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2 L. Luisa Vissat et al.

1 INTRODUCTION
Stochastic analysis has proved to be effective and useful for many systems which encompass be-
haviour that is not entirely predictable, either through inherent randomness or through abstractions
that characterise ranges of behaviour as random variables. In this context temporal logics and
their associated model checking algorithms have proved to be very useful for providing rigorous
investigation of the possible behaviour of the underlying system [3, 22]. In this paper we focus
particularly on systems in which, in addition to stochastic behaviour, a key characteristic is the
spatial arrangement of elements of the system. For example, some interactions may only be possible
when entities are co-located, or communications may have a restricted range. In particular we focus
on dispersive processes such as spread of disease or information, invasive species or fire spread,
which all have an intrinsic and fundamental spatial dimension that has to be included in the model.

In many systems the interaction of stochastic dynamics with spatial structure yields considerable
levels of heterogeneity across the system and this can give rise to interesting global properties
absent or less pronounced in analogous non-spatial models. The difference between spatial and
non-spatial systems can often be understood in terms of spatial correlations which, for example,
induce a shift in mean behaviour [34]. Such effects have important real world consequences. For
example, in ecology spatial dynamics have been associated with increased persistence of interacting
species [23], and in epidemiology selection pressures on pathogens with limited dispersal have
been shown to favour reduced virulence in spatial systems [28].

Thus, the dynamics of this class of systems is captured by spatial stochastic models. Such models
are typically studied through simulations, which can be complemented by logics with both spatial
and temporal modalities, providing the ability to describe and verify properties of the spatio-
temporal evolution of systems. Thus, a statistical approach is generally taken to spatio-temporal
model checking [27]: the satisfaction of given properties, expressed as logical formulas, is estimated
based on the evidence gained from randomly generated simulation trajectories, which describe the
spatial and temporal evolution. This procedure leverages value from a finite set of spatio-temporal
trajectories, which alone are difficult to interpret with respect to the dynamic behaviour or to use
to compare different systems, whilst the exhaustive exploration of all possible spatio-temporal
trajectories via an explicit state space model is often computationally infeasible.
Current simulation-based approaches provide summary information about the satisfaction of

properties over the spatial domain, providing estimated values that include intrinsic uncertainty. In
this work we seek to take into account this uncertainty and to enrich the summary information
through the use of a novel logic, the Three-Valued Spatio-Temporal Logic (TSTL), which allows us to
reason, not only about the behaviour of the system, but also about the evolution of the satisfaction
of properties expressed in a spatio-temporal logic. This provides additional insight into the dynamic
behaviour of the system under study. For example, in the analysis of the efficacy of a control measure
for fire spread, we can verify whether the spread in a specific area will happenwith probability under
a given threshold over time. We can also identify the locations that are at highest risk, because they
are surrounded by locations with high probability of burning. The new TSTL atomic propositions
are inequalities on the estimated satisfaction probabilities of given spatio-temporal logical formulas.
In this paper we use the spatio-temporal logic SSTL [37], but the framework is general and could
be applied to any source of spatio-temporal property satisfaction probabilities. SSTL describes and
verifies properties of spatio-temporal trajectories, whose satisfaction probabilities are estimated
using Statistical Model Checking [27]. This simulation-based evaluation has an intrinsic and
unavoidable uncertainty, but has the advantage of only requiring an executable model.

Using TSTL we investigate the evolution of these spatio-temporal properties using a three-valued
approach. The underlying model checking of SSTL is based on Statistical Model Checking with
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Analysis of spatio-temporal properties of stochastic systems using TSTL 3

associated uncertainty. We keep track of this uncertainty in the results of our TSTL model checking,
interpreting the inequalities with different degrees of truth, using true, false and a third value
unknown. Since further simulation trajectories tend to reduce the uncertainty in the atomic proposi-
tions, the third value can be taken to be an indication of when more simulation runs are required to
make the evaluation of atomic propositions more precise, thus allowing stronger conclusions to be
drawn. Conversely this enables initial explorations with relatively few simulations and assessment
of whether they result in sufficient precision. We implemented the monitoring algorithms for the
TSTL logical operators, to evaluate the satisfaction function of TSTL properties. The operators and
the procedures are defined in a similar way to SSTL but on a different domain, dealing with three
truth values.

Contribution. The main contribution of this paper is to give a formal definition of TSTL and
its semantics, and demonstrate its use. The logic defined here is an extension of that originally
defined in [31]. Specifically we have added a novel atomic proposition that allows us to compare
between two estimated satisfaction probabilities and a novel comparison operator, ⟨ψ ,v⟩, which
allows us to verify whether the truth value of the TSTL propertyψ is equal to a given truth value
v , in the three-valued domain. TSTL is also equipped with monitoring algorithms which are the
basis of TSTL model checking. We further develop the idea of the reliability of a TSTL result,
allowing the user to specify the degree of acceptable uncertainty, and automating the generation of
further spatio-temporal trajectories until this specification is met. This notion was first introduced
in the short paper [29], but is fully presented here for the first time. Moreover, we have now
implemented the automatic procedure. The capabilities of TSTL, and the reliability specification,
are demonstrated on two case studies: the fire spread and evacuation models presented in [31]
are more fully explored, and a novel case study on privacy in a communication network is developed.

Paper structure. The paper is structured as follows: Section 2 introduces notation and back-
ground work on SSTL while Section 3 introduces the process algebra MELA we used to perform
stochastic simulations, the monitor jSSTL we used to verify SSTL properties and how we linked all
these aspects together. Section 4 presents the running case-study on fire spread and evacuation
routes with example of SSTL properties. The new logic TSTL is presented in Section 5, together
with how TSTL monitoring is linked with the previous framework. Section 6 presents TSTL analysis
of the running case study while Section 7 introduces the reliability requirement and the application
of the automatic procedure for TSTL monitoring of properties related to the fire spread model. The
novel case study on privacy in a communication network and TSTL applications are introduced in
Section 8. Section 9 presents related work while Section 10 reports conclusion and future directions
for investigation.

2 BACKGROUND
In this section we introduce some fundamental concepts and notation that we will use in this paper
aligned with the syntax and semantics of the existing spatio-temporal logic SSTL.

2.1 Notation
We define a spatial population model, on a discrete representation of space; it describes a large
number of different agents that can perform actions, take different states, interact and move
between different locations. More formally, a spatial population model M is defined as a tuple
M = (S,G,X,X0, Tr ) where:
• S = {1, . . . ,n} is the set of states that the population agents can take.
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4 L. Luisa Vissat et al.

• G = (L,E,w ) is a finite weighted undirected graph that represents the current choice of
underlying spatial structure of the spatial population model where:
– L is the finite set of locations (nodes)
– E ⊆ L × L is the set of connections (edges)
– w : E → R≥0 is the function cost (weights). We extendw to E∗, the transitive closure of E
(set containing all the pairs of connected nodes);w gives the sum of costs of the shortest
path between two different nodes, where this shortest path is the one that minimizes the
sum of the costs.

