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ABSTRACT 

Oluwatimi, Oyindamol D. Ph.D., Purdue University, May 2018. Applications of 
Context-Aware Systems in Enterprise Environments. Major Professor: Elisa Bertino. 

In bring-your-own-device (BYOD) and corporate-owned, personally enabled 

(COPE) scenarios, employees’ devices store both enterprise and personal data, and 

have the ability to remotely access a secure enterprise network. While mobile devices 

enable users to access such resources in a pervasive manner, it also increases the 

risk of breaches for sensitive enterprise data as users may access the resources under 

insecure circumstances. That is, access authorizations may depend on the context in 

which the resources are accessed. In both scenarios, it is vital that the security of 

accessible enterprise content is preserved. 

In this work, we explore the use of contextual information to infuence access 

control decisions within context-aware systems to ensure the security of sensitive en-

terprise data. We propose several context-aware systems that rely on a system of 

sensors in order to automatically adapt access to resources based on the security of 

users’ contexts. We investigate various types of mobile devices with varying embed-

ded sensors, and leverage these technologies to extract contextual information from 

the environment. As a direct consequence, the technologies utilized determine the 

types of contextual access control policies that the context-aware systems are able to 

support and enforce. Specifcally, the work proposes the use of devices pervaded in 

enterprise environments such as smartphones or WiFi access points to authenticate 

user positional information within indoor environments as well as user identities. 
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1. INTRODUCTION 

Mobile devices are becoming a mandatory aspect of the daily lives of users. These 

devices have powerful functionality granting users various abilities through installing 

and executing applications which are abilities similar to desktop computing platforms. 

With such abilities, users are, for example, able to compose documents, set calendar 

reminders, and complete other daily tasks. Unlike their desktop counterparts, these 

devices’ form factors allow mobility with respect to embedded sensors and network 

connectivity. With the capacity to have permanent Internet connection via cellular or 

WiFi infrastructures, mobile devices enable pervasive access. Users are able to access 

emails, access remote networks, and manage and download private, confdential, or 

secret data (e.g., banking data or medical data) in any context. 

The capabilities of such mobile devices, as well as their increasing a˙ordability and 

mobility, have enabled enterprises to leverage them in the workplace. This creates 

two main scenarios: bring-your-own device (BYOD) and corporate-owned, personally 

enabled (COPE) device. In the BYOD scenario, employees use their own personal 

mobile device also for work purposes. Conversely, in the COPE scenario, it is the en-

terprise that provides devices to its employees. In both scenarios, that we collectively 

refer to as enterprise-enabled device (EED) scenario, the same device is used for per-

sonal and business purposes. Such a dual use makes it possible for enterprises to rely 

on a mobile Information Technology (IT) infrastructure. Such an infrastructure allows 

employees to remotely access enterprise content that otherwise would not be acces-

sible outside of the enterprise setting. Despite interesting opportunities provided by 

mobile devices, access to such data and resources, however, may be contingent upon 

the context in which they are accessed. Accessing enterprise content, whether locally 

or remotely, in insecure contexts increases the risk of sensitive information leakage. A 

user situated in a public café may succumb to a shoulder surfng attack by a random 
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passerby when the user is viewing sensitive medical data via his/her device. If access-

ing remote content via the device, sensitive information such as banking data could 

be captured by an adversary sniÿng the café’s public WiFi network. For the sake of 

ensuring the security of personal and enterprise content, contextual factors that exist 

within the physical and computing realms must be considered while evaluating access 

control requests. 

Consider an enterprise organization in which an employee, carrying her smart-

phone on her person, is attending a confdential meeting. It may be required that 

the employee cannot access the device’s microphone to prevent, whether it is unin-

tentional or malicious, audio recording of the confdential meeting’s conversation. In 

the same scenario, the employee is handed a draft of a patent document that is to 

remain in that room, and therefore, the document should not be visually recorded 

using the smartphone’s camera. The capabilities of the employee and her smartphone 

in the above scenario are contingent upon, although not immediately obvious, various 

environmental factors that exist in the physical and computing realms such as loca-

tion and mobile applications that have the potential of executing, respectively. As a 

consequence, policies and systems that do not incorporate contextual parameters or 

restrictions are not suitable for the described circumstances, as well as enterprise en-

vironments in general in which mobile devices are integrated into IT infrastructures. 

Below we present defnitions of a context and a context-aware (CAS) system that will 

be used throughout this work. 

Context. Various authors have attempted to construct a defnition of the term 

context, but some defnitions are not fexible or scalable enough to be applicable to 

a breath of scenarios old and new. In this work, we adopt the following generalized 

defnition of context [1]: "any information that can be used to characterize the situa-

tion of an entity. An entity is a person, place, or object that is considered relevant to 

the interaction between a user and an application, including the user and application 

themselves". 
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Context-Aware System. Although Dey [1] also defnes context-awareness for 

systems, it does not refect the sentient characteristic of an aware entity. As such, 

we adopt the following defnition of context-awareness [2]: "context-aware systems are 

able to adapt their operations to the current context without explicit user intervention". 

In general, CASs operate in pervasive computing environments in which certain 

applications require contextual information (CI) in order to provide data, services, 

or resources. The objective of such systems is to maximize the usability of data 

and services by incorporating environmental factors such that access is automatically 

granted without explicit user intervention. There are many unique problems, previ-

ously and newly formulated, that CASs can be applied to [3–7], some of which we 

now briefy describe. For example, although it is understandable why the progression 

in elevator technology has become stagnant as a result of the simplicity of the task, 

recent system designers have envisioned that future elevators will be context-aware. 

Using a system of sensors, elevators will be able to automatically detect when users 

are heading towards or waiting to get into an elevator [8]. Movie information ser-

vices such as Fandango inform users of the next available movie showings in theatres 

that are within the users’ vicinity. In assisted living, some patients are the only res-

ident of their household. It is vital that caretakers are immediately and remotely 

alerted of abnormal behavior in patients once detected [9]. While the previous ex-

ample applications defne context within spatial and temporal parameters, context 

can be quite vague and is application dependent. Context can comprise of informa-

tion related to altitude, temperature, humidity, ambient light, radio, motion, audio, 

etc. In this dissertation, we investigate the feasibility of using various technologies 

to support context-aware access control, including radio-, motion-, and audio-based 

technologies. 

The proliferation and technological advancement of wireless networking and sen-

sor technologies – such as smartphones or WiFi access points – enable portable mobile 

devices to be used in CASs. In recent years, smartphones’ continually advancing op-

erating systems (OS) and hardware capabilities have allowed capabilities not present 

davidsego
Highlight

davidsego
Highlight
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in their desktop counterparts. For example, many smartphone manufacturers have 

leveraged these devices’ mobile form factor by integrating embedded sensors and 

network connectivity peripherals including, but not limited to, Bluetooth, GPS, ac-

celerometer, and near-feld-communication. In addition, various static and dynamic 

CI can be extracted from mobile devices such as hardware and software confgurations 

which also can be utilized by CASs to adapt the systems’ operations automatically 

to the processed information. Some other systems utilize information extracted from 

wireless devices pervaded in enterprise environments such as WiFi access points to 

not only localize a user, but to also detect the presence of other users. Specifcally, 

proximity is yet another contextual parameter that can be leveraged to support au-

tomated, CASs. 

In summary, context can be divided into three di˙erent categories [10]: 

• User Context: it refers to any information related to the user, including user 

dynamic information (user current and historical location, user current and 

historical activity, user current emotion, relationships or contact with colleagues 

or friends and so on) and user static information ( user personal information, 

user habit, user preference, and so on). 

• Physical Context: it contains environmental physical information (lighting, 

noise, temperature, humidity level, traÿc conditions and so on) and device 

physical information (device battery, memory, the size and type of screen, ter-

minal’s OS, input and output method, nearby resources such as printers, and 

so on). 

• Network Context: network capacity, connectivity, costs of computing and com-

munication, bandwidth and so on. 

The work proposed here explores the use of various types of mobile devices to 

extract and process primarily user contextual information in CASs and apply such in-

formation to access control and data isolation techniques in order to secure enterprise 

content. Access control is a security technique to regulate the sharing of resources 
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among entities in a computing environment. In terms of access control, context-

aware systems aim to secure access to sensitive enterprise resources by adapting their 

access authorizations to the current context. For example, following the presented 

enterprise scenario, an access control policy for the employee’s smartphone device 

would state in some manner or form "from 1PM to 2PM, device microphone is in-

accessible". Such policy would prevent the device from recording the conversation 

during the confdential meeting. Containerization is another security technique, but 

it ensures the separation of enterprise content from all other non-enterprise related 

content on an end-user’s mobile device (e.g., smartphone or laptop). With respect 

to containerization, CASs aim to automatically deploy, manage, and update secure 

containers that is dependent on CI that enterprises deem pertinent to the security 

of the containers and their content. For example, again following the same scenario, 

a policy associated with the management of containers would state in some manner 

that "a secure container that does not include a camera application must be deployed 

to the device when the employee is at the meeting room location". Thus, completely 

eliminating the possibility of visually documenting confdential information via the 

employee’s device. 

1.1 Dissertation Statement 

It is possible to apply context-aware systems, supported by various types of mo-

bile devices, to enterprise environments to secure enterprise content from (benign or 

malicious) entities whether external or internal to the enterprise organization. 

Specifcally, the work focuses on systems that utilize access control and container-

ization techniques on mobile devices in EED scenarios. We aim to answer three main 

questions: 

1. how do we capture contextual information? 

2. how do we incorporate contextual constraints into access control policies? 
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3. how do we enforce contextual access control policies? 

We address these questions in several approaches throughout this work, which we 

briefy highlight in the next section. Each approach utilizes di˙erent techniques or 

technologies to extract various CI from the environment and applies them to access 

control or data isolation techniques. Further high-level details of each approach is 

provided below. 

1.2 Context-Aware Access Control Systems 

In what follows, we briefy introduce various security threats that enterprises may 

potential encounter in EED scenarios, and subsequently propose context-aware access 

control systems to address those threats. 

1.2.1 Location-Based Access Control Systems for Mobile Devices 

Mobile Android applications often have access to sensitive data and resources on 

the user’s device. Misuse of this data by malicious applications may result in privacy 

breaches and sensitive data leakage. The problem arises from the fact that Android 

users do not have control over the application capabilities once the applications have 

been granted the requested privileges upon installation. In many cases, however, 

whether an application is granted a privilege depends on the specifc user context. 

The need for confgurable device policies based on context extends from high pro-

fle employees to regular smartphone users. For example, government employers, such 

as in national labs [11], restrict their employees from bringing any camera-enabled 

device to the workplace, including smartphones, even though employees might need 

to have their devices with them at all times as their devices may contain data and 

services they might need at any time. With context-based device access control poli-

cies, employees may be allowed to use smartphones as they can disable all applications 

from using the camera and any device resources and privileges that employers restrict 

while at work, while the user’s device can retain all its original privileges outside the 
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work area. Context-based policies are also a necessity for politicians and law enforce-

ment agents who would need to disable camera, microphone, and location services 

from their devices during confdential meetings while retaining these resources back in 

non-confdential locations. With context-based policies, users can specify when and 

where their applications can access their device data and resources, which reduces 

the hackers’ chances of stealing such sensitive data since end-users do not have con-

trol of the actions taken or exercised capabilities by possibly malicious applications 

especially in context-sensitive circumstances. 

Previous work on security for mobile operating systems focuses on restricting 

applications from accessing sensitive data and resources, but mostly lacks eÿcient 

techniques for enforcing those restrictions according to fne-grained contexts that dif-

ferentiate between closely located subareas [12]. Moreover, most of this work has fo-

cused on developing policy systems that do not restrict privileges per application and 

are only e˙ective system-wide [13]. Also, existing policy systems do not cover all the 

possible ways in which applications can access user data and device resources. Finally, 

existing location-based positioning systems are not accurate enough to di˙erentiate 

between nearby locations without extra hardware or location devices [12, 14, 15]. In 

most cases, such systems assume the context as given without providing or evaluating 

context detection methods for mobile devices [12,16]. 

End-users need a context-based access control mechanism by which privileges can 

be dynamically granted or revoked to applications, on a per-application basis, based 

on the specifc context of the user. We propose such an access control mechanism, 

which we refer to as Context-Based Access Control (CBAC). Our implementation 

of context di˙erentiates between closely located sub-areas within the same location. 

We have modifed the Android operating system so that context-based access control 

policies can be specifed by end-users and enforced by our system. 



8 

1.2.2 Securing Remote Enterprise Content via Proximity-Based Access 

Control 

Enterprise organizations have adopted context-aware systems that leverage prox-

imity -based access control (PrBAC) to mitigate threats of information leakage. That 

is, access control decisions are not solely based on the requesting user’s location, but 

also on the location of other users in the physical space. Consider an enterprise orga-

nization in which an employee is allowed to access a confdential fnancial document, 

but only if the access is executed within the supervisor’s oÿce. An example of a 

PrBAC policy would be to require the presence of the supervisor, in the supervisor’s 

oÿce, for the employee to be able to view the confdential document. 

In a previous work [17], we introduced a secure, automated PrBAC architecture 

and prototype system that we referred to as the Context-Aware System to Secure 

Enterprise Content (CASSEC). While our system was agnostic with respect to the 

technological choices for detecting physical proximity, we had provided a simple im-

plementation of the complete CASSEC architecture. We utilized Bluetooth and WiFi 

devices, which are widely used in enterprise environments, to address the occupancy 

detection problem [18] and support two practical proximity-based scenarios often en-

countered in enterprise settings: Separation of Duty and Absence of Other Users. 

The frst scenario is achieved by using Bluetooth MAC addresses of nearby occu-

pants as authentication tokens. The second scenario exploits the interference of WiFi 

received signal strength when an occupant crosses the line of sight. Regardless of 

the scenario, information about the occupancy of a particular location is periodically 

extracted to support continuous authentication. The proposed access control system 

allows end-users to automatically access enterprise content stored in a remote server, 

and to the best of our knowledge, our approach is the frst to incorporate WiFi signal 

interference caused by occupants as part of a PrBAC system. 

In this dissertation, we also consider the security implications of an enterprise’s 

employees relying on CASSEC’s position-based services to access remote enterprise 
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content via endpoint devices. In general, the sensors of a context-aware system extract 

contextual information from the environment and relay that information to higher-

level processes of the system so to infuence the system’s control decisions. However, 

an adversary can maliciously infuence such controls indirectly by manipulating the 

environment in which the sensors are monitoring, thereby granting privileges the 

adversary would otherwise not normally have. To address such context monitoring 

issues, we extend CASSEC by incorporating sentience-like constructs, which enable 

the emulation of "confdence", into our PrBAC model to grant the system the ability to 

make more inferable decisions based on the degree of reliability of extracted contextual 

information. In CASSEC 2.0, we evaluate our confdence constructs by implementing 

two new authentication mechanisms. Co-proximity authentication employs our time-

based challenge-response protocol, which leverages Bluetooth Low Energy beacons 

as its underlying occupancy detection technology. Biometric authentication relies on 

the accelerometer and fngerprint sensors to measure behavioral and physiological 

user features to prevent unauthorized users from using an authorized user’s device. 

We provide a feasibility study demonstrating how confdence constructs can improve 

the decision engine of context-aware access control systems. 

1.3 Context-Aware Containerization Systems 

EED scenarios enable employees to utilize their smartphone mobile device for 

both personal and enterprise purposes, thereby allowing sensitive enterprise content 

to be stored and accessed on end-users’ devices anywhere and anytime. However, 

security is an important, and the most signifcant, barrier to wide adoption of such 

dual-use scenarios. In 2016, conducted research found that the top two security con-

cerns of cybersecurity practitioners, such as enterprise IT admins, were data leakage 

(72%) and unauthorized access to enterprise resources (56%) [19]. In fact, nearly 

one out of fve organizations (21%) experienced a security breach via EED vectors. 

IT admins attempt to mitigate such threats by employing Enterprise Mobility Man-
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agement (EMM) systems which administer secure containers (e.g., work persona) to 

end-users’ devices [20], but enterprises continue to su˙er due to EMM systems lack 

of or ine˙ective access control and monitoring solutions. 

We identify a few shortcomings of contemporary EMM systems. First, EMM sys-

tems do not consider the context in which personas are employed. EMM systems, 

such as Samsung KNOX [20], do not provide enterprises a means to specify or enforce 

contextual constraints to control access to or infuence the behavior of personas. Sec-

ond, modern EMM systems assume that each end-user uses her device for only one 

enterprise. We argue that EMM systems need to support multi-enterprise environ-

ments, as end-users may interface with a variety of frst/third-parties with potentially 

conficting contextual access control policies. To limit risks of unauthorized access, 

it is imperative that organizations employ secure means of contextual authentication 

and authorization to protect enterprise content after it is downloaded to end-users’ 

devices. 

To address these shortcomings, we present our position-based, Multi-EnterpRise 

Containerization (MERC) architecture for EED security. The MERC architecture 

leverages positional data to grant context-aware capabilities to container-based sys-

tems. We grant enterprises the ability of defning location- and proximity-based 

conditions that must be met in order for users to securely access enterprise container 

content. First, we provide a scalable location-based scheme that allows multiple en-

terprise context-aware systems to securely coexist and activate policies and personas 

on an end-user’s device. Second, the MERC incorporates proximity-based constraints 

to modify a persona’s behavior. We evaluate our prototype using preexisting infras-

tructures, and our experimental results show that MERC is an e˙ective and practical 

EED security solution for context-based containerization. 
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1.4 Document Structure 

The rest of this document discusses the above topics in further detail. Chapter 

2 presents basic concepts and surveys the state-of-the-art in mobile operating sys-

tems, positioned-based systems, and access control systems that lay the foundation 

of this work. The frst approach in Chapter 3 addresses the issue of localizing the 

user using client-side technology and adapting applications’ access to client-side con-

tent depending on the user’s location and time of access. The second approach in 

Chapter 4 addresses the problem of localizing a user as well as detecting the proxim-

ity of other users without solely relying on end-users’ devices to determine positional 

information, and then utilizing such information in access control requests to remote 

enterprise content. The third approach in Chapter 5 addresses the issue of apply-

ing proximity-based constraints to the management of end-user devices via mobile 

containerization techniques and technologies when end-users may be employed by or 

consult for multiple enterprises. Chapter 6 concludes this dissertation with questions 

and insights directed at enterprises so that enterprises could implement or employ 

appropriately solutions for their particular EED scenarios. 
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2. BACKGROUND AND RELATED WORK 

In this chapter, we present basic concepts and survey the state-of-the-art in mobile 

operating systems, positioned-based systems, and access control systems in order to 

understand the work. 

2.1 Android 

Android is a Linux-based, mobile phone platform designed with a multi-layered 

security infrastructure [21]. Loaded on top of the Linux kernel are the System Li-

braries, Android Runtime, and Application Framework software layers (Figure 2.1). 

Each application, which is assigned a unique user ID (UID), is given a dedicated part 

of the fle system for its own data, and executes in a separate Dalvik Virtual Machine, 

thus creating an application sandbox. Along with Linux’s discretionary access control 

mechanism, Android includes a fne-grained permission system that determines the 

set of device resources an application has access to. An application’s permissions, 

which can be extracted from its AndroidManifest.xml fle, are also associated with 

its UID. At the time of an application installation, users have to either grant all the 

requested permissions to proceed with the installation of the APK, or cancel the in-

stallation completely. As of Oreo (API 26), there are currently over 150 application 

developer permissions. 

An Intent is an Android messaging facility to support inter-component communi-

cation. A component (i.e., Android activity, service, content provider, or broadcast 

receiver) sends an Intent message to the OS, which basically specifes the intent of 

starting, accessing, or requesting information from a particular component, including 

ones from another application. 
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Fig. 2.1. Android software stack. 

2.2 Position-based Services 

There is a variety of technologies that address the localization problem, that is, 

to determine and retrieve a user’s location. Generally, each positioning system (i.e., 

PBS) has at least two separate hardware components, a transmitter and a receiver 

to send and receive signals, respectively [22]. The receiver analyzes one of three 

characteristics of the received signal which are: angle-of-arrival (AoA), received-signal 

strength (RSS), and time of arrival (ToA). 

PBSs have the ability to detect the current position of user devices, and such 

services are important in variety of settings including access control enforcement 

in EED scenarios [17]. PBSs vary with respect to many parameters, such as the 

position technologies on which they are based, security, privacy, a˙ordability, resource 

requirements (e.g., memory or power consumption), and precision level of positional 

data, and therefore have their inherent advantages and disadvantages. For example, 

geofencing PBSs are able to place a user within a predefned area such as with the use 

of GPS, which is the most widely used positioning tool that uses the propagation time 

of signals (i.e., ToA) from satellites to compute the position of a receiver anywhere on 

Earth. Microlocation PBSs can locate a user with high accuracy such as with the use 
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of Ultra Wide-Band radios to provide an accuracy as high as 10 cm by calculating AoA 

and ToA [23]. Other positioning techniques based on di˙erent technologies include 

Infrared (IR), Radio Frequency (RF), Radio Frequency Identifcation (RFID) [24], 

magnetic feld [25], ultrasound [26], Bluetooth [27], and WiFi [7, 9, 28–30]. 

