
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Applications of Context-Aware Systems in Enterprise Applications of Context-Aware Systems in Enterprise

Environments Environments

Oyindamola D. Oluwatimi
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Oluwatimi, Oyindamola D., "Applications of Context-Aware Systems in Enterprise Environments" (2018).
Open Access Dissertations. 1783.
https://docs.lib.purdue.edu/open_access_dissertations/1783

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1783?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1783&utm_medium=PDF&utm_campaign=PDFCoverPages

APPLICATIONS OF CONTEXT-AWARE SYSTEMS

IN ENTERPRISE ENVIRONMENTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Oyindamola D. Oluwatimi

In Partial Fulfllment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Elisa Bertino, Chair

Department of Computer Science

Dr. Walid Aref

Department of Computer Science

Dr. Sonia Fahmy

Department of Computer Science

Dr. Ninghui Li

Department of Computer Science

Approved by:

Dr. Voicu Popescu by Dr. William J. Gorman

Head of the Department Graduate Program

iii

This work is dedicated to all those who doubted me. It has been, and will continue

to be, a pleasure to rise above your imposed limitations and my weaknesses.

iv

ACKNOWLEDGMENTS

I would like to thank Professor Elisa Bertino who provided guidance throughout

my time as a student at Purdue. Through her guidance, I have come to fully realize

the sensation of achieving success "against all odds." I also thank my dissertation

committee, Professor Walid Aref, Professor Sonia Fahmy, and Professor Ninghui Li,

for their contributions to my academic career.

Personal thanks to Serina Woods and Rachel Scarlett for providing emotional

support in diÿcult times. Special thanks to Adrian Thomas and Dr. Zenephia Evans

for keeping it 100 and helping me navigate through all the precarious situations at a

predominantly white institution as a Nigerian black man. I highly appreciate my best

friend Adam Abadir for being my secret rival who unknowingly motivated me into

putting signifcant e˙ort into my education. Thanks to Je˙ Avery, Chris Gutierrez,

Abram Magner, and Vivek Patel for their valuable feedback and support. Finally,

I thank the Dozoretz National Institute for Mathematics and Applied Sciences, the

GEM Consortium, the Purdue Doctoral Fellowship, and the VACCINE HS-STEM

Career Development for allowing me to focus on my academics by providing fnancial

support throughout my undergraduate and graduate career.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABBREVIATIONS . xii

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Dissertation Statement . 5

1.2 Context-Aware Access Control Systems 6

1.2.1 Location-Based Access Control Systems for Mobile Devices . . . 6

1.2.2 Securing Remote Enterprise Content via Proximity-Based Ac-
cess Control . 8

1.3 Context-Aware Containerization Systems 9

1.4 Document Structure . 11

2 BACKGROUND AND RELATED WORK 12

2.1 Android . 12

2.2 Position-based Services . 13

2.3 Context-Based Access Control Models 15

2.3.1 Overview . 15

2.3.2 Context-based Application Restrictions for Android 17

2.4 Containerization . 17

2.4.1 Overview . 17

2.4.2 Containerization on Android . 19

3 A LOCATION-BASED ACCESS CONTROL SYSTEM FOR MOBILE DE-
VICES . 21

3.1 Model Overview . 22

vi

Page

3.2 Policy Core Model . 24

3.2.1 Policy Constructs . 25

3.2.2 Policy Categories and Examples 27

3.3 Implementation . 28

3.3.1 Policy Manager Components . 28

3.3.2 Permission Management . 30

3.3.3 Restrictions on User Data . 30

3.3.4 Managing System Peripheral State 31

3.3.5 Intent Management . 31

3.4 Context Management . 33

3.4.1 Location Capturing Phase . 35

3.4.2 Location Detection Phase . 36

3.5 Experimental Results . 37

3.6 Security Analysis . 44

3.7 Conclusion . 46

4 SECURING REMOTE ENTERPRISE CONTENT VIA PROXIMITY-BASED
ACCESS CONTROL . 48

4.1 Motivating Scenarios . 52

4.2 Background . 54

4.3 Policy Specifcation . 55

4.4 Threats and Assumptions . 58

4.5 System Design . 59

4.5.1 Proximity Zone . 60

4.5.2 Components . 60

4.5.3 Access Control Framework . 62

4.5.4 Co-Proximity Authentication 63

4.5.5 Biometric Authentication . 67

4.6 Prototype Implementation . 69

vii

Page

4.6.1 The ECS . 69

4.6.2 The AS . 70

4.6.3 The PM . 70

4.6.4 Use Case . 72

4.7 Security Analysis . 80

4.7.1 Bluetooth Manipulation . 81

4.7.2 WiFi Manipulation . 85

4.7.3 True Continuous Authentication 85

4.8 Conclusions . 86

5 A CONTEXT-BASED CONTAINERIZATION SYSTEM 87

5.1 Motivating Scenarios . 89

5.2 Background . 90

5.3 Design Goals, Challenges, and Assumptions 91

5.3.1 Assumptions . 92

5.4 MERC System Architecture . 93

5.4.1 Client-Server Architecture . 93

5.4.2 Overview . 94

5.4.3 Proximity-Based Device Admin Policies 97

5.4.4 The EID and LID . 98

5.5 Prototype Implementation . 99

5.5.1 Client . 99

5.5.2 EPS . 100

5.6 Experimental Results . 100

5.6.1 Deployment . 100

5.6.2 Experiments . 100

5.7 Security Analysis . 106

5.7.1 Attacking Ultrasonic Beacons 106

5.7.2 Attacking BLE Beacons . 108

viii

Page

5.8 Conclusion . 109

6 CONCLUSION . 110

REFERENCES . 114

VITA . 122

ix

LIST OF TABLES

Table Page

3.1 Policy categories and examples. 28

3.2 Examples of policy restrictions that can be controlled via intercepting Intents.32

3.3 Time overhead for modifed Android methods. 41

4.1 PrBAC policy language . 56

4.2 WiFi detection accuracy. 76

5.1 Location detection rates . 103

5.2 Proximity detection rates of two stationary BLE devices 104

https://Intents.32

x

LIST OF FIGURES

Figure Page

2.1 Android software stack. 13

2.2 The interactions between two containerized applications and an untrusted
application that exists outside of the secure area. The gray and red arrows
represent permitted and non-permitted communication channels, respectfully.18

3.1 Access control framework. 24

3.2 Location capturing phase. 34

3.3 Location detection phase. 36

3.4 Tested areas in one of our campus buildings. 38

3.5 Detection accuracy rate of closely located areas. 39

3.6 Impact of permission revoking on applications. 40

3.7 Memory overhead with and without our CBAC policy restrictions. 42

3.8 Device battery consumption when checking for context updates every 30
seconds. 43

4.1 CASSEC’s proximity-based access control architecture. Arrows indicate
secure wireless network communication. 49

4.2 Two example proximity-based access control policies. 57

4.3 CASSEC 2.0’s access control framework. 59

4.4 A Proximity Module’s proximity zone regions. 65

4.5 CASSEC 2.0’s co-proximity authentication protocol. 65

4.6 4.6(a) is an illustration of a complete gait cycle from the initial heel strike
to the terminal heel strike (from [81]). 4.6(b) displays preliminary mea-
surements of accelerometer signals of a walking trace in the vertical di-
rection we collected using a Nexus 6P smartphone. Orange lines indicate
step cycles identifed by heel strike impacts. 68

4.7 Step cycle interpolation applied to walking traces collected using our Nexus
6P smartphone at three di˙erent speeds: slow, normal, and fast. 69

https://respectfully.18

xi

Figure Page

4.8 The blueprint of a two-bedroom apartment in which the prototype system
had been deployed. The blue markers and green markers indicate the
positions of WiFi access points and laptops, respectively. The dotted lines
indicate the two possible positions for each human, and transitions simply
require moving two steps without changing body orientation. The red dots
represent the current positions of the humans standing still while facing
the laptop. 73

4.9 RSS measurements of wireless links on di˙erent frequency bands when
human bodies obstruct the line of sight (LOS). The blue circles indicate
the number of humans in the LOS within each 60-sample period (i.e., every
30 seconds). 74

4.10 Average similarity score by varying the duration of user profle trace and
runtime measurement trace. 77

4.11 Average similarity score calculated by comparing the normal walking bio-
metric template with both the slow and fast runtime measurement walking
traces. 79

4.12 Distribution of round trip time of 100 Bluetooth Low Energy beacons each
at various distances, exchanged between a Proximity Module and a Client. 80

5.1 Processing of beacons within MERC’s architecture. 94

5.2 Example proximity-based MercBAC policy. 98

5.3 Testing area which contains our positioning module (PM#) and Clients
(C#). Arrows indicate the directions PMs are facing. 101

5.4 Capturing location information at varying distances. 102

5.5 Average battery consumption of a Client. 106

6.1 High-level characteristics of each context-aware system. 111

xii

CI

ABBREVIATIONS

BYOD Bring-Your-Own-Device

CAS Context-Aware System

Contextual Information

COPE Corporate Owned, Personally-Enabled

EED Enterprise-Enabled Device

xiii

ABSTRACT

Oluwatimi, Oyindamol D. Ph.D., Purdue University, May 2018. Applications of
Context-Aware Systems in Enterprise Environments. Major Professor: Elisa Bertino.

In bring-your-own-device (BYOD) and corporate-owned, personally enabled

(COPE) scenarios, employees’ devices store both enterprise and personal data, and

have the ability to remotely access a secure enterprise network. While mobile devices

enable users to access such resources in a pervasive manner, it also increases the

risk of breaches for sensitive enterprise data as users may access the resources under

insecure circumstances. That is, access authorizations may depend on the context in

which the resources are accessed. In both scenarios, it is vital that the security of

accessible enterprise content is preserved.

