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Abstract
In this thesis we introduce a complete framework for modelling and verification of bi-
ological systems in uncertain contexts based on the bond-calculus process algebra and
the LBUC spatio-temporal logic. The bond-calculus is a biological process algebra which
captures complex patterns of interaction based on affinity patterns, a novel communication
mechanism using pattern matching to express multiway interaction affinities and general
kinetic laws, whilst retaining an agent-centric modelling style for biomolecular species.
The bond-calculus is equipped with a novel continuous semantics which maps models to
systems of Ordinary Differential Equations (ODEs) in a compositional way.

We then extend the bond-calculus to handle uncertain models, featuring interval uncer-
tainties in their species concentrations and reaction rate parameters. Our semantics is also
extended to handle uncertainty in every aspect of a model, producing non-deterministic
continuous systems whose behaviour depends either on time-independent uncertain pa-
rameters and initial conditions, corresponding to our partial knowledge of the system at
hand, or time-varying uncertain inputs, corresponding to genuine variability in a system’s
behaviour based on environmental factors.

This language is then coupled with the LBUC spatio-temporal logic which combines
Signal Temporal Logic (STL) temporal operators with an uncertain context operator
which quantifies over an uncertain context model describing the range of environments
over which a property must hold. We develop model-checking procedures for STL and
LBUC properties based on verified signal monitoring over flowpipes produced by the
Flow* verified integrator, including the technique of masking which directs monitoring for
atomic propositions to time regions relevant to the overall verification problem at hand.
This allows us to monitor many interesting nested contextual properties and frequently
reduces monitoring costs by an order of magnitude. Finally, we explore the technique
of contextual signal monitoring which can use a single Flow* flowpipe representing a
functional dependency to complete a whole tree of signals corresponding to different
uncertain contexts. This allows us to produce refined monitoring results over the whole
space and to explore the variation in system behaviour in different contexts.
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Lay Summary
In this thesis we introduce a complete framework for modelling the behaviour of biological
models under uncertainty. We introduce the bond-calculus, a high-level modelling language
for biological systems. This language is capable of handling uncertainty in both the initial
reactant concentrations of a model and its reaction rate parameters. We have developed
tools for converting bond-calculus models to systems of differential equations, enabling
simulation of models and worst-case analysis of their behaviour under uncertainty.

This is coupled with the Logic of Behaviour in Uncertain Contexts (LBUC), a spec-
ification language for describing properties which we expect a model to satisfy. These
properties include temporal properties, specifying the behaviour of agents over time, and
contextual properties, specifying the types of uncertain environments or contexts in which
we expect these properties to hold. This makes it possible to express a wide range of
interesting biological properties including the robustness of properties under uncertainties
in concentration, reaction rate parameters, and contexts. Moreover, we are able to specify
experimental protocols which observe the response of the model to a range of different
external interventions.

Throughout this thesis we develop a range of algorithms to check whether a bond-
calculus model satisfies a LBUC property. These include exact formal verification methods
which offer guaranteed handling of uncertainty and numerical errors as well as techniques
to explore the variation in a model’s behaviour for different choices of parameter values.

Our methods have been implemented in an interactive notebook environment, allowing
practitioners to experiment with different models and properties. We evaluate these meth-
ods and tools through a range of biological models including gene regulatory networks
and an ecological model of predator-prey role reversal in a marine environment.
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Chapter 1

Introduction

Over the last two decades there has been increasing interest in applying formal mod-
elling techniques originally developed for software systems to modelling and analysing the
behaviour of biological systems. This led first to the use of formal languages such as pro-
cess algebras and rule-based languages to model components of biochemical systems, and
then to the development of increasingly sophisticated modelling frameworks to capture
distinctive features of biological systems such as continuous agent concentrations, stochas-
ticity, and complex reaction rate laws. Equally important have been efforts to analyse
the behaviour of models starting with simulation of model behaviour and expanding to
automated verification of model behaviour against temporal logic properties.

Many aspects of biological systems still pose significant challenges to formal modelling
and analysis, motivating the development of new languages, semantics, and verification
methods. Firstly, the patterns of communication in biological systems are remarkably
diverse even compared to computer systems, so a general purpose framework should
be capable of succinctly describing intermolecular reactions between multiple molecules,
allosteric interactions, regulatory interactions between genes, intercellular communication,
and even interactions between whole organisms in an ecological setting. Secondly, such
a framework should be capable of determining the quantitative rates of reactions in
a compositional manner whilst separating the reactive behaviour of agents from their
quantitative interaction capacities. Thirdly, unlike the discrete non-deterministic systems
which form the traditional domain of formal modelling and verification, biological systems
usually involve a mixture of continuous evolution and discrete jumps, taking us into the
challenging world of continuous and hybrid systems verification. And finally, one usually
has only partial knowledge about the system being modelled due to uncertainty arising
from any and all of: the concentrations of agents and reaction rates, the system’s ever
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varying environment, and the simplifications and omissions required to build tractable
models.

In this thesis we present our approach to formal modelling and verification of biological
systems under uncertainty, based on combining a novel biological process algebra, the
bond-calculus, together with a spatio-temporal specification logic, LBUC, for the temporal
behaviour of bond-calculus models under uncertainty. To verify these properties, we de-
velop a range of exact model-checking techniques including: verified signal monitoring over
flowpipes produced by the Flow* verified integrator [110], property-directed monitoring
using masks to restrict our efforts to relevant time regions, and contextual monitoring and
refinement of spatio-temporal signals for functional dependencies.

1.1 The bond-calculus

We propose the bond-calculus as a high-level modelling formalism for biological systems
at the molecular and network levels focused around chemical species whose interactions
are governed by affinity patterns specifying multi-way, multi-level interactions.

The bond-calculus adopts a process algebraic approach, modelling biochemical species
as agents which communicate at reaction sites whilst the quantitative interaction capacities
of these sites are specified separately via pattern matching against a network of affinity
patterns. That is, a bond-calculus model M ≜ (Π0,A) consists of two parts: a mixture

Π0 ≜ [X1]X1 ∥ . . . ∥ [Xn]Xn

consisting of real-valued concentrations [X1] , . . . , [Xn] ∈ R of different biochemical species
represented as process-algebraic processes X1, . . . , Xn and an affinity network

A ≜ { γ1 @ L1, . . . ,γm @ Lm }

which defines the forms of interactions which can occur. Each class of interactions is
specified by an affinity pattern γ @ L which combines a multi-level pattern γ ≜ (p1,1| . . . |
p1,j1) ∥ . . . ∥ (pk,1| . . . | pk,jk), which specifies a combination of compatible interaction
sites pi,j, and a general kinetic law L, which specifies the quantitative rate at which
this interaction proceeds. The bond-calculus is coupled with a compositional continuous
semantics which translates models into systems of Ordinary Differential Equations (ODEs);
the full syntax and semantics of the bond-calculus are introduced in Chapter 3.

This communication model was originally conceived as an extension of the Contin-
uous π-calculus’ [234] binary affinity network based communication mechanism, which
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encodes low-level molecular bonding via passing of mobile site names. The bond-calculus
incorporates multiway interactions and general kinetic laws to enable high-level modelling
of biological networks whilst multi-level pattern matching allows us to model low-level
molecular reactions including contextual interactions between different molecular sites.
Affinity patterns can be seen as an intermediate abstraction between purely agent-based
languages, where the dynamics are driven by agents’ use of predefined actions or names,
and purely rule-based languages, where agents define molecular structure and the dynam-
ics are driven by reaction rules. This gives us a rather different view of interactions leading
to distinctive modelling styles at the molecular and network levels. The bond-calculus’
compositional continuous semantics also allows us to independently explore composition
of processes and composition of affinity networks.

1.2 LBUC: A Logic for Uncertain Models in Uncertain
Contexts

Whilst most biological modelling frameworks require initial species parameters and reac-
tion rate parameters to be fully specified, in real biological systems the existing literature
and imperfect experimental data can only give us partial knowledge of these quantitative
model parameters. Moreover, in order to scalably model the variety and complexity of
living systems, models must abstract over wide ranges of parameter values arising from
variations between instances or states of a system, variations in the external environment
of a system, or from system components omitted from a model due their complexity. This
motivates us to consider uncertain bond-calculus models M̂ ≜

(
Π̂0, Â

)
featuring interval

uncertainty in their initial conditions

Π̂0 ≜ [a1, b1]X1 ∥ . . . ∥ [an, bn]Xn

and in their affinity network Â via kinetic laws L[a1,b1],...,[am,bm] with interval rate parameters
[a1, b1], . . . , [am, bm]. These uncertain models can either directly represent uncertainty in
the system itself, or the range of uncertain environments or contexts which indirectly
influence a system’s behaviour.

This moves us from considering the deterministic behaviour of a closed continuous
system to nondeterministic and contextual behaviour, motivating the development of
specification languages capable of describing this contingent contextual behaviour un-
der uncertainty and of formal methods capable of verifying that a system’s behaviour
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conforms to these specifications. We do this via the Logic of Behaviour in Uncertain Con-
texts (LBUC). This follows an approach introduced by Banks and Stark’s LBC logic [19]
in combining the temporal operators of the Signal Temporal Logic (STL) [253] with a
form of spatial guarantee operator

C ▷φ,

inspired by Cardelli and Gordon’s spatial logics for concurrent systems [88, 103], which
quantifies a property φ over a context C ≜

(
Π̂, Â

)
consisting of an uncertain bond-

calculus model. Such a property captures the notion of contextually robust satisfaction;
the satisfaction of φ is invariant under perturbation by the class of context models defined
by C.

The interactions between context operators and temporal operators make it possible to
express spatio-temporal experiments which study the behaviour of the system by observing
its reaction to timed perturbations. As a first step, we are able to apply STL temporal
specifications such as F[a,b] φ or G[a,b] φ to uncertain bond-calculus models, allowing us
to observe the behaviour of an uncertain system in isolation. Then the use of context
operators makes it possible to express timed perturbations such as

G[a,b](C ▷φ)

which specifies that φ should hold immediately after the introduction of any bond-calculus
model consistent with C at any time point between a and b time units in the future. The
bond-calculus lets us separately consider contexts of the form Π̂ ▷φ which instantaneously
introduce uncertain concentrations of new reactants into the system and affinity network
contexts of the form Â ▷φ which introduce new affinity patterns to the system, inducing
additional reactions in the system at time-varying uncertain rates. These timed pertur-
bations are similar to timed discrete events or hybrid system jumps, and are able to
describe discrete jumps in system state caused by either external environmental changes
or experimental interventions. However, LBUC allows arbitrary nesting of contextual and
temporal properties, allowing for much richer logical properties which express contingent
contextual behaviour. In this thesis we will explore some of these possibilities as well as
developing automated methods for LBUC verification.

1.3 Verified Monitoring over Flow* flowpipes

Much of the work on continuous-time temporal logic verification has focused on signal mon-
itoring over approximate numerical trajectories building upon the approach of Maler and
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Nickovic’s Signal Temporal Logic (STL) [253]. This pragmatic approach to verification has
led to the development of powerful monitoring algorithms for a wide range of interesting
temporal and spatio-temporal logics for quantitative systems. However, numerical trajec-
tories give an inherently imperfect view of a system’s dynamics so are unable to guarantee
monitoring results have not been influenced by numerical errors. Moreover, individual
numerical trajectories do not take into account the many uncertainties which arise when
modelling real systems. Indeed, in an uncertain model, there are often uncountably many
trajectories which are equally consistent with our knowledge of the system, each of which
could be essential to the overall truth of a proposition. Finite length numerical trajectories
are also unable to verify many interesting unbounded temporal properties which describe
the long term behaviour of a system. These factors motivate us to consider exact methods
which soundly account for all possibilities, allowing us to perform worst-case analysis of
a system’s behaviour under uncertainty.

Flow* [110] is a leading formal verification tool which uses preconditioned Taylor
model flowpipes [45, 251] to tightly over-approximate the dynamics of continuous and
hybrid systems over time. This offers a powerful approach to formal verification under
uncertainty, with Flow*’s sophisticated flowpipe representation allowing us to track our
uncertain knowledge of the system state at each point of time. Flow* has historically
been limited to verifying a restricted class of reach-avoidance properties, calling for the
development of new methods to expand its scope to general purpose temporal logic
verification.

We develop techniques for exact verification of STL and LBUC properties based on
verified signal monitoring over Flow* flowpipes. We employ interval-based monitoring
methods to translate the uncertain picture of the system state contained in a Flow*
flowpipe into a Three-Valued Signal representing our uncertain knowledge of the truth
of propositions over time. By adopting an adaptive symbolic monitoring approach which
tightly integrates the monitoring process with Flow*’s flowpipe representation, we are
able to obtain more precise monitoring results for complex atomic propositions compared
to existing “black-box” verified monitoring approaches which handle flowpipes uniformly
as interval functions [208].

We subsequently introduce a number of techniques to significantly improve the effec-
tiveness and scope of monitoring. We propose how three-valued signals may be extended
to verify unbounded-time properties using suitable invariants, following an approach in-
troduced by Sogokon, Jackson, and Johnson [333]. We then enable property-directed
monitoring by augmenting the usual bottom-up signal monitoring with top-down com-
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putation of masks, a special type of signal representing the regions of interest in a given
proposition. This allows us to direct the monitoring of atomic propositions to only those
time regions relevant to the overall verification problem, avoiding expensive symbolic
flowpipe operations over much of the time domain. Finally, we develop contextual mon-
itoring which uses a Flow* flowpipe to represent a functional dependency of a system’s
behaviour on its initial conditions. This allows us to efficiently monitor spatio-temporal
signals tracking the truth of propositions over the “context space” of different contexts
to a system, allowing us to give refined verification results and to explore variations in
system behaviour over the context space.

1.4 Contributions

The main contributions of this thesis are the following:

1. A new compositional semantics and ODE extraction algorithm for the
bond-calculus This thesis includes a revised semantics and implementation of the
bond-calculus, which was first introduced in the author’s Masters dissertation [358].
The language’s original graphical communication mechanism based on affinity hy-
pergraphs has been replaced with a simpler formulation based on pattern matching.
We have also introduced a new semantics for the language to make it possible to
extract ODEs in a compositional way. This compositionality is important in the
implementation of context operators which dynamically introduce new species into
an existing system, and our new semantics shows how it may be achieved in the pres-
ence of non-mass action rates laws. The semantics of the language is also extended
to allow interval uncertainty in any part of a model.

2. The LBUC logic and its formal semantics We introduce LBUC, a distinctive
spatio-temporal logic combining STL temporal operators with an uncertain context
operator Ĉ ▷φ. This leads to a comprehensive framework to rigorously handle un-
certainty in all aspects of a system including the initial concentrations and reaction
rates of the underlying model and the uncertain environment in which it operates.
As we will explore in Section 5.3, the addition of uncertain contexts makes it possible
to capture a wide range of additional interesting biological behaviours, supporting
its role as a core logic for modelling behaviour under uncertainty.

3. An exact model-checking algorithm for LBUC based on verified monitor-
ing of Flow* flowpipes under masks We introduce an algorithm to verify the
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conformance of bond-calculus models to LBUC properties based on verified moni-
toring. We also introduce masks, which make it possible to restrict the monitoring
of atomic propositions to those time regions required for the property at hand. This
addresses a limitation of existing attempts to extend continuous and hybrid systems
reachability computation to temporal logic verification, as our approach introduces
the first STL monitoring algorithm over flowpipes we are aware of which is property-
directed in the sense that it is able to adapt its verification algorithm for atomic
propositions based on their relevance to the overall property at hand. We demon-
strate several cases in which this substantially increases monitoring performance,
especially in the case of context operators.

4. Adaptive symbolic extensions of these model-checking techniques to han-
dle large uncertain contexts and spatially inhomogeneous behaviour We
introduce an application of spatio-temporal signal monitoring to verifying LBUC
properties involving large uncertain regions. Our previous model-checking algorithm
required constructing a Flow* flowpipe and giving a monitoring result covering the
whole range of uncertainty, limiting its applicability to relatively small ranges of
uncertainty. We use trees of successive subdivisions of a context to monitor spatio-
temporal signal trees for properties over the context space generated by an uncertain
context. We demonstrate how, when Flow* succeeds in flowpipe construction, its
symbolic flowpipe format makes it possible to compute a signal tree covering all
subregions of a given context from a single reachability computation, and introduce
a hybrid algorithm, switching from repeated flowpipe computation to symbolic sub-
division as necessary to handle a given context. These techniques are also combined
with masks to introduce a form of spatio-temporal masking.

5. Case studies and benchmarks demonstrating these techniques We also
investigate example models and properties to demonstrate the applicability and
performance of the techniques developed in this thesis. We investigate bond-calculus
modelling styles for gene regulation at both the molecular level and the network
level, which exemplify the difference in our modelling style from both agent-based
process algebra models and rule-based models. Furthermore, we apply our model-
checking techniques to an ecological model of Predator-Prey Role Reversal and a
9-dimensional Genetic Oscillator benchmark model, demonstrate our ability to verify
interesting STL and LBUC properties, and evaluate monitoring performance.

A key secondary component of this work involved implementing the techniques of
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this thesis. This firstly involved extending the bond-calculus implementation (originally
developed in the author’s Masters project) to handle uncertainty (by producing paramet-
ric systems of ODEs with interval rates and initial condition) and Chemical Reaction
Network extraction. This then involved implementing the LBUC as an embedded DSL
in a Python/Jupyter interactive environment, and implementing all of the techniques
discussed herein on top of Flow*’s C++ API. These implementations enable concrete
tests and benchmarks of our methods and have frequently influenced their development.

1.5 Thesis Structure

The structure of this thesis is as follows:

Chapter 1: Introduction In this chapter we introduce the aims and content of this
thesis.

Chapter 2: Background and Literature In this chapter we outline background material
and discuss the literature relevant to this thesis. Firstly in Section 2.1 we introduce
necessary mathematical definitions and notation. Then in Section 2.2 we introduce existing
process-algebraic formalisms relevant to this thesis and their distinct modelling domains
and abstractions. In Section 2.3 we discuss existing temporal and spatio-temporal logics.
Finally, in Section 2.4 we discuss existing approaches to continuous and hybrid systems
verification under uncertainty and introduce Flow* and Taylor models.

Chapter 3: Bond-Calculus In this chapter we introduce the syntax and semantics of the
bond-calculus process algebra. Firstly, in Section 3.2 we introduce the formal syntax of
the language. In Section 3.3 we introduce its semantics by defining the transition matrix
of a mixture and the concentration dependent rate vector of an affinity network. Finally,
in Section 3.4 we outline the continuous dynamics of bond-calculus models as a vector
field, enabling extraction of differential equations or stochastic chemical reaction models.

Chapter 4: Modelling Patterns of Gene Regulation in the Bond-Calculus In this
chapter we explore different styles of bond-calculus modelling for gene regulation. Firstly,
in Section 4.1 we revisit Kuttler and Niehren’s classic process algebra model of cooperative
regulation at the λ-switch and see how the bond-calculus’ multiway communication and
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mobility lead to a direct model of the molecular interactions in the switch. Then in Sec-
tion 4.2 we move to the network level and see how we may model gene regulatory networks
in a systematic way, combining a general purpose agent-based model of transcription and
translation with an affinity network encoding the regulatory interactions in a particular
network.

Chapter 5: Uncertain Models and Uncertain Contexts In this chapter we move
beyond simulating fixed bond-calculus models to verifying their behaviour in uncertain
time-varying contexts. Firstly in Section 5.1 we introduce uncertain bond-calculus models,
their semantics in terms of bond-model trajectories, and how we perform interval ODE
extraction. Then in Section 5.2 we introduce the LBUC logic and its semantics over
uncertain bond-calculus models. Finally, in Section 5.3 we explore how different types of
uncertainty in biological systems may be modelled in LBUC.

Chapter 6: Verified monitoring with Flow* In this chapter we introduce a model-
checking algorithm for LBUC properties of uncertain bond-calculus models based on
verified monitoring over Flow* flowpipes. Firstly, in Section 6.1 we introduce our moni-
toring algorithm for STL properties, and see how the symbolic nature of Flow* flowpipes
may be exploited to increase the precision and efficiency of monitoring. In Section 6.2
we extend this to a full model-checking algorithm for LBUC by introducing a monitoring
algorithm for context operators. In Section 6.3 we discuss how our monitoring algorithm
can make use of continuous invariants to verify unbounded temporal operators. Then in
Section 6.4 we apply it to a genetic oscillator and investigate monitoring performance
and in Section 6.5 we demonstrate the application of our monitoring algorithm to an
ecological model of predator-prey role reversal.

Chapter 7: Masks In this chapter we introduce our masked monitoring algorithm. In
Section 7.1 we define masks and their operations. In Section 7.2 we introduce monitoring
contexts, which capture the context of a STL formula within the overall monitoring process,
and define the sufficiency and optimality of a mask for a given context. In Section 7.3 we
introduce the masks for each operator of STL, which we prove to be optimal and sufficient,
whilst in Section 7.4 we show a mask may be applied to monitoring an atomic proposition.
In Section 7.5 we extend this to a full masked monitoring algorithm for LBUC including
context operators. Finally, in Section 7.6 we explore the performance impact of masked
monitoring for a range of properties.
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Chapter 8: Contextual Signals In this chapter we introduce contextual monitoring,
which extends signal monitoring to take into account variations in the truth of a proposition
over different regions of an uncertain context. In Section 8.1 we introduce contextual signals,
which add a spatial domain to signals to capture contextual uncertainty, and their concrete
representation as signal trees. In Section 8.2 we explore different methods to monitor signal
trees based on Flow* flowpipes and define a signal tree monitoring algorithm for LBUC.
In Section 8.3 we introduce mask trees, allowing us to combine masking and contextual
monitoring. Finally in Section 8.4 we demonstrate contextual monitoring as applied to our
predator-prey role reversal model and explore the performance of contextual monitoring.

Chapter 9: Implementation Overview In this chapter we give a brief overview of our
tools implementing the techniques developed in this thesis and their usage. In Section 9.1
we describe our implementation of the bond-calculus language. In Section 9.2 we describe
our integration of the bond-calculus and LBUC with Sagemath and Python and their
use in an interactive browser-based Jupyter environment. In Section 9.3 we describe our
interface to Flow*’s C++ API and our use of Cython. Finally, in Section 9.4 we briefly
describe our methodology for benchmarking and testing.

Chapter 10: Conclusion This chapter forms the conclusion of the thesis. In Section 10.1
we discuss and evaluate the techniques developed throughout the thesis and consider their
relationship to related work. Then, finally, in Section 10.2 we discuss future work.
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Chapter 2

Background and Literature

In this chapter we review the relevant background and literature for this thesis. In Sec-
tion 2.1 we introduce some necessary definitions and notation. In Section 2.2 we survey
process algebraic modelling formalisms for biological systems. In Section 2.3 we introduce
temporal and spatial logic and survey their application to biological and quantitative
systems. Finally, in Section 2.4 we introduce continuous and hybrid systems verification
including the Flow* verified integrator [110].

2.1 Mathematical Preliminaries

In this section we briefly recall some mathematical definitions and notation concerning
three-valued logic, interval arithmetic, and order theory which are used throughout this
thesis.

2.1.1 Three-Valued Logic

Kleenian three-valued logic extends traditional Boolean logic whose propositions must be
either true (T) or false (F) by adding a third possibility unknown (U) which expresses
our uncertainty as to the truth or falsity of a proposition. The operators of three-valued
logic match those of Boolean logic, except that U must soundly account for the possibility
of either Boolean truth value giving the truth-tables,

¬
T F
U U
F T

∧ T U F
T T U F
U U U F
F F F F

∨ T U F
T T T T
U T U U
F T U F

⇒ T U F
T T U F
U T U U
F T T T
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The above definition of implication follows the equivalence x ⇒ y ≡ ¬x∨ y as in Boolean
logic.

Remark 2.1.1. Whilst natural, this Kleenian definition of implication has the somewhat
surprising consequence that U ⇒ U ≡ U. There are alternative three-valued logics such
as Łukasiewicz logic in which U ⇒ U ≡ T, each of which corresponds to a different
interpretation of the third value U.

We denote the set of Boolean truth values by B ≜ {T,F}, and the set of three-valued
truth values by T ≜ {T,U,F}.

2.1.2 Interval Arithmetic

Interval arithmetic provides a way of handling uncertainty in numerical computations
by extending the rules of arithmetic on real numbers to intervals representing our range
of uncertainty in a given numerical value. The definitions in this section are mostly
standard and implemented in many popular libraries; a standard reference for interval
arithmetic and interval numerical methods is [271] whilst [256] formalises extended interval
arithmetic.

We define interval arithmetic over the space IR of closed real intervals I =
[
lI , uJ

]
≜{

x ∈ R : lI ≤ x ≤ uI
}

with lower and upper endpoint lI , uI ∈ R in the extended real line
R ≜ R ∪ {−∞,∞}. Whilst this in general allows unbounded intervals (−∞, b], [a,∞),
etc, we will often restrict our attention to the bounded intervals I having finite endpoints
lI , uI ∈ R. Then arithmetic operations on intervals are defined by

I + J ≜
{
x+ y

∣∣∣ x ∈ I, y ∈ J
}

=
[
lI + lJ , uI + uJ

]
I − J ≜

{
x− y

∣∣∣ x ∈ I, y ∈ J
}

=
[
lI − uJ , uI − lJ

]
IJ ≜

{
xy

∣∣∣ x ∈ I, y ∈ J
}

=
[

minS,max S
]

where S = { lI lJ , lIuJ , lJuI , uIuJ }, whilst division is partially defined by

I/J ≜
{
x/y

∣∣∣ x ∈ I, y ∈ J
}

= x
[

1/uJ , 1/lJ
]

whenever 0 /∈ J .

We can also define the lattice operations of interval intersection and interval hull by

I ∩ J =
[

max(lI , lJ),min(uI , uJ)
]

I ∪ J =
[

min(lI , lJ),max(uI , uJ)
]
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and the inner subtraction of intervals by

I .− J =
⋂
j∈J

(I − j) = R \ (R \ I − J) =
[
lI − lJ , uI − uJ

]
.

giving an inner-approximation of the result of subtraction1.
Given a real-valued function f : D → R over interval domain D, an interval-valued

function F : D → R is an interval extension of f is f(x) ∈ F (X) for every point x ∈ D

and interval X ⊆ D such that x ∈ D.
One limitation of standard interval arithmetic is that the quotient I/J is rather

narrowly defined since if we allow 0 ∈ J the set of quotients x/y for x ∈ I, y ∈ J will
often not be connected and hence will not form an interval. This motivates us to define
multi-interval arithmetic [340] which allows us to operate simultaneously on different
interval branches of a set.

Definition 2.1.2. A multi-interval is a set I = I1 ∪ . . . ∪ In formed as a finite union of
disjoint interval components I1, . . . , In.

Each of the standard interval operations extend to multi-intervals distributively, so,
for example, (I1 ∪ . . . ∪ In) + (J1 ∪ . . . ∪ Jm) = ⋃n

i=1
⋃m
j=1(Ii + Jj). Then we can extend

the definition of the quotient to handle zeros so

I/J ≜



I/J if 0 /∈ J(
−∞, lI/uJ

]
if 0 = lJ < uJ(

−∞, lI/uJ
]

∪
[
lI/uJ ,∞

)
if lI < 0 < uJ[

lI/uJ ,∞
)

if lI = 0 = uJ(
−∞,∞

)
otherwise

where we still exclude the case of lJ = 0 = uJ .
The move to multi-intervals is especially important in interval root finding methods,

as we often need to handle intervals which may contain multiple roots of a function.
For example, the extended interval Newton-Raphson method [208, 271, 340] shown in
Algorithm 1 is an extension of the standard Newton-Raphson root finding method using
multi-interval arithmetic and is able to simultaneously bound all roots of a continuously
differentiable function f based on interval extensions F, F ′ of f and its derivative f ′

respectively.
1This inner-approximated subtraction operation corresponds to applying the normal inverse Minkowski

sum to their complements and variants have been studied in extended versions of interval arithmetic [221,
256, 257]
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roots(F, F ′, X,Xold, τ) ≜

if diameter(Xold) − diameter(X) < τ then
return X

else
x := midpoint(X)
X ′ :=

(
x− F (x)

F ′(X)

)
∩X

return ⋃
Y ∈components(X’) roots(F, F ′, Y,X, τ)

Algorithm 1: Extended Interval Newton-Raphson method to compute a multi-interval
enclosing all roots of an interval function F with derivative enclosure F ′ in interval X.
The tolerance parameter τ determines the minimum difference in enclosing interval
before the algorithm stops recursing whilst Xold contains the interval bound from the
previous step.

We are also interested in n-dimensional vectors of intervals I ∈ IRn, representing n-
dimensional orthogonal parallelopipeds, for which we define the vector interval operations

(I + J)j ≜ Ij + Jj (IJ)j ≜ IJj

(I ∩ J)j ≜ Ij ∩ Jj (I ∪ J)j ≜ Ij ∪ Jj.

Then a vector interval function F : D → IRn is an interval extension of a vector function f
if f(x) ∈ F(X) for any x ∈ D and X ∈ IRm such that x ∈ X.

2.1.3 Orders and Trees

We firstly recall some basic notions from order theory. A partially ordered set (S,≤)
consists of a set S together with a relation ≤ which is reflexive (x ≤ x for all x ∈ S),
anti-symmetric ((x ≤ y) ∧ (y ≤ x) =⇒ (x = y) for all x, y ∈ S), and transitive
((x ≤ y) ∧ (y ≤ z) =⇒ (x ≤ z) for all x, y, z ∈ S). A totally ordered set is partially
ordered set (S,≤) such that either x ≤ y or y ≤ x for all x, y ∈ S. A totally ordered set
(S,≤) is well-ordered if every subset of S has a least element. We will need the following
two important orderings on truth values:

Example 2.1.3 (Truth Order). The truth order is defined by x ≤ y iff x ∨ y ≡ y. Under
this ordering both B and T are totally ordered and F ⪇ U ⪇ T.

Example 2.1.4 (Information Order). The set T of three-valued truth values is a partially
ordered set under the information order or approximation order [36] defined by T ⊒ U ⊑
F.

24



We define the down-set x↓ of an element x ∈ S as x↓ =
{
y ∈ S : y ≤ x

}
and the

up-set x↑ of x ∈ S as x↑ =
{
y ∈ S : x ≤ y

}
.

The order-theoretic definition of a tree is then given by,

Definition 2.1.5. A tree is a partial order (T,≤) which has a least element root(T ) and
for which every down-set x↓ is well-ordered.

In particular, we will be interested in trees of sets (T ,⊇), which consist of a collection
of sets T which is a tree under the superset relation ⊇. We note that in trees of sets the
order is somewhat counter-intuitive since we consider the root to be the largest set.

Other tree related concepts may then be defined order-theoretically. Thus the descen-
dants of a node x (inclusively of x itself) in the tree are given by the up-set x↑ whilst the
ancestors of x are given by the down-set x↓. A node y is a child of x if x < y and for any
z such that y ≤ z ≤ x, we must have either x = z or z = y, and we denote the set of all
children of x as children(x). Finally, a leaf node of (S,≤) is any node x ∈ S such that
children(x) = ∅, and we denote the set of all leaf nodes of S by leaves(S).

2.2 Formal Modelling Languages for Biology

Whilst formal languages have played a key role in computer science as abstract models
for computation and concurrency, they have also come to increasing prominence in com-
putational biology as formalisms for modelling different types of interactions in biological
systems. In contrast to lower-level mathematical formalisms such as differential equations
which directly encode system dynamics, the formal language-based approach aims first to
model the intensional structure and interactions of agents, and then to provide a choice
of semantics which may be applied to translate models into corresponding mathematical
models at different levels of abstraction. These semantics can then be used as the basis
for simulating and analysing system behaviour.

Over the last two decades a profusion of formal languages have been applied to biologi-
cal modelling, whose diversity mirrors the living systems they aim to model. In this section
we will survey this ecosystem, with an emphasis on the process-algebraic languages and
modelling abstractions which have influenced the bond-calculus’ approach. To this end we
will first introduce some of the main modelling formalisms in Section 2.2.1, before focusing
on specific developments for different domains of biological modelling in Section 2.2.2,
and then take stock of the distinct abstractions which these frameworks have brought to
biochemical modelling in Section 2.2.3.
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2.2.1 Modelling Formalisms

Process algebras such as CCS [265], CSP [201], ACP [44], and the π-calculus [269, 270]
first emerged as formal frameworks for modelling reasoning about interactions between
concurrent processes in computer systems. Each employs a different model of concurrent
communication reflecting the diversity of patterns of interaction in concurrent systems,
with CSP modelling multiway coordination on shared actions and CCS modelling binary
communication between matching names x and conames x̄ representing two halves of
a communication channel, whilst the π-calculus extends this to mobile communication,
allowing processes to send names along channels. The application of process algebra to
modelling biological systems has revealed an even greater range of patterns of interaction
in biological systems, leading to a wide range of different languages and communication
mechanisms. These languages have also featured a range of semantics ranges from dis-
crete non-deterministic qualitative semantics to stochastic or discrete and continuous
quantitative semantics.

2.2.1.1 π-Calculus and Extensions

Regev, Silverman, and Shapiro [310] applied the π-calculus as a formalism for modelling
biochemical systems, representing individual molecules as processes in the calculus, and
producing a model of the RTK MAPK signal transduction pathway as a prototypical model.
This then motivated the application and development of extensions of the π-calculus to
better model different aspects of these systems. Hierarchical compartmental structures play
a key role in biological systems, and are modelled in the Regev et al.’s BioAmbients [311]
which models biological compartments including cells as ambients in the style of Cardelli
and Gordon’s ambient calculus [104]. β-binders [304] uses another compartmental model
placing π-processes within “boxes” defining their external communication interface. The
π@ [353] extends the π-calculus with polyadic synchronization and priorities, which enables
the encoding of spatial calculi such as BioAmbients [353] and β-binders [95]. In SPiCO,
π processes are extended to concurrent objects, to provide more structured modelling of
biological processes [229]. Attributed π [215, 216], and its imperative extension Imperative
π [212], extend the π-calculus with a communication mechanisms based on constraints
over attribute stores, which offers another approach to encoding compartmental models.
A similar imperative approach is followed by ℓ to provide a domain specific language for
biochemical modelling [364]. Extensions of the π-calculus have also considered the motion
of biological agents in space including Space Pi [211] which uses real space and time, 3π
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based on affine geometry [100], and Lπ[335] which is based on a network of connected
locations.

Whilst the application of process algebra to biology first focused on modelling qual-
itative behaviour via a discrete non-deterministic semantics, languages soon branched
out to investigate quantitative stochastic semantics. The Stochastic π-calculus [303] is a
stochastic extension of the π-calculus which assigns quantitative rates to channels. Priami
et al. [305] applied Stochastic π to biochemical modelling using stochastic simulation
based on Gillespie’s Stochastic Simulation Algorithm [180] with overall reaction rates
derived according to the law of mass action. An abstract machine and improved stochastic
simulator for the calculus in [291] whilst Cardelli and Mardare [105] introduced an im-
proved semantics based on measure theory. Many extensions of the π-calculus have since
developed support for stochastic simulation including [212, 290]. Stochastic β-binders [143]
extended β-binders with a stochastic semantics using affinity between pairs of sites to cap-
ture quantitative reaction rates. BlenX [145] is a β-binders inspired modelling language for
biological systems including functional reaction rates, whilst BlenXT [121] extends BlenX
with biological transactions to encode general multiway reactions as atomic sequences of
binary interactions.

Finally, a number of works have considered continuous ODE semantics for variants
of π-calculus including translation of a restricted Chemical Ground Form (CGF) (which
excludes ν-binders) to Chemical Reaction Networks (CRNs) in [97], an alternative direct
continuous semantics for the CGF in [335], and the compositional continuous semantics
of Continuous π [234] which we discuss in Section 2.2.1.3.

2.2.1.2 PEPA, Bio-PEPA, and Extensions

The Performance Evaluation Process Algebra (PEPA) was originally introduced by Hill-
ston [197] as a stochastic process algebra aimed at quantitative analysis in computer
systems based on a compositional stochastic semantics based on Continuous Time Markov
Chains (CTMCs). In contrast to the binary communication of CCS and the π-calculus, it
uses CSP-style multiway coordination on shared actions with quantitative rates. Calder,
Gilmore, and Hillston [91] applied PEPA to the modelling of biochemical signalling path-
ways, exploring reactant-centric and pathway-centric abstractions to model the influence
of RKIP on the ERK signalling pathway. These biological applications inspired a more
appropriate quantitative rate semantics for the communication operator based on the
generalized law of mass action [177] rather than bounded capacity [199]. This extension
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developed alongside with a continuous population semantics, abstracting the collective
behaviour of large populations of processes as systems of ODEs; the result of this fluid
approximation [196, 346] to capture the limit behaviour of the mass action stochastic
semantics for large populations.

Bio-PEPA [126] provides a more comprehensive reimagining of PEPA-style communi-
cation for modelling biochemical networks. It introduces an action based communication
prefix capable of modelling different roles of a species in a reaction (reactant, product,
activator, etc) and stoichiometries, along with support for general (non-mass action) ki-
netic laws modelled via functional rates. Bio-PEPA directly supports a population-level
continuous semantics with processes representing biochemical species, and support for
both a continuous ODE semantics and a stochastic semantics. Bio-PEPA also supports
modelling molecular compartments or more general nested locations [123] and has been
extended with discrete events [120].

Whilst this work represents a development from individual-level to population-level
semantics, many real biological systems involve the interactions of components at each
of these levels, motivating the use of multi-level models which explicitly model scales of
structure in a system and the communication between them. This has been considered
via the Process Algebra with Hooks (PAH) which has been applied to modelling pattern
formation [144] and in the Process Algebra with Layers (PAL) which models commu-
nication between Bio-PEPA processes at the population and individual levels and has
been applied to a multi-scale cell cycle and DNA damage repair model [330]. The earlier
PEPA Nets [181] models mobility of PEPA processes between different locations with
different context processes and combines process-level transitions with population level
transitions altering network structure. Many biological systems also feature disparities in
timescales or interaction with discrete components. HYPE [174] is a process algebra with
full support for modelling hybrid systems based on composition of continuous flows in a
style influenced by the continuous semantics of PEPA, whilst [172] introduces a hybrid
semantics for Bio-PEPA based on a translation into HYPE.

An additional point of focus has been handling systems with uncertain parameters.
ProPPA extends the syntax of Bio-PEPA to model uncertain parameters as distribu-
tion and introduces a FuTS-style [280] semantics to interpret them as non-deterministic
stochastic systems, that is, Probabilistic Constraint Markov Chains (PCMDP). The lan-
guage supports forwards stochastic simulation for given parameter values and backwards
inference of model parameters from sample traces based on Approximate Bayesian Com-
putation. This work has also considered inference based on fluid approximation and linear
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noise approximations of model behaviour [178], however, a formal continuous semantics
for ProPPA was not included.

2.2.1.3 Continuous π and the bond-calculus

The Continuous π-calculus [234] is a π-calculus based process algebra for biomolecular
systems, featuring continuous mixtures of processes, and a continuous ODE semantics
based on vector fields. It uses a global affinity network which assigns quantitative affinities
to pairs of sites as well as local affinity networks defined via an extended form of ν binder.
Continuous π semantics represents continuous mixtures of species as a vector Π and
uses an interaction tensor :M to compositionally define a vector field over species (or
equivalently, a symbolic system of ODEs) deriving the continuous evolution of the system
according to the law of mass action. This style of continuous semantics brings the benefit
of compositionality, with new reactions derived incrementally as new species are added to
the system. The Continuous π-calculus and its semantics have also been been formalized
in the Lean theorem prover [130].

The bond-calculus was originally conceived as an extension of the Continuous π-
calculus in the following directions:

• Extending binary mass action affinities to multiway interactions with general kinetic
laws whilst preserving compositionality in the continuous semantics.

• Capturing contextual affinities which depend on interactions between multiple sites
in a single species.

• Enable compositional affinity networks which can be imposed upon existing pro-
cesses.

It also takes some inspiration from the join-calculus’ [166] use of join-patterns in moving
from affinity networks to affinity patterns. An early version of the bond-calculus which
appeared in the author’s masters dissertation featured a related graphical communication
mechanism based on labelled hypergraphs [358].

2.2.1.4 Rule-Based Languages

An alternative approach to biochemical modelling is given by rule-based languages which
use a simpler structural description of molecules with reactions specified separately via
rewriting rules. A pioneering instance of this approach was the bio-calculus [272] which
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uses a join-calculus–style [166] pattern matching based communication mechanism to
model chemical reactions. BioNetGen [51] uses an extended rewriting based approach to
generate Chemical Reaction Networks from a smaller set of reaction rules. Kappa [134]
provides a rule-based language for protein interactions using a process algebra inspired
approach involving agent-based descriptions of molecular structures being acted on by
reaction rules. BIOCHAM [107] is a rule-based modelling language for biochemical sys-
tems which provides a number of different qualitative and quantitative semantics coupled
with automated Temporal Logic verification techniques. The Calculus of Looping Se-
quences (CLS) [24] and its extensions [26, 27] are a somewhat different rewriting based
formalism for biological modelling with reactants represented as recurring sequences. Sub-
sequently, the Language for LBS [286] and LBS-κ [285] extended the rule-based approach
with modules, allowing large modules to be constructed in a compositional way. The Bio-
Chemical Space Language (BCSL) [142, 347] aims at extending the rule-based approach
with a higher level of abstraction and a semi-formal description of chemical reactions
allowing partial specification of biochemical structures.

There has long been a fruitful overlap between rule-based and process algebra-based
modelling languages with Kappa taking particular inspiration from process algebra. The
rule-based language React(C) combines Kappa with hyperedges and constraints to close
any expressiveness gap with variants of the π-calculus and to enable a transparent encoding
of the Stochastic π-calculus [213]. As with quantitative process algebras, most of the above
languages offer a choice of non-deterministic, continuous, and stochastic semantics, with,
for example, KADE [94] recently providing a tool to translate Kappa models to reduced
systems of ODEs.

2.2.1.5 Others

There have been a large number of other approaches to modelling biological systems. The
early approach of Fontana and Buss [165] used the λ-calculus as a model of molecular
evolution. Another early precursor to the development of biological process algebras was
the application of the stochastic discrete-time process algebra Weighted Stochastic CCS
(WSCCS) to modelling insect behaviour [344]. Meanwhile, the stochastic fusion calculus
uses a symmetric form of communication based on global fusion of names and has been
applied to modelling gene regulation [116] and fungus/root symbiosis [119]. In Stochastic
Concurrent Constraint Programming (sCCP) [61] agents communicate indirectly via a
global store of constraints; this communication model has been applied to modelling a
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wide range of biological systems and supports stochastic, continuous [69], and hybrid
semantics [66].

A number of calculi have focused around the structure and dynamics of biological
membranes including Cardelli’s Brane Calculus [96] and Bitonal and Atonal Calculi. Bi-
graphical languages such as the C-calculus [133], Bio-β [15], Biological Bigraphs [16],
and Stochastic Bigraphs [226] have been applied to modelling protein and membrane
interactions [16]. In an alternative approach, the link-calculus uses an open multiway com-
munication mechanism based on the formation of link-chains and is able to transparently
encode compartmental calculi [55].

The Strand Algebra [99] focuses on DNA strand interactions and can be used as a model
for DNA computing. The Beacon Calculus [57] is a general purpose process calculus with
a flexible guarded communication mechanism, which can concisely model DNA replication
and damage repair as well as multisite protein phosphorylation. In a different direction,
the Bonding Calculus [10] uses a distinct form of concurrent communication to directly
model the creation and dissolution of covalent chemical bonds.

Finally, there have been a number of attempts to give a unified semantics of differ-
ent process calculi. One approach involves encodings between different calculi, some of
which have been listed above. Milner’s Bigraphical Reactive Systems [266] seeks to unify
the treatment of mobility of agents and ambient structures based on Bigraph rewriting.
PRISMA [79] gives a general framework for qualitative calculi which encompasses both
π-calculus–style name passing and CSP-style multiway communication. FuTS [280] and
SGSOS [223] have both been proposed as uniform frameworks for defining the semantics
of quantitative languages using extended forms of quantitative transition systems.

2.2.2 Modelling Domains

The biological process calculi surveyed in the previous subsection cover a wide range of
different biological modelling domains. The abstract nature of process calculi allows a
given language to span multiple different modelling domains, however, the development of
models in specific domains has frequently inspired the development of new modelling styles
and formalisms. These developments have also inspired unifying abstractions for biological
systems with vastly different contexts and scales. In particular, the bond-calculus aims
to support a range of modelling domains, some of whose development is outlined below.
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2.2.2.1 Biomolecular Interactions and Bonding

Early applications of biological process algebra focused on molecular biochemistry and
modelling molecular bonding. Models in the π-calculus from [310] onwards used the
passing and sharing of names to represent molecular bonding, with two components of
a molecule linked by a shared name (ν binder). This domain is also directly targeted by
rule-based languages such as Kappa [134], BioNetGen [51], and LCLS [27] which use the
creation of links to form molecular bonds. β-binders and BlenX[145] use boxes with typed
interaction sites as a model for the interaction interfaces of molecules corresponding to
sites or binding domains on the surface of proteins. In [234] a Continuous π model is
developed for a post-translational genetic circadian clock and the language’s continuous
semantics is used to generate associated ODEs for simulation; this model is used in [232,
233] to study the molecular evolution of the clock. It is also possible for dynamic bonding
to result in infinite families of species as a model of polymerization; this phenomenon has
been studied in Stochastic π by [106] and in BlenX by [235].