Bluetooth Low Energy (BLE) can also be used to retrieve a user’s relative location 

in an energy eÿcient manner, and it has been employed by beaconing services [23]. 

By utilizing widely-used BLE-based beacon protocols (e.g., Apple’s iBeacon, Google’s 

Eddystone, and AltBeacon [23]), a beacon region or the proximity of other BLE-

enabled beacon devices (e.g., smartphones) can be detected. Detection is achieved by 

periodically broadcasting beacons that are picked up by BLE-enabled devices. Each 

beacon protocol has a di˙erent beacon construction, but we utilize Google’s Eddys-

tone implementation as it is open source and incorporates features that we leverage 

in Chapter 4 and Chapter 5. The Eddystone UID is 16 bytes long and consists of 

two values: Namespace (10 bytes) and Instance (6 bytes). The Namespace value 

is a UUID (Universally Unique Identifer) that identifes a top-level beacon region. 

The Instance value identifes sub-beacon regions and can be constructed using any 

scheme. For example, semantically, a beacon construction could represent the au-

ditorium within building 10 (i.e., Instance) at NekSec’s campus (i.e., Namespace). 

Google’s beacon also provides two measurements. The distance measurement is an 

indicator of the proximity of one device to another which is determined based on the 

RSS value. The ranging measurement is an intuitive, user-friendly indicator of the 

distance between two devices which falls into one of the following ranges: Immedi-

ate (very close), Near (at a distance of 1-3m), Far (greater than 3m), or Unknown 

(the distance cannot be accurately determined). We also investigate other distance-

bounding techniques. In particular, we investigate techniques that measure the time 

elapsed, i.e., the round trip time (RTT), during the exchange of packets between the 

transmitter and receiver. In Chapter 5, we implemented a distance-bounding sys-

tem using BLE beacons as our underlying technology, which were programmed using 

Android’s android.bluetooth.le APIs [31]. 

https://android.bluetooth.le
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2.3 Context-Based Access Control Models 

2.3.1 Overview 

The role-based access control (RBAC) model is mainly used in enterprise settings 

to facilitate administration of access control polices [32]. In such settings, users are 

assigned di˙erent roles whereby each role is granted predefned access privileges to 

enterprise resources. Various access control models and systems have been proposed 

that use RBAC as a foundational paradigm, and some augment the model so that 

privileges associated with a role can only be exercised if contextual parameters are 

adhered to. In this section, we provide an overview of role-based access control models 

that incorporate CI into the decision-making process. 

The most common extension is the inclusion of spatial constraints. GEO-RBAC is 

a spatially-aware RBAC model that defnes the concept of spatial roles which allow an 

authorized user to assume a role (i.e., role enabling) and exercise its associated privi-

leges (i.e., role activation) only if the user is at or within a designated location specifed 

by physical coordinates [33]. LoT-RBAC and STARBAC are other augmented RBAC 

models that incorporates spatio-temporal constraints for role enabling and role acti-

vation [34, 35]. Unlike the previously mentioned models, the authors in [36–38] did 

not focus simply on spatial or temporal constraints, but rather designing an access 

control framework that is fexible enough to allow a variety of contextual parameters. 

Such models however are not implemented and therefore no enforcement mechanism 

has been developed to support these models. 

For the purpose of applying those models to real implementations, Sandhu et al. 

proposed the notion of PEI (policy, enforcement, implementation) models that defne 

a usable structure for creating an implementation of enforcement mechanisms [39]. 

Gupta et al. proposed a context profling framework based on the surrounding en-

vironment captured by the mobile device sensors to estimate the familiarity of a 

place [16]. They used such context to create context proflers that are used to con-

fgure access control policies on mobile devices. 
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Proximity-based Access Control (PBAC) [40] is an access control model developed 

specifcally for Smart-Emergency Environments that takes into account the user’s 

proximity to a resource (e.g., a computer). PBAC was implemented using ultra-

wide band RFID which calculated AoA and ToA to support automated access access 

control. Although the system did not require user intervention, active tags (worn 

by users) and mounted receivers had to be deployed to determine the tags position. 

Prox-RBAC, which extends GEO-RBAC, is a formal authorization model based on 

a notion of proximity [41]. That is, access control decisions are not solely based on 

the requesting user’s location, but also on the location of other users in the physical 

space. Prox-RBAC incorporates elements of the UCONABC usage control model 

[42]. Prox-RBAC was implemented using near-feld communication (NFC) allowing 

a NFC phone to transmit signals to a NFC reader to lock and unlock a door, and 

although it provides high-integrity proof of location, it requires user intervention. 

Prox-RBAC has been further extended to incorporate a large variety of proximity 

constraints in addition to the spatial ones, namely attribute-based, social, cyber, 

and temporal proximity constraints [43]. Many systems, including Prox-RBAC and 

PBAC, inherently assume that every individual within a monitored space is trusted. 

Systems that are solely based on location tracking devices worn or held by users can be 

easily circumvented through collusion. For example, assume sensitive documents are 

stored within a restricted oÿce that should only be accessible by a high-level employee 

such as a corporate CEO. The CEO will unlock the door with his/her tracking device 

(e.g., NFC), but a low-level employee can easily follow immediately behind prior to the 

door locking. By not initiating contact between the transmitter and the receiver, the 

system would be tricked into believing that no unauthorized personnel is occupying 

the restricted oÿce. In another insecure scenario, an employee, assuming he/she was 

given a tracking device, can simply remove the device (e.g., active tag) so as to not 

be tracked. Neither Prox-RBAC or PBAC addressed a major security problem of a 

user obtaining an authorized user’s phone, whether by theft or voluntary provision. 

Consequently, individuals may be able to circumvent the access control system via 
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collusion, allowing one individual to impersonate another individual by exchanging 

tracking devices. In addition, costs for deployment and management of these systems, 

and others used in similar architectures, remain signifcant and limit the widespread 

adoption of these systems. 

2.3.2 Context-based Application Restrictions for Android 

Limiting mobile applications’ capabilities on the Android platform is not novel. 

Approaches have been proposed to support the restriction of device content access, 

but not in the context of EED scenarios [44]. Apex [45], AppFence [46], TISSA [47], 

MockDroid [48], and YAASE [49] have developed modifcations to the Android OS 

in order to limit data leakage and restrict application permissions. Our work com-

plements these techniques by adding more user controls and device restrictions (such 

as intent management) and ties these confgurations to context-based policies that 

dynamically apply device restrictions. Our work also complements research e˙orts in 

protecting user and application data applied at the middleware and kernel layers of 

the Android OS, such as FlaskDroid [50], Moses [51], Saint [52], and TrustDroid [53]. 

2.4 Containerization 

2.4.1 Overview 

To support the dual use of mobile devices in EED scenarios, various mobile device 

containerization techniques were developed to secure accessible enterprise content as 

well as the privacy of employees [20]. In a broad sense, containerization primarily 

aims to secure a portion of a device’s resources (e.g., application, storage, or network 

access) from other applications and systems running on the same device. When 

applied to EED scenarios, containerization isolates within the same device personal 

privacy-sensitive applications from enterprise and business applications. 
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In order to administer/manage secure containers to/on end-users’ devices, enter-

prises use Enterprise Mobility Management (EMM) systems [20]. Existing EMM 

systems operate at either the application or platform level. The level at which these 

systems operate determines the types of containerization technologies they are able 

to leverage to isolate content. Application-level EMM systems create an application-

level container supported by a non-native application-layer (EMM) framework (Fig-

ure 2.2(a)) that allow an application, or a set of trusted applications, to isolate itself 

and its data from other untrusted applications. Platform-level EMM systems, sup-

ported by a native EMM framework (Figure 2.2(b)), create multiple environments 

referred to as "personas" to isolate content so that trusted applications do not execute 

in a persona in which untrusted applications also reside. Independently of whether 

the container is implemented at the application or platform level, enterprises are able 

to confgure policies for the container that modify the behavior of the applications 

(e.g., accessing data and system resources). 

(a) Application-level Container. (b) Platform-level Container. 

Fig. 2.2. The interactions between two containerized applications and 
an untrusted application that exists outside of the secure area. The 
gray and red arrows represent permitted and non-permitted commu-
nication channels, respectfully. 
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2.4.2 Containerization on Android 

There are several existing EMM-like systems that utilize multi-partition tech-

niques to isolate private and corporate content. Contrary to our work, most fail to 

consider the context in which they are employed. Gupta et al [54] created a custom 

Android OS that supports dual-mode personas. In enterprise mode, the system could 

enforce policies that disable a subset of device communication peripherals, force the 

device to only communicate via an enterprise VPN, and ensure an encrypted exter-

nal storage is utilized. TrustDroid proposed the use of domains and their isolation 

by monitoring and limiting data exchanged via IPC (Inter-Process Communication), 

fles, databases, and socket connections. 

IdentiDroid [6] is an application level privacy-enhancing tool based on Android 

that addresses the shortcomings of network anonymizers (e.g., Tor and Hotspot 

Shield). IdentiDroid uses confguration profles which are analogous to personas that 

relocate application data when a profle is de/activated. Unlike other platform-level 

systems, IdentiDroid also contain application-level containerization through the uti-

lization of several device content protection techniques. DroidARM [55] builds upon 

the work in IdentiDroid, but implemented on top of Android Lollipop. In this way, 

DroidARM is able to use native multi-user containerization to isolate applications and 

data as well as support EMM-based management features. Samsung KNOX 2.0 [20], 

the system AFW actually adopted its persona-based approach from, incorporates sig-

nifcantly more hardware and platform security than any other platform-level EMM 

system, thus providing stronger guarantees of preventing root attacks. 

Cellrox [20] uses a lightweight virtualization technology called ThinVisor. ThinVi-

sor resides in the OS and allows multiple instances of the Android OS, which Cellrox 

calls Virtual Mobile Instances (VMIs), using the same kernel. Cellrox’s VMIs can be 

made portable allowing a VMI to be decoupled from the device and placed in another 

device without needing to reconfgure the VMI. None of the aforementioned solutions 
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support the activation of a container via location-based constraints or the restriction 

of the container’s content via proximity-based constraints. 

Several other solutions have been proposed that rely on the data tagging and 

information-fow tracking capabilities of TaintDroid [56]. In the work by Kodeswaran 

et al. [57], applications are classifed as enterprise-related via parameters such as 

market source or developer signature. In addition, the data that is generated or 

processed by these applications are consequently tainted as enterprise. However, the 

proposed system does not incorporate contextual constraints. The work by Feth et 

al. [58] proposes a data-driven usage control architecture in which data is tainted by an 

enterprise-provided tag. The system supports context-aware policies by monitoring 

various device sensors such as location, WiFi, accelerometer, battery, Bluetooth, etc. 

Moses [51] isolates sensitive content from di˙erent personas by tainting data at the 

OS level with the name of the persona the data is associated with. Moses supports 

passive persona activation via GPS tracking. However, Moses, as well as the work 

proposed by Feth et al. [58], is not suitable for indoor environments as a result of 

GPS signal attenuation caused by construction materials. Furthermore, all of these 

solutions require signifcant modifcations to the Android OS. 



21 

3. A LOCATION-BASED ACCESS CONTROL SYSTEM 
FOR MOBILE DEVICES 

Mobile application developers leverage the computational and communication-based 

resources on mobile devices in order to incorporate new or enhanced services to their 

applications. However, the majority of these resources can collect sensitive data and 

may expose users to security and privacy risks if applications use them inappropriately 

and without the user’s knowledge [56]. The threat arises when a device application 

acts maliciously and uses device resources to spy on the user or leak the user’s personal 

data without the user’s consent [59–61]. 

In this chapter, we propose a context-based access control (CBAC) mechanism for 

Android systems that allows smartphone users to set confguration policies over their 

applications’ usage of device resources and services at di˙erent contexts. Through 

the CBAC mechanism, users can, for example, set restricted privileges for device 

applications when using the device at work, and device applications may re-gain their 

original privileges when the device is used at home. This change in device privileges 

is automatically applied as soon as the user device matches a pre-defned context of 

a user-defned policy. The user can also specify a default set of policies to be applied 

when the user is located in a non-previously defned location. 

Confgured policy restrictions are defned according to the accessible device re-

sources, services, and permissions that are granted to applications at installation 

time. Such policies defne which services are o˙ered by the device and limit the de-

vice and user information accessibility. Policy restrictions are linked to context and 

are confgured by the device user. We defne context according to location and time. 

Location is determined basically through visible Wi-Fi access points and their respec-

tive signal strength values that allows us to di˙erentiate between nearby sub-areas 

within the same work space, in addition to GPS and cellular triangulation coordi-



22 

nates whenever available. We implement our CBAC policies on the Android operating 

system and include a tool that allows users to defne physical places such as home 

or work using the captured Wi-Fi parameters. Users can even be more precise by 

di˙erentiating between sub-areas within the same location, such as living rooms and 

bedrooms at home or meeting rooms and oÿces at work. Once the user confgures 

the device policies that defne device and application privileges according to context, 

the policies will be automatically applied whenever the user is within a pre-defned 

physical location and time interval. 

Below, we frst present a model overview of our access control framework in Sec-

tion 3.1. Section 3.2 introduces our policy constructs and their classifcation followed 

by implementation and technical details in Section 3.3. Section 3.4 emphasizes our 

technique in managing CI and how we keep policy restrictions up-to-date with de-

vice location. Section 3.5 reports results of experiments to assess the accuracy of CI 

and the impact of policy restrictions on applications. We analyze the security of our 

approach in Section 3.6. 

3.1 Model Overview 

In this section, we present an overview of our access control framework through 

describing its components and the role of its entities. 

Our framework consists of an access control mechanism that deals with access, 

collection, storage, processing, and usage of context information and device policies. 

To handle all the aforementioned functions, our framework design consists of four 

main components as shown in Figure 3.1. 

The Context Provider (CP) collects the physical location parameters (GPS, 

Cell IDs, Wi-Fi parameters) through the device sensors and stores them in its own 

database, linking each physical location to a user-defned logical location. It also 

verifes and updates those parameters whenever the device is re-located. 
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The Access Controller (AC) controls the authorizations of applications and pre-

vents unauthorized usage of device resources or services. Even though the Android 

OS has its own permission control system that checks if an application has privileges 

to request resources or services, the AC complements this system with more control 

methods and specifc fne-grained control permissions that better refect the applica-

tion capabilities and narrow down its accessibility to resources. The AC enhances 

the security of the device system since the existing Android system has some permis-

sions that, once granted to applications, may give applications more accessibility than 

they need, which malicious code can take advantage of. For example, the permission 

READ_PHONE_STATE gives privileged applications a set of information such as 

the phone number, the IMEI/MEID identifer, subscriber identifcation, phone state 

(busy/available), SIM serial number, etc. 

The Policy Manager (PM) represents the interface used to create policies, 

mainly assigning application restrictions to contexts. It gives control to the user 

to confgure which resources and services are accessible by applications at the given 

context provided by the CP. As an example, the user through the PM can create 

a policy to enable location services only when the user is at work during weekdays 

between 8 am and 5 pm. 

The Policy Executor (PE) enforces device restrictions by comparing the device’s 

context with the confgured policies. Once an application requests access to a resource 

or service, the PE checks the user-confgured restrictions set at the PM to either grant 

or deny access to the application request. The PE acts as a policy enforcement by 

sending the authorization information to the AC to handle application requests, and 

is also responsible to resolve policy conficts and apply the most strict restrictions. 

Through the PM, users can create CBAC policies through confguring application 

restrictions and linking them to contexts. When an application requests a resource or 

service, the AC verifes at run-time whether the application request is authorized and 

forwards the request to the PE. If the request is authorized, the PE then checks if 

there is any policy that corresponds to the application request. If such a policy exists, 
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Fig. 3.1. Access control framework. 

the PE requests from the CP to retrieve the context at the time of the application 

request. The PE then compares the retrieved context with the context defned in the 

policy. In case of a match, the PE enforces the corresponding policy restrictions by 

reporting back to the AC to apply those restrictions on the application request. 

We carefully design the access control framework so that the user-confgured poli-

cies are securely enforced with minimal processing steps and execution time to avoid 

any signifcant delays in responding back to the requesting application. As our design 

should securely handle policy execution, we maintain the context data provided by 

the CP to make sure it is accurate, precise and up-to-date. 

3.2 Policy Core Model 

In this section we describe the core policy constructs that compose our CBAC 

policies. We start by defning the policy constructs and then categorize our policies 

according to the type of restrictions and modifcations that we need to apply to the 

Android OS. 
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3.2.1 Policy Constructs 

We defne our CBAC policies as a set of restrictions applied to the smartphone 

applications when the device is located within a specifed context. Policy restrictions 

represent the constraints applied on the applications’ privileges in accessing device re-

sources, system methods, functions, user data, and services. Policy contexts represent 

to where and when the policy must be enforced. 

In what follows, we assume three sets: (1) SUB the set of subjects representing 

the device applications, (2) OBJ the set of protected objects (objects, for short) 

representing the permissions, services, and functionalities available for the system 

or applications, and (3) ACTION the set of restriction actions that can be applied 

through the CBAC policies. 

The set of subjects SUB is composed of the PackageNames of all applications 

installed on the device. In addition, a special character � is added to the set to 

represent all installed applications. This character is useful for policies that need 

to be enforced on all applications, rather than creating the same policy for every 

application. Moreover, we assume that each object from set OBJ has an associated 

type from the set {Permission, Data, Intent, System_Peripheral}. Let o be an object 

from the set OBJ ; notation type(o) denotes the type of o. The set of actions ACTION 

defned for our CBAC model includes the following actions: 

revoke_Permission: denys permission(s) from being granted to application(s). 

shadow_Data: conceals the actual user data stored on the device. 

disable_Intent: intercepts and drops the specifed intent message. 

save_State: disables toggling the state (ON/OFF) of the specifed system periph-

eral. 

Defnition 1 (Restriction.) Let s 2 SUB, o 2 OBJ , and a 2 ACT ION . A policy 

restriction is defned as the tuple [s, o, a] such that: 
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revoke_P ermission if type(o) = Permission. 

><shadow_Data if type(o) = Data. 
a = 

disable_Intent if type(o) = Intent. 

>:save_State if type(o) = System_Peripheral. 

Access control policies are linked to a context that specifes where and when these 

policies should be enforced. In our model, the policy context is composed of a device 

location and a time interval. The device location corresponds to where a policy should 

be enforced. For defning a device location, we use the reference geometric model 

the describes how locations on Earth are represented. We adopt the spatial model 

compliant with Open GeoSpatial Consortium (OGC) [62] that uses the notion of GIS 

features. Features have a defned geometry (points, lines, or polygons) in a reference 

space, with points to represent a feature with a single location in the coordinate space, 

lines to represent a feature that has a linear interpolation of an ordered sequence of 

points, or polygons to represent a feature that has an ordered sequence of closed lines 

defning the exterior and interior boundaries of an area. Features also have types 

(road, town, region) and can be given an instance for each type (Champs-Elysees, 

Paris, lle-de-France). 

Specifc to our CBAC policies, we defne the device location as the physical loca-

tion that represents a geographically bounded feature (such as a residential and/or 

commercial building), with boundaries specifying the interior area in which the device 

is located. The physical location data and boundaries are obtained from the mobile 

device sensors, mainly captured from GPS, cellular network, and Wi-Fi device sensors 

as detailed in Section 3.4. In addition to the device physical location, users can assign 

logical location names to the feature or sub-area (such as living room or work oÿce) 

in which the device is located. Using these logical location names, users can reuse 

them in multiple policies without the need to re-capture the device physical location 

for every policy. 
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On the other hand, a policy time interval represents the specifc time period 

within which a policy should be enforced. We represent the specifc date and time 

in the format of YYYY-MM-DD-hh:mm:ss. Additionally, we introduce the R fag to 

defne recurring events. The value of R is drawn from the set {O,D,W,M,Y} defning 

the event frequency: O ! once, D ! daily, W ! weekly, M ! monthly, and 

Y ! yearly. An event is recurred based on the value of R and the date/time set 

in the policy time interval. For example, to set an event that occurs every Monday 

from 5 pm to 10 pm, R is set to W and the time interval should be set to a sample 

event date-time, such as starting on 2013 − 04 − 01 − 17 : 00 : 00 and ending on 

2013 − 04 − 01 − 22 : 00 : 00. 

Defnition 2 (Context.) Let LOC be a logical location name representing a partic-

ular feature or sub-area. Let {ST, ET, R} respectively be the starting time, ending 

time, and frequency to when a particular policy should be enforced. A policy context 

is defned as the tuple [LOC, {ST, ET, R}]. 

Defnition 3 (Policy.) Let r be a restriction as defned in Def. 1 and c be a context 

as defned in Def. 2. A policy is defned as a tuple [r, c]. 