• X : L → Nn0 , where X(l ) = (X1, . . . ,Xn ) ∈ N
n
0 is the state vector, that represents the state of

the population in each location. Xi , the entries of the vector X(l ), represent the number of
agents in location l in the i th state; therefore, these counting variables are Xi ∈ N0, where
N0 = N ∪ {0}.
• X0 : L → Nn0 , where X0 (l ) is the initial state of the state vector, for each location.
• Tr is the set of transitions, τi = (αi ,vi , ri ), describing the events that change the global state
of the system. Each transition consists of a label αi , an update vector vi and a rate function
ri . The label belongs to the label set L, which provides information related to the transition,
such as the agent performing it and its current location. The vector vi : L → Zn records the
change to each counting variable in each location due to the transition. With ri we indicate
the rate function, which may depend on the global state of the system.

We can interpret the dynamical evolution of these models either stochastically as a Markov chain
or deterministically as a system of Ordinary Differential Equations (ODEs); in this work we focus
on stochastic spatio-temporal systems. Considering the spatial dimension can increase the system
unpredictability, since the population becomes fragmented and the assumption of well-mixed
population might not hold. In this case, the use of stochastic models is even more appropriate, since
they do not represent only the average system evolution.

We can describe the temporal evolution of our spatial population models using:
• σ , a spatio-temporal trajectory ofM; σ : L×Tσ → Nn0 gives the state of the population vector
for each location l ∈ L and each time t ∈ Tσ , up to the temporal horizon. Tσ = [0,TD] ⊆
R≥0, for some TD > 0. These trajectories are generated by discrete-event simulation: the
system changes its state at particular time points and it remains in that state for some time.
Therefore, these spatio-temporal trajectories are bounded and piece-wise constant. This
aspect is important in the definition of the logic semantics in the following part of the paper.
• Σ, a set of spatio-temporal trajectories, that will be used in the analysis.

2.2 SSTL Syntax
Signal Spatio-Temporal Logic (SSTL) [37] is a spatial extension of Signal Temporal Logic (STL) [33],
a temporal logic suitable for describing properties of real-valued signals. The syntax of SSTL is
given by:

φ ::= µ | ¬φ | φ ∨ φ | φ U [t1,t2] φ | �[w1,w2] φ | φS[w1,w2]φ

The SSTL atomic proposition µ is of the form µ ≡ ( f ≥ 0), f : Rn → R, an inequality on expressions
with population counts, given in the spatio-temporal trajectory. Negation ¬ and disjunction ∨ are the
standard Boolean operators andU [t1,t2] is the bounded until operator. For example, φ1 U [t1,t2] φ2
requires that the property φ2 will be satisfied at some time instant in the interval [t1, t2] from the
current one and that at all preceding time instants φ1 holds. SSTL introduces two spatial operators:
the bounded somewhere operator�[w1,w2] and the bounded surround operator S[w1,w2], withw1,w2
real values, w1 ≤ w2. The bounded somewhere operator requires that the property φ holds in a
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location reachable from the current one with a cost w,w ∈ [w1,w2]. With the operator bounded
surround we can describe the propertyφ1S[w1,w2]φ2 of being surrounded by aφ2-region, while being
in a φ1-region: the formula φ1S[w1,w2]φ2 is true in a location l , if l belongs to a set A of locations
reachable with a cost less thanw2 from l and where φ1 holds, such that its external boundary B+ (A)
contains only locations satisfying φ2. The external boundary of a subset of locations A is defined as
B+ (A) := {l ∈ L | l < A ∧ ∃l ′ ∈ A s.t. (l , l ′) ∈ E}. Moreover, the locations in the B+ (A) have to be
reached from location l with a costw ,w ∈ [w1,w2]. Examples of SSTL formulas will be provided
throughout the paper.

SSTL is provided with two semantics: a Boolean semantics, presented in the next section, and a
quantitative semantics, used to measure the robustness of the satisfaction or dissatisfaction of a
property. This latter semantics is not considered in this paper.

2.3 SSTL Boolean semantics
The Boolean semantics of SSTL returns the value true/false (B = {T , F }) depending on whether the
observed trajectory satisfies the defined SSTL formula or not. The Boolean semantics of an SSTL
formula φ is interpreted over a spatio-temporal trajectory σ ofM, for each location l ∈ L and at
time t ∈ Tσ , given values in the set B:

β (M,σ , l , t ,φ) ∈ B

The satisfaction function β is defined as follows:
β (M,σ , l , t , µ ) = µ (σ (l , t ))

β (M,σ , l , t ,¬φ) = ¬β (M,σ , l , t ,φ)

β (M,σ , l , t ,φ1 ∨ φ2) = β (M,σ , l , t ,φ1) ∨ β (M,σ , l , t ,φ2)

β (M,σ , l , t ,φ1 U
[t1,t2] φ2) =

∨
t ′∈[t+t1,t+t2]

(β (M,σ , l , t ′,φ2) ∧
∧

t ′′∈[t,t ′)
β (M,σ , l , t ′′,φ1))

β (M,σ , l , t ,�[w1,w2]φ) =
∨

l ′∈L,w (l,l ′)∈[w1,w2]
β (M,σ , l ′, t ,φ)

β (M,σ , l , t ,φ1S[w1,w2]φ2) =
∨

A∈SR[w1,w2]
l

(
∧
l ′∈A

β (M,σ , l ′, t ,φ1) ∧
∧

l ′′∈B+ (A)

β (M,σ , l ′′, t ,φ2))

where the surrounding region, SR[w1,w2]
l , is defined as:

SR[w1,w2]
l = {A ⊆ L | ∀l ′ ∈ A : 0 ≤ w (l , l ′) ≤ w2 ∧ ∀l

′′ ∈ B+ (A) : w1 ≤ w (l , l ′′) ≤ w2}.