In this work, we explore the use of contextual information to infuence access

control decisions within context-aware systems to ensure the security of sensitive en-

terprise data. We propose several context-aware systems that rely on a system of

sensors in order to automatically adapt access to resources based on the security of

users’ contexts. We investigate various types of mobile devices with varying embed-

ded sensors, and leverage these technologies to extract contextual information from

the environment. As a direct consequence, the technologies utilized determine the

types of contextual access control policies that the context-aware systems are able to

support and enforce. Specifcally, the work proposes the use of devices pervaded in

enterprise environments such as smartphones or WiFi access points to authenticate

user positional information within indoor environments as well as user identities.

1

1. INTRODUCTION

Mobile devices are becoming a mandatory aspect of the daily lives of users. These

devices have powerful functionality granting users various abilities through installing

and executing applications which are abilities similar to desktop computing platforms.

With such abilities, users are, for example, able to compose documents, set calendar

reminders, and complete other daily tasks. Unlike their desktop counterparts, these

devices’ form factors allow mobility with respect to embedded sensors and network

connectivity. With the capacity to have permanent Internet connection via cellular or

WiFi infrastructures, mobile devices enable pervasive access. Users are able to access

emails, access remote networks, and manage and download private, confdential, or

secret data (e.g., banking data or medical data) in any context.

The capabilities of such mobile devices, as well as their increasing a˙ordability and

mobility, have enabled enterprises to leverage them in the workplace. This creates

two main scenarios: bring-your-own device (BYOD) and corporate-owned, personally

enabled (COPE) device. In the BYOD scenario, employees use their own personal

mobile device also for work purposes. Conversely, in the COPE scenario, it is the en-

terprise that provides devices to its employees. In both scenarios, that we collectively

refer to as enterprise-enabled device (EED) scenario, the same device is used for per-

sonal and business purposes. Such a dual use makes it possible for enterprises to rely

on a mobile Information Technology (IT) infrastructure. Such an infrastructure allows

employees to remotely access enterprise content that otherwise would not be acces-

sible outside of the enterprise setting. Despite interesting opportunities provided by

mobile devices, access to such data and resources, however, may be contingent upon

the context in which they are accessed. Accessing enterprise content, whether locally

or remotely, in insecure contexts increases the risk of sensitive information leakage. A

user situated in a public café may succumb to a shoulder surfng attack by a random

2

passerby when the user is viewing sensitive medical data via his/her device. If access-

ing remote content via the device, sensitive information such as banking data could

be captured by an adversary sniÿng the café’s public WiFi network. For the sake of

ensuring the security of personal and enterprise content, contextual factors that exist

within the physical and computing realms must be considered while evaluating access

control requests.

Consider an enterprise organization in which an employee, carrying her smart-

phone on her person, is attending a confdential meeting. It may be required that

the employee cannot access the device’s microphone to prevent, whether it is unin-

tentional or malicious, audio recording of the confdential meeting’s conversation. In

the same scenario, the employee is handed a draft of a patent document that is to

remain in that room, and therefore, the document should not be visually recorded

using the smartphone’s camera. The capabilities of the employee and her smartphone

in the above scenario are contingent upon, although not immediately obvious, various

environmental factors that exist in the physical and computing realms such as loca-

tion and mobile applications that have the potential of executing, respectively. As a

consequence, policies and systems that do not incorporate contextual parameters or

restrictions are not suitable for the described circumstances, as well as enterprise en-

vironments in general in which mobile devices are integrated into IT infrastructures.

Below we present defnitions of a context and a context-aware (CAS) system that will

be used throughout this work.

Context. Various authors have attempted to construct a defnition of the term

context, but some defnitions are not fexible or scalable enough to be applicable to

a breath of scenarios old and new. In this work, we adopt the following generalized

defnition of context [1]: "any information that can be used to characterize the situa-

tion of an entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and application

themselves".

3

Context-Aware System. Although Dey [1] also defnes context-awareness for

systems, it does not refect the sentient characteristic of an aware entity. As such,

we adopt the following defnition of context-awareness [2]: "context-aware systems are

able to adapt their operations to the current context without explicit user intervention".

In general, CASs operate in pervasive computing environments in which certain

applications require contextual information (CI) in order to provide data, services,

or resources. The objective of such systems is to maximize the usability of data

and services by incorporating environmental factors such that access is automatically

granted without explicit user intervention. There are many unique problems, previ-

ously and newly formulated, that CASs can be applied to [3–7], some of which we

now briefy describe. For example, although it is understandable why the progression

in elevator technology has become stagnant as a result of the simplicity of the task,

recent system designers have envisioned that future elevators will be context-aware.

Using a system of sensors, elevators will be able to automatically detect when users

are heading towards or waiting to get into an elevator [8]. Movie information ser-

vices such as Fandango inform users of the next available movie showings in theatres

that are within the users’ vicinity. In assisted living, some patients are the only res-

ident of their household. It is vital that caretakers are immediately and remotely

alerted of abnormal behavior in patients once detected [9]. While the previous ex-

ample applications defne context within spatial and temporal parameters, context

can be quite vague and is application dependent. Context can comprise of informa-

tion related to altitude, temperature, humidity, ambient light, radio, motion, audio,

etc. In this dissertation, we investigate the feasibility of using various technologies

to support context-aware access control, including radio-, motion-, and audio-based

technologies.

The proliferation and technological advancement of wireless networking and sen-

sor technologies – such as smartphones or WiFi access points – enable portable mobile

devices to be used in CASs. In recent years, smartphones’ continually advancing op-

erating systems (OS) and hardware capabilities have allowed capabilities not present

davidsego
Highlight

davidsego
Highlight

4

in their desktop counterparts. For example, many smartphone manufacturers have

leveraged these devices’ mobile form factor by integrating embedded sensors and

network connectivity peripherals including, but not limited to, Bluetooth, GPS, ac-

celerometer, and near-feld-communication. In addition, various static and dynamic

CI can be extracted from mobile devices such as hardware and software confgurations

which also can be utilized by CASs to adapt the systems’ operations automatically

to the processed information. Some other systems utilize information extracted from

wireless devices pervaded in enterprise environments such as WiFi access points to

not only localize a user, but to also detect the presence of other users. Specifcally,

proximity is yet another contextual parameter that can be leveraged to support au-

tomated, CASs.

In summary, context can be divided into three di˙erent categories [10]:

• User Context: it refers to any information related to the user, including user

dynamic information (user current and historical location, user current and

historical activity, user current emotion, relationships or contact with colleagues

or friends and so on) and user static information (user personal information,

user habit, user preference, and so on).

• Physical Context: it contains environmental physical information (lighting,

noise, temperature, humidity level, traÿc conditions and so on) and device

physical information (device battery, memory, the size and type of screen, ter-

minal’s OS, input and output method, nearby resources such as printers, and

so on).

• Network Context: network capacity, connectivity, costs of computing and com-

munication, bandwidth and so on.

The work proposed here explores the use of various types of mobile devices to

extract and process primarily user contextual information in CASs and apply such in-

formation to access control and data isolation techniques in order to secure enterprise

content. Access control is a security technique to regulate the sharing of resources

5

among entities in a computing environment. In terms of access control, context-

aware systems aim to secure access to sensitive enterprise resources by adapting their

access authorizations to the current context. For example, following the presented

enterprise scenario, an access control policy for the employee’s smartphone device

would state in some manner or form "from 1PM to 2PM, device microphone is in-

accessible". Such policy would prevent the device from recording the conversation

during the confdential meeting. Containerization is another security technique, but

it ensures the separation of enterprise content from all other non-enterprise related

content on an end-user’s mobile device (e.g., smartphone or laptop). With respect

to containerization, CASs aim to automatically deploy, manage, and update secure

containers that is dependent on CI that enterprises deem pertinent to the security

of the containers and their content. For example, again following the same scenario,

a policy associated with the management of containers would state in some manner

that "a secure container that does not include a camera application must be deployed

to the device when the employee is at the meeting room location". Thus, completely

eliminating the possibility of visually documenting confdential information via the

employee’s device.

1.1 Dissertation Statement

It is possible to apply context-aware systems, supported by various types of mo-

bile devices, to enterprise environments to secure enterprise content from (benign or

malicious) entities whether external or internal to the enterprise organization.

Specifcally, the work focuses on systems that utilize access control and container-

ization techniques on mobile devices in EED scenarios. We aim to answer three main

questions:

1. how do we capture contextual information?

2. how do we incorporate contextual constraints into access control policies?

davidsego
Highlight

6

3. how do we enforce contextual access control policies?

We address these questions in several approaches throughout this work, which we

briefy highlight in the next section. Each approach utilizes di˙erent techniques or

technologies to extract various CI from the environment and applies them to access

control or data isolation techniques. Further high-level details of each approach is

provided below.

1.2 Context-Aware Access Control Systems

In what follows, we briefy introduce various security threats that enterprises may

potential encounter in EED scenarios, and subsequently propose context-aware access

control systems to address those threats.

1.2.1 Location-Based Access Control Systems for Mobile Devices

Mobile Android applications often have access to sensitive data and resources on

the user’s device. Misuse of this data by malicious applications may result in privacy

breaches and sensitive data leakage. The problem arises from the fact that Android

users do not have control over the application capabilities once the applications have

been granted the requested privileges upon installation. In many cases, however,

whether an application is granted a privilege depends on the specifc user context.

