Caenorhabditis

elegans vulval

development

MV

(Liu et al.,

2012)

Dynamic

Bayesian

Networks

PBL AP NME

The EGF-NGF

pathway, the

segmentation

clock network,

the MLC-

phosphoryla-

tion

pathway

MV

(Liu et al.,

2014a)

Hybrid

automata
LRF EN dReal

Cardiac cell

action

potential

PI

(Liu et al.,

2015)

Nonlinear

hybrid

automata

NME EN dReach
Prostate

cancer
PI

(Madsen et al.,

2012)

Continuous

Time

Markov

Chain

(iBioSim)

CSL EP NME

Genetic toggle

switch in

Escherichia

coli

MV

(Mancini

et al., 2015)

Ordinary

differential

equations

LTL AP NME

Female

menstrual

cycle

PI

(Maria et al.,

2009)

Rule-based

(BIOCHAM)

Constraint-

LTL
EN BIOCHAM

Coupling

models of

Mammalian

cell cycle, the

p53-based

DNA-damage

repair network,

and irinotecan

metabolism

MV,

PI

(Miskov-

Zivanov et al.,

2013)

Generalized

Boolean

networks

BLTL AP NME

T cell

differentiation

control

network

MV

Pârvu O., 2015, APPENDIX B. EXISTING MODEL CHECKING APPR. 208

Reference Model Logic Alg Tool Case study App

(Monteiro

et al., 2008)

Piecewise

linear

differential

equations

CTL,

µ-calculus
EN

NuSMV,

CADP

Regulatory

network

controlling the

carbon

starvation

response in

Escherichia

coli

MV

(Monteiro

et al., 2014)

Logic

regulatory

graph

ARCTL EN NuSMV

T-helper

lymphocyte

differentiation

MV

(Palaniappan

et al., 2013)

Ordinary

differential

equations

PBLTL AP NME

Segmentation

clock pathway,

Thrombin-

dependent

MLC-pathway

PI

(Rizk et al.,

2008)

Rule-based

(BIOCHAM)
QFLTL(R) EN BIOCHAM

The budding

yeast cell cycle,

MAPK

signalling

pathway

PI,

RC

(Rizk et al.,

2009)

Ordinary

differential

equations

QFLTL EN BIOCHAM

Synthetic

transcriptional

cascade built

in Escherichia

coli

RC

(Schivo et al.,

2012)

Timed

automata

TCTL

subset
EN UPPAAL

Crosstalk

between EGF

and NGF in

PC-12 cells

MV

(Siebert and

Bockmayr,

2006)

Timed

automata

TCTL

subset
EN UPPAAL

Regulatory

network of

bacteriophage

λ

MV

(Van Goethem

et al., 2013)

Timed

automata

TCTL

subset
EN UPPAAL

G1/S cell cycle

in mammalian

cells

MV

(Yordanov

and Belta,

2011)

Piecewise

multi-affine

differential

equations

LTL EN

RoVerGeNe

(based on

NuSMV)

Synthetic gene

networks
MV

APPENDIX C
Multidimensional

spatio-temporal model checking

supplementary materials

C.1 Mapping between subalgorithms of region

detection mechanism and OpenCV

functions

Table C.1: Mapping between subalgorithms employed by Algorithm 1 and functions from the open
source Computer Vision library OpenCV. The left column describes the signature of the subalgorithms
employed by Algorithm 1. The right column describes the signature of the corresponding OpenCV
function(s).

Subalgorithm signature OpenCV function signature

ChangeBrightnessAndContrast(

image, alpha, beta

)

convertTo(

image, -1, alpha, beta

)

MorphologicalCloseOperation(

image, morphCloseNrOfIter

)

morphologyEx(

image, outputImage, MORPH CLOSE , Mat(),

Point(-1, -1), morphCloseNrOfIter

)

GaussianBlur(

image, kernelSize, standardDev

)

GaussianBlur(

image, outputImage, kernelSize, standardDev

)

Threshold(

image, thresholdValue

)

threshold(

image, outputImage, thresholdValue,

255, THRESH BINARY

)

209

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 210

DetectAndApproximateContours(

image, approximationLevel

)

findContours(

image, contours, contoursHierarchy,

CV RETR CCOMP,

CV CHAIN APPROX NONE, Point()

)

approxPolyDP(

image, outputImage, approximationLevel, true

)

C.2 Numeric measures for encoding formal

specifications

Unary and binary numeric measures which can be employed for encoding formal

BLSTL specifications are described in the tables below. In each table body row

the name of the numeric measure is provided in column 1, the description in

column 2 and the semantics definition in column 3.

Table C.2: Unary numeric measures.

Name Description Semantics

abs Returns the absolute value of a number n. abs(n) = |n|.

ceil Rounds the number n upward, returning the small-

est integral value that is not less than n.

ceil(n) = dne.

floor Rounds the number n downward, returning the

largest integral value that is not greater than n.

floor(n) = bnc.

round Returns the integral value that is nearest to number

n, with halfway cases rounded away from zero.

round(n) = bn+ 0.5c, if n ≥ 0

dn− 0.5e, otherwise.

sign Returns the sign of a number n. sign(n) =


1, if n > 0

0, if n = 0

−1, otherwise.

sqrt Returns the square root of a number n. sqrt(n) =
√
n.

trunc Rounds the number n toward zero. trunc(n) = sign(n)b|n|c.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 211

Table C.3: Binary numeric measures.

Name Description Semantics

add Returns the sum of two numbers n1 and n2. add(n1, n2) = n1 + n2.

div Returns the integer part of the division n1/n2. div(n1, n2) = bn1/n2c.

log Returns the logarithm of a number n in the given

base b.

log(n, b) = logb(|n|), n >

0, b > 0, b 6= 1.

mod Returns the remainder of the division n1/n2. mod(n1, n2) = n1 −
(n2 div(n1, n2)).

multiply Returns the multiplication of two numbers n1 and

n2.

multiply(n1, n2) = n1n2.

power Returns the base b raised at the power e. pow(b, e) = be.

subtract Returns the difference between two numbers n1 and

n2.

subtract(n1, n2) = n1 − n2.

C.3 Subset measures for encoding formal

specifications

Unary, binary, ternary and quaternary subset measures which can be employed

for encoding formal BLSTL specifications are described in the tables below. In

each table body row the name of the subset measure is provided in column 1, the

description in column 2 and the semantics definition in column 3.

Table C.4: Unary subset measures.

Name Description Semantics

count Returns the number of spatial entities

in subset.

count(subset) = |subset|.

clusteredness Returns the clusteredness of a set of

clusters/regions.

As described in Subsection 3.4.2.

density Returns the density of a set of cluster-

s/regions.

As described in Subsection 3.4.2.

Table C.5: Binary subset measures.

Name Description Semantics

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 212

avg Returns the arithmetic mean consider-

ing the given subset and spatial mea-

sure sm.

avg(subset, sm) = 1
n

n∑
i=1

sm(subseti),

where n = |subset|.

geomean Returns the geometric mean consider-

ing the given subset and spatial mea-

sure sm.

geomean(subset, sm) =(
n∏
i=1

sm(subseti)

) 1
n

, where

n = |subset|.

harmean Returns the harmonic mean consider-

ing the given subset and spatial mea-

sure sm.

harmean(subset, sm) = n
n∑

i=1

1
sm(subseti)

,

where n = |subset|.

kurt Returns the kurtosis considering the

given subset and spatial measure sm.

kurt(subset, sm) = n(n+1)
(n−1)(n−2)(n−3)

n∑
i=1

(
sm(subseti)−avg(subset,sm)

stdev(subset,sm)

)4
-

3(n−1)2

(n−2)(n−3)
, where n = |subset| ≥ 4.

max Returns the maximum considering the

given subset and spatial measure sm.

max(subset, sm) = max
i=1,n

sm(subseti),

where n = |subset|.

median Returns the median considering the

given subset and spatial measure sm.

median(subset, sm) = middle value in

the ordered list of spatial measures

values sm(subset1), sm(subset2), ...,

sm(subsetn), where n = |subset|.

min Returns the minimum considering the

given subset and spatial measure sm.

min(subset, sm) = min
i=1,n

sm(subseti),

where n = |subset|.

mode Returns the mode considering the given

subset and spatial measure sm.

mode(subset, sm) = value which ap-

pears most often in the list of

spatial measures values sm(subset1),

sm(subset2), ..., sm(subsetn), where

n = |subset|.

product Returns the product considering the

given subset and spatial measure sm.

product(subset, sm) =
n∏
i=1

sm(subseti),

where n = |subset|.

skew Returns the skewness considering the

given subset and spatial measure sm.

skew(subset, sm) = n
(n−1)(n−2)

n∑
i=1

(
sm(subseti)−avg(subset,sm)

stdev(subset,sm)

)3
,

where n = |subset|.

stdev Returns the standard deviation consid-

ering the given subset and spatial mea-

sure sm.

stdev(subset, sm) =√
n∑

i=1
(sm(subseti)−avg(subset,sm))2

(n−1)
,

where n = |subset|.

sum Returns the sum considering the given

subset and spatial measure sm.

sum(subset, sm) =
n∑
i=1

sm(subseti),

where n = |subset|.

var Returns the variance considering the

given subset and spatial measure sm.

var(subset, sm) =
n∑

i=1
(sm(subseti)−avg(subset,sm))2

(n−1)
, where

n = |subset|.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 213

Table C.6: Ternary subset measures.

Name Description Semantics

percentile Returns the pc-th (0 ≤ pc ≤ 100) per-

centile considering the given subset and

spatial measure sm.

percentile(subset, sm, pc) = i-th spa-

tial measure value in the ordered list of

n spatial measures values sm(subset1),

sm(subset2), ..., sm(subsetn), where

n = |subset|, and i =
⌊
pc
100

n+ 1
2

⌋
.

quartile Returns the i-th (i ∈ {25, 50, 75}) quar-

tile considering the given subset and

spatial measure sm.

Let v be the ordered list of spatial mea-

sures values sm(subset1), sm(subset2),

..., sm(subsetn), where n = |subset|.
Moreover let m = median(subset, sm),

L be the sublist of values in v

smaller than m, and U be the sub-

list of values in v greater than m.

quartile(subset, sm, i) = median of L

if i = 25, m if i = 50, and median of U

if i = 75.

Table C.7: Quaternary subset measures.

Name Description Semantics

covar Returns the covariance considering

subset1 and subset2, and the spatial

measures sm1 and sm2.

covar(subset1, sm1, subset2, sm2)

= 1
n−1

n∑
i=1

((sm1(subset1i) -

avg(subset1, sm1)) (sm2(subset2i)

- avg(subset2, sm2))), where n =

min(|subset1|, |subset2|).

C.4 Improved frequentist statistical model

checking

The algorithms OSM A/B described by Koh et al. (Koh et al., 2012) initialise

variables with invalid values. First of all the notations relevant for describing

the initialisation error will be explained. Then a brief proof will be provided

illustrating the presence of the error followed by the proposed solution which is

considered in our approach. Let us assume for the remainder of this section that

the logic property to be verified φ is of the form P./θ[ψ], θ ∈ (0, 1).

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 214

C.4.1 Notations

The width of the indifference region (p1, p0) is equal to 2δ, where

p1 = θ − δ;

p0 = θ + δ,

and 0 ≤ δ ≤ 1. Using δ two values fn and f ′n are computed to decide if φ holds:

fn = d

(
log

θ − δ
θ

)
+ (n− d)

(
log

1− (θ − δ)
1− θ

)
;

f ′n = d

(
log

θ

θ + δ

)
+ (n− d)

(
log

1− θ
1− (θ + δ)

)
,

(C.1)

where n represents the total number of evaluated model simulations and d the

number of simulations for which φ evaluated true.

The nominator and denominator of each fraction in Equation C.1 represent

probability values ∈ (0, 1). This additionally ensures that the values provided to

the logarithms are positive and therefore valid. Thus the following inequalities

must hold:

0 < θ − δ < 1; (C.2a)

0 < θ < 1; (C.2b)

0 < 1− (θ − δ) < 1; (C.2c)

0 < 1− θ < 1; (C.2d)

0 < θ + δ < 1; (C.2e)

0 < 1− (θ + δ) < 1. (C.2f)

Considering that θ ∈ (0, 1) the δ independent inequalities C.2b and C.2d hold

always.

C.4.2 Description of initialisation error

The cause of the error in the OSM A/B algorithms is the initialisation of δ with

the value 1. We will prove this by assuming that the initialisation is valid (δ = 1)

and employing proof by contradiction.

Proof 4 Initialisation error in OSM A/B algorithms

The first instruction in the OSM A/B algorithms is the initialisation of δ with

the value 1. This value is then passed to the IncrementalYounesB function.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 215

After computing the value of four variables (A1, B1, A2, B2) the main repeat

loop is entered. A new sample is generated and evaluated, and the values of the

variables n and d are updated. Afterwards the values of fn and f ′n are computed

according to Equation C.1. To prove that the initialisation of δ is invalid it is

sufficient to show that one of the C.2x inequalities does not hold. For instance

according to inequality C.2a:

0 < θ − δ < 1.

In our case δ = 1. Therefore inequality C.2a is evaluated as follows:

0 < θ − δ < 1

⇔ (replace δ with 1)

0 < θ − 1 < 1

⇔ (+1)

0 + 1 < θ − 1 + 1 < 1 + 1

⇔ (evaluate arithmetic expressions)

1 < θ < 2

⇒ (conclusion from inequality)

θ ∈ (1, 2).

However θ ∈ (0, 1) which contradicts θ ∈ (1, 2). Hence the initialisation δ = 1 is

invalid.

As a side note one of the arithmetic expressions which are invalid when δ

is initialised with the value 1 is log θ−δ
θ

because θ − δ < 0 which means that a

negative value is provided to the logarithm.

C.4.3 Solution

In both OSM A/B algorithms the width of the indifference region 2δ is reduced

to half whenever an undecided result is obtained. The method employed by the

algorithms is to start with the maximum valid δ value and then decrease it until

a true/false result can be obtained.

The domain of all valid δ values is computed based on inequalities C.2a-C.2f;

see Table C.8 for the interval of valid δ values computed for each inequality.

By intersecting all intervals provided in Table C.8 the domain of valid δ values

is obtained:

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 216

Table C.8: The valid interval of δ values corresponding to inequalities C.2a-C.2f

Nr. Inequality Valid interval of δ values

C.2a 0 < θ − δ < 1 δ ∈ (θ − 1, θ) ∩ (0, 1) = (0, θ)
C.2b 0 < θ < 1 δ ∈ (0, 1)
C.2c 0 < 1− (θ − δ) < 1 δ ∈ (θ − 1, θ) ∩ (0, 1) = (0, θ)
C.2d 0 < 1− θ < 1 δ ∈ (0, 1)
C.2e 0 < θ + δ < 1 δ ∈ (−θ, 1− θ) ∩ (0, 1) = (0, 1− θ)
C.2f 0 < 1− (θ + δ) < 1 δ ∈ (−θ, 1− θ) ∩ (0, 1) = (0, 1− θ)

Dδ = (0, θ) ∩ (0, 1) ∩ (0, θ) ∩ (0, 1) ∩ (0, 1− θ) ∩ (0, 1− θ)

⇔ (remove duplicates)

Dδ = (0, θ) ∩ (0, 1) ∩ (0, 1− θ)

⇔ (remove enclosing interval (0, 1))

Dδ = (0, θ) ∩ (0, 1− θ),

which is equivalent to

Dδ = (0,min(θ, 1− θ)).

A value δinit smaller than the maximum value defined in Dδ should be employed

during the initialisation step of the improved statistical model checking algorithm.

Thus

δinit < max
v∈Dδ

(v)

⇔ (expand rhs. of the equation)

δinit < max
v∈(0,min(θ,1−θ))

(v)

⇔ (expand rhs. of the equation)

δinit < min(θ, 1− θ)

⇒ (δinit must be smaller than min(θ, 1− θ))

δinit = min(θ, 1− θ)− ε,

where 0 < ε� min(θ, 1− θ). For implementation purposes the value of ε can be

chosen as follows:

0 < ε =
1

k
min(θ, 1− θ) < min(θ, 1− θ),

where k � 1 is a user-defined or hard coded finite constant. Thus

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 217

δinit = min(θ, 1− θ)− 1

k
min(θ, 1− θ)

⇔ (arithmetic operations)

δinit =
k

k
min(θ, 1− θ)− 1

k
min(θ, 1− θ)

⇔ (arithmetic operations)

δinit =
k − 1

k
min(θ, 1− θ) .

Proving that δinit ∈ Dδ for a finite constant value k � 1 is trivial. Moreover

lim
k→∞

δinit

= (replace δinit with its value)

lim
k→∞

(
k − 1

k
min(θ, 1− θ)

)
= (extract k independent terms outside limit)

min(θ, 1− θ) lim
k→∞

(
k − 1

k

)
= (compute value of limit)

min(θ, 1− θ)(1)

= (evaluate arithmetic expression)

min(θ, 1− θ).