Note that in the definition of the until formula the disjunction/conjunction operators, which
are defined on interval of reals, play the same role of the existential/universal quantifiers in the
considered intervals. We chose this notation to stress the relation with the semantics of the novel
spatio-temporal logic presented later in this paper.
Monitoring algorithms have been defined to evaluate the validity of SSTL properties, given a

spatio-temporal trajectory, working inductively bottom-up on the parse tree of the formula.
To make the verification procedure tractably computable, the input spatio-temporal trajectory

must be piece-wise constant. These trajectories are usually obtained by performing discrete-event
simulations, as outlined in Section 2.1, and we assume that we observe a finite number of events
for each finite spatio-temporal trajectory. For this reason, in the analysis we talk about a discrete
time set.
As discussed previously, in the study of stochastic systems we are generally interested in eval-

uating the probability that given properties are satisfied; a commonly used approach consists of
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6 L. Luisa Vissat et al.

estimating these values using statistical methods on a set of trajectories. Therefore, given a SSTL
property φ, we shift the analysis from a single trajectory σ to a set of trajectories Σ, assigning to
each trajectory a truth value, according to the Boolean semantics. After this step we can estimate
the satisfaction probability p∗ of the formula φ, provided with a confidence interval. For the sake of
simplicity, in this paper this interval is assumed to be symmetric, of a certain width 2δ . To calculate
the values p∗ and δ , the function Pβ is defined over the set of trajectories Σ, in terms of β :

Pβ (M, Σ, l , t ,φ) = (p∗,δ ) (1)

where (p∗,δ ) ∈ [0, 1] × [0, 1] and represents the interval [p∗ − δ ,p∗ + δ ]. Given the Boolean nature
of the observations, the calculation of p∗ and δ is based on the standard approach of using the
binomial confidence interval and approximating the error distribution by a normal distribution.

p∗ =
|Σ⊤ |

|Σ|
and δ = zα ×

√
p∗ (1 − p∗)
|Σ|

(2)

where ΣT = {σ ∈ Σ | β (M,σ , l , t ,φ) = T }. From this point on, all the results of Statistical Model
Checking are given at 95% confidence (α = 0.05), for which zα = 1.96.

3 MODELLING AND MONITORING: MELA AND JSSTL
We used the process algebra MELA [30] to formally describe spatial population models and to
perform stochastic simulations, in order to produce spatio-temporal trajectories for the SSTL
monitoring. This process algebra MELA has been developed to build spatial population models
of ecological systems, since consideration of the spatial aspect has been recognized as of key
importance in ecology. MELA allows one to build models on different discrete spatial structures,
to define agent behaviours with spatial constraints on their interactions and probability for these
interactions to be effective. A variety of different spatial structures are supported in MELA but here
we focus on graph and grid structures. Agents can perform different types of actions, that might
change their state, their location, or their number in the system. The components in the MELA
model generate the states of the underlying stochastic model, a Continuous Time Markov Chain
(CTMC) and we perform stochastic simulations using Gillespie’s Stochastic Simulation Algorithm
(SSA) [18], extracting initial configuration, model structure and parameter values directly from the
MELA model description. We chose to use MELA to facilitate the creation of spatial population
models since it presents features that fit perfectly with SSTL monitoring settings, such as discrete
representation of space and focus on spatial population models. Accordingly, it has been used in
order to produce spatio-temporal trajectories, used as input for jSSTL [38], a Java library developed
to support monitoring of SSTL properties, as shown in Figure 1. Since SSTL works with a discrete
space, in particular with weighted graphs, the grid spatial structures in MELA are mapped to a
weighted graph structure, to fit with the SSTL framework, with all the weights equal to 1.

MELA
simulator

MELA
model

Σ jSSTL

Φ

Σ

SSTL
monitoring

Fig. 1. Σ is the set of spatio-temporal trajectories, Φ the set of SSTL formulas

, Vol. 1, No. 1, Article . Publication date: April 2019.



Analysis of spatio-temporal properties of stochastic systems using TSTL 7

4 CASE STUDY: EMERGENCY EVACUATION ROUTE
We now present a case study related to fire propagation, inspired by [12], which we will use
throughout the paper as a running example. In this section we introduce the model and examples
of related SSTL properties. We aim to identify the safe evacuation routes from the centre of the
grid to the assembly points, located in the corners, where there is a fire starting in the location
in the lower left corner, that can spread to the neighbouring locations. We build a MELA model
on a 2D grid (25 × 25) where the fire can spread everywhere, apart from the assembly points (safe
zones). The grid cell size is equal to 1 km. In the parts of the grid defined as a route we have two
agents in parallel, one that identifies the presence of people and the other one that identifies the
presence of fire.

• Fire spread model (on a 25 × 25 grid)
• Agents scattered around the center
• Different exit routes (grey lines) to safe zones
(located in the corners)
• For each route: (fire | | people)

In the inflammable area the fire agent can be on fire (B, burning) or not (I , inflammable) while the
exit route locations can be empty (EM), occupied (Occ) or passed (P ); P represents a cell that was
occupied but now is empty again. We can evaluate SSTL properties such as:

φocc := Occ > 0 φfire := B > 0

which identify the occupied location (φocc) and the burning ones (φfire). We can also identify the
locations in danger, using the property φdanger :

φdanger := �[d1,d2] (φfire )

which evaluates if there are locations on fire, reachable with a bounded cost. The actual MELA
model and more details about the spatio-temporal analysis can be found in https://ludovicalv.github.
io/TOMACS/.

5 THREE-VALUED SPATIO-TEMPORAL LOGIC
In this section we present the novelty of our research, introducing the syntax and three-valued
semantics of TSTL, providing also derived operators and specific monitoring algorithms.

5.1 TSTL Syntax
As presented in Section 2, with the existing SSTL we are able to verify spatio-temporal properties
of stochastic systems and estimate the satisfaction probabilities of given formulas. After this initial
analysis we use our proposed extension to perform spatio-temporal analysis of these estimated
values. The syntax of Three-Valued Spatio-Temporal Logic (TSTL) is given by:

ψ ::= e1
∼
< e2 |

∼
¬ψ | ψ

∼
∨ψ | ψ

∼

U
[t1,t2]

ψ |
∼

�

[w1,w2]
ψ | ψ

∼

S
[w1,w2]

ψ | ⟨ψ ,v⟩

where ei ::= p | P (φ), p ∈ [0, 1], φ is a given SSTL formula and P (φ) indicates its estimated
satisfaction probability. The atomic TSTL formula e1

∼
< e2 expresses an inequality on estimated

values. With this atomic proposition we are able to check if an estimated satisfaction probability
of a given property is either below a given threshold p or below another estimated satisfaction
probability. The logical TSTL operators link the TSTL propositions in a similar way to the SSTL
ones, but working with estimated values and on a three-valued domain, as explained in the next
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8 L. Luisa Vissat et al.

section. We have negation ∼¬ and disjunction
∼
∨ operators, bounded until

∼

U
[t1,t2]

, bounded some-

where
∼

�

[w1,w2]
and bounded surround

∼

S
[w1,w2]

. Conceptually all these operators are identical to the

SSTL operators, but they operate on a different domain, reasoning about estimated satisfaction
probabilities and not population counts. The novel comparison operator ⟨ψ ,v⟩ verifies if the truth
value of the TSTL propertyψ is equal to a given truth value v , where v ∈ T = {T ,U , F }, the set of
three truth values true, unknown and false. This operator was introduced to allow the definition of
properties that reflect on the truth values themselves, as shown in Section 8 in the case study on
communication networks. In the remainder we will show examples and differences between the
two spatio-temporal logics; we will use the letter φ for SSTL formulas andψ for TSTL ones. We
will use the compact notations P∼

<p (φ) and P∼>p (φ) to indicate the TSTL formulas P (φ)
∼
< p and

P (φ)
∼
> p respectively.