The need for confgurable device policies based on context extends from high pro-

fle employees to regular smartphone users. For example, government employers, such

as in national labs [11], restrict their employees from bringing any camera-enabled

device to the workplace, including smartphones, even though employees might need

to have their devices with them at all times as their devices may contain data and

services they might need at any time. With context-based device access control poli-

cies, employees may be allowed to use smartphones as they can disable all applications

from using the camera and any device resources and privileges that employers restrict

while at work, while the user’s device can retain all its original privileges outside the

davidsego
Highlight

davidsego
Highlight

7

work area. Context-based policies are also a necessity for politicians and law enforce-

ment agents who would need to disable camera, microphone, and location services

from their devices during confdential meetings while retaining these resources back in

non-confdential locations. With context-based policies, users can specify when and

where their applications can access their device data and resources, which reduces

the hackers’ chances of stealing such sensitive data since end-users do not have con-

trol of the actions taken or exercised capabilities by possibly malicious applications

especially in context-sensitive circumstances.

Previous work on security for mobile operating systems focuses on restricting

applications from accessing sensitive data and resources, but mostly lacks eÿcient

techniques for enforcing those restrictions according to fne-grained contexts that dif-

ferentiate between closely located subareas [12]. Moreover, most of this work has fo-

cused on developing policy systems that do not restrict privileges per application and

are only e˙ective system-wide [13]. Also, existing policy systems do not cover all the

possible ways in which applications can access user data and device resources. Finally,

existing location-based positioning systems are not accurate enough to di˙erentiate

between nearby locations without extra hardware or location devices [12, 14, 15]. In

most cases, such systems assume the context as given without providing or evaluating

context detection methods for mobile devices [12,16].

End-users need a context-based access control mechanism by which privileges can

be dynamically granted or revoked to applications, on a per-application basis, based

on the specifc context of the user. We propose such an access control mechanism,

which we refer to as Context-Based Access Control (CBAC). Our implementation

of context di˙erentiates between closely located sub-areas within the same location.

We have modifed the Android operating system so that context-based access control

policies can be specifed by end-users and enforced by our system.

8

1.2.2 Securing Remote Enterprise Content via Proximity-Based Access

Control

Enterprise organizations have adopted context-aware systems that leverage prox-

imity -based access control (PrBAC) to mitigate threats of information leakage. That

is, access control decisions are not solely based on the requesting user’s location, but

also on the location of other users in the physical space. Consider an enterprise orga-

nization in which an employee is allowed to access a confdential fnancial document,

but only if the access is executed within the supervisor’s oÿce. An example of a

PrBAC policy would be to require the presence of the supervisor, in the supervisor’s

oÿce, for the employee to be able to view the confdential document.

In a previous work [17], we introduced a secure, automated PrBAC architecture

and prototype system that we referred to as the Context-Aware System to Secure

Enterprise Content (CASSEC). While our system was agnostic with respect to the

technological choices for detecting physical proximity, we had provided a simple im-

plementation of the complete CASSEC architecture. We utilized Bluetooth and WiFi

devices, which are widely used in enterprise environments, to address the occupancy

detection problem [18] and support two practical proximity-based scenarios often en-

countered in enterprise settings: Separation of Duty and Absence of Other Users.

The frst scenario is achieved by using Bluetooth MAC addresses of nearby occu-

pants as authentication tokens. The second scenario exploits the interference of WiFi

received signal strength when an occupant crosses the line of sight. Regardless of

the scenario, information about the occupancy of a particular location is periodically

extracted to support continuous authentication. The proposed access control system

allows end-users to automatically access enterprise content stored in a remote server,

and to the best of our knowledge, our approach is the frst to incorporate WiFi signal

interference caused by occupants as part of a PrBAC system.

In this dissertation, we also consider the security implications of an enterprise’s

employees relying on CASSEC’s position-based services to access remote enterprise

9

content via endpoint devices. In general, the sensors of a context-aware system extract

contextual information from the environment and relay that information to higher-

level processes of the system so to infuence the system’s control decisions. However,

an adversary can maliciously infuence such controls indirectly by manipulating the

environment in which the sensors are monitoring, thereby granting privileges the

adversary would otherwise not normally have. To address such context monitoring

issues, we extend CASSEC by incorporating sentience-like constructs, which enable

the emulation of "confdence", into our PrBAC model to grant the system the ability to

make more inferable decisions based on the degree of reliability of extracted contextual

information. In CASSEC 2.0, we evaluate our confdence constructs by implementing

two new authentication mechanisms. Co-proximity authentication employs our time-

based challenge-response protocol, which leverages Bluetooth Low Energy beacons

as its underlying occupancy detection technology. Biometric authentication relies on

the accelerometer and fngerprint sensors to measure behavioral and physiological

user features to prevent unauthorized users from using an authorized user’s device.

We provide a feasibility study demonstrating how confdence constructs can improve

the decision engine of context-aware access control systems.

1.3 Context-Aware Containerization Systems

EED scenarios enable employees to utilize their smartphone mobile device for

both personal and enterprise purposes, thereby allowing sensitive enterprise content

to be stored and accessed on end-users’ devices anywhere and anytime. However,

security is an important, and the most signifcant, barrier to wide adoption of such

dual-use scenarios. In 2016, conducted research found that the top two security con-

cerns of cybersecurity practitioners, such as enterprise IT admins, were data leakage

(72%) and unauthorized access to enterprise resources (56%) [19]. In fact, nearly

one out of fve organizations (21%) experienced a security breach via EED vectors.

IT admins attempt to mitigate such threats by employing Enterprise Mobility Man-

10

agement (EMM) systems which administer secure containers (e.g., work persona) to

end-users’ devices [20], but enterprises continue to su˙er due to EMM systems lack

of or ine˙ective access control and monitoring solutions.

We identify a few shortcomings of contemporary EMM systems. First, EMM sys-

tems do not consider the context in which personas are employed. EMM systems,

such as Samsung KNOX [20], do not provide enterprises a means to specify or enforce

contextual constraints to control access to or infuence the behavior of personas. Sec-

ond, modern EMM systems assume that each end-user uses her device for only one

enterprise. We argue that EMM systems need to support multi-enterprise environ-

ments, as end-users may interface with a variety of frst/third-parties with potentially

conficting contextual access control policies. To limit risks of unauthorized access,

it is imperative that organizations employ secure means of contextual authentication

and authorization to protect enterprise content after it is downloaded to end-users’

devices.

To address these shortcomings, we present our position-based, Multi-EnterpRise

Containerization (MERC) architecture for EED security. The MERC architecture

leverages positional data to grant context-aware capabilities to container-based sys-

tems. We grant enterprises the ability of defning location- and proximity-based

conditions that must be met in order for users to securely access enterprise container

content. First, we provide a scalable location-based scheme that allows multiple en-

terprise context-aware systems to securely coexist and activate policies and personas

on an end-user’s device. Second, the MERC incorporates proximity-based constraints

to modify a persona’s behavior. We evaluate our prototype using preexisting infras-

tructures, and our experimental results show that MERC is an e˙ective and practical

EED security solution for context-based containerization.

11

1.4 Document Structure

The rest of this document discusses the above topics in further detail. Chapter

2 presents basic concepts and surveys the state-of-the-art in mobile operating sys-

tems, positioned-based systems, and access control systems that lay the foundation

of this work. The frst approach in Chapter 3 addresses the issue of localizing the

user using client-side technology and adapting applications’ access to client-side con-

tent depending on the user’s location and time of access. The second approach in

Chapter 4 addresses the problem of localizing a user as well as detecting the proxim-

ity of other users without solely relying on end-users’ devices to determine positional

information, and then utilizing such information in access control requests to remote

enterprise content. The third approach in Chapter 5 addresses the issue of apply-

ing proximity-based constraints to the management of end-user devices via mobile

containerization techniques and technologies when end-users may be employed by or

consult for multiple enterprises. Chapter 6 concludes this dissertation with questions

and insights directed at enterprises so that enterprises could implement or employ

appropriately solutions for their particular EED scenarios.

davidsego
Highlight

12

2. BACKGROUND AND RELATED WORK

In this chapter, we present basic concepts and survey the state-of-the-art in mobile

operating systems, positioned-based systems, and access control systems in order to

understand the work.

2.1 Android

Android is a Linux-based, mobile phone platform designed with a multi-layered

security infrastructure [21]. Loaded on top of the Linux kernel are the System Li-

braries, Android Runtime, and Application Framework software layers (Figure 2.1).

Each application, which is assigned a unique user ID (UID), is given a dedicated part

of the fle system for its own data, and executes in a separate Dalvik Virtual Machine,

thus creating an application sandbox. Along with Linux’s discretionary access control

mechanism, Android includes a fne-grained permission system that determines the

set of device resources an application has access to. An application’s permissions,

which can be extracted from its AndroidManifest.xml fle, are also associated with

its UID. At the time of an application installation, users have to either grant all the

requested permissions to proceed with the installation of the APK, or cancel the in-

stallation completely. As of Oreo (API 26), there are currently over 150 application

developer permissions.

An Intent is an Android messaging facility to support inter-component communi-

cation. A component (i.e., Android activity, service, content provider, or broadcast

receiver) sends an Intent message to the OS, which basically specifes the intent of

starting, accessing, or requesting information from a particular component, including

ones from another application.

davidsego
Highlight

13

Fig. 2.1. Android software stack.

2.2 Position-based Services

There is a variety of technologies that address the localization problem, that is,

to determine and retrieve a user’s location. Generally, each positioning system (i.e.,

PBS) has at least two separate hardware components, a transmitter and a receiver

to send and receive signals, respectively [22]. The receiver analyzes one of three

characteristics of the received signal which are: angle-of-arrival (AoA), received-signal

strength (RSS), and time of arrival (ToA).