The value of δinit gets closer to min(θ, 1 − θ) as the value of k approaches ∞.

Thus high values of k should be employed in the implementation.

C.5 Proof that the semantics of a BLSTL

statement can be defined based on a finite

prefix of an infinite execution

Proof 5 BLSTL semantics based on finite prefix of infinite execution

We will prove the results of Lemma 1 recursively on the structure of the logic

property ψ as described below:

1. σ |= nspm � nm if and only if σ̂ |= nspm � nm.

Proof.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 218

a) σ |= nspm � nm if and only if nspm � nm.

b) σ̂ |= nspm � nm if and only if nspm � nm.

c) By Definition 12 dψe = 0 which means that according to the assump-

tions of Lemma 1 ŝ0 = s0. Hence the symbols nspm and nm are

evaluated to the same values for both σ and σ̂.

d) From 1a, 1b and 1c it follows that σ |= nspm � nm if and only if

σ̂ |= nspm � nm.

2. σ |= nsv � nm if and only if σ̂ |= nsv � nm (Proof is similar to the one

provided for 1).

3. σ |= d(nm1) � nm2 if and only if σ̂ |= d(nm1) � nm2.

Proof.

a) σ |= d(nm1) � nm2 if and only if |σ| > 1 and d(nm1) � nm2,

such that d(nm1) =
nm1

1−nm0
1

time1−time0 , where nmj
i represents the result of

evaluating nmi against σj, and timek represents the value of the first

time point in σk.

b) σ̂ |= d(nm1) � nm2 if and only if |σ̂| > 1 and d(nm1) � nm2.

c) By Definition 12 dψe = 1 which means that according to the assump-

tions of Lemma 1 ŝ0 = s0 and ŝ1 = s1. Hence the symbols nm0
1, nm

1
1

and nm2 are evaluated to the same values for both σ and σ̂.

d) From 3c it follows that
nm1

1−nm0
1

time1−time0 � nm2 (considering σ) if and only

if
nm1

1−nm0
1

time1−time0 � nm2 (considering σ̂).

e) From 3a and 3d it follows that σ |= d(nm1) � nm2 if and only if
nm1

1−nm0
1

time1−time0 � nm2 (considering σ̂).

f) From 3b and 3e it follows that σ |= d(nm1) � nm2 if and only if

σ̂ |= d(nm1) � nm2.

4. σ |=∼ ψ if and only if σ̂ |=∼ ψ.

Proof.

a) σ |=∼ ψ if and only if σ 6|= ψ.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 219

b) σ̂ |=∼ ψ if and only if σ̂ 6|= ψ.

c) By Definition 12 d∼ ψe = dψe which means that according to the

assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the value

of m is determined such that sufficient time points are recorded for the

evaluation of ψ. Hence the semantics of ψ considering σ is equivalent

to the semantics of ψ considering σ̂.

d) From 4c it follows that σ 6|= ψ if and only if σ̂ 6|= ψ.

e) From 4a and 4d it follows that σ |=∼ ψ if and only if σ̂ 6|= ψ.

f) From 4b and 4e it follows that σ |=∼ ψ if and only if σ̂ |=∼ ψ.

5. σ |= ψ1 ∧ ψ2 if and only if σ̂ |= ψ1 ∧ ψ2.

Proof.

a) σ |= ψ1 ∧ ψ2 if and only if σ |= ψ1 and σ |= ψ2.

b) σ̂ |= ψ1 ∧ ψ2 if and only if σ̂ |= ψ1 and σ̂ |= ψ2.

c) By Definition 12 dψ1 ∧ ψ2e = max(dψ1e, dψ2e) which means that ac-

cording to the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm,

where the value of m is determined such that sufficient time points are

recorded for the evaluation of both ψ1 and ψ2. Hence the semantics of

ψ1 and ψ2 is the same considering both σ and σ̂.

d) From 5c it follows that σ |= ψ1 if and only if σ̂ |= ψ1, and σ |= ψ2 if

and only if σ̂ |= ψ2.

e) From 5d it follows that σ |= ψ1 and σ |= ψ2 if and only if σ̂ |= ψ1

and σ̂ |= ψ2.

f) From 5a and 5e it follows that σ |= ψ1 ∧ψ2 if and only if σ̂ |= ψ1 and

σ̂ |= ψ2.

g) From 5b and 5f it follows that σ |= ψ1∧ψ2 if and only if σ̂ |= ψ1∧ψ2.

6. σ |= ψ1∨ψ2 if and only if σ̂ |= ψ1∨ψ2 (Proof is similar to the one provided

for 5).

7. σ |= ψ1 ⇒ ψ2 if and only if σ̂ |= ψ1 ⇒ ψ2 (Proof is similar to the one

provided for 5).

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 220

8. σ |= ψ1 ⇔ ψ2 if and only if σ̂ |= ψ1 ⇔ ψ2 (Proof is similar to the one

provided for 5).

9. σ |= ψ1 U [a, b] ψ2 if and only if σ̂ |= ψ1 U [a, b] ψ2.

Proof.

a) σ |= ψ1 U [a, b] ψ2 if and only if there exists i, i ∈ [a, b], such that

σ(i) |= ψ2, and for all j, j ∈ [a, i), it holds that σ(j) |= ψ1.

b) σ̂ |= ψ1 U [a, b] ψ2 if and only if there exists i′, i′ ∈ [a, b], such that

σ̂(i′) |= ψ2, and for all j′, j′ ∈ [a, i′), it holds that σ̂(j′) |= ψ1.

c) By Definition 12 dψ1 U [a, b] ψ2e = b + max(dψ1e, dψ2e). This means

that according to the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ...,

ŝm = sm, where the value of m is determined such that sufficient time

points are recorded for the evaluation of both ψ1 and ψ2 considering

any execution suffix σ(h)/σ̂(h), h ∈ [a, b].

d) From 9c it follows that for any suffix execution σ(h)/σ̂(h), h ∈ [a, b]

the semantics of ψ1 and ψ2 is the same.

e) From 9d it follows that there exists i, i ∈ [a, b], such that σ(i) |= ψ2 if

and only if there exists i′, i′ ∈ [a, b], i′ = i, such that σ̂(i′) |= ψ2.

f) From 9d it follows that for all j, j ∈ [a, i), it holds that σ(j) |= ψ1 if

and only if for all j′, j′ ∈ [a, i′), i′ = i, j′ = j, it holds that σ̂(j′) |= ψ1.

g) From 9e and 9f it follows that there exists i, i ∈ [a, b], such that

σ(i) |= ψ2 and for all j, j ∈ [a, i), it holds that σ(j) |= ψ1 if and only

if there exists i′, i′ ∈ [a, b], i′ = i, such that σ̂(i′) |= ψ2 and for all j′,

j′ ∈ [a, i′), it holds that σ̂(j′) |= ψ1.

h) From 9a and 9g it follows that σ |= ψ1 U [a, b] ψ2 if and only if there

exists i′, i′ ∈ [a, b], such that σ̂(i′) |= ψ2 and for all j′, j′ ∈ [a, i′), it

holds that σ̂(j′) |= ψ1.

i) From 9b and 9h it follows that σ |= ψ1 U [a, b] ψ2 if and only if

σ̂ |= ψ1 U [a, b] ψ2.

10. σ |= F [a, b] ψ if and only if σ̂ |= F [a, b] ψ.

Proof.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 221

a) σ |= F [a, b] ψ if and only if there exists i, i ∈ [a, b], such that σ(i) |=
ψ.

b) σ̂ |= F [a, b] ψ if and only if there exists i′, i′ ∈ [a, b], such that

σ̂(i′) |= ψ.

c) By Definition 12 dF [a, b] ψe = b+ dψe. This means that according to

the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering any execution suffix σ(h)/σ̂(h),

h ∈ [a, b].

d) From 10c it follows that the semantics of ψ is equivalent for suffix

executions σ(h) and σ̂(h), for all h, h ∈ [a, b].

e) From 10d it follows that there exists i, i ∈ [a, b], such that σ(i) |= ψ if

and only if there exists i′, i′ ∈ [a, b], i′ = i, such that σ̂(i′) |= ψ.

f) From 10a and 10e it follows that σ |= F [a, b] ψ if and only if there

exists i′, i′ ∈ [a, b], such that σ̂(i′) |= ψ.

g) From 10b and 10f it follows that σ |= F [a, b] ψ if and only if σ̂ |=
F [a, b] ψ.

11. σ |= G[a, b] ψ if and only if σ̂ |= G[a, b] ψ.

Proof.

a) σ |= G[a, b] ψ if and only if for all i, i ∈ [a, b], it holds that σ(i) |= ψ.

b) σ̂ |= G[a, b] ψ if and only if for all i′, i′ ∈ [a, b], it holds that σ̂(i′) |= ψ.

c) By Definition 12 dG[a, b] ψe = b+ dψe. This means that according to

the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering any execution suffix σ(h)/σ̂(h),

h ∈ [a, b].

d) From 11c it follows that the semantics of ψ is equivalent for suffix

executions σ(h) and σ̂(h), for all h, h ∈ [a, b].

e) From 11d it follows that for all i, i ∈ [a, b], it holds that σ(i) |= ψ if

and only if for all i′, i′ ∈ [a, b], i′ = i, it holds that σ̂(i′) |= ψ.

f) From 11a and 11e it follows that σ |= G[a, b] ψ if and only if for all

i′, i′ ∈ [a, b], it holds that σ̂(i′) |= ψ.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 222

g) From 11b and 11f it follows that σ |= G[a, b] ψ if and only if σ̂ |=
G[a, b] ψ.

12. σ |= X ψ if and only if σ̂ |= X ψ.

Proof.

a) σ |= X ψ if and only if |σ| > 1 and σ1 |= ψ.

b) σ̂ |= X ψ if and only if |σ̂| > 1 and σ̂1 |= ψ.

c) By Definition 12 dX ψe = 1 + dψe. This means that according to the

assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering the execution suffix σ1/σ̂1.

d) From 12c it follows that the semantics of ψ is equivalent for suffix

executions σ1 and σ̂1.

e) From 12d it follows that σ1 |= ψ if and only if σ̂1 |= ψ.

f) From 12a and 12e it follows that σ |= X ψ if and only if σ̂1 |= ψ.

g) From 12b and 12f it follows that σ |= X ψ if and only if σ̂ |= X ψ.

13. σ |= X[k] ψ if and only if σ̂ |= X[k] ψ.

Proof.

a) σ |= X[k] ψ if and only if |σ| > k and σk |= ψ.

b) σ̂ |= X[k] ψ if and only if |σ̂| > k and σ̂k |= ψ.

c) By Definition 12 dX[k] ψe = k + dψe. This means that according to

the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering the execution suffix σk/σ̂k.

d) From 13c it follows that the semantics of ψ is equivalent for suffix

executions σk and σ̂k.

e) From 13d it follows that σk |= ψ if and only if σ̂k |= ψ.

f) From 13a and 13e it follows that σ |= X[k] ψ if and only if σ̂k |= ψ.

Pârvu O., 2015, APPENDIX C. MULTIDIMENSIONAL SPATIO-TEMPORAL 223

g) From 13b and 13f it follows that σ |= X[k] ψ if and only if σ̂ |= X[k] ψ.

14. σ |= (ψ) if and only if σ̂ |= (ψ).

Proof.

a) σ |= (ψ) if and only if σ |= ψ.

b) σ̂ |= (ψ) if and only if σ̂ |= ψ.

c) By Definition 12 d(ψ)e = dψe. This means that according to the

assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ.

d) From 14c it follows that the semantics of ψ is equivalent for both σ

and σ̂.

e) From 14d it follows that σ |= ψ if and only if σ̂ |= ψ.

f) From 14a and 14e it follows that σ |= (ψ) if and only if σ̂ |= ψ.

g) From 14b and 14f it follows that σ |= (ψ) if and only if σ̂ |= (ψ).

APPENDIX D
Multiscale multidimensional

spatio-temporal meta model

checking supplementary

materials

D.1 Proof that the multiscale

multidimensional spatio-temporal model

checking problem is well-defined

To show that the model checking problem is well-defined we will first prove

that the number of required model simulations and state transitions within each

simulation are finite.

D.1.1 Finite number of required simulations

In Subsubsection 3.6.1.1 it was shown that, considering the approximate prob-

abilistic model checking approaches described in Table 2.1, a finite number of

model simulations are sufficient to determine if a logic statement holds. This

property is inherent to the model checking approaches considered and does not

directly depend on the model representation and/or formal logic employed to

write the system specification. Therefore it will not be restated here.

224

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 225

D.1.2 Finite number of state transitions

Bounded temporal logic (including BLMSTL) properties can be evaluated against

model simulations which cover only a finite interval of time. The upper bound

of this interval can be computed based on the temporal operators/functions

contained by the evaluated logic properties. Let us denote the upper bound

corresponding to a generic BLMSTL logic property ψ by dψe.

Definition 18 Model simulation time upper bound for BLMSTL logic

statement

The upper bound dψe ∈ R+ corresponding to a BLMSTL logic statement ψ

considering an execution σ and the abbreviations introduced in Table 5.2 is

defined recursively on the structure of the logic statement as follows:

• dtnm1 � tnm2e = max(dtnm1e, dtnm2e);

• dcm(tnm1) � tnm2e = max(1+dtnm1e, dtnm2e) ≤ 1+max(dtnm1e, dtnm2e)
because the value of tnm1 is computed considering both σ[0] and σ[1];

• d∼ ψe = dψe;

• dψ1 ∧ ψ2e = max(dψ1e, dψ2e);

• dψ1 ∨ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇒ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇔ ψ2e = max(dψ1e, dψ2e);

• dψ1 U [a, b] ψ2e = max(b− 1 + dψ1e, b+ dψ2e) ≤ b+ max(dψ1e, dψ2e);

• dF [a, b] ψe = b+ dψe;

• dG[a, b] ψe = b+ dψe;

• dX ψe = 1 + dψe;

• dX[k] ψe = k + dψe;

• d(ψ)e = dψe.

• The upper bound dtnme corresponding to the temporal numeric measure

tnm is defined recursively on the structure of the temporal numeric measure

as follows:

– dree = 0, because the value of re is employed directly;

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 226

– dnsve = 0, because the value of nsv is computed considering only σ[0];

– dnstme which is computed as described below;

– dunm(tnm)e = dtnme;

– dbnm(tnm1, tnm2)e = max(dtnm1e, dtnm2e).

• The upper bound dnstme corresponding to the numeric statistical measure

nstm is defined recursively on the structure of the numeric statistical measure

as follows:

– dustm(nmc)e = dnmce;

– dbstm(nmc1, nmc2)e = max(dnmc1e, dnmc2e);

– dbstqm(nmc, re)e = dnmce.

• The upper bound dnmce corresponding to the numeric measure collection

nmc is defined recursively on the structure of the numeric measure collection

as follows:

– d[a, b]nme = b+ dnme;

– dsmce = 0, because the value of smc is computed considering only

σ[0].

• The upper bound dnme corresponding to the numeric measure nm is defined

recursively on the structure of the numeric measure as follows:

– dpnme = 0, because the value of pnm is computed considering only

σ[0];

– dunm(nm)e = dnme;

– dbnm(nm1, nm2)e = max(dnm1e, dnm2e).

Thus the minimum upper bound for the simulation time interval to be covered

by model executions when verifying a BLMSTL logic property ψ is dψe.

Lemma 3 BLMSTL semantics based on finite prefix of infinite execu-

tion

Let us assume that a BLMSTL logic property ψ is verified against an infinite

execution σ = {(s0, t0), (s1, t1), (s2, t2), ...}. Moreover let us denote a finite prefix

of σ by σ̂ = {(ŝ0, t̂0), (ŝ1, t̂1), ..., (ŝm, t̂m)}, where

ŝi = si and t̂i = ti,∀i = 0,m with
m∑
i=0

ti ≥ dψe and
m−1∑
i=0

ti < dψe.

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 227

Then σ |= ψ if and only if σ̂ |= ψ.

Proof 6 BLMSTL semantics based on finite prefix of infinite execu-

tion

We will prove the results of Lemma 3 recursively on the structure of the logic

property ψ as described below:

1. σ |= tnm1 � tnm2 if and only if σ̂ |= tnm1 � tnm2.

Proof.

a) σ |= tnm1 � tnm2 if and only if tnm1 � tnm2.

b) σ̂ |= tnm1 � tnm2 if and only if tnm1 � tnm2.

c) By Definition 18 dψe = max(tnm1, tnm2) which means that according

to the assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of both tnm1 and tnm2. Hence both tnm1 and tnm2

are evaluated to the same values for both σ and σ̂.

d) From 1c it follows that tnm1 � tnm2 (considering σ) if and only if

tnm1 � tnm2 (considering σ̂).

e) From 1a and 1d it follows that σ |= tnm1 � tnm2 if and only if

tnm1 � tnm2 (considering σ̂).

f) From 1b and 1e it follows that σ |= tnm1 � tnm2 if and only if

σ̂ |= tnm1 � tnm2.