2.2.2.2 Gene Regulation

Gene Regulation has been studied in a variety of mathematical modelling formalisms at the
molecular and network levels; a recent survey of formal models is [25]. Gene Regulation has
also been a core case study for stochastic process calculi starting with Stochastic π [303].
Kuttler and Niehren’s λ-switch model [227] is a classical model of cooperative gene regu-
lation in the Stochastic π-calculus and has served as a case study for several stochastic
process algebras [117, 118, 215, 229] and rule-based languages [35]. Subsequent molecular-
level models have investigated the mechanics of transcription and translation [227], whilst
in their model of transcriptional attenuation at the Typ operon, Kuttler, Lhoussaine, and
Nebut [228] argue the advantages of a rule-based approach due to the difficulty of cap-
turing multiway interactions. Blossey and Cardelli [52] proposed a general compositional
approach to network-level modelling of gene regulation in Stochastic π, where processes
represent regulatory interactions rather than individual genes; extensions of this model
include [53, 204, 316]. In [69] a similar compositional model is presented for representing
gene regulatory networks in sCCP, whilst Bio-PEPA is well suited to modelling gene reg-
ulation at the network level [125]. Following a different approach, [284] presents a general
translation of the Process Hitting framework for gene regulatory networks to Stochastic π.
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2.2.2.3 Population Dynamics

Populations level modelling focuses on modelling the overall behaviour of large groups of
individual organisms and encompasses ecological models focused on the growth of species
in an ecosystem as well as epidemiological models focusing on the spread of disease
through a population; an introduction to the use of mathematical modelling in these
areas is [75] whilst [345] surveys the use of individual-based models [345]. Both [281] and
[260] investigated stochastic WSCCS models of population dynamics for epidemiological
models whilst [261] looked at host-parasite population dynamics. In [259] McCaig, Norman,
and Shankland investigated methods of generating population level ODE models from
WSCCS models. Bradley, Gilmore, and Hillston [73] analysed internet worm transmission
application using a PEPA model and fluid flow approximation. The models of [40, 42]
further evaluated the suitability of PEPA for epidemiological modelling, leading to a
proposed improvement to the fluid flow approximation of PEPA to better model population
dynamics [41] whilst [124] presents a version of Bio-PEPA tailored to epidemiological
models. In [329], an ecological model of Pacific oysters was presented based on a translation
of Dynamic Energy Budget (DEB) models to Bio-PEPA. Spatial distribution of agents
also plays an key role in epidemiology and has been investigated in spatial process algebras
including PLAPS [289], MELA [355], PALOMA [161], and CARMA [71, 288].

2.2.3 Modelling Abstractions

Whilst the huge variety of models and modelling formalisms for biological systems can
appear somewhat of a jungle [278], we can discern a few distinct core modelling abstractions
to make sense of the overall landscape:

• Regev’s original π-calculus models advocated the “process as a molecule” approach,
which was furthered by Stochastic π’s use of individual-based stochastic simulation.

• PEPA [92] and Bio-PEPA [126] models use a “process as a species” or reagent-centric
abstraction where processes represent the characteristic individual of a chemical
species.

• Rule-based languages such as Kappa can be said to take a “processes as molecular
structure” approach and leave dynamics to the rules.

• Spatial languages such as BioAmbients and the Brane Calculus use a “ambient as
cell” or more generally “ambient as compartment” abstraction.
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Whilst other languages and models have proposed alternative2 abstractions including:

• Duchier and Kuttler proposed an object-oriented abstraction of “concurrent objects
as molecules” [154] which is developed in SPiCo [229].

• The Gene Gate model uses a “process as a regulatory interaction” abstraction
to give a compositional encoding of Gene Regulatory Networks in the Stochastic
π-calculus [52].

• In [92] an alternative “process as a subpathway” or pathway-centric abstraction is
used for modelling biochemical signalling pathways in PEPA; this model is shown
to be bisimilar to a reagent-centric model of the same system.

• In β-binders [304] and BlenX [145], boxes represent the external communication
interfaces of molecules at typed sites, whilst π-processes govern their internal be-
haviour.

• Attribute-based languages such as Attributed π [215] and the Beacon Calculus [57]
use an “attributes as molecular state” abstraction.

• sCCP [61] uses a “variables as species concentrations” abstraction, combined with
a “processes as interactions” encoding of population dynamics via concurrent con-
straints, whilst [210, Section 4.2.2] shows how this style of population-based mod-
elling can be replicated in Imperative π via reaction constraints.

• BlenXT [121] uses a “reactions as transactions” abstraction to model general reac-
tions as transactions atomically combining multiple binary interactions.

We can also make a broad distinction dating back to CCS and CSP between languages
such as the π-calculus and its variants which use binary communication based on names
and conames and languages such as PEPA and its descendants which use multiway
synchronisation coordinated on synchronisation sets.

The bond-calculus fits in between many of these classes. It uses a form of symmetric
multiway synchronisation which is capable of internal mobility of names in the style of the
πI-calculus [322] and of modelling general multiway interactions similarly to PEPA and
Bio-PEPA. This is driven by affinity patterns, which, like the rules of rule-based languages,
determine the valid patterns of interaction between processes and their quantitative rates
by pattern matching. However, the results of each reaction are determined by the processes

2This distinction depending on the vantage point of the beholder.
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themselves, retaining an agent-based style similar to the π-calculus. This is also influenced
by the use of affinity in Continuous π [234] and BlenX [145], however, we generalise the
notion of affinity from binary mass action reactions to multiway interactions with general
kinetic laws3 and our use of pattern matching captures context-dependent affinities.

2.2.3.1 Openness and Contexts

Traditionally, mathematical models such as ODEs and Chemical Reaction Networks de-
scribe biological systems as closed systems where all of the where all of the reactants in the
system are explicitly modelled. The use of process algebra models substantially improves
upon this by enabling compositional modelling whereby the behaviour of an overall system
can be derived from models of smaller components. For example, in a π-calculus model
new reactants can be added to the system, leading both to new reactions with existing
reactants, and to the dynamic generation of new species due to dynamic complexation.
The bond-calculus takes this further, permitting the following forms of openness within a
model:

• Open Multiway Interactions The bond-calculus allows interactions involving a
combination of different sites to gradually build up to an overall reaction until a
complete affinity pattern is reached, and for the overall reaction rate to change in
a nonlinear manner when new concurrent components provide additional reactants
at any of these sites. Thus the bond-calculus models open interactions in the sense
of [54].

• Open Affinity In the bond-calculus the reactions in a given mixture of processes
are determined by the affinity of sites and are not fixed, since putting the mixture in
parallel composition with a new affinity network may lead to additional interactions
between existing species.

These features are supported by the compositional semantics of the bond-calculus which
is compositional in both the species in a mixture and the patterns in an affinity network.
This extends to the dynamic continuous semantics of models allowing new reactions and
ODEs to be computed incrementally as new components and affinity patterns are added
to the system. These features are crucial to the use of the bond-calculus with a spatial
logic since the context operator C ▷φ relies on the ability to reinterpret a model in a new

3Whilst BlenX does support functional reaction rate laws, these rates are dependent on global species
concentrations [145], whereas the bond-calculus calculates reaction rates compositionally based on the
concentrations of the sites matched by an affinity pattern.
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context by composing it with a process representing its broader environment or contexts.
Whereas for the Continuous π-calculus these contexts could only add new reactants to
the system, for the bond-calculus they can also complete unfinished multiway interactions
and add new reaction rules to the system, substantially increasing the scope of contextual
properties.

2.3 Temporal and Spatial Logics

In this section we introduce Temporal and Spatial Logics and their roles in specifying and
verifying behavioural properties of systems.

2.3.1 Linear and Branching Temporal Logics for Discrete Systems

The logical treatment of time dates back to ancient philosophy with Aristotle and his
medieval commentators’ considerations of contingency and necessity [282], however, the
start of formal modal temporal logic comes with Prior’s Tense Logic [306] which uses modal
temporal operators Future / Eventually Fφ (it will be the case that φ holds) and Globally
/ Always Gφ (it will always be the case that φ holds) as well as their time reversed duals
Past Pφ and Historically Hφ. Temporal logic has since come to wide spread prominence
in formal verification with the introduction of verification techniques based on temporal
sequencing of system states and events [84]. This approach was formalised by Pnueli’s
seminal Linear Temporal Logic (LTL) [170, 300], which adapted a variant of Tense Logic
to traces of events in a computer system. The syntax of LTL is given by the grammar,

φ, ψ ::= ρ | φ ∧ ψ | ¬φ | X φ | φ U ψ

where the atomic propositions ρ of the logic consist of events of the system. Here the
neXt operator Xφ asserts that φ will hold at the next discrete time instant, whilst the
temporal Until operator φ U ψ states that φ holds until some time instant at which ψ

holds. The until operator [219] can be considered a generalization of the F operator which
may be encoded as F φ ≡ T U φ, whilst G can also be encoded as the De Morgan dual
G φ ≡ ¬ F ¬φ of F . This application of temporal logic has played a wide ranging and
effective role in formal verification since future temporal modalities correspond with the
main classes of verification problems, with G capturing safety properties of systems (things
which must always be the case) and F capturing liveness properties (things which must
eventually happen).
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2.3.1.1 Branching and Metric Time

Linear Temporal Logic is based on a discrete linear model of time which, given the state
of the system at one time instant, admits only one possible successor state at the next
time instant. However, there is an alternative branching model of time in which each state
leads to multiple possible futures, as first noted in Kripke’s 1958 letters to Prior [299]
which suggested a tree-structured notion of time was necessary to capture indeterminacy.
This approach became central to the verification of nondeterministic computer systems
with the introduction of the Computational Tree Logic (CTL) [129], which extends LTL
with a branching model of time and adds path quantifiers Aφ (φ holds on All paths) and
Eφ (there Exists a path on which φ holds). The other main limitation of LTL and CTL is
their discrete model of time, ignoring real-time aspects of systems such as punctuality. The
Metric Interval Temporal Logic (MITL) [8] uses variants of the LTL temporal operators
bounded by intervals I = [a, b], so that, F[a,b] φ states that φ should hold within at some
point within a and b time units in the future, whilst, G[a,b] φ states that φ should hold at
every point within a and b time units in the future.

2.3.1.2 Model Checking

Much of the power of temporal logics in verification of discrete finite state systems has
come from their synergistic relationship to model-checking techniques which evaluate the
truth of formulae based on a model of all possible state transitions in the system (a Kripke
structure [225] in the case of finite state systems). Model checking was introduced with
CTL in [129] and independently in [308]. A major challenge which model checking must
overcome is the “state space explosion” problem wherein the number of states grows
exponentially with the number of system components. This motivated the introduction of
symbolic model checking which uses symbolic representations of system states to drastically
increase the scalability of model checking [83, 262]. For stochastic systems there has been
widespread interest in the probabilistic model-checking problem [238] of determining
whether a system satisfies a property φ with a probability greater than a given threshold.
This has led to mature probabilistic model checkers such as PRISM [231] which has been
applied to modelling checking behaviours of signalling pathways in [93].

2.3.1.3 Modelling Checking and Biological Modelling Languages

A number of process algebraic and rule-based frameworks have coupled biological modelling
languages with model-checking techniques to automatically verify temporal properties of
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biological systems. BIOCHAM [107] provides an integrated environment for analysing
temporal logic properties of rule-based models, enabling model checking of CTL properties
by applying the NuSMV model checker [114] to its non-deterministic discrete semantics
and model checking of LTL(R) properties (which combine quantitative state constraints
with LTL temporal operators) over numerical traces produces via its continuous ODE
semantics [158]. Bio-PEPA supports a translation to PRISM models [126], making it
possible to apply probabilistic model checking to verify probabilistic properties of a
model’s behaviour.

Some of this work has focused on handling uncertainty. Fages and Rizk [157] proposed
techniques for temporal logic constraint solving over BIOCHAM models to find model
parameters consistent a given temporal property. The u-Check tool [63] implements
a number of Gaussian Process based techniques for the analysis of uncertain systems
and supports Bio-PEPA models as an input format. The Three-Valued Spatio-Temporal
Logic (TSTL) [249] is a spatio-temporal logic for properties of stochastic spatial systems
modelled in the MELA [355] process algebra, which uses a three-valued semantics to
handle stochastic uncertainty based on confidence intervals.

2.3.2 Signal Temporal Logic

Signal Temporal Logic (STL) [253] provides an effective specification languages for tempo-
ral behaviour over continuous real time domains. STL-based logics have emerged as a com-
mon language for specifying and monitoring quantitative systems, be they electronic [279],
biological [30], and cyber-physical [32] in nature. The logic combines assertions, such as
[X] > 3 or [X]2 + 3 [Y ]2 > 2, over the state variables of a model with MITL-style interval
temporal operators which specify at which time points these assertions are expected to
occur. That is, the logic includes as atomic propositions inequalities ρ ≜ f(x) > 0 over
the system state variables x = ([X1] , . . . , [Xn])4, whilst the complex propositions of the
logic follow the grammar,

φ, ψ ::= ρ | φ ∧ ψ | φ ∨ ψ | φ ⇒ ψ | ¬φ | FI φ | GI φ | φ UI ψ

where I ∈ IR is a real interval. Unless otherwise indicated we will usually assume that
the functions f are polynomials and that the time intervals I are bounded.

The semantics of the logic is specified by defining when a property φ is satisfied by
a system trajectory x : T → Rn, defined over a time interval T ⊆ R≥0, at each time

4We note this encompasses more general forms of inequalities f(x) > g(x).
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instant t ∈ T , denoted (x, t) |= φ or in shorthand x |=t φ. Then the semantics of atomic
propositions is given by

x |=t f > 0 iff f(x(t)) > 0

whilst the semantics of logical operators is defined by

x |=t φ ∧ ψ iff x |=t φ and x |=t ψ

x |=t ¬φ iff x ̸|=t φ

and the semantics of the until operator is defined by

x |=t φ UI ψ iff


for all s ∈ I,

( x |=t+s ψ and

for all s′ ∈ [t, t+ s′], x |=s′ φ )

The semantics for the other logical operators are defined by the standard equivalences
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ) and φ ⇒ ψ ≡ ¬φ ∨ ψ whilst the semantics for the other temporal
operators is defined in terms of UI based on the standard equivalences FI φ ≡ T UI φ
and GI φ ≡ ¬ FI ¬φ.

STL is often combined with numerical methods to provide approximate verification
of properties based on Boolean signals monitoring [253]. For each atomic proposition
ρ ≜ f(x) > 0, an approximate numerical trajectory xa : T → Rn of a system over a
time interval T ∈ IR≥0 can be used to give a Boolean signal s : T → B for ρ based
on the changes of sign of the function f(xa(t)) (in fact, a numerical method with real-
root detection may be used to precisely pinpoint these roots [253]). The Boolean signal
monitoring algorithm of [253] then combines Boolean signals for each atomic proposition
in order to compositionally compute signals for complex propositions.

2.3.3 Space and Contexts

Whilst temporal logics provide an effective way to specify the behaviour of systems over
time, much of this behaviour cannot be understood without considering spatial aspects
of a system such as spatial variability in state or a system’s interactions with its wider
surroundings or context. This has motivated the development of frameworks such as
spatial logics to describe spatial aspects of a system’s state, and of spatio-temporal logics to
describe the evolution of this state over time. The abstract nature of these frameworks has
allowed their development to take place across a number of different areas targeting diverse
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applications including biochemical modelling, ecology, concurrent communication, program
verification, security, artificial intelligence, robotics, and cyber-physical systems. We will
now survey some of the most relevant works in the field starting with those logics which are
explicitly aimed at modelling agents in physical space (of various degrees of abstraction)
and those closer to our interests in applying spatial abstractions in more abstract spaces
(i.e. the compositional structure of concurrent processes or the concentration space of a
population model).

2.3.3.1 Physical Space

Spatial logics make it possible to express properties about the spatial structure of systems
based on models and abstractions of the physical spaces in which they reside. One such
spatial abstraction, quad-trees [162], represents discrete or continuous 2D space in an effi-
cient hierarchical manner as a tree of successively subdivided regions. This representation
is used in the Linear Spatial-Superposition Logic (LSSL) [184], which uses spatial ana-
logues of the LTL operators neXt, Until, and Release to specify spatial patterns as lattices
of excitable cells as path properties of a quad-tree representation of their spatial structure.
The Tree Spatial-Superposition Logic (TSSL) [31] adopts a similar approach but possesses
path quantified operators similarly to the CTL [129] and uses a branching interpretation of
quad-trees to express a wide variety of spatial patterns in reaction diffusion networks [349].
The Spatial Logic for Closure Spaces (SLCS) [113] takes a topological view, using closure
spaces as a spatial abstraction which extends to discrete spatial structures such as graphs,
whilst its spatial Until operator (Surrounded) and spatial neXt operator (Near) make it
possible to express topological properties such as boundaries and interiors. An extensive
earlier body of work used spatial logics for representing and reasoning with qualitative
knowledge about space, including the logic RCC-8 [309] which expresses interconnectivity
of spatial regions and can be encoded in the modal logic S4. Such topological approaches
draw upon a deep connection between modal logics and topology as covered in [43].

Spatial properties are most interesting in systems whose state changes over time and
consequently many spatio-temporal logics have emerged which combine spatial operators
with temporal operators in order to express the properties of the overall spatio-temporal
behaviour of a system. The SpaTeL [188] logic combines the spatial operators of TSSL
with STL temporal operators and applies statistical model checking over time sequences
of quad-trees. This has been applied to verify the dynamic evolution of reaction diffusion
patterns and power usage in smart neighbourhood grids [188] and for multi-agent motion
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planning in a 2D environment via a Mixed Integer Linear Programming (MILP) encod-
ing [245]. The Signal Spatio-Temporal Logic (SSTL) [65] also uses STL temporal operators
but employs a bounded surround operator and bounded somewhere operator which are
able to express topological and metric properties. Its implementation has focused of dis-
crete weighted-graph structured population models supporting either stochastic simulation
or a continuous fluid approximation of concentrations; this has been applied to pattern
formation and bike sharing systems [277]. In [319] a form of discretization is used to apply
SSTL to continuous particle-based simulations. On the other hand the STLCS logic [113]
combines the spatial operators of SLCS with the temporal operators of CTL to give a
spatio-temporal logic interpreted over a discrete time sequence of “snapshots” of a closure
space. ImgQL [82] extends STLCS with distance operators to specify metric properties
and has been applied to analysis of medical imagery. The Spatio-Temporal Reach and Es-
cape Logic (STREL) generalises SSTL with spatial reach and escape operators which are
able to capture topological and metric properties of systems with dynamically changing
spatial structures. In [244] GSTL, a graph-based extension of STL with operators for par-
ent and sibling relationships between nodes, is applied to robot motion planning. There
have also been a number of spatio-temporal logics based on RCC-8 [361] and S4 [171, 239,
339].

Other logics have combined temporal logic with assertions over symbolic system vari-
ables as a means of reasoning about space. The temporal logic S-STL (Spatial Signal
Temporal Logic) [287] combines STL operators with quantified inequalities over the vari-
ables of a system of PDEs and is able to verify spatio-temporal properties of continuous
systems based on finite element methods. In [326] an interval spatio-temporal logic for
the motion of shapes in multi-dimensional space is introduced based on an extension of
the duration calculus to the spatial variables of a system. The Differential Dynamic Logic
(dL) [295] is able to express a wide variety of properties of cyber-physical systems in a
dynamic logic including Hybrid Programs which often include spatial variables. Quantified
Differential Dynamical Logic (QdL) [296] expands this logic with location quantifiers to
explicitly model distributed hybrid systems.

2.3.3.2 Space and Contexts in Concurrency

There is an alternative tradition of spatial logics for concurrency in which the notion of
space does not correspond directly to the locations of objects in the physical world but
to the composition of components in a concurrent system. This tradition was pioneered
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with the ambient logic of [103] which originally served as a logic for reasoning about the
hierarchical locations in the Ambient Calculus. This approach has subsequently been
applied more generally to the composition structure of many process calculi [87–89], rea-
soning about data structures such as trees [102], graphs [101], and heaps [313], and also to
expressing properties of Brane Calculus models of biological membranes [264]. Ambient
Logic includes a spatial composition operator φ |ψ, asserting a process can be decomposed
as a parallel composition of a process satisfying φ and a process satisfying φ, its logical
adjoint, the guarantee operator5 ψ ▷φ specifying that a process satisfies φ when composed
with a processes satisfying ψ. The logic also features standard logical operators, a tempo-
ral eventually operator, and a range of operators for reasoning about fresh names in the
style of nominal logic [293]. The full logic turns out to be very penetrating, being able to
discriminate processes essentially up to structural congruence6 [323], revealing intensional
information about the structure of agents whereas process logics such as Hennessy-Milner
Logic [191] discriminate agents extensionally up to their externally observable communica-
tions (bisimilarity). Whilst a number of authors have proposed model-checking algorithms
for different fragments of these logics [90, 103], interactions between the different operators
of the logic frequently prove too difficult to handle with the guarantee operator ψ ▷φ
often leading to undecidability [17, 86, 108]. Spatial logics have also been investigated for
quantitative systems with Rounds [318] proposing a spatial logic for concurrent hybrid
systems modelled in the Φ-calculus [317], whilst Larsen, Mardare, and Xue [236] proposed
the spatial logic Concurrent Weighted Logic (CWL) for reasoning about weighted labelled
transition systems.

Various related spatial logics have fruitful applications in other settings, using weaker
spatial operators to enable automated verification. In [255] a decidable extension of
Hennessy-Milner Logic with a spatial composition operator is presented. The spatial
composition and guarantee operators correspond respectively to the bunched conjunction
∗ and implication −∗ operations of bunched logics [131] for reasoning about availability of
resources, whilst [307] applies this in the MBI spatial logic for reasoning about resource
dependent processes in the SCRP process algebra. MoMo [139] is a modal logic for
reasoning about mobile tuple-passing agents in the Klaim language [138], which features
guarantee-like production and consumption operators which specify the behaviour of a
system after producing or consuming a given resource. MoSL+ [140] is a stochastic logic
which features MoMo-style resource operators and supports stochastic model checking.

5Also referred to as spatial implication.
6Precisely, the equivalence relation =L defined by logic is structural congruence + η-equivalence.
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SoSL [141] is a stochastic logic for service-oriented systems in a similar vein, which also
features a open-ended reactivity operator which models the reaction of an open-ended
system to an external stimulus. Rather differently, in [328] it is shown that the migration
of the Physarum slime mould can be viewed as a naturally occurring non-modal spatial
logic, offering a spatial logic approach to natural computation.

2.3.3.3 Connections

There are natural connections between the two notions of space we have discussed in this
section. The hierarchical notion of space present in the ambient calculus is within the scope
of the topological framework of closure spaces over which SLCS is defined, as attested
by applications of ambient logic variants to trees [102] and graphs [101]. In Chapter 8
of this thesis we will explore another connection, applying a form of subdivision-based
spatio-temporal monitoring to model checking context operators.

2.3.4 Logic of Behaviour in Context

The Logic of Behaviour in Context (LBC) is a spatio-temporal logic for biological systems
modelled in the Continuous π-calculus. It combines the temporal operators of STL, inter-
preted over the concentrations of agents, with a spatial context operator Π ▷φ which is
based on the guarantee operator of Ambient logic but provides a concrete context process
Π which consists of a Continuous π process modelling an environment into which the
process is placed. The formal syntax of LBC is defined by

φ, ψ ::= ρ | φ ∧ ψ | φ ∨ ψ | φ ⇒ ψ | ¬φ | φFI ψ | φGI ψ | φ UI ψ | Π ▷φ

where I = [a, b] is a time interval, ρ is an inequality over species concentrations [X1], . . . , [Xn],
and Π is a Continuous π process. Banks and Stark developed model-checking techniques
for LBC based first on monitoring properties over discrete numerical traces [19] and
then based on continuous signal monitoring [23]. The combination of Continuous π and
LBC offers an in silico workbench for modelling spatio-temporal experiments which use
context operators to introduce new reactants to systems and verify temporal properties
of a system’s response to these external stimuli. This approach has been applied to a
post-translational oscillator [217] to characterise biologically relevant properties such as
oscillation, coupling, and phase response [22].

The focus of LBC on approximate monitoring over numerical simulation traces brings
some limitations. The continuous ODE interpretation of models assumes complete knowl-
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edge of the system being modelled and that their behaviour is deterministic. The form of
contextual information which may be expressed is also significantly restricted compared to
Ambient Logic, given the restriction of the left-hand side of the guarantee operator from a
logical formula to a concrete context process. However, some important non-determinism
is still present in the logic due to the combination of interval temporal operators with
context operators. For example, the property

G[a,b] (Π ▷φ)

specifies that the property should hold if the context process Π is introduced at any point
between a and b time units in the future. This allows the logic to express interesting
properties such as robustness of a system to the timings of its interactions with its envi-
ronment and oscillations whilst it still assumes complete knowledge of that environment
once it is introduced. This temporal non-determinism accounts for most of the complexity
of monitoring LBC since, whereas STL properties can be monitored based on a single
execution of a system, LBC monitoring requires monitoring multiple executions of the
systems covering each time instant at which the context could be introduced, and nesting
of context operators entails an exponential increase in the amount of execution and mon-
itoring required. We also note that, due to the form of Continuous π processes, contexts
are restricted to adding new reactants to the system and cannot reconfigure the reaction
rules of the system.

In [23] an alternative method of LBC verification was proposed using sensitivity analy-
sis [151] to extend numerical trajectories to cover multiple potential context introduction
times. For LBUC verification we must handle many additional sources of uncertainty
including uncertain initial conditions, uncertain rate parameters, and uncertain contexts.
These challenges motivate us to develop new verification methods throughout this thesis,
using verified monitoring over Flow* flowpipes [110] to achieve sound LBUC verification
under uncertainty.

2.4 Formal Verification of Continuous Systems under Un-
certainty

Consider the class of continuous system defined by initial value problems,

dx
dt = f(x); x(0) = x0
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consisting of a system of coupled differential equations defined via Lipschitz continuous
function f and an initial value constraint x(0) = x0. More generally, we can consider hybrid
systems which combine the continuous evolution of the system with discrete jumps in state
or dynamics and may be represented as Hybrid Automata [9]. For both of these classes of
systems it can be very challenging to analyse and verify behavioural properties since we
do not have explicit solutions for system trajectories making it difficult to automatically
reason about the system’s temporal evolution.

Traditional numerical methods compute numerical solutions (xi)i for the system at a
sampling of time points ti ∈ [0, T ] over a finite time duration T . Whilst numerical methods
have proved tremendously powerful in giving fast and reasonably reliable approximations
to the solutions of systems, they bring with them two main drawbacks. Firstly, as approx-
imate solutions they can produce erroneous answers due to either a numerical method’s
discretization of the continuous time domain of the system or the imprecision of the
floating point numbers used in calculations, and moreover, they do not track the degree
of uncertainty in the answers they provide. Whilst these sources of uncertainty are often
small enough to ignore, this can make for a shaky foundation for a logical formalism, and
furthermore, they can cause real problems in chaotic systems where small uncertainties
can compound throughout the temporal evolution of the system. More fundamentally,
they do not provide a way of representing or handling any of the manifold sources of
uncertainty which go into modelling a real physical or biological system. These include
both imprecision resulting from our limited ability to perfectly measure the parameters of
a real system as well as fundamental uncertainties arising from genuine variability within
the behaviours and environments of the many possible instances of real systems which a
single model abstracts.

It is unclear how best to extend numerical methods to uncertain continuous and
hybrid systems since we must quantify over uncountably many trajectories a system which
may arise under different choices of uncertain inputs and parameters. In this section we
introduce some methods for continuous systems verification under uncertainty, leading
up to Taylor models and the Flow* verified integrator on which the verification methods
of this thesis are based.

2.4.1 Uncertain Systems

Before we begin discussing verification methods we must first introduce the classes of
systems we are interested in by extending the definition of continuous systems to consider
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non-deterministic systems which are under the influence of different types of uncertainty.
The first type we consider is uncertain initial conditions:

Definition 2.4.1. An (autonomous) Initial Value Problem with uncertain initial condi-
tions

dx
dt = f(x); x(0) ∈ X0

consists of a system of ODEs and an initial value constraint x(0) ∈ X0 given a set X0 of
possible initial values.

These consider the behaviour of the system under the complete range of uncertain initial
values x0 ∈ X0; the trajectories of the system consist of all trajectories xx0 : [0, T ] → Rn

for concrete system instances dx
dt = f(x); x(0) = x0 for some x0 ∈ X0.

We are also interested in parametric systems whose dynamics depend upon time-
invariant uncertain parameters.

Definition 2.4.2. An (autonomous) Initial Value Problem with uncertain parameters

dx
dt = f(x,θ); x(0) ∈ X0; θ ∈ Θ

consists of a system of ODEs, a set initial value constraint x(0) ∈ X0, and a parameter
constraint θ ∈ Θ given a set Θ ⊆ Rm of possible parameter values.

The trajectories of the system consist of all trajectories xx0,θ0 : [0, T ] → Rn for concrete
system instances dx

dt = f(x,θ0); x(0) = x0 for some x0 ∈ X0 and some θ0 ∈ Θ.
We are also interested in the harder class of systems with time-varying uncertain

inputs.

Definition 2.4.3. An (autonomous) initial value problem with uncertain inputs

dx
dt = f(x,u(t)); x(0) ∈ X0; ∀t,u(t) ∈ Θ

consists of a system of ODEs under a set initial value constraint x(0) ∈ X0 and an unknown
input function u : [0, T ] → Rm which is assumed to be continuously differentiable and
satisfy the input condition u(t) ∈ Θ for all t ∈ [0, T ].

The trajectories of the system consist of all trajectories xx0,u : [0, T ] → Rn for concrete
system instances, dx

dt = f(x,u(t)); x(0) = x0 for some x0 ∈ X0 and some valid input func-
tion u. Time-invariant parametric systems can be seen as a special case of Definition 2.4.3
where the unknown input function u is assumed to be a constant function.
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Similarly to our discussion of stochastic and continuous process algebras, these classes
of uncertain continuous systems can also be related to corresponding classes of uncertain
stochastic systems by appropriate fluid approximation results [62]. This suggests the
relevance of these classes of systems to analysing stochastic models [348], although this
extension is outside of the scope of this thesis.

Some key problems for uncertain systems analysis include:

• Reachability analysis: Find or over-approximate the set of system states covered by
all possible trajectories.

• Reach-avoidance analysis: Prove no trajectories of a given system intersect with a
given set B of “bad states”. This is equivalent to the bounded-time safety property
G[0,T ](x /∈ B).

• Temporal logic model checking: Prove all trajectories of a system satisfy a temporal
logic property φ.

• Parameter synthesis: Find a subset Σ ⊆ Θ of parameters for which the system
satisfies φ.

There are long recognised connections between these problems, which will be relevant
throughout this section. Reachability analysis is frequently used as a means of verifying
reach avoidance properties, and both are frequently referred to collectively as reachability
analysis. Both problems form an subset of Temporal Logic model checking, which itself
can be seen as a special case of parameter synthesis.

Beyond continuous systems, there has also been significant interest in hybrid systems
verification. The base systems we will consider in this thesis are continuous since a hybrid
semantics is beyond the current scope of the bond-calculus, however, LBUC properties
describe the response of a system to discrete jumps induced by context operators, which
can be seen as a logical counterpart of mode changes in a non-deterministic hybrid
system. As such our approach is influenced both by methods for nonlinear continuous
systems verification and by methods for hybrid system verification. We will also restrict
our attention to systems with interval uncertain initial values X0 ∈ IRn and interval
uncertain parameters Θ ∈ IRm.

2.4.2 Verification Methodologies

We will start by briefly introducing some of the main methodologies for systems verification
under uncertainty.
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2.4.2.1 Trajectory Sampling and Falsification

Whilst it is impossible to separately and precisely compute all of the uncountably many
trajectories of a continuous or hybrid system, trajectory sampling methods attempt to
compute enough numerical trajectories of a system to give sufficient coverage of its overall
behaviour. Donzé and Maler proposed to compute trajectories for a sample of initial
conditions to the system and to use sensitivity analysis to measure the sensitivity of
trajectories to initial conditions making it possible to expand trajectories to tubes covering
all possible initial conditions [151]; this method gives precise results for affine systems and
approximate error bounds for general nonlinear systems. In [149] this is applied to the
parameter synthesis problem of identifying regions of parameter space avoiding a given
region of system’s phase space. This method is extended by C2E2 which uses a precise
symbolic representation based on discrepancy functions to perform exact reachability
analysis of hybrid systems [155].

An alternative approach is given by continuous quantitative semantics for temporal
logics introduced by Rizk et al. [314] and by Fainekos and Pappas [160]. The semantics
of Rizk et al. [314] quantifies strongly a proposition is violated based on a metric on
propositions whereas the semantics of Fainekos and Pappas [160] gives a signed measure
of how strongly a proposition is satisfied or violated based on a metric on trajectories.
Both of these measures of robustness increases our confidence in the robustness of results
to modelling uncertainties or simulation errors. The continuity of these measures also
offers a method of dealing with uncertain parameters and initial conditions by allowing us
to explore a property’s landscape of satisfaction over the parameter space. This leads to
methods of temporal logic falsification such as [3, 12, 148, 314] which turn the verification
problem on its head by applying optimization methods to search for trajectories which
violate a property. Later techniques have also extended the approach of Fainekos and
Pappas to monitor quantitative intervals of satisfaction, including [146] focusing on online
monitoring (uncertainty about the future) and [206] and [363] both focusing on robustness
to model and simulation uncertainties.

2.4.2.2 Topological Dynamics, Formal Proof, and Constraint Solving

An alternative approach to analysing continuous systems under uncertainty is to shift
the focus of our verification efforts from local analysis of trajectories to global analysis
of systems dynamics. This includes the mathematical disciplines of dynamical systems
theory and topological dynamics for which a standard reference is [337], however, the
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application of these techniques has traditionally required manual reasoning and proof.
RoVerGeNe [33] attempts to automate global analysis under uncertainty for piecewise
multi-affine system models of gene regulatory networks by applying LTL model checking
to discrete abstractions of their dynamics; this also enables parameter synthesis via a
hierarchical search of the parameter space. This approach has seen many subsequent
developments including the Pythia tool [38], which combines a more expressive HUCTLP

logic [37] with parallel semi-symbolic model-checking techniques [77], and in the Hiden-
tify tool [58] which applies the SpaceEx model checker to a quantitative Linear Hybrid
Automata abstraction of system dynamics.

Other work has tried to more directly generalize mathematical reasoning about topo-
logical dynamics through formal logic and theorem proving. The Differential Dynamic
Logic (dL) [295] employs an encoding of hybrid systems in a dynamic logic with an associ-
ated proof system; this forms the core of the KeYmaeraX [169] interactive theorem prover
for hybrid systems verification. The Differential Temporal Dynamic Logics dTL [294] and
dTL2 [209] combine Differential Dynamical Logic with LTL temporal operators, whilst,
STdL [4] is a recent dynamic logic for reasoning about a subset of STL properties. A
similar proof-based approach applies the Hybrid Hoare Logic to verification of hybrid
concurrent systems in the Hybrid CSP (HCSP) process calculus [243]. These approaches
still require user involvement in proof construction, however, it is often able to automate
proof steps using continuous and differential invariants. Over recent years a collection of
increasingly powerful automated continuous invariant generation techniques have emerged
including the decision procedure of Liu, Zhan, and Zhao [242] and the combination of meth-
ods implemented by [334]. More automatically still, Satisfiability Modulo Theory (SMT)
solvers use a constraint solving based approach to handling uncertainty and perform
parameter synthesis. The dReach hybrid systems verification tool uses the dReal SMT
solver [175] to perform δ-complete safety verification, either returning safe if a safety
property is robustly satisfied, or δ-unsafe if the system is within a δ-bounded perturba-
tion of unsafety. Bae and Lee [18] recently introduced an approach to STL verification
which translates properties into SMT problems which can be verified by Z3 [137] for linear
systems or by dReal for nonlinear systems. Piazza et al. [292] developed earlier methods
for exact temporal logic verification for TCTL properties of semi-algebraic hybrid systems
based on real quantifier elimination [338].

49



2.4.2.3 Flowpipe Computation via State Abstractions

There is a long tradition of state-abstraction based methods which track the local evo-
lution of the system similarly to numerical methods but, instead of using floating point
numbers to compute a single system trajectory, carry out computations with computable
representations of sets of states in order to quantify over all possible behaviours at every
step of its evolution. This form of set-based reachability analysis produces a flowpipe
X1, . . . , Xn consisting of a sequence of representations Xi of sets of states which enclose
every system trajectory x so that x(t) ∈ Xi for every t ∈ [ti, ti+1]. These flowpipes en-
close all possible states of the system and so may be applied directly to reach-avoidance
problems; the reach-avoidance property G[0,T ](x /∈ B), is equivalent to verifying the set
property B ∩ (X1 ∪ . . . ∪Xn) = ∅. The effectiveness of these methods relies on a form of
state representation which is closed under a suitable range of mathematical operations,
which permits efficient computations, and which is able to accurately track the evolution
of a system’s continuous dynamics.

This approach was pioneered by the HyTech [193] tool which uses a polyhedral state
abstraction to calculate exact flowpipes for linear hybrid systems. A related approach is
used by timed automata analysis tools such as UPPAAL [39] and KRONOS [72] which use
representations such as Difference Bounded Matrices [147] for zones tracking the range of
clock variables. In order to extend the applicability of hybrid reachability analysis, subse-
quent tools moved from exact reachability computation to over-approximate reachability
computation which is tractably scalable to larger systems and more complex continuous
dynamics; this approach was initially pursued by tools such as d

dt [14], PHAVer [167], and
CheckMate [112]. A substantial leap forward for reachability analysis of linear systems
came with the use of a lazy state representation based on Zonotopes (affine transfor-
mations of boxes) [182] and support functions [237] which act as a symbolic remainder
representation. This approach allows linear reachability analysis to scale to systems with
hundreds of variables and is implemented in the SpaceEx tool [168] .

These methods have traditionally focused on linear continuous hybrid systems, and
as such they use convex reachset representations which are ill-suited to track the flows
of nonlinear systems without significant over-approximation. This over-approximation
problem is amplified by the wrapping effect [247, 271] which causes over-approximation
errors to compound throughout the dynamical evolution of a system. A major focus
of recent research has been expanding reachability analysis to nonlinear systems. One
approach is hybridization [192] which employs linear hybrid abstractions of nonlinear
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continuous and hybrid systems which make it possible to apply linear reachability analysis
whilst bounding the abstraction error via locality; this approach is employed by CORA [7],
which implements a range of state representations and reachability methods as a MATLAB
toolbox.

There is an alternative tradition of interval numerical methods [271], which extend
traditional numerical methods to achieve sound over-approximations of system trajectories
via interval arithmetic. This approach has been applied to hybrid systems verification by
HyperTech which employs interval numerical methods to computing reachable sets [194].
However, plain interval arithmetic struggles to handle large uncertain intervals and com-
plex continuous dynamics due to the dependency problem and the wrapping problem, both
of which cause interval approximations (which can be seen as rectangular state abstrac-
tions) to blow up over time. These challenges motivated the introduction of symbolic
interval methods such as Taylor models [45] which are able to directly represent non-
convex sets of states. Implementations of Taylor models for continuous systems include
COSY INFINITY [46] and CAPD::DynSys [220], whilst VNODES-LP [275] implements
related interval Taylor series methods. Flow* [110] combines Taylor models with a number
of other set-based methods to provide a leading reachability analysis tool for continuous
and hybrid systems which is able to effectively handle large initial sets and complex
nonlinear dynamics.

Most reachability methods have also been limited to bounded-time reachability, how-
ever, recent methods have proposed unbounded state abstractions [59, 60] or the combina-
tion of reachability analysis with continuous invariants [333] to perform unbounded-time
reachability analysis.

2.4.3 Taylor models

We now introduce Taylor model arithmetic as a symbolic extension of interval arithmetic to
tackle the dependency problem. Useful references include [45], [276], and [109, Chapter 2].

Definition 2.4.4. A kth-order Taylor model with domain D = (D1, . . . , Dm) ∈ IRm is
a pair (p, I) consisting of an kth-order m-variable polynomial p ∈ Rn[x] ranging over
variables xj with respective domains Dj and an remainder interval I.

More generally, we may define Taylor model vectors which represent n-dimensional vectors
of Taylor models.

Definition 2.4.5. A kth-order Taylor model vector with domain D = (D1, . . . , Dm) ∈ IRm

is a pair (p, I) consisting of an n-dimensional vector p of kth-order m-variable polynomials
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pj ∈ Rn[x] ranging over variables xj with respective domains Dj and an n-dimensional
remainder interval I.

Taylor models may be seen as 1-dimensional Taylor model vectors. Throughout this thesis
we will work almost exclusively with Taylor model vectors in order to handle n-dimensional
systems and henceforth we will refer to Taylor model vectors simply as Taylor models.

A Taylor model may then be treated as an interval function

(p, I) : D → IRn : y 7→ p(y) + I.

We then say that (p, I) is a Taylor model for a real function f : D → Rn if (p, I) is
an interval extension of f , or equivalently, if f(y) ∈ p(y) + I for all y ∈ D. Thus, a
Taylor model may be used either to over-approximate a function on its domain or to
over-approximate a single set via its range p(D) + I.

Example 2.4.6 (Zonotopes as Taylor models). A key class of set representations used
in linear reachability analysis are Zonotopes, which consist of affine transformations of
the unit interval [−1, 1]n [182]. Zonotopes correspond exactly with first-order Taylor
models [109, Lemma 2.4.8.], so that, for example, the Zonotope

Z =

3 2
1 4

x
y

+
7
6

 ∣∣∣∣∣∣ x ∈ [−1, 1], y ∈ [−1, 1]


(pictured in Fig. 2.1) can be represented as a Taylor model (p, I) with

p

x
y

 =
3x+ 2y + 7
x+ 4y + 6


remainder I = [0, 0] × [0, 0] and domain D = [−1, 1] × [−1, 1].

Taylor models may be also used to directly represent or over-approximate many other
set representations used in reachability analysis [109].

The precision of the Taylor model over-approximation increases as the order of the
Taylor model increases and as the size of the remainder interval decreases.

Addition of Taylor models may be defined piecewise, so that if f has Taylor model
(pf , If ) and g has Taylor model (pg, Ig) (both of order k with shared domain Df = D = Dg)
then f + g has Taylor model

(pf , If ) + (pg, Ig) = (pf + pg, If + Ig).
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Figure 2.1: The Zonotope Z.

For 1-dimensional Taylor models, we may also define arithmetic operations which
generalize the operations of interval arithmetic. However, for these arithmetic operations
we must truncate higher-order terms into the remainder interval in order to preserve the
order of the Taylor model. For example, where f has Taylor model (pf , If) and g has
Taylor model (pg, Ig), we define a kth-order Taylor model for fg over domain D by

(pf , If )(pg, Ig) = (pfpg − pE, Ifg(D) + f(D)Ig + IfIg + pE(D))

where pE contains all terms from pfpg of order strictly greater than k.
It is then possible to symbolically apply an arbitrary polynomial p in k variables to

a kth-order Taylor model v by substituting each ith dimension of v as the ith variable
of p. This forms the symbolic composition p □ v of v and p and stands in contrast to
the standard functional composition p ◦ v of a Taylor model v with a polynomial p as
interval functions. This extends naturally to the symbolic composition (pg, Ig) □ (pf , If )
and functional composition (pg, Ig) ◦ (pf , If) of two Taylor model (pf , If) and (pg, Ig)
provided that pf(Df) + If ⊆ Dg; both of these composed Taylor model are guaranteed
to be an interval extension for the composition g ◦ f of the underlying functions.

It is further possible to evaluate arbitrary elementary functions over Taylor models
using Taylor series expansions as described in [252]; this forms the basis of the application
of Taylor model methods to non-polynomial systems.

2.4.4 Verified Integration and Flowstar

Given an uncertain continuous system Definition 2.4.1 with a m-dimensional set of ini-
tial conditions given as the range of a lth order Taylor model X0 = (p0, I0) with an
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l-dimensional interval space domain S = D0 ⊆ IRl, Taylor model verified integrators [47]
are able to enclosure all trajectories over a bounded time-horizon [0, T ] in a Taylor model
flowpipe consisting of the Taylor models,

(p1, I1), (p2, I2), . . . , (pn, In)

each of which has domain Dk = Tk × S composed from the interval time domain Tk =
[tk, tk+1] and the space domain S. The overall flowpipe may be treated as an interval
function f : [0, T ] × S → IRm defined by f(t,u) = pk(t,u) + Ik where t ∈ [tk, tk+1].

Beyond forming a flowpipe for the system comprised of the sets defined by the ranges
of each Taylor model, a Taylor model flowpipe in fact gives the more granular guarantee
that

xu(t) ∈ f(t,u)

where xs(t) is any solution to the system satisfying initial condition xu(0) ∈ (p0, I0)(s).
That is, a Taylor model flowpipe represents a functional dependency of the eventual
behaviour of the system on its initial conditions.

Taylor model flowpipe construction has been extended first to uncertain systems with
time-invariant uncertain parameters by Lin and Stadtherr [241] and then to time-varying
uncertain inputs in Flow* [109, 111]. In Flow* these time-varying uncertain inputs are
input as systems of coupled ODEs with intervals appearing in the right-hand side; these
intervals are then interpreted as the uncertain inputs to the system. However, the time-
varying inputs pose significant additional challenges to tight flowpipe computation due
to the fresh non-determinism introduced into the system’s behaviour at every timepoint,
and in this case we are not given a functional dependency of system’s evolution on input
parameters.

Advanced Taylor model integrations such as COSY INFINITY [46] and Flow* [110]
have extended this basic scheme to increase the precision of verified integration results
and to better handle complex continuous dynamics and large uncertain sets.

Preconditioning The technique of preconditioning was introduced by Makino and Berz [251]
to reduce the wrapping effect on Taylor model flows by decomposing or preconditioning
the initial set as a symbolic composition of two Taylor models,

X0 = (p(0), I(0)) =
(
p(0)

post, I
(0)
post

)
□
(
p(0)

pre, I(0)
pre

)
where the space domain of

(
p(0)

pre, I(0)
pre

)
is the unit box [−1, 1]m. Taylor model integration is

then extended to produce a preconditioned Taylor model flowpipe consisting of a sequence
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of preconditioned Taylor models,
(
q(k), I(k)

)
=
(
q(k)

post, I(k)
post

)
□
(
q(k)

pre, I(k)
pre

)
.