PBSs have the ability to detect the current position of user devices, and such

services are important in variety of settings including access control enforcement

in EED scenarios [17]. PBSs vary with respect to many parameters, such as the

position technologies on which they are based, security, privacy, a˙ordability, resource

requirements (e.g., memory or power consumption), and precision level of positional

data, and therefore have their inherent advantages and disadvantages. For example,

geofencing PBSs are able to place a user within a predefned area such as with the use

of GPS, which is the most widely used positioning tool that uses the propagation time

of signals (i.e., ToA) from satellites to compute the position of a receiver anywhere on

Earth. Microlocation PBSs can locate a user with high accuracy such as with the use

14

of Ultra Wide-Band radios to provide an accuracy as high as 10 cm by calculating AoA

and ToA [23]. Other positioning techniques based on di˙erent technologies include

Infrared (IR), Radio Frequency (RF), Radio Frequency Identifcation (RFID) [24],

magnetic feld [25], ultrasound [26], Bluetooth [27], and WiFi [7, 9, 28–30].

Bluetooth Low Energy (BLE) can also be used to retrieve a user’s relative location

in an energy eÿcient manner, and it has been employed by beaconing services [23].

By utilizing widely-used BLE-based beacon protocols (e.g., Apple’s iBeacon, Google’s

Eddystone, and AltBeacon [23]), a beacon region or the proximity of other BLE-

enabled beacon devices (e.g., smartphones) can be detected. Detection is achieved by

periodically broadcasting beacons that are picked up by BLE-enabled devices. Each

beacon protocol has a di˙erent beacon construction, but we utilize Google’s Eddys-

tone implementation as it is open source and incorporates features that we leverage

in Chapter 4 and Chapter 5. The Eddystone UID is 16 bytes long and consists of

two values: Namespace (10 bytes) and Instance (6 bytes). The Namespace value

is a UUID (Universally Unique Identifer) that identifes a top-level beacon region.

The Instance value identifes sub-beacon regions and can be constructed using any

scheme. For example, semantically, a beacon construction could represent the au-

ditorium within building 10 (i.e., Instance) at NekSec’s campus (i.e., Namespace).

Google’s beacon also provides two measurements. The distance measurement is an

indicator of the proximity of one device to another which is determined based on the

RSS value. The ranging measurement is an intuitive, user-friendly indicator of the

distance between two devices which falls into one of the following ranges: Immedi-

ate (very close), Near (at a distance of 1-3m), Far (greater than 3m), or Unknown

(the distance cannot be accurately determined). We also investigate other distance-

bounding techniques. In particular, we investigate techniques that measure the time

elapsed, i.e., the round trip time (RTT), during the exchange of packets between the

transmitter and receiver. In Chapter 5, we implemented a distance-bounding sys-

tem using BLE beacons as our underlying technology, which were programmed using

Android’s android.bluetooth.le APIs [31].

https://android.bluetooth.le

15

2.3 Context-Based Access Control Models

2.3.1 Overview

The role-based access control (RBAC) model is mainly used in enterprise settings

to facilitate administration of access control polices [32]. In such settings, users are

assigned di˙erent roles whereby each role is granted predefned access privileges to

enterprise resources. Various access control models and systems have been proposed

that use RBAC as a foundational paradigm, and some augment the model so that

privileges associated with a role can only be exercised if contextual parameters are

adhered to. In this section, we provide an overview of role-based access control models

that incorporate CI into the decision-making process.

The most common extension is the inclusion of spatial constraints. GEO-RBAC is

a spatially-aware RBAC model that defnes the concept of spatial roles which allow an

authorized user to assume a role (i.e., role enabling) and exercise its associated privi-

leges (i.e., role activation) only if the user is at or within a designated location specifed

by physical coordinates [33]. LoT-RBAC and STARBAC are other augmented RBAC

models that incorporates spatio-temporal constraints for role enabling and role acti-

vation [34, 35]. Unlike the previously mentioned models, the authors in [36–38] did

not focus simply on spatial or temporal constraints, but rather designing an access

control framework that is fexible enough to allow a variety of contextual parameters.

Such models however are not implemented and therefore no enforcement mechanism

has been developed to support these models.

For the purpose of applying those models to real implementations, Sandhu et al.

proposed the notion of PEI (policy, enforcement, implementation) models that defne

a usable structure for creating an implementation of enforcement mechanisms [39].

Gupta et al. proposed a context profling framework based on the surrounding en-

vironment captured by the mobile device sensors to estimate the familiarity of a

place [16]. They used such context to create context proflers that are used to con-

fgure access control policies on mobile devices.

16

Proximity-based Access Control (PBAC) [40] is an access control model developed

specifcally for Smart-Emergency Environments that takes into account the user’s

proximity to a resource (e.g., a computer). PBAC was implemented using ultra-

wide band RFID which calculated AoA and ToA to support automated access access

control. Although the system did not require user intervention, active tags (worn

by users) and mounted receivers had to be deployed to determine the tags position.

Prox-RBAC, which extends GEO-RBAC, is a formal authorization model based on

a notion of proximity [41]. That is, access control decisions are not solely based on

the requesting user’s location, but also on the location of other users in the physical

space. Prox-RBAC incorporates elements of the UCONABC usage control model

[42]. Prox-RBAC was implemented using near-feld communication (NFC) allowing

a NFC phone to transmit signals to a NFC reader to lock and unlock a door, and

although it provides high-integrity proof of location, it requires user intervention.

Prox-RBAC has been further extended to incorporate a large variety of proximity

constraints in addition to the spatial ones, namely attribute-based, social, cyber,

and temporal proximity constraints [43]. Many systems, including Prox-RBAC and

PBAC, inherently assume that every individual within a monitored space is trusted.

Systems that are solely based on location tracking devices worn or held by users can be

easily circumvented through collusion. For example, assume sensitive documents are

stored within a restricted oÿce that should only be accessible by a high-level employee

such as a corporate CEO. The CEO will unlock the door with his/her tracking device

(e.g., NFC), but a low-level employee can easily follow immediately behind prior to the

door locking. By not initiating contact between the transmitter and the receiver, the

system would be tricked into believing that no unauthorized personnel is occupying

the restricted oÿce. In another insecure scenario, an employee, assuming he/she was

given a tracking device, can simply remove the device (e.g., active tag) so as to not

be tracked. Neither Prox-RBAC or PBAC addressed a major security problem of a

user obtaining an authorized user’s phone, whether by theft or voluntary provision.

Consequently, individuals may be able to circumvent the access control system via

17

collusion, allowing one individual to impersonate another individual by exchanging

tracking devices. In addition, costs for deployment and management of these systems,

and others used in similar architectures, remain signifcant and limit the widespread

adoption of these systems.

2.3.2 Context-based Application Restrictions for Android

Limiting mobile applications’ capabilities on the Android platform is not novel.

Approaches have been proposed to support the restriction of device content access,

but not in the context of EED scenarios [44]. Apex [45], AppFence [46], TISSA [47],

MockDroid [48], and YAASE [49] have developed modifcations to the Android OS

in order to limit data leakage and restrict application permissions. Our work com-

plements these techniques by adding more user controls and device restrictions (such

as intent management) and ties these confgurations to context-based policies that

dynamically apply device restrictions. Our work also complements research e˙orts in

protecting user and application data applied at the middleware and kernel layers of

the Android OS, such as FlaskDroid [50], Moses [51], Saint [52], and TrustDroid [53].

2.4 Containerization

2.4.1 Overview

To support the dual use of mobile devices in EED scenarios, various mobile device

containerization techniques were developed to secure accessible enterprise content as

well as the privacy of employees [20]. In a broad sense, containerization primarily

aims to secure a portion of a device’s resources (e.g., application, storage, or network

access) from other applications and systems running on the same device. When

applied to EED scenarios, containerization isolates within the same device personal

privacy-sensitive applications from enterprise and business applications.

18

In order to administer/manage secure containers to/on end-users’ devices, enter-

prises use Enterprise Mobility Management (EMM) systems [20]. Existing EMM

systems operate at either the application or platform level. The level at which these

systems operate determines the types of containerization technologies they are able

to leverage to isolate content. Application-level EMM systems create an application-

level container supported by a non-native application-layer (EMM) framework (Fig-

ure 2.2(a)) that allow an application, or a set of trusted applications, to isolate itself

and its data from other untrusted applications. Platform-level EMM systems, sup-

ported by a native EMM framework (Figure 2.2(b)), create multiple environments

referred to as "personas" to isolate content so that trusted applications do not execute

in a persona in which untrusted applications also reside. Independently of whether

the container is implemented at the application or platform level, enterprises are able

to confgure policies for the container that modify the behavior of the applications

(e.g., accessing data and system resources).

(a) Application-level Container. (b) Platform-level Container.

Fig. 2.2. The interactions between two containerized applications and
an untrusted application that exists outside of the secure area. The
gray and red arrows represent permitted and non-permitted commu-
nication channels, respectfully.

19

2.4.2 Containerization on Android

There are several existing EMM-like systems that utilize multi-partition tech-

niques to isolate private and corporate content. Contrary to our work, most fail to

consider the context in which they are employed. Gupta et al [54] created a custom

Android OS that supports dual-mode personas. In enterprise mode, the system could

enforce policies that disable a subset of device communication peripherals, force the

device to only communicate via an enterprise VPN, and ensure an encrypted exter-

nal storage is utilized. TrustDroid proposed the use of domains and their isolation

by monitoring and limiting data exchanged via IPC (Inter-Process Communication),

fles, databases, and socket connections.