2. σ |= cm(tnm1) � tnm2 if and only if σ̂ |= cm(tnm1) � tnm2.

Proof.

a) σ |= cm(tnm1) � tnm2 if and only if |σ| > 1+dtnm1e and cm(tnm1)

� tnm2, such that cm ∈ {d, r}, d(tnm1) =
tnm1

1−tnm0
1

time1−time0 and r(tnm1) =
tnm1

1
tnm0

1

time1−time0 , where tnmj
i represents the result of evaluating tnmi against

σj, and timek represents the value of the first time point in σk.

b) σ̂ |= cm(tnm1) � tnm2 if and only if |σ̂| > 1+dtnm1e and cm(tnm1)

� tnm2.

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 228

c) By Definition 18 dψe = 1 + max(dtnm1e, dtnm2e) which means that

according to the assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm,

where the value of m is determined such that sufficient time points

are recorded for the evaluation of tnm0
1, tnm

1
1 and tnm2. Hence the

symbols tnm0
1, tnm

1
1 and tnm2 are evaluated to the same values for

both σ and σ̂.

d) From 2c it follows that
tnm1

1−tnm0
1

time1−time0 � tnm2, respectively

tnm1
1

tnm0
1

time1−time0 �
tnm2 (considering σ) if and only if

tnm1
1−tnm0

1

time1−time0 � tnm2, respectively
tnm1

1
tnm0

1

time1−time0 � tnm2 (considering σ̂).

e) From 2a and 2d it follows that σ |= cm(tnm1) � tnm2 if and only if

tnm1
1−tnm0

1

time1−time0 � tnm2, respectively

tnm1
1

tnm0
1

time1−time0 � tnm2 (considering σ̂).

f) From 2b and 2e it follows that σ |= cm(tnm1) � tnm2 if and only if

σ̂ |= cm(tnm1) � tnm2.

3. σ |=∼ ψ if and only if σ̂ |=∼ ψ.

Proof.

a) σ |=∼ ψ if and only if σ 6|= ψ.

b) σ̂ |=∼ ψ if and only if σ̂ 6|= ψ.

c) By Definition 18 d∼ ψe = dψe which means that according to the

assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the value

of m is determined such that sufficient time points are recorded for

the evaluation of ψ. Hence the semantics of ψ is the same considering

both σ and σ̂.

d) From 3c it follows that σ 6|= ψ if and only if σ̂ 6|= ψ.

e) From 3a and 3d it follows that σ |=∼ ψ if and only if σ̂ 6|= ψ.

f) From 3b and 3e it follows that σ |=∼ ψ if and only if σ̂ |=∼ ψ.

4. σ |= ψ1 ∧ ψ2 if and only if σ̂ |= ψ1 ∧ ψ2.

Proof.

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 229

a) σ |= ψ1 ∧ ψ2 if and only if σ |= ψ1 and σ |= ψ2.

b) σ̂ |= ψ1 ∧ ψ2 if and only if σ̂ |= ψ1 and σ̂ |= ψ2.

c) By Definition 18 dψ1 ∧ ψ2e = max(dψ1e, dψ2e) which means that ac-

cording to the assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm,

where the value of m is determined such that sufficient time points are

recorded for the evaluation of both ψ1 and ψ2. Hence the semantics of

ψ1 and ψ2 is the same considering both σ and σ̂.

d) From 4c it follows that σ |= ψ1 if and only if σ̂ |= ψ1, and σ |= ψ2 if

and only if σ̂ |= ψ2.

e) From 4d it follows that σ |= ψ1 and σ |= ψ2 if and only if σ̂ |= ψ1

and σ̂ |= ψ2.

f) From 4a and 4e it follows that σ |= ψ1 ∧ψ2 if and only if σ̂ |= ψ1 and

σ̂ |= ψ2.

g) From 4b and 4f it follows that σ |= ψ1∧ψ2 if and only if σ̂ |= ψ1∧ψ2.

5. σ |= ψ1∨ψ2 if and only if σ̂ |= ψ1∨ψ2 (Proof is similar to the one provided

for 4).

6. σ |= ψ1 ⇒ ψ2 if and only if σ̂ |= ψ1 ⇒ ψ2 (Proof is similar to the one

provided for 4).

7. σ |= ψ1 ⇔ ψ2 if and only if σ̂ |= ψ1 ⇔ ψ2 (Proof is similar to the one

provided for 4).

8. σ |= ψ1 U [a, b] ψ2 if and only if σ̂ |= ψ1 U [a, b] ψ2.

Proof.

a) σ |= ψ1 U [a, b] ψ2 if and only if there exists i, i ∈ [a, b], such that

σ(i) |= ψ2, and for all j, j ∈ [a, i), it holds that σ(j) |= ψ1.

b) σ̂ |= ψ1 U [a, b] ψ2 if and only if there exists i′, i′ ∈ [a, b], such that

σ̂(i′) |= ψ2, and for all j′, j′ ∈ [a, i′), it holds that σ̂(j′) |= ψ1.

c) By Definition 18 dψ1 U [a, b] ψ2e = b + max(dψ1e, dψ2e). This means

that according to the assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ...,

ŝm = sm, where the value of m is determined such that sufficient time

points are recorded for the evaluation of both ψ1 and ψ2 considering

any execution suffix σ(h)/σ̂(h), h ∈ [a, b].

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 230

d) From 8c it follows that for any suffix execution σ(h)/σ̂(h), h ∈ [a, b]

the semantics of ψ1 and ψ2 is the same.

e) From 8d it follows that there exists i, i ∈ [a, b], such that σ(i) |= ψ2 if

and only if there exists i′, i′ ∈ [a, b], i′ = i, such that σ̂(i′) |= ψ2.

f) From 8d and 8e it follows that for all j, j ∈ [a, i), it holds that σ(j) |= ψ1

if and only if for all j′, j′ ∈ [a, i′), i′ = i, j′ = j, it holds that

σ̂(j′) |= ψ1.

g) From 8e and 8f it follows that there exists i, i ∈ [a, b], such that

σ(i) |= ψ2 and for all j, j ∈ [a, i), it holds that σ(j) |= ψ1 if and only

if there exists i′, i′ ∈ [a, b], i′ = i, such that σ̂(i′) |= ψ2 and for all j′,

j′ ∈ [a, i′), it holds that σ̂(j′) |= ψ1.

h) From 8a and 8g it follows that σ |= ψ1 U [a, b] ψ2 if and only if there

exists i′, i′ ∈ [a, b], such that σ̂(i′) |= ψ2 and for all j′, j′ ∈ [a, i′), it

holds that σ̂(j′) |= ψ1.

i) From 8b and 8h it follows that σ |= ψ1 U [a, b] ψ2 if and only if

σ̂ |= ψ1 U [a, b] ψ2.

9. σ |= F [a, b] ψ if and only if σ̂ |= F [a, b] ψ.

Proof.

a) σ |= F [a, b] ψ if and only if there exists i, i ∈ [a, b], such that σ(i) |=
ψ.

b) σ̂ |= F [a, b] ψ if and only if there exists i′, i′ ∈ [a, b], such that

σ̂(i′) |= ψ.

c) By Definition 18 dF [a, b] ψe = b+ dψe. This means that according to

the assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering any execution suffix σ(h)/σ̂(h),

h ∈ [a, b].

d) From 9c it follows that the semantics of ψ is equivalent for suffix

executions σ(h) and σ̂(h), for all h, h ∈ [a, b].

e) From 9d it follows that there exists i, i ∈ [a, b], such that σ(i) |= ψ if

and only if there exists i′, i′ ∈ [a, b], i′ = i, such that σ̂(i′) |= ψ.

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 231

f) From 9a and 9e it follows that σ |= F [a, b] ψ if and only if there

exists i′, i′ ∈ [a, b], such that σ̂(i′) |= ψ.

g) From 9b and 9f it follows that σ |= F [a, b] ψ if and only if σ̂ |=
F [a, b] ψ.

10. σ |= G[a, b] ψ if and only if σ̂ |= G[a, b] ψ.

Proof.

a) σ |= G[a, b] ψ if and only if for all i, i ∈ [a, b], it holds that σ(i) |= ψ.

b) σ̂ |= G[a, b] ψ if and only if for all i′, i′ ∈ [a, b], it holds that σ̂(i′) |= ψ.

c) By Definition 18 dG[a, b] ψe = b+ dψe. This means that according to

the assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering any execution suffix σ(h)/σ̂(h),

h ∈ [a, b].

d) From 10c it follows that the semantics of ψ is equivalent for suffix

executions σ(h) and σ̂(h), for all h, h ∈ [a, b].

e) From 10d it follows that for all i, i ∈ [a, b], it holds that σ(i) |= ψ if

and only if for all i′, i′ ∈ [a, b], i′ = i, it holds that σ̂(i′) |= ψ.

f) From 10a and 10e it follows that σ |= G[a, b] ψ if and only if for all

i′, i′ ∈ [a, b], it holds that σ̂(i′) |= ψ.

g) From 10b and 10f it follows that σ |= G[a, b] ψ if and only if σ̂ |=
G[a, b] ψ.

11. σ |= X ψ if and only if σ̂ |= X ψ.

Proof.

a) σ |= X ψ if and only if |σ| > 1 and σ1 |= ψ.

b) σ̂ |= X ψ if and only if |σ̂| > 1 and σ̂1 |= ψ.

c) By Definition 18 dX ψe = 1 + dψe. This means that according to the

assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering the execution suffix σ1/σ̂1.

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 232

d) From 11c it follows that the semantics of ψ is equivalent for suffix

executions σ1 and σ̂1.

e) From 11d it follows that σ1 |= ψ if and only if σ̂1 |= ψ.

f) From 11a and 11e it follows that σ |= X ψ if and only if σ̂1 |= ψ.

g) From 11b and 11f it follows that σ |= X ψ if and only if σ̂ |= X ψ.

12. σ |= X[k] ψ if and only if σ̂ |= X[k] ψ.

Proof.

a) σ |= X[k] ψ if and only if |σ| > k and σk |= ψ.

b) σ̂ |= X[k] ψ if and only if |σ̂| > k and σ̂k |= ψ.

c) By Definition 18 dX[k] ψe = k + dψe. This means that according to

the assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ considering the execution suffix σk/σ̂k.

d) From 12c it follows that the semantics of ψ is equivalent for suffix

executions σk and σ̂k.

e) From 12d it follows that σk |= ψ if and only if σ̂k |= ψ.

f) From 12a and 12e it follows that σ |= X[k] ψ if and only if σ̂k |= ψ.

g) From 12b and 12f it follows that σ |= X[k] ψ if and only if σ̂ |= X[k] ψ.

13. σ |= (ψ) if and only if σ̂ |= (ψ).

Proof.

a) σ |= (ψ) if and only if σ |= ψ.

b) σ̂ |= (ψ) if and only if σ̂ |= ψ.

c) By Definition 18 d(ψ)e = dψe. This means that according to the

assumptions of Lemma 3 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm, where the

value of m is determined such that sufficient time points are recorded

for the evaluation of ψ.

d) From 13c it follows that the semantics of ψ is equivalent for both σ

and σ̂.

Pârvu O., 2015, APPENDIX D. MULTISCALE MULTIDIMENSIONAL 233

e) From 13d it follows that σ |= ψ if and only if σ̂ |= ψ.

f) From 13a and 13e it follows that σ |= (ψ) if and only if σ̂ |= ψ.

g) From 13b and 13f it follows that σ |= (ψ) if and only if σ̂ |= (ψ).

Lemma 4 Finite number of state transitions to evaluate BLSTL logic

statement

The number of state transitions required to verify a BLMSTL logic property is

finite.

Proof 7 Finite number of state transitions to evaluate BLSTL logic

statement

From Lemma 3 it follows that a BLMSTL logic property ψ can be verified against

a model simulation σ based on a finite prefix σ̂. The minimum time interval

captured by σ̂ is bounded and can be computed using Definition 18. Since we

assume the time divergence property holds for all the systems considered only a

finite number of state transitions can occur in a bounded interval of time.

D.1.3 Well-defined model checking problem

Theorem 2 Well-defined multiscale multidimensional spatio-temporal

model checking problem

The multiscale multidimensional spatio-temporal model checking problem is well-

defined.

Proof 8 Well-defined multiscale multidimensional spatio-temporal

model checking problem

In Appendix Subsection D.1.1 it was shown that the number of model simulations

required to verify if a PBLMSTL logic property φ holds is finite. Moreover

according to Lemmas 3 and 4 only a finite prefix and a finite number of state

transitions have to be considered for each model simulation. Thus the evaluation

of φ is reduced to the problem of evaluating atomic properties over a finite number

of states for each model simulation, which is decidable. Hence the model checking

problem is well-defined.

References

Adra, S., Sun, T., MacNeil, S., Holcombe, M., and Smallwood, R. (2010). Devel-
opment of a Three Dimensional Multiscale Computational Model of the Human
Epidermis. PLoS ONE, 5(1):e8511.

Aiello, M., Pratt-Hartmann, I., and Benthem, J. F. A. K. v. (2007). Handbook of
spatial logics. Springer.

Allen, J. F. and Hayes, P. J. (1989). Moments and points in an interval-based
temporal logic. Computational Intelligence, 5(3):225–238.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin,
X., Olivero, A., Sifakis, J., and Yovine, S. (1995). The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138(1):3–34.

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer
Science, 126(2):183–235.

An, G. (2008). Introduction of an agent-based multi-scale modular architecture for
dynamic knowledge representation of acute inflammation. Theoretical Biology
and Medical Modelling, 5(1):11.

An, G., Mi, Q., Dutta-Moscato, J., and Vodovotz, Y. (2009). Agent-based models
in translational systems biology. Wiley Interdisciplinary Reviews. Systems
Biology and Medicine, 1(2):159–171.

Andersen, M. E. and Krewski, D. (2009). Toxicity Testing in the 21st Century:
Bringing the Vision to Life. Toxicological Sciences, 107(2):324–330.

Andrianantoandro, E., Basu, S., Karig, D. K., and Weiss, R. (2006). Synthetic
biology: new engineering rules for an emerging discipline. Molecular Systems
Biology, 2(1).

Antoniotti, M., Policriti, A., Ugel, N., and Mishra, B. (2003). Model building and
model checking for biochemical processes. Cell Biochemistry and Biophysics,
38(3):271–286.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona, I. (2013).
An extensive comparative study of cluster validity indices. Pattern Recognition,
46(1):243–256.

Arditi, R., Tyutyunov, Y., Morgulis, A., Govorukhin, V., and Senina, I. (2001).
Directed Movement of Predators and the Emergence of Density-Dependence in
Predator–Prey Models. Theoretical Population Biology, 59(3):207–221.

Asai, Y., Abe, T., Oka, H., Okita, M., Hagihara, K.-i., Ghosh, S., Matsuoka, Y.,
Kurachi, Y., Nomura, T., and Kitano, H. (2014). A Versatile Platform for
Multilevel Modeling of Physiological Systems: SBML-PHML Hybrid Modeling
and Simulation. Advanced Biomedical Engineering, 3:50–58.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M.,
Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill,

234

235

D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E.,
Ringwald, M., Rubin, G. M., and Sherlock, G. (2000). Gene Ontology: tool for
the unification of biology. Nature Genetics, 25(1):25–29.

Aziz, A., Sanwal, K., Singhal, V., and Brayton, R. (2000). Model-checking
Continuous-time Markov Chains. ACM Trans. Comput. Logic, 1(1):162–170.

Aziz, A., Sanwal, K., Singhal, V., and Brayton, R. K. (1996). Verifying Continuous
Time Markov Chains. In Proceedings of the 8th International Conference on
Computer Aided Verification, CAV ’96, pages 269–276, London, UK. Springer-
Verlag.

Aziz, A., Singhal, V., Balarin, F., Brayton, R. K., and Sangiovanni-Vincentelli,
A. L. (1995). It usually works: The temporal logic of stochastic systems. In
Wolper, P., editor, Computer Aided Verification, number 939 in Lecture Notes
in Computer Science, pages 155–165. Springer Berlin Heidelberg.

Baeten, J. C. M., Basten, T., and Reniers, M. A. (2010). Process Algebra:
Equational Theories of Communicating Processes. Cambridge University Press.

Baier, C. (1998). On Algorithmic Verification Methods for Probabilistic Systems.
Habilitation, Mannheim, Germany.

Baier, C. and Grosser, M. (2005). Recognizing ω-regular languages with proba-
bilistic automata. In Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science, pages 137–146.

Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking. The MIT Press.
Baier, C., Katoen, J.-P., and Hermanns, H. (1999). Approximative Symbolic

Model Checking of Continuous-Time Markov Chains. In Baeten, J. C. M. and
Mauw, S., editors, CONCUR’99 Concurrency Theory, number 1664 in Lecture
Notes in Computer Science, pages 146–161. Springer Berlin Heidelberg.

Ballarini, P., Djafri, H., Duflot, M., Haddad, S., and Pekergin, N. (2011). COS-
MOS: A Statistical Model Checker for the Hybrid Automata Stochastic Logic.
In 2011 Eighth International Conference on Quantitative Evaluation of Systems
(QEST), pages 143–144.