5.2 Three-valued semantics
TSTL presents a three-valued semantics that returns a truth values in T = {T ,U , F }. The truth tables
for TSTL negation ∼¬, disjunction

∼
∨ and conjunction

∼
∧ (that can be defined in terms of negation

and disjunction) are given by:

∼
¬ T U F

F U T

∼
∨

ψ2
T U F

ψ1

T T T T
U T U U
F T U F

∼
∧

ψ2
T U F

ψ1

T T U F
U U U F
F F F F

as for Kleene’s logic of indeterminacy K3 [26]. The three-valued satisfaction function τ for the
atomic TSTL proposition e1

∼
< e2 will return a value in T:

τ (M, Σ, l , t , e1
∼
< e2) ∈ T

The evaluation of ei , E (M, Σ, l , t , ei ), will return an interval which can represent eitherPβ (M, Σ, l ,
t ,φ), the estimated satisfaction probability of a given SSTL property φ, or a constant p, represented
as an interval where δ = 0. Note that we present p as argument of the function Pβ . In this case, no
computation is needed and this value will be constant for each l and each t .

E (M, Σ, l , t , ei ) =



Pβ (M, Σ, l , t ,φ) = (p∗i ,δi ) if ei = P (φ)

Pβ (M, Σ, l , t ,p) = (p, 0) if ei = p

Note that, given a modelM, a set of spatio-temporal trajectories Σ and an SSTL property φ, the
evaluation of ei is a function of time t and location l . Consequently, the same holds for p∗1 , p∗2 , δ1
and δ2. For readability purposes, we omit the time and spatial variables.

We now present the three-valued semantics of the TSTL atomic proposition. Let us consider the
evaluation of e1 and e2:

E (M, Σ, l , t , e1) = (p∗1,δ1) E (M, Σ, l , t , e2) = (p∗2,δ2)
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Analysis of spatio-temporal properties of stochastic systems using TSTL 9

where (p∗1,δ1), (p
∗
2,δ2) ∈ [0, 1] × [0, 1] and they represent the intervals [p∗1 − δ1,p∗1 + δ1] and

[p∗2 − δ2,p∗2 + δ2]. The associated truth value of the TSTL atomic formula will be:

τ (M, Σ, l , t , e1
∼
< e2) =




T if p∗1 + δ1 < p∗2 − δ2

U if (p∗1,δ1) ∩ (p∗2,δ2) , ∅

F if p∗1 − δ1 > p∗2 + δ2

The three-valued satisfaction function τ for the TSTL operators is defined as follows, in an analogous
manner to SSTL, where the standard Boolean operators ¬, ∨ and ∧ have been replaced with the
three-valued operators ∼¬,

∼
∨ and

∼
∧:

τ (M, Σ, l , t ,
∼
¬ψ ) =

∼
¬τ (M, Σ, l , t ,ψ )

τ (M, Σ, l , t ,ψ1
∼
∨ψ2) = τ (M, Σ, l , t ,ψ1)

∼
∨ τ (M, Σ, l , t ,ψ2)

τ (M, Σ, l , t ,ψ1
∼

U
[t1,t2]

ψ2) =
∼∨

t ′∈[t+t1,t+t2]
(τ (M, Σ, l , t ′,ψ2)

∼
∧

∼∧
t ′′∈[t,t ′)

τ (M, Σ, l , t ′′,ψ1))

τ (M, Σ, l , t ,
∼

�

[w1,w2]
ψ ) =

∼∨
l ′∈L,w (l,l ′)∈[w1,w2]

τ (M, Σ, l ′, t ,ψ )

τ (M, Σ, l , t ,ψ1
∼

S
[w1,w2]

ψ2) =
∼∨

A∈SR[w1,w2]
l

(
∼∧

l ′∈A

τ (M, Σ, l ′, t ,ψ1)
∼
∧

∼∧
l ′′∈B+ (A)

τ (M, Σ, l ′′, t ,ψ2))

The truth value of the novel comparison operator will be:

τ (M, Σ, l , t , ⟨ψ ,v⟩) =



T if τ (M, Σ, l , t ,ψ ) = v

F if τ (M, Σ, l , t ,ψ ) , v
where v ∈ T = {T ,U , F }.
Note the similarity between the structure of β and τ , with operators that refer to SSTL and
TSTL respectively. We want to clarify that SSTL results are provided performing Statistical Model
Checking with a given confidence level. Therefore, we are not talking about confidence level of
TSTL results, but about TSTL results, given the confidence level for the Statistical Model Checking
procedure. With the current definition of TSTL we can derive more operators. The everywhere
spatial operator

∼

�
[w1,w2]

can be defined as:

∼

�
[w1,w2]

ψ := ¬
∼

�

[w1,w2]
¬ψ

This requiresψ to hold in all the locations reachable from the current one with a total cost between

w1 andw2. The eventually
∼

F
[t1,t2]

and the globally
∼

G
[t1,t2]

operators are defined as usual:

∼

F
[t1,t2]

ψ := T
∼

U
[t1,t2]

ψ
∼

G
[t1,t2]

ψ := ¬
∼

F
[t1,t2]

∼
¬ψ

The eventually formula holds ifψ becomes true within t1 and t2 time units from the current one,
while the globally formula requires ψ to be satisfied for each time unit in the relative interval
[t1, t2]. As we already presented, TSTL provides an additional level of analysis for evaluation of
spatio-temporal properties of estimated satisfaction probabilities of SSTL properties. Hence, there
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10 L. Luisa Vissat et al.

is a crucial difference between both the analysis and the logical operators used in SSTL and TSTL.
For example, the following two TSTL propertiesψ1 andψ2:

ψ1 := P∼<p (φ1 ∧ φ2) ψ2 := P∼<p (φ1)
∼
∧ P∼

<p (φ2)

are intrinsically different and therefore they can take on different truth values. To give a concise
example, let us assume that we are working with a fire spread model with multiple inflammable
agents for each location and we have the following SSTL properties on the number of burning
agents B:

φ1 := B > 5 φ2 := B > 10
Let assume that, for a given burning probability threshold p:

τ (M, Σ, l , t ,P∼
<p (φ1)) = F τ (M, Σ, l , t ,P∼

<p (φ2)) = T

This can happen if we choose the value of p between the two estimates, outside their respective
intervals. Since φ1 ∧ φ2 ≡ φ2 then:

τ (M, Σ, l , t ,P∼
<p (φ1 ∧ φ2)) = τ (M, Σ, l , t ,P

∼
<p (φ2)) = T

while:
τ (M, Σ, l , t ,P∼

<p (φ1))
∼
∧ τ (M, Σ, l , t ,P∼

<p (φ2)) = F

Moreover, the first could perhaps be derived empirically from observations, but the second is only
expressible with the new logical operator

∼
∧ and the domain T.