Below is an example of a policy that disables the Skype application from having 

the Camera permission monthly between 4.00 pm and 5.00 pm on the frst of every 

month starting August 1, 2013 at our department meeting room Room110: 

POLICY = [ [com.skype.raider, 

android.permission.CAMERA, revoke_Permission], 

[Room110, 

{2013-08-01-16:00:00, 2013-08-01-17:00:00, M} ] ] 

3.2.2 Policy Categories and Examples 

We here classify location dependent run-time policies according to the type of 

restrictions and modifcations that we need to apply on the Android OS. Table 3.1 

displays examples of policy restrictions for each policy category. 
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Table 3.1. 
Policy categories and examples. 

Policy Category Example Policy Restriction [s,o,a] 

Resource Restriction Policies Disable Camera for Skype [ com.skype.raider, android.permission.CAMERA, revoke_Permission ] 

System Peripheral State Policies Disbale Bluetooth toggling [ *, BLUETOOTH, Save_State ] 

Multitasking and Intercommunication Policies Disable loading a browser activity [ *, Intent.ACTION_VIEW, Uri.parse, disable_Intent ] 

User Security Policies Disable uninstalling applications [ *, android.intent.action.DELETE, disable_Intent ] 

3.3 Implementation 

In this section, we introduce the technical details of our implementation which 

includes our modifcations to the Android OS and the components of the Policy 

Manager custom application that acts as an intermediary between the OS and the 

user’s desired policy confgurations. 

3.3.1 Policy Manager Components 

The Policy Manager custom application consists of the four main Android ap-

plication components: Activities, Broadcast Receivers, a Content Provider, and a 

Service. 

Activities: The user interacts with the Policy Manager via activities, and through 

these activities, a user is able to defne physical locations and subsequently confg-

ure a set of policies for these locations. The main constituents of these activities 

include Application Events, Permission Access, Resource Access, System Preferences, 

and Time Restriction. 

BroadcastReceiver: We extended the Android’s BroadcastReceiver class and 

created two custom classes, the StartLocationServiceReceiver and the BootReceiver 

classes. The StartLocationServiceReceiver is responsible for triggering our customized 

LocationService for retrieving device location information. The BootReceiver ’s main 

task is to schedule when the StartLocationServiceReceiver should request the location 

service. Once the BootReceiver receives the BOOT_COMPLETED Intent from the 

system, it uses the Android’s AlarmManager service to let the receiver schedule a 
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pending Intent to be sent periodically to our StartLocationServiceReceiver in order 

to update the device location. 

Service: The LocationService service is derived from the IntentService class that 

facilitates o˜oading work from the main application’s thread, allowing tasks to be 

performed in the background on a separate thread if desired. LocationService deter-

mines if the device has moved to or still is in a previously registered area. O˜oading 

the aggregation of location-based data in a separate thread reduces the performance 

impact of the execution of the LocationService on the Policy Manager. We use the 

AlarmManager to periodically activate the LocationService to ensure the device’s lo-

cation is always up-to-date. By default, the LocationService is activated once per 

minute, but we give the user the choice to confgure how often the service is exe-

cuted. The duration of the service depends on the number of snapshots of location 

parameters to be taken, which is currently confgured to four per area. 

Content Provider: The policies confgured by the user are stored within the 

Policy Manager data directory. This data is private to our custom application and 

cannot be accessed by other applications or the system itself, as a result of Linux’s 

kernel user ID access control mechanisms. PolicyCP is our custom content provider 

that acts as a secure intermediary between the policy database and all objects outside 

of the Policy Manager ’s running process. We chose to use the SQLite database to 

store user-confgured policies due to the support and ease of programming provided 

by the Android API’s associated with storing and managing databases on Android 

devices. 

We provide some built-in policies that are pre-confgured and can easily be mod-

ifed to achieve the required user needs. Moreover, we can also refer to existing 

usability techniques [63–66] that can be used to o˙er regular users with preset and 

adapted policy confgurations. 
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3.3.2 Permission Management 

In the Android system, all resources that require explicit access rights in the 

form of permissions are protected by the ActivityManagerService class via permission 

verifcation. When an application attempts to use any of these resources, the Activi-

tyManagerService’s method called checkComponentPermission is invoked to verify if 

the calling application has the appropriate permission(s) to access the resource. 

We apply our modifcations to this particular method by simply intercepting the 

permission call before the system performs its standard permission verifcation pro-

cess. Given the permission and the application name, the system subsequently calls 

our custom content provider’s revokeResourceAccess to determine the next course of 

action. Depending on the user’s policy confguration, the next course of action could 

either be returning the constant PackageManager.DENIED in the checkComponent-

Permission if the user has confgured to block that permission from the requesting 

application, or letting the normal verifcation process take its course. We also give 

the ability to revoke any or all permissions system-wide via the PolicyManager ’s 

interface. 

3.3.3 Restrictions on User Data 

Our implementation of data obfuscation complements many of the techniques 

previously used in [46] and [6], but instead under the domain of CBAC policy restric-

tions. We obfuscate user data from applications attempting to access it if the policy 

restriction applies to those applications. We modify the Android APIs that access 

the user data saved on the device. 

Relational database systems are the common data management systems used to 

create, store, and manage user data. Accessing these data usually require calling the 

ContentResolver’s query() method, and thus we modify it for our purposes. Instead 

of returning the expected Cursor object needed to point to the required data, a 

NullCursor object is substituted. A NullCursor object represents an empty dataset, 
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such as an empty list of pictures as if pictures were not present or never stored on 

the device. 

3.3.4 Managing System Peripheral State 

We also give users the option to confgure a policy to restrict access to peripher-

als (e.g., Bluetooth) when entering a particular location. Specifcally, users can set 

up their devices to prevent applications from modifying a peripheral’s current state 

(enabled/disabled). While it is possible to modify a peripheral’s current state by 

using permission management, we modify the specifc methods that enable/disables 

these peripherals in order to prevent applications from crashing that do not have 

code for handling exceptions resulting from revocation of permissions. As an exam-

ple, for Bluetooth we modifed the BluetoothAdapter class and for Wi-Fi we modifed 

the WifManager class so to assure that these modifcations do not result in appli-

cation crashes and to prevent applications from modifying peripherals current state. 

Whenever an application tries to modify the state of a system peripheral, our content 

provider PolicyCP checks the validity of the request and would refuse the request if 

the request tries to override a user-confgured restriction. 

3.3.5 Intent Management 

Intent messages are one of the common forms for inter- and intra-communication 

between application components, sent via three methods: startActivity(), sendBroad-

cast(), and startService(). Preventing an application from sending intents is simply 

a matter of intercepting the intents when the aforementioned methods are called by 

applications. Intent interception provides the user the ability to prevent an appli-

cation component from starting another activity, broadcasting any possible sensitive 

information, or executing a possibly suspicious background service. For example, 

without the need of declaring the Android permission "RECORD_AUDIO", an ap-

plication can indirectly access the device’s microphone recorder application by re-
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Table 3.2. 
Examples of policy restrictions that can be controlled via intercepting Intents. 

Restriction Category Description 

Application Install/Uninstall Prevent an application from sending an intent 

to install or uninstall an application. 

Application Multitasking Prevent running multiple user-application simultaneously. 

Services Prevent applications from starting background services. 

Broadcasts Prevent applications from broadcasting Intents. 

Application Launching Prevent certain applications from running on the device. 

Lock/Unlock Device Preventing requesting pin code to unlock the device. 

questing the Activity class to send a record audio intent. Therefore, we modifed the 

Activity class which hosts startActivity() and startActivityForResult(), and the Con-

textWrapper class which contains sendBroadcast() and startService(). We modifed 

these methods to intercept the Intents and control the actions performed based on 

those Intent objects. 

We classify these Intents based on the contents and description of the intent 

objects. The user is given, via the Policy Manager interface, the ability to prevent a 

specifc set of Intents from being sent. Table 3.2 lists few examples of these Intent-

related restrictions. 

Launching applications is achieved by intercepting those intents and preventing 

applications from being started either by users or by other applications. The frst 

method is when users launch applications through the default Android Launcher 

application, which is the home screen of the device. The second method for start-

ing another application is calling its activity within an already opened application. 

We extract the action and category from the Intent object, and verify if it is "an-

droid.intent.action.MAIN" and "android.intent.category.LAUNCHER", respectively. 

If those specifc contents are present and if the simultaneous running of applications 

is restricted, we discard the intent preventing the framework to handle it. 
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Finally, through the Intent management, users can control when to request a pin 

code when unlocking the device. In our implementation, we modify the Keyguard-

ViewMediator class in order to intercept the locking operation of the device, and thus 

controlling when a PIN is required. 

To summarize, users will have all the options to specify applications restrictions 

associated with context data through the policy managers. In the policy manager, the 

permission management is used to confgure application restrictions related to device 

resources (e.g. Camera). Restrictions on user data are used to shadow user data 

(usually saved in relational databases) and to return fake data to the application (e.g. 

Contacts). Managing system peripheral state is used to control applications actions 

in toggling the state of certain resources (e.g. enabling/disabling Bluetooth). Finally, 

intent management is used to control the communication between applications and 

flter user and application actions on the system. Intent management is also used 

to confgure restrictions on applications accessing resources, as in some cases, these 

applications are developed to access system resources indirectly through using an 

intent message rather than requesting a permission. 

3.4 Context Management 

The main source of location-related information for our access control system is 

the Wi-Fi Access Points (AP) and their corresponding signal strengths. Location 

information acquired from GPS and cellular towers is also aggregated to our con-

text defnition but may not be suÿcient for indoor localization especially that they 

may become weak or unavailable inside buildings or areas within building struc-

tures [67, 68]. However, location information retrieved from Wi-Fi parameters could 

be more precise to di˙erentiate between closely located sub-areas within the same 

GPS location [69,70]. 

A spatial region is represented by combining GPS coordinates, cellular triangu-

lation location data, and Wi-Fi APs and signal strengths. In Android, the GPS 
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coordinates and cellular triangulation are obtained in a similar fashion by invoking 

the Android LocationManager service. Once the LocationManager is invoked, we re-

quest location updates by calling the requestLocationUpdates method that returns a 

Location object which contains latitude, longitude, timestamp, and other information. 

Wi-Fi is handled di˙erently than the previous two location methods. We obtain 

the Wi-Fi parameters by invoking the WifManager service to retrieve the Wi-Fi 

access points scans. We register our BroadcastReceiver mWif_receiver with an In-

tentFiler action to receive the broadcasted Wi-Fi scanned intent, and then request 

for and subsequently process the actual scanned access points data. 

In our CBAC policy system, we provide users with a utility to either capture the 

physical location of the device or to manually enter the device location coordinates. 

In the following sections, we show our design and implementation of the location 

capturing phase and detection phase and how the device’s context is matched with a 

pre-defned policy context. 

Fig. 3.2. Location capturing phase. 
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3.4.1 Location Capturing Phase 

Figure 3.2 describes how location data is captured for each context defned by 

the user. Through the location scan interface, the user is able to capture several 

snapshots of location data in di˙erent sub-areas. For each sub-area, location data is 

accumulated from each snapshot; the GPS coordinates and the cellular triangulation, 

when applicable, import the latitude and longitude from the captured snapshots and 

only select those with the highest position accuracy. With respect to Wi-Fi, we 

noticed that the Wi-Fi access points signal strengths fuctuate even if the device is 

stationary or motionless. Therefore, our application scans the signal strengths of 

each access point for several seconds gathering the RSSI values at each particular 

sub-area. We conduct the scans with no other users in the vicinity as the presence of 

other users would a˙ect the RSSI values [9,71]. Finally, the accumulated data, which 

mainly consists of Wi-Fi access points with signal strength ranges in addition to GPS 

and cellular triangulation data as supporting location information, will represent the 

device’s physical location. 

Any location that is not defned by the user or does not have location information 

saved on the device will be considered “Unregistered”. Therefore, we designate a 

default policy restrictions for the user to confgure whenever the device is located in 

an unregistered location. In addition, we allow users to register locations that have 

not been previously visited. This is achieved through either manually entering the 

publicly known longitude and latitude of the desired location, or by acquiring the 

fne-grained Wi-Fi parameters from other devices who have saved those parameters. 

This becomes very practical when the user is switching between two devices and needs 

to import previously saved policy contexts to the new device. 

Our implementation does not store all the GPS or triangulated cellular coordinates 

acquired, rather a subset of those coordinates that bound into a convex hull and their 

associated precision. The points in the interior of the convex hull are discarded. We 

also only store the RSSI range for each distinct Wi-Fi access point scanned. This 
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range is the minimum and maximum RSSI values aggregated from all the sub-areas 

for each access point. A sub-area is therefore represented as a range of Wi-Fi signal 

strength values at the least, and if with high position accuracy, also a representation 

of a convex hull of GPS or triangulated cellular coordinates. 

Fig. 3.3. Location detection phase. 

3.4.2 Location Detection Phase 

Figure 3.3 describes how device context is detected and matched with pre-defned 

context. Periodically, the location background service is re-instantiated to accumulate 

location-context data to determine the device’s current whereabouts. Like when 

registering and scanning a sub-area in the location capturing phase, we scan the 

device’s location-related data. The list of user-registered areas that have a subset of 

the scanned neighboring access points are extracted from the database frst. Matching 

distinct access points is computationally less expensive than determining if coordinate 

position falls within the boundaries of a convex hull. Then, using the current signal 

strengths of the access points, we reduce the list to only a set of “best-match” list of 
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physical locations whose access points fall within the current captured signal strength 

values. If the current scanned GPS or cell network coordinates fall within the convex 

hull of the associated sub-area, then it is highly likely that the sub-area has been 

located. 

In the unlikely situation when the “best-match” list of physical locations contain 

more than one location, the user is given the list to confrm his/her location. Even 

though this event is unlikely to happen, it may still occur because Wi-Fi access point’s 

signal strengths are volatile; their signal strengths fuctuate at a given location. As 

a consequence, an access point’s signal may be, at some point, too weak for the 

Android’s device sensor regardless of whether the device is in motion or stationary. 

In the location capturing phase, we aggregate the retrieved data that records a range 

of RSSI values from di˙erent sub-areas within the same location, for example, instead 

of just a single snapshot. In the detection phase, however, we take a snapshot of 

the location data, which may have only a subset of the previously aggregated data. 

We compare the previously stored values with the snapshot data. Specifcally, with 

respect to Wi-Fi, we determine if the captured RSSI value of a particular access 

point is within the stored range. We perform this operation for each access point 

captured in the snapshot and count the number of tests passed, which is the basis in 

determining the physical location of the device. 

3.5 Experimental Results 

In this section, we report experimental results about the CBAC mechanism and 

evaluate its impact on the device system and applications. Our modifcations to 

the Android source code were tested on the Android Nexus 4 cellular device and 

Android Nexus 7 tablet running the Android 4.2.2 OS (API level v. 17). We ran 

the top 250 applications from the Google Play market for testing and evaluating our 

modifcations. Each experiment has been carried out with the help of the Android 

Debug Bridge (ADB) utility by using the command “adb logcat”. We inserted logging 
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commands in various parts of the operating systems where modifcations were made 

to observe, for example, application access events. 

Fig. 3.4. Tested areas in one of our campus buildings. 

Experiment 1: Location Detection Accuracy. The goal of this experiment 

is to evaluate the accuracy of the location detection algorithm used in our CBAC 

mechanism. We measure the number of success and failure detections per sub-area. 

Figure 3.4 displays the schematics of one building where we performed some of our 

experiments. The large, grid-pattern rectangles point out main locations or areas, 

identifed by numbers. Areas outside the rectangles are considered “unregistered.” 

The black circles indicate the specifc sub-areas examined during the location captur-

ing phase. All other colors indicate other sub-areas examined during the detection 

phase. 

Figure 3.4 shows three tested rooms located on the same foor. However, our 

experimentation included several buildings and areas. In each room, we chose at 

least four spots to participate in the location capturing phase to accumulate location-

related data, in order to construct a robust set of location parameters per room to 

be stored in the database. In each location, we analyzed three sub-areas, indicated 
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by ’A’, ’B’, or ’C’ and measure the detection rate in each of these subareas. For 

that particular foor which contains over 15 Wi-Fi access points, we captured the top 

5 Wi-Fi access points per snapshot with the highest signal strength for each tested 

sub-area. 

Fig. 3.5. Detection accuracy rate of closely located areas. 

Figure 3.5 displays the detection accuracy rate in the 3 sub-areas of rooms 1, 2 

and 3. At each of the sub-areas of each room, we performed 50 location tests and 

counted the number of successful detections. Our experimental results show that the 

successful detection rates were up to 91%, and in the worst case scenario we had up to 

29% of incorrect detections. This experimental result was complemented by testing 

several “unregistered” areas around the registered rooms. We detected 16% of false 

positives, that is, unregistered areas that appeared to be user-defned. Within the 

registered areas, the values of the signal strengths of matching Wi-Fi access points 

fell within the range of signal strengths frst acquired during the location capturing 

phase. However, in the unregistered areas, especially the further away the device was 

when the snapshots at the location capturing phase were taken, the values fell outside 

the stored range because of building structures hindering the Wi-Fi signal strengths. 



40 

Experiment 2: Impact of Permission Restrictions. The purpose of this 

experiment is to observe the impact of permission-related policy restrictions on ap-

plications. Specifcally, we are interested in whether or not an application crashes as 

a result of being denied a permission that was initially granted at installation time. 

Therefore, we performed a stress test on each application and observed the impact on 

the application upon revoking its permissions when requesting a service or resource. 

We performed our experiment on 245 Android applications and used the ADB logging 

utility to view the permission being revoked when the checkComponentPermission() 

method is called. 

Fig. 3.6. Impact of permission revoking on applications. 

Figure 3.6 shows the percentage of application crashes upon performing the stress 

test on each permission. We counted an application as crashing even if it crashed 

during the execution of one minor functionality. The main cause of these crashes 

is due to the developers’ mishandling the denial of previously granted permissions. 

Since application crashes are due to developers’ mishandling the denial of previously 

granted permissions to their applications, application crashes can be prevented if 
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Table 3.3. 
Time overhead for modifed Android methods. 

Android Method Overhead (ms) 

checkComponentPermission(..) 12.220 

Intent-startActivity(..) 12.708 

Intent-startService(..) 5.402 

Intent-sendBroadcast(..) 5.208 

User Data-ContentResolver(..) 12.300 

Device Peripherals-setEnable(..) 8.351 

error-handling is added whenever an application attempts to access a resources or 

request a service. In fact, throughout testing several application versions, we realized 

that the number of application crashes has been decreasing over time. This is because 

developers are now aware that not having the permission error-mishandling script is 

causing several application crashes. A script is thus being added in their application 

updates especially with the evolvement of many permission restriction techniques. 

Experiment 3: Performance Overhead. The purpose of this experiment is 

to evaluate the timing overhead introduced by our modifcations to the Android OS. 

We calculate the amount of time it takes for our modifed methods to fully execute 

once called by applications. We also compare the execution times of these methods 

before our modifcations to estimate the overhead introduced by our modifcations. 

Specifcally, we measure the overhead time caused by intercepting application per-

missions, user data accesses (e.g. Contacts), Intent messages, and access to system 

peripherals (e.g. Bluetooth). 

Table 3.3 reports in milliseconds the time imposed on these methods. As the 

results show, the overall delay introduced by enforcing our CBAC policies is not 

perceivable by the end-user. 

Experiment 4: System Memory Overhead. The purpose of this experiment 

is to measure the amount of memory overhead placed on the system after our mod-

ifcations. Mainly, we aim to observe the changes in memory usage caused by our 
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application restrictions and by the LocationService method that continuously run in 

the background for context updates. 

Fig. 3.7. Memory overhead with and without our CBAC policy restrictions. 

Figure 3.7 shows that the memory usage when enforcing our CBAC policies closely 

matches the memory usage when these policies are not enforced. Even though our 

experiments test the di˙erent restriction categories separately as shown in the fgure, 

we believe that the observed memory overheard is due to the LocationService that is 

instantiated periodically to keep the device’s context up-to-date. 

Experiment 5: Battery Consumption. The purpose of this experiment is to 

observe the Android device’s battery consumption change when CBAC policies are 

enforced compared to when they are not. For this purpose, we monitored the device’s 

battery percentage when running both the unmodifed OS and our customized system, 

separately. In both cases, we forced the device’s screen to never turn o˙ with Wi-Fi 

and GPS enabled, a representation of a somehow worst case scenario as when the 

user is continuously using the device for that duration. Since the period for which 

the LocationService method t hat is responsible for checking the device’s location 
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can be customized by the user, we tested the battery consumption for di˙erent time 

periods for the purpose of getting a fair evaluation. 

Fig. 3.8. Device battery consumption when checking for context up-
dates every 30 seconds. 

We started our experiment by setting the device to check for any device location 

updates every 30 seconds. Figure 3.8 shows that the battery percentage displayed on 

the device when enforcing our CBAC policies drops ̆  5% less per hour compared 

to when the policies are not enforced. We achieved similar results when context 

was updated every 45 seconds. However, when we set the timer to check for device 

context every 60 seconds or above, the battery usage percentage of when the CBAC 

policies are enforced closely matches the battery consumption when the policies are 

not enforced. 
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3.6 Security Analysis 

In this section, we present a security analysis of our implementation of the CBAC 

system to analyze possible threats from a malicious user or applications that can 

bypass our policy restrictions. The aim of our security analysis is to identify possible 

threats by malicious users or applications that can bypass CBAC policies and to 

mitigate these threats. 