Ballarini, P., Gallet, E., Gall, P. L., and Manceny, M. (2014). Formal Analysis of
the Wnt/β-catenin through Statistical Model Checking. In Margaria, T. and
Steffen, B., editors, Leveraging Applications of Formal Methods, Verification and
Validation. Specialized Techniques and Applications, number 8803 in Lecture
Notes in Computer Science, pages 193–207. Springer Berlin Heidelberg.

Ballarini, P. and Guerriero, M. L. (2010). Query-based verification of qualitative
trends and oscillations in biochemical systems. Theoretical Computer Science,
411(20):2019–2036.

Ballarini, P., Mäkelä, J., and Ribeiro, A. S. (2012). Expressive Statistical Model
Checking of Genetic Networks with Delayed Stochastic Dynamics. In Gilbert,
D. and Heiner, M., editors, Computational Methods in Systems Biology, Lecture
Notes in Computer Science, pages 29–48. Springer Berlin Heidelberg.

Ballarini, P., Mardare, R., and Mura, I. (2009). Analysing Biochemical Oscilla-
tion through Probabilistic Model Checking. Electronic Notes in Theoretical
Computer Science, 229(1):3–19.

Balter, A., Merks, R. M. H., Pop lawski, N. J., Swat, M., and Glazier, J. A.
(2007). The Glazier-Graner-Hogeweg Model: Extensions, Future Directions,
and Opportunities for Further Study. In Anderson, D. A. R. A., Chaplain, P.

236

M. A. J., and Rejniak, D. K. A., editors, Single-Cell-Based Models in Biology
and Medicine, Mathematics and Biosciences in Interaction, pages 151–167.
Birkhäuser Basel.

Barbuti, R., Levi, F., Milazzo, P., and Scatena, G. (2012). Probabilistic model
checking of biological systems with uncertain kinetic rates. Theoretical Computer
Science, 419:2–16.

Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., and Tesei, L. (2011).
Spatial P systems. Natural Computing, 10(1):3–16.

Barnat, J., Brim, L., Černá, I., Dražan, S., Fabriková, J., Láńık, J., Šafránek,
D., and Ma, H. (2009a). BioDiVinE: A Framework for Parallel Analysis of
Biological Models. Electronic Proceedings in Theoretical Computer Science,
6:31–45.

Barnat, J., Brim, L., Černá, I., Dražan, S., Fabriková, J., and Šafránek, D. (2009b).
On algorithmic analysis of transcriptional regulation by LTL model checking.
Theoretical Computer Science, 410(33–34):3128–3148.

Barnat, J., Brim, L., Havel, V., Havĺıček, J., Kriho, J., Lenčo, M., Ročkai,
P., Štill, V., and Weiser, J. (2013). DiVinE 3.0 – An Explicit-State Model
Checker for Multithreaded C & C++ Programs. In Sharygina, N. and Veith,
H., editors, Computer Aided Verification, number 8044 in Lecture Notes in
Computer Science, pages 863–868. Springer Berlin Heidelberg.

Barnat, J., Brim, L., and Šafránek, D. (2010a). High-performance analysis of
biological systems dynamics with the DiVinE model checker. Briefings in
Bioinformatics, 11(3):301–312.

Barnat, J., Brim, L., Šafránek, D., and Vejnár, M. (2010b). Parameter Scanning
by Parallel Model Checking with Applications in Systems Biology. In Second
International Workshop on Parallel and Distributed Methods in Verification,
2010 Ninth International Workshop on, and High Performance Computational
Systems Biology, pages 95–104.

Bartocci, E., Bortolussi, L., Nenzi, L., and Sanguinetti, G. (2013). On the
Robustness of Temporal Properties for Stochastic Models. Electronic Proceedings
in Theoretical Computer Science, 125:3–19.

Bartocci, E., Bortolussi, L., Nenzi, L., and Sanguinetti, G. (2015). System
design of stochastic models using robustness of temporal properties. Theoretical
Computer Science.

Bartocci, E., Corradini, F., Merelli, E., and Tesei, L. (2010). Detecting synchroni-
sation of biological oscillators by model checking. Theoretical Computer Science,
411(20):1999–2018.

Batt, G., Belta, C., and Weiss, R. (2007a). Model Checking Genetic Regulatory
Networks with Parameter Uncertainty. In Bemporad, A., Bicchi, A., and
Buttazzo, G., editors, Hybrid Systems: Computation and Control, number 4416
in Lecture Notes in Computer Science, pages 61–75. Springer Berlin Heidelberg.

Batt, G., Belta, C., and Weiss, R. (2008). Temporal Logic Analysis of Gene
Networks Under Parameter Uncertainty. IEEE Transactions on Automatic
Control, 53(Special Issue):215–229.

Batt, G., Ropers, D., Jong, H. d., Geiselmann, J., Mateescu, R., Page, M., and
Schneider, D. (2005). Validation of qualitative models of genetic regulatory
networks by model checking: analysis of the nutritional stress response in

237

Escherichia coli. Bioinformatics, 21(suppl 1):i19–i28.
Batt, G., Yordanov, B., Weiss, R., and Belta, C. (2007b). Robustness analysis

and tuning of synthetic gene networks. Bioinformatics, 23(18):2415–2422.
Bauer, A. L., Beauchemin, C. A. A., and Perelson, A. S. (2009). Agent-based

modeling of host–pathogen systems: The successes and challenges. Information
Sciences, 179(10):1379–1389.

Beard, D. A., Neal, M. L., Tabesh-Saleki, N., Thompson, C. T., Bassingtwaighte,
J. B., Shimoyama, M., and Carlson, B. E. (2012). Multiscale Modeling and
Data Integration in the Virtual Physiological Rat Project. Annals of Biomedical
Engineering, 40(11):2365–2378.

Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. Ø., and Herrgard,
M. J. (2007). Quantitative prediction of cellular metabolism with constraint-
based models: the COBRA Toolbox. Nature Protocols, 2(3):727–738.

Behrmann, G., David, A., Larsen, K. G., Pettersson, P., and Yi, W. (2011). Devel-
oping UPPAAL over 15 years. Software: Practice and Experience, 41(2):133–142.

Bérenguier, D., Chaouiya, C., Monteiro, P. T., Naldi, A., Remy, E., Thieffry,
D., and Tichit, L. (2013). Dynamical modeling and analysis of large cellular
regulatory networks. Chaos: An Interdisciplinary Journal of Nonlinear Science,
23(2):025114.

Bernard, C. (1865). Introduction à l’étude de la médecine expérimentale. J. B.
Baillière et Fils, Paris, France.

Bernard, S. (2013). How to Build a Multiscale Model in Biology. Acta Biotheoretica,
61(3):291–303.

Bernot, G., Comet, J.-P., Richard, A., and Guespin, J. (2004). Application of
formal methods to biological regulatory networks: extending Thomas’ asyn-
chronous logical approach with temporal logic. Journal of Theoretical Biology,
229(3):339–347.

Besozzi, D., Cazzaniga, P., Pescini, D., and Mauri, G. (2008). Modelling metapop-
ulations with stochastic membrane systems. Biosystems, 91(3):499–514.

Biggs, M. B. and Papin, J. A. (2013). Novel Multiscale Modeling Tool Applied to
Pseudomonas aeruginosa Biofilm Formation. PLoS ONE, 8(10):e78011.

Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004). BioNetGen:
software for rule-based modeling of signal transduction based on the interactions
of molecular domains. Bioinformatics, 20(17):3289–3291.

Boissel, J.-P., Auffray, C., Noble, D., Hood, L., and Boissel, F.-H. (2015). Bridging
Systems Medicine and Patient Needs. CPT: Pharmacometrics & Systems
Pharmacology, 4(3):135–145.

Bondy, A. and Murty, U. S. R. (2010). Graph Theory. Graduate Texts in
Mathematics. Springer, New York, 2008 edition.

Borgdorff, J., Belgacem, M. B., Bona-Casas, C., Fazendeiro, L., Groen, D., Hoe-
nen, O., Mizeranschi, A., Suter, J. L., Coster, D., Coveney, P. V., Dubitzky,
W., Hoekstra, A. G., Strand, P., and Chopard, B. (2014a). Performance of dis-
tributed multiscale simulations. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 372(2021):20130407.

Borgdorff, J., Mamonski, M., Bosak, B., Kurowski, K., Belgacem, M. B., Chopard,
B., Groen, D., Coveney, P. V., and Hoekstra, A. G. (2014b). Distributed
multiscale computing with MUSCLE 2, the Multiscale Coupling Library and

238

Environment. Journal of Computational Science, 5(5):719 – 731.
Bouteiller, J.-M., Allam, S., Hu, E., Greget, R., Ambert, N., Keller, A., Bischoff,

S., Baudry, M., and Berger, T. (2011). Integrated Multiscale Modeling of
the Nervous System: Predicting Changes in Hippocampal Network Activity
by a Positive AMPA Receptor Modulator. IEEE Transactions on Biomedical
Engineering, 58(10):3008–3011.

Boyer, B., Corre, K., Legay, A., and Sedwards, S. (2013). PLASMA-lab: A
Flexible, Distributable Statistical Model Checking Library. In Joshi, K., Siegle,
M., Stoelinga, M., and D’Argenio, P. R., editors, Quantitative Evaluation of
Systems, number 8054 in Lecture Notes in Computer Science, pages 160–164.
Springer Berlin Heidelberg.

Bradley, C., Bowery, A., Britten, R., Budelmann, V., Camara, O., Christie, R.,
Cookson, A., Frangi, A. F., Gamage, T. B., Heidlauf, T., Krittian, S., Ladd,
D., Little, C., Mithraratne, K., Nash, M., Nickerson, D., Nielsen, P., Nordbø,
Ø., Omholt, S., Pashaei, A., Paterson, D., Rajagopal, V., Reeve, A., Röhrle,
O., Safaei, S., Sebastián, R., Steghöfer, M., Wu, T., Yu, T., Zhang, H., and
Hunter, P. (2011). OpenCMISS: A multi-physics & multi-scale computational
infrastructure for the VPH/Physiome project. Progress in Biophysics and
Molecular Biology, 107(1):32–47.

Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer Vision with
the OpenCV Library. O’Reilly, Cambridge, MA.

Braz, F., Cruz, J., Faria-Campos, A., and Campos, S. (2013). Probabilistic
Model Checking Analysis of Palytoxin Effects on Cell Energy Reactions of the
Na+/K+-ATPase. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 10(6):1530–1541.

Bresolin, D., Sala, P., Della Monica, D., Montanari, A., and Sciavicco, G. (2010).
A Decidable Spatial Generalization of Metric Interval Temporal Logic. In
2010 17th International Symposium on Temporal Representation and Reasoning
(TIME), pages 95–102.

Brim, L., Češka, M., Dražan, S., and Šafránek, D. (2013a). Exploring Parameter
Space of Stochastic Biochemical Systems Using Quantitative Model Checking.
In Sharygina, N. and Veith, H., editors, Computer Aided Verification, number
8044 in Lecture Notes in Computer Science, pages 107–123. Springer Berlin
Heidelberg.

Brim, L., Češka, M., and Šafránek, D. (2013b). Model Checking of Biological
Systems. In Bernardo, M., Vink, E. d., Pierro, A. D., and Wiklicky, H., editors,
Formal Methods for Dynamical Systems, number 7938 in Lecture Notes in
Computer Science, pages 63–112. Springer Berlin Heidelberg.

Bryant, R. (1986). Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677–691.

Büchi, J. R. (1962). On a Decision Method in Restricted Second Order Arith-
metic. In Proceedings of the 1960 International Congress on Logic, Methodology
and Philosophy of Science, pages 1–11, Stanford, California, USA. Stanford
University Press.

Bugenhagen, S. M., Cowley, A. W., and Beard, D. A. (2010). Identifying physi-
ological origins of baroreflex dysfunction in salt-sensitive hypertension in the
Dahl SS rat. Physiological Genomics, 42(1):23–41.

239

Bui, T. H. and Nymeyer, A. (2009). Formal Verification Based on Guided Random
Walks. In Leuschel, M. and Wehrheim, H., editors, Integrated Formal Methods,
number 5423 in Lecture Notes in Computer Science, pages 72–87. Springer
Berlin Heidelberg.

Bulychev, P., David, A., Larsen, K. G., Mikučionis, M., Poulsen, D. B., Legay, A.,
and Wang, Z. (2012). UPPAAL-SMC: Statistical Model Checking for Priced
Timed Automata. Electronic Proceedings in Theoretical Computer Science,
85:1–16.

Cai, H. and Devreotes, P. N. (2011). Moving in the right direction: How eukaryotic
cells migrate along chemical gradients. Seminars in Cell & Developmental
Biology, 22(8):834–841.

Caiazzo, A., Evans, D., Falcone, J.-L., Hegewald, J., Lorenz, E., Stahl, B., Wang,
D., Bernsdorf, J., Chopard, B., Gunn, J., Hose, R., Krafczyk, M., Lawford, P.,
Smallwood, R., Walker, D., and Hoekstra, A. (2011). A Complex Automata
approach for in-stent restenosis: Two-dimensional multiscale modelling and
simulations. Journal of Computational Science, 2(1):9–17.

Calder, M., Vyshemirsky, V., Gilbert, D., and Orton, R. (2006). Analysis of
Signalling Pathways Using Continuous Time Markov Chains. In Priami, C.
and Plotkin, G., editors, Transactions on Computational Systems Biology VI,
number 4220 in Lecture Notes in Computer Science, pages 44–67. Springer
Berlin Heidelberg.

Calzone, L., Chabrier-Rivier, N., Fages, F., and Soliman, S. (2006). Machine
Learning Biochemical Networks from Temporal Logic Properties. In Priami,
C. and Plotkin, G., editors, Transactions on Computational Systems Biology
VI, number 4220 in Lecture Notes in Computer Science, pages 68–94. Springer
Berlin Heidelberg.

Cassandras, C. G. and Lafortune, S. (2008). Introduction to Discrete Event
Systems. Springer Science & Business Media.

Cavaliere, M., Mazza, T., and Sedwards, S. (2014). Statistical Model Checking of
Membrane Systems with Peripheral Proteins: Quantifying the Role of Estrogen
in Cellular Mitosis and DNA Damage. In Frisco, P., Gheorghe, M., and Pérez-
Jiménez, M. J., editors, Applications of Membrane Computing in Systems and
Synthetic Biology, number 7 in Emergence, Complexity and Computation, pages
43–63. Springer International Publishing.

Ceccarelli, M., Cerulo, L., and Santone, A. (2014). De novo reconstruction of
gene regulatory networks from time series data, an approach based on formal
methods. Methods, 69(3):298–305.

Češka, M., Dannenberg, F., Kwiatkowska, M., and Paoletti, N. (2014). Precise
Parameter Synthesis for Stochastic Biochemical Systems. In Mendes, P., Dada,
J. O., and Smallbone, K., editors, Computational Methods in Systems Biology,
number 8859 in Lecture Notes in Computer Science, pages 86–98. Springer
International Publishing.

Česka, M., Šafránek, D., Dražan, S., and Brim, L. (2014). Robustness Analysis of
Stochastic Biochemical Systems. PLoS ONE, 9(4):e94553.

Chabrier, N. and Fages, F. (2003). Symbolic Model Checking of Biochemical
Networks. In Priami, C., editor, Computational Methods in Systems Biology,
number 2602 in Lecture Notes in Computer Science, pages 149–162. Springer

240

Berlin Heidelberg, Rovereto, Italy.
Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., and Schächter, V.

(2004). Modeling and querying biomolecular interaction networks. Theoretical
Computer Science, 325(1):25–44.

Chaudhary, S. U., Shin, S.-Y., Lee, D., Song, J.-H., and Cho, K.-H. (2013).
ELECANS—an integrated model development environment for multiscale cancer
systems biology. Bioinformatics, 29(7):957–959.

Cheng, A. A. and Lu, T. K. (2012). Synthetic biology: an emerging engineering
discipline. Annual review of biomedical engineering, 14:155–178.

Chopard, B., Borgdorff, J., and Hoekstra, A. G. (2014). A framework for multi-
scale modelling. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 372(2021).

Christie, G. R., Nielsen, P. M. F., Blackett, S. A., Bradley, C. P., and Hunter, P. J.
(2009). FieldML: concepts and implementation. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences,
367(1895):1869–1884.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., and Tacchella, A. (2002). NuSMV 2: An OpenSource Tool
for Symbolic Model Checking. In Brinksma, E. and Larsen, K. G., editors,
Computer Aided Verification, number 2404 in Lecture Notes in Computer
Science, pages 359–364. Springer Berlin Heidelberg.

Cimatti, A., Clarke, E. M., Giunchiglia, F., and Roveri, M. (1999). NuSMV:
A New Symbolic Model Verifier. In Proceedings of the 11th International
Conference on Computer Aided Verification, CAV ’99, pages 495–499, London,
UK. Springer-Verlag.