IdentiDroid [6] is an application level privacy-enhancing tool based on Android

that addresses the shortcomings of network anonymizers (e.g., Tor and Hotspot

Shield). IdentiDroid uses confguration profles which are analogous to personas that

relocate application data when a profle is de/activated. Unlike other platform-level

systems, IdentiDroid also contain application-level containerization through the uti-

lization of several device content protection techniques. DroidARM [55] builds upon

the work in IdentiDroid, but implemented on top of Android Lollipop. In this way,

DroidARM is able to use native multi-user containerization to isolate applications and

data as well as support EMM-based management features. Samsung KNOX 2.0 [20],

the system AFW actually adopted its persona-based approach from, incorporates sig-

nifcantly more hardware and platform security than any other platform-level EMM

system, thus providing stronger guarantees of preventing root attacks.

Cellrox [20] uses a lightweight virtualization technology called ThinVisor. ThinVi-

sor resides in the OS and allows multiple instances of the Android OS, which Cellrox

calls Virtual Mobile Instances (VMIs), using the same kernel. Cellrox’s VMIs can be

made portable allowing a VMI to be decoupled from the device and placed in another

device without needing to reconfgure the VMI. None of the aforementioned solutions

20

support the activation of a container via location-based constraints or the restriction

of the container’s content via proximity-based constraints.

Several other solutions have been proposed that rely on the data tagging and

information-fow tracking capabilities of TaintDroid [56]. In the work by Kodeswaran

et al. [57], applications are classifed as enterprise-related via parameters such as

market source or developer signature. In addition, the data that is generated or

processed by these applications are consequently tainted as enterprise. However, the

proposed system does not incorporate contextual constraints. The work by Feth et

al. [58] proposes a data-driven usage control architecture in which data is tainted by an

enterprise-provided tag. The system supports context-aware policies by monitoring

various device sensors such as location, WiFi, accelerometer, battery, Bluetooth, etc.

Moses [51] isolates sensitive content from di˙erent personas by tainting data at the

OS level with the name of the persona the data is associated with. Moses supports

passive persona activation via GPS tracking. However, Moses, as well as the work

proposed by Feth et al. [58], is not suitable for indoor environments as a result of

GPS signal attenuation caused by construction materials. Furthermore, all of these

solutions require signifcant modifcations to the Android OS.

21

3. A LOCATION-BASED ACCESS CONTROL SYSTEM
FOR MOBILE DEVICES

Mobile application developers leverage the computational and communication-based

resources on mobile devices in order to incorporate new or enhanced services to their

applications. However, the majority of these resources can collect sensitive data and

may expose users to security and privacy risks if applications use them inappropriately

and without the user’s knowledge [56]. The threat arises when a device application

acts maliciously and uses device resources to spy on the user or leak the user’s personal

data without the user’s consent [59–61].

In this chapter, we propose a context-based access control (CBAC) mechanism for

Android systems that allows smartphone users to set confguration policies over their

applications’ usage of device resources and services at di˙erent contexts. Through

the CBAC mechanism, users can, for example, set restricted privileges for device

applications when using the device at work, and device applications may re-gain their

original privileges when the device is used at home. This change in device privileges

is automatically applied as soon as the user device matches a pre-defned context of

a user-defned policy. The user can also specify a default set of policies to be applied

when the user is located in a non-previously defned location.

Confgured policy restrictions are defned according to the accessible device re-

sources, services, and permissions that are granted to applications at installation

time. Such policies defne which services are o˙ered by the device and limit the de-

vice and user information accessibility. Policy restrictions are linked to context and

are confgured by the device user. We defne context according to location and time.

Location is determined basically through visible Wi-Fi access points and their respec-

tive signal strength values that allows us to di˙erentiate between nearby sub-areas

within the same work space, in addition to GPS and cellular triangulation coordi-

22

nates whenever available. We implement our CBAC policies on the Android operating

system and include a tool that allows users to defne physical places such as home

or work using the captured Wi-Fi parameters. Users can even be more precise by

di˙erentiating between sub-areas within the same location, such as living rooms and

bedrooms at home or meeting rooms and oÿces at work. Once the user confgures

the device policies that defne device and application privileges according to context,

the policies will be automatically applied whenever the user is within a pre-defned

physical location and time interval.

Below, we frst present a model overview of our access control framework in Sec-

tion 3.1. Section 3.2 introduces our policy constructs and their classifcation followed

by implementation and technical details in Section 3.3. Section 3.4 emphasizes our

technique in managing CI and how we keep policy restrictions up-to-date with de-

vice location. Section 3.5 reports results of experiments to assess the accuracy of CI

and the impact of policy restrictions on applications. We analyze the security of our

approach in Section 3.6.

3.1 Model Overview

In this section, we present an overview of our access control framework through

describing its components and the role of its entities.

Our framework consists of an access control mechanism that deals with access,

collection, storage, processing, and usage of context information and device policies.

To handle all the aforementioned functions, our framework design consists of four

main components as shown in Figure 3.1.

The Context Provider (CP) collects the physical location parameters (GPS,

Cell IDs, Wi-Fi parameters) through the device sensors and stores them in its own

database, linking each physical location to a user-defned logical location. It also

verifes and updates those parameters whenever the device is re-located.

23

The Access Controller (AC) controls the authorizations of applications and pre-

vents unauthorized usage of device resources or services. Even though the Android

OS has its own permission control system that checks if an application has privileges

to request resources or services, the AC complements this system with more control

methods and specifc fne-grained control permissions that better refect the applica-

tion capabilities and narrow down its accessibility to resources. The AC enhances

the security of the device system since the existing Android system has some permis-

sions that, once granted to applications, may give applications more accessibility than

they need, which malicious code can take advantage of. For example, the permission

READ_PHONE_STATE gives privileged applications a set of information such as

the phone number, the IMEI/MEID identifer, subscriber identifcation, phone state

(busy/available), SIM serial number, etc.

The Policy Manager (PM) represents the interface used to create policies,

mainly assigning application restrictions to contexts. It gives control to the user

to confgure which resources and services are accessible by applications at the given

context provided by the CP. As an example, the user through the PM can create

a policy to enable location services only when the user is at work during weekdays

between 8 am and 5 pm.

The Policy Executor (PE) enforces device restrictions by comparing the device’s

context with the confgured policies. Once an application requests access to a resource

or service, the PE checks the user-confgured restrictions set at the PM to either grant

or deny access to the application request. The PE acts as a policy enforcement by

sending the authorization information to the AC to handle application requests, and

is also responsible to resolve policy conficts and apply the most strict restrictions.

Through the PM, users can create CBAC policies through confguring application

restrictions and linking them to contexts. When an application requests a resource or

service, the AC verifes at run-time whether the application request is authorized and

forwards the request to the PE. If the request is authorized, the PE then checks if

there is any policy that corresponds to the application request. If such a policy exists,

24

Fig. 3.1. Access control framework.

the PE requests from the CP to retrieve the context at the time of the application

request. The PE then compares the retrieved context with the context defned in the

policy. In case of a match, the PE enforces the corresponding policy restrictions by

reporting back to the AC to apply those restrictions on the application request.

We carefully design the access control framework so that the user-confgured poli-

cies are securely enforced with minimal processing steps and execution time to avoid

any signifcant delays in responding back to the requesting application. As our design

should securely handle policy execution, we maintain the context data provided by

the CP to make sure it is accurate, precise and up-to-date.

3.2 Policy Core Model

In this section we describe the core policy constructs that compose our CBAC

policies. We start by defning the policy constructs and then categorize our policies

according to the type of restrictions and modifcations that we need to apply to the

Android OS.

25

3.2.1 Policy Constructs

We defne our CBAC policies as a set of restrictions applied to the smartphone

applications when the device is located within a specifed context. Policy restrictions

represent the constraints applied on the applications’ privileges in accessing device re-

sources, system methods, functions, user data, and services. Policy contexts represent

to where and when the policy must be enforced.

In what follows, we assume three sets: (1) SUB the set of subjects representing

the device applications, (2) OBJ the set of protected objects (objects, for short)

representing the permissions, services, and functionalities available for the system

or applications, and (3) ACTION the set of restriction actions that can be applied

through the CBAC policies.

The set of subjects SUB is composed of the PackageNames of all applications

installed on the device. In addition, a special character � is added to the set to

represent all installed applications. This character is useful for policies that need

to be enforced on all applications, rather than creating the same policy for every

application. Moreover, we assume that each object from set OBJ has an associated

type from the set {Permission, Data, Intent, System_Peripheral}. Let o be an object

from the set OBJ ; notation type(o) denotes the type of o. The set of actions ACTION

defned for our CBAC model includes the following actions:

revoke_Permission: denys permission(s) from being granted to application(s).

shadow_Data: conceals the actual user data stored on the device.

disable_Intent: intercepts and drops the specifed intent message.

save_State: disables toggling the state (ON/OFF) of the specifed system periph-

eral.

Defnition 1 (Restriction.) Let s 2 SUB, o 2 OBJ , and a 2 ACT ION . A policy

restriction is defned as the tuple [s, o, a] such that:

>>>>>>>>>>
>>>>>>>>>>

26

8

revoke_P ermission if type(o) = Permission.

><shadow_Data if type(o) = Data.
a =

disable_Intent if type(o) = Intent.

>:save_State if type(o) = System_Peripheral.

Access control policies are linked to a context that specifes where and when these

policies should be enforced. In our model, the policy context is composed of a device

location and a time interval. The device location corresponds to where a policy should

be enforced. For defning a device location, we use the reference geometric model

the describes how locations on Earth are represented. We adopt the spatial model

compliant with Open GeoSpatial Consortium (OGC) [62] that uses the notion of GIS

features. Features have a defned geometry (points, lines, or polygons) in a reference

space, with points to represent a feature with a single location in the coordinate space,

lines to represent a feature that has a linear interpolation of an ordered sequence of

points, or polygons to represent a feature that has an ordered sequence of closed lines

defning the exterior and interior boundaries of an area. Features also have types

(road, town, region) and can be given an instance for each type (Champs-Elysees,

Paris, lle-de-France).