Colluding Applications. In Android, each device application is assigned a 

unique UserID (UID) that the system uses to refer to an application. However, if two 

applications are created and signed by the same developer, the system will give both 

applications the same UID, which gives these applications the ability to share the 

same processes if needed [72]. The stock Android OS applies its security policies not 

based on the application label or its package name, but rather on the process UID. In 

our modifcations of the OS, we obtain the name of the package (application) which is 

performing an action by calling the PackageManager’s getPackagesForUid(int uid). 

This way, our restrictions are not based on UID but are transformed in order to 

refer to the package name. As an example of such threat, consider two applications, 

Application A and Application B, that share the same UID. Suppose that the user 

blocks access to GPS capabilities from application A. However, although successfully 

blocked, application A may still be able to acquire information about the user’s or 

device’s location because Application B was not denied access to GPS. In our system, 

we prevent such threat by blocking all package names associated with a UID using 

the getPackageForUid() method. 

Circumventing Application Multitasking Restriction. A malicious devel-

oper may attempt to bypass the restriction that disallows multiple applications from 

running simultaneously by creating a custom launcher-like app. Android is mod-

ular, and thus the default home screen can be replaced. Our system is not vul-

nerable to such an attack because we check all possible intents as our system is 

not limited to intents related to the stock Launcher. Thus any intent with "an-
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droid.intent.action.MAIN" and "android.intent.category.LAUNCHER" will be inter-

cepted and processed to disable multitasking of any launcher the user decides to use. 

Protection of Policies. As users can confgure policy restrictions based on time 

and location, these restrictions are either applied system-wide or per application. If 

these policy restrictions can be altered by applications, then any malicious application 

can perform specifc attacks based on policy confgurations. To protect policies, we 

thus do not allow write privileges to be granted on policies so to prevent policies from 

being modifed. 

Malicious applications that are aware of our CBAC policies may try to drop a pol-

icy or modify the device’s detected context so that the wrong policy is applied. How-

ever, in our implementation we retrieve context information directly from the system 

protected APIs that cannot be altered by applications. Moreover, context informa-

tion is managed by our Content Provider that gathers such information regardless of 

which applications are running on the device or services requested by applications. 

This independency from the Content Provider gives robustness in gathering context 

data that is forwarded to the Policy Manager as discussed in Section 3.1. 

Sensitive Information Disclosure. Some applications may maliciously leak 

private user information once they detect that a previously granted privileged appli-

cation is revoked. As an example, a malicious application that was granted access 

to Camera and GPS at installation time may upload the device GPS location to the 

application server once it detects that the CAMERA permission is revoked, leaking 

the user-private location. For this reason, our implementation provides the user, at 

the time of policy confgurations, with a list of privileges that are still granted to the 

confgured applications, acting as a warning for the user to be aware of the sensitive 

information still accessible by the confgured applications in a particular context. 

Continuous Running Application Processes. When an application requests 

access to a resource, the Android OS checks if the application has the appropriate 

permission(s) just at the time of the request. If the user-confgured policy grants such 

permission to the requesting application in a given context, some processes associated 
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with certain resources may continuously run even if the device is later located in a 

di˙erent context for which the user has denied access to such resource. The reason 

is that permission granting is not checked continuously while the process is running, 

rather is only checked when the request is issued. Malicious applications may take 

advantage of this, for example by continuously recording audio in one context while 

transitioning to another context. 

Audio recording using the Microphone resource is one example of a continuously 

running process that will not terminate until the recording is stopped. Take for exam-

ple a user who attends private meetings in a same meeting room that he confgured a 

policy to disable the Microphone resource. A malicious application can begin record-

ing outside of the meeting room area without alerting the user, and continue recording 

when the user enters the restricted meeting room. The Android OS does not continu-

ously verify whether an application has audio recording permission during recording. 

It verifes each time a request is made, and thus when approved the application can 

continue using the peripheral for that specifc session. Our implementation prevents 

this type of attack. Once a registered area is associated with a restriction on video or 

record audio access, the location service forces the applications with the associated 

permissions in their AndroidManifest.xml to close. 

3.7 Conclusion 

We proposed a modifed version of the Android OS, which we refer to as CBAC, 

supporting context-based access control policies. These policies restrict applications 

from accessing specifc data and/or resources based on the user context. The re-

strictions specifed in a policy are automatically applied as soon as the user device 

matches the pre-defned context associated with the policy. Our experimental results 

show the e˙ectiveness of these policies on the Android system and applications, and 

the accuracy in locating the device within a user-defned context using mainly RSSI 

values from WiFi access points. 
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CBAC, however, has limitations. CBAC is a user-centric approach to device man-

agement in order to protect sensitive content on the device. This user-centric approach 

to confguring policies for end-users’ devices may not be suitable for enterprises that 

require strong security guarantees. A critical security issue in enterprise environments 

is the inability of enterprises to (fully) trust employees to perform necessary tasks to 

secure enterprise content. Assuming an employee is benign with no malicious intent, 

the employee may incorrectly confgure his/her device policies. Enterprises must 

also consider insider threats within the organization. That is, employees with mali-

cious intent may purposefully leak sensitive enterprise content stored on their devices. 

Enterprise content may not only exist on mobile devices, which is an assumption im-

plicitly made in this chapter. Content may also exist in remote servers which can 

be accessed via mobile devices. In addition, the proposed mechanism does not con-

sider that access to content may be contingent upon the presence of other users in 

the area in which the user requesting access is located. The next chapter, Chapter 

4, addresses such concerns and limitations by proposing a context-aware access con-

trol system that incorporates proximity-based constraints when access to enterprise 

content is remotely requested. 
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4. SECURING REMOTE ENTERPRISE CONTENT VIA 
PROXIMITY-BASED ACCESS CONTROL 

The previous chapter addresses the issue of localizing the user and adapting appli-

cations’ access to client-side content depending on the user’s location and time of 

access. However, the proposed system had several limitations which include local-

izing the user with untrusted client-side technology, lack of consideration of other 

users within proximity when sensitive content is accessed, and delegating the user to 

appropriately confgure access control policies. 

To support PrBAC scenarios such as Separation of Duty (SoD) and Absence of 

Other Users (AOU), we proposed the frst iteration of our Context-Aware System to 

Secure Enterprise Content (CASSEC). CASSEC took a wireless, infrastructure-based 

approach to achieve the localization of occupants within a monitored space which 

enables geo-spatial RBAC [15, 33]. A wireless, infrastructure-based approach makes 

the system more resilient to malicious attacks; we assumed, for example, the least 

amount of trust in users since users may attempt to circumvent the access control 

process by not manually reporting their location or providing false location data. 

In addition, the architectural model allowed a fuid context-sensitive authorization 

process, thereby enabling zero interaction authorization (i.e., it did not require user 

intervention). We frst showed how to enforce SoD by using Bluetooth MAC addresses 

of Client devices of nearby occupants as proof-of-location, which enabled the system 

to determine who was in a given space. We then showed how to enforce AOU by 

exploiting the degradation of WiFi received signal strength as a result of human-

induced interference when people are near access points, which enabled the system to 

determine how many people were in a given space. With such information obtained 

passively by a Proximity Module (PM), the Authorization Server (AS) component 

was able to enforce PrBAC policies whenever an authenticated Client requested from 
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the Enterprise Content Server (ECS) component access to resources depending on 

the presence, or lack thereof, of users. Figure 4.1 displays CASSEC’s architectural 

components. 

Fig. 4.1. CASSEC’s proximity-based access control architecture. Ar-
rows indicate secure wireless network communication. 

Our frst iteration of CASSEC, however, has several drawbacks. First, it does not 

take into account the phenomena of radio signals permeating through walls. Mul-

tiple proximity modules residing in adjacent proximity zones would simultaneously 

detect the same Bluetooth-enabled Client, when in fact, the Client only existed in 

one of said proximity zones. As a result, such a benign occurrence is automatically 

inferred as malicious activity. Given that Bluetooth’s omni-directional transmission 

range is 10m (˘33 ft), the number of false attack detections may increase in standard 

enterprise settings, such as small oÿces or conference rooms. A non-negligible false 

detection rate is a major drawback that hinders the practicality and ease-of-adoption 
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of the solution. Second, the system was susceptible to observable Bluetooth manipu-

lation (see Section 4.7), such as an unauthorized individual obtaining an authorized 

user’s phone, whether by theft or voluntary provision. If such an attack occurs, the 

unauthorized individual can gain access to restricted resources s/he would normally 

otherwise not have access to. 

To address such context monitoring issues, we further investigate techniques that 

leverage existing contextual information from both the physical and computing realms. 

Contextual information extracted from the environment can help a context-aware sys-

tem in inferring the situation of entities within that environment. However, being able 

to infer the correct or more probable conclusion w.r.t. the situation of an entity highly 

depends on the reliability of the extracted contextual information. Reliability could 

be measured, for example, by the level of accuracy, precision, or security in using a 

technique or technology (e.g., occupancy detection or biometric authentication) to 

extract or process contextual information. With respect to security, a context-aware 

system may also need to adapt its access control decisions to the degree of reliability 

of such information. Given the dynamic nature of EED scenarios and idiosyncratic 

phenomenon observed in radio-based occupancy detection technologies, it is essential 

that context-aware systems emulate a sentient characteristic when making inferred de-

cisions: confdence. Access control policies should incorporate confdence constructs 

when specifying contextual restrictions. 

In this chapter, we thus propose a major extension to CASSEC, which we refer 

to as CASSEC 2.0, by adding confdence constructs to the location and role con-

structs in PrBAC policies. In addition, we conduct a feasibility study to show that 

the approach is viable within an enterprise environment, which can be achieved via 

preexisting technologies and solutions integrated within the enterprise’s mobile IT in-

frastructure. Through the location construct, a policy can specify that resource access 

authorization is granted only if the context-aware system can determine to a specifed 

probability that a user is in a room. We employ Bluetooth Low Energy (BLE) capa-

bilities of PMs and Clients to perform continuous co-proximity authentication, and 
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use BLE beacons transmitted during this authentication phase to provide a certain 

degree of confdence that the Client is in a particular proximity zone, even when mul-

tiple PMs in adjacent rooms detect the same Client. Through the role construct, a 

policy can specify that access to resources is only granted if the system can determine 

with high confdence whether the current user of a Client device is the true owner of 

the device. We leverage accelerometer and fngerprint sensors within smartphones to 

achieve behavioral and physiological biometric authentication. Behavioral biometric 

authentication is achieved by passively analyzing the gait patterns of the Client’s 

current user via the smartphone’s accelerometer. Although human gait is behavioral 

and resistant to signifcant change over time, various factors can slightly infuence the 

extracted gait features at runtime [73]. Consequently, if the Client cannot passively 

identify the current user through runtime gait measurements with high levels of as-

surance, the Client will take an active approach and request the user to authenticate 

him/herself via the fngerprint sensor (i.e., physiological biometric authentication) 

when the user next requests access to resources. 

The CASSEC 2.0 system has thus the following contributions: 

1. Confdence Constructs: We incorporate confdence specifers into context-based 

access control policies. More specifcally, we incorporate such specifers into 

PrBAC’s role and location constructs, thereby enabling the CASSEC 2.0 sys-

tem to factor in the degree of reliability of contextual information during au-

thentication and authorization processes. 

2. Feasibility Study: We conduct a feasibility study to show that the approach 

of CASSEC 2.0 is viable in a practical enterprise setting. We leverage solu-

tions within an enterprise’s preexisting IT infrastructure to evaluate confdence 

constructs, and apply such constructs to biometric and co-proximity authenti-

cation. 

3. Co-Proximity Authentication: We provide a timed challenge-response proto-

col using BLE beacons as our underlying co-proximity authentication technol-
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ogy. The protocol prevents an adversary, who has modifed his device’s unique 

user ID, from impersonating another user. However, our study shows that us-

ing distance-bounding techniques over BLE beacons is a feasible defense only 

against a sophisticated attacker able to execute relay attacks under a certain 

adversarial model. 

4. Biometric Authentication: We leverage behavioral and physiological biometric 

authentication to evaluate confdence specifers. Our study shows that our ap-

proach is feasible as we are able to verify that the current user of the Client 

device is the true owner with high confdence when the phone is placed on the 

hip and within the pocket, respectively. 

The chapter is organized as follows. Section 4.1 introduces proximity-based scenar-

ios and specifc examples that motivate this work. We then briefy discuss background 

information on biometric authentication techniques in Section 4.2. We provide in Sec-

tion 4.3 a PrBAC policy specifcation for CASSEC 2.0. Section 4.4 establishes our 

system’s assumption. Section 4.5 introduces the architecture and underlying com-

ponents of our approach. Section 4.6 discusses implementation details followed by 

a report of data collected from our use case study. We analyze the security of our 

approach in Section 4.7. Section 4.8 concludes the chapter. 

4.1 Motivating Scenarios 

In what follows, we present scenarios motivating the need for context-aware sys-

tems in which access to sensitive resources must be controlled based on proximity 

parameters. 

Consider a military organization with monitored government facilities such as 

restricted military bases or buildings. Military personnel are assigned roles that refect 

ranking and privileges. The roles General and Private are assigned to the highest- and 

lowest-ranking personnel in the army, respectively. In terms of accessing restricted 

facilities or resources, the former is granted many privileges, while the latter has very 
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few. Consider also the role Civilian, which indicates an individual operating outside 

of the military organization, and who is granted no privileges. Suppose that three 

military personnel, two Generals and one Private, are granted access to documents 

classifed up to the level of top secret and restricted, respectively, according to a 

multi-level security model. 

Separation of Duty Scenario. A document classifed as top secret is highly 

sensitive, and requires that at least two personnel with the role General be present 

in order for it to be accessed. The document is accessed via desktop terminal and is 

stored within a designated, but restricted oÿce in which only Generals are allowed to 

enter. 

This scenario refects the security principle SoD. That is, two or more people are re-

sponsible for cooperatively completing a task. In addition, the circumstances requires 

that said document must be accessed at a specifc location. 

Absence of Other Users Scenario. A document classifed as restricted, but 

with the additional caveat "for your eyes only", requires that a specifc Private can 

access it via smartphone mobile, however, only if no other individuals are present at 

the time of access. 

Such an absence-based restriction not only includes military personnel of various 

rankings, but also individuals that assume the role of Civilian. Civilians are often 

temporarily recruited to work on military projects, but are highly monitored and 

usually given only the set of privileges needed to complete the project and nothing 

more. We note that, unlike the SoD scenario, in this AOU scenario the document can 

be accessed via the Private’s smartphone device in any location including locations 

that Civilians may have access to. Therefore, less infrastructure is required as it is 

not necessary to know the identity of every person in the Private’s vicinity. 



54 

4.2 Background 

Biometric information characterizes measurable human biological features [74]. 

Most biometric features are unique per person and can be found in every individual. 

In the context of security, biometric authentication refers to techniques that rely on 

such features to uniquely identify and validate the identity of an individual. Human 

biometrics can be classifed into two types: physiological and behavioral. Physiologi-

cal biometric authentication is based on static physical attributes such as fngerprints, 

iris, retina, or facial features, whereas behavioral biometric authentication relies on 

identifable characteristics of a user’s behavior that typically do not change over time 

such as keystroke dynamics, signature, or gait. 

At a high level, biometric authentication has two phases: enrollment and authen-

tication. Before authentication can occur, an individual must frst be enrolled into 

the system by extracting and storing his/her biometric data within a template. Later 

in the authentication phase when the identity of the individual must be verifed, the 

biometric data collected at runtime is compared to the previously constructed tem-

plate. From this comparison, a similarity matching score is produced, and whether 

an individual is accepted/rejected (i.e., non-/identifed) depends on a threshold set 

for the system. In this system, we employ both physiological and behavioral bio-

metric authentication for user verifcation using two techniques: fngerprint and gait 

recognition. Modern mobile devices already have integrated solutions to enroll and 

authenticate users via fngerprint scanning technology [31]. However, such devices 

lack gait recognition solutions. We therefore only describe user verifcation via gait 

recognition below. 

User Verifcation via Gait Recognition 

Lee and Grimson defned gait as "an idiosyncratic feature of a person that is 

determined by, among other things, an individual’s weight, limb length, footwear, and 

posture combined with characteristic motion. Hence, gait can be used as a biometric 
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measure to recognize known persons and classify unknown subjects" [73]. Empirical 

evidence supports this defnition as researchers have conducted experiments which 

analyzed over 700 users’ gait patterns and found gait patterns to be unique [75]. As 

a result, it is possible to verify whether the user of a mobile device is the true owner 

of that device. 

Gait recognition for the purpose of user verifcation is not novel [74], nor is it the 

focus of this chapter. The main approaches to measuring and analyzing gait biometric 

are machine vision, foor sensor, and wearable sensor. Deploying additional hardware 

incurs additional costs, as is the case in the frst two approaches. Fortunately, state-of-

the-art cellular devices are embedded with a set of sensors, including accelerometers, 

which have now become a standard for modern smartphones. Consequently, we only 

employ a wearable sensor approach. We leverage a recent work proposed by Ren et 

al. [76] for several reasons: (1) it utilizes readily available accelerometers embedded 

within smartphones to detect possible user spoofng in mobile healthcare systems; 

(2) it takes into account the fact that computational resources are limited on mobile 

devices; and (3) it is robust to variations in users’ walking speed. See Section 4.5 for 

more details. 

4.3 Policy Specifcation 

Several research e˙orts have focused on the design of access control policy lan-

guages [32, 33, 41, 42, 77, 78]. In this section we introduce a simple, yet expressive 

policy specifcation (Table 4.1) that leverages existing policy languages. We adopt 

the syntactical structure of XACML, which is an XML-based language for access con-

trol, and apply it in defning proximity-based RBAC policies for CASSEC 2.0. The 

terms in quotes ’ ’ represent static tokens. The terms in italics indicate functions. 

As it is standard in RBAC policies, a role is a job function that represents a 

set of privileges to perform actions on objects. An object is a data construct that 

is acted upon by a subject that has assumed a role. An action is an appropriate 
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Table 4.1. 
PrBAC policy language 

<Policies> ::= ’Begin’ <policy-list> ’End’ 

<policy-list> ::= <policy> <policy-list> | <policy> 

<policy> ::= <role-predicate> <object> <action> (<context>) 

<role-predicate> ::= <role> (<confdence>) | <ranking>’(’<role>’)’ (<confdence>) 

<confdence> ::= <digit> 

<digit> ::= [’0’-’9’] 

<ranking> ::= equal | inferior | superior 

<action> ::= read | write | delete ... 

<context> ::= <obligation> <location-constraint> | <obligation> <location-constraint> <proximity-

constraints> 

<obligation> ::= prior | while 

<location-constraint> ::= <topology> <location> (<confdence>) 

<topology> ::= in | out | adjacent ... 

<proximity-constraints> ::= <proximity-constraint> <proximity-constraints> | <proximity-constraint> 

<proximity-constraint> ::= <cardinality> <digit> <role-predicate> <location-constraint> 

<cardinality> ::= at_least | at_most 
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Fig. 4.2. Two example proximity-based access control policies. 

operation that can be applied to an object. We assume that users of our system 

may be mobile, and therefore, we incorporate usage controls regarding continuity of 

access [42]. An obligation specifes that certain constraints must be satisfed prior 

to or while accessing an object. A topology indicates a relation between the role and 

the location within the spatial domain. Often in enterprise environments, access to 

restricted resources is contingent on not only the presence (or absence) of other people, 

but the relation towards the individual requesting access. A role-predicate specifes 

a specifc role or relational function that takes the role of the requesting user and 

outputs a ranking relative to that role (i.e., superior(roleOfRequestingUser)). Last, 

an entity designated to enforce a policy may need prerequisites to be fulflled, at least 

to a certain in extent. A confdence indicates the numerical threshold at which a 

requirement must be fulflled, otherwise anything below that threshold is considered a 

policy violation. For example, specifying a role (General) with a confdence constraint 

(80%) semantically states that the system must be "80%" sure that the current user 

is the General. Figure 4.2 provides two examples of access control policies to specify 
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the restrictions in SoD scenario and AOU scenario. The policy on the left refers 

to the SoD scenario: at least two Generals must be present in order to access the 

TopSecretDocument. The policy on the right refers to the AOU scenario: the Private 

can access the ResctrictedDocument only if no one else is around. 

4.4 Threats and Assumptions 

We make the following assumptions about the proposed system and the adversary. 