This split allows preconditioned Taylor models to more accurately track complex flows,
with the first half of the preconditioning acting as a transformed coordinate system for the
local dynamics of the system [251]. However, it makes working with flowpipes considerably
more computationally challenging. For example, before most kinds of analysis can be
carried out (including plotting, reach-avoidance checking, hybrid system jump handling,
and interval evaluation of solutions) Flow* must first compose the two halves of the
preconditioned Taylor models in a flowpipe or compute a polytope over-approximation of
the flowpipe.

Range Bounding and Horner Forms In order to make use of Taylor models bounding
the solutions of a system, we need effective ways to bound the range of a Taylor model
as an interval or more general polytope. The most obvious way of doing so is interval
evaluation of the Taylor model over its domain, however, due to the dependency problem
interval evaluation of polynomials can suffer excessive over-approximation errors to a
degree which depends heavily on the structure of the polynomial. Flow* attempts to
reduce the degree of over-approximation by placing polynomials into a multi-variate
Horner form [109] which minimizes the number of interval operations required for interval
evaluation; this transformation does, however, come with a significant computational cost.

We note that since the ability of Taylor models to handle the dependency problem is
reliant on handling uncertainty symbolically for as long as possible when bounding the
range of a composition of Taylor models

(qg, Ig) □ (qf , If ) ,

we will generally get tighter bounds from first performing the symbolic composition and
then transforming the overall result to Horner form, than individually bounding each half
to compute the functional composition

(qg, Ig) ◦ (qf , If ) .

Symbolic Remainder Estimation The ability of Taylor model integration to handle a
given system is limited by its ability to prevent uncertainties from migrating from the
symbolic proportion of the flowpipe to the remainder intervals. This becomes a particular
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problem in systems featuring time-varying uncertain parameters which are not covered by
the space domain of the Taylor model. Flow* has introduced Taylor models with symbolic
remainders represented via support functions [109, 111], which are able to significantly
reduce the growth of remainder intervals and improve Flow*’s practical support for time-
varying uncertain parameters.

Adaptive Step-Sizes and Orders One of the main challenges of applying Taylor model
based integration is the number of parameters such as step-size, Taylor model order, and
remainder cutoff-threshold which need to be tweaked to allow the process to be applied
in a reasonable time to a given system, without the error being so large as to render the
result useless. Flow* aids in this by allowing the user to specify a range of step sizes or
Taylor model orders. It then dynamically changes the order throughout the integration
process in order to maintain a given error tolerance at each step.

2.4.5 From Reachability to Temporal Logic Model Checking

Whilst set-based reachability analysis is effective at verifying reach-avoidance problems, to
extend this to general temporal logic model checking one must tackle problems arising from
the coarseness of flowpipes compared to individual simulations trajectories. Flowpipes
can provide only limited timing information for checking bounded temporal properties
whilst their over-approximate nature means that the truth value of a given temporal logic
proposition is often underspecified.

Recently, a number of approaches have been proposed to implement exact temporal
logic model checking using different types of set-based reachability analysis for contin-
uous and hybrid systems. Bresolin developed a method for encoding LTL properties of
hybrid systems as reachability properties of hybrid automata by constructing monitoring
automata similarly to the automata theoretic approach of monitoring timed systems [352].
This allows the reuse of existing reachability tools, however, this does not included tempo-
ral operators with time intervals and applying this to even relatively simple LTL properties
results in automata too large for current nonlinear reachability tools to handle. Cimatti
et al. [115] proposed an approach to reducing LTL model checking to reachability analysis
via k-liveness. Rather than directly encoding properties as reachability problems, Roehm
et al. [315] proposed offline analysis of the flowpipes produced reachability analysis tools,
and developed a method of STL verification based on checking a time-sampled version of
STL formulae over the polytope flowpipes produced by the CORA [7] reachability analysis
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tool. On the other hand, the Sapo tool [152] implements STL model checking and param-
eter synthesis for discrete-time polynomial dynamical systems based on a parallelotope
bundle representation of flowpipes [153].

The work most closely related to our approach is that of Ishii and Goldsztejn, who
proposed a method using interval root finding to monitor verified signals over interval
extensions of solutions produced via verified integration [206–208]. The methods proposed
in Chapter 6 build upon their methods of monitoring atomic propositions whilst our
representation of signals is different (representing partial signals using three-valued logic
rather than inner/outer approximations of intervals). Our methods also integrate tightly
with the specific structure of Flow* flowpipes to improve the efficiency and precision of
monitoring, whilst their method targets generic interval extensions of solutions, evaluated
in a black-box manner.

The underspecifity of flowpipes poses problems to compositional reasoning when us-
ing a Boolean temporal logic semantics since, in a signal monitoring approach, an over-
approximate Boolean signal cannot be soundly negated. Moreover, even when uncertainty
is represented explicitly, a logical form of the dependency problem of interval arithmetic
can cause uncertainties to compound throughout the semantics. Another potential pitfall
is that in decoupling flowpipe computation and evaluation from the monitoring process,
these methods are not able to direct monitoring of atomic propositions to the time regions
most relevant to verifying a given property. This is especially relevant in the case of Flow*
flowpipes which need to be preprocessed (by symbolically or functionally composing both
halves of a preconditioned Taylor model). In this thesis we propose methods to achieve a
more property-directed monitoring process over Flow* flowpipes using three-valued signals,
on-demand symbolic composition of flowpipes, adaptive symbolic and physical subdivision
of unknown initial conditions, and the use of masks to direct monitoring to relevant regions
of the combined space-time domain.
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Chapter 3

Bond-Calculus

In this chapter we introduce the bond-calculus, a novel process algebra for modelling bio-
logical systems. The bond-calculus aims to capture the full range of continuous biological
interactions at the molecular and network levels. To this end, the language introduces a
novel multi-way communication mechanism which models the concept of affinity between
molecular interactions sites by allowing processes to communicate at named sites whose
quantitative interaction dynamics are governed by a network of affinity patterns. As we
will explore through several case studies in Chapter 4, the flexibility of this communica-
tion mechanism allows us to more effectively capture the vast diversity of communication
patterns in real biological systems through a range of different modelling styles. At the
molecular level, the bond-calculus utilizes mobility of “location names” (identifying indi-
vidual bonds or linkages within a molecular complex) making it possible to model dynamic
bonding similarly to π-calculus–based languages [305, 310] whilst it is able to specify al-
losteric interactions within a molecule through multi-way communication and pattern
matching. Meanwhile, at the network-level the combination of multi-way communication
and functional affinity rate laws allows us to capture the full range of biochemical reactions
including multi-way interactions and general kinetic laws.

Once we have specified the formal syntax of the bond-calculus, our main focus will
be developing a compositional continuous semantics for the language. As part of this we
develop a transition semantics to capture interactions within a single molecular species
and then on top of this we introduce a continuous vector space semantics for mixtures of
species. In order to achieve compositionality, we define a number of operators to extract
the multi-molecular interactions between species, as well a novel method of extracting
multi-molecular interactions within a single species via an interaction exponential. This
semantics then allows us to compositionally derive the interaction dynamics of different
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mixtures of processes/species, and ultimately, systems of differential equations or Chemical
Reaction Networks (CRNs) to allow a system to be simulated.

The structure of this Chapter is as follows. Section 3.1 gives a brief overview of the
bond-calculus before Section 3.2 introduces the formal sequences of each of the different
language constructs. Section 3.3 covers the semantics of the bond-calculus, focusing first on
the transition semantics for individual species/molecules in Section 3.3.1, before providing
a continuous semantics for mixtures of species in Section 3.3.2 and for affinity networks
in Section 3.3.3 before Section 3.3.4 establishes the compositionality of this semantics.
Finally, Section 3.4 shows how this semantics defines the dynamics of a model. We first how
to extract systems in the form of CRNs in Section 3.4.1. We then show how the semantics
may be used to define a vector field capturing the continuous interaction dynamics in
Section 3.4.2, before showing how this allows us to extract systems of differential equations
in Section 3.4.3.

An initial version of the bond-calculus was first introduced in the author’s master’s
dissertation [358]. The version presented here has been substantially extended with a
reformulated communication mechanism based on multi-way pattern matching, a new
semantics, and support for stochastic simulation via Chemical Reaction Network extraction.
Later on, Chapter 5 further extends the bond-calculus to add support for uncertain systems
using interval arithmetic.

3.1 Language Overview

Before introducing the formal syntax and semantics of the bond-calculus, we will start
with a high-level description of the language as it relates to biochemical modelling1. The
chief component of a bond-calculus model is a mixture:

Π ≜ α1A1 ∥ . . . ∥ αnAn .

This represents a chemical solution of different species A1, . . . , An at real-valued concen-
trations α1, . . . , αn ∈ R≥0 respectively. Species are described by process-algebraic terms
that indicate their potential behaviour. In particular, species offer interaction at certain
sites s, e, p, . . ., which may also be annotated with locations ℓ,m, . . . that indicate spatial
proximity on a molecular complex.

1As we will see in subsequent examples, many of the language’s constructs can also be interpreted
appropriately in other biological modelling domains such as ecology.
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The declaration of which sites are compatible and the quantitative rates of interaction
between them appears in a separate affinity network,

A ≜
{

γ1 @ L1, . . . ,γn @ Ln
}

which is made up of affinity patterns γ @ L. Each affinity pattern combines a pattern γ

of reaction sites with a general kinetic law L : Rm → R for the corresponding reaction
rate. Patterns themselves are structured γ = p1 ∥ . . . ∥ pm where each component is
either a single site pi = s, or a cluster of multiple colocated sites pi = (s1| . . . |sti). For
example, a simple pattern a ∥ b ∥ c allows chemical reactions to occur between three
distinct molecules presenting sites a, b, and c respectively, whilst the pattern a ∥ (b|c)
allows reactions between a molecule with site a and another molecule with both sites b
and c at a shared location, and a pattern (a|b|c) allows unimolecular reactions involving
a, b, and c all at a shared location on a single molecule2.

The reactants themselves are described by a number of species A,B,C, . . . whose
intrinsic behaviour is defined via process-algebraic definitions A ≜ . . . . For example, we
may define two species,

A ≜ a(ℓ1).a∗@ℓ1.A and B ≜ b(ℓ2).b∗@ℓ2.B.

These definitions state that, for example, A may engage in a reaction at site a to become
a new species a∗@ℓ1.A, involving a site a∗ which is located at the new internal molecular
location ℓ1. Reactions between species may involve bonding of sites to dynamically gen-
erate new species. In this case, if sites a and b are compatible, the species A and B may
react to form a bimolecular complex

C ≜ (ν ℓ)(a∗@ℓ.A | b∗@ℓ.B) .

The complex species is defined dynamically, using the location binder (ν ℓ)(. . .) (similar
to name abstraction in the λ-calculus and π-calculus) to denote the shared location which
binds the sites a∗ and b∗ at each half of the complex. To form this new complex, the
locations ℓ1 and ℓ2 are merged into a single location ℓ in a form of simultaneous agreement
inspired by the πI-calculus [322]. This form of communication models the symmetric
nature of molecular bonding, and extends naturally to multiway reactions.

Suppose we want to complete this with a description of quantitative reaction rates
following the law of mass action, defined by

MAk(x1, . . . , x1) ≜ kx1 . . . xn.

2The ability of a cluster of sites at a shared location within a molecule to jointly participate in reactions
models composite molecular binding sites and allosteric interactions between sites.
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We can use affinity pattern a ∥ b @ MAk1 (or, a ∥ b @ k1 for short) to declare that sites a
and b are compatible and interact at rate MAk1([a] , [b]) = k1[a][b] where [a] and [b] are
the total concentrations of species carrying sites a and b respectively — the sites in the
affinity pattern are associated to the arguments of the rate law in a positional manner
indicating that in this case the concentrations of a and b correspond to the first and
second arguments of the rate law respectively. These site concentrations are interpreted as
unitless site concentrations (so that the reaction rates are independent of cell volume V )
and kinetic laws are specified under the assumption that each site is on an independent
chemical species; as later demonstrated in Example 3.3.12 the bond-calculus semantics
will automatically adjust the rate law to take into account multiple instances of a single
site occurring in the same species to apply a suitable combinatoric scaling coefficient
similarly to [51, 94].

Finally, we can specify the initial state of the system as a mixture Π ≜ [A]A ∥ [B]B
consisting of concentration [A] of species A and concentration [B] of species B. Thus a
complete bond-calculus model is made up of a mixture Π of species, which are defined via
a number of species definitions, and an affinity network A consisting of different affinity
patterns, whose rate laws are defined via rate law definitions.

Models in the language can be translated into a number of other different forms of
mathematical models based on the semantics of the language. These methods have been
implemented in the bondwb tool described in Section 9.1 which can perform numerical
simulation of extracted ODEs or stochastic simulation of extracted Chemical Reactions
Networks via the StochPy [250] library.

For example, in the mixture Π specified above, A offers site a and B offers site b:
which are compatible according to the pattern a ∥ b; this results in the reaction, A ∥
B →k1 C which consumes species A and B whilst producing species C at overall rate
MAk1([A], [B]) = k1[A][B], or the differential equations

d[C]
dt = −d[A]

dt = −d[B]
dt = k1[A][B] .

Similarly, we can introduce an unbinding reaction C →k−1 A ∥ B by using the affinity
pattern (a∗|b∗) @ MAk−1 , where sites a∗ and b∗ are now colocated on C.

3.2 Syntax

We will now define the formal syntax of the bond-calculus. First we define rate laws which
specify the rates governing reactions, and then sites, locations, and affinity networks,
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allowing us to specify the types of reactions taking part in a system. Next we define
the two levels of the calculus of agents: the species level specifying the behaviour of
individual agents, and the mixture level specifying mixtures of different concentrations
of each species. Finally, we define a structural congruence relation, prime species, and
normal forms, allowing us to identify equivalent species and give a unique representation
of a mixture.

3.2.1 Rate Laws

We first define rate laws, which form the basis of our support for general kinetics. A rate
law R : Rn → R gives the rate R(x1, . . . , xn) of a reaction based on the concentration of
each of its arguments x1, . . . , xn. We allow arbitrary mathematical functions as kinetic
laws and give examples in standard mathematical notation.

Definition 3.2.1 (Rate law). A rate law is a function R : Rn → R which takes a list of
n real-valued concentrations to a real-valued rate.

Definition 3.2.2 (Rate law family). A rate law family is a function R : Rm → Rn → R,
which takes a list k of m rate law parameters and returns a rate law Rk ≜ R(k).

A slightly more exotic example is given by the HBr formation process.

Example 3.2.3 (Hydrogen Bromide formation). Hydrogen Bromide (HBr) may be formed
from Hydrogen (H2) and Dibromide (Br2) via the linear chain reaction shown in Fig-
ure 3.1a [56]. This reaction can be modelled as a single ternary reaction (shown in
Figure 3.1b) with rate law given by,

Rk([H2] , [Br2] , [HBr]) = [H2] [Br2]1/2

1 + k [HBr]
[Br2]

.

We will return to this example throughout this section to illustrate many features of the
language and its semantics.

3.2.2 Sites, Locations, and Affinity Networks

As the basis of a model we define the set Site of site names, along with the set Loc of
location names. Sites represent (chemical) reaction sites and determine when molecules
may react, whilst locations refer to internal locations within a molecule. We distinguish a
special location ⊤ ∈ Loc, the ambient location, referring to the top level of a mixture. The
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Br2 Br + Br

Br + H2 H + HBr

H + Br2 Br + HBr

Br + Br Br2

(a) Linear chain of mass action reactions.

H2 + Br2
r 2 HBr

r = [H2] [Br2]1/2

1 + k [HBr]
[Br2]

(b) Composite reaction and rate r.

Figure 3.1: Hydrogen Bromide formation process.

Site
s

⊆
Cluster
γ = s1| . . . |sn

⊆
Pattern

γ = γ1 ∥ . . . ∥ γn

Figure 3.2: Sites, clusters, and patterns.

set LocSite consists of located sites π = s@ℓ where s is a site and ℓ is a location. Then
two located sites s@ℓ and t@m can interact allosterically if they are at the same location
ℓ = m, however, sites at different molecular locations may still engage in intermolecular
reactions. A site s@⊤ at the ambient location ⊤ is called an ambient site and we establish
the shorthand s ≜ s@⊤; an ambient site is not involved in allosteric interactions, but can
be involved in intermolecular reactions.

In order to determine the dynamics of a system we will need to know which sites
may react with which, and associate kinetic laws to these reactions. Reactions in the
bond-calculus are specified by pattern matching. Clusters γ = s1| . . . |sn match against a
collection of sites in the same molecule (and specify allosteric interactions), whilst patterns
γ = γ1 ∥ . . .∥γn match against solutions of molecules (in which each molecule must contain
the corresponding cluster of sites). Any site can be treated as a trivial cluster, and any
cluster can be treated as a trivial pattern as shown in Figure 3.2.

Definition 3.2.4. A cluster γ ∈ Cluster consists of a bag Hs1, . . . , snI of sites
s1, . . . , sn ∈ Site, and we write γ = s1| . . . |sn.

Definition 3.2.5. A pattern γ ∈ Pattern consists of a bag Hγ1, . . . , γnI of clusters
γ1, . . . , γn ∈ Cluster, and we write γ = γ1∥. . .∥γn. An ordered pattern γ = γ1∥. . .∥γn ∈
Ordered-Pattern, is a pattern which also records the order of the site patterns,
and is represented by a list of clusters (γ1, . . . , γn).

Then the reactions which can occur in a given system are specified by an affinity

64



network A which specifies a pattern for each reaction which can occur, along with its rate
law.

Definition 3.2.6 (Affinity network). An affinity network,

A =
{
γ(1) @ L1, . . . ,γ

(n) @ Ln
}

∈ Aff ≜ P(Ordered-Pattern × [R∗ → R])

consists of a set of ordered patterns γ(i) = γ
(i)
1 ∥ . . .∥γ(i)

m together with rate laws Li (where
P(X) denotes the powerset of X and R∗ = ⋃∞

m=0 Rm).

In most contexts patterns do not have a fixed order so γ ∥ δ = δ ∥ γ, however, in an
affinity network the order of the pattern specifies the order of the arguments of the rate
law (given many nonlinear rate laws are not commutative). Then each term γ = γ1 ∥ . . . ∥
γn @ L of the affinity networks specifies a reaction involving n (not necessarily distinct)
species of molecules containing interactions with site clusters γ1, . . . , γn at reaction rate
L([γ1] , . . . , [γn]). We also allow the shorthand γ @ k (where k ∈ R) for the Mass-Action
pattern γ @ MAk.

Example 3.2.7. The HBr formation reaction has affinity network,

A ≜
{
h ∥ b ∥ h∗|b∗ @ Rk

}
where the rate law Rk is as defined in Example 3.2.3.

3.2.3 Species and Abstractions

We will now define the syntax rules for species in the language. In order to handle commu-
nication prefixes which bind locations such x(ℓ1, . . . , ℓn).A, we will present the calculus
in an abstraction-concretion style following [268] (although, given the symmetry of our
communication operator, we only have abstractions) and similarly to Continuous π [234],
so in addition to species A we define abstractions F ≜ (ℓ1, . . . , ℓn)S where the variables
ℓ1, . . . , ℓn bind locations in S. Then we can treat prefixes such as x(ℓ1, . . . , ℓn).A as syntac-
tic sugar for x.(ℓ1, . . . , ℓn)A and thereby restrict our attention to simple communication
prefixes of form x@ℓ.F to simplify the presentation of the language. So, we start by giving
the following grammar for species:

A,B ::= 0 | π1.F1 + . . .+ πn.Fn | A |B | (ν ℓ1, . . . , ℓn)A | D(s1, . . . , sn; ℓ1, . . . , ℓm)

That is, a species can be any of:
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• The null species 0. This does exactly nothing, and represents an agent which at-
tempts no communication actions.

• A choice π1.F1+. . .+πn.Fn of one of n abstractions F1, . . . , Fn guarded by the prefixes
π1 = s1@ℓ1, . . . , πn = sn@ℓn ∈ LocSite. This means that the species can evolve
into one of the abstractions Fi, but only after the synchronisation corresponding to
the prefix given by the (potentially) located site πi = si@ℓi has occurred. We define
the empty choice as 0.

• A parallel composition A | B of two species A and B. In this species any of the
evolutions of A or B can occur in parallel and they can communicate with each
other.

• A location binding (or restriction) (ν ℓ1, . . . , ℓn)A of a set ℓ = {ℓ1, . . . , ℓn} of locations
in the species A which we may equivalently write as (νℓ)A. This marks the specified
locations as local to A.

• A definition application D(x1, . . . , xn; ℓ1, . . . , ℓm), which applies the definition of the
species D, supplying as arguments a list of site names x1, . . . , xn and a list of location
names ℓ1, . . . , ℓm.

The case for definition applications allows us to define the species of a system as a list
of mutually recursive definitions,

D(x1, . . . , xn; ℓ1, . . . , ℓm) ≜ P

where x1, . . . , xn bind site names in P , and ℓ1, . . . , ℓm bind location names in P . We will
often write Dℓ1,...,ℓn as shorthand for D(; ℓ1, . . . , ℓn). Unlike in many presentations of the
π-calculus [267] we use recursive definitions rather than a replication operator ! since
this will produce much more readable biological models, and moreover unlike in the full
π-calculus where the two operators are equivalent, in calculi with only internal mobility
such as πI recursion can be strictly more expressive than replication [85, 283, 322].

Next, we define abstractions according to the following grammar:

F,G ::= (ℓ1, . . . , ℓn)A.

There is only one form of abstraction, since we list all of the abstracted location names at
the top level, however, we will now define operators to lift parallel composition and name
restriction from the process level to the abstraction level.
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Composition of abstractions implements our simultaneous agreement based communi-
cation mechanism by unifying and then merging the location names of two abstractions
to allow the underlying species to be composed.

Definition 3.2.8. The parallel composition or colocation of abstractions (ℓ1, . . . , ℓp)A
and (ℓ1, . . . , ℓq)B is defined by,

(ℓ1, . . . , ℓp)A | (ℓ1, . . . , ℓq)B = (ℓ1, . . . , ℓs)(A |B),

where s = max{p, q}. This defininition is then extended to arbirary pairs of abstractions
(ℓ1, . . . , ℓp)A and (m1, . . . ,mq)B by applying α-renaming to place them in the above form
by making their respective location names agree.

Definition 3.2.9. The restriction of names ℓ1, . . . , ℓp in an abstraction (m1, . . . ,mq)A is
defined by,

(ν ℓ1, . . . , ℓp)(m1, . . . ,mq)A = (m1, . . . ,mq)(ν ℓ1, . . . , ℓp)A

where location names ℓ1, . . . , ℓp and m1, . . . ,mq are assumed to be distinct by α-renaming.

We will also freely allow a species A to be embedded as a trivial abstraction ()(A), and
we can see that in this case these definitions reduce to parallel composition and restriction
of species. The parallel composition operation on abstractions is similar to the pseudo-
application operation in the abstraction-concretion presentation of the π-calculus [234,
268], but for us plays the role of combining the contributions of two parties in a reaction
into a complex.

An abstraction represents the products of an open reaction, and is expanded via
colocation as more reactants join the reaction. Once all the reactants have joined, an
abstraction can be committed, giving the resulting species.

Definition 3.2.10. The committed product of an abstraction F is the species given by,

commit((ℓ1, . . . , ℓn)A) ≜ (ν ℓ1, . . . , ℓn)A.

3.2.4 Mixtures

Multiple species may be combined into a mixture, representing a chemical solution of
different concentrations of each pure species. Mixtures are specified according to the
grammar:

P,Q ::= c · S | P ∥ Q

that is, a mixture is defined recursively as either:
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• c · S, meaning species S is present in concentration c ∈ R.

• The parallel composition or solution P ∥ Q of two processes P and Q.

As shorthand we may omit the dots and write c1 · A1 ∥ . . . ∥ cn · An as c1A1 ∥ . . . ∥ cnAn.

3.2.5 Abstract Syntax and Prime Species

In the preceding part of this section we defined a formal grammar specifying the concrete
syntax of the language. However, this syntax allows a lot of redundancy, allowing us to
write a given species in many equivalent ways. A simple example of this is α-equivalence:
the species (ν ℓ)(S∗

ℓ |E∗
ℓ ) and (ν m)(S∗

m |E∗
m) since they differ only in the name of the bound

location ℓ, and we can express this type of equivalence as (ν ℓ)(S∗
ℓ | E∗

ℓ ) ≡α (ν m)(S∗
m |

E∗
m). We need some way of identifying these equivalent processes in order to practically

implement the system, since separately tracking many equivalent copies of the same species
would result in a much larger (and frequently infinite) state space.

We resolve this issue by defining a structural congruence relation ≡ on species, ab-
stractions, and mixtures which tells us when two systems are considered syntactically
equivalent. This is semantics preserving equivalence relation which includes α-equivalence
and a number of other equivalences specific to the language (many of these coincide with
the structural congruence relations for other variants of the π-calculus [234, 267, 303]).
When two species are structurally congruent they are considered to be different concrete
syntax for the same abstract species and they may be interchanged freely; likewise the
corresponding structural congruences allow us to interchange equivalent abstractions and
mixtures respectively.

Definition 3.2.11. The structural congruence ≡ on species is the least congruence
containing α-equivalence and satisfying the following axioms:

0 | A ≡ A

A |B ≡ B | A

(A |B) | C ≡ A | (B | C)∑n
i=0πi.Ai ≡ ∑n

i=0πσi
.Aσi

given a permutation σ

(ν ℓ ∪ m)F ≡ (ν ℓ)(ν m)F

(ν ℓ)F ≡ F given ℓ ∩ flocs(F ) = ∅

(ν ℓ)(A |B) ≡ A | (ν ℓ)B given ℓ ∩ flocs(A) = ∅

68



where flocs(F ) denotes the set of free (that is, unbound by ν-binders) locations which
occur in a species.

Definition 3.2.12. The structural congruence ≡ on abstractions is the least congruence
containing α-equivalence and satisfying the following axioms:

(ℓ1, . . . , ℓn−1, ℓn)A ≡ (ℓ1, . . . , ℓn−1)A given ℓn /∈ flocs(A)

(ℓ1, . . . , ℓn)A ≡ (ℓ1, . . . , ℓn)B given A ≡ B

Definition 3.2.13. The structural congruence ≡ on processes is the least congruence
containing α-equivalence and satisfying the following axioms:

(c · 0) ∥ P ≡ P

P ∥ Q ≡ Q ∥ P

(P ∥ Q) ∥ R ≡ P ∥ (Q ∥ R)

(c+ d) · A ≡ (c · A) ∥ (d · A)

a · (A |B) ≡ a · A ∥ a ·B

c · A ≡ c ·B given A ≡ B

One particularly interesting case of this congruence is a·(A|B) ≡ a·A ∥ a·B, which says
that if a species (molecule) S = A |B can be decomposed as a parallel composition of two
completely independent subspeciesA,B, then it in fact represents a mixture of two different
species (two separate molecules). This is key to the interpretation of communication
as creation and dissolution of bonds: it means two molecules will bind together as a
single molecule when they gain a shared location (as in S ∥ E → (ν ℓ)(S∗

ℓ | E∗
ℓ )), and

a molecule will break apart when the bonds between its components are broken (as in
(ν ℓ)(S∗

ℓ | E∗
ℓ ) → S ∥ E). In order to see how many distinct species/molecules a species

actually contains, we follow Continuous π [234] (and, moreover, abstract algebra) and
adopt the notion of prime species which cannot be broken down any further.

Definition 3.2.14. A species S is prime if, for all species A,B,

S ≡ A |B =⇒ A ≡ 0 or B ≡ 0.

Any species S may be decomposed as a unique parallel composition of prime species
and we denote by primes(S) the bag of all prime factors of S.

Proposition 3.2.15. For any species S, we have a unique prime decomposition. That
is, there is a unique bag of prime species primes(S) = HP1, . . . , PnI such that,

S ≡ |
P∈primes(S)

P ≡ P1 | . . . | Pn.
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Proof. This will soon follow from the normal form of Definition 3.2.16/Theorem 3.2.17 in
a similar manner to the corresponding result for Continuous π ([234, Theorem 11]).

Working with structural congruence and prime species requires us to solve two practical
problems: how do we test if two species (abstractions, mixtures) are structurally congruent,
and how can we concretely represent an equivalence class of species (abstractions, mixtures)
up to structural congruence? We answer these problems by defining a normal form for
species, mixtures, and abstractions which gives a unique representative element to each
class of structurally congruent agents. This normal form also decomposes species into
compositions of prime species, and so ensures that a mixture is represented as a mixture
of prime species, each corresponding to a single type of molecule.

Definition 3.2.16. The normal form for processes, species, and abstractions are defined
via the following grammar,

Mix ::= ∥ni=1 αi · Prime Spec ::= |ni=1Res

Res ::= (ν ℓ1, . . . , ℓn)Par Par ::= |ni=1Sum

Sum ::= ∑n
i=0π.Abst Abst ::= (ℓ1, . . . , ℓn)Spec,

where we stipulate the following:

• Prime consists of elements of Spec satisfying the additional condition of prime-
ness.

• The terms in a Proc, Spec, Par, or Sum, and the order of locations in a Res
are ordered lexicographically (or according to any other canonical ordering).

• The bound locations in Res or Abst are given standardized names (we can
choose canonical names using De Bruijn indices).

• A mixture Mix contains no duplicate species.

• A restriction Res contains no redundant locations, and the last location of Abst
is bound in Par.

• There is no partition of locations in a restriction Res which would allow it to be
split into a parallel composition of two restrictions.

We can the see that every bond-calculus process may be placed into this unique normal
form.
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Theorem 3.2.17. (Unique Normal Forms) Every species (abstraction, mixture) S is
structurally congruent to a unique normal form nf(S) of the form described in Defini-
tion 3.2.16.

Proof. (Sketch) This can be shown by constructing an appropriate confluent and termi-
nating rewriting system using directed variants of the structural congruence rules which
terminates at the normal form Definition 3.2.16; such rewriting rules have been imple-
mented and extensively tested as part of the bond-calculus implementation. This is similar
to existing normal form results for Stochastic π [213, Lemma 3] and Continuous π [234,
Theorem 11] (which is expanded in [232, Appendex A]).

The bond-calculus implementation uses the normal form Definition 3.2.16 as its concrete
computational representation for species.

3.2.6 Bond-Calculus Models

We have now defined all of the components of a bond-calculus model,

Definition 3.2.18. A bond-calculus model (Π0,A) consists of

• An initial mixture Π0 ∈ Mix.

• An affinity network A ∈ Aff.

Here the initial mixtures Π0 may depend on a number of species definitions, whilst
the affinity network may depend on a number of kinetic law definitions. We also embed
any isolated mixture as the bond-calculus model Π ≡ (Π,∅) and any isolated affinity
networks as a bond-calculus model A ≡ (0,A).

In the spirit of compositional modelling, we are able to build models by combining
models of smaller components.

Definition 3.2.19. We define the composition of bond-calculus models (Π,A) and (Φ,B)
as the model,

(Π,A) ∥ (Φ,B) ≜ (Π ∥ Φ,A ∪ B).

assuming the species definitions and kinetic law definitions of both models are consistent.

The composition of bond-calculus models not only extends the possible reactants by
the composition of the mixtures Π and Φ, but allows new affinity patterns to be applied
to existing reactants via the composition of the affinity networks A and B. Thus a bond-
calculus model (Π,A) may be decomposed as a composition Φ ∥ A of its reactants and its
affinity network.
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Figure 3.3: Species multi-transition system rules.

3.3 Semantics

In this section we will define a formal semantics for bond-calculus models. First we will
focus on the individuals in each species, giving an operational semantics for the state
transitions an individual may undergo upon interaction in the form of a multi-transition
system. Then we will turn our attention to continuous mixtures of species, defining the
transition matrix T (Π) which captures the “concentration” of each transition A

γ
// F

within a mixture Π, and see how it may be derived compositionally using the interaction
tensor ⊙. Finally, we will define the reaction rate vector RA which determines the rate
of each reaction given an affinity network A.

3.3.1 Single Molecule Transition Semantics

We start by defining a semantics for the interactions which may occur in to a single
molecule of a chemical species, as a multi-transition systems, with transitions labelled by
a cluster of sites, and a shared location. That is, we will represent the ability to interact
on site s at location ℓ as a unitary transition,

A
s

ℓ
// F ,
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whilst internal (allosteric) interactions will build up larger, composite interactions

A1 | . . . | An
γ

ℓ
// F1 | . . . | Fn

labelled with the cluster γ = s1| . . . |sn of all of the sites involved. Whilst operational
semantics for non-deterministic programming languages are frequently specified as transi-
tion systems in order to capture the fact that the quantitative rate of a chemical reaction
depends on the number of copies of a given site which are present in a molecule, we need a
multi-transition system, which can include multiple instances of the same reaction (multi-
transition systems are also used in other quantitative process algebra semantics [125,
234]). Additionally since our transitions correspond to open reactions, where more inter-
actions may join at any point (either within the same species, or from other reactants in
a mixture), transitions go from a species A to an abstraction F representing the partial
products of a reaction.

The definition for our multi-transition system is as follows.

Definition 3.3.1 (Multi-transition system). The multi-transition system for bond-calculus
species consists of a multiset containing the 4-tuples (that is, transitions)(

A
γ

ℓ
// F

)
≜ (A, γ, ℓ, F ) ∈ Spec × Cluster × Loc × Abst,

which are derivable according to the rules in Figure 3.3 (with multiplicities corresponding
to the number of derivations). We will denote the multiset of transitionsA γ

ℓ
// F starting

from a particular species A as trans(A).

This is specified using a small step structural operational semantics [298] according
to the transition rules in Figure 3.3. Initial unitary transitions are induced from choices
by the Choice rule, whilst the Par-Left and Par-Right rules allow them to
propagate unchanged parallel compositions. The Res rule also allows transitions to move
through restrictions, provided they are not at a restricted location. The Com rule allows
transitions at a shared location ℓ to join together and form a larger interaction. The Del
rule provides a way for interactions at a restricted location to move through a restriction
by becoming ambient interactions at the location ⊤; this means they may engage in no
more internal reactions, but can still be part of reactions with other molecules. Finally,
the Dfn rule expands the transitions of named species from their definitions.

Example 3.3.2. The system with species

A ≜ a.A+ a.A+ b.B B ≜ a.A+ a.A+ a.A
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has single species transitions,

M = trans(A) ∪ trans(B) = H2 ×
(
A a

⊤
// A

)
, 1 ×

(
A b

⊤
// B

)
, 3 ×

(
B a

⊤
// A

)I,
which are illustrated in Figure 3.4. The full transition system also includes multispecies
transitions A|B b

⊤
// B|B , A|B a

⊤
// A|A , A|B a|a

⊤
// A|A , etc.

Figure 3.4: The multi-transition system M, visualised as a labelled multi-graph.

A Baa
b

a
a
a

3.3.2 Mixture Semantics

We will now move to the second level of the language and give a semantics for mixtures.
The semantics we give is inspired by aspects of the vector semantics of Continuous π [234]
and the numerical representation of PEPA/Bio-PEPA models [125, 198] and has also
been influenced by other numerical representations [200, 312] and fluid approximation
techniques [41, 98, 346]. Many of the differences with existing semantics arise from the
differences between the bond-calculus’ communication mechanism and both binary π-
calculus style communication and CSP/PEPA style multi-way cooperation as well as our
desire for a compositional continuous semantics.

First we see how we can consider mixtures as a vector space with a basis given by
prime species. Given we can decompose any species into primes, we can also decompose
any mixture Π into a unique parallel composition of prime species,

Π ≡ α1S1 ∥ . . . ∥ αnSn ≡
∑

S prime
[S]Π S

Then we see that mixtures form a real vector space if we define scalar multiplication of a
mixture Π by a scalar γ ∈ R by

γ · Π = γ
∑

[S]Π S =
∑

(γ [S]Π)S

and addition of two mixtures Π and Φ by,

Π + Φ =
∑

[S]Π S +
∑

[S]Φ S =
∑

([S]Π + [S]Φ)S = Π ∥ Φ.
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Definition 3.3.3. The mixture space (M, ·,+,0) is the real vector space of mixtures with
scalar multiplication · and addition + defined above.

If we define the embedding ⟨S⟩ of a single species as below, then we see that the
vectors ⟨P ⟩ for prime species P form a basis for M.

Definition 3.3.4. The species embedding is the map ⟨·⟩ : Spec → M defined by

⟨S⟩ = 1 · S =
∑

P∈primesS
1 · P.

In order to develop our semantics we will need a number of auxiliary vector spaces for
patterns, clusters, and transitions allowing us to raise the other elements of our language
to the same level as the mixture space.

Definition 3.3.5. We define the following real vector spaces:

• The pattern space P ≜ [Pattern → R] is the space of real vectors indexed by
patterns.

• The cluster space G ≜ [Cluster → R] ⊆ P is the space of real vectors indexed
by clusters of sites.

• The transition space T ≜ [Spec × Abst → R] is the space of real vectors indexed
by transitions A → F ≜ (A,F ).

These are given the bases of indicator functions I(γ) (for γ = γ1 ∥ . . . ∥ γn), I(γ),
I(A → F ) respectively, where the indicator functions I(X) : X → R are defined by,

I(X)Y ≜


1 if X = Y

0 otherwise

The semantics for the language will be defined in terms of linear maps M ∈ L(P,T) (i.e.
matrices) which map pattern vectors into transition vectors. These maps correspond to
a system of pattern labelled transitions representing the partial reactions arising from a
given mixture, with coefficients representing the concentration of the transition. We have
a basis for L(P,T) consisting of the matrices E(A → F, γ) defined such that

E(A → F, γ) I(γ) ≜


I(A → F ) if γ = δ

0 otherwise

for any prime species A and pattern γ = γ1∥ . . . ∥γn.
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Example 3.3.6. A simple example of a matrix encoding of transition systems is given by
multi-transition systems. For example, the multi-transition system M from Example 3.3.2
may be represented as the matrix,

M = 2E(A → A, a) + E(A → B, b) + 3E(B → A, a) .

If we fix the finite bases, B = (A → A, A → B, B → A) and C = (a, b) for the transition
space and site space respectively, then a linear combination of patterns φ = mI(a) +nI(b)
and a linear combination of transitions ψ = pI(A → A) + qI(A → B) + rI(B → A) could
be written as column vectors, whilst M could be written as a matrix:

φ =
m
n

 ψ =


p

q

r

 M = 2


1
0
0

[1 0
]

+


0
1
0

[0 1
]

+


0
0
1

[1 0
]

=


2 0
0 1
3 0

 .

Then we can find the total transition after a reaction matching the pattern φ = m ·a∥n · b
as,

Mφ =


2 0
0 1
3 0


m
n

= m


2
0
3

+ n


0
1
0

= m(2I(A → A) + 3I(B → A)) + nI(A → B) .

To extend this matrix encoding to quantitative transitions between mixtures we will use
real-valued concentrations as coefficients, rather than multiplicities.

We will now give a compositional semantics for mixtures in terms of the transition
matrix T (Π).

Definition 3.3.7. The transition matrix T (Π) ∈ L(P,T) is defined for any mixture Π by

T (αA) ≜ α
∑HE(S → F, γ) : S ∈ primes(A), S γ

⊤
// F I

T (Π ∥ Φ) ≜ T (Π) + T (Φ)

First we note that T : M → L(P,T) is a linear map, with entries representing the
concentration of the transitions at a given cluster. The transition matrix only contains
the transitions which are possible from a prime species and which are labelled by clusters,
whilst it omits composite transitions from general species which are labelled by general
patterns. However, we will build up all of the possible n-way interactions between the
species of Π step by step using the bilinear map ⊙ defined as follows.
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Definition 3.3.8. The interaction tensor is the bilinear map ⊙ : L(P,T) × L(P,T) →
L(P,T) defined by,

E(A → F, γ) ⊙ E(B → G, δ) ≜ E(A|B → F |G, γ∥δ)

Then the interaction tensor composes transitions (representing open multi-way inter-
actions) A γ

// F and B δ // G into larger open multi-way interactions, A|B γ∥δ
// F |G which

can be composed again as more agents join. The bilinearity of this map means that the
concentration of composite transition is assumed to be the product of the concentrations
of the reactants – in the mass action case this is proportional to the reaction rate, and even
under general kinetic laws, this measures the availability of the reactants (in the space of
possible combinations of reactants), although this may no longer correspond directly to
the reaction rate. We note that finite dimensional matrices form a commutative algebra
under ⊙ with identity 1 = E(0 → 0, ∅), which can be completed to form an algebra of
infinite dimensional matrices.

Now we see that the full transition system, containing all possible n-way interactions
between species in Π can be generated using the exponential function (with respect to ⊙)
as follows

exp⊙(T (Π)) ≜
∞∑
n=0

1
n!T (Π)⊙n (3.1)

= 1 + T (Π) + 1
2T (Π) ⊙ T (Π) + 1

6T (Π) ⊙ T (Π) ⊙ T (Π) + . . . (3.2)

That is, the transition matrix T (Π) exponentially generates the transitions of Π (under
product ⊙).

We now see that the transition matrix gives us a practical way of finding the reactions
of a system, since exp⊙(T (Π))I(γ) = ∑∞

n=0
1
n!T (Π)⊙nI(γ) = ∑

j αjI(Aj → Fj) gives the
vector of concentrations of all transitions matching pattern γ and moreover, this sum is
finite since T (Π)⊙nI(γ) is zero for n > |γ|. Furthermore, the following result assures us
composition of transition matrices is equivalent to composition of transition systems.

Proposition 3.3.9. For any mixtures Π and Φ we have that

exp⊙(T (Π ∥ Φ)) = exp⊙(T (Π)) ⊙ exp⊙(T (Φ)).

Proof. This follows by the linearity of T and the fact that exp⊙ is multiplicative.

Remark 3.3.10. An efficient implementation of the semantics should only compute the
coefficients of the terms of exp⊙(T (Π)) which actually correspond to patterns in the
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affinity network A. This can be achieved either by computing exp⊙(T (Π)) lazily, or by
setting E(A → F, γ) = 0 unless γ ⊆ δ for some δ @ f ∈ A.

Remark 3.3.11. The transition expansion equation Eq. (3.1) should be compared with
the equation [232, Theorem 3.3.15] in the semantics of the Continuous π-calculus, which
derives the binary self-interactions for a singleton mixture c · A via an interaction tensor
:M in the term 1

2(∂(c · A) :M ∂(c · A)). Our semantics can be seen as an extension of
this approach to arbitrary self-interactions with the exponential coefficients of Eq. (3.1)
correctly generalizing the combinatorics. This differs from the original semantics of the
bond-calculus in [358] which does not take the combinatorics of self-interacting sites into
account.

Example 3.3.12. Suppose we have a single species A which can engage in reactions with
itself,

A ≜ a.A+ b.B.

according to the affinity network,

A =
{
a ∥ b @ L, b ∥ b @ M

}
.

This system has transition matrix,

T ([A]A) = [A] E(A → A, a) + [A] E(A → A, a)

From which we see,

exp⊙(T ([A]A))I(a ∥ b) = 1I(a ∥ b) + T ([A]A)I(a ∥ b) + 1
2(T ([A]A) ⊙ T ([A]A))I(a ∥ b)

+ 1
6(T ([A]A) ⊙ T ([A]A) ⊙ T ([A]A))I(a ∥ b) + . . .︸ ︷︷ ︸

=0

= 1
2 [A]2 (E(A|A → A|B, a ∥ b) + E(A|A → B|A, b ∥ a))I(a ∥ b)

= [A]2 I(A|A → A|B) .

whilst

exp⊙(T ([A]A))I(a ∥ a) = 1
2 [A]2 E(A|A → A|A, a ∥ a) I(a ∥ b)

= 1
2 [A]2 I(A|A → A|B) .

This shows that the concentration of the homogeneous self-interaction of the site a with
itself is halved, whilst the concentration of interaction between sites a and b is not, in
accordance with the combinatorics of the law of mass action.
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Example 3.3.13. In the HBr formation process we have species,

H2 ≜ h(ℓ,m).
(
H(ℓ) | H(m)

)
H(ℓ) ≜ h∗@ℓ.H(ℓ)

Br2 ≜ b(ℓ,m).
(
Br(ℓ) | Br(m)

)
Br(ℓ) ≜ b∗@ℓ.Br(ℓ)

and the dynamic complex,
HBr = (ν ℓ)

(
H(ℓ) | B(ℓ)

)
.

Then a general mixture may be written as

Π ≜ [H2] H2 ∥ [Br2] Br2 ∥ [HBr] HBr

We see that interaction matrix of the system is

T (Π) = [H2] E
(
H2 → (ℓ,m)

(
H(ℓ)|H(m)

)
, h
)

+ [Br2] E
(
Br2 → (ℓ,m)

(
Br(ℓ)|Br(m)

)
, b
)

+ [HBr2] E(HBr → HBr, h∗|b∗)

and the interactions on pattern h ∥ b ∥ h∗|b∗ are

exp⊙(T (Π))I(h ∥ b ∥ h∗|b∗) = [H2][Br2][HBr] I
(

H2|Br2|HBr

→ (ℓ,m)
(
H(ℓ)|H(m)|Br(ℓ)|Br(m)|HBr

))
.

3.3.3 Rate Semantics for Affinity Networks

We will now define the rate vector RA([γ1] I(γ1) + . . .+ [γn] I(γn)) ∈ P. This gives the
stoichiometric rate (that is, rate per unit reactant concentration) of the reactions at each
pattern, given a vector representing the concentration of each site cluster γ ∈ Cluster
in the system.

Definition 3.3.14. The rate vector RA : G → P for affinity network A, is the (nonlinear)
function defined by

RA

 ∑
γ∈Cluster

[γ] I(γ)
 =

∑
(γ1∥...∥γm@f)∈A

(
f([γ1] , . . . , [γm])

[γ1] . . . [γm]

)
I(γ1∥ . . . ∥γm) .