Ciocchetta, F., Gilmore, S., Guerriero, M. L., and Hillston, J. (2009). Inte-
grated Simulation and Model-Checking for the Analysis of Biochemical Systems.
Electronic Notes in Theoretical Computer Science, 232:17–38.

Clarke, E., Donzé, A., and Legay, A. (2010). On simulation-based probabilistic
model checking of mixed-analog circuits. Formal Methods in System Design,
36(2):97–113.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2001). Progress on
the State Explosion Problem in Model Checking. In Wilhelm, R., editor,
Informatics, number 2000 in Lecture Notes in Computer Science, pages 176–194.
Springer Berlin Heidelberg.

Clarke, E. M. (2008). The Birth of Model Checking. In Grumberg, O. and Veith,
H., editors, 25 Years of Model Checking, number 5000 in Lecture Notes in
Computer Science, pages 1–26. Springer Berlin Heidelberg.

Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchronization
skeletons using branching time temporal logic. In Kozen, D., editor, Logics
of Programs, number 131 in Lecture Notes in Computer Science, pages 52–71.
Springer Berlin Heidelberg.

Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic Verification
of Finite-state Concurrent Systems Using Temporal Logic Specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263.

Clarke, E. M., Enders, R., Filkorn, T., and Jha, S. (1996). Exploiting symmetry
in temporal logic model checking. Formal Methods in System Design, 9(1-2):77–

241

104.
Clarke, E. M., Faeder, J. R., Langmead, C. J., Harris, L. A., Jha, S. K., and

Legay, A. (2008). Statistical Model Checking in BioLab: Applications to the
Automated Analysis of T-Cell Receptor Signaling Pathway. In Heiner, M. and
Uhrmacher, A. M., editors, Computational Methods in Systems Biology, number
5307 in Lecture Notes in Computer Science, pages 231–250. Springer Berlin
Heidelberg.

Clarke, E. M., Grumberg, O., and Hamaguchi, K. (1997). Another Look at LTL
Model Checking. Formal Methods in System Design, 10(1):47–71.

Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.
Clementini, E., Felice, P. D., and Hernández, D. (1997). Qualitative representation

of positional information. Artificial Intelligence, 95(2):317–356.
Condotta, J.-F. (2000). The Augmented Interval and Rectangle Networks. In

Proceedings of the Seventh International Conference on Principles of Knowledge
Representation and Reasoning, pages 571–579, Breckenridge, Colorado, USA.

Corrias, A., Pathmanathan, P., Gavaghan, D. J., and Buist, M. L. (2012). Mod-
elling tissue electrophysiology with multiple cell types: applications of the
extended bidomain framework. Integrative Biology, 4(2):192–201.

Courcoubetis, C. and Yannakakis, M. (1995). The Complexity of Probabilistic
Verification. J. ACM, 42(4):857–907.

Courtot, M., Juty, N., Knüpfer, C., Waltemath, D., Zhukova, A., Dräger, A.,
Dumontier, M., Finney, A., Golebiewski, M., Hastings, J., Hoops, S., Keating,
S., Kell, D. B., Kerrien, S., Lawson, J., Lister, A., Lu, J., Machne, R., Mendes,
P., Pocock, M., Rodriguez, N., Villeger, A., Wilkinson, D. J., Wimalaratne, S.,
Laibe, C., Hucka, M., and Novère, N. L. (2011). Controlled vocabularies and
semantics in systems biology. Molecular Systems Biology, 7(1).

Dada, J. O. and Mendes, P. (2011). Multi-scale modelling and simulation in
systems biology. Integrative biology: quantitative biosciences from nano to
macro, 3(2):86–96.

Dada, J. O. and Mendes, P. (2012). ManyCell: A Multiscale Simulator for Cellular
Systems. In Gilbert, D. and Heiner, M., editors, Computational Methods in
Systems Biology, Lecture Notes in Computer Science, pages 366–369. Springer
Berlin Heidelberg.

Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. (2007). Rule-
Based Modelling of Cellular Signalling. In Caires, L. and Vasconcelos, V. T.,
editors, CONCUR 2007 – Concurrency Theory, number 4703 in Lecture Notes
in Computer Science, pages 17–41. Springer Berlin Heidelberg.

D’Argenio, P. R. and Katoen, J.-P. (2005). A theory of stochastic systems part I:
Stochastic automata. Information and Computation, 203(1):1–38.

David, A., Larsen, K. G., Legay, A., Mikučionis, M., Poulsen, D. B., and Sedwards,
S. (2012). Runtime Verification of Biological Systems. In Margaria, T. and
Steffen, B., editors, Leveraging Applications of Formal Methods, Verification
and Validation. Technologies for Mastering Change, number 7609 in Lecture
Notes in Computer Science, pages 388–404. Springer Berlin Heidelberg.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Conference on Operating Systems
Design & Implementation, volume 6 of OSDI’04, pages 10–10, Berkeley, CA,

242

USA. USENIX Association.
Deisboeck, T. S., Wang, Z., Macklin, P., and Cristini, V. (2011). Multiscale

Cancer Modeling. Annual Review of Biomedical Engineering, 13(1):127–155.
Deutsch, A. and Dormann, S. (2007). Cellular Automaton Modeling of Biological

Pattern Formation: Characterization, Applications, and Analysis. Springer
Science & Business Media.

Di Ventura, B., Lemerle, C., Michalodimitrakis, K., and Serrano, L. (2006). From
in vivo to in silico biology and back. Nature, 443(7111):527–533.

Docker (2015). Docker - Build, Ship, and Run Any App, Anywhere. https:
//www.docker.com/, Last accessed on: 2015-03-31.

Donaldson, R. and Gilbert, D. (2008a). A Model Checking Approach to the
Parameter Estimation of Biochemical Pathways. In Heiner, M. and Uhrmacher,
A. M., editors, Computational Methods in Systems Biology, number 5307 in
Lecture Notes in Computer Science, pages 269–287. Springer Berlin Heidelberg.

Donaldson, R. and Gilbert, D. (2008b). A Monte Carlo model checker for
probabilistic LTL with numerical constraints. Report, University of Glasgow.

Du, P., O’Grady, G., Gao, J., Sathar, S., and Cheng, L. K. (2013a). Toward the
Virtual Stomach: Progress in Multi-scale Modeling of Gastric Electrophysiology
and Motility. Wiley interdisciplinary reviews. Systems biology and medicine,
5(4):481–493.

Du, S., Feng, C.-C., and Wang, Q. (2013b). Multi-scale qualitative location: A
direction-based model. Computers, Environment and Urban Systems, 41:151–
166.

Du, S., Feng, C.-C., Wang, Q., and Guo, L. (2014). Multi-Scale Qualitative
Location: A Topology-Based Model. Transactions in GIS, 18(4):604–631.

Dwivedi, G., Fitz, L., Hegen, M., Martin, S., Harrold, J., Heatherington, A.,
and Li, C. (2014). A Multiscale Model of Interleukin-6–Mediated Immune
Regulation in Crohn’s Disease and Its Application in Drug Discovery and
Development. CPT: Pharmacometrics & Systems Pharmacology, 3(1):1–9.

Emerson, E. A. (1995). Temporal and Modal Logic. In van Leeuwen, J., editor,
Handbook of Theoretical Computer Science, volume B, pages 995–1072. MIT
Press, Cambridge, MA, USA.

Emerson, E. A. (2008). The Beginning of Model Checking: A Personal Perspective.
In Grumberg, O. and Veith, H., editors, 25 Years of Model Checking, number
5000 in Lecture Notes in Computer Science, pages 27–45. Springer Berlin
Heidelberg.

Emerson, E. A. and Halpern, J. Y. (1986). “Sometimes” and “Not Never”
Revisited: On Branching Versus Linear Time Temporal Logic. J. ACM,
33(1):151–178.

Emerson, E. A. and Lei, C.-L. (1987). Modalities for model checking: branching
time logic strikes back. Science of Computer Programming, 8(3):275–306.

Emerson, E. A., Mok, A. K., Sistla, A. P., and Srinivasan, J. (1992). Quantitative
temporal reasoning. Real-Time Systems, 4(4):331–352.

Emerson, E. A. and Sistla, A. P. (1996). Symmetry and model checking. Formal
Methods in System Design, 9(1-2):105–131.

Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067):449–453.
Engl, H. W., Flamm, C., Kügler, P., Lu, J., Müller, S., and Schuster, P. (2009).

https://www.docker.com/
https://www.docker.com/

243

Inverse problems in systems biology. Inverse Problems, 25(12):123014.
Ermentrout, G. B. and Edelstein-Keshet, L. (1993). Cellular Automata Approaches

to Biological Modeling. Journal of Theoretical Biology, 160(1):97–133.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In
Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, pages 226–231, Portland, Oregon, USA.

Ewald, R. and Uhrmacher, A. M. (2014). SESSL: A Domain-specific Language for
Simulation Experiments. ACM Trans. Model. Comput. Simul., 24(2):11:1–11:25.

Fages, F. and Rizk, A. (2009). From Model-Checking to Temporal Logic Con-
straint Solving. In Gent, I. P., editor, Principles and Practice of Constraint
Programming - CP 2009, number 5732 in Lecture Notes in Computer Science,
pages 319–334. Springer Berlin Heidelberg.

Fages, F. and Soliman, S. (2008). Formal Cell Biology in Biocham. In Bernardo,
M., Degano, P., and Zavattaro, G., editors, Formal Methods for Computational
Systems Biology, number 5016 in Lecture Notes in Computer Science, pages
54–80. Springer Berlin Heidelberg.

Falcone, J.-L., Chopard, B., and Hoekstra, A. (2010). MML: towards a Multiscale
Modeling Language. Procedia Computer Science, 1(1):819–826.

Feng, C. and Hillston, J. (2014). PALOMA: A Process Algebra for Located
Markovian Agents. In Norman, G. and Sanders, W., editors, Quantitative
Evaluation of Systems, pages 265–280. Springer International Publishing.

Ferrell Jr., J. E., Tsai, T. Y.-C., and Yang, Q. (2011). Modeling the Cell Cycle:
Why Do Certain Circuits Oscillate? Cell, 144(6):874–885.

Ferrer, J., Prats, C., and López, D. (2008). Individual-based Modelling: An
Essential Tool for Microbiology. Journal of Biological Physics, 34(1-2):19–37.

Finkbeiner, B. and Sipma, H. (2001). Checking Finite Traces using Alternating
Automata. Electronic Notes in Theoretical Computer Science, 55(2):147–163.

Fisher, J. and Piterman, N. (2014). Model Checking in Biology. In Kulkarni,
V. V., Stan, G.-B., and Raman, K., editors, A Systems Theoretic Approach to
Systems and Synthetic Biology I: Models and System Characterizations, pages
255–279. Springer Netherlands.

Florin, G., Fraize, C., and Natkin, S. (1991). Stochastic Petri nets: Properties,
applications and tools. Microelectronics Reliability, 31(4):669–697.

Formaggia, L., Nobile, F., Quarteroni, A., and Veneziani, A. (1999). Multiscale
modelling of the circulatory system: a preliminary analysis. Computing and
Visualization in Science, 2(2-3):75–83.

Freeman, H. and Shapira, R. (1975). Determining the Minimum-area Encasing
Rectangle for an Arbitrary Closed Curve. Commun. ACM, 18(7):409–413.

Gao, Q., Gilbert, D., Heiner, M., Liu, F., Maccagnola, D., and Tree, D. (2013).
Multiscale Modeling and Analysis of Planar Cell Polarity in the Drosophila
Wing. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
10(2):337–351.

Gärtner, B. (1999). Fast and Robust Smallest Enclosing Balls. In Nešetřil, J.,
editor, Algorithms - ESA’ 99, number 1643 in Lecture Notes in Computer
Science, pages 325–338. Springer Berlin Heidelberg.

Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. (1996). Simple On-the-fly

244

Automatic Verification of Linear Temporal Logic. In Proceedings of the Fifteenth
IFIP WG6.1 International Symposium on Protocol Specification, Testing and
Verification XV, page 3–18, London, UK. Chapman & Hall, Ltd.

Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K.-Y., and Kitano, H. (2011). Software for
systems biology: from tools to integrated platforms. Nature Reviews Genetics,
12(12):821–832.

Giacobbe, M., Guet, C. C., Gupta, A., Henzinger, T. A., Paixao, T., and Petrov,
T. (2015). Model Checking Gene Regulatory Networks. arXiv:1410.7704 [cs,
q-bio].

Gilbert, D., Heiner, M., and Lehrack, S. (2007). A Unifying Framework for
Modelling and Analysing Biochemical Pathways Using Petri Nets. In Calder, M.
and Gilmore, S., editors, Computational Methods in Systems Biology, number
4695 in Lecture Notes in Computer Science, pages 200–216. Springer Berlin
Heidelberg.

Gilbert, D., Heiner, M., Liu, F., and Saunders, N. (2013). Colouring Space - A
Coloured Framework for Spatial Modelling in Systems Biology. In Colom, J.-M.
and Desel, J., editors, Application and Theory of Petri Nets and Concurrency,
number 7927 in Lecture Notes in Computer Science, pages 230–249. Springer
Berlin Heidelberg.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361.

Godefroid, P. (1991). Using partial orders to improve automatic verification
methods. In Clarke, E. M. and Kurshan, R. P., editors, Computer Aided
Verification, number 531 in Lecture Notes in Computer Science, pages 176–185.
Springer Berlin Heidelberg.

Godefroid, P. and Khurshid, S. (2002). Exploring Very Large State Spaces
Using Genetic Algorithms. In Katoen, J.-P. and Stevens, P., editors, Tools
and Algorithms for the Construction and Analysis of Systems, number 2280 in
Lecture Notes in Computer Science, pages 266–280. Springer Berlin Heidelberg.

Gol, E. A., Bartocci, E., and Belta, C. (2014). A Formal Methods Approach to
Pattern Synthesis in Reaction Diffusion Systems. arXiv:1409.5671 [cs].

Gong, H. and Feng, L. (2014). Computational analysis of the roles of ER-Golgi
network in the cell cycle. BMC Systems Biology, 8(Suppl 4):S3.

Gong, H., Zuliani, P., Komuravelli, A., Faeder, J. R., and Clarke, E. M. (2012).
Computational Modeling and Verification of Signaling Pathways in Cancer. In
Horimoto, K., Nakatsui, M., and Popov, N., editors, Algebraic and Numeric
Biology, number 6479 in Lecture Notes in Computer Science, pages 117–135.
Springer Berlin Heidelberg.

Google (2015). Google Test. https://github.com/google/googletest, Last accessed
on: 2015-11-30.

Grafahrend-Belau, E., Junker, A., Eschenröder, A., Müller, J., Schreiber, F., and
Junker, B. H. (2013). Multiscale metabolic modeling: dynamic flux balance
analysis on a whole plant scale. Plant Physiology.

Graner and Glazier (1992). Simulation of biological cell sorting using a two-
dimensional extended Potts model. Physical review letters, 69(13):2013–2016.

Graudenzi, A., Caravagna, G., De Matteis, G., and Antoniotti, M. (2014). In-
vestigating the Relation between Stochastic Differentiation, Homeostasis and

https://github.com/google/googletest

245

Clonal Expansion in Intestinal Crypts via Multiscale Modeling. PLoS ONE,
9(5):e97272.

Groen, D., Zasada, S. J., and Coveney, P. V. (2014). Survey of Multiscale and
Multiphysics Applications and Communities. Computing in Science Engineering,
16(2):34–43.

Groote, J. F., Kouters, T. W. D. M., and Osaiweran, A. (2012). Specification
Guidelines to Avoid the State Space Explosion Problem. In Arbab, F. and
Sirjani, M., editors, Fundamentals of Software Engineering, number 7141 in
Lecture Notes in Computer Science, pages 112–127. Springer Berlin Heidelberg.

Grosu, R. and Smolka, S. A. (2005). Monte Carlo Model Checking. In Halbwachs,
N. and Zuck, L. D., editors, Tools and Algorithms for the Construction and
Analysis of Systems, number 3440 in Lecture Notes in Computer Science, pages
271–286. Springer Berlin Heidelberg.

Grosu, R., Smolka, S. A., Corradini, F., Wasilewska, A., Entcheva, E., and
Bartocci, E. (2009). Learning and Detecting Emergent Behavior in Networks
of Cardiac Myocytes. Commun. ACM, 52(3):97–105.

Grubbs, F. E. (1949). On Designing Single Sampling Inspection Plans. The
Annals of Mathematical Statistics, 20(2):242–256.

Guerriero, M. L. (2009). Qualitative and Quantitative Analysis of a Bio-PEPA
Model of the Gp130/JAK/STAT Signalling Pathway. In Priami, C., Back,
R.-J., and Petre, I., editors, Transactions on Computational Systems Biology
XI, number 5750 in Lecture Notes in Computer Science, pages 90–115. Springer
Berlin Heidelberg.

Guzman, J. d. and Kaiser, H. (2015). Boost Spirit. http://www.boost.org/doc/
libs/1 55 0/libs/spirit/doc/html/index.html, Last accessed on: 2015-11-30.

Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., and Belta, C. (2015).
SpaTeL: A Novel Spatial-temporal Logic and Its Applications to Networked
Systems. In Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, HSCC ’15, pages 189–198, New York, NY, USA.
ACM.

Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535.

Hardy, S. and Robillard, P. N. (2004). Modeling and simulation of molecular
biology systems using petri nets: modeling goals of various approaches. Journal
of Bioinformatics and Computational Biology, 02(04):619–637.

Harrison, P. G. and Strulo, B. (1995). Stochastic Process Algebra for Discrete
Event Simulation. In Baccelli, F., Jean-Marie, A., and Mitrani, I., editors,
Quantitative Methods in Parallel Systems, Esprit Basic Research Series, pages
18–37. Springer Berlin Heidelberg.

He, F., Yeung, L. F., and Brown, M. (2008). Discrete-Time Model Representations
for Biochemical Pathways. In Castillo, O., Xu, L., and Ao, S.-I., editors, Trends
in Intelligent Systems and Computer Engineering, number 6 in Lecture Notes
in Electrical Engineering, pages 255–271. Springer US.

Heath, A. P. and Kavraki, L. E. (2009). Computational challenges in systems
biology. Computer Science Review, 3(1):1–17.

Heath, J., Kwiatkowska, M., Norman, G., Parker, D., and Tymchyshyn, O. (2008).
Probabilistic model checking of complex biological pathways. Theoretical

http://www.boost.org/doc/libs/1_55_0/libs/spirit/doc/html/index.html
http://www.boost.org/doc/libs/1_55_0/libs/spirit/doc/html/index.html

246

Computer Science, 391(3):239–257.
Heiner, M., Gilbert, D., and Donaldson, R. (2008). Petri Nets for Systems and

Synthetic Biology. In Bernardo, M., Degano, P., and Zavattaro, G., editors,
Formal Methods for Computational Systems Biology, number 5016 in Lecture
Notes in Computer Science, pages 215–264. Springer Berlin Heidelberg.

Heiner, M., Herajy, M., Liu, F., Rohr, C., and Schwarick, M. (2012). Snoopy – A
Unifying Petri Net Tool. In Haddad, S. and Pomello, L., editors, Application
and Theory of Petri Nets, number 7347 in Lecture Notes in Computer Science,
pages 398–407. Springer Berlin Heidelberg, Hamburg, Germany.

Heiner, M., Rohr, C., and Schwarick, M. (2013). – Model Checking and Reachabil-
ity Analysis Done Efficiently. In Colom, J.-M. and Desel, J., editors, Application
and Theory of Petri Nets and Concurrency, number 7927 in Lecture Notes in
Computer Science, pages 389–399. Springer Berlin Heidelberg, Milano, Italy.

Helms, T., Himmelspach, J., Maus, C., Röwer, O., Schützel, J., and Uhrmacher,
A. M. (2012). Toward a Language for the Flexible Observation of Simulations. In
Proceedings of the Winter Simulation Conference, WSC ’12, pages 418:1–418:12,
Berlin, Germany. Winter Simulation Conference.

Helms, T., Maus, C., Haack, F., and Uhrmacher, A. M. (2014). Multi-level
Modeling and Simulation of Cell Biological Systems with ML-rules: A Tutorial.
In Proceedings of the 2014 Winter Simulation Conference, WSC ’14, pages
177–191, Piscataway, NJ, USA. IEEE Press.

Henzinger, T. (1996). The theory of hybrid automata. In Proceedings of Eleventh
Annual IEEE Symposium on Logic in Computer Science, 1996, pages 278–292.

Hérault, T., Lassaigne, R., Magniette, F., and Peyronnet, S. (2004). Approximate
Probabilistic Model Checking. In Steffen, B. and Levi, G., editors, Verification,
Model Checking, and Abstract Interpretation, number 2937 in Lecture Notes in
Computer Science, pages 73–84. Springer Berlin Heidelberg.

Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., and Siegle, M. (2000). Towards
Model Checking Stochastic Process Algebra. In Grieskamp, W., Santen, T.,
and Stoddart, B., editors, Integrated Formal Methods, number 1945 in Lecture
Notes in Computer Science, pages 420–439. Springer Berlin Heidelberg.

Hillen, T. and Painter, K. J. (2009). A user’s guide to PDE models for chemotaxis.
Journal of Mathematical Biology, 58(1-2):183–217.

Hoeffding, W. (1963). Probability Inequalities for Sums of Bounded Random
Variables. Journal of the American Statistical Association, 58(301):13–30.

Hoekstra, A., Chopard, B., and Coveney, P. (2014). Multiscale modelling and
simulation: a position paper. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 372(2021):20130377.

Hoekstra, A. G., Lorenz, E., Falcone, J.-L., and Chopard, B. (2007). Towards a
Complex Automata Framework for Multi-scale Modeling: Formalism and the
Scale Separation Map. In Shi, Y., Albada, G. D. v., Dongarra, J., and Sloot, P.
M. A., editors, Computational Science – ICCS 2007, number 4487 in Lecture
Notes in Computer Science, pages 922–930. Springer Berlin Heidelberg.

Holzhütter, H.-G., Drasdo, D., Preusser, T., Lippert, J., and Henney, A. M. (2012).
The virtual liver: a multidisciplinary, multilevel challenge for systems biology.
Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 4(3):221–235.

Holzmann, G. (1997). The model checker SPIN. IEEE Transactions on Software

247

Engineering, 23(5):279–295.
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M.,

Xu, L., Mendes, P., and Kummer, U. (2006). COPASI—a COmplex PAthway
SImulator. Bioinformatics, 22(24):3067–3074.

Hu, J., Lygeros, J., and Sastry, S. (2000). Towards a Theory of Stochastic Hybrid
Systems. In Lynch, N. and Krogh, B. H., editors, Hybrid Systems: Computation
and Control, number 1790 in Lecture Notes in Computer Science, pages 160–173.
Springer Berlin Heidelberg.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin,
A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov,
S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman,
T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling,
A., Kummer, U., Novère, N. L., Loew, L. M., Lucio, D., Mendes, P., Minch,
E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada,
T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). The systems
biology markup language (SBML): a medium for representation and exchange
of biochemical network models. Bioinformatics, 19(4):524–531.

Hunter, P. J. and Borg, T. K. (2003). Integration from proteins to organs: the
Physiome Project. Nature Reviews Molecular Cell Biology, 4(3):237–243.

Hussain, F., Jha, S. K., Jha, S., and Langmead, C. J. (2014a). Parameter discovery
in stochastic biological models using simulated annealing and statistical model
checking. International Journal of Bioinformatics Research and Applications,
10(4):519–539.

Hussain, F., Ramanathan, A., Pullum, L., and Jha, S. (2014b). EpiSpec: A
formal specification language for parameterized agent-based models against
epidemiological ground truth. In 2014 IEEE 4th International Conference on
Computational Advances in Bio and Medical Sciences (ICCABS), pages 1–6,
Miami, FL. IEEE.

Ideker, T., Galitski, T., and Hood, L. (2001). A NEW APPROACH TO DE-
CODING LIFE: Systems Biology. Annual Review of Genomics and Human
Genetics, 2(1):343–372.

Ip, C. N. and Dill, D. L. (1996). Better verification through symmetry. Formal
Methods in System Design, 9(1-2):41–75.

Islam, M. A., DeFrancisco, R., Fan, C., Grosu, R., Mitra, S., and Smolka, S. A.
(2015). Model Checking Tap Withdrawal in C. Elegans. arXiv:1503.06480 [cs,
q-bio].

Itseez (2013). OpenCV documentation. http://docs.opencv.org, Last accessed on:
2013-12-13.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition
Letters, 31(8):651–666.

Jeffreys, S. H. (1961). The Theory of Probability. Oxford University Press, 3
edition.

Jha, S. and Ramanathan, A. (2012). Quantifying Uncertainty in Epidemiological
Models. In 2012 ASE/IEEE International Conference on BioMedical Computing
(BioMedCom), pages 80–85.

Jha, S. K., Clarke, E. M., Langmead, C. J., Legay, A., Platzer, A., and Zuliani,

http://docs.opencv.org

248

P. (2009a). A Bayesian Approach to Model Checking Biological Systems. In
Degano, P. and Gorrieri, R., editors, Computational Methods in Systems Biology,
number 5688 in Lecture Notes in Computer Science, pages 218–234. Springer
Berlin Heidelberg.

Jha, S. K., Clarke, E. M., Langmead, C. J., Legay, A., Platzer, A., and Zuliani, P.
(2009b). Statistical Model Checking for Complex Stochastic Models in Systems
Biology. Technical report, Carnegie Mellon University.

Jha, S. K. and Langmead, C. J. (2011). Synthesis and infeasibility analysis for
stochastic models of biochemical systems using statistical model checking and
abstraction refinement. Theoretical Computer Science, 412(21):2162–2187.

Jilkine, A. and Edelstein-Keshet, L. (2011). A Comparison of Mathematical
Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues.
PLoS Comput Biol, 7(4):e1001121.

Jin, T. (2013). Gradient sensing during chemotaxis. Current Opinion in Cell
Biology, 25(5):532–537.

John, M., Ewald, R., and Uhrmacher, A. M. (2008). A Spatial Extension to the
π Calculus. Electronic Notes in Theoretical Computer Science, 194(3):133–148.

John, M., Lhoussaine, C., Niehren, J., and Uhrmacher, A. M. (2010). The
Attributed Pi-Calculus with Priorities. In Priami, C., Breitling, R., Gilbert, D.,
Heiner, M., and Uhrmacher, A. M., editors, Transactions on Computational
Systems Biology XII, pages 13–76. Springer Berlin Heidelberg.

John, M., Lhoussaine, C., Niehren, J., and Versari, C. (2011). Biochemical
Reaction Rules with Constraints. In Barthe, G., editor, Programming Languages
and Systems, number 6602 in Lecture Notes in Computer Science, pages 338–357.
Springer Berlin Heidelberg.

Kaazempur-Mofrad, M. R., Bathe, M., Karcher, H., Younis, H. F., Seong, H. C.,
Shim, E. B., Chan, R. C., Hinton, D. P., Isasi, A. G., Upadhyaya, A., Pow-
ers, M. J., Griffith, L. G., and Kamm, R. D. (2003). Role of simulation in
understanding biological systems. Computers & Structures, 81(8–11):715–726.

Kaletta, T. and Hengartner, M. O. (2006). Finding function in novel targets: C.
elegans as a model organism. Nature Reviews Drug Discovery, 5(5):387–399.

Katoen, J.-P., Zapreev, I. S., Hahn, E. M., Hermanns, H., and Jansen, D. N.
(2011). The ins and outs of the probabilistic model checker MRMC. Performance
Evaluation, 68(2):90–104.

Kauffman, S. (1969). Homeostasis and Differentiation in Random Genetic Control
Networks. Nature, 224(5215):177–178.

Kell, D. B. and Knowles, J. D. (2006). The Role of Modeling in Systems Biology.
In System Modeling in Cellular Biology. The MIT Press.

Kiran, M., Richmond, P., Holcombe, M., Chin, L. S., Worth, D., and Greenough,
C. (2010). FLAME: Simulating Large Populations of Agents on Parallel Hard-
ware Architectures. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’10, page 1633–1636,
Richland, SC. International Foundation for Autonomous Agents and Multiagent
Systems.

Kitano, H. (2002a). Computational systems biology. Nature, 420(6912):206–210.
Kitano, H. (2002b). Systems Biology: A Brief Overview. Science, 295(5560):1662–

1664.

249

Kitano, H. (2007). Towards a theory of biological robustness. Molecular Systems
Biology, 3(1):137.

Kleinstreuer, N., Dix, D., Rountree, M., Baker, N., Sipes, N., Reif, D., Spencer,
R., and Knudsen, T. (2013). A Computational Model Predicting Disruption of
Blood Vessel Development. PLoS Comput Biol, 9(4):e1002996.

Koh, C. H., Nagasaki, M., Saito, A., Li, C., Wong, L., and Miyano, S. (2011).
MIRACH: efficient model checker for quantitative biological pathway models.
Bioinformatics, 27(5):734–735.

Koh, C. H., Palaniappan, S. K., Thiagarajan, P. S., and Wong, L. (2012). Improved
statistical model checking methods for pathway analysis. BMC Bioinformatics,
13(Suppl 17):S15.

Kohl, P. and Noble, D. (2009). Systems biology and the virtual physiological
human. Molecular Systems Biology, 5:292.

Kondo, S. and Miura, T. (2010). Reaction-Diffusion Model as a Framework for
Understanding Biological Pattern Formation. Science, 329(5999):1616–1620.

Konur, S. (2010). A Survey on Temporal Logics. arXiv e-print 1005.3199,
Department of Computer Science, University of Liverpool.

Kor, A.-L. and Bennett, B. (2013). A Hybrid Reasoning Model for “Whole
and Part” Cardinal Direction Relations. Advances in Artificial Intelligence,
2013:1–20.

Koymans, R. (1990). Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299.

Krauss, M., Schaller, S., Borchers, S., Findeisen, R., Lippert, J., and Kuepfer, L.
(2012). Integrating Cellular Metabolism into a Multiscale Whole-Body Model.
PLoS Comput Biol, 8(10):e1002750.

Kugler, H., Larjo, A., and Harel, D. (2010). Biocharts: a visual formalism for
complex biological systems. Journal of The Royal Society Interface, 7(48):1015–
1024.

Kurachi, Y. (2014). High Definition Physiology project. http://hd-physiology.jp/,
Last accessed on: 2014-04-07.

Kurshan, R. P. and McMillan, K. (1989). A Structural Induction Theorem for
Processes. In Proceedings of the Eighth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’89, page 239–247, New York, NY, USA.
ACM.

Kwiatkowska, M., Norman, G., and Parker, D. (2007). Stochastic Model Checking.
In Bernardo, M. and Hillston, J., editors, Formal Methods for Performance
Evaluation, number 4486 in Lecture Notes in Computer Science, pages 220–270.
Springer Berlin Heidelberg.

Kwiatkowska, M., Norman, G., and Parker, D. (2008). Using Probabilistic Model
Checking in Systems Biology. SIGMETRICS Perform. Eval. Rev., 35(4):14–21.

Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In Gopalakrishnan, G. and Qadeer, S., editors,
Computer Aided Verification, number 6806 in Lecture Notes in Computer
Science, pages 585–591. Springer Berlin Heidelberg, Snowbird, UT, USA.

Laganà, K., Balossino, R., Migliavacca, F., Pennati, G., Bove, E. L., de Leval,
M. R., and Dubini, G. (2005). Multiscale modeling of the cardiovascular
system: application to the study of pulmonary and coronary perfusions in the

http://hd-physiology.jp/

250

univentricular circulation. Journal of Biomechanics, 38(5):1129–1141.
Lakin, M. R., Parker, D., Cardelli, L., Kwiatkowska, M., and Phillips, A. (2012).

Design and analysis of DNA strand displacement devices using probabilistic
model checking. Journal of The Royal Society Interface, page rsif20110800.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin,
J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D.,
Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R.,
McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris,
W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez,
C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers,
J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C.,
Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham,
I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray,
S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S.,
Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R.,
Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPherson, J. D.,
Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H.,
Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner, T. L.,
Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx,
P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P.,
Wenning, S., Slezak, T., Doggett, N., Cheng, J.-F., Olsen, A., Lucas, S., Elkin,
C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E.,
Bouck, J. B., Sodergren, E. J., Worley, K. C., Rives, C. M., Gorrell, J. H.,
Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson, D. L., Weinstock,
G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T.,
Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R.,
Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C.,
Wincker, P., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A.,
Smith, D. R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M.,
Dubois, J., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen,
L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola, A. P., Proctor,
M. J., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R.,
McCombie, W. R., Bastide, M. d. l., Dedhia, N., Blöcker, H., Hornischer, K.,
Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou,
S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., Cerutti, L., Chen, H.-C.,
Church, D., Clamp, M., Copley, R. R., Doerks, T., Eddy, S. R., Eichler, E. E.,
Furey, T. S., Galagan, J., Gilbert, J. G. R., Harmon, C., Hayashizaki, Y.,
Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones,
T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W. J., Kitts, P., Koonin,
E. V., Korf, I., Kulp, D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen,
T., Moran, J. V., Mulder, N., Pollara, V. J., Ponting, C. P., Schuler, G., Schultz,
J., Slater, G., Smit, A. F. A., Stupka, E., Szustakowki, J., Thierry-Mieg, D.,
Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I.,
Wolfe, K. H., Yang, S.-P., Yeh, R.-F., Collins, F., Guyer, M. S., Peterson, J.,
Felsenfeld, A., Wetterstrand, K. A., Myers, R. M., Schmutz, J., Dickson, M.,
Grimwood, J., Cox, D. R., Olson, M. V., Kaul, R., Raymond, C., Shimizu,
N., Kawasaki, K., Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, R.,

251

Patrinos, A., and Morgan, M. J. (2001). Initial sequencing and analysis of the
human genome. Nature, 409(6822):860–921.