Each user, including the adversary, has full access to his/her device. Each device has 

been preauthorized by the IT admin for BYOD use. Preauthorization consists of 

verifying that (1) the device supports hardware-backed cryptographic key generation 

and storage and (2) the device’s sensors, including Bluetooth, accelerometer, and 

fngerprint sensors, are functioning correctly. Consequently, we assume IT admins can 

be trusted. Each device must generate asymmetric cryptographic keys via Androids 

Hardware-Backed Keystore [31], in which the public key for that device is uploaded 

to a server for later use while the unexportable private key is stored securely in 

hardware. We trust the Android access control system, which includes the Android 

middleware and Linux Kernel, to correctly enforce all security policies. Physical 

security or video monitoring is employed to prevent the adversary from compromising 

proximity modules and entering the environment with foreign objects such as a non-

secured phone. We only consider a passive adversary, and not active adversary. That 

is, the adversary has control of the communication channel, but is not able to inject 

new packets or compromise transmitted packets. The adversary is only able to relay 

packets transmitted between parties. In other words, the attacker posses standard 

Dolev-Yao capabilities [79]. We also consider insider threats to the organization. In 

particular, malicious employees may attempt to circumvent our context-aware access 

system through collusion. Last, we assume each proximity module has access to 

the public keys of Client devices, which can be retrieved on demand or during the 

installation of the proximity module. 
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Fig. 4.3. CASSEC 2.0’s access control framework. 

4.5 System Design 

In this section, we describe our CASSEC 2.0 platform that securely supports the 

SoD scenario and the AOU scenario described in Section 4.1. We adhere to design 

goals from the previous work, which include providing a secure, automated, and gen-

eralized architecture with responsibilities of each system component clearly defned. 

In CASSEC 2.0’s architecture, we assume the least amount of trusted parties as pos-

sible. Our context-aware system proactively monitors and collects information about 

the environment in lieu of manual intervention by entities within that environment. 

Specifcally, we do not rely on users, possibly malicious, to manually report their 

location. Therefore, we choose an infrastructure-based approach that uses wireless 

hardware to localize occupants within a monitored space. In the rest of the section, 

we defne our interpretation of the term proximity and then provide an overview of the 

architectural components of CASSEC 2.0 and how they relate to our access control 

framework. 



60 

4.5.1 Proximity Zone 

We rely on geographical proximity, which indicates that two entities are located 

within a certain distance in the physical space [43]. That is, in our work, proximity 

of a user is defned by a region of space monitored by a proximity module. The user 

must be within the region of space in order to gain access. We refer to this region 

of monitored space as a proximity zone. The level of precision in determining the 

location of a user and the proximity of other users is application dependent [9, 18]. 

4.5.2 Components 

Access Control 

Here we describe the architectural components tasked with enforcing our PrBAC 

policies. 

Enterprise Content Server (ECS): The ECS, which acts as the Policy Enforcement 

Point (PEP), delivers enterprise resources to users who request access. By designing 

this component as a server, a heterogeneous network of end-users’ devices can be 

serviced. Therefore, access to resources can be requested from desktop terminals or 

mobile devices. 

Authorization Server (AS): The AS hosts the access control decision-making en-

gine of the authorization framework. After a user has been authenticated by the AS 

via login credentials, it returns an authentication token to the Client device. The 

token, which is submitted to the ECS by the Client, is used to associate an authenti-

cated user with authorized roles. The AS itself is composed of two sub-components: 

Policy Decision Point (PDP) and Policy Information Point (PIP). We discuss in more 

detail the construction of the authentication token and AS’s sub-components later in 

Section 4.5.3. 
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Contextual Information 

In order to extract contextual information from the environment, we take both an 

active and passive approach. We use the terms active and passive to indicate whether 

or not users are required to physically interact with the entity collecting contextual 

information. The components involved in contextual information acquisition are as 

follows: 

Client: A Client is a device used to request access to a resource by a user. If 

the request is granted, a user can view the data on the device (e.g., desktop terminal 

or mobile smartphone). Unlike their desktop counterparts, smartphone devices allow 

mobility with respect to embedded sensors and network connectivity. Consequently, 

in our prototype system, we take an active approach to user verifcation via biometric 

authentication by utilizing a smartphone as the Client device. That is, the Client 

is also designated to verify that the current user of the device is the true owner of 

the device. We note that solutions have been developed that take a passive approach 

to the collection of biometric features, which may be more secure. If we were to 

take a passive approach to biometric authentication, the example policies in Figure 

4.2 would also include confdence thresholds under the role specifer since the AS is 

designated to evaluate if policies are adhered to. We discuss this further in Section 

4.7. 

Proximity Module (PM): The role of the PM is to collect and analyze contextual 

information in order to detect the proximity of users. This detection process occurs 

periodically, and proximity-related information is sent to the AS. Although a PM is 

the set of physical devices that determine proximity, we consider them as independent 

of the PIP as the PIP is the entity that directly communicates with the PDP. Users 

do not physically interact with the PM in our prototype system, and therefore it is 

considered passive. 

Our architectural components are shown in Figure 4.1. We do not discuss crypto-

graphic schemes to protect network communication between the entities in our system 
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model. We assume that an underlying secure network infrastructure is in place, as 

usual in enterprise environments. Although the fgure only shows one PM and conse-

quently only one proximity zone, in practice an enterprise building will have multiple 

PMs, possibly one for each room. 

4.5.3 Access Control Framework 

The PDP is the specifc entity that is delegated to make access decisions. It 

maintains a database of PrBAC policies. Given these policies, the PDP frst verifes 

if someone is a user of the system. The PDP then retrieves the latest information 

regarding the user’s location and the presence of other users from the PIP. Such 

information allows the PDP to determine the set of authorized geo-spatial roles if 

proximity constraints are satisfed. Next, the PDP constructs and returns to the 

Client an authentication token. The token, at minimum, contains a generated tem-

porary ID. It may also contain an expiration date. As such, the token is utilized as a 

session identifer. Last, the PDP maintains a database mapping of session IDs to the 

set of active authorized geo-spatial roles for each user. This mapping is also sent to 

the PEP each time a role is authorized. 

The PEP’s role, implemented as part of the ECS, is to enforce proximity restric-

tions for enterprise content. During a request, a Client submits an authentication 

token to the ECS. The PEP extracts the temporary session ID from the token. The 

PDP continually updates the PEP of mappings of session IDs to a set of active au-

thorized geo-spatial roles. First, the mapping makes it possible to enforce access 

restrictions according to the roles associated with that ID. Second, it also enables it 

to service multiple Client devices simultaneously. Third, this design anonymizes users 

as the PEP does not have any information that identifes users such as locations and 

credentials. 

The PIP’s role is to store and maintain contextual information about an enter-

prise’s proximity zones. Each PM, after co-proximity authentication of Clients, is 
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required to transmit four pieces of information to the PIP: a proximity zone identi-

fer, the number of people detected, a list of captured UIDs1 and corresponding RSS 

values of BLE beacons, and a timestamp. The PIP then records the collected data 

into its context database. Instead of the PIP polling the PM for information, we 

minimize communication by requiring that the PM updates the AS only when char-

acteristics of the proximity zone changes. In addition, this clear designation of duties 

also minimizes overhead in both the PM and AS. Considering the dynamic nature of 

the environment, the PIP must update the PDP as frequently as the occurrences of 

updates to the context database. Such updates allow the PDP to continuously check 

for any instance of proximity-based violations by users. At the time of violation, the 

PDP invalidates the relevant session ID mappings by associating existing session IDs 

with newly recomputed authorized geo-spatial roles, if any, according to PrBAC poli-

cies. The PDP then remotely informs the PEP of invalid mappings while providing 

new authorized ones. The PDP can also alert the enterprise’s administrators to take 

appropriate action. Such a design makes the system completely automated by only 

requiring users to be authenticated once by the AS. 

4.5.4 Co-Proximity Authentication 

Radio signals permeate through walls, and therefore it is possible that two PMs lo-

cated in two adjacent rooms may detect the same Client device, even though in reality 

the Client is located in one of the rooms. However, such signals exhibit attenuation 

as they pass through walls. We leverage this phenomena to determine the likelihood 

that a Client is in a given room. In particular, we analyze the RSS values from BLE 

beacons to initiate the co-proximity authentication process, which determines that a 

legitimate Client is within a specifc proximity zone. 

Overview. The protocol to authenticate the user’s co-proximity to a PM consists 

of two phases: the initialization phase and the location authentication phase. First, 
1We assume that each user of the system has an identifer unique to that user. 
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the initialization phase establishes a temporary session key (SK) securely shared and 

only accessible between a PM and a Client. Next, the SK is later used in the location 

authentication phase, in which a timed challenge-response protocol is executed. The 

crux of authenticating the user’s co-proximity is analyzing the content of the beacon 

as well as the measured round trip time. We explain both phases in detail below. 

Initialization Phase. The initialization phase is activated once the user enters 

�2, that is, the concentric region as indicated by BLE’s Near ranging measurement 

(i.e., between 1-3m from the PM as displayed in Figure 4.4). Placing a PM at the 

center of an average sized conference room (e.g., ̆ 6m x 6m) allows the PM to detect 

and monitor the movements of any Client device that enters the room. In addition, 

positioning in such a way may minimize the overlapping of concentric regions of two 

adjacent PMs’ proximity zones. Once the Client enters �2, the PM generates a tem-

porary SK and encrypts it with the Client’s public key. As stated in Section 4.4, 

the public key can be retrieved from the authorization server on demand or during 

the installation of the PM. The SK is a one-time pad which consists of a string of 

bits generated using a cryptographically secure pseudo-random number generator. 

The encrypted SK (Step 1 in Figure 4.5) is then sent to the Client via the AS on a 

secure out-of-band channel, which is then decrypted at the Client using the Client’s 

hardware-bound private key. The Client fnalizes the initialization phase by respond-

ing with an acknowledgement of message receipt, which is relayed back to the PM. 

We note that there are a number of methods to securely exchange temporary session 

keys. For example, the PM could purely rely on BLE beacons to transmit the en-

crypted SK, thereby minimizing communication with the server. However, we did not 

choose this mode of transmission because of limited data capacity in BLE beacon’s 

advertising data structures [23]. 

Authentication Phase. The PM will continue to monitor and track the Client’s 

movements. The authentication phase is activated once the user enters �1, that is, 

the concentric region as indicated by BLE’s Immediate ranging measurement (i.e., less 

than 1m from the PM). At this point, the PM initiates a timed challenge-response 
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Fig. 4.4. A Proximity Module’s proximity zone regions. 

Fig. 4.5. CASSEC 2.0’s co-proximity authentication protocol. 

protocol with the target Client. The PM generates a fresh nonce (string of random 

bits), embeds the nonce into a BLE beacon, and transmits the beacon. Upon suc-



66 

cessful transmission, the PM records the time of transmission and precomputes the 

expected response. Upon reception, the Client calculates an XOR value, using the 

nonce and the SK as the two inputs. XOR operations are simple and require minimal 

CPU cycles to compute as opposed to other widely-used cryptographic schemes with 

non-negligible encryption/decryption times [80]. Leveraging XOR operations thus 

allows the Client to minimize the time to calculate a response to the challenge, and 

subsequently package and transmit the response within a BLE beacon. Upon recep-

tion of the Client’s response beacon, the PM calculates the RTT value and verifes 

that the precomputed value matches the received value. If the values match and the 

RTT is less than or equal to a specifed threshold (RT TT H ), the PM informs the 

AS that the specifc Client’s location has been authenticated with 100% confdence, 

otherwise the PM and Client must repeat both the initialization and authentication 

phases. We discuss how we determined RT TT H in Section 4.7. Both phases must 

be repeated since information about the temporary session key that is generated in 

the initialization phase is leaked in the authentication phase. An attacker can simply 

perform an XOR of the nonce, which was transmitted in cleartext, and the Client’s 

response beacon to calculate the session key. 

To address circumstances resulting in proximity zones partially overlapping, we 

take a binary approach. In the case that multiple PMs detect and authenticate a 

Client via BLE beacons simultaneously given that BLE beacons can travel several 

meters, for simplicity, we classify a Client to be in one of the corresponding rooms 

with 100% confdence only if information sent by a PM meet two conditions: (1) the 

RSS value (measured from the beacon) is the strongest of all RSS values detected by 

other PMs; (2) the number of people detected and captured UIDs match. Otherwise, 

there is 0% confdence in the Client’s location. The left policy in Figure 4.2 pro-

vides an example of PrBAC policy that specifes that the entity enforcing the policy 

must determine that the General is in fact located in the GeneralsRoom with 100% 

confdence to grant access to the TopSecretDocument. 
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4.5.5 Biometric Authentication 

User verifcation via biometric authentication is isolated to the only active com-

ponent in our prototype system, that is, the Client. We specifcally develop an An-

droid application that leverages the smartphone’s capabilities to scan fngerprints 

and measure acceleration in order to achieve physiological and behavioral biometric 

authentication, respectively. User verifcation is abstractly a two phase process (see 

Section 4.2): the enrollment and authentication phases. With respect to security, 

it is vital that enterprise administrators proctor the enrollment phase in-person to 

confrm that biometric measurements taken by a Client device match the true owner 

of the device. Fingerprint scanning and the collection of walking traces are achieved 

and easily integrated into our application using Android’s Fingerprint Authentication 

and Sensor Manager APIs2. To ensure the privacy of users, the fngerprint and gait 

templates constructed during the enrollment phase never leave the device. 

We implemented the behavioral component of the user verifcation framework in 

a similar fashion as proposed by Ren et al. [76]. The framework consists of three 

components, which can be abstracted to the enrollment and authentication phases 

previously mentioned: Step Cycle Identifcation, Step Cycle Interpolation, and Sim-

ilarity Comparison. The components are built on the fact that human gait should 

be cyclic in nature, and hence should exhibit high correlation. Here, a step cycle is 

the period defned by the two consecutive heel strikes on the same leg (see Figure 

4.6(a)). The Step Cycle Identifcation component identifes step cycles in a walking 

trace, and then uses the extracted features to construct and store a biometric tem-

plate. Although smartphone accelerometers provide signals in three dimensions, the 

framework extracts only the signals from the vertical direction to identify impacts 

caused by heel strikes. Figure 4.6(b) displays a walking trace with identifed cyclical 

heel strike impacts. Users usually walk at varying speeds, which would negatively 

impact the verifcation process if the template and the runtime measurements are of 
2We do not elaborate on implementation details as Android provides detailed instructions and sam-
ples to utilize Android Fingerprint Authentication and acceleration measuring [31]. 
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(a) (b) 

Fig. 4.6. 4.6(a) is an illustration of a complete gait cycle from the 
initial heel strike to the terminal heel strike (from [81]). 4.6(b) displays 
preliminary measurements of accelerometer signals of a walking trace 
in the vertical direction we collected using a Nexus 6P smartphone. 
Orange lines indicate step cycles identifed by heel strike impacts. 

traces with di˙erent speeds. Addressing this potential problem, the Step Cycle Inter-

polation phase enables robust user verifcation by normalizing identifed step cycles of 

di˙erent lengths into fxed lengths. Figure 4.7 displays the interpolated accelerometer 

signals, recorded using a Nexus 6P, of slow (slower than 0.7 m/s), normal (about 0.7 

- 1.1 m/s), and fast (about 1.1 - 1.4 m/s) walking traces to a fxed length of 400 

samples. The fgure demonstrates that step cycles are highly correlated regardless of 

walking speed. Last, user authentication is performed in the Similarity Comparison 

phase, which utilizes a weighted Pearson correlation coeÿcient (PCC) based method. 

We apply defense-in-depth within the authentication phase. We frst use Pearson 

correlation coeÿcients when computing the similarity between the gait template and 

the walking trace runtime measurements. Users are only verifed if similarity scores 

are above a predefned threshold (see Section 4.6.4). If similarity scores fall below the 

threshold, the user is then required to perform authentication via fngerprint scanner 

when the user attempts to access the phone. We are unable to set a threshold for 

fngerprint authentication as we rely on the Client device’s integrated fngerprint 

solution. If the user neither can be verifed via behavioral nor physiological biometric 
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authentication, the Client ensures that sensitive enterprise content is inaccessible by 

locking the device3. In addition, the Client can alert enterprise administrators for 

possible user spoofng. 

Fig. 4.7. Step cycle interpolation applied to walking traces collected 
using our Nexus 6P smartphone at three di˙erent speeds: slow, nor-
mal, and fast. 

4.6 Prototype Implementation 

4.6.1 The ECS 

The ECS was implemented in PHP and hosted on a remote commercial server. 

The resources that it could serve to Clients were simple text fles. We implemented 

user interfaces (UI) in order for Clients to request access to specifc fles. The ECS 

provides a function that can be remotely invoked via URL: sessAuth(mappings). The 

function is invoked by the AS to update the ECS regarding the active geo-spatial 

roles for Clients in the event that location updates refect proximity violations. 
3We build an application on the Client using Android’s Device Administration API, which includes 
the device lock ability [31]. 



70 

4.6.2 The AS 

The AS was also implemented in PHP and hosted on the same server as the ECS. 

We implemented the UI in order for Clients to pass in authentication credentials via 

a login page. The AS provides two functions that can be remotely invoked via URLs: 

auth(user,psswd) and addEntry(pzoneID,numOfPpl, UIDs+RSSs, time). The frst 

function is invoked by a Client via the UI and the second is invoked by the PM to 

update proximity information within the context database. 

4.6.3 The PM 

As in any basic positioning system, a PM incorporates a transmitter and a receiver. 

We defne a transmitter as a wireless-enabled device that is a source of contextual 

information regarding the occupants within a proximity zone. A receiver is a wireless-

enabled device that acts as a sink for such contextual information. 

We utilize BLE-enabled smartphones and WiFi access points (APs) as transmit-

ters. In regards to smartphones, we embed three values into BLE beacons to support 

co-proximity authentication. Generally, these devices periodically broadcast their 48-

bit Bluetooth MAC addresses with a less than 10 meter range indoors when Bluetooth 

is enabled. However, since Android 6.0, the MAC address found in a BLE beacon 

is replaced with a random value at various intervals to protect user privacy [31]. 

User privacy is not a concern within the enterprise scenarios that CASSEC targets. 

Disabling this feature would require modifying the Android OS, which reduces the 

deployability of our solution. Therefore, we cannot rely on this hardware address to 

identify users. Instead, in CASSEC 2.0, we embed a 48-bit UID into BLE’s local name 

data structure using Android’s BluetoothAdapter.getDefaultAdapter().setName(UID). 

The BLE beacon data protocol is limited with respect to the amount of custom data 

we are able to embed within a beacon. As a result, the nonce, as well as the one-time 

pad SK generated by the PM, is restricted to 12-bytes. With the remaining space, we 

embed a 16-byte service UUID which enables Clients and Proximity Modules to com-
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municate under a beacon service. We require that users of the system permanently 

enable their smartphones’ Bluetooth. Such a requirement can be easily enforced by 

Enterprise Mobility Management services [20]. WiFi APs transmit data over signals 

that can be measured. However, such signals are signifcantly infuenced by the en-

vironment. We rely on the interference of signals as a result of human activity to 

determine the number of occupants in a proximity zone. 

The PM was implemented as two physical devices: a Pixel C tablet running 

Android Oreo (API 26 v8.0) and a laptop using Python running Linux. For brevity, 

we refer to these devices as simply the PM. The PM was charged with periodically 

scanning signals produced by BLE and WiFi devices. Beacon scan settings were 

set to SCAN_MODE_LOW_LATENCY from the ScanSettings API, while WiFi 

signals were scanned every 10 seconds. The PM extracts the UIDs of beacons from 

nearby occupants’ smartphones. The UIDs are used as proof-of-location once co-

proximity authentication has been established, which determines who is in a given 

space. The PM also measures the received signal strength from a designated WiFi 

AP. The receiver processes the measured WiFi RSS value and determines how many 

occupants are in a given space. Last, the receiver publishes the UIDs, beacon RSS 

values, and the number of occupants to the authorization server only when previously 

collected contextual information changes. 

We note that the various components of the CASSEC 2.0’s system architecture 

can be integrated into the same physical component when implemented. For example, 

a smartphone mobile device can act both as Client and transmitter because the 

same device used to request access to a resource is the same device that periodically 

broadcasts its Bluetooth data structures. Similarly, a desktop terminal can act both 

as Client and receiver because it can also be used to scan and process WiFi and 

Bluetooth contextual information. 
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4.6.4 Use Case 

In this section, we evaluate features of the CASSEC 2.0 prototype system in 

order to provide clear insights into addressing the issues raised in Section 4.1. We 

measure the performance of the system’s biometric and co-proximity authentication 

components to prove the feasibility of securing enterprise content under a proximity-

based access control model. 

Deployment 

We deployed our hardware and tested our prototype system in a two bedroom 

apartment whose layout is shown in Figure 4.8. We now briefy describe the hardware 

utilized in our platform. 

The Wireless-N (802.11n) WiFi AP transmitter was a Motorola SURFBoard 

SBG6580, indicated in blue, that supports two frequency bands which are 2.5GHz 

and 5.0GHz. We chose the higher-frequency band to take advantage of additional 

channels that are less prone to interference than 2.4GHz. The receiver was a Dell 

Latitude E6430, indicated in green, equipped with a BCM4313 802.11bgn wireless 

network adapter and a Dell Wireless 380 Bluetooth 4.0. The transmitter and the 

receiver were placed 3 meters apart and were elevated 1 meter above the foor. The 

Bluetooth-enabled transmitters used in our study were Samsung S3 GT-i9300 and 

Nexus 6P. The Nexus 6P, which has a fngerprint scanner and an accelerometer that 

supports a 200Hz sampling rate, was used for biometric collection and analysis. 