The structure of our spatio-temporal analysis is shown in Figure 2. As shown, the initial framework
is extended, with the results of Statistical Model Checking (SMC) based on jSSTL monitoring used
as input to verify TSTL properties.

MELA
simulator jSSTL

Φ
MELA
model Σ

SMC

SSTL
monitoring TSTL

monitor

Θ

TSTL
monitoring

Fig. 2. Σ is the set of spatio-temporal trajectories, Φ the set of SSTL formulas and Θ the set of TSTL formulas

5.3 Monitoring the three-valued semantics of the atomic proposition, the negation
and the bounded surround

To evaluate the validity of TSTL formulas we implemented monitoring algorithms for each logical
operator, structured in a similar way to SSTL monitoring [37]. We illustrate now the monitoring
algorithms for the TSTL atomic proposition, negation and bounded surround operator. For each
location l̂ , the monitoring algorithms return the piecewise constant function sψ , l̂ that maps each
time t , in the finite set of sample times T , with τ (M, Σ, l̂ , t ,ψ ). The cardinality of this set T depends
on the given SSTL and TSTL formulas; it is the shortest finite sequence of time points for which we
have the values of the satisfaction function of all the formulas involved1. Algorithm 1 evaluates the
satisfaction of the TSTL atomic proposition. The algorithm receives as input a given location l̂ , the
1We need to take into account that a temporal formula looks Tf time units into the future, hence the domain [0, TD ]
becomes [0, TD −Tf ], as we assume we only have access to trajectories up to time TD .
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Analysis of spatio-temporal properties of stochastic systems using TSTL 11

evaluation of e1 and e2 and the atomic propositionψ . Given a modelM, a set of spatio-temporal
trajectories Σ and the respective SSTL properties, the evaluations are functions of location l and
time t , in the discrete set T of time points. In this case we perform the analysis for a given location
l̂ . For each time point in T , the evaluations are compared following the TSTL semantics evaluating
the truth value of the TSTL inequality

∼
<, assigning a truth value to sψ , l̂ . The output of this procedure

is sψ , l̂ , which describes the satisfaction of the property ψ for location l̂ over time. Algorithm 2
evaluates the satisfaction of the negation operator ∼¬. In this case the algorithm receives as input a

location l̂ and the TSTL propertyψneg . This procedure simply applies the negation operator to the
truth value ofψ for each time point. This algorithm returns the satisfaction of the propertyψneg over
time for location l̂ . The last algorithm, Algorithm 3, verifies the TSTL bounded surround formula
ψ = ψ1

∼

S
[w1,w2]

ψ2. The monitoring of this operator is more elaborate than the other procedures. We
recall that this operator is used to verify spatial properties of being surrounded by a ψ2-region,
while being in a region satisfying ψ1. For example, we can extract which are the areas in high
danger of being on fire, being surrounded by a region which will burn with high probability and
that satisfies the distance constraints.

As shown in Algorithm 3, as the first step of the algorithm, we compute the value sψ1,l for all the
locations l : 0 ≤ w (l̂ , l ) ≤ w2 and the value sψ2,l for all the locations l : w1 ≤ w (l̂ , l ) ≤ w2. These
values are obtained by recursive invocation of the monitoring algorithm on the TSTL subformulas
ψ1 and ψ2. We set these values for the other locations to be F , ∀t ∈ T . After this initial step, we
iteratively compute a fixed-point function, on the set of locations satisfying the cost bounds, to get
the value of the bounded surround formula, for each time point in the discrete time set T . This
fixed-point coincides with the limit of the sequence (χi )i ∈N, χi : L → T, defined as follows:
(1) χ0 (l ) = sψ1,l (t )

(2) χi+1 (l ) = χi (l )
∼
∧ (
∼∧
l ′:(l,l ′)∈E

(χi (l
′)
∼
∨ sψ2,l ′ (t )))

where i indicates the iteration and E is the set of edges of G. The upper bound on the number of
iterations of the algorithm is given by the diameter dG of the graph; given χ (l ) the fixed point
of χi (l ), then χ (l ) = χdG+1 (l ), ∀l ∈ L. The proof of the correctness of the method follows that of
the SSTL monitoring. The cost of this computation for each location is O (dG |L| |T |); therefore,
the cost for all locations isO (dG |L|

2 |T |). For more details, see [37], where a similar approach is used.

6 CASE STUDY: TSTL ANALYSIS
We now present the TSTL analysis we have performed to identify the most appropriate fire exit
in a situation where the evacuation routes are already defined. In this example the movement of
people and fire are modelled separately, they do not influence each other in the model. We have
gathered both types of information in the study of TSTL properties. For each property we run 30
simulations to perform TSTL verification. With these relatively few runs we have an overall insight
into the dynamics and the differences between distinct models, with a simple representation of
complex systems and properties. Also in this case, more details about the spatio-temporal analysis
can be found at https://ludovicalv.github.io/TOMACS/. To identify the safe evacuation routes, we
use TSTL to identify grid cells that have low probability of being on fire (ψfire) and probability
greater than 0.01 of being occupied (ψocc), given the agent movement in the model:

φocc := Occ > 0 φfire := B > 0
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12 L. Luisa Vissat et al.

Algorithm 1:
Three-Valued Spatio-Temporal Logic: atomic proposition

input : l̂ , E1 (l̂ , t ) = E (M, Σ, l̂ , t , e1), E2 (l̂ , t ) = E (M, Σ, l̂ , t , e2),ψ = e1
∼
< e2

for all t ∈ T do
[p∗1 (l̂ , t ) − δ1 (l̂ , t ),p∗1 (l̂ , t ) + δ1 (l̂ , t )] = E1 (l̂ , t )
[p∗2 (l̂ , t ) − δ2 (l̂ , t ),p∗2 (l̂ , t ) + δ2 (l̂ , t )] = E2 (l̂ , t )
if p∗1 (l̂ , t ) + δ1 (l̂ , t ) < p∗2 (l̂ , t ) − δ2 (l̂ , t ) then

sψ , l̂ (t ) = T

else
if p∗1 (l̂ , t ) − δ1 (l̂ , t ) > p∗2 (l̂ , t ) + δ2 (l̂ , t ) then

sψ , l̂ (t ) = F

else
sψ , l̂ (t ) =U

return sψ , l̂

Algorithm 2:
Three-Valued Spatio-Temporal Logic: negation
input : l̂ ,ψneg =

∼
¬ψ

for all t ∈ T do
sψneg, l̂

(t ) =
∼
¬sψ , l̂ (t )

return sψneg, l̂

(a) t = 1 (b) t = 5 (c) t = 7.5 (d) t = 10

Fig. 3. Temporal evolution of safe evacuation routes: TSTL propertyψsafe , with movement rate of the agents
equal to 2.0. The color scheme is specified on the right: red (true), unknown (green) and blue (false).