This vector gives a meaningful semantics for affinity networks, which allows the reaction
rates at each pattern to be computed from the site concentrations.

Example 3.3.15. In a system of mass action reactions with affinity network,

A =
{
γ(i) = γ

(i)
1 ∥ . . . ∥ γ(i)

ni
@ MAri

∣∣∣ i ∈ I
}

79



we have reaction vector,

RA
(∑

[γ] I(γ)
)

=
∑
i∈I

MAri

(
γ

(i)
1 , . . . , γ(i)

ni

)
[
γ

(i)
1

]
. . .
[
γ

(i)
ni

] I
(
γ(i)

)
=
∑
i∈I

riI
(
γ(i)

)
.

That is, the reaction rate vector is the vector of stoichiometric rate constants for each
reaction.

Example 3.3.16. In the HBr formation process, we had affinity network,

A = {h ∥ b ∥ h∗|b∗ @ Rk} where Rk(x1, x2, x3) ≜
x1x

1/2
2

1 + k x3
x2

and so the reaction rate vector is equal to,

RA

 ∑
γ∈Cluster

[γ] I(γ)
 = Rk([h] , [b] , [h∗|b∗])

[h][b][h∗|b∗] I(h∥b∥h∗|b∗)

= [b]1/2

[h∗|b∗] ([b] + k [h∗|b∗])I(h∥b∥h∗|b∗) .

Since the rates of a reaction depend on the concentrations of the reaction sites involved,
this function takes as an argument a vector of the total concentrations of each site pattern
in the system – these concentrations record the total concentrations of all species within
a mixture which can interact at a given site, and correspond roughly to the notion of
the apparent rate of an action in a PEPA process [41, 346]. We can define each of these
concentrations inductively as,

Definition 3.3.17. The concentration of cluster γ ∈ Cluster in mixture Π is the real
number [γ]Π defined by

[γ][A]·A ≜ [A]
∑
F

card
(
A

γ

⊤
// F , trans(A)

)
[γ]Π∥Φ ≜ [γ]Π + [γ]Φ .

We then define the site concentration vector of Π by,

C(Π) ≜
∑

γ∈Cluster
[γ]Π I(γ) .

The site concentration vector C(Π) can be computed compositionally based on the
structure of Π since C(Π ∥ Φ) = C(Π) + C(Φ). However, the following proposition shows
us how T (Π) already captures the site concentrations in Π.

Proposition 3.3.18. For any cluster γ ∈ Cluster and process Π we have that,

[γ]Π = ∥T (Π)I(γ)∥1

where ∥·∥1 is the ℓ1-norm
∥∥∥∑j αjI(Aj → Fj)

∥∥∥
1

= ∑
j |αj|.
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3.3.4 Compositionality of Semantics

Between the transition matrix and the rate vector we have a semantics for bond-calculus
models which is compositional in both the mixture and the affinity network.

Definition 3.3.19. We define the denotation map J·K : Mix ×Aff → L(S,T) × (G → R)
by

J(Π,A)K = (T (Π),RA).

for any mixture Π and affinity network A.

Theorem 3.3.20 (Compositionality of semantics). For mixtures Π and Φ and affinity
networks A, B, we have that,

J(Π,A) ∥ (Φ,B)K = (T (Π) + T (Φ), RA + RB) .

We end this section with an example of how we can compositionally compute the
semantics when a new species is be added to an existing model.

Example 3.3.21. Suppose we introduce a new reactant into the HBr formation process, a
radioactive isotope of Dibromide, 77Br2 [274]. This will have identical chemical properties
as Br2 and hence can be modelled using the same reaction sites, however, the two can be
distinguished since 77Br emits gamma rays during its radioactive decay. We can model
77Br2 via the new species,

77Br2 ≜ b(ℓ,m).
(

77Br(ℓ) | 77Br(m)
)

77Br(ℓ)
≜ b∗@ℓ.77Br(ℓ)

(for simplicity we will not consider the effects of 77Br decay or any new reactions emerging
from new 77Br Br and 77Br HBr complexes). Then, defining the extended system as
Φ ≜ Π ∥

[
77Br2

]
77Br2, we see the overall transition matrix is,

T (Φ) = T (Π) + T
([

77Br2
]

77Br2
)

= T (Π) +
[

77Br2
]
E
(

Br2 → (ℓ,m)
(

77Br(ℓ)|77Br(m)
)
, b
)

The interactions at pattern h ∥ b ∥ h∗|b∗ in the extended system are now,

exp⊙(T (Φ))I(h ∥ b ∥ h∗|b∗) = [H2][Br2][HBr] I
(
H2|Br2|HBr → (ℓ,m)

(
H(ℓ)|H(m)|Br(ℓ)

))
+ [H2]

[
77Br2

]
[HBr]I

(
H2|77Br2|HBr → (ℓ,m)

(
H(ℓ)|H(m)|77Br(ℓ)

))
,

and include a new cross reaction involving the populations of H2 and HBr in Π and the
population of 77Br.
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The reaction rate vector RA is unchanged by the addition of the new species, however,
in C(Φ) the concentration of site b now also includes the concentration of 77Br2 isotope so,

RA(C(Φ)) =

(
[Br2] +

[
77Br2

])1/2

[HBr]
(
[Br2] +

[
77Br2

]
+ k [HBr]

)I(h ∥ b ∥ h∗|b∗) .

3.4 Dynamics

We will now show how the semantics defined in the previous section may be used to
simulate and analyse the dynamics of a system. Firstly we will see how the combination of
the transition matrix T and the rate vector RA directly define the dynamics of the system
when interpreted as a Chemical Reaction Network. Next we will see how to compositionally
derive a more compact representation of the dynamics, in the form of the difference matrix
D(Π) ∈ L(P,M) which gives the net change in concentration for each prime species at
each pattern, and can be used directly to define the dynamics of the system as a vector
field,

dΠ
dt ≜ D(Π)RA(C(Π)),

over mixtures, specifying the instantaneous evolution of the system starting at any process
vector Π (under a given affinity network A). Finally we will see how to symbolically derive
a system of coupled differential equations which capture the dynamics of the system
starting from a given initial mixture Π0.

3.4.1 Chemical Reaction Network Extraction

In general a bond-calculus mixture may evolve to produce infinitely many different distinct
prime species – such infinite systems have been studied in the Stochastic π calculus and
correspond to polymerization reactions [106]. However, given a finite initial mixture Π0,
many models will only generate finitely many prime species, allowing us to interpret the
model as a Chemical Reaction Network involving finitely many species. This is possible by
considering the evolution of a single generic symbolic mixture of prime species Π ≜ α1A1 ∥
. . . ∥ αnAn (which we assume contains all species reachable from the initial mixture Π0

as in [20, Section 3.2.4]). To do this we take the product,

exp⊙(T (Π))RA(C(Π)) =
∑
j

rj(α)I(Aj → Fj)

which gives the rates rj(α) of each transition Aj → Fj in the system (which depend on
the vector of concentrations α = (α1, . . . , αn) of each species). Then we can interpret this
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system as a Chemical Reaction Network [186] with reactions,

Aj,1 + . . . + Aj,pj

rj(α)
Bj,1 + . . . + Bj,qj

where primes(Aj) = HAj,1, . . . , Aj,pjI and primes(commit(Fj)) = HBj,1, . . . , Bj,qjI. This
Chemical Reaction Network can then either be used to directly extract a system of ODEs,
or interpreted stochastically as a PCTMC (Population Continuous Time Markov Chain).
The bond-calculus tool (Section 9.1) supports either ODE extraction and numerical
simulation via SciPy [218] or stochastic simulation via StochPy [250].

3.4.2 Difference Matrix and Vector Field

We can also define the dynamics of the model directly, as a vector field which assigns
an evolution vector dΠ

dt = d(Π,A)
dt to each mixture Π of species which determines the

instantaneous evolution of the system from the given mixture. To this end we define the
difference matrix D(Π), which represents the impact of a transition on the overall system
as a difference vector D(Π)I(γ) = ∑

i αiI(Si) ∈ P, which captures the net change in
concentration in each species resulting from the transition (assuming unit stoichiometric
rate).

Definition 3.4.1. The difference matrix D(Π) ∈ L(P,M) of a mixture Π is defined by,

D(Π) = F exp⊙(T (Π))

where the finalisation map F ∈ L(T,M) is the linear map defined by

FI(A → F ) = ⟨commit(F )⟩ − ⟨A⟩ .

Example 3.4.2. For the HBr formation process, we can use the transition matrix T (Π)
Example 3.3.13 to calculate the difference vector at the pattern h ∥ b ∥ h∗|b∗,

D(Π)I(h ∥ b ∥ h∗|b∗) = F [H2][Br2][HBr] I
(
H2|Br2|HBr → (ℓ,m)

(
H(ℓ)|H(m)|Br(ℓ)|Br(m)|HBr

))
= [H2][Br2][HBr] (2 HBr − H2 − Br2)

since,〈
commit

(
(ℓ,m)

(
H(ℓ)|H(m)|Br(ℓ)|Br(m)|HBr

))〉
=
〈
(ν ℓ,m)

(
H(ℓ)|H(m)|Br(ℓ)|Br(m)|HBr

)〉
= ⟨HBr | HBr | HBr⟩

= 3 HBr

and
⟨H2 | Br2 | HBr⟩ = H2 + Br2 + HBr.
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We are also able to exploit the compositionality of T and the linearity of F to compute
D compositionally (in conjunction with exp⊙(T (Π))),

Proposition 3.4.3 (Compositionality of D). For any pair of mixtures Π, Φ we have that,

D(Π ∥ Φ) = exp⊙(T (Π)) : exp⊙(T (Φ)) (3.3)

= D(Π) + D(Φ) + ( exp⊙(T (Π)) − 1) : ( exp⊙(T (Φ)) − 1) (3.4)

where the reaction tensor : : L(S,T) × L(S,T) → L(S,M) is the bilinear map defined by,

E(A → F, γ) : E(B → G, δ) ≜ E(commit(F |G), γ∥δ) − E(A, γ∥δ) − E(B, γ∥δ)

Proof. Firstly we see that the definition of : gives X : Y = F(X ⊙ Y) and hence,

D(Π ∥ Φ) = F(exp⊙(T (Π ∥ Φ)))

= F(exp⊙(T (Π)) ⊙ exp⊙(T (Φ)))

= exp⊙(T (Π)) : exp⊙(T (Φ))

establishing Equation (3.3). Thus we have that

(exp⊙(T (Π)) − 1) : (exp⊙ T (Φ) − 1)

= exp⊙(T (Π)) : exp⊙(T (Φ)) − 1 : exp⊙(T (Φ)) − exp⊙(T (Π)) : 1 − 1 : 1

= F(exp⊙(T (Π)) ⊙ exp⊙(T (Φ))) − F exp⊙(T (Φ)) − F exp⊙(T (Π)) − 0

= D(Π ∥ Φ) − D(Π) − D(Φ)

establishing Equation (3.4).

Remark 3.4.4. Similarly to the case for T (Π), an efficient implementation of the semantics
may avoid computing coefficients of D(Π) which do not occur in the affinity network A
by setting E(A → F, γ) : E(B → G, δ) = 0 whenever γ ∥ δ @ f /∈ A for some f .

Example 3.4.5. In the extended HBr example, we can compute the reaction matrix
based on the reaction and transition matrices of the original system and restricted to
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reactions in the affinity network given in Example 3.2.7 following Remark 3.4.4,

D
(
Π ∥

[
77Br2

]
77Br2

)
= D(Π) + D

([
77Br2

]
77Br2

)
+
(
exp⊙(T (Π)) − 1

)
:
(
exp⊙

(
T
([

77Br2
]

77Br2
))

− 1
)

= [H2][HBr]
(

[Br2]
(

2E(HBr, h∥b∥h∗|b∗)

− E(H2, h∥b∥h∗|b∗)

− E(Br2, h∥b∥h∗|b∗)
)

+
[

77Br2
](

2E
(
H77Br, h∥b∥h∗|b∗

)
− E(H2, h∥b∥h∗|b∗)

− E
(

77Br2, h∥b∥h∗|b∗
) ))

,

where

H77Br = (ν ℓ)
(

H(ℓ) | 77Br(ℓ)
)

is a newly created dynamic complex.

Finally, we may define the vector field representing the dynamics of the system.

Definition 3.4.6. The dynamics of a model (Π,A) are defined as the vector field,

dΠ
dt = d(Π,A)

dt ≜ D(Π)RA(C(Π)).

based on the evolution vector d(Π,A)
dt of the model (Π,A).

This has a similar form to the dynamical equation of a Chemical Reaction Network [11,
Equation 7] or to the ODE extraction equation for Bio-PEPA [125, Section 8.3], however,
a key difference is that the rate laws RA are given as stoichiometric rates and depend
on cluster (i.e. reaction site) concentrations rather than species concentrations whilst the
matrix D(Π) contains not only the stoichiometric constants but the concentrations of each
party involved in a reaction. This is what allows D to be computed compositionally using
the multilinear functions ⊙ and : (since now all of the essential nonlinearity of the system
is contained in RA) and is what makes it possible for a single role in a reaction (at a given
cluster) to be shared between multiple species as in Example 3.4.8 (this corresponds to
the so called Stirling amendment to the PEPA fluid approximation [41]).
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Example 3.4.7. In the HBr formation process we obtain the vector field,

dΠ
dt = d(Π,A)

dt = D(Π)RA(C(Π))

= [b]1/2
Π

[h∗|b∗]Π ([b]Π + k[h∗|b∗]Π) [HBr][H2][Br2] (2 HBr − H2 − Br2)

= [H2] [Br2]1/2

1 + k [HBr]
[Br2]

(2 HBr − H2 − Br2) .

Example 3.4.8. When we extend the system with the radioactive isotope 77Br2 as in
Example 3.3.21, we get the overall evolution vector,

dΦ
dt = d(Φ,A)

dt = D(Φ)RA(C(Φ))

=

(
[Br2] +

[
77Br2

])1/2

[HBr]
(
[Br2] +

[
77Br2

]
+ k [HBr]

) [H2][HBr]
(

[Br2](2 HBr − H2 − Br2)

+
[

77Br2
](

2 H77Br − H2 − 77Br2
))

=
[H2]

(
[Br2] +

[
77Br2

])1/2

1 + k [HBr]
[Br2]+[77Br2]

 [Br2]
[Br2] +

[
77Br2

] (2 HBr − H2 − Br2)

+

[
77Br2

]
[Br2] +

[
77Br2

] (2 H77Br − H2 − 77Br2
).

This shows how the coefficients of the difference matrix and the reaction rates combine
to give the rate for each individual transition: the rate of the reaction depends on the
overall concentration of each site regardless of the species carrying it, whereas each of the
species with a given site’s involvement in the reaction is determined by what proportion
of the total site concentration it comprises. This is in contrast to the mass action case
considered by Continuous π where we can calculate the reaction rate for each species with
a given site separately (based on the species concentration) and add up the effects due to
the multilinearity of the rate law [234].

3.4.3 Symbolic ODE Extraction

We have now characterized the dynamics of a system as a vector field, specifying the
evolution vector dΠ

dt = d(Π,A)
dt given any vector Π ≜ α1A1 ∥ . . . ∥ αnAn of species concen-

trations. This description involves an uncountable infinity of evolution vectors (one for
each combination of species concentrations), which, whilst no problem on a theoretical
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level, is somewhat daunting from an implementation perspective. One way to alleviate
this is abstracting Π to a symbolic mixture Π̃ ≜ [A1]A1 ∥ . . . ∥ [An]An, with variables
[A1] , . . . , [An] for the concentration of each prime species, and calculate a symbolic evo-
lution vector dΠ̃

dt = d(Π̃,A)
dt covering the whole vector field. However, in order to capture

the evolution of the system over time, the general symbolic mixture Π̃ must include all
species reachable from the initial mixture Π; if species are contained in a finite dimensional
subspace of M, we can describe the dynamics of a model as a system of (finitely many)
coupled differential equations. To extract this system of differential equations we first
define the set of species supporting a given initial mixture.

Definition 3.4.9. For a mixture Π = ∑ [A]A ∈ M, the support of Π is the set of prime
species defined by

supp Π ≜
{
A
∣∣∣ [A] ̸= 0

}
.

We now use this to define the prime species reachable from a set of species S.

Definition 3.4.10. Given a set of prime species S ⊆ Prime, we define the set of prime
species reachable from S in n steps inductively as

reach0(S) ≜ S reachn+1(S) ≜ reachn(S) ∪
⋃

Φ∈span(reachn(S))
supp

(
d(Φ,A)

dt

)

The set of prime species reachable from S may then be defined as,

reach(S) ≜
∞⋃
n=0

reachn(S).

We are now ready to define the system of ODEs (with initial conditions) corresponding
to a bond-calculus model.

Definition 3.4.11. Given a model (Π0,A) with Π0 ≜ α1A1 ∥ . . . ∥ αnAn given constant
initial conditions α1, . . . , αn ∈ R≥0, with finite set of reachable species reach(⟨Π⟩) =
{A1, . . . , An, B1, . . . , Bm}, we abstract Π0 to the symbolic mixture,

Π̃ ≜ [A1]A1 ∥ . . . ∥ [An]An ∥ [B1]B1 ∥ . . . ∥ [Bm]Bm.

We then define a symbolic initial value problem corresponding to (Π0,A) as,

dΠ̃
dt = d(Π̃,A)

dt ; Π̃0 = Π0.
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This may be expanded as a system of coupled ODEs,

d[Ai]
dt = fi([A1] , . . . , [An] , [B1] , . . . , [Bm]) [Ai]0 = αi (i = 1, . . . , n)

d[Bj]
dt = gj([A1] , . . . , [An] , [B1] , . . . , [Bm]) [Bj]0 = 0 (j = 1, . . . ,m)

where

d(Π̃,A)
dt =

n∑
i=1

fi([A1] , . . . , [An] , [B1] , . . . , [Bm])Ai

+
m∑
j=1

gj([A1] , . . . , [An] , [B1] , . . . , [Bm])Bj.

In fact, our compositional semantics gives Algorithm 2, an efficient procedure for
incrementally deriving the extended symbolic process Π̃ and its evolution vector.

Input: Initial symbolic mixture Π̃ ≜ [A1]A1 ∥ . . . ∥ [An]An and affinity
network A.

Output: A pair
(

Π̃, d(Π̃,A)
dt

)
of a symbolic mixture Π̃ and its evolution

vector d(Π̃,A)
dt .

while supp
(

dΠ̃
dt

)
⊈ supp

(
Π̃
)

do

Pick some B ∈ supp
(

dΠ̃
dt

)
\ supp

(
Π̃
)

Π̃′ := Π̃ ∥ [B]B
exp⊙(T (Π̃′)) := exp⊙(T (Π̃)) ⊙ exp⊙(T ([B]B))
D(Π̃′) := D(Π̃) + D([B]B) + (exp⊙(T (Π̃)) − 1) : (exp⊙(T ([B]B)) − 1)
C(Π̃′) := C(Π̃) + C([B]B)
d(Π̃′,A)

dt := D(Π̃′)RA(C(Π̃′))
Algorithm 2: Mixture expansion algorithm. We utilize Propositions 3.4.3 and 3.3.9
to compute only the new terms of D at each step. Provided this terminates we obtain
the complete symbolic vector field dΠ̃

dt = d(Π̃,A)
dt .

Finally we demonstrate the symbolic ODE extraction algorithm in the special case of
our enzyme system.

Example 3.4.12. In the HBr system we have reach(supp(Π)) = supp(Π) = {H2,Br2,HBr}
and so this model corresponds to a system of three ODEs,

d[H2]
dt = d[Br2]

dt = − [H2] [Br2]1/2

1 + k [HBr]
[Br2]

d[HBr]
dt = 2 [H2] [Br2]1/2

1 + k [HBr]
[Br2]

.
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Example 3.4.13. Whilst previously we included the dynamic complex HBr ≜ (ν ℓ)
(
H(ℓ) | B(ℓ)

)
explicitly in the definition of the Hydrogen Dibromide formation process, this was not in
fact necessary. Suppose instead we had,

Φ ≜ [H2]0 H2 ∥ [Br2]0 Br2

then HBr appears dynamically in dΦ
dt giving

reach0(supp(Φ)) = span{H2,Br2}

reach1(supp(Φ)) = span{H2,Br2,HBr}

reach2(supp(Φ)) = span{H2,Br2,HBr}
... = ...

and hence

reach(supp(Φ)) = span{H2,Br2,HBr}.

Therefore Φ̃ = Π̃ and we get the same ODEs as in the previous example with initial
condition [HBr]0 = 0.
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Chapter 4

Modelling Patterns of Gene Regulation
in the Bond-Calculus

In this chapter we explore different modelling styles for capturing complex patterns
of interaction through models of gene regulation. Firstly, in Section 4.1 we apply the
bond-calculus to molecular-level modelling of cooperative interactions at the λ-switch
based on the classic Stochastic π-model of Kuttler and Niehren [230], demonstrating how
affinity patterns are able to transparently encode context-dependent interactions. Then
in Section 4.2 we turn to network-level modelling and demonstrate the ability of the
bond-calculus to combine a general purpose agent-centric model of gene regulation with
affinity patterns specifying the structure of a particular network. Finally in Section 4.2.3,
we give an example of style applied to a compact model of the complex plant circadian
clock [135, 136].

The results of this chapter have been published in the paper [359].

4.1 Molecular-Level Modelling: Cooperativity at the λ-
switch

In this section we will demonstrate how the bond-calculus can be used to build detailed
mechanistic models of gene regulation, through the running example of the lysis-lysogenesis
decision circuit of λ-phage infected E. Coli (the λ-switch). The λ-phage is a bacteriophage
which infects E. Coli cells by inserting the λ-switch genetic circuit into their DNA, placing
them into one of two growth phases: the lysogenic phase in which the viral DNA is
passively reproduced by the normal reproduction of the E. Coli cells, and the lytic phase
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Figure 4.1: Schema of E. Coli infec-
tion by phage λ.

Figure 4.2: Gene regulation at the λ-
switch.

when the virus reprograms the cell to produce many copies of the phage which are released
upon the initiation of lysis breaking down the cell wall (see Fig. 4.2).

The λ-switch has been the subject of a number of mathematical models including [2,
13, 189, 190, 258, 325, 331, 342], and has became a standard benchmark for modelling gene
regulation. Kuttler and Niehren’s model of the λ-switch is a classic model of cooperative
gene regulation in the Stochastic π-calculus [230] and provides the basis of our model.
Unlike individual level stochastic process calculi, the bond-calculus takes a continuous
view of biological systems, modelling the state of a system via the concentration of each
species of agents. Hence, a bond-calculus model allows us to analyse a system not only
via stochastic simulation, but also by extracting a system of differential equations: in this
section we will focus on these differential equations to compare them to the stochastic
simulations from the original model [230]. Since π-based process calculi rely on a binary
communication mechanism, they require cooperative interactions involving multiple sites
of the operator region to be modelled as internal state updates with instantaneous reaction
rates (modelled via update channels [117, 118, 215, 230] or the visitor pattern [229])

— other potential methods of modelling such interactions include transactions [127] or
priorities [353]. This raises a question of how to model the switch in continuous process
calculi such as Continuous π and the bond-calculus whose differential equation semantics
do not include instantaneous rates, however, we will see that affinity patterns are expressive
enough to capture cooperativity directly as a type of multiway synchronisation. This is
somewhat similar to how rule-based languages capture cooperativity using schemes of
reaction rules spanning multiple sites [35, 228], however, whilst rules specify the whole
effect of the reaction, affinity patterns are more narrowly focused on the interaction
capacities of sites, leaving the effect of reactions to be determined by the agents involved,
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similarly to traditional process calculi.

4.1.1 Model Preliminaries

The mechanisms of transcription regulation at the λ-switch underlying Kuttler and
Niehren’s model are described in depth in [230]; here we will recall some of the key
features of the switch. The dynamics of gene regulation at the λ-switch should implement
a bistable switch [325] based on the levels of the two proteins, Rep and Cro, exhibiting
either high levels of Rep and the exclusion of Cro (leading to lysogeny), or high levels of
Cro and the exclusion of Rep (leading to lysis). The protein Rep is produced from the
gene cI by the binding of RNA Polymerase (RNAP) to its promoter region PRM, whilst
the protein Cro is produced by the binding of RNAP to its promoter region PR (Fig. 4.2).
The proteins Rep and Cro form into dimers which act as repressors by binding to each of
the three operator regions OR1, OR2, and OR3 which overlap with the promoter sites for
PR and PRM, so that the binding of repressors at OR3 and RNAP at PRM are mutually
exclusive, and the binding of repressors at OR1 and OR2 and RNAP at PR are mutually
exclusive. The final key component of the switch is cooperative binding: the binding of a
Rep dimer at OR1 significantly increases the affinity for the Rep dimer at OR2; in this
way a Rep dimer at OR1 recruits another at OR2.

All values of the model’s rate parameters are taken from [230, Fig. 4], with the exception
of two new derived parameters defined as the following arithmetic combinations of rate
parameters,

Kd_OR2_boost ≜ Kd_OR2_rep − Kd_OR2_rep_coop = 3.835

Kf_prm_boost ≜ Kf_prm_promoted − Kf_prm = 0.081

and the following parameter for Rep degredation, which is set to zero,

Kd_rep ≜ 0.0.

To allow direct comparison between our model and the existing stochastic model, we will
assume throughout that our units of concentration have been rescaled to coincide with
copy numbers; under these units the macroscopic and stochastic rate parameters coincide.

4.1.2 Modelling Autoreactive Sites: Repressor Dimerization

A key feature of λ-switch is the binding of pairs of Rep proteins (or equally pairs of Cro
proteins) to form dimers, which then act as repressors. The schema of reaction among Rep
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Figure 4.3: Schematic of dimerization.

joinRep 2 × KaRepDimer

unjoinRep | unjoinRep KdRepDimer

degradeRep KdRep

Figure 4.4: Affinity network ARep for
dimerisation reactions.

proteins is shown in Fig. 4.3. The unbound Rep protein can either degrade by interacting
on the degradeRep site, causing it to decay into nothing, or bind to another copy of itself by
interacting on the joinRep site. This type of homodimerization reaction in gene regulation,
plays an important role in controlling noise, and can be one source of cooperativity
at binding sites [81]. Despite the ubiquity of this mechanism, it is not a particularly
natural fit for the communication mechanisms of traditional π-based calculi [230], since
the symmetrical nature of the reaction needs to be broken into two halves modelling Rep
by an agent such as

Rep ≜ joinRep!.Rep2 + joinRep?.0

which offers itself a choice between sending on the joinRep! site or receiving on the joinRep?
site. This departs from the underlying chemistry firstly in breaking the symmetry of the
underlying reaction, but also, once we add in the quantitative reaction rate KaRepDimer,
splitting the reaction site into two might be expected to result in twice the reaction rate
expected from the law of mass action [213, 214, 291]1.

In contrast, in the bond-calculus we are able to model the Rep protein as agents
representing the bound/unbound state of the protein,

Rep ≜ degradeRep.0 + joinRep(ℓ).RepD(ℓ)

RepD(ℓ) ≜ unjoinRep@ℓ.Rep + bindRep@ℓ.0

On dimerization each Rep agent and its binding partner will agree on a shared location
ℓ and each will transition into the bound state RepD(ℓ): overall this will result in a
dynamic complex, Rep2 ≜ (ν ℓ)(RepD(ℓ) | RepD(ℓ)), as a parallel composition (|) of

1Some stochastic process calculi semantics including the original reduction semantics for Stochastic π
(but not subsequent versions of the language [291, 305]) remedy this with a special rule for homodimer-
izations, however, this approach breaks the strict correspondence between channels (or rather, channel
ends) and protein domains and does not extend to more general interactions.
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two bound subunits bound together by a shared location ℓ. In its bound state, RepD(ℓ),
a Rep molecule may either become unbound from the dimer by communicating on joinRep,
or bind again, this time to an operator of the λ-switch2. The interactions capacities of
these agent’s reaction sites follow the affinity network,

ARep =


joinRep ∥ joinRep @ 2 × KaRepDimer,

unjoinRep | unjoinRep @ KdRepDimer,

degradeRep @ KdRep


Here the pattern joinRep ∥ joinRep specifies that the joinRep is compatible with

itself, resulting in a dimerization reaction between two separate molecules containing a
joinRep site, whilst the pattern unjoinRep|unjoinRep results in an undimerization reaction
involving a single molecule with two parallel components, each having a unjoinRep site.
Importantly, since our model faithfully captures the fact that the dimerization reaction
is between multiple instances of a single site on a single species, our semantics halves
the resultant rate in accordance with the law of mass action, and accordingly our rate
parameter is twice that specified in the Stochastic π model.

We can also view the affinity network graphically as the hypergraph in Fig. 4.4, by
considering each cluster of sites as a node, and patterns as hyperedges (this directly
generalises the affinity networks of Continuous π, which are labelled graphs).

The above model demonstrates how the combination of affinity patterns and our com-
munication mechanism based on location agreement can capture the symmetrical nature
of dimerization. Another advantage of this symmetry is that it allows us to, for example,
consider variants of the mechanism such as replacing dimerization with tetramerization
(as considered in [80]) simply by replacing the patterns for binding/unbinding with,

joinRep ∥ joinRep ∥ joinRep ∥ joinRep @ MAk1

unjoinRep|unjoinRep|unjoinRep|unjoinRep @ MAk−1

without the need to modify the definitions of the agents involved in the reactions. Thus,
affinity patterns effectively separate how agents respond to communication at given sites,
and the patterns of interaction these sites engage in.

We may use the bond-calculus tool to perform stochastic simulation, or extract a
system of ODEs describing the dynamics of dimerization. Two ODE simulation results
showing how the equilibrium shifts depending on whether we start at low or high Rep

2For simplicity, we will not model dynamic binding of Reps to operators explicitly, as we have done
for dimerization and as is done in [230].
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Figure 4.5: Rep, starting from low level (left) and a high level (right); this reproduces the
concentration dependent equilibrium of Rep and matches [230, Fig. 25].

concentration are shown in Fig. 4.5; these graphs are consistent with the stochastic
simulation results shown in [230, Fig. 25].

The definitions for Cro and its affinity network ACro are nearly identical to those for
Rep except the sites are renamed appropriately.

4.1.3 Modelling the Switch: Agents

We now get to the heart of the model, the λ-switch itself. Just as in Fig. 4.2, the λ-switch is
described as consisting of the three operators, OR1, OR2, OR3, and the two promoters,
PRM and PR; this is captured in our model as a parallel composition of individual agents
representing each of these operators and promoters, bound together at a shared location
ℓ,

Switch ≜ (ν ℓ)(PRM(ℓ) | OR3(ℓ) | OR1(ℓ) | OR2(ℓ) | PR(ℓ))

We must now give definitions for each of these constituent agents. We start with the
operators ORi (i = 1, 2, 3). These will each have three possible states: the unbound state
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ORi, and the bound states ORiRep and ORiCro for Rep and Cro respectively.

ORi(ℓ) ≜ bindORiCro@ℓ(m).ORiCro(m)

+ bindORiRep@ℓ(m).ORiRep(m)

+ unboundORi@ℓ.ORi(ℓ)

+ noRepORi@ℓ.ORi(ℓ)

ORiRep(ℓ) ≜ unbindORiRep@ℓ(m).(ORi(ℓ) | RepD(m) | RepD(m))

+ boundORi@ℓ.ORiRep(ℓ)

+ hasRepORi@ℓ.ORiRep(ℓ)

ORiCro(ℓ) ≜ unbindORiCro@ℓ(m).(ORi(ℓ) | CroD(m) | CroD(m))

+ boundORi@ℓ.ORiCro(ℓ)

+ noRepORi@ℓ.ORi(ℓ)

Note that unlike in previous models, we have a single uniform definition for each operator,
which makes no mention of the reaction rates, or updates of neighbouring sites; this is
because we will describe all of the quantitative features of the operators in the affinity
network. We should note that as well as the sites for binding/unbinding, operators indicate
their binding status to the other sites using their boundORi/unboundORi sites, and, more
specifically, whether they are bound to a Rep molecule using their hasRepORi/noRepORi

sites. Next we describe the agent for the promoter PRM,

PRM(ℓ) ≜ bindPRM@ℓ.PRM Bound(ℓ)

+ unboundPRM@ℓ.PRM(ℓ)

PRM Bound(ℓ) ≜ unbindPRM@ℓ.(PRM(ℓ) | RNAP)

+ transcribeRep@ℓ.(MRNAcI | PRM(ℓ) | RNAP)

The agent for the promoter PR is defined nearly identically (with appropriately renamed
channels). Finally, the RNAP agent is defined as

RNAP ≜ bindRNAP.0

4.1.4 Modelling the Switch: Affinity Network

It now remains to give affinity networks, specifying the dynamics of interactions at the
λ-switch. Interactions at the operators are specified in the networks AOR1 , AOR2 , and
AOR3 . For example, Rep2 binding is specified via the patterns in Fig. 4.6, allowing Rep
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dimers to bind to the sites at OR1, OR2, and OR3, whilst ensuring mutual exclusion
with RNAP at PR/PRM by matching against the unboundPR/unboundPRM sites. The full
affinity network for OR1 is,

AOR1 =



bindOR1Cro|unboundPR ∥ bindCro|bindCro @ Ka_protein,

bindOR1Rep|unboundPR ∥ bindRep|bindRep @ Ka_protein,

unbindOR1Rep @ Kd_OR1_rep,

unbindOR1Cro @ Kd_OR1_cro


Here, in addition to the patterns for Rep/Cro binding, we have unary patterns bindOR1Rep @
Kd_OR1_rep and bindOR1Cro @ MAKd_OR1_cro which specify the rates of unbinding for
Rep/Cro dimers.

bindRep | bindRepKa_protein

Ka_protein

Ka_protein

bindOR1Rep | unboundPR bindOR2Rep | unboundPR bindOR3Rep | unboundPRM

Figure 4.6: Affinity patterns for binding of Rep dimers to the operators.

The full affinity network for OR2 is,

AOR2 =



bindOR2Cro|unboundPR ∥ bindCro|bindCro @ Ka_protein,

bindOR2Rep|unboundPR ∥ bindRep|bindRep @ Ka_protein,

unbindOR2Rep @ Kd_OR2_rep,

unbindOR2Rep|noRepOR1 @ Kd_OR2_boost,

unbindOR2Cro @ Kd_OR2_cro


Here the pattern unbindOR2Rep|noRepOR1 @ Kd_OR1_boost captures cooperativity at
OR2 by decreasing the dissociation rate by Kd_OR1_boost whenever Rep is not bound at
OR1. The affinity network AOR3 is analogous to AOR1 except that binding is mutually
exclusive with PRM rather than PR (Fig. 4.6) so we will not list it in full.

Finally, interactions at the promoters are specified in the two networks APR and APRM .
The key elements of these are the patterns for RNAP binding shown in Fig. 4.7, which
specify that RNAP may bind to PRM whenever both OR1 and OR2 are unbound, and to
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bindPR | unboundOR1 | unboundOR2

bindRNAP

Ka_RNAP

Ka_RNAP
bindPRM | unboundOR3

Figure 4.7: Affinity patterns for RNAP binding.

PR whenever both OR3 is unbound. The full network for PR is defined as

APR =


bindPR|unboundOR1|unboundOR2 ∥ bindRNAP @ Ka_RNAP,

unbindPR @ Kd_PR_RNAP,

transcribeCro @ Kf_pr


which has additional patterns for the unbinding of RNAP and for the transcription of
Cro, whilst the full network for PRM is defined as,

APRM =



bindPRM|unboundOR3 ∥ bindRNAP @ Ka_RNAP,

unbindPRM @ Kd_PRM_RNAP,

transcribeRep @ Kf_prm,

transcribeRep|hasRepOR2 @ Kf_prm_boost


In the network APRM , the extra pattern transcribeRep|hasRepOR2 @ Kf_prm_boost cap-
tures cooperative modification by increasing the Rep transcription rate by Kf_prm_boost
whenever Rep is bound at OR2.

4.1.5 Overall Model

We can put together the components of our model by defining the mixture

Π0 ≜ 1 · Switch ∥ [Cro] · Cro ∥ [Rep] · Rep ∥ [RNAP] · RNAP

and defining the overall affinity network containing the patterns for each component,

A ≜ ARep ∪ ACro ∪ AOR1 ∪ AOR2 ∪ AOR3 ∪ APR ∪ APRM .

We can then use this bond-calculus description to generate more conventional mathemat-
ical models for simulation and analysis. Our tool translates this particular model into a
chemical reaction network with 47 species and 181 reaction rules: of the 47 species, 40
correspond to the different possible binding states of the right operator of the λ-switch,
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Figure 4.8: The mean occupancy of each operator over 5000 seconds, given initial Rep concen-
tration [Rep], and no RNAP or Cro. Based on numerical simulation of bond-calculus ODEs:
this matches [230, Fig. 28], which was generated using stochastic simulation.

and these match the states enumerated combinatorially in [331, Table 2]. The tool also
generates a system of coupled ODEs associated to the model. These differential equa-
tions should be viewed with caution since the low copy numbers of molecules involved
in gene regulation (especially the switch itself) mean that stochastic or hybrid stochastic
models [67] might give a more faithful view of the dynamics. We also note that for more
practical analysis of the system these ODEs could be reduced via appropriate equilib-
rium assumptions as in [35, 331], or by network level modelling using general kinetic laws
as considered in the next section. Nevertheless, these ODEs give a useful indication of
the mean behaviour of the switch under similar assumptions to existing thermodynamic
models [2, 325]. In Fig. 4.8 we see the binding curves for repressors at each operator of
the switch, computed by simulation of the ODEs at different levels of Rep concentration;
this matches [230, Fig. 28], which records the mean behaviour of the original Stochastic π
model.

4.2 Network-Level Modelling

In Section 4.1 we saw how gene regulation can be modelled at a molecular level, by
modelling all possible binding states of the regulatory region. This level of detail is not,
however, necessary to give a useful model of the regulatory interactions in a network. In
this section we will give a general purpose, high level model of gene transcription and
translation in the bond-calculus, and show how affinity patterns and general kinetic laws
may be used to capture the patterns of regulation which interconnect them. We will then
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look at the specific example of the Plant Circadian Clock [135].

4.2.1 Modelling the Central Dogma

To begin our modelling of gene regulation we need to define species capturing the agents
involved in the production of a generic protein which we will denote X. To this end we
will define three species: GeneX which denotes the gene encoding X, mRNAX which
denotes the RNA form of X, and ProteinX which denotes the protein form of X. We
define these species as follows,

GeneX ≜ cX .(GeneX | mRNAX)

mRNAX ≜ dMX .0 + tX .(mRNAX | ProteinX)

ProteinX ≜ dX .0 + iX .ProteinX .

These species can interact at a number of sites according to the central dogma of molec-
ular biology: interaction at site cX causes GeneX to be transcribed into its RNA form
mRNAX , whilst interaction at site tX causes mRNAX to be translated into its protein
form ProteinX . We also allow the mRNAX to decay by interacting at site dMX and
for ProteinX to decay by interacting at site dX . Finally, ProteinX has an additional
site iX which does not change its state, but will allow it to act as an activator or repressor
for other reactions.

4.2.2 Gene Gates via General Kinetics and Affinity Patterns

In order to model the dynamics of concrete gene regulatory networks, we need to sup-
plement the skeletal model of translation and transcription given in the previous section
with an affinity network which specifies the dynamics of the network according to general
kinetic laws. If we have a detailed knowledge of the mechanism of binding (similar to our
model in Section 4.1), it is possible to derive suitable kinetic laws based on the proba-
bility of binding at equilibrium [2, 49, 50], however, in practice, since this knowledge is
rarely available, a more pragmatic approach is pursued where kinetic laws are used as
phenomenological models to fit experimental data. One common such model derives from
the Hill equation [195], which approximates the occupancy of an operator O by a protein
P as

f[P ],K,n = [P ]n

Kn + [P ]n =

(
[P ]
K

)n
1 +

(
[P ]
K

)n
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where K ∈ R≥0 is the protein concentration producing 50% operator occupancy, and
the Hill coefficient n ∈ R which measures the degree of cooperativity. Whilst the Hill
equation was originally derived as an equilibrium model for cooperative binding at n
binding sites [195], in practice the Hill coefficient n is used to capture many different
types of positive cooperativity and rarely corresponds precisely to the number of binding
sites [357].

We may then define the general kinetic laws,

Hill+v,K,n([G] , [P ]) ≜ vf[P ],K,n [G]

Hill−v,K,n([G] , [P ]) ≜ v(1 − f[P ],K,n) [G]

which give the rate of transcription of a gene G under positive or negative regulation by
protein P respectively.

For example, this allows us to model a simple gene regulatory network where transcrip-
tion of B is activated by A and A is repressed by B (Fig. 4.9) using the affinity patterns,

Figure 4.9: A simple gene regulatory
network, exhibiting positive and nega-
tive regulation.

cA ∥ iB @ Hill+k1,K1,n1 ,

cB ∥ iA @ Hill−k2,K2,n2 ,

plus extra patterns to account for degradation and
translation, and the mixture defined by,

Π ≜ [A] GeneA ∥ [B] GeneB.

For the case of a general gene gate with n activators A1, . . . , An and m inhibitors
I1, . . . , Im, we can use generalised Hill-type laws3 such as [135],

Hillv;l;k;s;t([G] ; [A1] , . . . , [Am] ; [I1] , . . . , [In]) ≜
v0 +

v1

(
[A1]

l1

)s1
+...+vm( [Am]

lm
)sm

1+
(

[A1]
l1

)s1
+...+( [Am]

lm
)sm

1 +
(

[I1]
k1

)tn + . . .+
(

[In]
kn

)tn [G]

Here we have a vector of parameters v = (v0, v1, . . . , vm) for the activation velocities,
l = (l1, . . . , lm) and k = (k1, . . . , kn) for the activation/repression fractional occupancies,
and s = (s1, . . . , sm) and t = (t1, . . . , tn) for the Hill coefficients for activators/inhibitors.
For the remainder of this paper we will consider only Hill coefficients s1 = . . . = sm =
t1 = . . . = tn = 2, and write simply, Hillv;l;k for the corresponding kinetic laws.

3Here we have used the same form of Hill-type function as [135], however, there are many variants in
use in the literature e.g. [49, 202, 301, 343].
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Figure 4.10: Compact gene regulation net-
work for the plant circadian clock of [135,
Fig. 1]: each gene represents two genes of
the underlying network.

iCL

cP97 Hillv;l;k

iP51 iEL

Figure 4.11: Affinity pattern for transcription
regulation at P97 where v = (v2A, v2B), l =
(K3), and k = (K4, K5).

4.2.3 Example: Compact Plant Circadian Clock

In this section we will look at the plant circadian clock, a complex genetic circuit consisting
of at least a dozen genes sustaining regular oscillations through a number of interconnected
positive and negative transcriptional feedback loops [273]. The circadian clock of model
organism Arabidopsis thaliana in particular has been the subject of a series of increasingly
sophisticated models over the last decade [164, 246, 301, 302, 327, 362]. Bio-PEPA has
been used to analyse the stochastic properties of plant circadian clock [185] starting from
Pokhilko et al’s continuous model [302], along with several other clocks [5, 6, 21, 125],
whilst the Kai-based (non-transcriptional) circadian clock [21, 234] is a standard case
study for Continuous π. Here we will take as our basis the compact model of [135, 136]
which expresses qualitative behaviour of the clock using only four species (Fig. 4.10), and
for simplicity we restrict our model to constant daylight conditions (the original model
includes separate rates for light/dark conditions [136] which can be modelled either as
discrete events [122, 173] or smooth transition functions [185, 320]).

We start our model with a mixture covering all of the genes in the network, constructed
by instantiating the species defined in Section 4.2.1.

Π0 ≜ 1 · GeneCL ∥ 1 · GeneP97 ∥ 1 · GeneP51 ∥ 1 · GeneEL

These species only represent the various agents implementing the mechanism of gene
regulation. The main regulatory interactions between the various genes are specified
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separately via the affinity network,

AReg =
{
cCL ∥ iP97 ∥ iP51 @ Hill(v1);;(K1,K2),

cP97 ∥ iCL ∥ iP51 ∥ iEL @ Hill(v2A,v2B);(K3);(K4,K5),

cP51 ∥ iCL ∥ iP51 @ Hill(v3);();(K6,K7),

cEL ∥ iCL ∥ iP51 ∥ iEL @ Hill(v4);();(K8,K9,K10)
}

These patterns assign sites as the arguments of the kinetic law in a positional manner
so, for example, the affinity pattern cCL ∥ iP97 ∥ iP51 @ Hill(v1);();(K1,K2) indicates that the
transcription of the CL mRNA is inhibited by the P97 and P51 proteins whilst the affinity
pattern cP97 ∥ iCL ∥ iP51 ∥ iEL @ Hill(v2A,v2B);(K3);(K4,K5) (displayed graphically in Fig. 4.11)
indicates that the transcription of the P97 mRNA is activated by the CL protein and is
inhibited by the P51 and EL proteins (as in Fig. 4.10). Additionally the degradation and
translation rates are captured in the network,

ARest =
{

dM CL @ MAk1L
, dCL @ MAd1 , tCL @ MAp1T

,

dM P97 @ MAk2 , dP97 @ MAd2L
, tP97 @ MAp2 ,

dM P51 @ MAk3 , dP51 @ MAd3L
, tP51 @ MAp3 ,

dM EL @ MAk4 , dEL @ MAd4L
, tEL @ MAp4

}
This demonstrates the ability of bond-calculus to capture a general model of gene

regulation as agents, whilst the affinity network captures the specific interactions in the
network with dynamics following a general kinetic law.