Use Case Evaluations 

Evaluation 1: Selecting Frequency Channel. Given a wireless link between 

a transmitter and a receiver, an individual crossing the line of sight between the two 

communicating wireless sensors a˙ects the RSS measured by the receiver. However, 

the change in RSS depends on the frequency channel [9]. Our goal is to determine 
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Fig. 4.8. The blueprint of a two-bedroom apartment in which the 
prototype system had been deployed. The blue markers and green 
markers indicate the positions of WiFi access points and laptops, re-
spectively. The dotted lines indicate the two possible positions for 
each human, and transitions simply require moving two steps with-
out changing body orientation. The red dots represent the current 
positions of the humans standing still while facing the laptop. 

which channel is the best for detecting human activity based on our particular WiFi-

enabled devices. We test 2 non-overlapping 40MHz channels: Channel A (5180MHz) 

and Channel B (5220MHz). The experimental setup is as follows. Throughout the 

complete test, we continuously measure the RSS value sampling twice per second. 

Every 30 seconds we change the number of individuals obstructing the LOS by 1 

starting from zero to two, and then in a decreasing fashion. The occupants were 

situated equidistant from each receiver. A Python script was written to automatically 

begin the test. The tests were conducted in Bedroom 1. 

The results in Figure 4.9 demonstrate that there is no signifcant di˙erence in 

measurement variation in human-induced interference in RSS signals between Chan-

nel A and Channel B. At frst, Channel A appears to be more consistent as the level 
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Fig. 4.9. RSS measurements of wireless links on di˙erent frequency 
bands when human bodies obstruct the line of sight (LOS). The blue 
circles indicate the number of humans in the LOS within each 60-
sample period (i.e., every 30 seconds). 

of signal interference in samples 60 - 120 aligns with values in samples 180 - 240 when 

the number of individuals increases from zero to one and two to one, respectively. 

This is not observed in Channel B during that period. However, the values for Chan-

nel A appear to indicate the presence of a number of individuals di˙erent from the 

number of individuals actually present from samples 330 onward. This fuctuation 

is not observed in Channel B. Although Figure 4.9 shows the results of only one 

complete test, we performed this test 3 times and observed similar changes in values. 

Given these observations, we select Channel B as a means for testing in the rest of 

the study. 

We also make some general observations about human-induced RSS changes. We 

observed distinct variances in signal strength almost every 30 seconds (multiple of 

60 units in Figure 4.9). First, by initiating the test with no individuals obstructing 

the LOS, we were able to establish a baseline for the signal strength between the 

transmitter and receiver. The RSS value remained always constant within that time 

period up until to two seconds after the 30 second mark. That is, using our existing 
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hardware, we were able to determine that once we increase the number of individuals 

by one, the individuals must remain in the LOS for at least one second for the receiver 

to observe some interference from human activity. Such phenomena was also observed 

at the beginning or end of each period. Second, regardless of the selected channel, 

when the LOS is obstructed by an individual the RSS on average decreases. In 

addition, distinct dBm drop ranges exist depending on the number of individuals. 

Therefore we can infer the presence or absence of humans based on RSS’ ranges. For 

example, in Channel A, we consistently observed a drop range of 6-8 dBm between 

30-60, 90-120, 150-180, and 210-240 seconds. We note that our observations are likely 

to change using di˙erent WiFi-enabled hardware. 

Evaluation 2: WiFi Detection Accuracy. The goal here is to test the WiFi 

localization component of our PM. Specifcally, we implemented a simple algorithm 

to detect the number of people within the LOS based on our observations of human-

induced RSS changes from Evaluation 1. The setup to this test is similar to the setup 

for Evaluation 1, except that we perform the test in both Bedrooms 1 and 2. We 

conduct the test on Channel B. 

Table 4.2 displays the results. The system was able to detect with strong accuracy 

(89%) the number of occupants obstructing the line of sight in Bedroom 1. At certain 

points, sporadic fuctuations occurred that caused the system to return an incorrect 

number. On the other hand, the system was only able to detect occupancy with 

43% accuracy in Bedroom 2. After further analysis (by performing Evaluation 1 in 

Bedroom 2), we observed the human-induced interference was slightly di˙erent in RSS 

levels. Although the physical layouts of Bedroom 1 and 2 are identical, there may be 

other (unseen) environmental factors that also infuenced the RSS levels to slightly 

di˙er between the two rooms. For example, such factors may include overlapping 

wireless networks (possibly using the same channel) from neighboring apartments, 

appliances and electronics emitting radio frequency interference, and simply walls 

and foors blocking wireless signals in di˙erent ways depending on the location of 

access points [71]. 
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Table 4.2. 
WiFi detection accuracy. 

Location Detection 

Bedroom1 89% 

Bedroom2 43% 

Evaluation 3: Gait Recognition Detection Latency. The goal here is to 

determine the required length of a walking trace to identify the true owner of a Client 

device using gait recognition. CASSEC was developed with certain enterprises in 

mind that desire high assurances that sensitive enterprise content on end-users’ de-

vices is well protected. We therefore set the pre-defned threshold to 0.8. A single 

user participated in this study using a Nexus 6P smartphone device to record and 

analyze accelerometer values. In order to execute the test, the user performed the 

enrollment and authentication phases. We frst collected from the user six 60-second 

walking traces at normal speed: the frst and subsequent fve traces to be used for 

gait template construction and runtime measurements in the enrollment and authen-

tication phases, respectively. Then, in the enrollment phase, n, n = 5, 6, ...60, gait 

templates were constructed for the user which were derived from extracting n seconds 

from the frst trace. Next, in the authentication phase, we extracted n seconds from 

each of the subsequent traces to analyze and compare biometric templates with run-

time measurements that are of corresponding lengths. In its entirety, we repeated 

this test twice; di˙erentiating the two by placement of the smartphone device: on the 

hip and within the pocket. 

Figure 4.10 displays the results of the test. We frst note that all similarity scores 

produced were at least greater or equal to the predefned threshold. On average, the 

system was able to detect that the current user of the Client device is the true owner 

with approximately 91% and 89% confdence (i.e., similarity score) when the phone is 

placed on the hip and within the pocket, respectively. The system only required fve 
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seconds of each walking trace to make such an assertion. We also observe that longer 

traces eventually produce higher levels of confdence in identifying the true owner 

because more gait features were extracted, and therefore more identifying features 

can be determined during the authentication phase. 

Fig. 4.10. Average similarity score by varying the duration of user 
profle trace and runtime measurement trace. 

Extracting more gait features over a longer period of time produces higher levels 

of confdence while in the pocket as compared to on the hip. Upon further analysis 

of individual traces from both the hip and pocket, it appears that hip traces have 

increased oscillations that are not quite periodic. Particularly, we observed that there 

are more variations in-between the heel strikes as compared to pocket traces. First, 

the Step Cycle Identifcation component may falsely identify when the user’s leg comes 

in contact with the ground if oscillations closely resembles heel strikes. Second, the 

gait recognition program assumes a cyclic nature, and thus if no repetition occurs 

within these sporadic oscillations, correct heel strikes, which occur outside of the 

oscillations, may not be properly analyzed as well. It is evident that the hip is 

continuously gyrating, and therefore, has a periodic motion. However, we believe 

that the increased (and erroneous) variations are the result of the method in which 
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we attached the device to the hip. While the device is securely fastened and fushed 

with the hip clip in order to minimize erroneous movement of the device, it is diÿcult 

to replicate such a secure grip with the hip clip itself as it is attached to the wearer’s 

clothing. However, while placed in the pocket, the device is resistant to minor shu˜ing 

because it is pressed against the user’s clothing and leg. Nevertheless, the results of 

this test demonstrate that feasibility to detect the true owner of the Client device 

with high confdence when placed within the pocket or attached to the hip, even 

considering the inherent erroneous data that is acquired while the device is attached 

to the hip. 

As stated in Section 4.2, the development of gait recognition techniques for user 

verifcation is outside the scope of this work. We emphasize that this work is a 

feasibility study that demonstrates the application of biometric techniques such as 

gait authentication to securing enterprise content under a proximity-based access 

control model solely using one mobile device. We refer readers to the work by Ren et 

al. [76] for an extensive user evaluation of the gait authentication technique we have 

leveraged. 

Evaluation 4: Robustness Against Di˙erent Walking Speeds. The goal 

here is to test the robustness of the system against various walking speeds. We 

applied the same methodology as Evaluation 3 with an exception. We also compare 

the biometric template constructed from the normal walking trace to fve runtime 

measurements collected from the user for both slow and fast walking speeds. 

Figure 4.11 displays the results of the test. Similarity score calculations derived 

from the normal and fast walking traces were at least greater or equal to the predefned 

threshold of 0.8. However, in a few instances, our system was unable to authenticate 

the current user as the true owner of the device. 07% of the similarity scores calcu-

lated, which we consider negligible, fell within the range of [0.7,0.8). Nevertheless, 

we can observe in any walking trace, including the slow walking trace, that there is 

a positive correlation between the trace length and the similarity scores produced. 
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Fig. 4.11. Average similarity score calculated by comparing the nor-
mal walking biometric template with both the slow and fast runtime 
measurement walking traces. 

That is, the system can reliably determine the user with increasing confdence over a 

longer period of time. 

Evaluation 5: Capturing BLE Beacon RTT Values. One type of distance-

bounding technique uses the elapsed time between two devices for distance estimation. 

Our goal for this test is to apply such a technique to BLE and determine if indeed 

that the round trip time of beacons is a function of distance. We exchanged beacons 

between two BLE-capable devices (Pixel C tablet and Nexus 6P smartphone) and 

recorded 100 RTT values at various distances. The devices were laid down across a 

wooden desk with the front screen facing upwards. Figure 4.12 shows the distribution 

of RTT values measured between the two devices. We note that displayed values 

refect distance estimation as implemented in our co-proximity authentication. We 

frst observed that most of the RTT values, at each distance, are centered around the 

median (the black line within the inner quartile range). For example, at distances of 

1ft, 4ft, and 6ft, the RTT values are centered around approximately 81ms (± 1ms), 
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while at a distance of 2ft, RTT values are centered around 77ms. We also observed 

that the IQR, the box that spans the frst and third quartiles, are centered in between 

72ms and 86ms. Consequently, no signifcant statistical variations of RTT values exist 

when the PM and the Client device executed the timed challenge-response protocol 

at distances between 1-6ft. Moreover, we produced similar results when we applied 

the same experimental process, but instead separated the devices with a 1ft wall. We 

discuss the security implications in Section 4.7. 

Fig. 4.12. Distribution of round trip time of 100 Bluetooth Low En-
ergy beacons each at various distances, exchanged between a Proxim-
ity Module and a Client. 

4.7 Security Analysis 

In this section, we present a security analysis of our CASSEC 2.0 platform to 

analyze attacks aiming at circumventing its PrBAC restrictions. Below, we provide 
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various attack vectors that could be used and, subsequently, a means to mitigate the 

threat or minimize the attack vector surface. 

4.7.1 Bluetooth Manipulation 

In our previous work, when a PM publishes a MAC address to the PIP, it attests 

that a specifc individual is at a specifc proximity zone. A malicious user may attempt 

to root his/her device and modify the MAC address in order to impersonate another 

user of the system. In CASSEC 2.0, however, such malicious modifcation of MAC 

addresses would do no harm for two reasons: (1) we rely on UIDs that are dynamically 

embedded into data structures within BLE beacons; and (2) Android Oreo (API 26 

v8.0) automatically randomizes the MAC addresses of beacons. Moreover, an attacker 

that roots his device to dynamically alter beacon UIDs (through a modifed and 

unauthorized custom OS) to impersonate a legitimate user would fail the challenge-

response protocol for several reasons including the attacker’s inability to access the 

legitimate user’s private key, which is bound to the user’s Client device hardware (i.e., 

not exportable). In addition, Samsung has demonstrated via Samsung KNOX 2.0, a 

custom Android OS intended for enterprise environments [20], hardware and software 

security features that leave the device inoperable once it detects a root attack, which 

is a suÿcient mechanism to defend against malicious modifcation of the OS. 

One attack that malicious users may attempt is masking their smartphones’ Blue-

tooth peripheral services by either disabling the Bluetooth or simply leaving the 

device in another room. Although we require that Bluetooth be permanently enabled 

on users’ devices, we do not incorporate an enforcement mechanism within the phone 

to meet such requirement. However, our system is able to detect if the violation of 

such requirement occurs. The WiFi localization technique is able to determine the 

number of occupants in the room. If the number of occupants and the number of 

UIDs, which are published to the PIP, for a given room do not match, the PDP will 

infer such malicious behaviour and subsequently revoke access to resources. In ad-
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dition, appropriate actions can be taken by the system administrator. We also note 

that Android provides Device Administrator APIs for BYOD scenarios, which allow 

enterprises to take control of sensitive resources and modify system confgurations on 

their employees’ devices. Through such APIs, an enterprise can then permanently 

enable Bluetooth services. 

Another attack vector involves an unauthorized individual obtaining an autho-

rized user’s phone, whether by theft or voluntary provision. If such an attack occurs, 

then the unauthorized individual can gain access to restricted resources. In reality, 

this sort of attack exploits social engineering and/or insider threats that are usually 

already covered as part of an enterprise’s global security e˙orts. Nevertheless, in our 

extended system, we mitigate this previously unaddressed attack vector by incorpo-

rating mechanisms that are able to determine biometric signatures for every user in 

the system. In particular, we employ behavioral (i.e., dynamic gait analysis) and 

physiological (i.e., fngerprint analysis) biometric authentication, which ensures that 

unauthorized users will not be able to bypass security by using someone else’s device. 

One of the objectives of this work is to address context monitoring issues including 

adversarial context manipulation via passive attacks (e.g., malicious relay of BLE 

beacons). However, we emphasize that if we relax assumptions stated in Section 

4.4 and elevate the adversary’s capabilities to active attacks, we envision two active 

attack vectors the adversary could employ that would not circumvent the security of 

the system: packet injection and Denial-of-Service (DoS). An astute active attacker 

would determine that an advantage cannot be gained by injecting packets at either 

Step 3 or Step 4 of the co-proximity authentication protocol (Figure 4.5). Intercepting 

the BLE beacon that encapsulates nonce at Step 3 and transmitting a new malicious 

beacon that encapsulates a nonce’, which would be now received by the Client, is 

unnecessary. The original nonce is transmitted in cleartext, thereby allowing the 

adversary to simply record the observed value, which may be potentially used in Step 

4. However, the attacker again would not need to inject packets in Step 4 since the 

attacker has acquired the information needed (i.e., nonce) to extract and calculate the 
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temporary session key (SK) from the BLE beacon sent by the Client. Knowledge of 

nonce and SK also does not violate the security of the system (see Section 4.5.4). In 

summary, injecting attacker-generated BLE beacons would serve no purpose towards 

the goal of fooling the CASSEC 2.0 system into establishing co-proximity between 

the PM and the Client. 

Given that intercepting and subsequently injecting malicious BLE beacons be-

tween the PM and the Client would serve no purpose towards circumventing co-

proximity authentication, an active attacker may instead rely on DoS attacks. A 

malicious user may attempt a DoS attack by acquiring a high-powered Bluetooth-

enabled device [82–84]. Specifcally, the user frst adjusts the special device to mimic 

his original (or another user’s) smartphone’s UID, and then boosts the signal strength. 

As a consequence, receivers in di˙erent rooms within a certain radius may incorrectly 

publish the proof-of-location. Therefore, the PDP will believe that multiple viola-

tions are occurring. First, the system is inherently resistant to such attack. Because 

of signal attenuation, proximity modules, which have lower transmission capabilities 

than of the adversary’s high-powered device, may not be able to transmit the chal-

lenge beacon to the malicious device, which may be potentially far from the proximity 

module. However, if reception of the challenge does occur, several methods could be 

employed to counteract this attack. For example, our study shows that the majority 

of beacon RTT values fell between 72ms and 86ms. The PM could invalidate the 

challenge, thereby invalidating the corresponding response, after 86ms has elapsed. 

We emphasize that we are describing this DoS attack under the assumption that 

the attacker is able to somehow relay the temporary session key (once it has been 

decrypted) from his Client to the special device, otherwise the objective of the DoS 

attack would be to simply waste computing resources by repeatedly initiating the 

co-proximity authentication process. 

The results in Section 4.6.4 demonstrated that no signifcant statistical varia-

tions of RTT values exist when the PM and the Client device executed co-proximity 

authentication at distances between 1-6ft. Consequently, time-based distance esti-
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mation techniques that rely on BLE beacons as its underlying technology are not 

reliable methods for di˙erentiating between adjacent proximity zones within an en-

terprise environment. However, such techniques may be resistant to an adversary’s 

attempts to execute relay attacks when the Client is far away, that is, outside the 

enterprise environment. Let us assume the adversary’s attack takes the form of a 

ghost-and-leech attack vector [85] in which the adversary employs two relay devices 

( APM, AC) that are each within 6ft of the PM and the Client, respectively, and the 

two malicious devices communicate over a high-speed connection. Let us also assume 

that APM and AC have similar hardware and software to that of the Client and PM, 

respectively. The total RTT (RT TT ) is the sum of the RTT values between the PM 

and APM (RT TP M ), APM and AC (RT TP MC ), which consists of RTT values be-

tween the network communication nodes that support the high speed connection, and 

AC and the Client (RT TC ). The communication relationship between said entities is 

visually depicted as: 

PM — APM · · · AC — Client 

RT TT = RT TP M + RT TP MC + RT TC 

It is diÿcult to approximate RT TP M and RT TP MC because their values are sig-

nifcantly infuenced by and dependent on many factors (e.g., communication nodes’ 

connection medium, network traÿc load, propagation delay, etc.). However, since the 

beacon transmission between AC and Client simulates the transmission between the 

PM and the Client as consequence of employing similar hardware and software, we 

are able to approximate RT TC to 81ms based on our study. In addition, the triangle 

inequality theorem ensures us that RT TP M + RT TP MC > RTTC since the path from 

the PM to the Client is not a direct route. Thus, the RTT threshold (RT TT H ) should 

be set to 81ms for each legitimate proximity module to prevent relay attacks when 

the Client is outside the enterprise environment. 
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4.7.2 WiFi Manipulation 

We leverage the WiFi signal interference caused by human activity to determine 

the number of occupants in a given room. A malicious user could attempt a DoS 

by disrupting WiFi signals. That is, an attacker could acquire a special device that 

would, for example, completely nullify WiFi signals [82–84]. Another means to cir-

cumvent the system would be to obstruct the LOS with something other than a 

human body such as a chair. Therefore, in either case, when the receiver processes 

the signal interference, it may publish an incorrect number of users within that room. 

However, the authorization server will detect violations because inconsistencies will 

exist within the PIP. 

Regardless of whether Bluetooth or WiFi manipulation is employed, the scenarios 

that we address make it more diÿcult to circumvent CASSEC 2.0. That is, in both 

the SoD Scenario and the AOU scenario, multiple users with mutual interests must 

collude and agree in order to attempt bypassing the system. 

4.7.3 True Continuous Authentication 

Our passive biometric authentication scheme only provides continuous authentica-

tion while the Client smartphone device is within the user’s pocket. It is possible that 

an authorized user, whom the Client had previously authenticated, simply removes 

the device from the pocket, and subsequently gives the device to an unauthorized user. 

Consequently, the device is unlocked and its content is accessible by the unauthorized 

user. Therefore, other biometric authentication must be used. While there are both 

active and passive biometric authentication solutions, passive solutions should be 

used to maximize usability as they would not require users to actively authenticate 

themselves. To protect against such an attack, other passive biometric techniques to 

continually authenticate while the user is holding the phone should be used. Some 

biometric features that could be analyzed and passively authenticated include timing 

of keystrokes, touchscreen behavior, face, retina, or iris [74,86,87]. In fact, passive fa-
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cial recognition technology has been recently (Nov, 2017) integrated into the Apple’s 

new fagship mobile device: iPhone X [88]. 