Specifc to our CBAC policies, we defne the device location as the physical loca-

tion that represents a geographically bounded feature (such as a residential and/or

commercial building), with boundaries specifying the interior area in which the device

is located. The physical location data and boundaries are obtained from the mobile

device sensors, mainly captured from GPS, cellular network, and Wi-Fi device sensors

as detailed in Section 3.4. In addition to the device physical location, users can assign

logical location names to the feature or sub-area (such as living room or work oÿce)

in which the device is located. Using these logical location names, users can reuse

them in multiple policies without the need to re-capture the device physical location

for every policy.

27

On the other hand, a policy time interval represents the specifc time period

within which a policy should be enforced. We represent the specifc date and time

in the format of YYYY-MM-DD-hh:mm:ss. Additionally, we introduce the R fag to

defne recurring events. The value of R is drawn from the set {O,D,W,M,Y} defning

the event frequency: O ! once, D ! daily, W ! weekly, M ! monthly, and

Y ! yearly. An event is recurred based on the value of R and the date/time set

in the policy time interval. For example, to set an event that occurs every Monday

from 5 pm to 10 pm, R is set to W and the time interval should be set to a sample

event date-time, such as starting on 2013 − 04 − 01 − 17 : 00 : 00 and ending on

2013 − 04 − 01 − 22 : 00 : 00.

Defnition 2 (Context.) Let LOC be a logical location name representing a partic-

ular feature or sub-area. Let {ST, ET, R} respectively be the starting time, ending

time, and frequency to when a particular policy should be enforced. A policy context

is defned as the tuple [LOC, {ST, ET, R}].

Defnition 3 (Policy.) Let r be a restriction as defned in Def. 1 and c be a context

as defned in Def. 2. A policy is defned as a tuple [r, c].

Below is an example of a policy that disables the Skype application from having

the Camera permission monthly between 4.00 pm and 5.00 pm on the frst of every

month starting August 1, 2013 at our department meeting room Room110:

POLICY = [[com.skype.raider,

android.permission.CAMERA, revoke_Permission],

[Room110,

{2013-08-01-16:00:00, 2013-08-01-17:00:00, M}]]

3.2.2 Policy Categories and Examples

We here classify location dependent run-time policies according to the type of

restrictions and modifcations that we need to apply on the Android OS. Table 3.1

displays examples of policy restrictions for each policy category.

28

Table 3.1.
Policy categories and examples.

Policy Category Example Policy Restriction [s,o,a]

Resource Restriction Policies Disable Camera for Skype [com.skype.raider, android.permission.CAMERA, revoke_Permission]

System Peripheral State Policies Disbale Bluetooth toggling [*, BLUETOOTH, Save_State]

Multitasking and Intercommunication Policies Disable loading a browser activity [*, Intent.ACTION_VIEW, Uri.parse, disable_Intent]

User Security Policies Disable uninstalling applications [*, android.intent.action.DELETE, disable_Intent]

3.3 Implementation

In this section, we introduce the technical details of our implementation which

includes our modifcations to the Android OS and the components of the Policy

Manager custom application that acts as an intermediary between the OS and the

user’s desired policy confgurations.

3.3.1 Policy Manager Components

The Policy Manager custom application consists of the four main Android ap-

plication components: Activities, Broadcast Receivers, a Content Provider, and a

Service.

Activities: The user interacts with the Policy Manager via activities, and through

these activities, a user is able to defne physical locations and subsequently confg-

ure a set of policies for these locations. The main constituents of these activities

include Application Events, Permission Access, Resource Access, System Preferences,

and Time Restriction.

BroadcastReceiver: We extended the Android’s BroadcastReceiver class and

created two custom classes, the StartLocationServiceReceiver and the BootReceiver

classes. The StartLocationServiceReceiver is responsible for triggering our customized

LocationService for retrieving device location information. The BootReceiver ’s main

task is to schedule when the StartLocationServiceReceiver should request the location

service. Once the BootReceiver receives the BOOT_COMPLETED Intent from the

system, it uses the Android’s AlarmManager service to let the receiver schedule a

29

pending Intent to be sent periodically to our StartLocationServiceReceiver in order

to update the device location.

Service: The LocationService service is derived from the IntentService class that

facilitates o˜oading work from the main application’s thread, allowing tasks to be

performed in the background on a separate thread if desired. LocationService deter-

mines if the device has moved to or still is in a previously registered area. O˜oading

the aggregation of location-based data in a separate thread reduces the performance

impact of the execution of the LocationService on the Policy Manager. We use the

AlarmManager to periodically activate the LocationService to ensure the device’s lo-

cation is always up-to-date. By default, the LocationService is activated once per

minute, but we give the user the choice to confgure how often the service is exe-

cuted. The duration of the service depends on the number of snapshots of location

parameters to be taken, which is currently confgured to four per area.

Content Provider: The policies confgured by the user are stored within the

Policy Manager data directory. This data is private to our custom application and

cannot be accessed by other applications or the system itself, as a result of Linux’s

kernel user ID access control mechanisms. PolicyCP is our custom content provider

that acts as a secure intermediary between the policy database and all objects outside

of the Policy Manager ’s running process. We chose to use the SQLite database to

store user-confgured policies due to the support and ease of programming provided

by the Android API’s associated with storing and managing databases on Android

devices.

We provide some built-in policies that are pre-confgured and can easily be mod-

ifed to achieve the required user needs. Moreover, we can also refer to existing

usability techniques [63–66] that can be used to o˙er regular users with preset and

adapted policy confgurations.

30

3.3.2 Permission Management

In the Android system, all resources that require explicit access rights in the

form of permissions are protected by the ActivityManagerService class via permission

verifcation. When an application attempts to use any of these resources, the Activi-

tyManagerService’s method called checkComponentPermission is invoked to verify if

the calling application has the appropriate permission(s) to access the resource.

We apply our modifcations to this particular method by simply intercepting the

permission call before the system performs its standard permission verifcation pro-

cess. Given the permission and the application name, the system subsequently calls

our custom content provider’s revokeResourceAccess to determine the next course of

action. Depending on the user’s policy confguration, the next course of action could

either be returning the constant PackageManager.DENIED in the checkComponent-

Permission if the user has confgured to block that permission from the requesting

application, or letting the normal verifcation process take its course. We also give

the ability to revoke any or all permissions system-wide via the PolicyManager ’s

interface.

3.3.3 Restrictions on User Data

Our implementation of data obfuscation complements many of the techniques

previously used in [46] and [6], but instead under the domain of CBAC policy restric-

tions. We obfuscate user data from applications attempting to access it if the policy

restriction applies to those applications. We modify the Android APIs that access

the user data saved on the device.

Relational database systems are the common data management systems used to

create, store, and manage user data. Accessing these data usually require calling the

ContentResolver’s query() method, and thus we modify it for our purposes. Instead

of returning the expected Cursor object needed to point to the required data, a

NullCursor object is substituted. A NullCursor object represents an empty dataset,

31

such as an empty list of pictures as if pictures were not present or never stored on

the device.

3.3.4 Managing System Peripheral State

We also give users the option to confgure a policy to restrict access to peripher-

als (e.g., Bluetooth) when entering a particular location. Specifcally, users can set

up their devices to prevent applications from modifying a peripheral’s current state

(enabled/disabled). While it is possible to modify a peripheral’s current state by

using permission management, we modify the specifc methods that enable/disables

these peripherals in order to prevent applications from crashing that do not have

code for handling exceptions resulting from revocation of permissions. As an exam-

ple, for Bluetooth we modifed the BluetoothAdapter class and for Wi-Fi we modifed

the WifManager class so to assure that these modifcations do not result in appli-

cation crashes and to prevent applications from modifying peripherals current state.

Whenever an application tries to modify the state of a system peripheral, our content

provider PolicyCP checks the validity of the request and would refuse the request if

the request tries to override a user-confgured restriction.

3.3.5 Intent Management

Intent messages are one of the common forms for inter- and intra-communication

between application components, sent via three methods: startActivity(), sendBroad-

cast(), and startService(). Preventing an application from sending intents is simply

a matter of intercepting the intents when the aforementioned methods are called by

applications. Intent interception provides the user the ability to prevent an appli-

cation component from starting another activity, broadcasting any possible sensitive

information, or executing a possibly suspicious background service. For example,

without the need of declaring the Android permission "RECORD_AUDIO", an ap-

plication can indirectly access the device’s microphone recorder application by re-

32

Table 3.2.
Examples of policy restrictions that can be controlled via intercepting Intents.

Restriction Category Description

Application Install/Uninstall Prevent an application from sending an intent

to install or uninstall an application.

Application Multitasking Prevent running multiple user-application simultaneously.

Services Prevent applications from starting background services.

Broadcasts Prevent applications from broadcasting Intents.

Application Launching Prevent certain applications from running on the device.

Lock/Unlock Device Preventing requesting pin code to unlock the device.

questing the Activity class to send a record audio intent. Therefore, we modifed the

Activity class which hosts startActivity() and startActivityForResult(), and the Con-

textWrapper class which contains sendBroadcast() and startService(). We modifed

these methods to intercept the Intents and control the actions performed based on

those Intent objects.

We classify these Intents based on the contents and description of the intent

objects. The user is given, via the Policy Manager interface, the ability to prevent a

specifc set of Intents from being sent. Table 3.2 lists few examples of these Intent-

related restrictions.