Generating ODEs from this bond-calculus model gives a system of differential equations
that coincides with the model of [135] under constant daylight conditions; Fig. 4.12 (left)
shows the result of numerical simulation. This give a reasonable agreement with a single
run of stochastic simulation in Fig. 4.12 (right), also generated from the bond-calculus
model.
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Figure 4.12: Plant circadian clock protein levels, with ODE simulation on the left (with
parameter values based on [135]), and stochastic simulation with discrete levels of step size
h = 0.01 on the right.
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Chapter 5

Uncertain Models and Uncertain
Contexts

In this chapter we introduce the Logic for Behaviour in Uncertain Contexts (LBUC) for
reasoning about the behaviour of bond-calculus models under uncertain contexts. This
builds upon the existing logic LBC [19], which combined Signal Temporal Logic properties
over Continuous π models with a context operator, C ▷φ. LBUC extends this approach
to handling different sources of uncertainty, whether they be the initial conditions and
reaction rates of the system (expressed as an uncertain bond-calculus model), the imprecise
numerical methods used for simulation, the context process C, or the time point at which
the context is introduced.

In Section 5.1 we begin by extending the syntax and semantics of the bond-calculus to
encompass interval uncertainty in initial concentrations and reaction rate parameters. In
Section 5.2 we introduce the syntax and semantics of LBUC. Finally, Section 5.3 discusses
the range of properties which LBUC allows us to express.

5.1 Uncertain Systems

In this section we will outline how bond-calculus models and their semantics are extended
to express models involving uncertain initial conditions and reaction rates. We start by
introducing uncertain mixtures, defined as follows,

Definition 5.1.1. An uncertain mixture P,Q is defined according to the grammar,

P,Q ::= I · S | P ∥ Q
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where I = [a, b] ∈ IR is a real interval defining the range of possible concentrations for a
species S.

We reinterpret the syntactic and semantic rules introduced in Section 3.3 over uncertain
mixtures, using interval arithmetic in place of real arithmetic in the definition of structural
congruence ≡ over uncertain mixtures. The mixture space Mix is similarly generalized
to an interval vector space M̂ix of uncertain mixtures.

It remains to define uncertain affinity networks. We start by generalising rate laws
and rate law families to be interval functions.

Definition 5.1.2. An interval rate law consists of an interval function R̂ : IRn → IR.

Definition 5.1.3. An interval rate law family consists of an interval function R̂ : IRm →
IR∗ → IR.

We can also relate standard rate laws to their interval variants by defining when the
latter is an interval extension of the former.

Definition 5.1.4. An interval rate law R̂ : IRn → IR is an interval extension of a rate
law R : Rn → R if R(x) ∈ R̂(X) for every interval X and real x ∈ X.

Definition 5.1.5. An interval rate law family R̂ : IRm → IR∗ → IR is an interval
extension of a rate law family R : Rm → R∗ → R if R̂(X) is an interval extension of R(x)
for every interval vector X and real vector x ∈ X.

We can now apply this to extend affinity networks to interval rate parameters.

Definition 5.1.6. An uncertain affinity network has the form

Â =
{

γ(1) @ L̂1, . . . ,γ
(n) @ L̂n

}
∈ Âff ≜ P

(
Ordered-Pattern ×

[
IR∗

≥0 → IR
])

where each L̂i : IRmi
≥0 → IR is an interval rate law.

Many examples of uncertain affinity networks take the form

Â =
{

γ(1) @ L(1)
k̂i
, . . . ,γ(n) @ L(n)

k̂i

}
of an affinity network whose rate laws families L(i) are each applied to a vector k̂i =(
K

(i)
1 , . . . , K(i)

mi

)
of interval uncertain parameters. These are interpreted as uncertain

affinity networks in the sense of Definition 5.1.6 by taking an appropriate interval extension
L̂(i) of each rate law family L(i) .

We can also define when an uncertain affinity network is an interval extension of an
affinity network.
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Definition 5.1.7. An uncertain affinity network Â =
{

γ(1) @ L̂1, . . . ,γ
(n) @ L̂n

}
is an

interval extension of the affinity network A =
{

γ(1) @ L1, . . . ,γ
(n) @ Ln

}
if L̂i is an

interval extension of Li for all i. In this case we write A ∈ Â.

We are now ready to define uncertain bond-calculus models.

Definition 5.1.8. An uncertain bond-calculus model
(
Π̂0, Â

)
consists of:

• an uncertain mixture Π̂0 = I1S1 ∥ . . . ∥ InSn;

• an uncertain affinity network Â =
{

γ(1) @ L̂1, . . . ,γ
(n) @ L̂n

}
.

Uncertain bond-calculus models then act as an over-approximation of a whole set of
bond-calculus models that they soundly enclose.

Definition 5.1.9. A bond-calculus model
(
Π0,A

)
is contained in the uncertain bond-

calculus model
(
Π̂0, Â

)
if Π0 ∈ Π̂0 and Â is an interval extension of A. In this case we

write
(
Π0,A

)
∈
(
Π̂0, Â

)
.

Over the next few subsections we will discuss how we should interpret interval un-
certainties in an uncertain bond-calculus model’s initial mixture (Section 5.1.1) and its
affinity network (Section 5.1.2), leading up to defining a formal semantics based on tra-
jectories (Section 5.1.3) and an interval extension of the ODE extraction procedure for
the bond-calculus (Section 5.1.4).

5.1.1 Uncertain Initial Mixtures

We now consider how we should interpret a bond-calculus model (Π̂0,A) with an uncertain
initial mixture

Π̂0 ≜ I1S1 ∥ . . . ∥ InSn

which, for the moment, we assume is paired with a real affinity network A. In this case the
treatment of uncertainty is fairly straightforward since we may assume that each interval
Ij corresponds to an unknown constant parameter cj ∈ Ij. Hence, we may regard the
uncertain mixture Π̂0 as representing a parametric set of mixtures

Π̂0 ≜
{

Π0(c1, . . . , cn) | c1 ∈ I1, . . . , cn ∈ In
}

where Π0(c1, . . . , cn) ≜ c1S1 ∥ . . . ∥ cnSn. This means that interval mixtures can be inter-
preted as a non-deterministic choice of initial mixture.

We now demonstrate the role of initial uncertainty to an example enzymatic reaction
system.
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Figure 5.1: Mass Action Enzyme System

Example 5.1.10. Consider the bond-calculus model with species

S ≜ s(ℓ).(s∗@ℓ.S + p∗@ℓ.P ) E ≜ e(ℓ).e∗@ℓ.E P ≜ p.0

and affinity network

AMA ≜
{
s ∥ e @ MAk1 , s

∗|e∗ @ MAk−1 , p
∗|e∗ @ MAk2

}
.

based on the fixed rate parameters

k1 ≜ 1.0 k−1 ≜ 0.1 k2 ≜ 0.5.

This models a classic mass action enzyme reaction system which is shown in Fig. 5.1 and
consists of a substrate S and an enzyme E which dynamically bond to form a complex
C ≜ (νℓ)(s∗@ℓ.S|p∗@ℓ.P ) which degrades to form a product P .

If we start with an initial mixture with fixed real concentrations

Π0 ≜ 0.1E ∥ 1.0S

the evolution of the system is as shown in Fig. 5.2a.
Suppose we are unsure about the exact initial concentration of enzyme. In this case

we can model the system using an uncertain initial mixture,

Π̂UI
0 ≜ [0.10, 0.12]E ∥ 1.0S

Even this small uncertainty in the initial conditions leads to a comparatively large uncer-
tainty in the final state of the system as shown in Fig. 5.2b.
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Figure 5.2: Enzyme simulation results with definite and uncertain initial conditions.

5.1.2 Uncertain Affinity Networks

We will now discuss the interpretation of interval uncertainties in affinity networks, focusing
for the moment on the special case of uncertain affinity networks with interval rate
parameters.

The interval uncertainties in these affinity networks are a little trickier to handle than
those in initial mixtures, since they impact not just the initial state of the system, but its
evolution at every subsequent time point. This gives us a choice as to how we interpret
this uncertainty over time. The first choice is to treat these intervals as representing
time-invariant uncertainty. In this case consider an uncertain affinity network of form

Â =
{

γ(1) @ L(1)
k̂
, . . . ,γ(n) @ L(n)

k̂

}
where each rate law is derived from a rate law family L(i) based on a vector of interval
parameters k̂ = (K1, . . . , Km)1. This can be interpreted as a parametric affinity network

A(k1, . . . , kn) =
{

γ(1) @ L(1)
(k1,...,km), . . . ,γ

(n) @ L(n)
(k1,...,km)

}
where each of these intervals parameters Ki corresponds to a fixed rate parameter which
takes the same value ki ∈ Ki at every point during the evolution of the system. That is,
every rate parameter of the system really has a single fixed value ki, we just don’t know
its precise value and hence represent our uncertain knowledge of its value by the interval
Ki.

Under this assumption, we can actually encode our uncertain affinity network A as a
bond-calculus model

(
Π̂k,Ak

)
where all of the uncertainty has been shifted to the initial

1For simplicity we assume w.l.o.g. that all rate laws depend on a single shared parameter vector k̂.
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mixture Π̂k ≜ ∥iKiWi in which the fresh species Wi are defined by Wi ≜ wi → Wi, the
affinity network Ak is defined by

Ak ≜
{

γ(i) ∥w1 ∥ . . . ∥wm @ Li : i ∈ {1, . . . , n}
}
,

and the real rate laws Li : Rn+p → R are defined by

Li
(
[w1] , . . . , [wm] ,

[
γi1
]
, . . . ,

[
γip
])

≜
(
L(i)([w1] , . . . , [wm])

)([
γi1
]
, . . . ,

[
γip
])
.

In general, however, we have no reason to believe that the uncertain parameters in
an affinity network have a constant value throughout the evolution of a system. In many
situations, uncertain rate parameters in a reaction correspond to the impact of reactants
which are not included in our model due either to their complexity or our uncertain
knowledge of their exact structure or state. In such cases we must assume that these rates
may vary over time since we have no reason to think that the reactants to which they
correspond have a constant concentration. This meant that we must treat the interval
rate parameters as time-dependant unknown parameters ki(t) ∈ Ki in a time-varying
parametric affinity network

A(t) =
{

γ(i) @ L(i)
k(t)

∣∣∣ i ∈ {1, . . . , n}
}

where k(t) = (k1(t), . . . , km(t)). Unlike the time-variant case, the uncertainties in such
affinity networks cannot be encoded as uncertain initial conditions. If, however, we apply
the bond-calculus semantics to the parametric model (Π0,A(t)), we get an IVP

dΠ
dt = f(Π,k(t)) ≜ d(Π,A(t))

dt ; Π(0) ∈ Π0 (5.1)

with an uncertain parameter vector function k : R≥0 → Rm matching the form of Defini-
tion 2.4.3. The case of constant k(t) ≡ k0 ∈ Rm in fact coincides with our previous discus-
sion of time-invariant uncertain affinity networks. Specific methods for directly analysing
this class of IVPs (Definition 2.4.2) were also introduced by Lin and Stadtherr [241]. The
time-varying case is in general much harder since k(t) could potentially make arbitrary
discontinuous jumps from each time point to the next, however, if we make the (sometimes
reasonable) assumption of continuous k ∈ C([−∞,∞]), this class of systems also yields
a unique solution and is supported in Flow* via an extension of the methods of Lin and
Stadtherr to time-independent uncertainty [109].

Example 5.1.11. Suppose that in the enzyme system of Example 5.1.10, in the place of
uncertain initial conditions, we have interval uncertain knowledge of the rate parameter
k1 ∈ [1.00, 1.05].
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(b) Time-varying enzyme flowpipe.

Figure 5.3: Enzyme systems with time-invariant and time-varying uncertainty.

If we want to interpret k1 as a time-invariant rate parameter, it is possible to transform
this into a system with the uncertain initial conditions

Π̂TI
0 ≜ 0.1E ∥ 1.0S ∥ [1.00, 1.05]W

with additional species

W ≜ w.W

and the affinity network,

AMA ≜
{
w ∥ s ∥ e @ MA1, s

∗|e∗ @ MAk−1 , p
∗|e∗ @ MAk2 , p @ MAk3

}
.

The potential behaviours of this system are shown in Fig. 5.3a. In this case the
uncertainty in the rate parameter leads to a reasonably small uncertainty in the final
state of the system.

If instead we assume that the unknown rate parameter k1 (and hence the affinity
network) varies continuously over time and use Flow* to handle it as a time-varying
parameter, this leads to much greater uncertainty in the system evolution and for the
flowpipe for the system to eventually blow up as shown in Fig. 5.3b.

5.1.3 Dynamics of Uncertain Models

We are now ready to formally define the possible behaviours of an uncertain bond-calculus
models based on bond-model trajectories which generalize the discussions in the previous
two sections. Bond-model trajectories couple a trajectory in the space of mixtures repre-
senting the evolving state of the system with a trajectory in the space of affinity networks
representing a time-varying affinity network.
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Definition 5.1.12. A function Γ : R≥0 → Mix × Aff is a bond-model trajectory iff Γ
is the product Γ = Π × A (defined such that (Π × A)(t) = (Π(t),A(t)) for all t ∈ R≥0)
of some continuously time-varying affinity network A : R≥0 → Aff and some trajectory
Π : R≥0 → Mix of the vector field

dΠ
dt = d(Π,A(t))

dt . (5.2)

We then define when a bond-model trajectory is consistent with a given interval bond-
model based on the interval uncertainties contained in both its initial mixture and its
affinity network.

Definition 5.1.13 (Uncertain Bond-Model Trajectory). Given an uncertain bond-calculus
model M =

(
Π̂0, Â

)
, a bond-model trajectory Γ = Π×A is consistent with M if Π(0) ∈ Π̂0

and if A(t) ∈ Â for all t ∈ R≥0.

We note that this definition is slightly more flexible than the discussion in the previous
section since it encompasses arbitrary interval uncertainties in the affinity network, not
just those arising from a fixed set of interval rate parameters.

5.1.4 Interval ODE Extraction

Whilst bond-model trajectories define the possible behaviours of an uncertain bond-
calculus model, in order to apply analysis tools such as Flow*, we need to represent the
system in a closed form as an interval Initial Value Problem.

This is done by extending the semantics of the bond-calculus from Chapter 3 to a
(symbolic) interval semantics, with intervals replacing every occurrence of real numbers
and interval arithmetic replacing real arithmetic. Applying the ODE extraction procedure
will still produce a symbolic initial value problem, however, intervals may now occur as
both the initial conditions and in the right hand side of the resulting systems of ODEs.
Whilst these interval systems are outside of the range of normal numerical solvers, they
match the input format of Flow* [110] which is able to handle uncertain initial conditions,
whilst treating interval uncertainties on the right hand side of ODEs as time-varying
uncertain inputs.

The following result shows us that a flowpipe for the interval vector field derived
from an uncertain bond-calculus model gives an interval extension of the bond-model
trajectories consistent with the model.

114



Proposition 5.1.14. Consider an uncertain bond-calculus model
(
Π̂0, Â

)
. Given any

flowpipe Πf for the symbolic Interval Initial Value Problem

dΠ̃
dt =

d
(
Π̃, Â

)
dt ; Π̃0 = Π̂0 (5.3)

and any bond-model trajectory Π×A consistent with
(
Π̂, Â

)
, we have that Πf is an interval

extension for Π.

Proof. (Sketch) We first observe that

d(Π,A(t))
dt ∈

d
(
Π, Â

)
dt

for any time point t ∈ R≥0. This holds since, by construction, the interval semantics of
bond-calculus models forms an interval enclosure of its real semantics. But then a Flow*
flowpipe for the interval system Eq. (5.3) is guaranteed to enclose any trajectory of the
vector field Eq. (5.2), giving the result.

5.2 LBUC Logic: Syntax and Semantics

We are now ready to introduce the LBUC logic to express the temporal behaviour of
uncertain bond-calculus models in uncertain bond-calculus contexts.

The syntax of LBUC formulae is defined as follows.

Definition 5.2.1. A LBUC formula is defined according to the following grammar:

φ, ψ ::= ρ (atomic propositions)

| φ ∧ ψ | φ ∨ ψ | φ ⇒ ψ | ¬φ (logical operators)

| φFI ψ | φGI ψ | φ UI ψ (temporal operators)

| C ▷φ (context operator) ,

where:

• I = [a, b] is a time interval;

• a context C ≜ (Π,A) consists of an uncertain bond-calculus model.

As in STL LBUC formulae include expressions ρ ≜ f(x) > 0 over system variables
as atomic propositions, along with the standard logical operators, and MITL temporal
operators. To these we add the context operator, C ▷φ, which states that the property
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φ should hold immediately after the system is placed within the uncertain context C. In
the case that C consists of a fully defined bond-calculus model C = C, this corresponds
directly to the context operator of LBC, however, this also includes non-trivial uncertain
contexts,

C ≜
(
[a1, b1]X1 ∥ . . . ∥ [an, bn]Xn, A([c1, d1], . . . , [cm, dm])

)
which specify an interval box of uncertain initial conditions x(i)

0 ∈ [ai, bi] and whose affinity
networks A may include intervals denoting uncertain reaction rates ri ∈ [ci, di].

We now define the semantics of LBUC based on the relations Π×A |=t φ and M |=t φ

which define when a logical property φ is satisfied by a bond-model trajectory or an overall
(uncertain) bond-calculus model M respectively.

Definition 5.2.2 (LBUC semantics). The semantics of LBUC is given by the |=t relation
defined over bond-model trajectories at a given time point t by

Π × A |=t ρ iff ρ(Π(t)) > 0

Π × A |=t φ ∧ ψ iff Π × A |=t φ and Π × A |=t ψ

Π × A |=t ¬φ iff Π × A ̸|=t φ

Π × A |=t φ UJ ψ iff
 for some t′ ∈ t+ J,(

Π × A |=t′ ψ and for all t′′ ∈ [t, t′],Π × A |=t′′ φ
)

Π × A |=t Ĉ ▷φ iff (Π × A)(t) ∥ Ĉ |=0 φ

and for an overall uncertain bond-calculus model by,(
Π̂, Â

)
|=t φ iff Π × A |=t φ for every bond-model trajectory of

(
Π̂, Â

)
.

The semantics for the other logical and temporal operators are defined in the standard
way based on logical and temporal equivalences.

Remark 5.2.3. We note that in the case of uncertain contexts, we do not have that(
Π̂, Â

)
|=t ¬φ iff

(
Π̂, Â

)
̸|=t φ

as was the case for STL or LBC, since we implicitly quantify over uncertain models.
Instead, we have

(
Π̂, Â

)
̸|=t φ iff


for some bond model-trajectory Π × A

consistent with
(
Π̂, Â

)
, (Π,A) |=t ¬φ.

That is, if the property φ is refuted by the solution Π of the system under some possible
time-varying affinity network A.

116



Remark 5.2.4. We can consider interval bond-calculus models as a special case of uncertain
contexts since(

Π̂, Â
)

|=t φ iff 0 |=0
(
Π̂, Â

)
▷Gt φ iff 0 |=0

(
Π̂, Â

)
▷Ft φ

where we employ temporal operators with the singleton time interval t = [t, t]. This
means that all logical properties involving uncertain initial conditions can be regarded as
contextual properties, although directly handling uncertain initial conditions may still be
useful to perform direct simulation and visualization. However, uncertain context operators
are strictly more powerful than uncertain initial models since they can introduce new
contexts into the system at arbitrary points in its subsequent evolution and, through
alternation with logical and temporal operators, make it possible to express contingent
context introductions.

5.3 Expressing Temporal Behaviour Under Uncertainty

In this section we will consider the expressive power of LBUC, give examples of how it
relates to biological modelling, and discuss how it relates to existing modelling formalisms.

The LBUC logic brings together two elements: a logic for specifying the temporal
behaviour of models and a language for defining models with uncertain states. These are
brought together via the context operator ▷, which introduces new uncertainty into the
model at a given instant in time.

The temporal component (which corresponds to STL) already suffices to express
properties on the ordering of events involving the state of a system such as Example 5.1.10,
for example,

F[0,5]([S] > 5 ∧ G[0,3]([P ] < 2))

which states that, at some point within the first 5 time units, the substrate species S will
have a concentration greater than 5 and the concentration of the product P will be less
than 2 for the next 3 time units.

In LBC, this was extended by allowing events — the introduction of a fixed process via
a context operator C ▷φ — to be nested within a temporal formula. Whilst this might be
compared to modelling formalisms with discrete events, when combined with a temporal
logic, this makes it possible to express hypothetical biological experiments on a model,
which mix observations of its temporal behaviour over time and probes which perturb the
system by introducing new reactants. For example, this permits properties such as

F[0,5]([S] > 5 ∧ 0.5I ▷G[0,3]([P ] < 0.1))
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which states that there is some time point within the first 5 time units, for which S has a
concentration greater than 5 at which if we introduce a 0.5 concentration of an inhibitor
species I, then the concentration of P will be less than 0.1 for the next 3 time units.

In LBUC this is further extended with contexts involving both the mixture and its
affinity network and with uncertainty which may be introduced either instantaneously
or gradually over time. We will now see how, when embedded within temporal logic
properties, this enables the logic to express a diverse range of contingent behaviours, and
opens many new possibilities for biological modelling.

5.3.1 Robustness Under Perturbation

Robustness of behaviour under environmental perturbations is considered a key organizing
principle of biochemical networks, which frequently operate in noisy environments and
need to continue to function under a variety of genetic mutations [222]. LBC is already
well-suited to expressing the robustness of properties to the timing of events (consisting
of context introductions) and has been employed to study robustness of post-translational
oscillators in [22]. Uncertain contexts translate naturally to a more general class of
contextual robustness properties; that is, the uncertain contextual property Ĉ ▷φ states
that the property φ holds robustly under the class of contexts in Ĉ. In the simplest case,
an uncertain context representing the initial state of a system allows us to state that a
property of a given biological system holds robustly under reactant concentrations and
time-varying rate parameters. More generally, the mixture of uncertain contexts with
temporal operators also makes it possible to specify robustness under both the timing
and the state of the context by which a system is perturbed; this represents robustness
of a system to interactions with an uncertain external environment.

5.3.2 Existence of Coreactants

Whilst the role of the context operator as a universal quantifier suggests that it is mainly
directed towards verifying properties hold over a range of uncertain conditions, it can also
be used to verify the existence of the conditions required for a desired property to hold.
To this end we may define an existential context operator by

Ĉ ▷∃ φ ≡ ¬
(
Ĉ ▷¬φ

)
.

This asserts that there exists some context consistent with Ĉ which can make the system
satisfy φ. Such properties are very interesting from a biochemical perspective as the search
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for coreactants or coreactant concentrations which move a system into a given behaviour
regime is central to the development of pharmaceutical interventions.

5.3.3 Experimental Protocols

The mixture of contextual and temporal operators offers a way to model experimental
protocols in which one modifies a system at given points in time and observes the response
of the system to this stimulus. We may, for example, model simple protocols such as,

ψ ≜ G[t1−δ,t1+δ](Φ1 ▷G[t2−δ,t2+δ](Φ2 ▷ . . . ▷G[tn−δ,tn+δ](Φn ▷F[0,T ] φ))

which states that after modifying the system by introducing the context of reactants
Φ1 after t1 time units, Φ2 after another t2 time units, etc, then subsequently conditions
described by the property φ will occur within at most T time units. Furthermore, this
property requires that the result holds robustly under variations in the timing of reactant
introductions (up to δ time units) and under any uncertainty in the initial conditions or
in any of the reactant contexts Φi.

These experiments are somewhat similar to the use of discrete events in frameworks
such as discrete event simulation and hybrid automata. However, LBUC allows us to di-
rectly specify experimental protocols and expected sequences of observations without
entangling them with the model of the intrinsic behaviour of the system. Addition-
ally, LBUC makes it possible to specify more complex protocols in which how we probe
the system is dependent upon its previous behaviour, whilst also handling uncertainty as
to the timing of events and the state of the system.

5.3.4 Differential Species Introduction

As well as directly introducing a species into a system at an instant in time, in LBUC it
is also possible to define a differential context operator Π ▷∂ φ which gradually introduces
each species Si in the process Π ≜ ∥nj=1 riSi into the system at a (potentially uncertain)
rate ri. This may be defined as a derived modality based on the context operator

Π ▷∂ φ ≡ CΠ ▷φ

where the context CΠ is defined by

CΠ ≜
n

∥
j=1

(1 ·GS,AS,r)

given the species GS ≜ gS → (GS|S) and affinity networks AS,r ≜ { gS @ r } .
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This makes it possible to model experimental protocols in which a new species is
introduced not instantaneously but gradually at a given rate. This also corresponds to
the central role of compartments (such as cell membranes) in biological systems, which
limit the rate of flow of reactants in between well-mixed reaction environments.

The use of intervals of uncertainty in these introduction rates ri plays different roles in
behavioural specification and modelling. When we are interested in probing the behaviour
of a model in an experimental protocol, this allows us to verify that the property we
are interested in is robust to the exact rate of introduction of a new reactant. When
instead we are interested in modelling the influx of reactants from the wider environment,
this allows us to account for our uncertain knowledge of the rate of flow into the system.
Similarly to normal context operators, the uncertain rates in a differential context may be
interpreted as either time-invariant or time-varying. These respectively cover the case in
which reactants flow into the system at a fixed but unknown rate (due to, say, imprecision
in measurements) and the case that reactants are introduced at a time-varying rate
(depending on, say, the state of the membrane, or fluctuations external to the system).

5.3.5 Reconfigurable Networks

Whilst most reaction based modelling frameworks for biological systems assume that
species react according to a static set of reaction rules, bond-calculus contexts offer the
possibility of modelling the introduction of new reaction rules over time. This can be
modelled as an affinity network context A ▷φ which introduces an affinity network A
which is instantaneously imposed upon the system.

This corresponds to reconfigurable biochemical networks in which certain events change
the network structure over time. Reconfigurable systems are also of interest in synthetic
biology, as they can model multi-functional biochemical circuits which can switch between
different roles based on chemical inputs [183] or other input types such as light [176].
We are also able to encode the removal of reaction rules, by adding reaction rules with
negative rates (although not when these rates are uncertain).
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Chapter 6

Verified monitoring with Flow*

Our focus thus far has been on modelling languages for biological systems (such as the
bond-calculus) and specification logics describing their behaviour under uncertainty (such
as STL and LBUC). In order to practically apply such specification languages to analysing
biological systems, we require automated methods to verify whether a model conforms
to a given specification. In particular, these verification methods must be able to handle
uncertainties in the system arising from uncertain initial conditions and parameters as
well as environmental uncertainties introduced through uncertain contexts. Temporal logic
verification for continuous systems has frequently been achieved via lightweight formal
methods such as the Maler and Nickovic’s signal monitoring algorithm for STL [253] and
Banks and Stark’s signal-based monitoring algorithm for LBC [20, 23], which use numerical
traces from a model or a running system to compute Boolean signals for propositions in
a bottom up manner.

In this chapter we propose to combine the signal-based monitoring approach with
Flow* verified integration to acheive a sound model checking procedure for the full range
of STL and LBUC properties given a wide range of different uncertainties. To achieve
soundness of monitoring, we make use of three-valued signals to record our uncertainty
in the Boolean truth values of propositions over time. Similarly to the role of intervals
in numerical computations, these utilize three-valued logic as a way of quantifying our
monitoring results over each of the uncertainties in a given model as well as any additional
uncertainties introduced throughout the verification procedure. We introduce an interval-
based representation for three-valued signals and see how three-valued signals may be
computed compositionally for each STL and LBUC operator, extending Maler and Nick-
ovic’s Boolean signal monitoring algorithm. We also introduce novel symbolic techniques
for monitoring atomic propostions over Flow* flowpipes, allowing us to more precisely
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monitor complex atomic propositions, whilst we introduce an adaptive monitoring ap-
proach to improve the efficiency of monitoring by reserving these symbolic techniques
to the most difficult segments of the time domain. We will see that these methods are
able to efficiently verify interesting properties of biological systems modelled in the bond-
calculus whilst our adaptive monitoring algorithm acheives an effective tradeoff between
monitoring precision and efficiency.

As well as allowing us to handle uncertainties, the use of exact formal methods also gives
us a way to reason about the long-term behaviour of a system in a manner not possible
with methods based on finite numerical traces. To this end, we introduce a method for
verifying unbounded temporal operators, which employs invariants of a system’s dynamics
to extend three-valued signals over unbounded time domains. This offers a practical way
to extend our verified monitoring method to tackle many interesting classes of unbounded
time properties.

In Section 6.1.1 we introduce three-valued signals and specify rules to combine these
to derive signals for complex propositions. We then develop an efficient algorithm for
monitoring signals of atomic propositions based over Flow* flowpipes in Sections 6.1.2
and 6.1.3. In Section 6.3 we show that in some cases this may be extended to verification
of unbounded temporal operators through the use of invariant sets. Then in Section 6.4
we examine the performance of our monitoring algorithm when applied to a 9-dimensional
genetic oscillator whilst in Section 6.5 we demonstrate the application of our verification
techniques to a model of Predator Prey Role-Reversal in a marine ecosystem.

Some of the results from this chapter have been published as part of the paper [360].

6.1 Three-Valued Monitoring over Flow* flowpipes

In this section we present an effective verified monitoring algorithm for Signal Temporal
Logic by adaptively applying three-valued signal monitoring to Flow* flowpipes.

6.1.1 Three-Valued Signals

Our verified monitoring algorithm is based on three-valued signals:

Definition 6.1.1. A three-valued signal is a function s : R≥0 → T.

These extend the Boolean signals s : R≥0 → B used in numerical STL monitoring
algorithms to track the validity of the answer at each time point t ∈ [0,∞), to use the
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third logical value Unknown (U) of Three-Valued Logic, to indicate when we can neither
verify nor refute the proposition. A three-valued signal is consistent with the (Boolean)
truth values of a proposition φ if it soundly under-approximates the time-regions on which
φ is true (T) and false (F):

Definition 6.1.2. Given a proposition φ and a three-valued signal s, we say s is a signal
for φ (over the trajectories of a given system) if at every time t,

s(t) = T =⇒ x |=t φ for every trajectory x

s(t) = F =⇒ x |=t ¬φ for every trajectory x .

This definition allows a single proposition φ to be approximated by many different
signals to differing degrees of precision. Indeed, the signal which is unknown everywhere
is a valid (but uninformative) signal for every proposition.

For concrete computation we work with those three-valued signals s that can be
represented by a finite set of nonempty disjoint intervals Ij = [lIj

, uIj
] and Boolean values

sj ∈ B, with j ranging over some index set Γ. These values determine signal s on those
intervals, with U assumed elsewhere, and we write s = (Ij, sj)j. For convenience we
also admit some improper representations including empty intervals, values sj = U, and
intervals with overlapping endpoints (but consistent logical values); these may all be
rewritten as proper representations.

Given propositions φ and ψ with s = (Ij, sj)j a signal for φ and w = (Ij, wj)j a signal
for ψ, we have the following constructions:

¬φ has a signal given by ¬s = (Ij,¬sj)j

φ ∧ ψ has a signal given by s∧w = (Ij, sj ∧wj)j where we may assume, without loss
of generality, that s and w are represented using a common set of intervals Ij; this
is always possible by taking a common refinement of the representations of s and w
respectively.

F[a,b] φ has a signal given by F[a,b] s = (Kj ∩ [0,∞), sj)j where

Kj =


Ij − [a, b] if sj = T

Ij
.− [a, b] if sj = F

so that the true intervals I are shifted back and outwards by interval subtraction
in the same way as in the Boolean interval representation of STL [253], whilst the
false intervals I are shifted back and inwards by inner subtraction.
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Whilst the pointwise semantics of the until operator could be extended directly to
three-valued logic, it is somewhat trickier to define a closed representation, as required for
interval-based verified monitoring. In the case of Boolean signals, the until signal s UJ w is
usually computed by subdividing s into disjoint unitary signals sj (that is, signals which
are indicator functions sj(t) = χIj

(t) = (T if t ∈ Ij otherwise F) of pairwise disjoint
intervals) [253]. For three-valued signals we will follow a similar approach, however we
need an appropriate three-valued generalisation of unitary signals. To this end we define
a connected signal.

Definition 6.1.3. We say a three-valued signal s is connected if for every interval [a, b]
we have that,

(s(a) ∧ s(b)) ≤ s(t) for all t ∈ [a, b].

under the ordering F ⪇ U ⪇ T.

This means both the regions of the signal which are definitely true (T) or possibly true (T
or F) are both connected sets. We can also see that a connected signal can be represented
as a three-valued indicator signal.

Proposition 6.1.4. A three-valued signal s is connected iff there exist intervals J ⊆ I

such that s is equal to the three-valued indicator signal,

χJ, I(t) ≜


T if t ∈ J

U if t ∈ I \ J

F if t ̸∈ I

Proof. First we note that an indicator signal χJ, I is clearly connected. Conversely, given
a connected signal s, take

J =
[
lJ ≜ inf

s(t)=T
t, uJ ≜ sup

s(t)=T
t

]
and

I =
[
lI ≜ inf

s(t)∈{T,U}
t, uI ≜ sup

s(t)∈{T,U}
t

]
⊇ J

(for simplicity we assume that the properties defining these intervals hold at their endpoints;
the other cases result in open/half-open intervals and are analogous). Then we see that
s = χJ, I : for any t ∈ J , T ≥ s(t) ≥ min(s(lJ), s(uJ)) = T by the connectedness of s,
whilst for any t ̸∈ I, supposing s(t) ̸= F and w.l.o.g. that t > uJ , since s is connected,
s([uJ , t]) = {T,U} contrary to the maximality of uJ , and finally, for any t ∈ I \ J , we
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first see by connectedness of s that s(t) ∈ {T,U}, and then if we suppose s(t) = T we get
a contradiction, similarly to the previous case, leading us to conclude that s(t) = U.

We note that it is straightforward to compute a signal for φ UK ψ on connected signals.

Proposition 6.1.5. If s and w are signals for φ and ψ respectively, and s is connected
then

s UK w ≜ s ∧ FK(s ∧ w)

is a signal for φ UK ψ.

Proof. Suppose (s UKw)(t) = T. Then s(t) = T and for some t′ ∈ t + K, s(t′) = T
and w(t′) = T. But then since s is connected, s(t′) = T for all t′′ ∈ [t, t′], showing that
x |=t φ UK ψ.

Suppose (s UKw)(t) = F. Then either s(t) = F in which case x |=t ¬(φ UK ψ), or for
all t′ ∈ t+K, s(t) = F or w(t) = F, in which case again x ̸|=t φ UK ψ.

We next decompose a three-valued signal into connected signals.

Proposition 6.1.6. Given a three-valued signal s and disjoint intervals Ij such that
s−1({T,U}) = ⊎

j Ij, we have a decomposition s = ∨
j

∨
k sj,k of s into the connected

components:

• sj,0 = χ∅, Ij
whenever Ij ∩ s−1({T}) = ∅;

• sj,k = χJj,k, Ij
given intervals Jj,k such that Ij ∩ s−1({T}) = ⊎

k Jj,k.

Proof. Consider any time point t.
If s(t) = F then we see that t /∈ s−1({T,F}) and hence ∨j ∨k sj,k(t) = F = s(t).
If s(t) = T, then we see that t ∈ Jj,k ⊆ Ij for some j, k. But then

T ≥
∨
l

∨
m

sl,m(t) ≥ sj,k(t) = T,

showing that ∨j ∨k sj,k(t) = T = s(t).
If s(t) = U then we have t ∈ Ij for some unique j and so

∨
l

∨
m

sl,m(t) =
∨
m

sj,m(t).

But then we note sj,0(t) = χ∅, Ij
(t) = U and for m > 0, sj,m(t) = χJj,k, Ij

(t) = U, showing
that the RHS is U also.
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s1,1:
s1,1 ∨ s1,2

s2,1 s3,0

s1,2:

s2,1:

s3,0:

Figure 6.1: The decomposition of s into components s ≡ (s1,1 ∨ s1,2) ∨ s2,1 ∨ s3,0.

Example 6.1.7. Given the three-valued signal

s = (([0, 1],F), ([2, 3],T), ([4, 5],T), ([6, 7],F), ([7.5, 8],T), ([8.5, 9],F))

we have the decomposition (Fig. 6.1)

s = (s1,1 ∨ s1,2) ∨ s2,1 ∨ s3,0 = (χ[2,3], (1,6) ∨ χ[4,5], (1,6)) ∨ χ[7.5,8], (7,8.5) ∨ χ∅, (9,∞).

We now use this decomposition to construct a signal for φ UK ψ:

Proposition 6.1.8. If φ has a three-valued signal s = ∨
j

∨
k sj,k with connected compo-

nents sj,k and ψ has a signal w, then φ UK ψ has a signal given by,

s UK w ≜
∨
j

∨
k

sj,k ∧ FK(sj,k ∧ w) . (6.1)

Proof. If (s UK w)(t) = T then for some j, k,

sj,k ∧ FK(sj,k ∧ w) (t) = T.

Hence sj,k(t) = T and for some t′ ∈ t+K, sj,k(t′) = T and w(t) = T. However, since sj,k
is connected, we conclude sj,k(t′′) = T for all t′′ ∈ [t, t′] and hence x |=t φ for all t′′ ∈ [t, t′],
showing x |=t φ UK ψ.

Suppose that x ̸|=t φ UK ψ. Then s(t) ̸= F and for some t′ ∈ t + K, w(t) ̸= F and
for all t′′ ∈ [t, t′], s(t) ̸= F and w(t) ̸= F. Then since s(t′′) ̸= F on the connected region
[t, t′], there must hence be some l with [t, t′] ⊆ Im. But then, (picking some m given l),
slm ∧ FK(slm ∧ sψ) (t) ̸= F, and so

(s UK w)(t) =
∨
j

∨
k

sj,k ∧ FK(sj,k ∧ w) (t) ̸= F

completing the proof by contrapositive.
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6.1.2 Signals for Atomic Propositions

We now turn our attention to generating a signal for an atomic proposition ρ ≜ p > 0
with defining polynomial p based on a Flow* flowpipe.

We do this in a single pass algorithm which iterates over each time segment of the flow-
pipe and encloses all roots of p for the current time-step. For each time-step [tk, tk+1], Flow*
provides two Taylor models,

(
q(k)

post, I
(k)
post

)
and

(
q(k)

pre, I(k)
pre

)
, whose composition encloses all

trajectories of the system over the time step. The value of p over system trajectories is
hence enclosed by the Taylor model G(k)

p (s, t) defined by the composition

G(k)
p ≜ p □

(
q(k)

post, I(k)
post

)
□
(
q(k)

pre, I(k)
pre

)
(6.2)

where t ∈ [tk, tk+1] and s ranges over the space domain S of the flowpipe (in the case of
preconditioned Taylor models, S is the n-dimensional box [−1, 1]n [109, 251]). Therefore,
we have an interval extension of p over the time interval [tk, tk+1] given by the interval
function H(k)

p (t) ≜ G(k)
p (S, t) which may be evaluated using interval arithmetic.

We may then determine a signal for ρ.

Proposition 6.1.9. Given an atomic proposition ρ = p(x) > 0, the three-valued signal
s ≜ (Ij, sj)j is a signal for ρ where Ij are the interval components of

[0, T ] \
⋃{

x0

∣∣∣∣ x0 ∈ roots
(
H(k)
p ,

d
dtH

(k)
p , [tk, tk+1],R, τ

)
for some k

}
,

sj is T iff H(k)
p (t′) > 0 for some k and t′ ∈ Ij ∩ [tk, tk+1], and τ ∈ R≥0 is our desired

monitoring tolerance parameter.

The unknown regions are given by amalgamating the roots of H(k)
p over each time

step. These roots are soundly enclosed by applying the extended interval Newton-Raphson

Figure 6.2: Transition from root finding to three-valued signals.

127



method (Algorithm 1) to H(k)
p (using its derivative d

dtH
(k)
p which may be derived by Taylor

model differentiation [48]), and are guaranteed to enclose the roots of p. Then ρ must have
a consistent Boolean value in between these roots, which we may sample by performing
interval evaluation of H(k)

p (see Fig. 6.2).

6.1.3 Efficient Monitoring of Composed Taylor Models

The method described in Section 6.1.2 relies on being able to efficiently compute the
interval function H(k)

p defined as a symbolic composition of Taylor models (Eq. (6.2)).
This is potentially very expensive since the composition involves symbolic operations
on high-order polynomials and a flowpipe may consist of thousands of time steps, each
requiring a separate composition.

However, since we only need to deduce the signal for the atomic proposition, rather
than the exact function value at each point, it will often be sufficient to inexpensively over-
approximate the range of Eq. (6.2) over the current time step via interval arithmetic, which
we do by replacing some of the Taylor model compositions (denoted □) with functional
compositions (denoted ◦). Hence, we use the following adaptive algorithm:

• Perform the interval evaluation stepwise using interval arithmetic to check if

0 ∈ range
[
p ◦

(
q(k)

post, I(k)
post

)
◦
(
q(k)

pre, I(k)
pre

)]

• If so, perform one stage of symbolic composition and check if

0 ∈ range
[
p ◦

(
q(k)

post, I(k)
post

)
□
(
q(k)

pre, I(k)
pre

)]

• If the result is still ambiguous, perform full symbolic composition of G(k)
p for the

current time step and apply root finding.

Hence, we are able to generate a precise signal for an atomic proposition over the
whole time domain, whilst only performing symbolic Taylor model composition and root
finding on demand where necessary to disambiguate the result of the signal (i.e. near
the roots of the atomic proposition). We may additionally skip the composition of the
preconditioned Taylor model on dimensions which do not correspond to any variable of p.

This method may, however, still spend effort trying to determine the truth value of
the signal of an atomic proposition in regions of time which are not crucial to the truth
of the overall signal; this issue is addressed in Chapter 7 with the introduction of masks.
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6.2 Monitoring LBUC

We will now apply the monitoring techniques discussed in the previous section, to spec-
ify a complete verified monitoring procedure for LBUC over bond-calculus models. We
define the monitoring procedure for LBUC defining two mutually recursive functions,
signal(φ, (Π0,A), d) and signalF(φ,Πf ,A,S, T ), the first of which defines a signal for
a property φ in a bond-calculus model and the latter of which defines a signal for φ given
a Flow* flowpipe Πf over space domain S and time domain T ⊆ R≥0 given an affinity
network A.

We first define the time duration of a flowpipe required for monitoring a given property.

Definition 6.2.1. The duration of a given STL formula is defined by

duration(ρ) ≜ 0

duration(¬φ) ≜ duration(φ)

duration(φ ∧ ψ) ≜ max(duration(φ), duration(ψ))

duration(φ ∨ ψ) ≜ max(duration(φ), duration(ψ))

duration(F[a,b] φ) ≜ b+ duration(φ)

duration(G[a,b] φ) ≜ b+ duration(φ)

duration(φ U[a,b] ψ) ≜ b+ max(duration(φ), duration(ψ))

duration(C ▷φ) ≜ 0

This then allows us to define the first of our monitoring functions as follows.

Definition 6.2.2. We may compute a duration d signal signal(φ, (Π0,A), d) for a
LBUC property φ given uncertain bond-calculus model

(
Π̂0, Â

)
by

signal(φ, (Π0,A), d) ≜ signalF(φ,Πf ,A,S, [0, D])

where D = d+ duration(φ) and Πf is a duration D flowpipe for the interval IVP

dΠ
dt ≜

d(Π0,A)
dt ; Π(0) ∈ Π0

with space domain S.

This relies on the signal signalF(φ,Πf ,A,S, T ) for a property φ over flowpipe Πf given
affinity network A, flowpipe space domain S, and interval time domain T , which is defined
as follows.
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Atomic Propositions For an atomic proposition φ, the signal signalF(φ,Πf ,A,S, T )
is computed by applying the procedure set out in Sections 6.1.2 and 6.1.3.

Logical and Temporal Operators We build up signals for complex properties according
to the operations in Section 6.1.1 so that we have,

signalF(¬φ,Πf ,A,S, T ) ≜ ¬signalF(φ,Πf ,A,S, T )

signalF(φ ∧ ψ,Πf ,A,S, T ) ≜ signalF(φ,Πf ,A,S, T ) ∧ signalF(ψ,Πf ,A,S, T )

signalF(φ ∨ ψ,Πf ,A,S, T ) ≜ signalF(φ,Πf ,A,S, T ) ∨ signalF(ψ,Πf ,A,S, T )

signalF(FK φ,Πf ,A,S, T ) ≜ FK(signalF(φ,Πf ,A,S, T ))

signalF(GK φ,Πf ,A,S, T ) ≜ GK(signalF(φ,Πf ,A,S, T ))

signalF(φ UK ψ,Πf ,A,S, T ) ≜ signalF(φ,Πf ,A,S, T ) UK signalF(ψ,Πf ,A,S, T ).

Context Operators To compute signalF (C ▷φ,Πf ,A,S, T ), we first compute an inter-
val uncertain model encompassing the range of possible states over the time domain T .
This can be derived as the bond-calculus model

Φ ≜ (Πf (S, T ),A)

which is derived by first computing the range of the flowpipe over the space and time
domain and then combining this with the (interval) affinity network A. We next compute
the signal

s ≜ signal (φ,Φ ∥ C, 0) (6.3)

for φ in the composed system Φ ∥ C, which places the current state of the system in
the context C. If either s(0) ∈ B or width(T ) < ε (where the parameter ε is our de-
sired precision of monitoring) then we are done and can return the signal (T, s(0)). If
not, we bisect the interval into two intervals T1, T2 and return the union of the signals
signalF(C ▷φ,Πf ,A,S, T1) and signalF(C ▷φ,Πf ,A,S, T2).

6.3 Unbounded Temporal Operators

Our method so far is restricted to verifying properties featuring temporal operators with
bounded time intervals since Flow* can only construct flowpipes covering a finite time
horizon. However, in general three-valued signals are defined over the unbounded time
domain [0,∞) (since they may be unknown over the unbounded time regions on which
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they have not been computed), which offers a way to verify unbounded time properties
given appropriate signals. Whilst the general problem of unbounded-time verification
for continuous system is known to be extremely challenging, it is sometimes possible to
combine flowpipes with deductive reasoning in order to verify unbounded time properties
and determine the long term behaviour of a system [333]. In this section we will extend the
approach of Sogokon, Jackson, and Johnson [333] and show how invariants of continuous
systems can often be combined with our verified monitoring results in order to derive
unbounded-time signals for atomic propositions and hence to verify unbounded temporal
operators.