Langmead, C. (2009). Generalized Queries and Bayesian Statistical Model Check-
ing in Dynamic Bayesian Networks: Application to Personalized Medicine. In
Proc. of the 8th International Conference on Computational Systems Bioinfor-
matics (CSB), pages 201–212, California. Life Sciences Society.

Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., and Keasling, J. D. (2008). Metabolic
engineering of microorganisms for biofuels production: from bugs to synthetic
biology to fuels. Current Opinion in Biotechnology, 19(6):556–563.

Legay, A., Delahaye, B., and Bensalem, S. (2010). Statistical Model Checking:
An Overview. In Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K.,
Lee, I., Pace, G., Roşu, G., Sokolsky, O., and Tillmann, N., editors, Runtime
Verification, number 6418 in Lecture Notes in Computer Science, pages 122–135.
Springer Berlin Heidelberg.

Lewis, H. (1990). A logic of concrete time intervals. In Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Science, 1990, pages 380–389.

Li, C., Nagasaki, M., Koh, C. H., and Miyano, S. (2011). Online model checking
approach based parameter estimation to a neuronal fate decision simulation
model in Caenorhabditis elegans with hybrid functional Petri net with extension.
Molecular Biosystems, 7(5):1576–1592.

Li, C., Nagasaki, M., Ueno, K., and Miyano, S. (2009). Simulation-based model
checking approach to cell fate specification during Caenorhabditis elegans vulval
development by hybrid functional Petri net with extension. BMC Systems
Biology, 3(1):42.

Lichtenstein, O. and Pnueli, A. (1985). Checking That Finite State Concur-
rent Programs Satisfy Their Linear Specification. In Proceedings of the 12th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’85, pages 97–107, New York, NY, USA. ACM.

Lieschke, G. J. and Currie, P. D. (2007). Animal models of human disease:
zebrafish swim into view. Nature Reviews Genetics, 8(5):353–367.

Liu, B., Hagiescu, A., Palaniappan, S. K., Chattopadhyay, B., Cui, Z., Wong,
W.-F., and Thiagarajan, P. S. (2012). Approximate probabilistic analysis of
biopathway dynamics. Bioinformatics, 28(11):1508–1516.

Liu, B., Kong, S., Gao, S., Zuliani, P., and Clarke, E. M. (2014a). Parameter
Synthesis for Cardiac Cell Hybrid Models Using δ-Decisions. In Mendes, P.,
Dada, J. O., and Smallbone, K., editors, Computational Methods in Systems
Biology, number 8859 in Lecture Notes in Computer Science, pages 99–113.
Springer International Publishing.

Liu, B., Kong, S., Gao, S., Zuliani, P., and Clarke, E. M. (2015). Towards Personal-
ized Prostate Cancer Therapy Using Delta-reachability Analysis. In Proceedings
of the 18th International Conference on Hybrid Systems: Computation and
Control, HSCC ’15, pages 227–232, New York, NY, USA. ACM.

Liu, B., Thiagarajan, P. S., and Hsu, D. (2009a). Probabilistic Approximations
of Signaling Pathway Dynamics. In Degano, P. and Gorrieri, R., editors,
Computational Methods in Systems Biology, number 5688 in Lecture Notes in
Computer Science, pages 251–265. Springer Berlin Heidelberg.

Liu, F., Blätke, M.-A., Heiner, M., and Yang, M. (2014b). Modelling and

252

simulating reaction–diffusion systems using coloured Petri nets. Computers in
Biology and Medicine, 53:297–308.

Liu, F. and Heiner, M. (2013). Multiscale modelling of coupled Ca2+ channels
using coloured stochastic Petri nets. IET Systems Biology, 7(4):106–113.

Liu, W., Li, S., and Renz, J. (2009b). Combining RCC-8 with Qualitative
Direction Calculi: Algorithms and Complexity. In Proceedings of the 21st
International Joint Conference on Artifical Intelligence, IJCAI’09, pages 854–
859, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Lloyd, C. M., Halstead, M. D. B., and Nielsen, P. F. (2004). CellML: its future,
present and past. Progress in Biophysics and Molecular Biology, 85(2–3):433–
450.

Machado, D., Costa, R. S., Rocha, M., Ferreira, E. C., Tidor, B., and Rocha, I.
(2011). Modeling formalisms in Systems Biology. AMB Express, 1(1):1–14.

Madsen, C., Myers, C., Roehner, N., Winstead, C., and Zhang, Z. (2012). Utilizing
stochastic model checking to analyze genetic circuits. In 2012 IEEE Symposium
on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB), pages 379–386.

Mallet, D. G. and De Pillis, L. G. (2006). A cellular automata model of tu-
mor–immune system interactions. Journal of Theoretical Biology, 239(3):334–
350.

Mancini, T., Tronci, E., Salvo, I., Mari, F., Massini, A., and Melatti, I. (2015).
Computing Biological Model Parameters by Parallel Statistical Model Checking.
In Ortuño, F. and Rojas, I., editors, Bioinformatics and Biomedical Engineering,
number 9044 in Lecture Notes in Computer Science, pages 542–554. Springer
International Publishing.

Marée, A. F. M., Grieneisen, V. A., and Hogeweg, P. (2007). The Cellular Potts
Model and Biophysical Properties of Cells, Tissues and Morphogenesis. In
Anderson, D. A. R. A., Chaplain, P. M. A. J., and Rejniak, D. K. A., editors,
Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences
in Interaction, pages 107–136. Birkhäuser Basel.

Maria, E. D., Fages, F., and Soliman, S. (2009). On Coupling Models Using
Model-Checking: Effects of Irinotecan Injections on the Mammalian Cell Cycle.
In Degano, P. and Gorrieri, R., editors, Computational Methods in Systems
Biology, number 5688 in Lecture Notes in Computer Science, pages 142–157.
Springer Berlin Heidelberg.

Markram, H. (2012). The Human Brain Project. Scientific American, 306(6):50–
55.

Masoudi-Nejad, A., Bidkhori, G., Hosseini Ashtiani, S., Najafi, A., Bozorgmehr,
J. H., and Wang, E. (2014). Cancer systems biology and modeling: Microscopic
scale and multiscale approaches. Seminars in Cancer Biology.

Maus, C., Rybacki, S., and Uhrmacher, A. M. (2011). Rule-based multi-level
modeling of cell biological systems. BMC Systems Biology, 5(1):166.

McKinsey, J. and Tarski, A. (1944). The Algebra of Topology. The Annals of
Mathematics, 45(1):141–191.

Merks, R. M. H. and Glazier, J. A. (2005). A cell-centered approach to de-
velopmental biology. Physica A: Statistical Mechanics and its Applications,
352(1):113–130.

253

Miller, S. P., Whalen, M. W., and Cofer, D. D. (2010). Software model checking
takes off. Communications of the ACM, 53(2):58–64.

Mirams, G. R., Arthurs, C. J., Bernabeu, M. O., Bordas, R., Cooper, J., Corrias,
A., Davit, Y., Dunn, S.-J., Fletcher, A. G., Harvey, D. G., Marsh, M. E.,
Osborne, J. M., Pathmanathan, P., Pitt-Francis, J., Southern, J., Zemzemi,
N., and Gavaghan, D. J. (2013). Chaste: An Open Source C++ Library for
Computational Physiology and Biology. PLoS Comput Biol, 9(3):e1002970.

Miskov-Zivanov, N., Zuliani, P., Clarke, E. M., and Faeder, J. R. (2013). Studies
of Biological Networks with Statistical Model Checking: Application to Immune
System Cells. In Proceedings of the International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics, ’13, pages 728–729, New
York, NY, USA. ACM.

Mone, G. (2014). New models in cosmetics replacing animal testing. Communica-
tions of the ACM, 57(4):20–21.

Montanari, A., Puppis, G., and Sala, P. (2009). A decidable spatial logic with
cone-shaped cardinal directions. In Computer Science Logic, pages 394–408.

Monteiro, P. T., Ropers, D., Mateescu, R., Freitas, A. T., and Jong, H. d. (2008).
Temporal logic patterns for querying dynamic models of cellular interaction
networks. Bioinformatics, 24(16):i227–i233.

Monteiro, P. T., Wassim, A.-J., Thieffry, D., and Chaouiya, C. (2014). Model
Checking Logical Regulatory Networks. In Discrete Event Systems, volume 12,
pages 170–175, Ecole Normale Supérieure de Cachan, Cachan, France. Interna-
tional Federation of Automatic Control.

Moreira, J. and Deutsch, A. (2002). Cellular automaton models of tumor develop-
ment: a critical review. Advances in Complex Systems, 05(02n03):247–267.

Nenzi, L. (2014). Verification of stochastic and spatial behaviours of Complex
Systems. In 11th Summer School on Modelling and Verification of Parallel
Processes, Nantes, France.

Nenzi, L. and Bortolussi, L. (2014). Specifying and Monitoring Properties of
Stochastic Spatio-Temporal Systems in Signal Temporal Logic. In Proceedings
of the 8th International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS 2014), pages 66–73, Bratislava, Slovakia. ICST.

Nikolić, D., Priami, C., and Zunino, R. (2012). A Rule-Based and Imperative
Language for Biochemical Modeling and Simulation. In Eleftherakis, G., Hinchey,
M., and Holcombe, M., editors, Software Engineering and Formal Methods,
number 7504 in Lecture Notes in Computer Science, pages 16–32. Springer
Berlin Heidelberg.

Noble, D. (1960). Cardiac Action and Pacemaker Potentials based on the Hodgkin-
Huxley Equations. Nature, 188(4749):495–497.

Noble, D. (2008). Claude Bernard, the first systems biologist, and the future of
physiology. Experimental Physiology, 93(1):16–26.

Norris, J. R. (1998). Markov Chains. Cambridge University Press.
Norton, K.-A. and Popel, A. S. (2014). An agent-based model of cancer stem cell

initiated avascular tumour growth and metastasis: the effect of seeding frequency
and location. Journal of The Royal Society Interface, 11(100):20140640.

Novère, N. L., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., Demir,
E., Wegner, K., Aladjem, M. I., Wimalaratne, S. M., Bergman, F. T., Gauges,

254

R., Ghazal, P., Kawaji, H., Li, L., Matsuoka, Y., Villéger, A., Boyd, S. E.,
Calzone, L., Courtot, M., Dogrusoz, U., Freeman, T. C., Funahashi, A., Ghosh,
S., Jouraku, A., Kim, S., Kolpakov, F., Luna, A., Sahle, S., Schmidt, E.,
Watterson, S., Wu, G., Goryanin, I., Kell, D. B., Sander, C., Sauro, H., Snoep,
J. L., Kohn, K., and Kitano, H. (2009). The Systems Biology Graphical
Notation. Nature Biotechnology, 27(8):735–741.

Øhrstrøm, P. and Hasle, P. F. V. (1995). Temporal Logic: From Ancient Ideas to
Artificial Intelligence. Springer Science & Business Media.

O’Rourke, J., Aggarwal, A., Maddila, S., and Baldwin, M. (1986). An opti-
mal algorithm for finding minimal enclosing triangles. Journal of Algorithms,
7(2):258–269.

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis?
Nature Biotechnology, 28(3):245–248.

Oury, N. and Plotkin, G. D. (2011). Coloured Stochastic Multilevel Multiset
Rewriting. In Proceedings of the 9th International Conference on Computational
Methods in Systems Biology, CMSB ’11, pages 171–181, New York, NY, USA.
ACM.

Palaniappan, S. K., Gyori, B. M., Liu, B., Hsu, D., and Thiagarajan, P. S. (2013).
Statistical Model Checking Based Calibration and Analysis of Bio-pathway
Models. In Gupta, A. and Henzinger, T. A., editors, Computational Methods
in Systems Biology, number 8130 in Lecture Notes in Computer Science, pages
120–134. Springer Berlin Heidelberg.

Pandey, U. B. and Nichols, C. D. (2011). Human Disease Models in Drosophila
melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharma-
cological Reviews, 63(2):411–436.

Pârvu, O. and Gilbert, D. (2014a). Automatic validation of computational models
using pseudo-3D spatio-temporal model checking. BMC Systems Biology,
8(1):124.

Pârvu, O. and Gilbert, D. (2014b). Implementation of linear minimum area
enclosing triangle algorithm. Computational and Applied Mathematics, pages
1–16.

Pârvu, O. and Gilbert, D. (submitted). A novel method to validate multilevel
computational models of biological systems using multiscale spatio-temporal
meta model checking. PLoS ONE.

Pârvu, O., Gilbert, D., Heiner, M., Liu, F., and Saunders, N. (2013). Modelling
and Analysis of Phase Variation in Bacterial Colony Growth. In Gupta, A. and
Henzinger, T. A., editors, Computational Methods in Systems Biology, number
8130 in LNCS, pages 78–91. Springer Berlin Heidelberg.

Pârvu, O., Gilbert, D., Heiner, M., Liu, F., Saunders, N., and Shaw, S. (2015).
Spatial-Temporal Modelling and Analysis of Bacterial Colonies with Phase
Variable Genes. ACM Trans. Model. Comput. Simul., 25(2):13:1–13:25.

Peled, D. (1994). Combining partial order reductions with on-the-fly model-
checking. In Dill, D. L., editor, Computer Aided Verification, number 818 in
Lecture Notes in Computer Science, pages 377–390. Springer Berlin Heidelberg.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA.

Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Universität

255

Hamburg.
Plumejeaud, C., Mathian, H., Gensel, J., and Grasland, C. (2011). Spatio-temporal

analysis of territorial changes from a multi-scale perspective. International
Journal of Geographical Information Science, 25(10):1597–1612.

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, pages 46–57, Providence, RI, USA. IEEE.

Prior, A. (1967). Past, Present and Future. Oxford University Press.
Queille, J. P. and Sifakis, J. (1982). Specification and verification of concurrent

systems in CESAR. In Dezani-Ciancaglini, M. and Montanari, U., editors,
International Symposium on Programming, number 137 in Lecture Notes in
Computer Science, pages 337–351. Springer Berlin Heidelberg.

Rafe, V., Rahmani, M., and Rashidi, K. (2013). A Survey on Coping with the
State Space Explosion Problem in Model Checking. International Research
Journal of Applied and Basic Sciences, 4(6):1379–1384.

Randell, D. A., Cui, Z., and Cohn, A. G. (1992). A Spatial Logic based on
Regions and Connection. In Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR’92), pages 165–176,
Cambridge, MA.

Reijsbergen, D., Boer, P.-T. d., Scheinhardt, W., and Haverkort, B. (2014). On
hypothesis testing for statistical model checking. International Journal on
Software Tools for Technology Transfer, pages 1–19.

Reijsbergen, D., Boer, P.-T. d., Scheinhardt, W., and Haverkort, B. (2015).
Hypothesis testing for statistical model checking. http://wwwhome.ewi.utwente.
nl/∼ptdeboer/hyptest-for-smc/, Last accessed on: 2015-02-02.

Rizk, A., Batt, G., Fages, F., and Soliman, S. (2008). On a Continuous Degree of
Satisfaction of Temporal Logic Formulae with Applications to Systems Biology.
In Heiner, M. and Uhrmacher, A. M., editors, Computational Methods in
Systems Biology, number 5307 in Lecture Notes in Computer Science, pages
251–268. Springer Berlin Heidelberg.

Rizk, A., Batt, G., Fages, F., and Soliman, S. (2009). A general computational
method for robustness analysis with applications to synthetic gene networks.
Bioinformatics, 25(12):i169–i178.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53–65.

Ruder, W. C., Lu, T., and Collins, J. J. (2011). Synthetic Biology Moving into
the Clinic. Science, 333(6047):1248–1252.

Ruf, J. and Kropf, T. (1997). Symbolic Model Checking for a Discrete Clocked
Temporal Logic with Intervals. In Proceedings of the IFIP WG 10.5 International
Conference on Correct Hardware Design and Verification Methods: Advances in
Hardware Design and Verification, pages 146–163, London, UK. Chapman &
Hall, Ltd.

Salaün, L., Ayraud, S., and Saunders, N. J. (2005). Phase variation mediated niche
adaptation during prolonged experimental murine infection with Helicobacter
pylori. Microbiology (Reading, England), 151(Pt 3):917–923.

Salaün, L., Snyder, L. A., and Saunders, N. J. (2003). Adaptation by phase
variation in pathogenic bacteria. Advances in applied microbiology, 52:263–301.

http://wwwhome.ewi.utwente.nl/~ptdeboer/hyptest-for-smc/
http://wwwhome.ewi.utwente.nl/~ptdeboer/hyptest-for-smc/

256

Saunders, N. J., Moxon, E. R., and Gravenor, M. B. (2003). Mutation rates:
estimating phase variation rates when fitness differences are present and their
impact on population structure. Microbiology, 149(2):485–495.

Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H., and Loew, L. M. (1997). A
general computational framework for modeling cellular structure and function.
Biophysical Journal, 73(3):1135–1146.