Launching applications is achieved by intercepting those intents and preventing

applications from being started either by users or by other applications. The frst

method is when users launch applications through the default Android Launcher

application, which is the home screen of the device. The second method for start-

ing another application is calling its activity within an already opened application.

We extract the action and category from the Intent object, and verify if it is "an-

droid.intent.action.MAIN" and "android.intent.category.LAUNCHER", respectively.

If those specifc contents are present and if the simultaneous running of applications

is restricted, we discard the intent preventing the framework to handle it.

33

Finally, through the Intent management, users can control when to request a pin

code when unlocking the device. In our implementation, we modify the Keyguard-

ViewMediator class in order to intercept the locking operation of the device, and thus

controlling when a PIN is required.

To summarize, users will have all the options to specify applications restrictions

associated with context data through the policy managers. In the policy manager, the

permission management is used to confgure application restrictions related to device

resources (e.g. Camera). Restrictions on user data are used to shadow user data

(usually saved in relational databases) and to return fake data to the application (e.g.

Contacts). Managing system peripheral state is used to control applications actions

in toggling the state of certain resources (e.g. enabling/disabling Bluetooth). Finally,

intent management is used to control the communication between applications and

flter user and application actions on the system. Intent management is also used

to confgure restrictions on applications accessing resources, as in some cases, these

applications are developed to access system resources indirectly through using an

intent message rather than requesting a permission.

3.4 Context Management

The main source of location-related information for our access control system is

the Wi-Fi Access Points (AP) and their corresponding signal strengths. Location

information acquired from GPS and cellular towers is also aggregated to our con-

text defnition but may not be suÿcient for indoor localization especially that they

may become weak or unavailable inside buildings or areas within building struc-

tures [67, 68]. However, location information retrieved from Wi-Fi parameters could

be more precise to di˙erentiate between closely located sub-areas within the same

GPS location [69,70].

A spatial region is represented by combining GPS coordinates, cellular triangu-

lation location data, and Wi-Fi APs and signal strengths. In Android, the GPS

34

coordinates and cellular triangulation are obtained in a similar fashion by invoking

the Android LocationManager service. Once the LocationManager is invoked, we re-

quest location updates by calling the requestLocationUpdates method that returns a

Location object which contains latitude, longitude, timestamp, and other information.

Wi-Fi is handled di˙erently than the previous two location methods. We obtain

the Wi-Fi parameters by invoking the WifManager service to retrieve the Wi-Fi

access points scans. We register our BroadcastReceiver mWif_receiver with an In-

tentFiler action to receive the broadcasted Wi-Fi scanned intent, and then request

for and subsequently process the actual scanned access points data.

In our CBAC policy system, we provide users with a utility to either capture the

physical location of the device or to manually enter the device location coordinates.

In the following sections, we show our design and implementation of the location

capturing phase and detection phase and how the device’s context is matched with a

pre-defned policy context.

Fig. 3.2. Location capturing phase.

35

3.4.1 Location Capturing Phase

Figure 3.2 describes how location data is captured for each context defned by

the user. Through the location scan interface, the user is able to capture several

snapshots of location data in di˙erent sub-areas. For each sub-area, location data is

accumulated from each snapshot; the GPS coordinates and the cellular triangulation,

when applicable, import the latitude and longitude from the captured snapshots and

only select those with the highest position accuracy. With respect to Wi-Fi, we

noticed that the Wi-Fi access points signal strengths fuctuate even if the device is

stationary or motionless. Therefore, our application scans the signal strengths of

each access point for several seconds gathering the RSSI values at each particular

sub-area. We conduct the scans with no other users in the vicinity as the presence of

other users would a˙ect the RSSI values [9,71]. Finally, the accumulated data, which

mainly consists of Wi-Fi access points with signal strength ranges in addition to GPS

and cellular triangulation data as supporting location information, will represent the

device’s physical location.

Any location that is not defned by the user or does not have location information

saved on the device will be considered “Unregistered”. Therefore, we designate a

default policy restrictions for the user to confgure whenever the device is located in

an unregistered location. In addition, we allow users to register locations that have

not been previously visited. This is achieved through either manually entering the

publicly known longitude and latitude of the desired location, or by acquiring the

fne-grained Wi-Fi parameters from other devices who have saved those parameters.

This becomes very practical when the user is switching between two devices and needs

to import previously saved policy contexts to the new device.

Our implementation does not store all the GPS or triangulated cellular coordinates

acquired, rather a subset of those coordinates that bound into a convex hull and their

associated precision. The points in the interior of the convex hull are discarded. We

also only store the RSSI range for each distinct Wi-Fi access point scanned. This

36

range is the minimum and maximum RSSI values aggregated from all the sub-areas

for each access point. A sub-area is therefore represented as a range of Wi-Fi signal

strength values at the least, and if with high position accuracy, also a representation

of a convex hull of GPS or triangulated cellular coordinates.

Fig. 3.3. Location detection phase.

3.4.2 Location Detection Phase

Figure 3.3 describes how device context is detected and matched with pre-defned

context. Periodically, the location background service is re-instantiated to accumulate

location-context data to determine the device’s current whereabouts. Like when

registering and scanning a sub-area in the location capturing phase, we scan the

device’s location-related data. The list of user-registered areas that have a subset of

the scanned neighboring access points are extracted from the database frst. Matching

distinct access points is computationally less expensive than determining if coordinate

position falls within the boundaries of a convex hull. Then, using the current signal

strengths of the access points, we reduce the list to only a set of “best-match” list of

37

physical locations whose access points fall within the current captured signal strength

values. If the current scanned GPS or cell network coordinates fall within the convex

hull of the associated sub-area, then it is highly likely that the sub-area has been

located.

In the unlikely situation when the “best-match” list of physical locations contain

more than one location, the user is given the list to confrm his/her location. Even

though this event is unlikely to happen, it may still occur because Wi-Fi access point’s

signal strengths are volatile; their signal strengths fuctuate at a given location. As

a consequence, an access point’s signal may be, at some point, too weak for the

Android’s device sensor regardless of whether the device is in motion or stationary.

In the location capturing phase, we aggregate the retrieved data that records a range

of RSSI values from di˙erent sub-areas within the same location, for example, instead

of just a single snapshot. In the detection phase, however, we take a snapshot of

the location data, which may have only a subset of the previously aggregated data.

We compare the previously stored values with the snapshot data. Specifcally, with

respect to Wi-Fi, we determine if the captured RSSI value of a particular access

point is within the stored range. We perform this operation for each access point

captured in the snapshot and count the number of tests passed, which is the basis in

determining the physical location of the device.

3.5 Experimental Results

In this section, we report experimental results about the CBAC mechanism and

evaluate its impact on the device system and applications. Our modifcations to

the Android source code were tested on the Android Nexus 4 cellular device and

Android Nexus 7 tablet running the Android 4.2.2 OS (API level v. 17). We ran

the top 250 applications from the Google Play market for testing and evaluating our

modifcations. Each experiment has been carried out with the help of the Android

Debug Bridge (ADB) utility by using the command “adb logcat”. We inserted logging

38

commands in various parts of the operating systems where modifcations were made

to observe, for example, application access events.

Fig. 3.4. Tested areas in one of our campus buildings.

Experiment 1: Location Detection Accuracy. The goal of this experiment

is to evaluate the accuracy of the location detection algorithm used in our CBAC

mechanism. We measure the number of success and failure detections per sub-area.

Figure 3.4 displays the schematics of one building where we performed some of our

experiments. The large, grid-pattern rectangles point out main locations or areas,

identifed by numbers. Areas outside the rectangles are considered “unregistered.”

The black circles indicate the specifc sub-areas examined during the location captur-

ing phase. All other colors indicate other sub-areas examined during the detection

phase.

Figure 3.4 shows three tested rooms located on the same foor. However, our

experimentation included several buildings and areas. In each room, we chose at

least four spots to participate in the location capturing phase to accumulate location-

related data, in order to construct a robust set of location parameters per room to

be stored in the database. In each location, we analyzed three sub-areas, indicated

39

by ’A’, ’B’, or ’C’ and measure the detection rate in each of these subareas. For

that particular foor which contains over 15 Wi-Fi access points, we captured the top

5 Wi-Fi access points per snapshot with the highest signal strength for each tested

sub-area.

Fig. 3.5. Detection accuracy rate of closely located areas.

Figure 3.5 displays the detection accuracy rate in the 3 sub-areas of rooms 1, 2

and 3. At each of the sub-areas of each room, we performed 50 location tests and

counted the number of successful detections. Our experimental results show that the

successful detection rates were up to 91%, and in the worst case scenario we had up to

29% of incorrect detections. This experimental result was complemented by testing

several “unregistered” areas around the registered rooms. We detected 16% of false

positives, that is, unregistered areas that appeared to be user-defned. Within the

registered areas, the values of the signal strengths of matching Wi-Fi access points

fell within the range of signal strengths frst acquired during the location capturing

phase. However, in the unregistered areas, especially the further away the device was

when the snapshots at the location capturing phase were taken, the values fell outside

the stored range because of building structures hindering the Wi-Fi signal strengths.

40

Experiment 2: Impact of Permission Restrictions. The purpose of this

experiment is to observe the impact of permission-related policy restrictions on ap-

plications. Specifcally, we are interested in whether or not an application crashes as

a result of being denied a permission that was initially granted at installation time.

Therefore, we performed a stress test on each application and observed the impact on

the application upon revoking its permissions when requesting a service or resource.

We performed our experiment on 245 Android applications and used the ADB logging

utility to view the permission being revoked when the checkComponentPermission()

method is called.