We first note that our interval representation of signals extends directly to signals of
the form

s = (([a1, b1], s1), . . . , ([an−1, bn−1], sn−1), ([an,∞), sn))

where the final interval extends to infinity, and we may also allow such unbounded intervals
to appear in temporal operators. All of the normal logical operators may be applied to
unbounded signals in much the same manner as before, whilst for the temporal operators
we may used interval arithmetic extended with unbounded open endpoints1 so that, in
particular,

[a, b] − [c,∞) = (−∞, b− c], [a, b] .− [c,∞) = ∅,

[c,∞) − [a, b] = [c− b,∞), [c,∞) .− [a, b] = [c− a,∞),

[a,∞) − [c,∞) = (−∞,∞), [a,∞) .− [c,∞) = [a− c,∞).

which results in the following computational rules for the eventually signal,

F[a,b](([c,∞),T)) = (([min(0, c− b),∞),T))

F[a,b](([c,∞),F)) = (([min(0, c− a),∞),F))

F[c,∞)(([a, b],T)) = (([0, b− c],T))

F[c,∞)(([a, b],F)) = (([0, a− c],F))

F[c,∞)(([a,∞),T)) = (([0,∞),T))

F[c,∞)(([a,∞),F)) = (([min(0, a− c),∞),F))

Example 6.3.1. Given a signal

s = (([2, 3],T), ([4, 5],F))
1This corresponds to the standard behaviour of many interval arithmetic libraries including that of

Sagemath, and can be formally understood in extended interval arithmetics such as [256].
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we can compute the unbounded eventually signal as

F[1,∞) s = (([0, 2],T), (∅,F)) = (([0, 2],T))

or the unbounded globally signal as

G[1,∞) s = ¬ F[1,∞) ¬s = ¬((∅,F), ([0, 4],T)) = (([0, 4],F)).

This example shows that even bounded signals may be sufficient to verify unbounded
eventually operators or to refute unbounded globally operators.

Example 6.3.2. Given an unbounded signal

s = (([2, 3],T), ([4, 5],F), ([6,∞),T))

we can compute the unbounded eventually signal as

F[1,∞) s = (([0, 2],T), (∅,F), ([0,∞),T)) = (([0,∞),T))

or the unbounded globally signal as

G[1,∞) s = ¬ F[1,∞) ¬s = ¬((∅,F), ([5,∞),T), (∅,F)) = (([5,∞),F)).

As seen in the above examples, whilst bounded signals may sometimes be sufficient to
prove unbounded eventually properties, if we wish to verify unbounded safety properties
(that is, to verify G[0,∞) φ or refute F[0,∞) φ) we need more information than that which is
contained in the bounded signals we may derive from the finite duration flowpipes which
Flow* is able to generate for atomic propositions. We will now, however, see that the
method of safety verification based on invariants can often allow us to extend a bounded
signal to an unbounded one.

To this end we first need the concept of a continuous invariant set, which is a gener-
alization of the notion of positively invariant sets [332] from dynamical systems theory
which coincides with the requirements for verifying unbounded safety properties2.

Definition 6.3.3. A set I ⊆ Rn is a positive invariant set (or, simply, invariant) for a
system if every system trajectory x satisfies

∀t ∈ [0,∞)
(
x(t) ∈ I =⇒

(
∀t′ ∈ [t,∞),x(t′) ∈ I

))
that is, if the system satisfies the STL formula

x ∈ I =⇒ G[0,∞)(x ∈ I).
2The generalized notion of continuous invariants [297] is also frequently used when applying invariant-

based reasoning to hybrid systems verification.
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We next see that a suitable invariant allows us to extend a bounded signal into an
unbounded one, generalizing [332, Proposition 22.].

Proposition 6.3.4. Given a proposition φ and a signal

s = (([a1, b1], s1), . . . , ([an, bn], sn))) (6.4)

for φ, if there exists an invariant I such that φ has truth value sn on I (that is, for every
trajectory x with x(0) ∈ I, x |=0 (φ ⇔ sn))) and the system satisfies

F[an,bn](x ∈ I)

then the unbounded extension of s,

s∞ = (([a1, b1], s1), . . . , ([an,∞), sn)))

is also a signal for φ.

Proof. Take any system trajectory x and any time point t ∈ [0,∞) such that s∞(t) = T. If
t ≤ bn then s(t) = s∞(t) = T and so x |=t φ. If, however, t > bn, then since F[an,bn](x ∈ I)
holds, we must have some t0 ∈ [an, bn] such that x(t0) ∈ I and hence x(t) ∈ I since I
is a invariant and t > t0. Therefore x |=t φ since this is equivalent to xt0 |=t−t0 φ where
xt0(t) ≜ x(t + t0) is a trajectory of the system with initial condition in I. Similarly, if
s∞ = F then x |=t ¬φ, proving s∞ is a signal for ρ.

This means that if we have used the Flow* flowpipe F to generate the signal s (Eq. (6.4))
for atomic proposition ρ ≜ p(x) > 0, we can extended it into an unbounded signal s∞ as
long as we are able to find an invariant I for the system satisfying

F (t0) ⊆ I ⊆
{
x
∣∣∣ (p(x) > 0) ⇔ sn

}
for some t0 ∈ [an, bn]. Thus suitable invariants allow us to derive unbounded signals
for atomic propositions from flowpipes. This then makes it possible to verify complex
propositions involving unbounded temporal operators by combining the unbounded signals
from atomic propositions in the normal way, applying extended interval arithmetic where
necessary.

This has a useful special case when an atomic proposition (or its negation) defines an
invariant of the system.
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Corollary 6.3.5. Given an atomic proposition ρ ≜ p(x) > 0 if

s = (([a1, b1], s1), . . . , ([an, bn], sn)))

is a signal for ρ and the set

I ≜


{x | p(x) > 0} if sn = T

{x | p(x) < 0} if sn = F

is an invariant, then
s∞ = (([a1, b1], s1), . . . , ([an,∞), sn)))

is also a signal for ρ.

Our ability to verify unbounded properties via this approach depends crucially on our
ability to synthesise appropriate invariants. Invariant synthesis in an ongoing challenging
problem in continuous systems verification [332] and currently often requires specific
insight about the system at hand, in contrast to the fully automated methods which
are our main focus. Whilst we will demonstrate invariant-based verification for specific
systems, the general problem of invariant synthesis required to automate this method is
outside of our scope. It is, however, possible to verify that a given semi-algebraic set is a
invariant of a polynomial system in an automated manner based on the decision procedure
of Liu, Zhan, and Zhao [242]; other methods of invariant checking are surveyed in [332,
Chapter 4]. This method also only handles properties for which the truth-value of atomic
propositions eventually stabilises. Thus, our method is unable to verify properties such as
G[0,∞)(F[0,∞) ρ∧ F[0,∞)(¬ρ)), which requires that the truth value of ρ oscillates arbitrarily
many times. Therefore, additional verification methods will be required for a more general
treatment of unbounded time properties.

6.4 Demonstration: 9-Dimensional Genetic Oscillator

We will now examine the performance of our core STL monitoring algorithm by considering
the genetic oscillator model [354]. This consists of a gene regulatory network involving
genes A and B which bind to each other and whose translation is governed by the binding
of A to their respective promoters. This model is a standard benchmark of Flow* verified
integration performance [110] and has also been considered in [74] to compare Stochastic π
and PEPA modelling styles. In our performance analysis, we will assess the core design
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choices of our monitoring algorithms by benchmarking our algorithm against a “closed-
box” monitoring approach, which treats the entire flowpipe as an interval function, and
compare the functional composition and symbolic composition approaches (as introduced
in Section 2.4.4) for evaluating atomic propositions over the flowpipe.

6.4.1 Bond-Calculus Model

We first model the genetic oscillator of [354] in the bond-calculus based on the modelling
styles presented in Chapter 4. To this end we first explicitly model promoters to which
proteins may bind and unbind:

PromoterX ≜ bindPX(ℓ).PromoterBoundX,ℓ

+ transcribeX . (PromoterX | mRNAX)

PromoterBoundX,ℓ ≜ unbindPX@ℓ.Promoter

+ transcribeBX@ℓ. (PromoterBoundX,ℓ | mRNAX)

and the protein ProteinX which can bind, unbind, or decay,

ProteinX ≜ bindX(ℓ).ProteinBoundX,ℓ + degradeX .0

ProteinBoundX,ℓ ≜ unbindX@ℓ.ProteinX,ℓ + degradeBX@ℓ.0

we then model the mRNA which control the transcription of each protein

mRNAX ≜ degradeMX .0 + translateX . (ProteinX | mRNAX)

These definitions specialise to the network of [354] when instantiated for proteins
X = A and X = R with the rates of each interaction defined via the affinity network,

A ≜



bindA ∥ bindPA @ 0.1, unbindA ∥ unbindPA @ 50,

bindA ∥ bindPR @ 1, unbindA ∥ unbindPR @ 100,

bindA ∥ bindR @ 2, degradeBA | unbindR @ 1,

transcribeA @ 0.5, transcribeBA @ 5,

transcribeR @ 0.01, transcribeBR @ 50,

translateA @ 50, translateR @ 0.5,

degradeA @ 1, degradeMA @ 10,

degradeR @ 0.2, degradeMR @ 0.5
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using the same rate parameters as [111]. The molecular interactions corresponding to
these affinity patterns are shown in [354, Figure 1].

When the bond-calculus is applied to this system starting from at least the two
promoters, we can see that it dynamically generates a system involving 9 species, which
we abbreviate as follows (in accordance with [111]),

X1 ≜ PromoterA

X2 ≜ PromoterR

X3 ≜ ν ℓ (ProteinBoundA,ℓ | PromoterBoundA,ℓ)

X4 ≜ ν ℓ (ProteinBoundA,ℓ | PromoterBoundR,ℓ)

X5 ≜ mRNAA

X6 ≜ ProteinA

X7 ≜ mRNAR

X8 ≜ ProteinR

X9 ≜ ν ℓ (ProteinBoundA,ℓ | ProteinBoundR,ℓ)

Following [111], we are interested in the initial mixture

Π0 ≜
[

0.98, 1.02
]
X1 ∥

[
1.28, 1.32

]
X2 ∥

[
0.08, 0.12

]
X3 ∥

[
0.08, 0.12

]
X4 ∥

[
0.08, 0.12

]
X5

∥
[

1.28, 1.32
]
X6 ∥

[
2.48, 2.52

]
X7 ∥

[
0.58, 0.62

]
X8 ∥

[
1.28, 1.32

]
X9

The overall bond-calculus model is thus defined by M ≜ (Π0,A).
Finally, we see that applying the bond-calculus’ continuous ODE semantics to the

model (Π0,A) results in the following system of 9 coupled ODEs,

d [X1]/dt ≜ 50 [X3] − 0.1 [X1] [X6]

d [X2]/dt ≜ 100 [X4] − [X2] [X6]

d [X3]/dt ≜ 0.1 [X1] [X6] − 50 [X3]

d [X4]/dt ≜ [X2] [X6] − 100 [X4]

d [X5]/dt ≜ 5 [X3] + 0.5 [X1] − 10 [X5]

d [X6]/dt ≜ 50 [X5] + 50 [X3] + 100 [X4] − [X6] (0.1 [X1] + [X2] + 2 [X8] + 1)

d [X7]/dt ≜ 50 [X4] + 0.01 [X2] − 0.5 [X7]

d [X8]/dt ≜ 0.5 [X7] − 2 [X6] [X8] + [X9] − 0.2 [X8]

d [X9]/dt ≜ 2 [X6] [X8] − [X9]

matching the model of [354].
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[X4]

[X6]

Figure 6.3: An interval over-approximation of the Flow* flowpipe at each time step is illustrated
in blue , numerical trajectories for different initial conditions in black , initial conditions in
red , and the regions involved in properties P and Q are in orange and green respectively.

6.4.2 Model Analysis and Monitoring Performance

The evolution of the variables [X4] and [X6] over 5 hours (of simulated model time)
is shown in Fig. 6.3 which includes numerical traces from a sample of many different
fixed initial conditions alongside a coarse interval over-approximation of a Flow* flowpipe
covering the whole box of uncertain initial conditions. This shows the system moving
from the red box of initial conditions through the orange region before the converging
to the green region. We can describe the temporal behaviour of this system much more
precisely with STL properties such as

φ ≜ G[0,1.5]
(
P ∨ G[3,3.5](Q)

)
in which we have polynomial atomic propositions

P ≜ [X6] − 1 > 0

and
Q ≜ 0.032 − 1252([X4] − 0.007)2 − 3([X6] − 0.5)2 > 0.

The property φ states that at any point within the first hour, the system will either remain
within the half-space P or, at any point between 3 and 3.5 hours in the future will be
within the elliptical region Q.

In Fig. 6.4 we break down the time taken to monitor φ for 0.5 hours of simulated time
using a number of variants of our monitoring algorithm in order to evaluate the impact
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Figure 6.4: Combined Flow* verified integration and STL monitoring times in seconds, showing
the cost of each stage for a number of variants of our monitoring algorithm.

of each of its elements on monitoring cost and precision. First we consider the closed box
monitoring approach where we first run Flow* to perform verified integration and flowpipe
composition, before using interval analysis and functional composition to monitor φ over
the entire flowpipe. Whilst the monitoring cost for the propositions P and Q is very small
in comparison to the time it took Flow* to perform verified integration, the flowpipe
composition stage is more expensive and takes almost as long as the verified integration
itself. Next we monitor φ in the same way, but perform the flowpipe composition on
demand as described in Section 6.1.3. We see that if we just monitor the simple atomic
proposition P we save most of the cost of flowpipe composition, although once we also
monitor Q we need to pay the full cost. These two methods also do not yield sufficient
precision to verify φ, both producing a useless signal which is unknown everywhere. This
imprecision can be seen in Fig. 6.5a which shows the result of monitoring the complex
polynomial atomic proposition Q over the flowpipe using functional composition and the
corresponding signal.

In order to produce a useful signal for φ we need to run our full monitoring algorithm,
permitting symbolic composition at each stage. Whilst the monitoring cost for the simple
proposition P is similar to before, the cost for the complex proposition Q is significantly
higher. This, however, now gives a much more precise signal for Q as shown in Fig. 6.5b.
This means we now get the overall signal s = (([0],T)) for φ, allowing us to verify that φ
is true at time 0 and that P ∨ G[3,3.5](Q) holds for at least the first 1.5 hours.

6.5 Demonstration: Predatory-Prey Role-Reversal Model

We firstly investigate the application of our monitoring algorithm to an ecological model of
predator-prey interaction with concentration dependent species roles. Lotka-Volterra type
models are classically used to model interactions between a prey species and a predatory
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Figure 6.5: Monitoring Q.

which grows by consuming their prey and have been applied to modelling a wide variety
of ecosystems, but typically assume that the role of each species remained fixed. However,
ecosystems have been observed in which, under certain circumstances, the predatory can
undergo a role-reversal and become the prey. For example, a classic study [28] of popula-
tions of rock lobsters and whelks on islands of the west coast of South Africa observed that,
in the particular case of Marcus Island, the usually dominant lobsters are overwhelmed
and consumed by the whelks due to their numerical superiority. This suggested a multi-
stable ecosystem with stable states in which each of the species is dominant and that the
predator-prey relationship within this ecosystem is population dependant. Role-reversal
is also thought to play an important role in other aquatic ecosystems where many species
of fish are able to prey upon juvenile forms of their usual predators [156].

We will look at a modified Lotka-Volterra model proposed by [321] as a theoretical
model of role-reversal. This involves concentrations of two species, which, based on the
prototypical scenario of [28], we may call W = [Whelk] and L = [Lobster]. The
species may be modelled by bond-calculus processes,

Whelk ≜ dieWhelk.0

+ growWhelk.(Whelk|Whelk)

+ beWhelk.Whelk

Lobster ≜ dieLobster.0

+ beLobster.Lobster

+ growLobster.(Lobster|Lobster)
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the affinity network,

Ak,b,c,e,f ≜



growWhelk @ NLGrowthb
dieWhelk ∥ beLobster @ RRPredationc,k

dieLobster @ NLDecaye
beWhelk ∥ growLobster @ RRPredationf,k


which uses the following nonlinear rate laws,

NLGrowthg([X]) ≜ g [X] (1 − [X])

NLDecayd([X]) ≜ d [X] (1 + [X])

RRPredationg,h([X] , [Y ]) ≜ g [X] (h− [X]) [Y ]

This network models predation via a pair of patterns: dieWhelk ∥ beLobster @ RRPredationc,k
which causes units c of whelk biomass consumption, and beWhelk ∥ growLobster @
RRPredationf,k which causes f units of lobster biomass production, based on the overall
net predation rate W (k − W )L. The threshold parameter k determines the population
of whelks at which they become overall predators. Once the whelk population exceeds
the threshold k the biomass consumption and biomass production rates both change sign,
causing a role-reversal to occur between these consumption and production reactions. The
intrinsic growth of whelks and death of lobsters are modelled by nonlinear growth laws
governed by rate parameters b and e respectively. We note that concentration of whelks
and lobsters are not in physical units since the variables of the system have been rescaled
to minimize the number of parameters as described in [321].

Applying the ODE extraction algorithm we get the set of two nonlinear ODEs,
dW
dt ≜ bW (1 −W ) − cW (k −W )L
dL
dt ≜ −eL(1 + L) + fW (k −W )L

matching the model of [321].
The phase portrait of the system is shown in Fig. 6.6. We consider the eventual

evolution of the system from two different sets of uncertain initial conditions:

Π1 ≜ [0.2, 0.4] Whelk ∥ [7, 8] Lobster

Π2 ≜ [1.0, 1.2] Whelk ∥ [4, 6] Lobster.

We can see that the trajectories of the system tend towards one of two stable fixed points,
one involving the extinction of the lobsters, and the other involving an equilibrium of
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Figure 6.6: Role Reversal Phase Portrait

whelks and lobsters. These may be associated with the following two LBUC properties,

P ≜ (W − 1)2 + L2 < 0.2

Q ≜ 0 < W ∧W < 0.3 ∧ 1.75 < L ∧ L < 3.5

which correspond respectively to an ellipse and a square region surrounding each fixed
point.

To verify the evolution of the system, we consider the property

φ1 ≜ F[0,10] Q

which states that at some point within the first 10 time units the systems trajectories will
definitely have entered the region Q3, and the property,

φ2 ≜ F[0,5] G[0,5] P

which states that the we will definitely enter P within 5 time units, and will remain inside
for at least 5 time units.

Firstly we note that with the initial system M1 ≜ (Π1,A0.8,0.6,0.3,0.05,2), monitoring
property φ1 for 5 time units giving signal (([0, 5],T)), whilst monitoring φ2 for 5 time
units gives signal (([0, 5],F)). Conversely, with initial system M2 ≜ (Π2,A0.8,0.6,0.3,0.05,2),

3The trajectories may, however, subsequently leave Q.
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Figure 6.7: Flowpipes from initial conditions Π1 and Π2.

monitoring φ1 for 5 time units gives signal (([0, 5],F)) and monitoring φ2 for 5 time
units gives signal (([0, 5],T)). This corresponds to the fact that Π1 is inside the basin of
attraction of the first fixed point, whilst Π2 is inside the basin of attraction of the latter.

We can also use context operators to explore the impact of the introduction of a
new population of whelk or lobsters into an existing ecosystem. To this end we consider
an initial system Π3 ≜ [0.9, 1.1] Whelk consisting entirely of a population of between
0.9 and 1.1 concentration of whelks, and the property φ3 ≜ [0, 2] Lobster ▷φ2 which
states that the introduction of between 0 and 2 concentration of lobsters will lead to
property φ2 being satisfied — that is, the introduced lobster population will be wiped
out. Applying our monitoring algorithm for a duration of 5 time units we get the signal
(([0, 5],T)) for φ2, confirming that this property does indeed hold. This corresponds to the
experimental observations of Barkai and McQuaid [28] who found that when introducing
small numbers of lobsters to an island dominated by whelks the whelks overwhelmed and
consumed the lobsters returning the ecosystem to its original state.

However, it may be possible that introducing a sufficient population of a species is
sufficient to push the ecosystem from one steady state to another, resulting in a shift of
the overall ecosystem dynamics. For example, we consider the property

φ4 ≜ φ1 U[2,4] ([0.9, 1.1] Whelk ▷ φ2)

which states that there is a time point between times 2 and 4 at which after introducing
0.9 and 1.1 concentration of whelks, the evolution of the system leads to P (φ2 will be
true), whilst at any point beforehand the evolution of the system lead to Q (φ1 was true).
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Figure 6.8: Applying jump to flowpipe.

A flowpipe showing the jump in the dynamics of the ecosystem corresponding to one
particular time of context introduction is shown in Section 6.5. Applying our monitoring
algorithm for a duration of 1 time units gives a signal (([0, 1],T)) verifying that φ4 holds
for at least 1 time unit. The ability to explore such hypothetical properties illustrates the
advantages of performing computational experiments in LBUC since it would be difficult
to test this property experimentally without significantly impacting the ecosystem under
observation.

Whilst these examples all feature bounded time properties, their unbounded time
counterparts are also interesting to determine the long term behaviour of the system. If
we monitor the property P for 5 seconds starting from M2 we obtain the signal,

sP = (([0, 0.802],F), ([2.695, 5],T))

and we are able to verify that P is an invariant of the system by applying the Liu, Zhan,
and Zhao [242] verification procedure which reduced the invariance checking for P to a
quantifier elimination problem in 2 variables which QEPCAD [78] was able to verify in
374 ms. Thus by applying Corollary 6.3.5 we are able to derive an unbounded signal for
P ,

s∞
P = (([0, 0.802],F), ([2.695,∞),T))

from which we may derive the signals G[0,∞) s
∞
P = s∞

P and

F[0,5](G[0,∞) s
∞
P ) = (([0,∞),T)) = F[0,∞)(G[0,∞) s

∞
P )
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which suffices to verify the mixed bounded/unbounded-time property F[0,5] G[0,∞) P or the
weaker doubly unbounded-time property F[0,∞) G[0,∞) P . Conversely, if we consider Q and
this same initial condition, monitoring Q for 5 time units gives signal (([0, 5],F)) and as
we know that F[0,5] P is true, P is an invariant, and P and Q are mutually exclusive4,
applying Proposition 6.3.4 tells us that (([0,∞),F)) is also a signal for Q, and hence also
for F[0,∞) Q, allowing us to refute the unbounded time property.

We are also able to verify the unbounded time contextual property G[0,∞) φ3 ≡
G[0,∞)([0, 2] Lobster ▷φ2) since we note that the initial set Φ ≜ [0.9, 1.1] Whelk is an
invariant of the system5 and we know (([0, 5],T)) is a signal for φ3, so by Proposition 6.3.4,
(([0,∞),T)) is a signal for φ3, and hence (([0,∞),T)) is a signal for G[0,∞) φ3.

4If need be this can also be verified in an automated manner by applying quantifier elimination to
show ∃W, ∃L(P ∧Q) is false.

5This can easily be seen since [Lobsters] = 0 is is a nullcline and d[Whelk]/dt > 0 at [Whelk] =
0.9 and d[Whelk]/dt < 0 at [Whelk] = 1.1.
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Chapter 7

Masks

A limitation of conventional signal monitoring algorithms is that their bottom-up nature
— first monitoring signals for atomic propositions which are propagated upwards to derive
signals for complex propositions — does not take into account the overall verification
goal or our existing progress towards it during the monitoring of each atomic proposition.
This can lead to excess work monitoring regions of time which give us no additional
information about the property at hand. This limitation is especially important in the
case of verified monitoring over Flow* flowpipes, given the expensive symbolic operations
which are necessary to extract precise interval bounds on a region of the flowpipe, and in
the case of context operators, which require repeated Flow* verified integration runs to
monitor a signal over a given region. In this chapter we resolve these issues by introducing
masked monitoring, which supplements the normal bottom-up monitoring process with
the top-down computation of masks, a special type of signal which indicates the regions of
interest for a given proposition. These masks direct the monitoring of atomic propositions
to just the part of the time-domain relevant to the overall verification problem. Overall,
this enables a more property-directed verification process, where the monitoring process
for atomic propositions is driven by the knowledge required to move towards our overall
verification goals. As we will see, this can substantially reduce the monitoring cost for
complex logical properties and can reduce the monitoring costs for some nested contextual
properties by an order of magnitude.

In Section 7.1 we introduce the basic definitions for masks and give some examples.
In Section 7.2 we define the context in which an atomic proposition may occur within the
overall STL monitoring process. In Section 7.3 we show how masks can be computed to
check different types of complex logical propositions. Finally, in Section 7.6 we present
some benchmarks demonstrating the effect of masks on signal monitoring performance.
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Some of the results from this chapter have been published as part of the paper [360].

7.1 Basic Notions

Firstly we introduce masks as follows:

Definition 7.1.1. A mask is a finite sequence m = (Ij)j of disjoint intervals Ij. We refer
to these intervals as the regions of interest under the mask m.

We can interpret a mask m as a Boolean signal m : R≥0 → B such that m(x) = T iff
x ∈ ⋃

j Ij. Such a mask represents the region of time for which we wish to monitor a
given proposition. Since for monitoring soundness we only need to over-approximate these
regions of interest, in a practical implementation we may restrict ourselves to masks whose
components are all closed intervals Ij ≜ [aj, bj] ∈ IR (using e.g. floating point endpoints)
and consistently round outwards. We will however sometimes use other types of interval
endpoints in what follows in order to state crisp results.

We can apply a mask to an existing signal, erasing any truth values that lie outside
the mask.

Definition 7.1.2. Given a signal s and a mask m, the masked signal of s by m is the
signal s|m defined by

s|m(t) ≜


s(t) if m(t) = T

U otherwise.

7.1.1 Examples of Masking

Before laying out rules for using and computing masks, we will illustrate their use in two
different examples, demonstrating the importance of the temporal and logical context of
a proposition within a STL formula.

Example 7.1.3. Suppose we want to monitor the property φ ≜ F[5,6] ψ for 2 seconds
(that is, over the time-domain I ≜ [0, 2]). This would naively require computing a signal
for ψ over 8 seconds, despite the fact that φ only looks at the behaviour of ψ between 5
and 6 seconds in the future — that is, within the absolute time-domain

I + [5, 6] = [0, 2] + [5, 6] = [5, 8].

This means that in checking φ it is sufficient to compute a signal for ψ under the mask
m ≜ ([5, 8]), allowing us to ignore more than half of the time-domain.
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Example 7.1.4. Suppose we want to monitor the property φ ≜ ψ∧σ for 5 seconds (that
is, over the time-domain I ≜ [0, 5]). This would normally require computing signals for
ψ and σ over the whole time domain I. However, if we have already computed a signal
for ψ such as

sψ ≜ (([0, 1],T), ([2, 4],F))

then it is evident that computing a signal for φ only depends on the truth value of σ
on the intervals [0, 2) and (4, 5]. It thus suffices to compute a signal for σ under the
mask m ≜ ([0, 2), (4, 5]). This demonstrates how masks can enable a form of temporal
short-circuiting.

Whilst in both of the above examples the required masks are quite simple, in general
they quickly become much more complex depending on what signals we have already
computed for other parts of the property (as in Example 7.1.4) and the position of the
current proposition in a larger property. Later in this section we will see how the reasoning
in these two examples can be generalised and combined to build up masks for arbitrary
properties in a compositional manner.

7.1.2 Operations on Masks

We next need to define the operations with which masks can be build. Firstly, masks
inherit all of the normal logical operations on Boolean signals [253]. In particular, given
masks mI = (Ik)k and mJ = (Jl)l we have that mI ∧mJ = (Ik ∩ Jl)l,k, and we write the
negation of a mask m as ¬m.

We will also need the temporal operators PJ (past) and HJ (historically) defined on
masks by,

Definition 7.1.5. Given a mask mI = (Ik)k and an interval J = [a, b], the past mask is
defined by,

PJ mI ≜ (Ik + J)k

whilst the historically mask is defined by,

HJ mI ≜ ¬ PJ (¬m) = ((Ik + a) ∩ (Ik + b))k .

The operator PJ is the time-reversed dual of the signal operator FJ and shifts a mask
forward and outwards in time by the interval J , whilst the operator HJ is the time-reversed
dual of GJ and shifts a mask forward and inwards.
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7.2 Monitoring Contexts

Before we specify how the masks for the monitoring algorithm should be computed, we
must first formalise what is required of a mask for it to be used at a given stage of the
monitoring algorithm. This motivates us to define monitoring contexts which capture our
existing knowledge at each recursive step of the monitoring algorithm, by recording the
position of an argument ψ within the STL operator currently being monitored and the
context given by the signals s we have already computed for any other arguments.

Definition 7.2.1. A monitoring context is defined similarly to a STL formula except
with subformulae replaced by concrete signals s and, in exactly one place, a hole [·]. That
is, a monitoring context is defined according to the grammar

S([·]) ::= [·] | s ∨ S([·]) | s ∧ S([·]) | ¬ S([·])

| FI(S([·])) | GI(S([·])) | s UI S([·]) .

A monitoring context S([·]) is a monitoring context of the subformula ψ of a STL formula φ,
if S([·]) has the same structure as φ except that, in the place of each atomic proposition
ρ of φ, S([·]) has a signal sρ which is a signal for ρ, and the hole [·] in place of ψ.

Given a signal s, we can evaluate a monitoring context S([·]) to give a signal S(s)
by substituting s in the place of the hole [·] and following the usual rules for combining
signals. This means that a monitoring context captures how the signal for the overall
formula depends on the signal for the proposition which remains to be monitored.

Example 7.2.2. In applying a bottom-up STL monitoring algorithm to obtain a signal
sφ for the property φ ≜ F[5,6] ψ (Example 7.1.3), we must first monitor a signal sψ for ψ.
The monitoring context S([·]) ≜ F[5,6]([·]) for the subformula ψ in φ captures the role of
the signal sψ in monitoring φ given that sψ contributes to the overall signal via the signal
computation

sφ = S(sψ) = F[5,6] ψ.

Example 7.2.3. In order to monitor a signal sφ for the property φ ≜ ψ∧σ (Example 7.1.4),
we first monitor a signal sψ for ψ before monitoring a signal sσ for σ. Once we have obtained
a signal sψ for ψ, the monitoring context S([·]) = sψ∧[·] for the subformula σ in φ captures
the role of σ in the remaining task of monitoring φ given that sσ contributes to the overall
signal via the signal computation

sφ = S(sσ) = sφ ∧ sσ.
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Remark 7.2.4 (Context Operators v.s. Monitoring Contexts). There is an unfortunate
overloading of terminology between context operators in LBUC and the monitoring con-
texts we introduce in this section. However, we can see that both are special cases of
the concept of contexts in programming languages and concurrency theory since context
operators substitute a system into a larger bond-calculus model (that is, into a bond-
model expression of form (Π,A) ∥[·]), whilst monitoring contexts substitute a signal into
an execution frame of our compositional STL monitoring algorithm.

The concept of a monitoring context will be key to defining and establishing the
correctness of our masked monitoring algorithm, since the context of a subformula within
the overall formula is exactly what determines the region of the time domain (that is, the
mask) over which the subformula should be monitored. To this end, we first define when
a mask is sufficient for monitoring in a monitoring context.

Definition 7.2.5. A mask m is sufficient for a monitoring context S([·]) under mask n,
if for any signal s we have that

S(s)|n = S(s|m)|n.

That is, a mask is sufficient if signals masked by it are just as good as unmasked signals
for monitoring the overall formula.

Example 7.2.6. Building on Examples 7.1.3 and 7.2.2 we see that to monitor the property
φ ≜ F[5,6] ψ for 2 seconds (that is, over the overall mask n = ([0, 2])), we need to monitor
ψ in the context S([·]) ≜ F[5,6]([·]). But then we note the mask m = ([5, 8]) is sufficient
under context S([·]) given the outer mask n since, for any signal s,

(
S
(
s|m

))
|n=

(
F[5,6]

(
s|([5,8])

))
|([0,2])

=
((

F[5,6] s
)
|([5,8] .−[5,6])

)
|([0,2])

=
((

F[5,6] s
)
|([0,2])

)
|([0,2])

=
(
F[5,6] s

)
|([0,2])

=
(
S
(
s
))

|n.

Example 7.2.7. Building on Examples 7.1.4 and 7.2.3 we see that, having already
monitored the signal sψ ≜ (([0, 1],T), ([2, 4],F)) for ψ, in order to monitor the property
φ ≜ ψ ∧ σ for 5 seconds (that is, over the overall mask n = ([0, 5])), we need to monitor
ψ in the context Sσ([·]) = sψ ∧ [·]. Then we note that the mask m ≜ ([0, 2), (4, 5]). is
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sufficient under context S([·]) given the outer mask n since, for any signal s,
(
S
(
s|m

))
|n=

(
sψ ∧ s|([0,2),(4,5])

))
|([0,5])

=
((
sψ ∧ s|([2,4])

)
∧ s|([0,2),(4,5])

))
|([0,5])

=
(
sψ ∧

(
s|([2,4]) ∧ s|([0,2),(4,5])

)))
|([0,5])

=
(
sψ ∧ s|([0,5])

))
|([0,5])

=
(
sψ ∧ s

))
|([0,5])

=
(
S(s)

)
|n.

In order to establish that we are not monitoring a given subformula on irrelevant regions
of the time domain, we also define when a mask is as small as possible for monitoring in
a given context.

Definition 7.2.8. A mask m is the optimal mask in monitoring context S([·]) under
mask n if it is the smallest sufficient mask in context S([·]) under mask n with respect to
the pointwise truth ordering ≤.

It follows directly that the mask defined above is unique (for a given monitoring context
and overall mask), allowing us to talk about the mask for a given monitoring context.

7.3 Monitoring Under a Mask: Complex Propositions

We are now ready to detail how our masked monitoring algorithm deals with complex
propositions, by introducing suitable masks for each temporal and logical context. In each
case we prove that these masks are sufficient (and optimal) for the relevant context, which
collectively shows the correctness of masked monitoring.

7.3.1 Negation

Suppose we want to monitor a negation ¬φ under mask m, then this is equivalent to
monitoring φ under mask m and then negating the resulting signal.

Proposition 7.3.1. The mask m is itself sufficient and optimal for monitoring under m
in the monitoring context

S([·]) = ¬[·].

Proof.
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Sufficiency Take any signal s and any time t ∈ R≥0. Then if m(t),

(¬(s|m))|m(t) = (¬(s|m))(t) = ¬(s|m)(t) = ¬s(t) = (¬s)|m(t)

and if ¬m(t),

(¬(s|m))|m(t) = U = (¬s)|m(t)

Optimality Let m′ be any sufficient signal. Take the signal s(t) ≡ F and choose any
time t ∈ R≥0 such that m(t) = T. Then, by the sufficiency of m′ we must have

T = ¬s(t) = (¬(s|m′))(t) =


T if m′(t) = F

U otherwise

and so we must have m′(t) = T showing m ⇒ m′.

7.3.2 Eventually (F[a,b] φ) and Globally (G[a,b] φ)

Suppose we want to monitor the property F[a,b] φ or G[a,b] φ, under mask m = (Ij)j. In
this case we should monitor φ under the past mask

P[a,b] m = (Ij + [a, b])j.

because the truth of φ at time t could determine the truth of either F[a,b] φ or G[a,b] φ at
any point between a and b seconds ago (in the former case by witnessing its truth, and
in the latter case, by witnessing its falsehood) — this generalises the reasoning given in
Example 7.1.3.

Proposition 7.3.2. Given a context

S([·]) = F[a,b][·] or S([·]) = G[a,b][·]

under the overall mask m, in each case the mask P[a,b] m is sufficient and optimal for
S([·]).

Proof. Here we just prove sufficiency and optimality for S([·]) = F[a,b][·] the results for
S([·]) = G[a,b][·] follow since G[a,b] φ ≡ ¬ F[a,b] ¬φ.
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Sufficiency For sufficiency we need to show that

S
(
s|P[a,b] m

)
(t) = F[a,b]

(
s|P[a,b] m

)
(t) = F[a,b](s)(t) = S(s)(t)

for any three-valued signal s and time point t such that m(t) = T. We do this by showing
that P[a,b] m(t′) = T and hence s|P[a,b] m(t′) = s(t′) at each of the future time points
t′ ∈ t+[a, b] to which both of the above F[a,b] operators refer. This holds by contrapositive
since if we had some t′ ∈ t+ [a, b] for which P[a,b] = F, then we would have m(t′′) = F for
all t′′ ∈ t′ − [a, b] and, in particular, m(t) = F.

Optimality Suppose m′ is any mask such that m′ < P[a,b] m. Then we have some t0 for
which m′(t0) = F whilst P[a,b] m(t0) = T and hence we must have some t′0 ∈ t0 − [a, b]
such that m(t′0) = T. But then if we take the signal

s(t) =


T if t = t0

U otherwise

we see that F[a,b] s(t′0) = T whilst F[a,b] s|m′(t′0) = U and hence m′ is not sufficient, proving
the optimality of P[a,b] m.

7.3.3 Conjunctions and Disjunctions

Suppose we want to monitor a conjunction φ∧ψ under mask m. We should first monitor φ
under the mask m to give the signal s. Then, generalising Example 7.1.4, we can use the
signal s to generate a mask m∧

s , the and-mask of s.

Definition 7.3.3. Given a three-valued signal s = (Ij, sj)j, the and-mask of s is the mask
m∧
s defined by m∧

s (t) = T iff s(t) ∈ {T,U} so

m∧
s =

∧
sj=F

mj

where mj ≜
(
C

(ℓ)
j , C

(u)
j

)
is the mask consisting of the two interval complements C(ℓ)

j , C
(u)
j

of Ij in R≥0.

If this mask turns out to be empty (i.e. if ¬s(t) = T = m∧
s (t) for all x ∈ m), then we can

stop and conclude s is a signal for φ ∧ ψ under m. Otherwise, we monitor ψ under the
mask m∧

s giving a signal w, and hence the signal s ∧ w for φ ∧ ψ under m.
We see that the and-mask m∧

s is optimal and sufficient for the context S([·]) = s ∧ [·].
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Proposition 7.3.4. Given a monitoring context, S([·]) = s ∧ [·] the and-signal m∧
s is

sufficient and optimal for this context under the mask m.

Proof.

Sufficiency Take any signal w and any time t ∈ R≥0 such that m(t) = T. Then if
s(t) = F,

S(w|m∧
s
)(t) = F ∧ w|m∧

s
(t) = F = F ∧ w(t) = S(w)(t)

whilst if s(t) ∈ {T,U}, then m∧
s (t) = T and hence

S
(
w|m∧

s

)
(t) = s(t) ∧ w|m∧

s
(t) = s(t) ∧ w(t) = S(w)(t)

showing m∧
s is sufficient.

Optimality Let m′ be any mask such that m′ < m∧
s . Then there must be some time t0

such that m′(t0) = F and m∧
s (t0) = T and hence s(t0) ∈ {T,U}. But then if we pick the

signal w(t) ≡ F, we see that

S(w|m′) = s(t0) ∧ (s|m′)(t0) = s(t0) ∧ U = U

whilst
S
(
w|m∧

s

)
(t) = s(t0) ∧ w|m∧

s
(t0) = s(t0) ∧ F = F

and hence m′ is not sufficient, proving that m∧
s must be optimal.

We treat disjunctions similarly and can see that the or-mask m∨
s defined by m∨

s (t) =∧
sj=T mj is an optimal and sufficient mask for the monitoring context S([·]) = s ∨ [·].

7.3.4 Until (φ U[a,b] ψ)

Finally, suppose we wish to monitor the signal for the property φ U[a,b] ψ under the mask
m. As in Section 6.1, we will compute the signal for φ U[a,b] ψ based on signals for φ and
ψ using Eq. (6.1), however we now need to monitor φ and ψ under appropriate masks.
We start by monitoring φ under the mask m∨ P[a,b] m (taking into account the two places
in which it appears in Eq. (6.1)). Then we could find a suitable mask for ψ by applying
the above rules for ∨, ∧, and F[a,b] to Eq. (6.1). However, it turns out that this mask may
be computed directly using the historically operator.

Proposition 7.3.5. Given an unitary mask m we have that

H[0,a] m = m ∧ P[a,b] m.
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Proof. Suppose T = m∧P[a,b](m)(t). Then T = m(t) and for some t′ ∈ t+[a, b],m(t′) = T.
But then for any t′′ ∈ t + [0, a], we must have m(t′′) = T since m is unitary, showing
H[0,a] m(t) = T.

Conversely, suppose H[0,a] m(t) = T. The for all t′ ∈ t+ [0, a] we have that m(t) = T.
In particular m(t) = T and m(a+ t) = T showing that m ∧ P[a,b] m = T.

And we can see historically distributes over disjoint unitary masks.

Proposition 7.3.6. Given disjoint, closed unitary masks m,n and an interval J = [a, b],
we have that

HJ(m ∨ n) = HJ m ∨ HJ n.

Proof. Take any time t. If HJ m(t) or HJ n(t) then in either case we clearly have that
HJ(m ∨ n)(t).

Conversely, if HJ(m ∨ n)(t) then for any t′ ∈ J , m(t′) = T or n(t′) = T. If neither of
these signals is true both endpoints of t+J (in which case we would have HJ m∨HJ n(t′) =
T by unitarity) we can suppose w.l.o.g. that m(t+ a) = T and n(t+ b) = T. Then let

l = sup
{
t′ ∈ t+ J : m(t′) = T

}
and u = inf

{
t′ ∈ t+ J : n(t′) = T

}
.

Suppose l ≤ u. Then if we let c = l+u
2 , we must have either m(c) = T or n(c) = T. W.l.o.g.

assuming the former, we must have l = c = l+u
2 ≤ u and hence l = u, a contradiction.

Therefore, we must have l > u. But then we have m = n by unitarity and disjointness,
and hence HJ(m ∨ n)(t) = HJ m(t) = HJ m ∨ HJ n(t) = T.

Proposition 7.3.7. If m is any mask such that m = ∨
jmj (mj disjoint closed unitary

signals) then
H[0,a] m =

∨
j

mj ∧ P[a,b] mj.

Proof. Follows by Proposition 7.3.5 and Proposition 7.3.6.

Together these give us the mask for the until operator.

Proposition 7.3.8. The mask

mUa
s ≜ H[0,a] (m∧

s )

is optimal and sufficient for monitoring context C([·]) = s U[a,b] [·].

Proof. For both proofs we will use the decomposition of w into disjoint closed components

w =
∨
j,k

wj,k.
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Sufficiency For any signal s we have

w U[a,b] s|m =
∨
j,k

wj,k ∧ F[a,b] (wj,k ∧ s|m) .

Take any j, k and t ∈ R≥0. If wj,k(t) = F then

wj,k ∧ F[a,b] (wj,k ∧ s|m) (t) = F = wj,k ∧ F[a,b] (wj,k ∧ s) (t)

and we are done. If, on the other hand, wj,k(t) ∈ {T,U} and we take any t′ ∈ t + [a, b],
such that

m(t′) = H[0,a] m
∧
w(t′) = F,

then we have some t′′ ∈ t′ − [0, a] such that m∧
w(t′′) = F and hence w(t′′) = F. But then if

we had wj,k(t′) ∈ {T,U}, since we know wj,k(t) ∈ {T,U} and t′′ ∈ [t, t′], by unitarity we
would have wj,k(t′′) ∈ {T,U}, a contradiction. Then, instead we must have wj,k(t′) = F,
and hence

wj,k ∧ s|m(t′) = F = wj,k ∧ s(t′).

Therefore, wj,k ∧ s|m(t′) = wj,k ∧ s(t′) for any t′ ∈ t+ [a, b] and hence

w U[a,b] s|m = w U[a,b] s

giving sufficiency.

Optimality Consider any mask m′ such that m′ < m. Then there must be some t0 ≥ 0
such that m(t0) = T whilst m′(t0) = F. Since

m(t0) = H[0,a] (m∧
w) (t0),

we must have that t0 ≥ a and for all t′ ∈ t0 we must have m∧
w(t′) = T and hence

w(t′) ∈ {T,U}. Then, by the nature of the decomposition of w, for any j, k, we must have
either

wj,k(t′) ∈ {T,U} for all t′ ∈ t0 − [0, a] (7.1)

or

wj,k(t′) = F for all t′ ∈ t0 − [0, a] (7.2)

Now, since we know t0 ≥ a, we may take t ≜ t0 − a and define the signal s as

s(t′) ≡ F.
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Then, in the case we have Eq. (7.1), we see

wj,k ∧ F[a,b] (wj,k ∧ s|m) (t) = F

since s|m(t0) = F and for any t′ ∈ t + [a, b] for which sm(t′) ̸= F we must have some
t′′ ∈ [t′ − a, t′] ⊆ [t, t′] such that w(t′′) = wj,k(t′′) = F. In this case we have that,

wj,k ∧ F[a,b] (wj,k ∧ s|m′) (t) = U

since s|m′(t0) = U and wj,k(t′) ∈ {T,U} for all t′ ∈ t0 − [0, a] = [t, t0].
On the other hand, in the case we have Eq. (7.2), we have

wj,k ∧ F[a,b] (wj,k ∧ s|m) (t) = F = wj,k ∧ F[a,b] (wj,k ∧ s|m′) (t),

whence we conclude w U[a,b] s|m(t) = F whilst w U[a,b] s|m′(t) = U, showing m′ is not
sufficient, and thus completing the proof.

7.4 Monitoring Under a Mask: Atomic Propositions

Once we have determined a mask m = (Ij)j for a given atomic proposition ρ given its
context in the monitoring process, we then aim to directly monitor a signal s for φ under
the mask m. This means that we only care about the value of s(t) at time points t for
which m(t) is true, and so can increase the efficiency of monitoring by avoiding work
associated with time points outside of the mask. Whilst there is no way to save Flow*
from having to generate the flowpipes for these time points (since they may be required
for determining the future evolution of the system), we can avoid the effort associated
with every subsequent step of the monitoring process.

