1,680 research outputs found

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    Multimodal Sensor Data Integration for Indoor Positioning in Ambient-Assisted Living Environments

    Get PDF
    A reliable Indoor Positioning System (IPS) is a crucial part of the Ambient-Assisted Living (AAL) concept. The use of Wi-Fi fingerprinting techniques to determine the location of the user, based on the Received Signal Strength Indication (RSSI) mapping, avoids the need to deploy a dedicated positioning infrastructure but comes with its own issues. Heterogeneity of devices and RSSI variability in space and time due to environment changing conditions pose a challenge to positioning systems based on this technique. The primary purpose of this research is to examine the viability of leveraging other sensors in aiding the positioning system to provide more accurate predictions. In particular, the experiments presented in this work show that Inertial Motion Units (IMU), which are present by default in smart devices such as smartphones or smartwatches, can increase the performance of Indoor Positioning Systems in AAL environments. Furthermore, this paper assesses a set of techniques to predict the future performance of the positioning system based on the training data, as well as complementary strategies such as data scaling and the use of consecutive Wi-Fi scanning to further improve the reliability of the IPS predictions. This research shows that a robust positioning estimation can be derived from such strategies

    Sensing Human Activity for Smart Cities’ Mobility Management

    Get PDF
    Knowledge about human mobility patterns is the key element towards efficient mobility management. Traditionally, these data are collected by paper/phone household surveys or travel diaries and serve as input for transportation planning models. In this chapter, we report on current state-of-the-art techniques for sensing human activity and report on their applicability for smart city mobility management purposes. We particularly focus on the use of location-enabled devices and their potential towards replacing traditional data collection approaches. Furthermore, to illustrate applicability of smartphones as ubiquitous sensing devices we report on the use of Routecoach application that was used for mobility data collection in the city of Leuven, Belgium. We provide insights into lessons learned, ways in which collected data were used by different stakeholders, and identify existing gaps and future research needs in this field

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    A Context-Aware System to Secure Enterprise Content: Incorporating Reliability Specifiers

    Get PDF
    The sensors of a context-aware system extract contextual information from the environment and relay that information to higher-level processes of the system so to influence the system\u2019s control decisions. However, an adversary can maliciously influence such controls indirectly by manipulating the environment in which the sensors are monitoring, thereby granting privileges the adversary would otherwise not normally have. To address such context monitoring issues, we extend CASSEC by incorporating sentience-like constructs, which enable the emulation of \u201dconfidence\u201d, into our proximity-based access control model to grant the system the ability to make more inferable decisions based on the degree of reliability of extracted contextual information. In CASSEC 2.0, we evaluate our confidence constructs by implementing two new authentication mechanisms. Co-proximity authentication employs our time-based challenge-response protocol, which leverages Bluetooth Low Energy beacons as its underlying occupancy detection technology. Biometric authentication relies on the accelerometer and fingerprint sensors to measure behavioral and physiological user features to prevent unauthorized users from using an authorized user\u2019s device. We provide a feasibility study demonstrating how confidence constructs can improve the decision engine of context-aware access control systems

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Applications of Context-Aware Systems in Enterprise Environments

    Get PDF
    In bring-your-own-device (BYOD) and corporate-owned, personally enabled (COPE) scenarios, employees’ devices store both enterprise and personal data, and have the ability to remotely access a secure enterprise network. While mobile devices enable users to access such resources in a pervasive manner, it also increases the risk of breaches for sensitive enterprise data as users may access the resources under insecure circumstances. That is, access authorizations may depend on the context in which the resources are accessed. In both scenarios, it is vital that the security of accessible enterprise content is preserved. In this work, we explore the use of contextual information to influence access control decisions within context-aware systems to ensure the security of sensitive enterprise data. We propose several context-aware systems that rely on a system of sensors in order to automatically adapt access to resources based on the security of users’ contexts. We investigate various types of mobile devices with varying embedded sensors, and leverage these technologies to extract contextual information from the environment. As a direct consequence, the technologies utilized determine the types of contextual access control policies that the context-aware systems are able to support and enforce. Specifically, the work proposes the use of devices pervaded in enterprise environments such as smartphones or WiFi access points to authenticate user positional information within indoor environments as well as user identities

    Using attitudes and green consciousness as a determinant of travel behaviour and market segmentation

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Demand-driven data acquisition for large scale fleets

    Get PDF
    Automakers manage vast fleets of connected vehicles and face an ever-increasing demand for their sensor readings. This demand originates from many stakeholders, each potentially requiring different sensors from different vehicles. Currently, this demand remains largely unfulfilled due to a lack of systems that can handle such diverse demands efficiently. Vehicles are usually passive participants in data acquisition, each continuously reading and transmitting the same static set of sensors. However, in a multi-tenant setup with diverse data demands, each vehicle potentially needs to provide different data instead. We present a system that performs such vehicle-specific minimization of data acquisition by mapping individual data demands to individual vehicles. We collect personal data only after prior consent and fulfill the requirements of the GDPR. Non-personal data can be collected by directly addressing individual vehicles. The system consists of a software component natively integrated with a major automaker’s vehicle platform and a cloud platform brokering access to acquired data. Sensor readings are either provided via near real-time streaming or as recorded trip files that provide specific consistency guarantees. A performance evaluation with over 200,000 simulated vehicles has shown that our system can increase server capacity on-demand and process streaming data within 269 ms on average during peak load. The resulting architecture can be used by other automakers or operators of large sensor networks. Native vehicle integration is not mandatory; the architecture can also be used with retrofitted hardware such as OBD readers. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    • …
    corecore