ψocc := P∼>0.01 (φocc ) ψfire := P∼<0.2 (φfire ) ψsafe := ψocc
∼
∧ψfire

The verification output of TSTL propertyψsafe shows the routes that will lead to the assembly point
safely, as shown in Figure 3. To be able to identify the safe evacuation routes from the beginning,
instead of observing their temporal evolution, we can check the TSTL propertyψsafeRoute at t = 0.
We want to identify the route that, with probability higher than 0.8, will not be on fire if occupied,
in this case in the first 10 time units:

φroute := (EM > 0) ∨ (Occ > 0) ∨ (P > 0)
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Algorithm 3:
Three-Valued Spatio-Temporal Logic: bounded surround operator

input : l̂ ,ψ = ψ1
∼

S
[w1,w2]

ψ2,T

for all l ∈ L do
if 0 ≤ w (l̂ , l ) ≤ w2 then

compute sψ1,l ;
if w (l̂ , l ) ≥ w1 then

compute sψ2,l ;
else

sψ2,l = F

else
sψ1,l = F ; sψ2,l = F

for all t ∈ T do
for all l ∈ L do

χprec (l ) = T
χ (l ) = sψ1,l

while ∃l ∈ L : χprec (l ) , χ (l ) do
χprec = χ

for all l ∈ L do

χ (l ) = χprec (l )
∼
∧ (
∼∧
l ′:(l,l ′)∈E

(χprec (l
′)
∼
∨ sψ2,l ′ ))

sψ , l̂ (t ) = χ (l̂ )

return sψ , l̂

(a) r = 1.0 (b) r = 2.0 (c) r = 3.0 (d) r = 4.0

Fig. 4. Safe evacuation routes: TSTL propertyψsafeRoute , with different movement rates of the agents, t = 0

φnotFire := ¬((Occ > 0) ∧ (B > 0)) ≡ ¬(Occ > 0) ∨ ¬(B > 0)

φGsafe := G[0,10] (φroute ∧ φnotFire ) ψsafeRoute := P∼>0.8 (φGSafe )

We will check this TSTL property changing the rate of agent movement in the MELA model, as
shown in Figure 4. We can observe that if the rate of movement is not high enough, there are
not safe options to reach the assembly points. As further analysis, we examine the number of
unknown values over time, given TSTL properties and changing the quantity of spatio-temporal
trajectories to analyse. We study the percentage of locations having unknown as truth value for
different formulas and for different numbers of simulation runs. We observed that the percentage
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decreases with the increase in the number of runs. Since the width of the confidence intervals
depends to a large extent on this value, with an increase in the number of runs we tend to give a
more precise estimation of the satisfaction probability. Therefore we have narrower confidence
intervals as input for TSTLmonitoring and a consequent smaller percentage of unknown values. The
three-valued approach is useful to discriminate among TSTL properties in the process of acquiring
spatio-temporal trajectories, until the satisfaction set is large enough. In decision-making situations,
such as at the beginning of a forest fire, we want to quickly compare different control strategies
by evaluating properties of the system with enough accuracy to be able to draw appropriate
conclusions.

7 RELIABILITY REQUIREMENT
For the purpose of evaluating TSTL properties rapidly but accurately, we introduce a reliability
requirement R and an automatic procedure to assess if more spatio-temporal trajectories are
needed to match the requirement. The evaluation of the reliability requirement R is a Boolean value
which expresses if R is matched or not, and therefore the need to acquire more spatio-temporal
trajectories. This specification R is defined as the proportion of unknown values which we can
tolerate during the exploration of the TSTL property satisfaction. As shown in Algorithm 4, given
a TSTL formula ψ , a set of spatio-temporal trajectories Σ and the reliability requirement R, we
perform TSTL monitoring for each location l of the spatial domain L, at each time step of the
discrete time set T , according to the given logical formulas. After this step, our algorithm checks if
the reliability specification is matched, identifying if more simulations are needed. If R is matched
for each time point in the given time horizon, we return reliable as output, which expresses that
the TSTL verification satisfies the requirement. If the requirement R is not matched, we need to
carry out more simulations, performing the monitoring procedure of the formulas and checking
the reliability again.
We observe that the proportion of unknown values decreases with the number of analysed

spatio-temporal trajectories. Given that this value largely influences the width of the confidence
intervals, by acquiring more spatio-temporal trajectories we tend to give a more precise estimation
of the satisfaction probability. Therefore we provide narrower confidence intervals as input for
TSTL monitoring and we have a consequent smaller proportion of unknown values. However,
the relationship between the number of spatio-temporal trajectories and the confidence interval
width is not guaranteed to be strictly monotonic. Thus in some circumstances the reliability check
may not be stable with respect to a single spatio-temporal trajectory, meaning that one trajectory
might change the reliability condition to being matched whilst the next could negate it. To guard
against this we define as input the value k , k ∈ N, and we only consider the reliability specification
satisfied when a positive outcome is achieved for k consecutive spatio-temporal trajectories. This
is monitored through the variable counter, as shown in Algorithm 4. In our examples we perform
the automatic procedure for k = 10 and we show the results for a single time point.
To ensure the termination of our procedure, we specify an upper bound on the number of

spatio-temporal trajectories that we can acquire to satisfy the requirement. As shown in Figure 5,
if the upper bound is reached without k consecutive positive outcomes, the procedure will return
unreliable, since it was not able to verify if the reliability specification was satisfied or not. The
complexity of this procedure depends on the confidence level chosen for the SSTL analysis, the
cardinality of the discrete time set T , the number of locations |L| and parameters of the formulas.
We have implemented the automatic procedure and applied it to evaluate properties related with
our running example. We verify the TSTL propertiesψsafeRoute , which was presented in the previous
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section, and
ψfire := P∼>0.8 (φfire )

for time 0 and time 5 respectively. The results of the automatic procedure are shown in Figures 6
and 7. For each plot, we provide the given reliability requirement R , describing with pU the chosen
upper bound proportion, and the number of spatio-temporal trajectories (st ) needed to satisfy it.

Algorithm 4:
Automatic verification of the reliability specification
input :ψ , Σ, R, k
counter = 0
while |Σ| ≤ max do

Generate σ
Σ = Σ ∪ {σ }
for all t ∈ T do

for all l ∈ L do
TSTL monitoring ofψ , location l , time t , with σ

evaluate R
if R true then

if counter < k then
counter++

else
return reliable

else
counter = 0

return unreliable

MELA
simulator jSSTL

Φ

TSTL
monitor

Θ

Reliability
verification

MELA
model Σ

SMC

SSTL
monitoring

TSTL
monitoring

reliable
(R true ∧ counter = k )

R false ∨
(R true ∧ counter < k)

unreliable
( |Σ| =max )

Fig. 5. The figure illustrates the framework with the automatic procedure for the reliability requirement
verification. Σ is the set of spatio-temporal trajectories, Φ the set of SSTL formulas, Θ the set of TSTL formulas,
R the reliability requirement.