Schivo, S., Scholma, J., Wanders, B., Camacho, R., van der Vet, P., Karperien,
M., Langerak, R., van de Pol, J., and Post, J. (2012). Modelling biological
pathway dynamics with Timed Automata. In 2012 IEEE 12th International
Conference on Bioinformatics Bioengineering (BIBE), pages 447–453.

Schnell, S., Grima, R., and Maini, P. (2007). Multiscale Modeling in Biology.
American Scientist, 95(2):134.

Scott, A., Khan, K. M., Cook, J. L., and Duronio, V. (2004). What is “inflam-
mation”? Are we ready to move beyond Celsus? British Journal of Sports
Medicine, 38(3):248–249.

Selick, H. E., Beresford, A. P., and Tarbit, M. H. (2002). The emerging importance
of predictive ADME simulation in drug discovery. Drug Discovery Today,
7(2):109–116.

Sen, K., Viswanathan, M., and Agha, G. (2004). Statistical Model Checking
of Black-Box Probabilistic Systems. In Alur, R. and Peled, D. A., editors,
Computer Aided Verification, number 3114 in Lecture Notes in Computer
Science, pages 202–215. Springer Berlin Heidelberg.

Sheard, T. (2001). Accomplishments and Research Challenges in Meta-
programming. In Taha, W., editor, Semantics, Applications, and Implemen-
tation of Program Generation, number 2196 in Lecture Notes in Computer
Science, pages 2–44. Springer Berlin Heidelberg.

Siebert, H. and Bockmayr, A. (2006). Incorporating Time Delays into the Logical
Analysis of Gene Regulatory Networks. In Priami, C., editor, Computational
Methods in Systems Biology, number 4210 in Lecture Notes in Computer Science,
pages 169–183. Springer Berlin Heidelberg.

Sloot, P. M. A. and Hoekstra, A. G. (2010). Multi-scale modelling in computational
biomedicine. Briefings in Bioinformatics, 11(1):142–152.

Smith, B. W., Chase, J. G., Nokes, R. I., Shaw, G. M., and Wake, G. (2004).
Minimal haemodynamic system model including ventricular interaction and
valve dynamics. Medical Engineering & Physics, 26(2):131–139.

Snyder, A. (1986). Encapsulation and Inheritance in Object-oriented Programming
Languages. In Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications, OOPLSA ’86, pages 38–45, New York, NY, USA.
ACM.

Southern, J., Pitt-Francis, J., Whiteley, J., Stokeley, D., Kobashi, H., Nobes, R.,
Kadooka, Y., and Gavaghan, D. (2008). Multi-scale computational modelling
in biology and physiology. Progress in Biophysics and Molecular Biology,
96(1–3):60–89.

Starruß, J. and Back, W. d. (2014). Morpheus examples. http://imc.zih.tu-dresden.
de/wiki/morpheus/doku.php?id=examples:examples, Last accessed on: 2014-11-
20.

Starruß, J., Back, W. d., Brusch, L., and Deutsch, A. (2014). Morpheus: a

http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:examples
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:examples

257

user-friendly modeling environment for multiscale and multicellular systems
biology. Bioinformatics, 30(9):1331–1332.

Steger, C. (1996). On the Calculation of Moments of Polygons. Technical
Report FGBV–96–04, Forschungsgruppe Bildverstehen (FG BV), Informatik
IX, Technische Universität München.

Su, X., He, C., Feng, Q., Deng, X., and Sun, H. (2011). A Supervised Classifi-
cation Method Based on Conditional Random Fields With Multiscale Region
Connection Calculus Model for SAR Image. IEEE Geoscience and Remote
Sensing Letters, 8(3):497–501.

Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D., and
Glazier, J. A. (2012). Multi-Scale Modeling of Tissues Using CompuCell3D.
In Anand R. Asthagiri and Adam P. Arkin, editor, Methods in Cell Biology,
volume 110 of Computational Methods in Cell Biology, pages 325–366. Academic
Press.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer-
Verlag New York, Inc., New York, NY, USA, 1st edition.

Tarski, A. (1938). Sentential calculus and topology. (Der Aussagenkalkül und die
Topologie.). Fundam. Math., Warszawa,, 31:103–134.

Thiel, W. and Hummer, G. (2013). Nobel 2013 Chemistry: Methods for computa-
tional chemistry. Nature, 504(7478):96–97.

Thorne, B. C., Bailey, A. M., and Peirce, S. M. (2007). Combining experiments
with multi-cell agent-based modeling to study biological tissue patterning.
Briefings in Bioinformatics, 8(4):245–257.

Toussaint, G. T. (1983). Solving geometric problems with the rotating calipers.
In Proc. IEEE Melecon, volume 83.

Tran, T. N., Drab, K., and Daszykowski, M. (2013). Revised DBSCAN algorithm
to cluster data with dense adjacent clusters. Chemometrics and Intelligent
Laboratory Systems, 120:92–96.

Valmari, A. (1991). A stubborn attack on state explosion. In Clarke, E. M. and
Kurshan, R. P., editors, Computer Aided Verification, number 531 in Lecture
Notes in Computer Science, pages 156–165. Springer Berlin Heidelberg.

Van Goethem, S., Jacquet, J. M., Brim, L., and Šafránek, D. (2013). Timed
Modelling of Gene Networks with Arbitrarily Precise Expression Discretization.
Electronic Notes in Theoretical Computer Science, 293:67–81.

Vardi, M. Y. and Wolper, P. (1986). An Automata-Theoretic Approach to
Automatic Program Verification. In Proc. 1st Symp. on Logic in Computer
Science, page 332–344, Cambridge.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton,
G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D.,
Amanatides, P., Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q.,
Kodira, C. D., Zheng, X. H., Chen, L., Skupski, M., Subramanian, G., Thomas,
P. D., Zhang, J., Miklos, G. L. G., Nelson, C., Broder, S., Clark, A. G.,
Nadeau, J., McKusick, V. A., Zinder, N., Levine, A. J., Roberts, R. J., Simon,
M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo,
D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy,
S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E.,
Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I.,

258

Charlab, R., Chaturvedi, K., Deng, Z., Francesco, V. D., Dunn, P., Eilbeck, K.,
Evangelista, C., Gabrielian, A. E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan,
P., Heiman, T. J., Higgins, M. E., Ji, R.-R., Ke, Z., Ketchum, K. A., Lai, Z.,
Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G. V., Milshina, N.,
Moore, H. M., Naik, A. K., Narayan, V. A., Neelam, B., Nusskern, D., Rusch,
D. B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z. Y., Wang, A., Wang,
X., Wang, J., Wei, M.-H., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan,
M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu,
S. C., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik,
A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead,
M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M. L.,
Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K.,
Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes,
C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C.,
Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D.,
McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B.,
Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M.,
Rodriguez, R., Rogers, Y.-H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C.,
Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N. N.,
Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor,
S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J. F., Guigó, R.,
Campbell, M. J., Sjolander, K. V., Karlak, B., Kejariwal, A., Mi, H., Lazareva,
B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato,
S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S.,
Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J.,
Caulk, P., Chiang, Y.-H., Coyne, M., Dahlke, C., Mays, A. D., Dombroski,
M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S.,
Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M.,
Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha,
J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D.,
Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen,
N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott,
J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E.,
Wang, M., Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A., and Zhu, X. (2001).
The Sequence of the Human Genome. Science, 291(5507):1304–1351.

Visser, W. and Barringer, H. (2000). Practical CTL* model checking: Should
SPIN be extended? International Journal on Software Tools for Technology
Transfer, 2(4):350–365.

Visser, W., Barringer, H., Fellows, D., Gough, G., and Williams, A. (1997).
Efficient CTL* Model Checking for Analysis of Rainbow Designs. In Proceedings
of the IFIP WG 10.5 International Conference on Correct Hardware Design
and Verification Methods: Advances in Hardware Design and Verification, pages
128–145, London, UK. Chapman & Hall, Ltd.

Wald, A. (1945). Sequential Tests of Statistical Hypotheses. The Annals of
Mathematical Statistics, 16(2):117–186.

Walpole, J., Papin, J. A., and Peirce, S. M. (2013). Multiscale Computational Mod-
els of Complex Biological Systems. Annual Review of Biomedical Engineering,

259

15(1):137–154.
Weber, W. and Fussenegger, M. (2012). Emerging biomedical applications of

synthetic biology. Nature Reviews Genetics, 13(1):21–35.
Wilensky, U. (2015). NetLogo. https://ccl.northwestern.edu/netlogo/, Last accessed

on: 2015-04-14.
Wilkinson, D. J. (2007). Bayesian methods in bioinformatics and computational

systems biology. Briefings in Bioinformatics, 8(2):109–116.
Williams, R. S. B., Boeckeler, K., Gräf, R., Müller-Taubenberger, A., Li, Z.,

Isberg, R. R., Wessels, D., Soll, D. R., Alexander, H., and Alexander, S. (2006).
Towards a molecular understanding of human diseases using Dictyostelium
discoideum. Trends in Molecular Medicine, 12(9):415–424.

Xu, J. (2007). Formalizing natural-language spatial relations between linear objects
with topological and metric properties. International Journal of Geographical
Information Science, 21(4):377–395.

Xu, Z., Lioi, J., Mu, J., Kamocka, M. M., Liu, X., Chen, D. Z., Rosen, E. D., and
Alber, M. (2010). A Multiscale Model of Venous Thrombus Formation with
Surface-Mediated Control of Blood Coagulation Cascade. Biophysical Journal,
98(9):1723–1732.

Yang, A. (2013). On the Common Conceptual and Computational Frame-
works for Multiscale Modeling. Industrial & Engineering Chemistry Research,
52(33):11451–11462.

Yordanov, B. and Belta, C. (2011). A formal verification approach to the design
of synthetic gene networks. In 2011 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC), pages 4873–4878.

Younes, H. L. and Simmons, R. G. (2006). Statistical probabilistic model check-
ing with a focus on time-bounded properties. Information and Computation,
204(9):1368–1409.

Younes, H. L. S. (2005a). Probabilistic Verification for “Black-Box” Systems.
In Etessami, K. and Rajamani, S. K., editors, Computer Aided Verification,
number 3576 in Lecture Notes in Computer Science, pages 253–265. Springer
Berlin Heidelberg.

Younes, H. L. S. (2005b). Verification and Planning for Stochastic Processes with
Asynchronous Events. Doctor of philosophy, Carnegie Mellon, Pittsburgh.

Younes, H. L. S. (2005c). Ymer: A Statistical Model Checker. In Etessami, K.
and Rajamani, S. K., editors, Computer Aided Verification, number 3576 in
Lecture Notes in Computer Science, pages 429–433. Springer Berlin Heidelberg.

Younes, H. L. S., Kwiatkowska, M., Norman, G., and Parker, D. (2006). Numerical
vs. statistical probabilistic model checking. International Journal on Software
Tools for Technology Transfer, 8(3):216–228.

Younes, H. L. S. and Simmons, R. G. (2002). Probabilistic Verification of Discrete
Event Systems Using Acceptance Sampling. In Brinksma, E. and Larsen,
K. G., editors, Computer Aided Verification, number 2404 in Lecture Notes in
Computer Science, pages 223–235. Springer Berlin Heidelberg.

Young, R. C. and Barendse, P. (2014). Linking Myometrial Physiology to Intrauter-
ine Pressure; How Tissue-Level Contractions Create Uterine Contractions of
Labor. PLoS Comput Biol, 10(10):e1003850.

Zuliani, P. (2014). Statistical model checking for biological applications. Interna-

https://ccl.northwestern.edu/netlogo/

260

tional Journal on Software Tools for Technology Transfer, pages 1–10.
Zuliani, P., Platzer, A., and Clarke, E. M. (2010). Bayesian statistical model

checking with application to Simulink/Stateflow verification. In Proceedings of
the 13th ACM international conference on Hybrid systems: computation and
control, HSCC ’10, pages 243–252, New York, NY, USA. ACM.

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgements
	Author's declaration
	Introduction
	Systems biology
	Computational models in systems biology
	Development
	Types of models
	Standards
	Validation

	Motivation
	Contributions
	Description
	Publications

	Structure

	Model checking
	Preliminaries
	Formal verification methods
	Model checking background

	Model construction
	Labelled state transition systems
	Probabilistic labelled state transition systems

	Formal specification
	Linear time temporal logics
	Linear Temporal Logic
	Bounded Linear Temporal Logic
	Probabilistic Linear Temporal Logic

	Branching time temporal logics
	Computation Tree Logic
	Extended Computation Tree Logic
	Bounded and probabilistic branching time logics

	Model verification
	Model checking labelled state transition systems
	LTL model checking
	CTL model checking
	CTL* model checking
	State space explosion problem

	Model checking probabilistic labelled state transition systems
	Computing probabilities over computation paths
	Exhaustive probabilistic model checking
	Approximate probabilistic model checking
	Comparing probabilistic model checking approaches

	Model checking computational models of biological systems
	Computational modelling formalisms
	Formal specification
	Computational model checking approaches
	Limitations

	Multidimensional spatio-temporal model checking
	Spatial computational models of biological systems
	Multidimensional spatio-temporal model checking workflow
	Model construction
	Explicitly encoding space
	Stochastic spatial discrete-event systems

	Spatio-temporal detection and analysis
	Spatial entity types
	Regions
	Clusters

	Spatial measures
	Computing spatial measures values for regions
	Computing spatial measures values for clusters

	Spatial Temporal Markup Language

	Formal specification
	Bounded Linear Spatial Temporal Logic
	Syntax
	Semantics
	Illustrative examples of BLSTL statements

	Probabilistic Bounded Linear Spatial Temporal Logic

	Model checking
	Proof that the multidimensional model checking problem is well-defined
	Finite number of required simulations
	Finite number of state transitions
	Well-defined model checking problem

	Implementation
	Spatio-temporal detection and analysis modules
	Model checker Mudi
	Availability

	Related work
	Epidemiology
	Spatial information theory

	Validation of multidimensional computational models of biological systems
	Description
	Phase variation patterning in bacterial colony growth
	Model construction
	Spatio-temporal analysis
	Formal specification
	Model checking

	Chemotactic aggregation of cells
	Model construction
	Spatio-temporal analysis
	Formal specification
	Model checking

	Discussion
	Supported modelling formalisms
	Spatio-temporal analysis based on image processing
	STML files generated on demand
	Supported model checking algorithms
	Scalability
	Limitations

	Multiscale multidimensional spatio-temporal meta model checking
	Multiscale computational models of biological systems
	Multiscale multidimensional spatio-temporal model checking workflow
	Model construction
	Encoding the hierarchical system structure
	Multiscale stochastic spatial discrete-event systems

	Multiscale spatio-temporal analysis
	Detection and analysis of spatial entities from multiple scales
	Multiscale Spatial Temporal Markup Language

	Formal specification
	Bounded Linear Multiscale Spatial Temporal Logic
	Syntax
	Semantics
	Illustrative examples of BLMSTL statements

	Probabilistic Bounded Linear Multiscale Spatial Temporal Logic

	Model checking
	Meta model checking
	Implementation
	Multiscale spatio-temporal detection and analysis module
	Model checker Mule
	Availability

	Related work
	Pattern recognition
	Spatial information theory

	Validation of multiscale computational models of biological systems
	Description
	Model construction
	Rat cardiovascular system dynamics
	Uterine contractions of labour
	Xenopus laevis cell cycle
	Acute inflammation of the gut and lung

	Multiscale spatio-temporal analysis
	Formal specification
	Rat cardiovascular system dynamics
	Uterine contractions of labour
	Xenopus laevis cell cycle
	Acute inflammation of the gut and lung

	Model checking
	Discussion
	Model validation and experimental data analysis
	Automatic reconfiguration according to case study specific spatial entity types and measures
	Scalability

	Conclusions, open problems and future work
	Summary and conclusions
	Multidimensional spatio-temporal model checking
	Multiscale multidimensional spatio-temporal meta model checking

	Open problems and future work
	Analysis of time series data recorded in the in vitro environment
	Validation of computational models from other domains of science
	Parameter estimation, model construction and robustness computation
	Distributed multiscale model checking web service
	Alternative model representations and spatio-temporal analysis modules
	Usability improvement

	Approximate probabilistic model checking approaches
	Chernoff-Hoeffding bounds based model checking
	Frequentist statistical model checking
	Single acceptance sampling plan
	Sequential acceptance sampling plan

	Statistical black-box model checking
	Bayesian mean and variance estimate based model checking
	Bayesian statistical model checking

	Existing model checking approaches for computational models of biological systems
	Multidimensional spatio-temporal model checking supplementary materials
	Mapping between subalgorithms of region detection mechanism and OpenCV functions
	Numeric measures for encoding formal specifications
	Subset measures for encoding formal specifications
	Improved frequentist statistical model checking
	Notations
	Description of initialisation error
	Solution

	Proof that the semantics of a BLSTL statement can be defined based on a finite prefix of an infinite execution

	Multiscale multidimensional spatio-temporal meta model checking supplementary materials
	Proof that the multiscale multidimensional spatio-temporal model checking problem is well-defined
	Finite number of required simulations
	Finite number of state transitions
	Well-defined model checking problem

	References