4.8 Conclusions 

In this chapter, we propose a proximity-based context-aware access control mech-

anism that also incorporates constraints concerning the confdence about user and 

location information. Such constraints allow the system to make decisions based 

on the degree of reliability of extracted contextual information. We have integrated 

such mechanisms into CASSEC 2.0 and have conducted a feasibility study to show 

our approach is viable in practice. We have evaluated our confdence constructs and 

collected some data by implementing behavioral and physiological biometric authenti-

cation and extending the occupancy detection mechanism with a robust co-proximity 

authentication protocol that is resistant against relay attacks. However, occupants 

were required to stand in the line of sight for at least one second to detect human 

activity and subsequently the number of occupants within a room. CASSEC 2.0 

also implicitly assumes that remote enterprise content is only accessible online and is 

never stored on the end-user’s device. In order to continue productivity, the end-user 

may need to download enterprise content to the device. Therefore, an enforcement 

mechanism must exist on the end-user’s device to secure the content. We address 

these concerns in the next chapter. We investigate other localization techniques with 

higher accuracy and more robust detection. In addition, we investigate client-side 

technology to isolate enterprise content from all other device content and enforce 

proximity-based access control policies on enterprise content. 
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5. A CONTEXT-BASED CONTAINERIZATION SYSTEM 

Platform-level EMM systems enable enterprises to deploy and manage containers, 

which contain sensitive enterprise content, to end-users’ devices. However, we ar-

gue that given the dynamic nature of EED scenarios as users are assumed to be 

mobile, EMM systems must also consider the context in which containers (i.e., per-

sonas) are employed. In this chapter, we present the design of our Context-Based, 

Multi-Enterprise Containerization (MERC) context-aware system (CAS) that utilizes 

our prototype PBS to infuence the behavior of containers. The MERC architecture 

limits employees’ accesses to work personas and enterprise content within them dy-

namically and passively through the enforcement of context-based constraints. The 

novelty of our system is twofold. First, our system is the frst to apply both location-

and proximity-based (hereinafter, context/ual) constraints to containers. Second, we 

utilize sound to determine a device’s logical location. We observe that many pro-

posed PBSs are radio-based, and objects of various size, shape, and material in the 

environment can obstruct the propagation path of radio signals, thus diminishing the 

accuracy. For example, the work by Bocca et al. [9] demonstrates the e˙ect of human 

interference on the propagation path of radio signals. Instead, we leverage the unique 

characteristics of sound that make it suitable for supporting PBSs. First, unlike radio 

signals, sound is inherently localized as it cannot penetrate walls or propagate over 

long distances. Second, it does not require a line-of-sight, as with GNSS systems 

whose signal degrades if a device is within a building. Third, the audio frequency of 

sound can be shifted so that it is inaudible to the human ear (i.e., ultrasound). To 

detect the proximity of other users, we also leverage Bluetooth Low Energy (BLE) 

capabilities of mobile devices as standardized BLE protocols provide proximity rang-

ing measurements. We implemented our custom Android operating system (OS), 

MERCOS, on Pixel C and Nexus 6P, which OEMs can readily incorporate into their 
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proprietary EMMs (e.g., Samsung KNOX [20]). Enterprises can also readily deploy 

our custom PBS using devices with microphones, speakers, and Bluetooth pervaded 

in existing mobile IT and building infrastructures [89]. Last, we extend Android 

Device Administration policies with proximity-based constraints to infuence persona 

behavior. 

The contributions of this chapter can be summarized as followed: 

1. Position-Based Containerization: We propose a context-based containerization 

policy enforcement scheme to control EED devices based upon positional con-

straints. Di˙erent from existing containerization architectures, our approach is 

the frst to introduce proximity-based constraints to Android containers. 

2. Position-Based Service: We investigate the feasibility of a novel application of 

ultrasound to determine a user’s location. We also evaluate proximity-based 

detection via BLE. Our results produced high accuracy, with 100% location de-

tection accuracy and a maximum false negative rate of 4% in proximity detection 

accuracy while introducing a minor impact on battery life, thus demonstrating 

the feasibility and e˙ectiveness of our solution. 

3. Secure Beacon Protocol: We propose an acoustic-based protocol that addresses 

several signifcant challenges in supporting a multi-enterprise position-based 

architecture, including interoperability, privacy, and security. 

This chapter is organized as follows. Section 5.1 introduces motivational position-

based scenarios. We provide additional background information on PBSs in Section 

5.2. Sections 5.3 and 5.4 introduce our approach followed by the implementation and 

technical details in Section 5.5. We next report our experimental results in Section 

5.6. We analyze the security of our approach in Section 5.7. Section 5.8 concludes 

the chapter. 
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5.1 Motivating Scenarios 

The MERC specifcally targets enterprises that are currently using EMM systems 

to manage employees’ devices, but require that such systems be context-aware. In 

terms of access control, such systems aim to secure access to sensitive content on 

employees’ devices by adapting access authorizations to the current context without 

explicit user intervention. Below, we describe two scenarios motivating the need to 

incorporate context-aware capabilities within EMM systems. 

Consider an enterprise setting in which two, but independent enterprise organiza-

tions exist. Each enterprise allows enterprise containers, containing sensitive content, 

to exist on employees’ devices. Each employee, regardless of the enterprise, is assigned 

a role that refects the privileges granted to that employee within the respective orga-

nization. NekSec, the frst enterprise, is a network security consulting agency whose 

objective is to identify security vulnerabilities within a client’s computer network in-

frastructure. Banker, the second enterprise, is a fnancial institution that provides 

online banking facilities to its customers. Two relevant roles within NekSec and 

Banker are (network) Supervisor and Consultant. With respect to accessing enter-

prise content, the role Supervisor grants an employee many privileges. The privileges 

assigned to the Consultant role vary depending on whether the consultant is an ex-

ternal or internal entity to the organization. However, we focus on the former in our 

paper, which is further discussed below. 

Location-based Containerization Scenario. An enterprise container belong-

ing to NekSec is deployed to Alice’s, a NekSec Consultant, smartphone. The con-

tainer’s content is highly sensitive as it contains confdential information regarding 

NekSec’s clients. The enterprise requires that the container must only be accessible 

on NekSec’s campus. 

The scenario refects a real world circumstance in which an employee only has ac-

cess to resources while the employee is on premise. For example, an employee would 

normally only be able to access his/her enterprise user account via stationary ter-
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minals; the terminals do not leave the work premise. However, implications of EED 

must be considered. The dual use of mobile devices allows employees to remotely 

access resources that otherwise would not be accessible outside of the enterprise set-

ting. Therefore, such circumstances require that containers (e.g., user accounts or 

personas) must only be accessible at specifc locations. 

Proximity-based Containerization Scenario. Banker’s network Supervisor 

has hired Alice to investigate the possible existence of insider threats and the leakage of 

confdential fnancial information through the institution’s network-enabled computing 

devices. Similarly, to conduct her investigation, a Banker container with confden-

tial network security data has been deployed to Alice’s smartphone, but can only be 

accessed within a designated oÿce on Banker’s campus. In addition, only employees 

with the role of Supervisor or higher are authorized to be within Alice’s immediate 

proximity while in the oÿce. 

This scenario also refects real world circumstances; in fact, 23% of enterprises make 

EED available to contractors [19]. Consultants are often hired to temporarily pro-

vide their expertise on an on-going project, but are only granted a limited set of 

privileges required to execute their duties. In addition, investigating the existence 

of nefarious activities executed by employees is of a sensitive nature; Banker should 

be extremely cautious not to alert low level employees that are concluded to have 

malicious intent. Consequently, such circumstances require that containers must only 

be accessible depending on proximity-based information. 

5.2 Background 

Besides BLE (Chapter 2), acoustic communication is also a possible technology for 

both geofencing and microlocation PBSs [90, 91]. By applying coding schemes, data 

can be transmitted and received through the air using acoustic hardware in mobile 

devices. Various coding schemes (e.g., on-o˙ keying) have been proposed that encode 

data into sound by modulating sound wave properties, such as frequency, amplitude, 
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or phase which a˙ect the bit rate, bit error rate, and range of transmission [90, 91]. 

As our work targets EED scenarios, we are particularly interested in encoding mecha-

nisms that allow reliable acoustic communication using audio signals not perceivable 

to humans. That is, we embed location-based information in ultrasonic signals that 

operate at frequencies above 18 kHz, which is understood to be frequencies at which 

adult humans are unable to detect. Developing or determining the optimal encoding 

scheme that allows eÿcient transmission of ultrasonic signals is outside the scope 

of the paper. We utilize a third-party sound-based, data communication SDK [92] 

to embed and extract location information within ultrasonic signals. With such a 

SDK, we are able to transmit data at the speed of sound, which is approximately 340 

m/s [26] at standard temperature and pressure. 

5.3 Design Goals, Challenges, and Assumptions 

The design of a multi-enterprise CAS that utilizes a PBS to infuence the behavior 

of containers introduces several challenges: 

Interoperability: We consider the dynamic nature of users in EED scenarios 

involving individuals using their devices for multiple enterprises. The CAS must 

therefore address the occupancy detection problem [18], that is, who is and/or how 

many people are in a given space. As such, we aim to make our position-based 

architecture and secure beacon protocol interoperable so to allow a device’s secure 

container to be infuenced even when the device owner moves from one enterprise 

environment to another. 

Privacy: Another design goal is to ensure the confdentiality of enterprise build-

ing infrastructures. Some PBSs (e.g., iBeacons) transmit cleartext positional data, 

thereby divulging information particular to a given enterprise. Our system protects 

such information as enterprises may desire confdentiality. 

Security: One design goal is to minimize the trust placed in users of the system. 

Specifcally, we do not rely on users, possibly malicious, to manually report their 
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location or proximity to others. Instead, the system takes a proactive approach by 

automatically monitoring entities within the environment. In that way, we make 

access to personas secure and as fuid as possible. 

Ease of Integration: Another design goal is to maximize ease of integration 

into enterprises’ IT infrastructures. First, we must consider the method in which 

we incorporate context-based constraints into existing OEMs’ containerization solu-

tions. Second, we intentionally employ sensor technology already integrated into IT 

infrastructures, thereby removing deployment costs. 

Flexibility: As each enterprise environment is unique, we also aim to make the 

specifcation of locations as fexible as possible. 

Performance: Given that users are assumed to be mobile, continuity of access 

must be considered; CASs should be readily updated when context changes. For 

instance, a persona should be quickly activated/deactivated once an employee en-

ters/leaves the workplace. As such, we aim to minimize and simplify the steps in the 

communication process between the architectural components while not impacting 

system performance. 

5.3.1 Assumptions 

We make the following assumptions about the proposed system and the adversary 

attempting to view content (i.e., information regarding the current investigation) on 

Alice’s device. Each employee/contractor, including the adversary, has full access to 

his/her device. Each device has been preauthorized by the IT admin for EED use. 

Preauthorization consists of (1) deploying a work persona to the device in which the 

IT admin controls and (2) verifying that the device’s acoustic and Bluetooth sensors 

are functioning correctly. Consequently, we assume IT admins can be trusted. We 

trust the Android access control system, which includes the Android middleware 

and Linux Kernel, to correctly enforce all security policies. Our ultrasonic beacon 

protocol requires the exchange of cryptographic keying material between MERC’s 
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architectural components to protect communication. We assume that such material 

is secured. Physical security or video monitoring is employed to prevent the adversary 

from compromising positioning modules and entering the environment with foreign 

objects such as a non-secured phone/camera so as to confgure a remote monitoring 

device within Alice’s designated oÿce room. 

5.4 MERC System Architecture 

In this section, we describe the MERC architecture. We frst describe the archi-

tectural components for the sake of defning terms. Next, we provide an overview of 

the system. 

5.4.1 Client-Server Architecture 

Client: A Client is a device that is operated by a user to access enterprise content, 

and in our work, content includes persona, applications, and data. We focus on 

smartphones, but the same techniques are also applicable to desktops. 

Enterprise Policy Server (EPS): The EPS component hosts policies and dissem-

inates them to employees’ devices when required. By designing this component as 

a server, a heterogeneous network of end-users’ devices can be serviced. Therefore, 

access to resources can be requested from desktop terminals or mobile devices. 

Positioning Module (PM): The role of the PM is to detect the positions (i.e., 

location and proximity) of Clients by periodically collecting and analyzing contextual 

information. 

We note that the various components of MERC’s architecture may not be inte-

grated into the same physical component. In our proof-of-concept implementation, 

for example, the PM only provides location verifcation support by transmitting peri-

odic ultrasonic beacons, which Clients consume. In addition, a Client consumes/emits 

BLE beacons to determine the proximity of other Clients. We depict the prototype’s 

architecture in Figure 5.1. 
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Fig. 5.1. Processing of beacons within MERC’s architecture. 

5.4.2 Overview 

The operations of the MERC are centered around enterprises’ mobile IT manage-

ment. Each enterprise has enterprise members that deploy personas. We defne an 

enterprise member as the entity which deploys, controls, and manages a persona. An 

enterprise member could be either the IT admin (of a business/corporation) or simply 

an end-user; we, however, focus only on the duties of the former because enterprises 

desire to have full control over employees’ personas. 

Client Registration. Each enterprise has an Enterprise ID (EID)1 that is com-

municated to Clients. This EID serves two purposes: (1) as an unique identifer for 

an enterprise; (2) as information regarding the top-level locations that belong to the 

particular enterprise. 

Persona Deployment. We leverage Android facilities to deploy personas on 

our platform. The persona deployment is achieved through the development of a 

custom device admin application built using Android’s Device Administration APIs. 

Use of such APIs increases the MERCOS’s ease of adoption as current IT admins 
1The creation and management of unique EIDs are neither delegated to MERCOS or enterprises. 
AFW, through Google Enterprise solutions, handles such operations [93]. 
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would have already built a device admin to control their employees’ devices running 

AFW, which MERCOS is built upon. Once the device admin is downloaded to an 

employee’s device, the device admin creates a new persona dedicated to work-related 

activities. At this point, a clean userspace containing the same list of applications as 

the default persona, including the device admin, will be instantiated. However, unlike 

the rest, the device admin is the only application that is removed completely from 

the default persona as its duties only lie in the created persona. Once the persona-

creation process is completed, the device admin must register a legitimate EID, acting 

as a persona ID, via our custom interface. 

Activating Personas & Deploying Policies. End-users authenticate their 

logical location by passively consuming, via Clients, an ultrasonic beacon that is par-

tially encrypted with two di˙erent keys. The Ultrasonic Beacon (Figure 5.1) contains 

several pieces of information, including an EID, a Location ID (LID), timestamps, 

and a policy number. The ultrasonic beacons are periodically sent every 10 seconds 

by a PM. The EID and LID describe a Client’s general (e.g., NekSec’s campus) and 

specifc (building 10, room 100) location, respectively. 

We apply defense-in-depth by employing three layers of defense to access content 

on the Client. First, the Client extracts the EID from the beacon, and compares the 

identifer with previously registered EIDs. If there is a matching EID, the Client acti-

vates the associated persona, otherwise, the default persona is activated. We use the 

term "activate" to simply indicate that a persona is brought to the foreground, and 

thus, all other personas are not visible since they execute in the background. Unlike 

the frst defense layer, the second and third layers are handled by the device admin. 

Android delegates the responsibility of screen-locking a persona to the device ad-

min [31]. However, the device admin allows the screen lock to receive user input only 

if the policy number is decipherable. Such defense-in-depth ensures legitimate ac-

cess authorizations, regardless of an attacker attempting a replay or denial-of-service 

attack (see Section 5.7). 
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At this point, the Client forwards the beacon’s LID to the device admin, which 

is within the Client’s active persona. As the device admin is built by the enterprise, 

it is aware of the EPS’ remote address, and thus forwards the LID to the EPS for 

processing (requestMapping in Figure 5.1). The content of the LID dictates the 

content of the EPS’ response message. Each LID is tied to a unique policy, and 

this association is confgured by the enterprise member. The EPS responds with the 

policy number and the policy itself. 

To minimize communication between the Client and the EPS, the device admin 

stores the policy number sent by the EPS. Whenever the device admin extracts a 

policy number from the ultrasonic beacon, the device admin compares it with previ-

ously stored values. If a value previously exists, the matching policy is adhered to, 

otherwise, the device admin forwards the LID to the EPS to retrieve the appropriate 

policy. 

Encryption Keys. As previously stated, ultrasonic beacons are partially en-

crypted using two keys (Figure 5.1): Key1 is a periodically updated symmetric key 

generated by and stored on the EPS. It is used to encrypt a LID and a timestamp. 

Such encryption ensures the confdentiality of an enterprise’s building infrastructure 

as per our design goal. Key2 is the private key component of an asymmetric pair 

generated by the EPS. The private key is used to encrypt a policy number and a 

timestamp. The public component, which is stored within an X.509 certifcate down-

loaded to a Client device, is used for decryption. Such encryption minimizes the 

communication between the Client and EPS while maintaining high security since 

the policy number is used to apply an associated policy previously downloaded to the 

Client, and therefore obviating the need to contact the EPS as frequently as ultrasonic 

beacons are broadcasted. 

Detecting Proximity. The policies a system can enforce are dependent on the 

underlying technology. Similarly to ultrasonic beacons, each Client scans for BLE 

beacons every 10 seconds. Particularly, we utilize BLE to detect if other users are 

within Near reach (c.f. to Section 5.2). That is, the proximity zone (Figure 5.1) 
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encompasses the area within 3 meters around a Client. We selected Near for the 

maximum range as we believe that if, for example, any employee with an inferior 

role to that of the Supervisor is within 3 meters of Alice, then it is a clear indica-

tion that the employee is able to visually observe content on Alice’s device he/she 

is unauthorized to view. We emphasize that this hard-coded metric of proximity is 

implementation specifc as we rely on BLE’s four-step ranging measurements. We 

assume that the device admin maintains a database that maps Bluetooth MAC ad-

dresses to user IDs, which can be easily retrieved from an enterprise’s preexisting 

RBAC system that is incorporated into the EPS. We chose the Client (rather than 

the EPS) to track user movements so that Clients can immediately react to proximity 

violations and minimize communication with the EPS. 

5.4.3 Proximity-Based Device Admin Policies 

Much work has been done in the design of policy languages [17, 33, 41, 77]. How-

ever, we extend CASSEC’s PrBAC policy specifcation [17] and integrate it into 

Android’s existing Device Administration policy specifcation (MercBAC), thereby 

enabling MERC to enforce restrictions based on Separation of Duty and Absence 

of Other Users. The device admin is solely responsible for enforcing policies on the 

persona such as password confguration or device force lock, and similar to Android’s 

permission model, the device admin must request the privilege to exercise such ca-

pabilities through a security metadata fle stored within the application’s binary. We 

do not modify this fle. Instead, the device admin reads a MercBAC policy, written 

by the IT admin, which is stored within the application’s data directory. The device 

admin must ensure the current context violates the policy’s contextual constraints 

prior to exercising force lock (DevicePolicyManager.lockNow()), for example, thereby 

applying proximity-based access control to personas. In this way, we increase the 

ease-of-adoption and resiliency to change in MERCOS as a subset of these policy 
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features are pre-built into the stock Android OS. Figure 5.2 provides an example 

MercBAC device admin policy that refects the scenario presented in Section 5.1. 

Fig. 5.2. Example proximity-based MercBAC policy. 

5.4.4 The EID and LID 

We take advantage of preexisting data structures for EIDs. An IT admin is re-

quired to perform a registration process with Google which entails claiming and veri-

fying an enterprise domain name (e.g., www.example.com) to use Android For Work 

(AFW). In addition, an Eddystone UID Namespace is generated by selecting the frst 

10 bytes of a SHA-1 hash of the domain name. The MERC uses the Eddystone UID 

as the EID to describe top-level locations. 

The intentional naming system proposed by Adjie-Winoto et al. [94] is an attribute-

value naming system with nested attribute-value pairs. Such a naming architecture 

provides signifcant fexibility in defning location-based information of broad res-

olutions. As such, we adopt this attribute-value system to construct a LID. The 

advantage is that the particular construction of a LID is defned by each enterprise 

IT admin instead of uniformly. Here, we use a simple construction of the following 

form: [building = B [foor = F [room = R]]]. 

www.example.com
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5.5 Prototype Implementation 

5.5.1 Client 

We made minor modifcations to the Android OS to support MERCOS. We frst 

created and exposed a new system API called switchPersona(string eid). This API 

switches the persona, and is called whenever a new EID is detected from an ul-

trasonic beacon. For simplicity, we allow device admins to register an EID within 

Android’s "settings.db", which is a database managed by the Settings application, 

via the Settings.Global interface. In this way, the database can be globally accessed 

no matter which persona is currently active. Normally, third-party applications can 

only read from Settings.Global, and not write. To ensure that the device admins 

are the only entities with the write privilege, we call Android’s DevicePolicyMan-

ager.getActiveAdmins() function. It returns a package name list of all device admin 

applications, but only one should exist as the enterprise controls the list of applica-

tions that exist within the work persona. Prior to updating the EID database, we 

verify that the package name of the entity attempting to update the EIDs is autho-

rized to do so. Read access to EIDs is not a privacy concern since they are constructed 

based on enterprises’ public web domain [31]. 

To send/receive ultrasonic beacons, we integrate a third-party sound-based, data 

communication SDK [92] into our custom device admin which operates at frequencies 

above 18 KHz (i.e., frequency range inaudible to the human ear). The reader may 

wonder why we integrate such a feature at the application level rather than the system 

level. We believe that this is suÿcient as modern smartphones already silently process 

audio in the background via application-level programs. For example, the Google 

Now application allows the Android OS to respond to voice-commands [95]. So in 

reality, the ability to read ultrasonic beacons would be integrated into the Google 

Now application so that it can be a system-wide functionality. The device admin also 

periodically scans for BLE beacons every 10 seconds using the android.bluetooth.le 

https://android.bluetooth.le
https://settings.db
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APIs [31]. Nearby users are identifed by maintaining a SQL database which contains 

a mapping from BLE MAC addresses to user IDs. 