8 CASE STUDY: ANONYMITY NETWORK
In this second case study we analyse a model of a communication network, focussing on properties
related to digital privacy and anonymity. We model the communication network using a complete
graph composed by 100 nodes, where each node represents either a sender, a forwarder or an exit.
The sender introduces a message in the network and forwards it to a forwarder or exit. Through
the action of the forwarders, the message moves, performing a random walk on the graph, until
it reaches an exit and leaves the network. The forwarders can be either honest (H ) or corrupt (C).
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16 L. Luisa Vissat et al.

(a) R : pU < 10%,
11 st

(b) R : pU < 5%,
41 st

(c) R : pU < 1%,
132 st

(d) R : pU < 0.1%,
531 st

Fig. 6. Automatic procedure forψsafeRoute , time=0, r = 4.0, k=10

(a) R : pU < 10%, 24 st (b) R : pU < 8%, 47 st (c) R : pU < 7%, 55 st

(d) R : pU < 6%, 82 st (e) R : pU < 5%, 126 st (f) R : pU < 4%, 180 st

Fig. 7. Automatic procedure forψfire , time=5, k=10

Corrupt forwarders aim to determine the sender of the messages they obtain. As initial condition,
we have 5 senders Si , each of them with the same number of messages that can be sent. We use the
index i to distinguish among the senders and their generated messages. We represent a generated
message withMi . We have 5 exits E and 5 corrupted nodes C . All the remaining nodes are honest
forwarders. The complete MELA model can be found at https://ludovicalv.github.io/TOMACS/. We
use TSTL to evaluate the privacy requirement for the network, verifying that each corrupt node has
similar probability to see the messages for each sender. This requirement can be assessed by verifying
that the following property:

ψi j := P (φcorruptMi )
∼
< P (φcorruptMj )

evaluatesU for each pair of senders (Mi ,Mj ). As initial step, we start performing this analysis for
messagesM0 andM1 (messages from sender S0 and S1) in one of the corrupt nodes. We evaluate
the truth value of the TSTL propertyψ01:

ψ01 := P (φcorruptM0 )
∼
< P (φcorruptM1 )

where:
φcorruptMi = (Mi > 0) ∧ (C > 0) i = 0, 1
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represents the presence of messagesMi in a corrupt node (identified by the presence of the agentC).
In this model we assume that each sender has a fixed number of messages available. We analysed
500 spatio-temporal trajectories. In Figure 8 we present the results of this analysis, observing that
the truth value of property ψ01 evaluates as U , implying the estimated satisfaction probabilities
of formulas φcorruptM0 and φcorruptM1 are close. We evaluate the same properties under different

(a) Estimated satisfaction probability of
φcorruptM0 (blue) and 95% confidence in-
tervals (light blue)

(b) Estimated satisfaction probability
of φcorruptM1 (red) and 95% confidence
intervals (orange)

(c) Estimated satisfaction probabilities (d) Truth value ofψ01

Fig. 8. Basic scenario

scenarios, which we can easily describe by using the high-level modelling language MELA. We can
consider scenarios in which:
• MessagesM0 move 5 times faster than the other messages
• MessagesM0 move 10 times faster than the other messages
• Sender S0 has more messages available to send (5 times more).

The results of these analysis are shown in Figures 9, 10 and 11. If the messages move faster, they
tend to leave the network earlier, quickly finding an exit node. We can observe this in the results,
where the probability of findingM0 decreases faster than the other probabilities, and thereforeψ01
is evaluated as T after some initial time. With more messagesM0 in the network we observe that
the probability of finding messagesM0 is higher, as expected, and therefore the truth value ofψ01
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(a) Estimated satisfaction probability of
φcorruptM0 (blue) and 95% confidence in-
tervals (light blue)

(b) Estimated satisfaction probability
of φcorruptM1 (red) and 95% confidence
intervals (orange)

(c) Estimated satisfaction probabilities (d) Truth value ofψ01

Fig. 9. MessagesM0 move faster in the network (rateM0 = 5.0, otherMi 1.0)

evaluates as F .

Complete analysis We have gone on to analyse the privacy property for all the possible senders,
in an arbitrary corrupted node. We have verified the TSTL propertyψtotal :

ψtotal :=
∼∧

i, j

⟨ψi j ,U ⟩

using the novel comparison operator. To verify that the privacy requirement is satisfied, we want
the truth value of this formula to be equal to T . As shown in Figure 12, the condition is mainly
satisfied in the basic scenario, while with faster messages it is satisfied just in the first part of the
temporal horizon, since afterwards the number of messagesM0 in the network will be lower than
the rest. In the case of more messages for sender S0, the condition is not satisfied, since we have
higher probability to find messages M0 in the network, and therefore the truth value of ψtotal is
evaluated as false.
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(a) Estimated satisfaction probability of
φcorruptM0 (blue) and 95% confidence in-
tervals (light blue)

(b) Estimated satisfaction probability
of φcorruptM1 (red) and 95% confidence
intervals (orange)

(c) Estimated satisfaction probabilities (d) Truth value ofψ01

Fig. 10. MessagesM0 move faster in the network (rateM0 = 10.0, otherMi 1.0)

9 RELATEDWORK
In this section, we give an overview of existing logics dealing with spatial aspects of systems and
estimation of satisfaction probability values.

The literature of applications of temporal logics to stochastic systems has been mainly focused
on well-mixed systems, where the spatial nature of interactions is not considered for the sake
of simplicity. However, the spatial information can be encoded in the model (e.g. adding spatial
information to the agent names) but this choice will result in a cumbersome and less efficient
analysis. In many cases the lack of a notion of spatial structure heavily impacts on the descriptive
modelling power and in the type of analysis that can be performed.
There are existing logics for expressing properties on probabilities, such as Probabilistic Com-

putation Tree Logic (PCTL) [22] and Continuous Stochastic Logic (CSL) [3]. Three-valued logics,
such as ours, with just one additional truth value, are a simple case in the field of multi-valued
logics [20]. The initial concept was created by Łukasiewicz [32] and developed further by different
logicians, such as Kleene [26], introducing the concept of “undefined" dealing with partial recursive
functions. A similar concept has been later used by Jones et al. in [4, 24]. The three-valued approach
is used in [25] for the definition of a new abstraction method for fully probabilistic systems and in
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(a) Estimated satisfaction probability of
φcorruptM0 (blue) and 95% confidence in-
tervals (light blue)

(b) Estimated satisfaction probability
of φcorruptM1 (red) and 95% confidence
intervals (orange)

(c) Estimated satisfaction probabilities (d) Truth value ofψ01

Fig. 11. 50 initial messagesM0 for sender S0, 10 for the other senders Si

[40], for model checking of Discrete-Time Markov Chains. We are not aware of any current use of
a three-valued logic approach in the field of spatio-temporal analysis of stochastic systems.