We do this by modifying how we carry out monitoring of ρ (via H(k)
p ) on each flowpipe

segment (Section 6.1.3) over its associated time domain Tk = [tk, tk+1] as follows:

• if m ∧ (Tk) = ∅ then we set s(t) = U for all t ∈ Tk and avoid monitoring over this
segment;

• otherwise, we restrict the time domain to the interval T ′
k = ⋃

j Tk ∩ Ij and apply the
normal monitoring process.

This immediately saves us from performing root finding on regions outside of the mask.
Additionally, since we have already seen how the symbolic composition of the two halves
of the flowpipe and between the flowpipe and the atomic propositions may be performed
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on demand, these expensive operations may also be avoided outside of the mask. Thus
masks allow us to direct the monitoring of each atomic proposition based on its context
within a wider STL formula.

7.5 Masked Monitoring for LBUC

We now apply the techniques in this section to a full masked monitoring algorithm for
LBUC properties. We do this by defining functions signalM(φ, (Π0,A),m) and signalMF(φ,Πf ,A,S,m)
which generalize the definition of signal and signalF to compute a signal of φ under a
mask m.

Firstly, we define signalM in terms of signalMF as follows.

Definition 7.5.1. We may compute a signalM(φ, (Π0,A),m) for a LBUC property φ

given uncertain bond-calculus model (Π̂0, Â) under mask m = (Tj)j by

signalM(φ, (Π0,A),m) ≜ signalMF(φ,Πf ,A,S,m)

where Πf is a flowpipe for the interval initial value problem

dΠ̃
dt ≜

d(Π̃, Â)
dt ; Π̃0 = Π0

with space domain S and time duration max{supTj}j + duration(φ).

Next, the definition of signalMF is given via the following recursive monitoring proce-
dure based on the masks specified in Sections 7.3 and 7.4.

Atomic Propositions For an atomic proposition ρ = p(x) > 0, the signal signalMF(ρ,Πf ,A,S,m)
is defined via the masked flowpipe monitoring algorithm in Section 7.4.

Logical and Temporal Operators We may handle the logical and temporal operators by
applying the signal operators defined in Section 6.1.1 to signals computed under suitable
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masks as given in Section 7.3. That is,

signalMF(¬φ,Πf ,A,S,m) ≜ ¬signalMF(φ,Πf ,A,S,m)

signalMF(φ ∧ ψ,Πf ,A,S,m) ≜ sφ ∧ sψ

where
sφ ≜ signalMF

(
φ,Πf ,A,S,m

)
sψ ≜ signalMF

(
ψ,Πf ,A,S,m∧

sφ

)
signalMF(φ ∨ ψ,Πf ,A,S,m) ≜ sφ ∨ sψ

where
sφ ≜ signalMF

(
φ,Πf ,A,S,m

)
sψ ≜ signalMF

(
ψ,Πf ,A,S,m∨

sφ

)
signalMF(FK φ,Πf ,A,S,m) ≜ FK

(
signalMF

(
φ,Πf ,A,S,PKm

))
signalMF(GK φ,Πf ,A,S,m) ≜ GK(signalMF(φ,Πf ,A,S,PKm))

signalMF(φ U[a,b] ψ,Πf ,A,S,m) ≜ sφ U[a,b] sψ

where
sφ ≜ signalMF

(
φ,Πf ,A,S,m

)
sψ ≜ signalMF

(
ψ,Πf ,A,S,H[0,a]

(
m∧
sφ

))

Context Operator Finally, we define the masked signal for the context operator C ▷φ.
Firstly, we note that for a unitary mask m = (T ), the signal signalMF(C ▷φ,Πf ,A, (T ))
can be computed in the same manner set out in Section 6.2, except that we must take
s ≜ signalM (φ,Φ ∥ C, (0)) in the recursive step (Eq. (6.3)). For a general mask m = (Tj)j,
the signal can be computed by concatenating the signal for C ▷φ over each of the intervals
Tj included in m. That is,

signalMF(C ▷φ,Πf ,A,S,m) ≜
⋃
j

signalMF(C ▷φ,Πf ,A,S, (Tj)).

7.6 Performance Evaluation

We will now investigate the impact of masks on the performance of our monitoring
algorithm, by first looking at the overall impact of masks on core monitoring performance in
the 9-dimensional genetic model from Section 6.4, and then look at how masked monitoring
performance varies for different types of contextual properties in the Predator-Prey Role
Reversal model from Section 6.5.
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Figure 7.1: Combined Flow* verified integration and STL monitoring times in seconds, com-
paring the masked and unmasked variants of the monitoring algorithm.

Figure 7.2: Q symbolic masked.

7.6.1 Core Monitoring Performance

We can evaluate the performance impact of masks on the core monitoring algorithm
in a challenging continuous system, by returning to the 9-dimensional genetic oscillator
considered in Section 6.4, and the property

φ ≜ G[0,1.5]
(
P ∨ G[3,3.5](Q)

)
.

We should expect that the masked variant of our monitoring algorithm will reduce the
total monitoring cost since both the time window of the inner globally operator and the
information provided by monitoring P will restrict the mask under which we need to know
Q. Indeed, the masked monitoring algorithm computes the signal for Q under the mask
shown in Fig. 7.2. Thus we are able to produce the same signal for φ as before but reduce
the monitoring time for Q by 65% as shown in Fig. 7.1.

7.6.2 Contextual Properties

Masking can have an even greater impact on monitoring cost for contextual properties,
since in this case it is able to avoid not only monitoring costs for atomic propositions but
the much more expensive cost of verified integration, which is required to determine the
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(b) Monitoring time for σm as m increases.

Figure 7.3: The impact of formula structure on unmasked and masked monitoring
times.

signal for the context operator, on regions outside of the mask. We can explore this cost
by returning to the model of role-reversal in predator prey interactions from Section 6.5
and looking at how the monitoring cost varies for different forms of proposition requiring
a contextual subproposition on a varying proportion of the time domain.

Firstly we consider the parametrized property

ψk ≜ F[10−k,10]([0.05, 0.1]Whelk ▷G[0,1](¬P ))

which states that introducing the context [0.05, 0.1]Whelk at some point between 10−k

and 10 time units in the future will cause the system to satisfy ¬P for at least 1 time
unit, and look at the time taken to apply the masked and unmasked monitoring algorithm
for 1 time unit. Fig. 7.3a shows that whilst for small k the masked monitoring time is
substantially reduced compared to the unmasked time since the eventually mask will only
include a small region of the time domain, this difference disappears as k approaches
10 and the mask expands to include the whole time domain. We can also see that the
rate of increase in masked monitoring time is not uniform; this is because, due to the
adaptive nature of the monitoring algorithm, the cost associated with monitoring different
regions of the time domain varies substantially depending on how much work is required
to determine the Boolean value of the signal.

We also consider the property,

σm ≜ G1(Sm) ∧ F[0,1]([0.05, 0.1]Whelk ▷G[0,10](¬P ))
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whose atomic proposition Sm is defined as the half-space

Sm ≜ [Whelk] > 1
8 [Lobster] +m.

The properties G1(Sm) mask a greater proportion of the time domain as m increases, and
so, as we see in Fig. 7.3b, the monitoring times for σm are substantially reduced from the
unmasked times.

We will now look at the cost of alternating temporal and contextual operators. As
discussed in section Section 5.3.3, these make it possible to model experimental protocols
in which events introduce new agents into a system at given (potentially uncertain) time
points, and observe the results. For example, we consider the sequence of nested properties,

ζ0 ≜ F[0,5] P

ζ1 ≜ G[5,5.1]([1, 1.5] Lobster ▷ ζ0)

ζ2 ≜ G[5,5.1]([0.5, 0.6] Whelk ▷ ζ1)

ζ3 ≜ G[5,5.1]([1, 1.5] Lobster ▷ ζ2)

ζ4 ≜ G[5,5.1]([0.5, 0.6] Whelk ▷ ζ3)

ζ5 ≜ G[5,5.1]([1, 1.5] Lobster ▷ ζ4)

which state that the P should be satisfied within 5 time units after we alternate between
introducing more whelks or more lobsters after every 5 time units (allowing for an up
to 0.1 time unit delay in introduction). We note that each of the formulae ζn features
n alternations between temporal and contextual operators, and thus, has a sandwich
alternation depth of n. These deeply nested sequences of interventions are representative
of real experiments in the chemical or biological setting which can require initiating
a sequence of different reactions over a number of days, however, such properties are
challenging for our unmasked monitoring algorithm for LBUC and for existing monitoring
algorithms for LBC, since the number of simulations of the system these algorithms
perform is exponential in the sandwich alternation depth of a formula.

The monitoring times for applying the masked and unmasked variants of our moni-
toring algorithm for 1 time unit from uncertain initial set Π2 are shown in Fig. 7.4. This
shows that whilst the unmasked monitoring time increases exponentially with sandwich
alternation depth, the masked monitoring algorithm substantially reduces the coefficient
of this exponential growth, reducing the monitoring time for the depth 5 formula from 655
seconds to 6 seconds. This demonstrates how monitoring many multi-stage experimental
protocols is made feasible via masks. As we have seen, however, these efficiency gains
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Depth 0 1 2 3 4 5
Unmasked Time (sec) 3.18 14.28 31.43 88.29 172.83 654.95
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(b) Table of monitoring times.

Figure 7.4: Monitoring time for formulae ζn of increasing alternation depth n.

from masks depend upon the intervals of uncertainty in the time windows used by these
operators being relatively small; for wider windows of uncertainty the masked monitoring
times can be expected to grow closer to the unmasked monitoring times and so these
properties remain difficult to monitor.
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Chapter 8

Contextual Signals

In this chapter we refine our view of a system’s behaviour over an uncertain context by
introducing a new type of contextual signal which captures the truth of a proposition over
the space of possible system contexts. Whilst our previous monitoring procedure already
allows us to generate a single signal φ which quantifies over the uncertainty induced by an
interval initial context C or by the initial conditions and parameters of a system, we are
limited by Flow*’s ability to simulate the behaviour of a system given large initial sets or
uncertain parameter ranges; once these uncertainties grow too large, validated integration
will give unsatisfactorily coarse results or fail completely. Moreover, even when Flow* can
handle a given initial set and produce signals for each atomic proposition of a complex
formula φ, these may be insufficient to conclude the overall truth of the formula given
the variety of behaviour the system exhibits for different regions exhibits over the context.
For example, given a property ζ = C ▷(φ ∨ ψ), we are only able to conclude ζ is true if
either of φ and ψ hold over the whole of C and not, say, when φ holds over half of C and
ψ over the other half. That is, our existing signal monitoring algorithm for contextual
properties is inherently limited in precision since it implicitly distributes the quantification
over contexts from the top level of the formula to its atomic propositions, in a manner
analogous to the dependency problem of interval arithmetic. Contextual signals address
this problem by recording the behaviour of propositions over each individual point in the
context in a compositional manner, allowing us to minimize the uncertainty at each point
and defer the quantification over the context as long as possible to avoid the accumulation
of uncertainties. In order to concretely compute contextual signals we introduce signal
trees, which consist of infinite trees of signals for successive subdivisions of the system
context, allowing us to derive contextual signals of arbitrary precision.

In Section 8.1 we introduce our contextual signals and our concrete signal tree monitor-
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ing algorithm. In Section 8.3 we combine this with masks to implement masked contextual
monitoring and down-tree masking. Then in Section 8.3 we present a number of demon-
strations and benchmarks of our contextual monitoring procedure on our predator-prey
role-reversal model.

8.1 Contextual Signals

In this section we will first introduce the abstract definition of contextual signals, which
track the truth value of a proposition over an uncertain context, before introducing
the more concrete methods of signal trees and flowpipe trees to monitor and combine
contextual signals in a computable manner.

8.1.1 Abstract Contextual Signals and Refinement

In this chapter we will restrict our attention to uncertain contexts of form,

C ≡ [a1, b1]S1 ∥ . . . ∥ [an, bn]Sn.

We may interpret such contexts as sets

C =
{
s1 S1 ∥ . . . ∥ sn Sn

∣∣∣∣ ∀j, sj ∈ [aj, bj]
}

containing each concrete context process consistent with the uncertain context, and thus
as an n-dimensional context space into which a system may be placed, parametrized by the
uncertain parameters sj. By Remark 5.2.4 this form of context also encompasses uncertain
initial conditions as a special case, and based on Section 5.1.2 we can also decompose
affinity networks with time-invariant uncertain parameters so that their uncertain part
is a context of this form. However, affinity networks including time-varying uncertainty
are out of the scope of the methods in this chapter.

We may then introduce the abstract definition of contextual signals which define a
signal for a proposition which varies over the context space.

Definition 8.1.1. A contextual signal over a context C is a function

s : C → R≥0 → T.

We denote by CtxSig(C) ≜ [C → R≥0 → T] the collection of all contextual signals over
the context C.
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Definition 8.1.2. A contextual signal s over context C is said to be a contextual signal for
a property φ in model M if, for any concrete context C ∈ C, the partially applied signal
s(C) is a signal for φ in the contextualized model C ∥ M in the sense of Definition 6.1.2.

This definition treats a contextual signal for a proposition φ as a map

C → (R≥0 → T) : C 7→ s(C)

defining signals for φ at every possible instance of an uncertain context C. We may
alternatively take a spatial view at each time point, viewing a contextual signal as a map

m : R≥0 → (C → T) : t 7→ C 7→ s(C, t)

defined by m(t)(C) = s(C)(t) which at each time t ∈ R≥0 gives a truth value for φ at
each point C in the space of potential contexts. Therefore contextual signals can be seen
as spatio-temporal signals over the context space1.

Based on our semantics for LBUC, it is possible to directly define an optimal contextual
signal for a proposition φ over a given context space C which optimally captures the truth
value of φ on each concrete context C ∈ C.

Proposition 8.1.3. Given a context space C, the contextual signal wC
φ defined by

wC
φ(C)(t) =


T if (M ∥C, t) |= φ

F if (M ∥C, t) |= ¬φ

U otherwise

for C ∈ C and t ∈ R≥0 is the optimal contextual signal for φ. That is, for any contextual
signal s,

s is a contextual signal for φ ⇐⇒ s ⊑ wC
φ.

Proof. Firstly, suppose that s is a contextual signal for φ. Then if s(C)(t) = b ∈ B,
(M ∥C, t) |= b and hence wC

φ(t) = b showing that s ⊑ wC
φ.

Conversely, assume that s ⊑ wC
φ. Then, for any C ∈ C, for any t ∈ R≥0, if s(C)(t) =

b ∈ B we have b = s(C)(t) ⊑ wC
φ(t) and hence wC

φ(t) = b. But then we must have
M ∥C |= (φ ⇔ b). Therefore s(C) is a signal for φ in the model M ∥C for every C ∈ C
and hence s is a contextual signal for M in context C.

1In contrast to normal spatio-temporal signals which capture real variation in the concentrations of
agents across spatial domain captured in the model, here we consider a conceptual space of potential
contexts, which are assumed to be established and fixed at time 0 and do not interact with each other
over time.
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This optimal contextual signal is, however, impossible to compute in general so our aim
henceforth will be to approximate it.

Whilst a contextual signal provides more information by allowing us to explore how the
truth value of a proposition varies over the context space, it can also provide a tighter view
of the truth of a proposition over the whole context space, by generating a refined signal:

Definition 8.1.4. A signal w is a refined signal for φ in context C for model M provided
it satisfies

w(t) = T =⇒ ∀C ∈ C, (M ∥C, t) |= φ (8.1)

w(t) = F =⇒ ∃C ∈ C, (M ∥C, t) |= ¬φ. (8.2)

We note that this does not imply either,

1. w is a signal for C ▷φ in M, or

2. w is a signal for φ in M ∥ C.

The former statement (Item 1) does not hold since the the refined signal considers evolution
of the system after the the context C is already been introduced whereas a signal for
C ▷φ tracks the instantaneous truth value of φ after each time point at which C may be
introduced. The latter statement (Item 2) does not hold since the refined signal is too
tight to be a signal for the φ over this composed system since it can be refuted by a
single concrete context, whereas a signal for φ would have to account for each individual
trajectory of the composed system.

Compared to the normal definition of a signal for a proposition, the looser refutation
condition for refined signals means that they cannot be composed directly (for example,
we cannot decide if F[a,b] φ satisfies Eq. (8.2) from a refined signal for φ since φ being false
on some context for each of the time points in t+[a, b] does not imply that there is a single
context on which φ is false at all of these time points). On the other hand, contextual
signals contain more than enough information to be determined compositionally since they
independently determine signals at each point in the context space and can be condensed
into refined signal as needed by the following definition.

Definition 8.1.5. Given a contextual signal s : C → R≥0 → T, the refined signal
associated with s is the signal defined by

refined(s) ≜
∧
C∈C

s(C).
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Firstly we see that refinement is a monotone map.

Proposition 8.1.6. For any context C, the refinement map refined : CtxSig(C) →
(R≥0 → T) is monotone.

Proof. For any pair of context signals s, w with s ⊑ w and t ∈ R≥0, we have that

refined(s)(t) =
∧
C∈C

s(C)(t) ⊑
∧
C∈C

w(C)(t) = refined(w)(t)

since s(C)(t) ⊑ w(C)(t) for all C ∈ C and since it can easily been seen that arbitrary
conjunctions are monotone under ⊑.

We then see that refining a contextual signal for a proposition does in fact yield a refined
signal for that proposition.

Proposition 8.1.7. Given a contextual signal s for a proposition φ in context C, refined(s)
is a refined signal for φ in context C.

Proof. If refined(s) (t) = T then for any C ∈ C, s(C)(t) = T and hence, since sC is a
signal for φ in M ∥C, M ∥C |=t φ. Conversely, if refined(s) (t) = F, then for some C ∈ C,
s(C)(t) = F and hence (M ∥C) |=t ¬φ. Therefore w is a refined signal for φ.

Moreover, we see that refining the optimal contextual signal wC
φ (Proposition 8.1.3) gives

an optimal refined signal for a proposition over a given context.

Proposition 8.1.8. Given the optimal contextual signal wC
φ for a proposition φ in context

C, the signal refined
(
wC
φ

)
is the optimal refined signal for φ in context C, that is, for any

signal s,
s is a refined signal for φ in context C ⇐⇒ s ⊑ refined

(
wC
φ

)
.

Proof. Firstly, suppose that s ⊑ refined
(
wC
φ

)
. Then, for any t ∈ R≥ 0, if s(t) = b ∈ B, we

must have refined
(
wC
φ

)
(t) = ∧

C∈C w
C
φ(C)(t) = b. If b = T, for any C ∈ C we must have

wC
φ(C)(t) = b = T and hence M ∥C |=t φ. On the other hand, if b = F, we must have

some C ∈ C with wC
φ(C)(t) = b = F and hence M ∥C |=t φ. Therefore s is a refined

signal for φ in context C.
Conversely, suppose that s is a refined signal for φ in context C and consider and

arbitrary t ∈ R≥0. If s(t) = T then for any C ∈ C we must have M ∥ C |=t φ so that
wC
φ(C)(t) = T and hence

refined
(
wC
φ

)
(t) =

∧
C∈C

(C)(t) = T ⊒ T = s(t).
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On the other hand s(t) = F then we must have some C ∈ C such that M ∥ C |=t φ so
that wC

φ(C)(t) = T and hence

refined
(
wC
φ

)
(t) =

∧
C∈C

(C)(t) = F ⊒ F = s(t).

Therefore s ⊑ refined
(
wC
φ

)
, completing the proof.

8.1.2 Context Trees

We now need to move from our abstract treatment of the context space as a real continuous
space, to a more concrete representation as a tree of subdivided contexts. To this end we
first introduce the notion of a subcontext of a context.

Definition 8.1.9. Given contexts C and D then C is a subcontext of D if C ⊆ D as sets.

We may then expand a context C into a tree of progressively refined subcontexts, repre-
senting spatial subdivisions of the context space.

Definition 8.1.10. A context tree for context C is a collection NC of subcontexts of C
satisfying:

1. C ∈ NC;

2. NC is a finitely branching tree of sets;

3. int(D) ̸= ∅ for all D ∈ NC;

4. D = ⋃
E∈children(D) E for each D ∈ NC;

5. for every pair of siblings E ̸= F ∈ children(D) with E ̸= F , int(E) ∩ int(F) = ∅.

This permits the use of both finite contextual trees, which subdivide the space into a
finite number of regions, and infinite, which may be iteratively expanded to progressively
subdivide the space as we increase our exploration depth. We note an important property
of finite context trees: their leaf nodes form a partition of the context into subcontexts
which overlap only on their boundaries.

Proposition 8.1.11. Given any finite context tree NC over context C we have that

(a) C = ⋃ leaves(NC);

(b) for all D, E ∈ leaves(NC), D ≠ E =⇒ int(D) ∩ int(E) = ∅.
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Proof. Both properties follow by induction on the depth of the tree.

In general, however, we are primarily interested in monitoring infinite context trees
which allow us to progressively refine the space as required in a given region; these may
be represented by an implementation as lazy infinite data structures. The simplest way
of generating such a context tree is subdividing the context in a grid pattern along each
dimension of uncertainty at each level of the tree. This is similar to the representation of 2D
patterns as a quad-tree (as used in, for example, the spatio-temporal logic SpaTeL [187]).

Definition 8.1.12. Consider a context given by an bond-calculus process C in the form

C ≡ CC ∥ CS

with uncertain component CC ≜
fn
j=1[aj, bj]Cj where bj > aj for all j, and certain compo-

nent CS ≜
fm
j=1 sjSj. Then the context tree generated by C is the infinite tree with root C

and children

Cl1,...,ln ≜

 nn

j=1
Ij,lj Xj

 ∥ CS lj ∈ {0, 1}

where

Ij,l ≜


[
aj,

1
2(aj + bj)

]
if l = 0[

1
2(aj + bj), bj

]
if l = 1

,

and the branch rooted at each child Cl1,...,ln is the context tree generated by Cl1,...,ln .

In the above definition we separate the uncertain component CC of the context from the
static component CS. Static context dimensions which simply represent a fixed jump in a
given direction are not amenable to context subdivision, motivating their exclusion such
that the dimension of the context tree will only be the number of genuinely uncertain
context variables n.

8.1.3 Signal Trees

We can now define a signal tree over a context tree, which defines a signal for each node
of the context tree.

Definition 8.1.13. Given a context tree NC, a signal tree s over NC is an monotone
function

s : NC → R≥0 → T
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with respect to the information ordering ⊑ (that is, if D ⊆ E then s(D)(t) ⊒ s(E)(t))
such that for all D, E ∈ NC if D ∩ E ≠ ∅ then for any t ∈ R≥0 either s(D)(t) ⊑ s(E)(t)
or s(E)(t) ⊑ s(D)(t). We denote by SigTree(NC) the collection of all signal trees over
the context tree NC.

Depending on the underlying context tree, we are interested in both finite and infinite
signal trees which may be computed and operated on lazily.

Definition 8.1.14. Given a context tree NC, a signal tree s : NC → R≥0 → T is called
finite / infinite if the underlying context tree NC is a finite / infinite set respectively.

Then we define a signal tree for a property φ over a context NC tree, as a signal tree which
gives signal for φ on each context in NC.

Definition 8.1.15. Given a proposition φ and a model M, a signal tree s is a signal tree
for φ in M over NC if s(D) is a signal for φ for every context D ∈ NC.

Now, for every contextual signal over C we attempt to directly define a signal tree approx-
imation over NC as follows.

Definition 8.1.16. Given a contextual signal w : C × R≥0 and a context tree NC, the
signal tree w∗ of s over NC is defined by

w∗(D) =
⋂
D∈D

w(D).

This also allows us to use to find the optimal signal tree over a given context tree for a
given proposition.

Proposition 8.1.17. Given a context tree NC over context we have that

(wφ)∗(D)(t) =


T if (M ∥ D, t) |= φ

F if (M ∥ D, t) |= ¬φ

U otherwise

(8.3)

for t ∈ R≥0 and that (wφ)∗ is the optimal signal tree for φ over Nφ. That is, for any signal
tree s over NC,

s is a signal tree for φ ⇐⇒ s ⊑ wφ. (8.4)

170



Proof. Firstly for any b ∈ B we have that

(wφ)∗(D)(t) =
⋂
D∈D

wφ(D)(t) = b

⇐⇒ for all D ∈ D, wφ(D)(t) by the definition of
⋂

⇐⇒ for all D ∈ D, (M ∥D, t) |= (φ ⇔ b) by Proposition 8.1.3

⇐⇒ (M ∥ D, t) |= (φ ⇔ b) by LBUC semantics (5.2.2)

showing that Eq. (8.3) holds. But then Eq. (8.4) follows directly from the definitions.

Conversely, we define a contextual signal based on a given signal tree as follows.

Definition 8.1.18. Given a signal tree s, the contextual signal s∗ of s is defined by

s∗(D) =
⋃

D∈NC :D∈D
s(D).

The union of signals in the above definition is well defined since a signal tree is guaranteed
to be consistent on all overlapping context nodes.

We now see that these two relationships define a Galois correspondence [132] between
contextual signals and signal trees over a particular context tree.

Proposition 8.1.19. Given a context tree C over context C, the maps F ∗, F∗ defined by

F ∗ : SigTree(NC) → CtxSig(C) : s 7→ s∗

F∗ : CtxSig(C) → SigTree(NC) : w 7→ w∗

form a monotone Galois correspondence F = (F ∗, F∗). That is, F ∗ and F∗ are monotone
maps and for every signal tree s over C and contextual signal w over C,

F ∗s = s∗ ⊑ w ⇐⇒ s ⊑ w∗ = F∗w.

Proof. Firstly, it can easily be seen that F ∗ and F∗ are both monotone functions.
Then suppose that s∗ ⊑ w. If for some D ∈ NC and t ∈ R≥0 we have that s(D)(t) =

b ∈ B, for any D ∈ D we must have that

b = s(D)(t) ⊑ s∗(D)(t) ⊑ w(D)(t)

and so w(D)(t) = b, and consequently w∗(D)(t) = b by the definition of w∗, showing that
s ⊑ w∗.
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Conversely suppose that s ⊑ w∗. Then for any D ∈ C, if s∗(D)(t) = b ∈ B we must
have s(D)(t) = b for some D ∈ NC with D ∈ D. Then

b = s(D)(t) ⊑ w∗(D)(t)

and hence w∗(D)(t) = b. But then D ∈ D so, by the definition of s∗, w(D)(t) = b, proving
that s∗ ⊑ w, and thus (F ∗, F∗) form a Galois correspondence.

This reassures us that we may use signal trees as a sound approximation of contextual
signals. We can also deduce that a signal tree for a given proposition corresponds to a
contextual signal for that proposition.

Proposition 8.1.20. Given a signal tree s and a proposition φ, s is a signal tree for φ
iff s∗ is a contextual signal for φ.

Proof. This follows since

s is a signal tree for φ ⇐⇒ s ⊑ (wφ)∗ by Proposition 8.1.17

⇐⇒ s∗ ⊑ wφ by Proposition 8.1.19

⇐⇒ s∗ is a contextual signal for φ by Proposition 8.1.3.

As with contextual signals, signal trees for complex proportions may be defined com-
positionally by composing the signal trees of formulae following the structure of the
tree.

Proposition 8.1.21. Given context tree (NC,≺C) and propositions φ and ψ respectively
having signal trees sφ and sψ, we have the following signal trees for complex propositions:

• The proposition ¬φ has a signal tree s¬φ given by

s¬φ(D) = ¬sφ(D).

• The proposition φ ∨ ψ has a signal tree sφ∨ψ given by

sφ∨ψ(D) = sφ(D) ∨ sψ(D).

• The proposition φ UJ ψ has a signal tree s¬φ given by

sφUJψ(D) = sφ(D) UJ sψ(D).

where D ∈ NC is an arbitrary node of the context tree.
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Proof. We will give the proof for φ UJ ψ since the signal trees for the other operators
follows similarly. Since s and w are respectively signal trees for φ and ψ, for all D ∈ D,
s(D) and w(D) are respectively signals for φ and ψ on D, and hence, s(D) UJ w(D) is a
signal for φ UJ ψ by Proposition 6.1.8, proving that s UJ w is a signal tree for φ UJ ψ.

Thus, given signal trees for atomic propositions (we will see how these may be computed
in following sections), we are able to propagate the signals trees upwards to compute the
signal trees for complex propositions as in our regular signal monitoring algorithms.

8.1.4 Refining Signal Trees

In this section we will see how we may compute refined signals from signal trees.
To start with we consider the special case of finite signal trees, for which we may

explicitly compute the associated refined signals via the following result:

Lemma 8.1.22. Given sets A,B such that A ̸= ∅ is nonempty and convex and int(A) ∩
int(B) = ∅ then cl(A) ∩ int(B) = ∅.

Proof. Suppose we have some a ∈ cl(A)∩ int(B). By convexity and nonemptiness cl(A) =
cl(int(A)) so a ∈ cl(int(A)). Since a ∈ int(B), for some open neighbourhood U of A,
U ⊆ int(B), but as a ∈ cl(int(A)), ∅ ̸= U ∩ int(A) ⊆ int(B) ∩ int(A), a contradiction
completing the proof.

Proposition 8.1.23. For any finite signal tree s : NC × R≥0 → T we have that

refined(s∗) ≜
∧

D∈leaves(NC)
s(D).

Proof. Take any t ∈ R≥0.
If refined(s∗)(t) = T then for any node D ∈ NC with children(D) = ∅, pick some

D ∈ int(D) ̸= ∅. Then we must have s∗(D)(t) = T and hence there must some E ∈ NC

with D ∈ E and s(E)(t) = T. But then E must be an ancestor of E , since, if we assume
not, there must be some leaf descendent E ′ ⊆ E with D ∈ E ′ by Proposition 8.1.11 (a).
But as E ′ ̸= D by our assumption, Proposition 8.1.11 (b) tells us that int(D)∩ int(E ′) = ∅
and so by Lemma 8.1.22, ∅ = cl(E ′) ∩ int(D) ∋ b, a contradiction. But now we know that
E is an ancestor of D and so s(D)(t) ⊒ s(E)(t) ⊒ T and hence s(D)(t) = T, showing that∧

D∈leaves(NC) s(D)(t) = T.
If refined(s∗)(t) = F then for some D ∈ C, s∗(D)(t) = F and so by the definition

of s∗ we must have some D0 ∈ NC with D ∈ D0 and s(D0)(t) = F. Then, picking any
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leaf descendent D′
0 ⊆ D0, s(D′

0)(t) ⊒ s(D)(t) = F, showing that s(D′
0)(t) = F and hence∧

D0∈leaves(NC) s(D)(t) = F.

We will now see how we may extract refined signals from an infinite signal tree by
truncating it at a given finite depth.

Definition 8.1.24. Given a context tree NC, we define the depth d truncation of NC as

N ≤d
C ≜

{
D ∈ NC

∣∣∣ depth(D) ≤ d
}
.

Given a signal tree s over NC, we define the depth d truncation s≤d of s as the domain
restriction of s to N ≤d

C , that is

s≤d : N ≤d
C → R≥0 → T : D 7→ s(D).

Proposition 8.1.25. Given context trees N 1
C ⊆ N 2

C , if s1 and s2 are signal trees over N 1
C

and N 2
C respectively and s1(D) = s2(D) for all D ∈ N 1

C , then s∗
1 ⊑ s∗

2.

Proof. Define the signal tree s3 : N 2
C → R≥0 → T by s3(D) = s1(E) where E is the least

ancestor of D in N 2
C such that E ∈ N 1

C . Then we can see both that s∗
1 = s∗

3 and s3 ⊑ s2,
showing by monotonicity (Proposition 8.1.19) that s∗

1 = s∗
3 ⊑ s∗

2.

Corollary 8.1.26. Given a signal tree s and natural numbers n,m ∈ N such that n ≤ m

we have that s∗
≤n ⊑ s∗

≤m ⊑ s∗.

We may then use truncations of a signal tree to define refined signals to different
depths of refinement.

Definition 8.1.27. Given a signal tree s we define the d refined signal of s as the signal

sd ≜ refined
(
s∗

≤d

)
=
∧

leaves
(
s∗

≤d

)
=
∧{

s(D)
∣∣∣ D ∈ NC, (children(D) = ∅ ∨ height(D) = d)

}
.

The d-refined signal may be computed recursively over the signal tree as sd = refined(n, C, s)
where

refined(d,D, s) ≜ s(D) whenever d = 0 or children(D) = ∅

refined(d+ 1,D, s) ≜
∧

E∈children(D)
refined(d, E , s) .

This then allows us to use a signal tree s for a given property to define a sequence of
progressively refined signals for the property as follows.
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Proposition 8.1.28. Given a signal tree s for a property φ and natural numbers n,m ∈
N≥0 such that n ≥ m we have that

refined(s∗) ⊒ sn ⊒ sm ⊒ s0, (8.5)

that the above signals are all refined signals for φ whilst s0 is a signal for φ.

Proof. The inequalities Eq. (8.5) follow directly by Corollary 8.1.26 and monotonicity
of refinement (Proposition 8.1.6). But then clearly s0 = s(C) is a signal for φ and the
all of the other signal in Eq. (8.5) must be refined signals for φ by the optimality of
refined

(
wC
φ

)
⊒ refined(s∗).

8.2 Signal Tree monitoring using Flow*

In this section we investigate methods of using Flow* flowpipes to generate signal trees
for atomic propositions and context operators and then define how these signal trees may
be composed to achieve general signal tree monitoring over flowpipes.

To this end we start by defining a tree of flowpipes specialized to each node of a context
tree.

Definition 8.2.1. A flowpipe tree f over context tree NC and time domain T ∈ IR≥0

consists of a partial map

f : NC ⇀
[(

S × T → M̂ix
)

× P(S)
]

which maps each node D ∈ NC to a pair f(D) = (fD,SD) of a flowpipe fD and a restricted
space domain SD ⊆ S. The flowpipe tree f is a flowpipe tree for model M over time
domain I if for every node D ∈ N , every trajectory x of the composed system M ∥ D,
and every time point t ∈ T , x(t) ∈ fD(SD, t).

This means that for each node D of the tree we may enclose the trajectories in this context
by evaluating the flowpipe fD on the associated space domain SD. This is a partial map,
reflecting the fact that it is not always possible to generate a flowpipe covering the entirety
of a given initial system.

Given a flowpipe tree for a model M over context tree NC it is possible to define an
associated signal tree as follow. In the case of an unknown flowpipe f(D) = ⊥ at context
node D, the associated signal in any signal tree will be the empty signal, that is,

signalTreeF(φ, f,A, T )(D) = ((T,U)) = ()
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whenever f(D) = U. Whereas if, on the other hand, f(D) = (fD, SD) we can define the
signal tree signalTreeF(ρ, f,A, T ) by

signalTreeF(ρ, f,A, T )(D) ≜ signalF(ρ, fD,A,SD, T )

that is, by monitoring ρ over each flowpipe in the flowpipe tree over its associated space
domain.

The signal trees for complex operators can be defined by composing them according
to the operators in Proposition 8.1.21, so that,

signalTreeF(¬φ, f,A, T ) ≜ ¬signalTreeF(φ, f,A, T )

signalTreeF(φ ∧ ψ, f,A, T ) ≜ signalTreeF(φ, f,A, T ) ∧ signalTreeF(ψ, f,A, T )

signalTreeF(φ ∨ ψ, f,A, T ) ≜ signalTreeF(φ, f,A, T ) ∨ signalTreeF(ψ, f,A, T )

signalTreeF(FK φ, f,A, T ) ≜ FK(signalTreeF(φ, f,A, T ))

signalTreeF(GK φ, f,A, T ) ≜ GK(signalTreeF(φ, f,A, T ))

signalTreeF(φ UK ψ, f,A, T ) ≜ signalTreeF(φ, f,A, T ) UK signalTreeF(ψ, f,A, T ).

We must now define the signal tree for the context operator D ▷φ over the context tree
NC. It would be possible to define this based on signalF, similarly to atomic propositions,
however, this would offer no opportunity refine our knowledge of the inner proposition φ

under the context D. Instead, we use may apply signal tree monitoring to define a refined
signal tree as follows. For a context tree node E ∈ NC such that f(E) = (gE ,SE) we first
define an interval uncertain bond-calculus model

ΦE,T ≜ (gE(SE , T ),A)

which encompasses the possible state of the system in outer context E before the inner
contextual jump occurs. We then define a derived context tree (ND,E,T ,D ∥ ΦE,T ) with
nodes ND,E,T =

{
D ∥ ΦE,T

∣∣∣ D ∈ ND
}
. We then monitor a signal tree s for the inner

proposition φ over the contextualized signal tree ND,E,T . Taking the nth refinement sn of
s then gives a refined signal for φ assuming the context D has been applied at some time
in T . Now if we take b = sn(0) this gives a sound three-valued truth value for φ after any
context jump in D occurs at any time point t ∈ T . If b ∈ B then we can use the signal
((T, b)), otherwise we may recursively bisect T to refine the signal to a desired precision
as before. Thus, we may deduce the signal signalTreeF(C ▷φ, f,A, T )(D) based on the
n-refined signal for the context D, and hence define a signal tree for the context operator.
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Since the inner signal tree is refined into a single three-valued truth value every time
a context operator is encountered, the precision of monitoring depends on the level of
refinement use at each of the context operators in a proposition. This give us a way of
subdividing every source of time-invariant uncertainty within a proposition: for example, in
a property G[a,b](C ▷φ), the inner property φ will be monitored under a subdivisible context
C in a system ΦE,T whose uncertainties depend on the node E and the time domain T both
of which may be further subdivided, and the precision of Flow* flowpipe construction,
which may be improved by changing Flow*’s integration parameters. This means we
always have a means to improve the precision of monitoring if necessary, however, it is
not always obvious which combination of these factors gives the best tradeoff of precision
for monitoring time.

Now we know how a signal tree follows from a flowpipe tree, it remains to decide how
we compute a flowpipe tree for a given system in context. The most direct method is to
compute a physical flowpipe tree by applying Flow* to directly compute a flowpipe for
the contextualized system.

Definition 8.2.2 (Physical Flowpipe Tree). Given a context tree NC, we define the physi-
cal flowpipe tree f such that for each D ∈ N , f(D) = (fD, [−1, 1]n) where fD is a flowpipe
computed for the contextualized system M ∥ D and [−1, 1]n is its full (preconditioned)
space domain.

The above method is, however, a rather costly way of generating a signal tree since
it requires us to repeat the expensive process of flowpipe construction for each region of
the context tree. We can save much of this effort by making use of the symbolic nature
of the flowpipes generated by Flow*, so we may construct a single flowpipe which tracks
the functional dependency of the state at each time point on the whole range of initial
conditions, and restrict it to a sub-domain corresponding to a particular context, allowing
us to monitor the signal for different regions of context space based on of a single symbolic
flowpipe. To this end we must represent the initial conditions of the system M ≜ (Π,A)
under context C as a Taylor model with symbolic variables corresponding to the position
of the system within context space. That is, if Π ≡ ∥nj=1 IjXj and C ≡ ∥nk=1 JkCk, we may
represent the initial conditions of the system in context as a Taylor model

T (λ,µ) ≜
n

∥
j=1

λjXj +
m

∥
k=1

µkCk

with vectors of symbolic parameters λ = (λj)j and µ = (µj)j where λj ∈ Ij and µk ∈ Jk
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for all j, k respectively2. Taylor model based verified integration is able to solve the
functional dependency represented by this initial condition to produce an output flowpipe
Π(λ,µ, t) which guarantee that for any choice of λj, µk, and t, the trajectories starting in
T (λ,µ) will be contained in Π(λ,µ, t) at time t. This allows us to treat such a flowpipe
as a function F : C × R≥0 → M̂ix giving us the range in the uncertainty of the output
mixture of each time point given the context in which the system is placed. This then
lets us define a symbolic flowpipe tree of the contextual system as follows.

Definition 8.2.3 (Symbolic Flowpipe Tree). Given a flowpipe Π : C × R≥0 → Mix and
a context tree NC, we may define a symbolic flowpipe tree for the system by

f(D) = (F,D).

Remark 8.2.4. In the Taylor model initial condition T we may skip any constant parameters
λj or µk for which Ij ∈ R or Jk ∈ R respectively, and instead include these constants
directly in the coefficients of the Taylor model. We also note that this Taylor model
possesses no remainder part, since Flow* can handle this uncertainty better via symbolic
parameters than the remainder interval.

In practice, this construction is complicated somewhat further by the fact that Flow*
uses flowpipes which are preconditioned by replacing the coordinate space of the orig-
inal system with the dynamically transformed coordinate space [−1, 1]n. However, the
functional dependency is still tracked by the preconditioned Taylor model, and we are
able to construct a flowpipe tree based on the transformed context space, by translating
subdivisions of the context to subdivisions of the flowpipe’s space domain as follows.

Definition 8.2.5 (Preconditioned Symbolic Flowpipe Tree). Given a preconditioned
flowpipe

Π : [−1, 1]n × R≥0 → M̂ix

we may define a symbolic flowpipe tree by

f(D) = (Π, g−1(D)).

where the bijective map g : [−1, 1]n → C is defined by g(x) = Π(x, 0).
2We distinguish these two sets of symbolic parameters because whilst the uncertainty in the context

sets represents a universal quantification under actual possible scenarios, we do not know this is the case
for the uncertainty in the base system. Indeed, when building a flowpipe tree for a contextual operator
C ▷φ based on a Taylor model initial condition T (λ,µ), each possible assignment to µ corresponds to
a real context to which the system could potentially be placed, whilst assignments to λ corresponds to
points in the range of an over-approximated flowpipe for the system which may or may not be realized
by actual trajectories of the original system, so should not be subdivided as part of context tree.
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One limitation of this symbolic approach comes from the fact that symbolic subdivision
will sometimes produce looser results than purely physical subdivision since flowstar is
not able to symbolically track the state for contexts further up the tree (particularly in
the case that trajectories bifurcate into a non-convex reach set), and may fail completely
if the initial context is too large to handle. Therefore we are motivated to pursue a mixed
approach whereby we start by using physical subdivision, implemented via mixed flowpipe
trees.

Definition 8.2.6 (Mixed Flowpipe Tree). A mixed flowpipe tree for model M over context
tree NC is any flowpipe tree f over NC such that for every node D ∈ NC, exactly one of
the following three cases holds:

1. f(E) is undefined for E = D and each of its ancestors E ;

2. f(D) = (fD, [−1, 1]n) where fD is a flowpipe for D ∥ M with space domain [−1, 1]n;

3. for some ancestor E of D, case (2) holds and the subtree rooted at E is the symbolic
flowpipe tree generated by fE .

Thus a mixed flowpipe tree consists of a (possibly empty) layer of nodes for which the
flowpipe is undefined, followed by a layer of physical flowpipes, and finally, a layer of sym-
bolically restricted flowpipes. In practice, this may be computed recursively, by proceeding
from the top of the tree attempting to compute flowpipes for each node until at some stage
we switch to symbolically subdividing the flowpipe. Whilst in general it is difficult to tell
when best to switch from physical to symbolic subdivision, the most basic approach is
start performing symbolic subdivision as soon as Flow* successfully produces a flowpipe
for a given property for the full duration of the property which we are monitoring. This
generates a flowpipe forest consisting of symbolic flowpipe trees each of which is based on
a maximal physical flowpipe.

8.3 Masked Contextual Monitoring

Whilst signal trees give us a powerful way of exploring the truth of a proposition over
a context space, their naive application has the potential for inefficiency due to the
exponential increase in the number of spatial subregions as we move down a context tree,
despite the fact that often only a small proportion of these are necessary to the overall
verification of a given property. This can occur since, as we move down each branch of
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the tree, if we naively expand each node of the tree at a given depth, we monitor the
truth value of each atomic proposition at each time point from scratch on each subregion,
even if it might have been possible to decide its truth value for the whole branch further
up the tree. Additionally, in monitoring a signal tree for a complex proposition, we may
spend a large amount of time monitoring a particular atomic proposition on regions of the
context space on which it does not contribute to the truth of the overall proposition. To
tackle both of these problems we are motivated to introduce mask trees, which specify a
different mask for each node of the context tree, implementing a spatio-temporal extension
of masking capable of avoiding monitoring certain time regions on whole branches of the
signal tree and consequently excluding whole regions of the combined context space / time
domain from the monitoring algorithm. This gives us a flexible framework to enable both
downtree masking, propagating truth values down the signal tree to avoid recomputation
of truth values decided at higher levels of the tree, and a full mask tree extension of the
masked monitoring algorithm developed in Chapter 7.

8.3.1 Mask Trees and Signal Tree Monitoring Contexts

We first define a mask tree, assigning a mask to each node of a context tree.

Definition 8.3.1. Given a context tree NC a mask tree over NC is a monotone function
m : NC → R≥0 → B under implication order ≥; that is: for any D, E ∈ NC such that
D ⊇ E , m(D)(t) ⇐ m(E)(t) for all t ∈ R≥0.

We can then use a mask tree on an existing signal tree to recursively restrict the signal
at each node of the tree.

Definition 8.3.2. Given a signal tree s : NC → R≥0 → T and a mask tree m : NC →
R≥0 → B we define the restriction of s to m as the signal tree s|m : NC → R≥0 → T
defined by

s|m(D) = s(D)|m(D) for all D ∈ NC.

We will now proceed to extend our masked monitoring algorithm to signal tree moni-
toring. This then motivates us to define signal tree monitoring contexts which will play
the same role as monitoring contexts in determining the suitability of mask trees for
monitoring each operator of STL.

Definition 8.3.3. Given a context tree NC, a signal tree monitoring context over NC is
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defined according to the grammar:

S([·]) ::= [·] | s ∨ S([·]) | s ∧ S([·]) | ¬ S([·])

| FI(S([·])) | GI(S([·])) | s UI S([·]) .

where each s is a signal tree over NC.

The following definition allows us to interpret a signal tree monitoring context as a
tree of monitoring contexts for each node in its context tree.