5.5.2 EPS 

The EPS was implemented in PHP and hosted on a remote commercial server. It 

disseminates policy fles to Clients. The EPS provides a function that can be remotely 

invoked via URL: getPolicy(NetMsg) (Figure 5.1). The function is invoked by Clients 

whenever a new policy number is detected in ultrasonic beacons. 

5.6 Experimental Results 

5.6.1 Deployment 

In this section, we report experimental results. First, we deployed our MERC 

prototype in one of our campus buildings. Figure 5.3 displays the schematics of our 

tested area. The green (benign) and red (malicious) circles and arrows indicate the 

placements and facing directions of PMs, respectively. A large, grid-patterned rect-

angle points out a sub-area of an enterprise environment that contains only one PM. 

The gray-flled circles indicate the current positions of Clients. The gray, circular 

outlines indicate the possible positions of Clients during testing. Second, our modif-

cations to the Android source code were tested on the Android Pixel C tablet device 

running Android Nougat (API 22 v7.0). Last, each PM was a Dell A215 Multimedia 

Speaker, and each speaker was connected to a device capable of playing MP3s. All 

experiments were conducted in areas in which the ambient noise were minimal. 

5.6.2 Experiments 

Experiment 1: Enterprise Setting Suitability. An enterprise may place 

PMs in arbitrary locations such as an oÿce or a large sitting area (e.g., auditorium). 

Therefore, it is necessary to understand how messages embedded in ultrasounds will 
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Fig. 5.3. Testing area which contains our positioning module (PM#) 
and Clients (C#). Arrows indicate the directions PMs are facing. 

propagate. Specifcally, the goal of the experiment is to determine if the Client is able 

to capture location information at varying distances away from a PM. The Client (C1 ) 

was placed at six di˙erent positions away from the PM (PM1 ), and at each position, 

PM1 transmitted 10 ultrasonic beacons at its maximum possible amplitude. 

Figure 5.4 shows results of this experiment. C1 was able to detect beacons with 

strong accuracy, at least 90%, up to 30m away from PM1. However, at a distance of 

36m, C1 was only able to detect beacons with 60% accuracy. The lower detection 

rate at 36m was expected as it is a natural phenomena that everyone observes on 

a daily basis. That is, there is a direct correlation between the distance between a 

source of sound and a listener and the likelihood of the sound being heard. Therefore, 

a speaker that can emit sounds at larger volumes would be able to transmit beacons 

to Clients at farther distances. Nevertheless, this experiment has demonstrated that 

ultrasonic beacons can be detected with 100% accuracy in most enterprise settings 

since such settings (i.e., oÿces and meetings rooms) are signifcantly smaller than 

24m on the longest sides [89]. 
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Fig. 5.4. Capturing location information at varying distances. 

Experiment 2a and 2b: Collisions. Sound waves can transmit arbitrarily far, 

and sounds from varying sources can mesh together. If multiple PMs are placed in 

relatively close proximity, the ultrasounds may also blend together. We must deter-

mine if placing PMs in isolated areas that are in proximity, but demarcated by walls 

or closed doors will cause any interference with Clients. We explain in the security 

analysis below that an adversary is unable to transmit valid ultrasonic beacons. How-

ever, we temporarily relax our video monitoring assumption (Section 5.1), thereby 

enabling an attacker to transmit beacons on the same ultrasonic frequency to cause 

collisions via malicious PMs (red PMs in Figure 5.3) from adjacent rooms/areas. We 

perform two experiments to determine the extent in which an adversary can perform 

a Denial-of-Service attack with the constraint that the adversary is using the same 

hardware deployment acquired by hijacking legitimate PMs. In Experiment 2a, C2 

and PM2 are placed within a closed-door room situated roughly 3 and 6 meters away 

from PM3, respectively. PM3 is pressed against and facing a 1 ft (˘0.3 m) thick 

wall. In Experiment 2b, C2 and PM2 remain in the same positions, but PM3 is now 

pressed against and facing the room’s door. A notable di˙erence between the two 

experiments is that, although still demarcated by some obstruction, PM3 may have 

a likelier chance to permeate through the room as cracks exist around the door that 

sound can travel through. 
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Table 5.1. 
Location detection rates 

Experiment PM2 PM3 

2a 100% 0% 

2b 100% 6% 

2b0 77% 57% 

In each experiment (Table 5.1), each PM begins transmission, at maximum vol-

ume, of 30 ultrasonic beacons at a specifed time using a time-based activation pro-

gram. In Experiment 2a, C2 did not detect beacon collisions as it identifed 100% 

of PM2 ’s beacons and 0% of PM3 ’s beacons. Such results demonstrate that sound 

is indeed inherently localized as the attacker could not successfully penetrate the ob-

structing wall(s). In Experiment 2b, C2 detected beacon collisions as it identifed 

100% and 6% of PM2 ’s and PM3 ’s beacons, respectively. We performed Experi-

ment 2b once more (i.e., 2b0), but we instead increase the adversary’s attack power 

by leaving PM3 at full volume while reducing PM2 ’s volume by half. As a result, 

C2 identifed 77% and 57% of PM2 ’s and PM3 ’s beacons, respectively. Such results 

demonstrate that under a certain adversarial model, an attacker can cause collisions. 

Given the unprecedentedly fne-grained nature of EED scenarios that we envision for 

MERC (e.g., di˙erent LID per room), processing beacons from adjacent rooms/areas 

would cause the Client to continuously switch containers or apply the wrong policies. 

Such erratic behavior is a major issue w.r.t. security, and it would also potentially 

ruin the user experience. To address this issue, we implemented a temporal local-

ization analysis mechanism to determine the correct candidate to enforce in a set of 

beacons recently heard by a Client. We frst determine which beacon is consumed 

more frequently, but using only this criteria is insuÿcient as an attacker could simply 

increase the rate of transmission of malicious beacons. Therefore, beacons must also 
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Table 5.2. 
Proximity detection rates of two stationary BLE devices 

Distance Rm1 Rm2 Rm3 

2m FNR: 0% FNR: 0% FNR: 4% 

4m FPR: 2% FPR: 0% FPR: 0% 

be consumed at a valid transmission rate, otherwise the attack is detectable. We 

discuss this further in Section 5.7. 

Experiment 3: Proximity Detection. We test the proximity detection method 

which relies on BLE beacons. The device admin is confgured to enforce the Mer-

cBAC policy in Figure 5.2. In particular, we test if Alice’s Client can accurately 

determine the distance to the unauthorized user. Two BLE-enabled devices were 

used to conduct the experiment: a Nexus 6P smartphone (C1 ) and a Pixel C tablet 

(C2 ) acting as Alice’s and the unauthorized user’s Clients, respectively. We repeated 

this experiment twice; di˙erentiating the two by placement of the stationary Clients: 

a distance of 2m (< Near) and 4m (>= Near) between each other which indicates 

attack and non-attack instances, respectively. We use the following metric to evaluate 

the e˙ectiveness of the proximity detection. False negative rate (FNR) is defned as 

the percentage of attack instances in which C1 mistakenly evaluates as non-attack 

instances. False positive rate (FPR) is defned as the percentage of non-attack in-

stances in which C1 mistakenly evaluates C2 as attack instances. We performed 

the experiment three times, each on the 1st, 2nd, and third (Figure 5.3) foor of an 

isolated room. C2 emitted 100 BLE beacons with each fve seconds apart. 

Table 5.2 presents the false positive rates and false negative rates of proximity 

detection under varying distances. C1 precisely evaluated C2 as Near when C2 

was placed 2m away, with a 4% FNR in the worst case. When Clients were sit-

uated 4m apart, a FPR of 2% was observed in the worst case. Such occurrences 

can be attributed to possible interferences caused by the environment since BLE is 
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a radio-based technology, and such technology is susceptible to signal attenuation. 

The experiment has demonstrated that if unauthorized employees enter Alice’s vicin-

ity, with high accuracy, the device admin would be able to force lock the persona. 

However, an enterprise may consider a 4% FNR non-negligible as personas would be 

inaccessible in such instances. We leave the investigation of alternative proximity 

technologies for future work. 

Experiment 4: Battery Consumption. Mobile devices are resource con-

strained, and continually probing sensors can tax the device. The Clients are con-

tinually listening for ultrasonic and BLE beacons. The goal of this experiment is to 

observe the consumption of the device’s battery. We monitored the device’s battery 

percentage when running both the unmodifed OS and our customized system, sepa-

rately. We performed this experiment three times on each system. Towards this goal, 

we set WindowManager class’s FLAG_KEEP_SCREEN_ON which is an Android 

mechanism to force the screen to never turn o˙. It is vital that this fag is set as it 

ensures that the listening service is not temporarily halted or shutdown by the stock 

Android resource management system. We logged the battery consumption every 

hour. 

Figure 5.5 shows results of this experiment. As observed from the graph, the 

average performance impact of MERCOS is minimal as compared to the non-modifed 

OS. The maximum di˙erence observed each hour was 2%. An explanation for this 

result is that Android already silently processes audio in the background when the 

unmodifed OS is used (e.g., Google Now application’s voice-activation services). The 

processing of ultrasonic beacon in MERCOS takes precedent over the voice-activation 

services. Thus, the only additional processing that is performed in our custom OS 

is the scanning of BLE beacons. Therefore, integrating features of our CAS into 

resource-constrained devices is practical. 
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Fig. 5.5. Average battery consumption of a Client. 

5.7 Security Analysis 

We discuss possible attacks to our system, and means to to prevent or mitigate 

them. 

5.7.1 Attacking Ultrasonic Beacons 

Replay Attack. An attacker may attempt a simple replay attack. The goal of 

the attack is to confuse the MERC system to activate an incorrect persona and policy 

on a Client. The attack is executed by recording a previously transmitted ultrasonic 

message and re-transmitting it at a di˙erent time or location. We protect the system 

from replay attacks by embedding temporal information within the beacon. The 

components in the system must have loosely synchronized clocks. We extract the 

timestamps and compare them to the current time, and then determine if the time 

di˙erence exceeds a specifed threshold. In the midst of Experiment 1, at a distance of 

24m, prior to signal degradation at 30m, we averaged the elapsed time in milliseconds 

to transmit, receive, and process 30 ultrasonic beacons. The longest sides of most 

oÿces or meeting rooms are signifcantly smaller than 24m, which we believe refects 

the maximum distance an ultrasonic beacon must travel. On average, the complete 
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process took approximately 1.33 seconds. Although the longest elapsed time recorded 

was 2.5 seconds, all other recorded times fell well below two seconds. As a result, 

we set our threshold to two seconds. Therefore, the system would be able to detect 

malicious activity under the threat of a simple attacker. 

In this chapter, we do not consider a sophisticated attacker that is able to exe-

cute a wormhole attack [96]. A wormhole attack is similar to a replay attack except 

that the adversary tunnels the beacon through a "wormhole". Defending against 

such an attack is quite challenging as the wormhole allows the re-transmission at a 

di˙erent location with minimal delay, possibly within milliseconds. A sophisticated 

method to address both attacks would be to employ ultrasonic distance-bounding 

techniques [26, 97]. Such techniques were not investigated for several reasons. First, 

recently proposed techniques require special hardware, and modern smartphones are 

not currently capable of handling such a task. Second, given the scenarios that we 

envision for MERC, such a feature would incur signifcant overhead for each architec-

tural component. For these reasons, MERC would not satisfy the main goals of the 

paper as ease of integration and interoperability would be signifcantly reduced. 

Denial-of-Service. In Experiment 2, we addressed the issue of collisions as re-

sult of benign position modules in adjacent rooms. However, an attacker can execute 

a denial-of-service (DOS) attack by physically tampering with or altering the bea-

cons that are transmitted from PMs. For example, an attacker may tamper with 

a benign PM to transmit audio shifted to a frequency that will negate legitimate 

ultrasonic beacons. If this occurs, the Clients may consume data that is corrupted 

and indecipherable; persona activation and policy deployment will not function prop-

erly. It is diÿcult to defend against such a DOS attack, but it can be detected. The 

results in Experiment 1 and 2 demonstrate high accuracy with respect to detecting 

beacons. Consequently, repetitious consumption of indecipherable beacons can be in-

ferred as malicious activity, especially if enterprises appropriately place benign PMs 

as to minimize collisions between those devices. Another practical method that can 

be immediately employed is Android’s Geofences APIs [31]. A geofence is a circular 
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area defned by a latitude, longitude, and radius, which can be specifed by the device 

admin. The device admin thus becomes more context aware as it is alerted when-

ever a user enters/exits the geofence. Experiencing GPS signal attenuation is not a 

cause for concern since the device admin would instead place a geofence to entirely 

encompass, for example, NekSec’s campus. An expected EID is thus established once 

a Alice enters the campus, otherwise, a DOS attack can be inferred. Last, physical 

security could also be utilized by delegating the responsibility of monitoring for ma-

licious location devices to sentries placed throughout the campus. Nevertheless, the 

security of personas would still be ensured if enterprises apply defense-in-depth as 

described in Section 5.4.2. 

5.7.2 Attacking BLE Beacons 

Rooting. A possible attack to our system involves a user rooting his/her Client, 

and maliciously modifying the Bluetooth MAC address. In this way, the Client can 

impersonate another user of the system. To mitigate such an attack, an enterprise 

must employ hardware and software mechanisms (e.g., Android’s dm-verity) that 

enhance device security. For example, Samsung KNOX 2.0 is a custom Android 

OS which has a low-level security feature that leaves the device inoperable once it 

detects a root attack [20], which is a suÿcient mechanism to defend against malicious 

modifcation of the MAC address (or any root-based attack targeting MERC). 

Masking BLE. The simplest attack malicious users could execute is to mask 

their MAC address by either disabling the Bluetooth peripheral on the Client or sim-

ply leaving it in another room. By doing so Clients will be unable to correctly enforce 

proximity constraints. There are several measures that can be taken against such 

attack. First, an enterprise simply has to enforce mandatory enabling of Bluetooth 

through the device admin application, which completely controls the settings and con-

fgurations of the Clients. Second, accidental or malicious misplacing of the Client 

can be addressed by supplementing the system with a facility to detect the number 
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of individuals in a room. For example, the system by Oluwatimi et al. [17] takes 

an infrastructure-based approach (i.e., independent of the Clients) utilizing signal 

attenuation of WiFi radios caused by human interference to achieve occupant local-

ization. Therefore, if the number of individuals in a room and the number of MAC 

addresses do not match, the system will infer malicious behavior, and subsequently 

revoke access to resources. 

Unauthorized Device User. Another attack vector involves an unauthorized 

individual obtaining an authorized user’s phone, whether by theft or voluntary pro-

vision. Such an attack would allow an individual to gain unauthorized access to 

persona content. To mitigate such a threat, biometric techniques can be employed. 

For example, Draÿn et al. [98] demonstrate that it is possible to passively detect 

that a mobile device is being used by a non-authorized user by modeling user key-

board interactions. Wang et al. [99] explore biometric signatures using WiFi-based 

techniques to determine the identity of an individual. Using such techniques, it is 

therefore possible to associate an individual with a device. 

5.8 Conclusion 

In this chapter, we investigate the feasibility of introducing context-based con-

straints to containers under a multi-enterprise context. Contextual information is 

supplied by our prototype PBS that relies on ultrasonic2 and Bluetooth Low Energy 

beacons to address occupancy detection. With such information, proximity-based 

constraints can be e˙ectively and eÿciently enforced on Android’s personas, which, 

to the best of our knowledge, has never been investigated. We also demonstrate how 

to allow multiple context-aware systems from di˙erent enterprises to serve a feet of 

devices while maintaining privacy, security, scalability, and interoperability. Serving 

devices in such a manner is accomplished via our secure ultrasonic beacon protocol. 

2Careful construction and transmission of ultrasonic signals must be taken to prevent adverse e˙ects 
on the human body [100]. 
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6. CONCLUSION 

In this dissertation, we investigated various aspects of context-aware systems that is 

applicable to mobile systems technology within enterprise environments. We specif-

ically asked how do we capture contextual information, incorporate contextual con-

straints into access control policies, and enforce contextual access control policies? 

To those ends, we frst proposed a modifed version of the Android operating system 

called CBAC (Chapter 3) that enables end-users to confgure context-based policies 

for mobile applications. The context-based policies were used in the decision process 

by our custom OS to determine whether a mobile application, possibly malicious, has 

access to content (i.e., data and resources) that exists on the device depending on the 

context in which the content was requested. In this system, contextual constraints 

consisted of spatio-temporal parameters (i.e., location and time) which included the 

user being able to specify logical locations. Location-based information was captured 

via the end-user’s device using the WiFi peripheral. We specifcally triangulated the 

user’s position by analyzing the surrounding WiFi access points and their RSSI levels. 

While the security of enterprise content may depend on the presence of others, 

we also proposed a proximity-based mobile architecture. The proposed architecture 

CASSEC 2.0 (Chapter 4) supports context-based access control decisions based on 

the location of the user requesting access and the proximity of other users in a mon-

itored area, so that the appropriate privileges to access remote enterprise content 

is automatically granted. In addition, we extend the PrBAC model to incorporate 

confdence constructs that would allow the system’s access control decisions to be in-

fuenced by the degree of reliability of extracted contextual information. We evaluate 

our confdence constructs by implementing two new authentication mechanisms. Co-

proximity authentication employs our time-based challenge-response protocol, which 

leverages Bluetooth Low Energy beacons as its underlying occupancy detection tech-
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nology. Biometric authentication relies on the accelerometer and fngerprint sensors 

to measure behavioral and physiological user features to prevent unauthorized users 

from using an authorized user’s device. 

Fig. 6.1. High-level characteristics of each context-aware system. 

We also proposed the MERC (Chapter 5) system which addresses the issue of 

applying proximity-based constraints to the management of end-user devices via mo-

bile containerization techniques and technologies when end-users may be employed 

by or consult for multiple enterprises. As enterprise content may be downloaded 

to end-users’ devices, MERC, our custom Android OS, ensures that the content is 

isolated from non-enterprise related content via platform-level containerization (i.e., 

personas). MERC then applies location-based and proximity-based constraints to the 

secure containers and their content. Contextual information is captured via a device’s 

microphone and Bluetooth peripheral. Our novel approach uses ultrasonic sound that 

is inaudible to the human ear to determine a user’s location. We then use Bluetooth 

Low Energy technology to determine proximity of other users. We demonstrate how 

to integrate context-based constraints into Android Device Administration policies 

in order for an enterprise to restrict employees’ access to containers’ content based 

on the proximity of other employees. Distinguishing characteristics of each of the 

previously mentioned systems are highlighted in Figure 6.1. 
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In the future, we will investigate how to enhance system security by incorporating 

more contextual information. Experiment 2 in Section 5.6 demonstrates that adjust-

ing the amplitude of ultrasonic beacons a˙ects the transmission distance. We can 

potentially exploit phenomenon such as this to support micro-position access control 

policies. For example, in a large sitting area containing tens of employees, a single 

high-level employee may instead use his smartphone device as a positioning mod-

ule to support micro-position transmission of ultrasonic beacons. In this way, the 

high-level employee may adjust the device’s volume to minimal levels to impose tem-

porary restrictions on only low-level employees’ devices that are within a few feet. 

One limitation of the proposed proximity-based systems presented in this work is 

the inability to deduce potential shoulder-surfng attacks. Shoulder-surfng attacks 

exemplify proximity-based situations in which an authorized user accessing sensitive 

content via his mobile device is unaware of an unauthorized user in the immediate 

vicinity, thereby leaving the authorized user’s sensitive content vulnerable to poten-

tial information leakage. The most interesting aspect of this constructed scenario is 

that current proximity-based access control systems, including ones presented in this 

dissertation, would apply access control constraints regardless of whether the attack 

is possible. The unauthorized user may be situated in front of the authorized user, 

outside of the device’s front screen peripheral. We intend to also develop the ex-

pressiveness of proximity-based access control policies and rely on micro-positioning 

technologies to resolve such contentious access control decisions. 

Amongst the proposed systems, techniques, technologies, and context-based poli-

cies, which is the best strategy to employ? There is no one-size-ft-all approach; a 

specifc solution may be only applicable to a specifc problem or scenario. An enter-

prise that desires to integrate a context-aware access control system into its mobile 

IT infrastructure must frst answer several questions, which include which content 

must be protected, who or what must the content be protected from (e.g., construct-

ing the adversarial model), and what it means for the content to be secured (e.g., 

sustaining desirable properties under intelligent adversaries)? Once such questions 
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are answered, the enterprise must determine the set of contextual information within 

the physical or computing realm that can be leveraged to provide more dynamic 

and robust access control mechanisms, while minimizing the cost of deploying the 

technologies required to implement such security facilities. This dissertation exam-

ines various security requirements and real-world context-based problem scenarios 

and subsequently proposes several example context-aware access control solutions to 

address those scenarios. 
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