In the area of spatial logics much work focuses on theoretical investigation [1], expressivity and
decidability, looking at properties of subsets of points of topological spaces. Less attention has been
placed on more concrete representation of space and on more practical aspects, especially in the
validation procedure. In particular, model checking and monitoring routines have a much more
recent history.
Relevant works are those on spatial logics for process algebra with locations; these logics are

specifically defined to describe properties of process algebra models. They are mainly designed to
express properties of concurrent systems, in particular for mobile processes and mobile ambients.
One example is the Ambient logic [10], where the space is represented as a tree and locations
are nested. [16] introduced MoSL for formulating properties of models specified in StoKlaim, a
Linda-like communication model with shared memory through tuple spaces.
Other important logic-based formalisms to mention are those that have been proposed for

reasoning about the topological [6] or directional [7] aspects of the interacting entities, for networks
of processes [39], which can express spatio-temporal properties in discrete time, for (graph) rewrite
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(a) Basic Scenario
(b) Messages M0 move 5 times faster
than the other messages

(c) Messages M0 move 10 times faster
than the other messages

(d) 50 initial message for S0

Fig. 12. Complete analysis, TSTL propertyψtotal in an arbitrary corrupt node

theories [2], [36], bigraphs [15], and data structure as graphs [9] and heaps [8]. Model checking of
these logics usually has high computational complexity [7] or is even undecidable [35].

In [13], Spatial Logic for Closure Spaces (SLCS) is proposed for a discrete and topological notion of
space, based on closure spaces [17]. An extension of the SLCS with temporal aspects, as “snapshot”
models, can be found in [14]. It extends the logic with the temporal modalities of the branching
logic Computation Tree Logic, CTL. However, the algorithms to check snapshot models have high
computational cost and are susceptible to state-space explosion problems because the spatial
formulas have to be recomputed at every state. Furthermore, the logic does not have a stochastic
semantics.
The only linear-time spatio-temporal logics with efficient monitoring procedures that we are

aware of are: SSTL [37], described in Section 2, SpaTeL [21] and STREL [5]. The Spatial-Temporal
Logic (SpaTeL) is the unification of Signal Temporal Logic [33] (STL) and Tree Spatial Superposition
Logic (TSSL) introduced in [19] to classify and detect spatial patterns. TSSL specifies properties
over quad trees, spatial data structures that are designed by recursively partitioning the space into
uniform quadrants. The logic permits the capture of very complex spatial structures, but at the price
of a complex formulation of spatial properties. These latter, indeed, can be in practice only learned
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from some template image. The Spatio-Temporal Reach and Escape Logic (STREL) has been designed
to specify and verify properties of mobile and spatially distributed Cyber Physical Systems. The
unique feature of this logic with respect to the two previous ones is that the monitoring procedure
in each location depends only on the monitoring of its neighbours. This is the first step in the
design of distributed online monitoring algorithms. The logic is relatively new and we believe that,
for the flexibility of how we designed TSTL, we will be easily able to extend our logic to express also
STREL properties. However, since we are currently using TSTL with a simulation-based statistical
evaluation approach, the online monitoring procedure is less important in our methodology.

10 CONCLUDING REMARKS
In this paper we presented Three-Valued Spatio-Temporal Logic (TSTL), an extension of Signal
Spatio-Temporal Logic (SSTL) that allows us to widen the analysis of spatio-temporal properties
of stochastic systems. We have shown how this extension is used to study the spatio-temporal
evolution of the estimated satisfaction probabilities of given SSTL formulas. We implemented the
monitoring algorithms for each TSTL operator and used them in the case studies to perform the
novel analysis, checking the validity of different TSTL formulas. We used TSTL to identify the safest
evacuation routes during a fire spread and to evaluate the satisfaction of privacy requirements
on communication networks. We provide the novel spatio-temporal logic with a three-valued
semantics to handle the intrinsic uncertainty related to the statistical methods used to estimate the
satisfaction probabilities. The three-valued approach allows us to perform initial analysis with a
relatively small set of spatio-temporal trajectories, taking into account the uncertainty; on the other
hand, it also provides a decision tool for the number of simulations needed for drawing stronger
conclusions, as used in our automatic procedure.

There are many possible directions for future work. In the current framework we use verification
of SSTL formulas as input for TSTL monitoring and the starting point for the spatio-temporal
analysis. However, we highlight that TSTL can be used to predicate on estimated satisfaction
probabilities of formulas specified with other logics and also on more general uncertain values
with an estimated confidence intervals, as long as the required format is maintained (estimated
value for each location at each time point).

As future case studies we will apply our framework to model the spread of invasive species,
in particular giant hogweed [11]: we will analyse the effectiveness of different control measures
to protect areas of interest, such as regional parks, taking into account also the suitability of the
different locations for plant colonisation. In particular, we will analyse the difference between
prevention (control outside the boundaries of the area) and direct action (eradication when the
invasive species are detected inside the area), considering also the expense associated with the
different measures.

As a future extension for TSTL we will define and implement the operator bounded reachable
∼

R.
This operator can be seen as a spatial until with direction and associated with a path. We will be
able to verify properties related with locations reachable within a given cost range and satisfying
defined TSTL properties, and the existence of a connecting path formed only by locations satisfying
a given set of TSTL properties. In the case study we presented, the use of this new operator would
have allowed us to identify safe paths without having to mimic and constrain the actual movement,
detecting different possible solutions. Using this new TSTL operator we could verify if there is a
safe location (assembly point S) that we can reach passing only through locations with low probability
of burning, with a costw ,w ∈ [w1,w2]:

ψ := (P∼
<0.2 (B > 0))

∼

R
[w1,w2]

(P∼
>0.01 (S > 0))
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As future work for the automatic procedure, we want to investigate an adaptive value of the
number of additional spatio-temporal trajectories required. In the current implementation we
acquire one additional spatio-temporal trajectory at a time when the reliability requirement is not
yet satisfied and we have not reached the upper bound for |Σ|. The adaptive value will depend
on the current results of the Statistical Model Checking and their evolution during the procedure.
Moreover, in a future version of our algorithm, we will introduce a spatio-temporal specialisation
of this initial version, where we will allow the definition of a specific area of interest and specific
time interval for which we want the reliability requirement to be satisfied. This refinement process
has several motivations. For example, in the case of a spread of a disease, we will have specific
areas of interest, e.g. hospitals, schools, for which we want a quick but accurate evaluation of the
risk assessment.
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