Definition 8.3.4. Given a signal tree monitoring context S([·]) over a context tree NC,
we define a monitoring context SD for each D ∈ NC by the following rules:

[·]D ≡ [·]

(s ∨ S([·]))D ≡ s(D) ∨ SD([·])

(s ∧ S([·]))D ≡ s(D) ∧ SD([·])

FI(S([·]))D ≡ FI(SD([·]))

GI(S([·]))D ≡ GI(SD([·]))

(s UI S([·]))D ≡ s(D) UI SD([·]).

This then leads to define when a mask tree is sufficient or optimal for monitoring in a
given masked monitoring context.

Definition 8.3.5. Given a context tree NC, a mask tree m : NC → R≥0 → B is sufficient
for a signal tree monitoring context S([·]) under a mask tree n : NC → R≥0 → B if for
any signal tree s : NC → R≥0 → B we have that S(s)|n = S(s|m)|n .

Furthermore, we say that m is optimal for S([·]) under n if m is the least sufficient
mask for S([·]) under n with respect to the implication order ⇒.

We now has the following result, that tells us that sufficiency and optimality of a
contextual signal correspond to nodewise sufficiency and optimality over the context tree.

Proposition 8.3.6. Given any mask tree m and any signal tree monitoring context S([·]),
m is sufficient / optimal for S([·]) iff for all D ∈ NC, m(D) is sufficient / optimal for
SD([·]) for all D ∈ NC.

Proof.
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Sufficiency

m is sufficient for S([·]) under mask tree n (8.6)

⇐⇒ for every signal tree s, (8.7)

S(s)|n = S(s|m)|n (8.8)

⇐⇒ for every signal tree s, for all D ∈ NC, (8.9)

S(s)|n (D) = S(s|m)|n (D) (8.10)

⇐⇒ for every signal tree s, for all D ∈ NC, (8.11)

S(s)(D)|n(D) = S
(
s(D)|m(D)

)∣∣∣
n(D)

(8.12)

⇐⇒ for all D ∈ NC, for every signal w, (8.13)

w|n(D) = S
(
w|m(D)

)∣∣∣
n(D)

(8.14)

⇐⇒ for all D ∈ NC, (8.15)

m(D) is sufficient for S([·]) under n(D). (8.16)

In the above, the key biimplication Eq. (8.13) follows trivially in the ⇐ direction, and for
the ⇒ direction, if we have any signal w with

SD
(
w
)∣∣∣
n(D)

̸= SD
(
w|m(D)

)∣∣∣
n(D)

,

then the signal tree s defined by

s(E)(t) =


w(t) if E ⊆ D

U otherwise

has that

SD
(
s(D)

)∣∣∣
n(D)

= SD
(
w
)∣∣∣
n(D)

̸= SD
(
w|m(D)

)∣∣∣
n(D)

= SD
(
s(D)|m(D)

)∣∣∣
n(D)

proving the impliction by contrapositive.

Optimality If m is optimal, then for any D ∈ NC, if we have some sufficient mask l with
m(D) ⇒ l, we can define a mask tree m′ by

m′(E) =


m(E) ∧ l if E = D

m(E) otherwise.

But then m ⇒ m′, m′ is sufficiency by the first half of the proposition, and hence m = m′

by the optimality of m.

182



Conversely, suppose that m(D) is optimal for all D and take any sufficient mask tree
m′ with m ⇒ m′. Then for any D ∈ NC, m(D) ⇒ m′(D) and m′(D) is sufficient by the
first half of the proposition, so by the optimality of m(D) we must have m′(D) = m(D).
But then m′ = m, proving the optimality of m.

This directly allows us to define optimal and sufficient masks for each context within
the contextual monitoring process by reinterpreting the masking operators m∧

s , PK , etc
from Chapter 7 over context trees, by applying the appropriate masking rules to each
node of a signal tree.

8.3.2 Masked Signal Tree Monitoring Algorithm

We are now ready to draw upon our existing monitoring rules from Section 7.5 and
Section 8.2 to define the contextual monitoring algorithm for LBUC. This consists of the
following rules for the standard STL operators:

signalTreeMF(φ, f,A,m)(D) ≜ signalM(φ, f(D),A,m(D))

signalTreeMF(¬φ, f,A,m) ≜ ¬signalTreeMF(φ, f,A,m)

signalTreeMF(φ ∧ ψ, f,A,m) ≜ sφ ∧ sψ

where
sφ ≜ signalTreeMF

(
φ, f,A,m

)
sψ ≜ signalTreeMF

(
ψ, f,A,m∧

sφ

)
signalTreeMF(φ ∨ ψ, f,A,m) ≜ sφ ∨ sψ

where
sφ ≜ signalTreeMF(φ, f,A,m)
sψ ≜ signalTreeMF

(
ψ, f,A,m∨

sφ

)
signalTreeMF(FK φ, f,A,m) ≜ FK(signalTreeMF(φ, f,A,PKm))

signalTreeMF(GK φ, f,A,m) ≜ GK(signalTreeMF(φ, f,A,PKm))

signalTreeMF(φ U[a,b] ψ, f,A,m) ≜ sφ U[a,b] sψ

where
sφ ≜ signalTreeMF(φ, f,A,m)
sψ ≜ signalTreeMF

(
ψ, f,A,H[0,a]

(
m∧
sφ

))
The masked signal tree signalTreeMF

(
D ▷φ, f,A,m

)
for a context operator D ▷φ can

be monitored in a similar way to the unmasked signal tree except that at each node we
must apply the mask to restrict the time domain for the initial jump and recursively use
masked monitoring for the inner property φ. Thus we may compute the masked signal
tree’s component signal signalTreeMF

(
D ▷φ, f,A,m

)
(E) on each node E of the context
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tree as follows. If firstly we assume that the corresponding node of the mask tree is unitary
so that m(E) = (T ) for some time interval T , then we may define the uncertain bond-
calculus model ΦE,T and the derived context tree ND,E,T as in the unmasked case. Then
we recursively perform masked contextual monitoring of φ over ND,E,T using the singleton
initial mask tree (0) (that is, the mask tree which is 0 all the way down) to compute the
inner signal tree s and its nth refined signal sn. Thus as in the unmasked case we may find
the signal value on T and bisect T to give the signal sT ≜ signalTreeMF(D ▷φ, f,A,m)(E).
Now, for a general mask m = (Ti)i we may decompose it into unitary segments m = ∨

i(Ti)
and use this to compute

signalTreeMF(D ▷φ, f,A,m)(E) ≜
⋃
i

sTi

giving us the required masked signal tree in the general case.
As a final application of masking to the contextual monitoring process, we can apply

appropriate masks recursively down the signal tree so that at each level we only attempt
monitoring on the time region on which the signal has not been determined further up
the tree. To this end we define the unknown mask of a signal.

Definition 8.3.7. Given a signal s, the unknown mask of s is defined by mU
s = m∧

s ∧m∨
s .

That is, mU
s is defined such that mU

s (t) = T iff s(t) = U.

Now, given any node E ∈ N with parent D, this allows us to use the following revised
rule for the signal tree for φ at E

signalTreeMF(φ, f,A,m)(E) = sD ∪ signalTreeMF
(
φ, f,A,m ∧mU

s

)
(E)

where sD ≜ signalTreeMF(φ, f,A,m)(D). This allows us to use the knowledge from the
sD of the parent in computing the signal at node E , since sD is also signal for φ at node
E , and hence we may restrict the monitoring at node E by the mask mU

s which accounts
for the part of the signal we already know. Applying this rule at each stage of signal
tree expansion allows us to compute the whole signal tree recursively, avoiding repeating
monitoring at any point of the time domain once its truth value has first been found
on a given branch of the context space. Overall, this makes for a much more adaptive
contextual monitoring algorithm since the masks for each depth will shrink as we move
down the tree so that only the trickiest regions of the context space will be monitored at
higher depths with nonempty masks.
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8.4 Demonstration and Performance Evaluation

In this section we will demonstrate the use of context signals to monitor properties and
systems involving ranges of uncertain parameters to a greater precision than is possible
using three-valued signals which quantify over the full range of uncertainty in the system.
We will return to the Predator-Prey Role Reversal model from Section 6.5 to demonstrate
and measure the performance of contextual monitoring for both refining the signal over
relatively small ranges of uncertainty and for exploring the truth of a propositions over large
uncertain regions which lie outside the scope of our previous model-checking algorithms.

8.4.1 Context Signal Refinement

We begin by considering the small box of uncertain initial conditions Π2 ≡ [1.0, 1.2] Whelk∥
[4, 6] Lobster and the property,

φ3 ≜ F[0.1,0.2](¬P )

which states that we will be in the elliptical region of the phase space described by P at
some point between 0.1 and 0.2 time units in the future. We can use contextual monitoring
to generate a signal tree for φ3 over the space of uncertain contexts generated by the
initial conditions Π2, which may be lazily expanded to produce a refined signal for the
property at a variety of depths d, as shown in Fig. 8.1a. If we expand it at depth d = 0,
this produces a standard signal for φ3 which matches the result of our normal verified
monitoring procedure, whilst greater depths yield progressively more precise refined signals.
Fig. 8.1b shows the relationship between the decreasing uncertainty of the refined signal
(as measured by the width of the unknown region) and the overall monitoring time. We
can see an inverse exponential relationship between the unknown region width and the
monitoring time demonstrated in an exponential regression curve. This shows how the
first few levels of refinement can rapidly improve the quality of the signal whilst it becomes
increasingly difficult to completely eliminate the remaining uncertainty by expanding the
lower levels of the tree.

As well as improving the quality of the overall signal, contextual monitoring gives us
a richer view of how the truth of the proposition various over the parameter space at
different moments in time. At an instant in time, the signal tree provides regions of the
parameter space for which the property is definitely true or false. We may also visualize
the structure of the signal tree as a two-level nested tree map including black boxes for
the levels of the tree at which each physical flowpipe is computed, and grey boxes for
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(a) The refined signals for φ3 at depths d.
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(b) Scatter plot of total monitoring time against
unknown region width at each depth.

Figure 8.1: Results of contextual monitoring for φ3 given uncertain initial mixture Φ2.

the level of symbolic subdivision at which the signal value is first determined. In Fig. 8.2
we can apply this visualization to a sequence of different time slices of the signal tree.
For example, the time point t = 1.81 is illustrated in Fig. 8.2g which shows that a single
flowpipe covers the whole parameter space, whilst inside of this symbolic subdivision at a
variety of depths determines a region for which the property is true in the south-west of
the diagram (coloured green) and a region for which it is true in the north-east (coloured
red), with an unknown region in the middle. Overall, Fig. 8.2 shows the evolution of this
spatial configuration over time from t = 1.1 (Fig. 8.2a) where the signal is true over the
whole space to t = 2.4 (Fig. 8.2l) where the signal is false over the whole space; this
sequence corresponds to the refined signals shown in Fig. 8.1a. It is worth noting that the
improvement in these refined signals comes from two distinct sources: the true interval
of the signal expands because subdividing the space increases the precision of verified
monitoring, allowing the signal to be determined on each region whereas the overall region
is too large to monitor in one go (as in Fig. 8.2a), whereas the false region of the signal
expands because we can determine the overall falsehood of the property as soon as we
find one subregion on which it fails (as in e.g. Fig. 8.2f).
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Figure 8.2: Slices of Signal Tree for φ3 over time.
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8.4.2 Nested Contextual Refinement

As we have seen in the previous subsection, refinement offers a way of improving the
quality of monitoring results by subdividing the context set to explore different regions
of the context space. This applies not only to systems with uncertainty in the initial
conditions of the overall bond-calculus model but also to uncertain context operators
embedded as part of a larger logical property. Moreover, for a given property there may be
different levels of contextual uncertainty which we may independently refine. For example,
suppose we want to monitor the contextual property,

φ4 ≜ [0, 2] Lobster ▷F[0,5] G[0,5] P

for 5 time units over the context space defined via the set of uncertain initial conditions
Π2 ≡ [1.0, 1.2] Whelk ∥ [4, 6] Lobster.

In order to improve the precision of monitoring, we can attempt to refine the outer
context Π2 or the inner context [0, 2] Lobster. We measure the tightness of monitoring
by the least time point t = k for which the signal is true (or equivalently, the least k
for which the signal is sufficient to verify the property F[0,k] φ4), whilst the time cost
of monitoring will depend of the levels of outer and inner context refinement applied.
Table 8.1 examines this result of this trade-off by monitoring the property with different
levels of outer and inner context refinement. Firstly, in Table 8.1a we see that refining
both the outer and inner context results in an increase in the precision of monitoring and
a corresponding decrease in k, however, the greatest impact comes with a combination
of outer and inner refinement. In Table 8.1b we see that the total verification time also
scales with the the combined outer and inner refinement level, leading to a rather large

Level 0 1 2
0 4.7675 4.6112 4.6112
1 4.6112 4.1423 4.1423
2 4.5331 3.986 3.9078

(a) Least known T value (k) in signal.

Level 0 1 2
0 147.68 123.08 405.22
1 429.63 381.81 1,089.16
2 972.21 822.72 2,046.74

(b) Total verification time (sec).

Table 8.1: Monitoring results and times for property under different levels of context refinement.
The level of refinement for the inner context increase along rows, whilst level of refinement for
the initial conditions increases down columns. All runs were carried out with context refinement
parameter ε = 0.1.
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increase in total verification time when we combine 2 levels of refinement corresponding
to the outer and inner context respectively. We do however see that 1 level of inner and
outer refinement gives us most of the improvement in monitoring precision at a much
more reasonable cost, and is more effective than outer or inner refinement alone. We also
see that this increase in total verification time is not always monotonic as observed when
moving from 0th to 1st level refinement of the outer context; this can be explained by the
fact that in this case refining the outer context appears to provide a more cost-effective
increase in monitoring precision the adaptive refinement of the time-domain of the inner
context operator it avoids. We also note that these costs depend heavily on the property at
hand; whilst we pay the full cost to improve the monitoring result whose satisfaction hangs
in the balance (with large regions of uncertainty in the time-domain), the combination
of masking and adaptive context signal computation prevent us from paying these costs
when refinement is not necessary to give an unambiguous monitoring result.

8.4.3 Context Space Exploration

As well as using contextual signal to produced signal over a context space representing a
reasonably small interval of uncertainty around a fixed set of initial conditions, we can
also explore how the behaviour of the system varies over a much wider range of initial
conditions, to determine the behaviour of the system in different regions of the parameter
space. To this end we consider the uncertain initial mixture,

Π3 ≜ [0, 1.4]Whelk ∥ [0, 8]Lobster.

As demonstrated by the system’s phase portrait (Fig. 6.6) this covers a wide range of
qualitatively different behaviours (encompassing both boxes of initial conditions Π1 and Π2

considered in Section 6.5). This makes it difficult to monitor non-trivial logical propositions
over the whole context space since each atomic propositions is universally quantified over
the whole context space, defeating the ability of complex logical propositions to handle
properties which are true for different reasons in different regions of the context space.
Moreover, Flow* is unable to construct a single Flowpipe covering the whole context space
as the over-approximation error rapidly blows up over time. These difficulties motivate
us to apply the techniques of this chapter and use flowpipe trees and signal trees for the
properties φ1 and φ2 monitored under a variety of parameter sets (Fig. 8.3) to give a
more refined view of the behaviour of the system over the context space.

Firstly, as illustrated in Figs. 8.4a and 8.4b, we may use a physical flowpipe tree which
computes a new flowpipe for each node of the tree at our desired depth of expansion. We
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Parameter Set
p1 p2 p3

Step Size 5 · 10−2 4 · 10−2 3 · 10−2

Order 6 7 8
Remainder Estimation 1 · 10−4 1 · 10−5 1 · 10−6

Cutoff Threshold 1 · 10−5 1 · 10−6 1 · 10−7

Figure 8.3: Different Flow* parameter sets for contextual monitoring.
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(a) Property φ1 with physical Flowpipe tree.
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(b) Property φ2 with physical Flowpipe tree.
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(c) Property φ1 with mixed Flowpipe tree.
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(d) Property φ2 with mixed Flowpipe tree.

Figure 8.4: Signal Trees slice for properties φ1 and φ2 based on physical and symbolic Flowpipe
trees under Flow* parameter set p1.
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can see that this gives a reasonably precise view of the behaviour of the system over the
whole phase space, although in some regions such as the north-east corner of the context
space and along the main separatrix of the phase portrait, Flow* was unsuccessful and did
not produce a flowpipe, so no monitoring results were recorded. We are also able to use a
mixed flowpipe tree, as shown in Figs. 8.4c and 8.4d, switching from physical to symbolic
subdivision to refine the signal as soon as a flowpipe is first successfully computed. We
firstly note that many of the flowpipes of the mixed signal tree are expanded at a higher
level of the tree, with symbolic subdivision being used to determine the value of the signal
for their children, avoiding the need to recompute the whole flowpipe. We can see that
for φ1 the monitoring results are almost as good as the physical flowpipe tree, whilst for
φ2 we lose a little more precision in the centre of the phase portrait. This loss of precision
occurs when Flow* succeed for a given region but the flowpipes produced do not always
provide enough precision for monitoring; this could be improved via more sophisticated
heuristics for choosing when to switch from physical to symbolical subdivision during the
construction of the mixed flowpipe tree.

These visual properties of the signal tree are borne out when we analyse the compu-
tational cost of the verification procedure. In Fig. 8.5a we see that as we increase the
depth at which we expand the signal tree, the number of flowpipe computations and the
consequent overall monitoring time increases exponentially, whilst the mixed flowpipe tree
can result in an order of magnitude reduction in the number of flowpipe computations
and the consequent overall monitoring time (the exact number of flowpipes computations
required in the mixed tree depends heavily on the dynamics of the system at hand and
may often be finite as in Section 8.4.1). The growth of the cost of each stage of the
monitoring process is shown in Fig. 8.5b. We see that, as in Section 6.4, the Flow* verified
integration and the associated composition of the preconditioned Taylor models comprised
the majority of the total verification time, each taking an order of magnitude longer than
the actual monitoring process. However, the exponential growth coefficient of the Flow*
verification time noticeably levels off at greater depths due to the combination of downtree
masking and symbolic subdivision.

In addition to the depth of expansion, we can also improve the precision of monitoring
by changing the parameters of the underlying Flow* verified integration process, such
as the step size and Taylor model polynomial order. In order to investigate how these
parameters interact with context signal refinement, we will compare the results of con-
textual monitoring in three different parameter sets (Fig. 8.3): the parameter set p1 used
thus far in this section and two additional parameter sets, p2 and p3, which successively
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Figure 8.5: Monitoring costs for property φ1 under as expansion depth increases.
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Figure 8.6: Variation of masked monitoring costs for different parameter sets.
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refine the key integration parameters to flowpipe over-estimation error. We can see the
context signals resulting from the mixed flowpipe trees generated using each of these
different parameter sets in Fig. 8.7. Comparing each parameter set, we see that whilst the
overall picture is consistent the parameter sets p2 and p3 are often able to give the same
monitoring results as p1 at a higher level of the context tree (visible in the presence of
fewer, larger black boxes in e.g. the north-west corner the context space as we move down
each column of Fig. 8.7) whilst we are also able to determine the truth value on new
regions of the context space. This increase in precision does, however, come at the cost of
greater time costs, as evident in Fig. 8.6. This shows that each refined parameter set comes
with a substantial increase in cost, whilst delivering a moderate increase in coverage of
the context space, not dissimilar to each level of context tree refinement. Moreover, some
regions of the context space remain unexplored using either highly refined parameters
without context refinement or at higher depths of context refinement with unrefined Flow*
parameters, suggesting that for the most precise view of the behaviour of the system we
need both context tree refinement and well chosen Flow* integration parameters. We also
note that both parameter sets p2 and p3 used with symbolic subdivision give a considerably
better overall coverage of the context space than p1 combined with physical subdivision
in 56% and 138% of the time cost respectively.
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(a) Property φ1 under parameter set p1.
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(b) Property φ2 under parameter set p1.
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(c) Property φ1 under parameter set p2.
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(d) Property φ2 under parameter set p2.
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(e) Property φ1 under parameter set p3.
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(f) Property φ2 under parameter set p3.

Figure 8.7: Signal Trees slice for properties φ1 and φ2 based on Flow* verified integration with
parameter sets p1, p2, and p3, over context space given by the uncertain initial mixture Π3.
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Chapter 9

Implementation Overview

In this chapter we will give a brief overview of our implementations of tools for the bond-
calculus and LBUC. In Section 9.1 we describe our implementation of the bond-calculus
language. In Section 9.2 we describe our integration of the bond-calculus and LBUC with
Sagemath and Python and their use in an interactive browser-based Jupyter environment.
In Section 9.3 we describe our interface to Flow*’s C++ API and our use of Cython.
Finally, in Section 9.4 we briefly describe our methodology for benchmarking and testing.

Both of these tools are open source, licensed under the GPLv3: the bond-calculus
implementation is available online at1, whilst LBUC is available at2 along with many of
the models from this thesis.

9.1 Bond-Calculus Language

The core bond-calculus language is implemented as collection of Haskell libraries and
exposed as an interactive text-based environment in the bondwb tool similarly to the
existing cpiwb3 tool for Continuous π. By using Haskell’s type system we are able to
define bond-calculus models their semantics generically over different base numerical types
following an appropriate type class. Thus we are able to use different instantiations of
this semantics including a numerical semantics, a parametric symbolic semantics, and the
interval semantics.

Models are represented and stored textually in .bond files so, for example, the role-
reversal model from Section 6.5 is captured by the bond-calculus model,

1https://github.com/twright/bondwb
2https://github.com/twright/Logic-of-Behaviour-in-Uncertain-Contexts
3https://github.com/continuouspi/cpiwb
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species Whelk = dieWhelk -> 0
+ growWhelk -> (Whelk | Whelk)
+ beWhelk -> Whelk;

species Lobster = dieLobster -> 0
+ beLobster -> Lobster

+ growLobster -> (Lobster | Lobster);

kinetic law NLGrowth(g; x) = g*x*(1 - x);

kinetic law NLDecay(d; x) = d*x*(1 + x);

kinetic law RRPredation(g, h; x, y) = g*x*(h - x)*y;

affinity network N(k, b, c, e, f) = {
growWhelk at rate NLGrowth(b);
dieWhelk || beLobster at rate RRPredation(c, k);
dieLobster at rate NLDecay(e);
beWhelk || growLobster at rate RRPredation(f, k);

}

process Pi = [0.4] Whelk || [1.0] Lobster

with network N(0.6, 0.3, 0.05, 2, 0.3);

Interval uncertain parameters may be used in place of any number in the model, so
we may, for example, use the alternative uncertain initial process,

process Pi = [0.3, 0.5] Whelk || [1.0] Lobster

with network N(0.6, 0.3, [0.05, 0.8], 2, 0.3);

We support ODE extraction by generating Python scripts representing system variables
using the Sagemath [336] computer algebra system. This allows us to use Sagemath and
the SymPy library [263] to simplify the symbolic systems generated by our ODE extraction
algorithms, ensuring that these systems are produced in a compact, efficient, and readable
form; this is especially important to ensure effective use of interval methods such as
Flow* which are sensitive to the structure of symbolic expressions. Stochastic simulation
is supported by extracting Chemical Reaction Networks associated with the system in
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the form of models for the StochPy library4 [250], which supports a range of stochastic
simulation algorithms.

9.2 Python Interface and LBUC

We also support a Python interface to the bond-calculus with extensive integration with
the Sagemath [336] computer algebra system as the lbuc.bondcalculus module whilst
LBUC is implemented as an embedded Domain Specific Language inside Python presented
as the lbuc.logic module. These are designed to be used interactively in a Jupyter
notebook [224] in conjunction using either a Sagemath or Python language kernel.

For example, one can load an existing bond-calculus model file by

m = BondModel("WhelksAndLobsters.bond")

create new bond-calculus processes by

p = m.process("[1.0 .. 1.2] Whelk || [4 .. 6] Lobster "
"with network N(0.8, 0.6, 0.3, 0.05, 2)")

and extract a system of ODEs (in the form of a System object) by

s = m.as_system

Intervals are represented using Sagemath’s interval libraries whilst polynomials and more
general symbolic expressions are also represented using appropriate Sagemath expressions.
Systems of ODEs may also be directly specified in Sagemath syntax. We provide extensive
support for plotting system dynamics based on Sagemath’s graphics libraries. For example,
we may plot a streamline plot via a method call,

s.streamline_plot((s.v('Whelk'), 0, 1.5), (s.v('Lobster'), 0, 8))

whilst we can use our Flow* integration to compute a flowpipe for 5 time units via

flowpipe = s.reach(5)

and use a variety of methods to plot over-approximations of the flowpipe e.g. using
intervals,

flowpipe.sage_interval_plot('Whelk', 'Lobster')
4http://stochpy.sourceforge.net/
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All plots are generated as Sagemath Graphics objects making it easy to combine them
to create composite plots such as Fig. 6.7.

LBUC properties may be directly specified as Python objects using Sagemath symbolic
expressions. For example, a polynomial atomic proposition may be represented by an
expression,

P = Atomic((var("Whelk") - 1)**2 + var("Lobster")**2 > 0.2)

whilst a contextual property φ ≜ [0, 2]Lobster ▷F[0,5] G[0,5] P is represented by

phi = "[0, 2] Lobster" >> F([0, 5], G([0, 5], P))

We may then monitor the property phi over the system s for 5 time units via a call,

phi.signal_for_system(s, 5)

or a contextual signal via a call,

phi.context_signal_for_system(s, 5)

The full range of time-bounded monitoring algorithms described in this thesis are imple-
mented as part of this library, along with an extensive collection of methods for visualizing
signals and signal trees have been used to generate many of the diagrams in this thesis.
Signal trees are implemented as lazy infinite data structures, so we may incrementally
query a contextual signal at increasing levels of refinement until we achieve sufficient
precision, without having to repeat our analysis from scratch.

A full tutorial for the tool is provided as a notebook5 in the LBUC repository. Our use of
Python and Jupyter notebooks increases accessibility of these tools for biological modelling,
since provides a familiar interactive environment whilst making it easy to combine our
verification techniques with further model analysis using Sagemath or standard Python
scientific libraries including SciPy [218], Pandas [341], and Matplotlib [203], which are
emerging as an increasingly popular platform for scientific programming. Other biological
modelling formalisms are also explored related approaches including PySB [248] which
embeds rule-based models within Python and BIOCHAM-4 [159] which provides an
interactive analysis environment for BIOCHAM models via a custom Jupyter kernel. Also
related is CORA [7] which implements a range of hybrid systems state representations
and reachability methods as a MATLAB toolbox to aid the rapid prototyping of new
reachability methods.

5https://github.com/twright/Logic-of-Behaviour-in-Uncertain-Contexts/blob/master/
Introduction.ipynb
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9.3 Flow* Wrapper and Verified Monitoring

By using Python for the majority of the LBUC codebase we gain the productivity ad-
vantages of a relatively high-level language, whilst allowing interactive use via a Jupyter
notebook environment. However, Python is an inappropriate language for performant
implementations of low-level numerical code such as interval arithmetic, Taylor model
manipulations, and root-finding methods whilst for these operations we would like to
use the C++ libraries including as part of Flow*. Therefore, whilst the majority of the
high-level signal-based algorithms of LBUC are pure Python core, for monitoring atomic
propositions we defers to a CPython C Extension: the flowstar module. This is written in
the Cython language [34] which provides a restricted variant of Python with annotations
which can be directly compiled to efficient C or C++ code.

In particular, we have developed a Python wrapper of Flow* which makes it possible
to perform verified integration on continuous systems expressed in Python with standard
Sage symbolic expressions and interact with the resulting flowpipe. This directly interacts
with Flow*’s C++ API to avoid the need to generate Flow* model files and for flowpipes to
be written to disk and parsed. Our algorithms for monitoring atomic propositions are also
implemented at the Cython level, using Flow*’s C++ libraries to perform Taylor model and
interval operations. To a certain extent, this judicious separation between languages gives
us the best of both worlds since the majority of our execution time typically takes place
within the optimized Cython code, meaning the overall performance of our algorithms
should be comparable with methods implemented in C++. Our implementation uses
Flow* 2.1.0 with patches to use native floating point arithmetic in the place of MPFR
and to remove memory leaks.

9.4 Models, Benchmarks, and Testing

All of the models described in this thesis have been implemented in using the bond-calculus
and verified using our implementation of LBUC. LBUC’s Python embedding has been used
to explore these models interactively to test and to use standard Sage and Python plotting
libraries to visualise system dynamics, signals, and contextual signals. For the verification
of unbounded-time properties in Section 6.5, we verified semi-algebraic invariants using
a Python implementation of the Liu, Zhan, and Zhao decision procedure [242] and the
QEPCAD B quantifier elimination tool [78] (via its Sagemath interface); a fully automated
integration of invariant synthesis methods and our verified monitoring algorithm remains
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future work.
All benchmarks and performance measurements in this thesis have been carried out

using LBUC’s implementation and Python embedding and run on an AMD Ryzen 7 3700U
with 32 GB of RAM under Fedora Linux. Our benchmarks were carried in Python code
which directly invokes and times relevant test systems and properties. Thus, we were able
to create automatic and reproducible benchmarks without resorting to a separate scripting
language. We also extended our verification algorithms with granular instrumentation
based on the Python instrument6 library to gather detailed timing information for the
individual operations and model-checking stages, giving us more a clearer picture of our
algorithm’s performance characteristics. Data analysis and visualization were carried out
using the Python Pandas [341] and Altair libraries [351].

An extensive suite of automated tests is also used for both the bond-calculus and
LBUC to provide some assurance of the correctness of our implementation and to avoid
regressions. These involve many sample models and properties beyond those featured
in this thesis, including comparing the results of verified monitoring procedure and con-
textual monitoring procedure to directly computed signals for model systems possessing
explicit solutions. The bond-calculus makes extensive use of the property-based random
testing using QuickCheck [128] to ensures that our implementation conforms to prop-
erties expected from our formal semantics (including, in particular, termination of our
normalization procedures).

6https://github.com/wearpants/instrument
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Chapter 10

Conclusion

In this thesis we have introduced a new modelling and analysis framework for biological
systems under uncertainty. We firstly introduced affinity patterns and a new continuous
semantics for the bond-calculus which is compositional in both process concentrations
and affinities. This was demonstrated by exploring different modelling styles for gene regu-
latory networks at the molecular and network levels. We then extended the bond-calculus
semantics to handle uncertainty in both the concentrations of species and the affinity rate
law parameters of a model, and defined the LBUC logic for expressing spatio-temporal
properties of bond-calculus models in uncertain contexts. We defined verified monitoring
algorithms for STL and LBUC properties under uncertainty using Flow* flowpipes. These
algorithms feature tight integration with Flow*’s symbolic flowpipe representation to pre-
cisely monitor complex atomic propositions and masks which avoid unnecessary symbolic
operations by restricting monitoring of atomic propositions to time regions relevant to the
overall property. Finally, we extended this to spatio-temporal monitoring for LBUC over
the context space induced by model or contextual uncertainty, and introduced refinement
techniques to quantify results over the context space and adaptive symbolic/physical flow-
pipe refinement techniques to improve results whilst minimizing the number of verified
integrations required.

In this chapter we give our conclusions. In Section 10.1 we discuss our results and
reflect upon the different components of this thesis and discuss related approaches whilst
in Section 10.2 we discuss the potential for future work extending our approach.
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10.1 Evaluation and Related Work

We will now reflect on the effectiveness of the bond-calculus, LBUC, and our verification
methods, with reference to relevant related work.

10.1.1 The Bond-Calculus and LBUC

One part of this thesis has involved expanding and evaluating the effectiveness of the
bond-calculus as a framework for modelling complex patterns of interaction in biological
systems at the molecular and network levels. In Chapter 3 we introduced a new continuous
semantics for the bond-calculus which directly extends the compositional approach of
Continuous π’s semantics to multiway interactions and general kinetic laws. This resolves
a long-standing limitation in this compositional approach to process algebra semantics,
identified in [232, Chapter 7] and in [358], that the interaction tensor :M used in the
Continuous π semantics relies upon multilinearity to achieve compositionality and hence
was fundamentally tied to mass action kinetics. Our compositional semantics for complex
reaction types also significantly expands the applicability of associated logics, meaning that
LBUC is readily applicable to high-level models of biological networks with general kinetic
laws as well as the lower-level mass action molecular models which Continuous π and
hence LBC focused on. Moreover, the fact that bond-calculus models are compositional
in both mixture and affinity networks directly increases the expressiveness of LBUC to
include affinity network contexts (Section 5.3.5) and differential contexts (Section 5.3.4).

Our combination of site-based multiway communication and mobility is another inter-
esting aspect of the bond-calculus. The main other process algebra which has explored this
combination in a biological setting is the link-calculus [54] which uses a rather different
multiway communication mechanism based on the formation of link-chains, however, so
far this calculus has focused on a qualitative semantics and applications to membrane
interactions [55]. The bond-calculus and the link-calculus share the ability to model open
multiway interactions which can be dynamically joined by a variable number of agents
whilst the bond-calculus also models multilevel multiway interactions which may be joined
both by agents in different chemical species and multiple components of a single species in
an allosteric interaction. Our particular form of site-based communication has interesting
consequences for our continuous semantics since it is possible for a single chemical species
to experience arbitrary arity multiway interactions with itself, as demonstrated in Sec-
tion 4.1.2. This is handled via the interaction exponential Eq. (3.1), which generalizes the
separate rules for unary reactions and homogeneous and heterogeneous binary reactions
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in previous continuous process algebra semantics [97, 234].
Handling uncertain initial conditions and rate parameters is the most significant

extension introduced in this thesis. This has some overlap in its applications to stochastic
calculi such as Stochastic π [303] and Bio-PEPA [126] which are able to simulate systems
with reactions occurring at stochastic rates, whilst the ProPPA process algebra [179]
provides parameter inference for systems whose (time-invariant) reaction rate parameters
are drawn from distributions. The non-deterministic model of uncertainty we pursue
is, however, rather different since it corresponds to worst-case verification of uncertain
continuous systems rather than the average case behaviour of stochastic systems. Various
works have demonstrated the independent importance of both types of uncertainty by
considering models which combine stochastic and nondeterministic uncertainty [62, 64,
70, 356].

The LBUC extended our handling of uncertainty by making it possible to express
temporal properties of bond-calculus models in uncertain contexts. At the most basic
level, the purely temporal subset of this language makes it perform verified three-valued
monitoring for STL over bond-calculus models with uncertain initial conditions or rate
parameters, to ensure that monitoring results are robust under the range of uncertainty
expressed in the model. The addition of uncertain contexts allows us to specify the
reactive behaviour of a model to contextual uncertainty at the mixture or affinity network
levels. This allows us to reason about robustness under timed perturbations to a model’s
environment and enables us to reason about open systems whose environment grows and
varies over time.

LBUC also allows us to express spatio-temporal experiments which examine the be-
haviour of a system through properties expressing experimental protocols, probing the
logical dependency of a system’s behaviour on sequences of external perturbations. Un-
certain context operators are able to encode a range of key experimental operations such
as instantaneously or gradually adding new reactants or triggering new reaction rules,
however, other important experimental operations such as splitting and mixing reaction
vessels cannot currently be expressed within LBUC. Our approach is worth comparing
to [1] which introduces a dedicated calculus for describing biological experimental proto-
cols with deterministic and stochastic semantics. Whilst their approach more explicitly
models experimental operations, as a temporal logic LBUC is able to express precise
timing requirements and complex logical dependencies between perturbations and model
behaviour.

Given our focus on optimizing our core monitoring algorithms, we mostly relied upon
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small but computationally challenging examples. Whilst these examples were useful for
validating our basic methods and investigating monitoring performance, these models
have not yet fully explored the expressiveness and verification abilities of LBUC for more
realistic biological models and properties. This motivates further investigation of LBUC in
more practical biological modelling case studies. Additionally, our interest in performance
led us to focus on properties at the borderline of satisfaction — the worst case for verified
monitoring performance — whilst arguably properties which are more robustly satisfied
are more typical of practical modelling and specification; thanks to masking and the other
adaptive techniques in this thesis, much of the expense of verification can be avoided in
these cases. Some additional validation of our methods’ applicability to biological models
has been given outside of this thesis in the BSc dissertation of Fiorista [163] who evaluated
the effectiveness of bond-calculus modelling and LBUC verification for a range of signalling
pathway motifs from [350]. LBUC should also be applicable to extending the wide range
of biological systems and properties to which LBC has previously been applied [20–22] to
take into account parameter uncertainty.

10.1.2 Verified Monitoring over Flowpipes

Throughout this thesis we focused on exact formal methods based on the Flow* verified
integrator. This proved a powerful technique, allowing us to soundly account for all
sources of uncertainty within the underlying model and the verification process whilst
handling whole sets of input states at once. The exact nature of our methods gives us
strong reassurances that the verification results of our logic hold robustly under contextual
uncertainty and numerical errors. This is especially important in the context of LBUC
verification since the worst case behaviour of the system on a small region of the context
space can completely change the truth of the overall property whilst incorrect monitoring
results can be compounded during the monitoring of complex properties.

Exact formal verification of nonlinear continuous and hybrid systems remains an active
and challenging research area, and it is not yet clear which combination of methods will
ultimately dominate in enabling practical verification at scale, as the current leading
methods are usually limited to systems with at most 10-20 variables [205]. Whilst very
competitive in its ability to handle complex dynamics and large uncertain sets, Flow*
poses additional challenges to verified monitoring since expensive symbolic operations are
necessary to extract information from its preconditioned Taylor model flowpipes, which
motivated our focus on core STL monitoring performance. The techniques of adaptive
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monitoring and masks made significant progress towards this challenge by restricting
these symbolic operations to the regions of time most relevant to the property at hand.
This means the cost of applying verified monitoring for a system is usually reasonable
in comparison to the base verified integration cost, meaning verified monitoring should
be applicable in most settings in which Flow* is currently used. This cost is also often
less than the cost of other analysis techniques implemented in Flow* such as plotting and
reach-avoidance checking since these perform symbolic flowpipe operations upfront over
the whole time domain, whilst our methods work in a property-directed manner, avoiding
work which is not relevant to the property at hand.

Handling context operators brings with it additional challenges, as already encountered
by numerical model-checking procedures for LBC [19], since the combination of contex-
tual and temporal operators creates higher-order properties which quantify over multiple
potential executions of the system. Such properties are key to the expressiveness of the
logic but can lead to an exponential increase in monitoring time in the case of alternation
of temporal and contextual modalities. In LBUC we further add to these challenges of
uncertainty in contexts and initial conditions. In these cases, however, our use of formal
methods and Flow* pay us back for their baseline complexity, by allowing us to soundly
handle whole sets of states in a single run. This allows us to monitor context operators
using a relatively small number of Flow* verified integration runs to adaptively cover a
given time domain and to handle uncertain contexts and initial conditions.

Contextual signal monitoring and refinement extends the range of applicability of
these techniques to wider ranges of uncertainty (in both initial conditions and uncertain
contexts) by allowing us to combine trees of signals monitored on different regions of the
context space. Supported by our use of Flow* flowpipes to symbolically encode functional
dependencies between our position in context space to the eventual state of the system,
contextual monitoring is able to subdivide the context space without recomputing the
flowpipe on every subregion. Thus it is often possible to evaluate an entire signal tree from
a single run of Flow*. This technique only goes so far given the exponential increase we
observed in monitoring cost with expansion depth. This problem is especially challenging
when the context space is too large for Flow* to handle symbolically or at separatrices
of the system which lead to divergent trajectories. We did, however, frequently observe a
significant increase in monitoring precision from the first few levels of expansion, and the
adaptive nature of this method allows us to avoid additional expansion once a conclusive
verification result has been achieved. Our ability to handle large context spaces could be
improved by smarter subdivision schemes which subdivide the context space into regions
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with similar dynamics [324] or by better heuristics to focus subdivision and physical
flowpipe computations on relevant regions of the context space.

The use of masking is also especially useful when monitoring context operators as
demonstrated in Section 7.6.2. In this case it saves not just the cost of symbolic flowpipe
evaluation, but whole Flow* verified integration runs for time regions not relevant to the
property at hand. This application of masking is not specific to our use of verified moni-
toring and could also be applied to existing signal-based numerical monitoring algorithms
for LBC. Whilst we introduced contextual masking in Section 8.3 in order to bring the
previously established advantages of masked monitoring to contextual and refined signal
monitoring, additional benchmarking would be helpful to fully explore its performance
implications and better evaluate its ability to prune regions of the combined context
space-time domain, as well as the impact of downtree masking.

The most closely related techniques to masks are online monitoring algorithms, which
perform monitoring on partial traces of running systems. Both [146] and the earlier
incremental marking procedure [254, 279] attempt to avoid unnecessary monitoring of
atomic propositions. Masks take a quite different approach, computing non-contiguous
regions of interest for property in a top-down manner throughout the monitoring process,
whereas [146] dynamically tracks contiguous time horizons of propositions. Masks also
play a quite different role in our verification process, given that they are used to prevent
unnecessary symbolic flowpipe operations or reachability computations arising from con-
text operators, whereas online monitoring seeks to reduce the cost of monitoring over long
time horizons or to allow early termination. The use of masks can also be compared with
the numerical trace based monitoring methods of Banks and Stark [19] which offer support
for early termination and short-circuiting, however, [20] found signal-based monitoring
to be significantly faster overall [20, Chapter 6 and Appendix B]. Trace-based methods
are also not applicable to verified monitoring over Flow* flowpipes given their continuous
time domains.

Despite the progress made in this thesis, our exact formal methods based approach is
still limited in its applicability to more practical biological models by both the high cost
verified integration for nonlinear systems and the complexity of LBUC monitoring. To
some extent, we hope that this will be improved by future advancements in continuous
reachability methods, mirroring the large advances made for linear systems reachability
throughout the 2000s [168]. The applicability of our methods could also be extended
via compositional reasoning on decomposed models as we proposed in Section 10.2.2. It
would also be worth further comparison of our methods to more pragmatic trajectory-
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based approaches including sensitivity analysis [23], discrepancy functions [155], statistical
methods [63, 249], or quantitative measures of satisfaction [146, 150].

10.2 Future Work

We will finally discuss some potential extensions to the methods of the work in this thesis.

10.2.1 Hybrid Semantics

The focus throughout this thesis has been on continuous systems, supported via the contin-
uous ODE semantics of the bond-calculus, where all discrete interactions are modelled as
external influences via LBUC context operators. This allows us to model many interesting
forms of hybrid behaviour since, given a single hybrid automaton jump of form

dx
dt = f(x) dx

dt = g(x)ρ; J

with guard condition ρ and some jump map J , we can use a LBUC property

φ U[0,∞) (ρ ∧ C ▷G[0,∞) ψ)

to ensure that this system obeys φ before the jump and ψ thereafter (with an appropriate
context C encoding the jump from f to g). LBUC also allows us to express complex logical
dependencies of behaviour on jumps outside of the scope of STL properties over hybrid
systems. This approach is, however, limited in its ability to express arbitrary behaviour
in the discrete component of the systems since a given LBUC property can only express
finite sequences of mode switches. Additionally, from a modelling perspective it may often
be more natural to directly employ discreteness when modelling components of a system.
This would make it possible to independently model intrinsic hybrid behaviour within a
system and discrete events arising from interactions with its external environment.

This motivates the extension of the bond-calculus to hybrid systems. This could
take the form both of discrete “control species” which occur as finite populations and
of discrete mutations of the affinity network which change the reactivity of sites. Such
an extended hybrid bond-calculus could then be given a hybrid semantics drawing on
our existing semantics or alternative hybrid process algebra semantics such as [68, 172].
LBUC could also be coupled with other existing process algebras such as HyPE [174],
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since the general structure of the logic is applicable to any calculus with a compositional
structure. The basic verification algorithms developed throughout this thesis should be
applicable to hybrid automata since these are well supported by Flow*. This may, however,
require new techniques to effectively handle hybrid automaton jumps since the over-
approximated flowpipes Flow* generates may not always provide enough information for
effective verification and additional care will be required to handle the application of
context operators at different modes of the system.

An alternative approach would be to extend LBUC with a least fixed point operator µ
similarly to the modal µ-calculus, making it possible to express unbounded sequences of
contextual jumps triggered within certain time windows or by certain preconditions. From
a theoretical perspective, it would be interesting to investigate the extent to which this
would close the gap in expressiveness between context operators and hybrid automata,
and what relationship the resulting logic would have to dynamic logics such as dL [295]
and STdL [4]. This logic would likely defy a general purpose model-checking procedure in
the style of LBUC, however, proof-rules based on a combination of verification methods
similar to those proposed in Section 6.3 may be applicable in special cases.

10.2.2 Bounded Guarantee Operators

The uncertain context operator in LBUC can be seen as an intermediate form between
the context operator Π ▷φ of LBC, which introduces a specific process Π as a context, and
the full guarantee ψ ▷φ operator of ambient logic [103] which uses a logical property ψ

to specify a class of context properties. Whilst verification of general guarantee operators
remains very difficult, given the unboundedness of the potential contexts over which they
quantify, our verification methods could be extended to a more general class of bounded
guarantee operators,

(C : ψ) ▷φ

which assert that the property φ holds for any context model M ∈ C satisfying the
precondition ψ.

Such bounded guarantees include properties of the form (C : ρ) ▷φ where ρ ≜ f(x) >
0 is an atomic proposition. Such a property introduces a non-rectangular context set
described via the state formula (x ∈ C) ∧ (f(x) > 0). The verification methods of
Chapter 6 could be directly extended to this class of properties by over-approximating
this set initial condition via a Taylor model. The more general class of bounded guarantee
operators (C : ψ) ▷φ with arbitrary LBUC properties as preconditions could also be
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tackled by applying the contextual monitoring and contextual masking techniques from
Chapter 8 to identity the region of C for which ψ holds and then monitor φ under an
appropriate spatial mask. This could allow a form of assume-guarantee reasoning where
verification results for lower-dimensional subsystems may be used restrict the uncertainty
of higher-dimensional composed systems. This style of compositional reasoning is also
worth comparing to [29] which proposed a compositional approach to synthetic biological
circuit design based on STL parameter synthesis. Related methods which aid hybrid
systems reachability analysis via decomposition have also been proposed in [111] and
[240].
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