Fig. 3.6. Impact of permission revoking on applications.

Figure 3.6 shows the percentage of application crashes upon performing the stress

test on each permission. We counted an application as crashing even if it crashed

during the execution of one minor functionality. The main cause of these crashes

is due to the developers’ mishandling the denial of previously granted permissions.

Since application crashes are due to developers’ mishandling the denial of previously

granted permissions to their applications, application crashes can be prevented if

41

Table 3.3.
Time overhead for modifed Android methods.

Android Method Overhead (ms)

checkComponentPermission(..) 12.220

Intent-startActivity(..) 12.708

Intent-startService(..) 5.402

Intent-sendBroadcast(..) 5.208

User Data-ContentResolver(..) 12.300

Device Peripherals-setEnable(..) 8.351

error-handling is added whenever an application attempts to access a resources or

request a service. In fact, throughout testing several application versions, we realized

that the number of application crashes has been decreasing over time. This is because

developers are now aware that not having the permission error-mishandling script is

causing several application crashes. A script is thus being added in their application

updates especially with the evolvement of many permission restriction techniques.

Experiment 3: Performance Overhead. The purpose of this experiment is

to evaluate the timing overhead introduced by our modifcations to the Android OS.

We calculate the amount of time it takes for our modifed methods to fully execute

once called by applications. We also compare the execution times of these methods

before our modifcations to estimate the overhead introduced by our modifcations.

Specifcally, we measure the overhead time caused by intercepting application per-

missions, user data accesses (e.g. Contacts), Intent messages, and access to system

peripherals (e.g. Bluetooth).

Table 3.3 reports in milliseconds the time imposed on these methods. As the

results show, the overall delay introduced by enforcing our CBAC policies is not

perceivable by the end-user.

Experiment 4: System Memory Overhead. The purpose of this experiment

is to measure the amount of memory overhead placed on the system after our mod-

ifcations. Mainly, we aim to observe the changes in memory usage caused by our

42

application restrictions and by the LocationService method that continuously run in

the background for context updates.

Fig. 3.7. Memory overhead with and without our CBAC policy restrictions.

Figure 3.7 shows that the memory usage when enforcing our CBAC policies closely

matches the memory usage when these policies are not enforced. Even though our

experiments test the di˙erent restriction categories separately as shown in the fgure,

we believe that the observed memory overheard is due to the LocationService that is

instantiated periodically to keep the device’s context up-to-date.

Experiment 5: Battery Consumption. The purpose of this experiment is to

observe the Android device’s battery consumption change when CBAC policies are

enforced compared to when they are not. For this purpose, we monitored the device’s

battery percentage when running both the unmodifed OS and our customized system,

separately. In both cases, we forced the device’s screen to never turn o˙ with Wi-Fi

and GPS enabled, a representation of a somehow worst case scenario as when the

user is continuously using the device for that duration. Since the period for which

the LocationService method t hat is responsible for checking the device’s location

43

can be customized by the user, we tested the battery consumption for di˙erent time

periods for the purpose of getting a fair evaluation.

Fig. 3.8. Device battery consumption when checking for context up-
dates every 30 seconds.

We started our experiment by setting the device to check for any device location

updates every 30 seconds. Figure 3.8 shows that the battery percentage displayed on

the device when enforcing our CBAC policies drops ̆ 5% less per hour compared

to when the policies are not enforced. We achieved similar results when context

was updated every 45 seconds. However, when we set the timer to check for device

context every 60 seconds or above, the battery usage percentage of when the CBAC

policies are enforced closely matches the battery consumption when the policies are

not enforced.

44

3.6 Security Analysis

In this section, we present a security analysis of our implementation of the CBAC

system to analyze possible threats from a malicious user or applications that can

bypass our policy restrictions. The aim of our security analysis is to identify possible

threats by malicious users or applications that can bypass CBAC policies and to

mitigate these threats.

Colluding Applications. In Android, each device application is assigned a

unique UserID (UID) that the system uses to refer to an application. However, if two

applications are created and signed by the same developer, the system will give both

applications the same UID, which gives these applications the ability to share the

same processes if needed [72]. The stock Android OS applies its security policies not

based on the application label or its package name, but rather on the process UID. In

our modifcations of the OS, we obtain the name of the package (application) which is

performing an action by calling the PackageManager’s getPackagesForUid(int uid).

This way, our restrictions are not based on UID but are transformed in order to

refer to the package name. As an example of such threat, consider two applications,

Application A and Application B, that share the same UID. Suppose that the user

blocks access to GPS capabilities from application A. However, although successfully

blocked, application A may still be able to acquire information about the user’s or

device’s location because Application B was not denied access to GPS. In our system,

we prevent such threat by blocking all package names associated with a UID using

the getPackageForUid() method.

Circumventing Application Multitasking Restriction. A malicious devel-

oper may attempt to bypass the restriction that disallows multiple applications from

running simultaneously by creating a custom launcher-like app. Android is mod-

ular, and thus the default home screen can be replaced. Our system is not vul-

nerable to such an attack because we check all possible intents as our system is

not limited to intents related to the stock Launcher. Thus any intent with "an-

45

droid.intent.action.MAIN" and "android.intent.category.LAUNCHER" will be inter-

cepted and processed to disable multitasking of any launcher the user decides to use.

Protection of Policies. As users can confgure policy restrictions based on time

and location, these restrictions are either applied system-wide or per application. If

these policy restrictions can be altered by applications, then any malicious application

can perform specifc attacks based on policy confgurations. To protect policies, we

thus do not allow write privileges to be granted on policies so to prevent policies from

being modifed.

Malicious applications that are aware of our CBAC policies may try to drop a pol-

icy or modify the device’s detected context so that the wrong policy is applied. How-

ever, in our implementation we retrieve context information directly from the system

protected APIs that cannot be altered by applications. Moreover, context informa-

tion is managed by our Content Provider that gathers such information regardless of

which applications are running on the device or services requested by applications.

This independency from the Content Provider gives robustness in gathering context

data that is forwarded to the Policy Manager as discussed in Section 3.1.

Sensitive Information Disclosure. Some applications may maliciously leak

private user information once they detect that a previously granted privileged appli-

cation is revoked. As an example, a malicious application that was granted access

to Camera and GPS at installation time may upload the device GPS location to the

application server once it detects that the CAMERA permission is revoked, leaking

the user-private location. For this reason, our implementation provides the user, at

the time of policy confgurations, with a list of privileges that are still granted to the

confgured applications, acting as a warning for the user to be aware of the sensitive

information still accessible by the confgured applications in a particular context.

Continuous Running Application Processes. When an application requests

access to a resource, the Android OS checks if the application has the appropriate

permission(s) just at the time of the request. If the user-confgured policy grants such

permission to the requesting application in a given context, some processes associated

46

with certain resources may continuously run even if the device is later located in a

di˙erent context for which the user has denied access to such resource. The reason

is that permission granting is not checked continuously while the process is running,

rather is only checked when the request is issued. Malicious applications may take

advantage of this, for example by continuously recording audio in one context while

transitioning to another context.

Audio recording using the Microphone resource is one example of a continuously

running process that will not terminate until the recording is stopped. Take for exam-

ple a user who attends private meetings in a same meeting room that he confgured a

policy to disable the Microphone resource. A malicious application can begin record-

ing outside of the meeting room area without alerting the user, and continue recording

when the user enters the restricted meeting room. The Android OS does not continu-

ously verify whether an application has audio recording permission during recording.

It verifes each time a request is made, and thus when approved the application can

continue using the peripheral for that specifc session. Our implementation prevents

this type of attack. Once a registered area is associated with a restriction on video or

record audio access, the location service forces the applications with the associated

permissions in their AndroidManifest.xml to close.

3.7 Conclusion

We proposed a modifed version of the Android OS, which we refer to as CBAC,

supporting context-based access control policies. These policies restrict applications

from accessing specifc data and/or resources based on the user context. The re-

strictions specifed in a policy are automatically applied as soon as the user device

matches the pre-defned context associated with the policy. Our experimental results

show the e˙ectiveness of these policies on the Android system and applications, and

the accuracy in locating the device within a user-defned context using mainly RSSI

values from WiFi access points.

47

CBAC, however, has limitations. CBAC is a user-centric approach to device man-

agement in order to protect sensitive content on the device. This user-centric approach

to confguring policies for end-users’ devices may not be suitable for enterprises that

require strong security guarantees. A critical security issue in enterprise environments

is the inability of enterprises to (fully) trust employees to perform necessary tasks to

secure enterprise content. Assuming an employee is benign with no malicious intent,

the employee may incorrectly confgure his/her device policies. Enterprises must

also consider insider threats within the organization. That is, employees with mali-

cious intent may purposefully leak sensitive enterprise content stored on their devices.

Enterprise content may not only exist on mobile devices, which is an assumption im-

plicitly made in this chapter. Content may also exist in remote servers which can

be accessed via mobile devices. In addition, the proposed mechanism does not con-

sider that access to content may be contingent upon the presence of other users in

the area in which the user requesting access is located. The next chapter, Chapter

4, addresses such concerns and limitations by proposing a context-aware access con-

trol system that incorporates proximity-based constraints when access to enterprise

content is remotely requested.

48

4. SECURING REMOTE ENTERPRISE CONTENT VIA
PROXIMITY-BASED ACCESS CONTROL

The previous chapter addresses the issue of localizing the user and adapting appli-

cations’ access to client-side content depending on the user’s location and time of

access. However, the proposed system had several limitations which include local-

izing the user with untrusted client-side technology, lack of consideration of other

users within proximity when sensitive content is accessed, and delegating the user to

appropriately confgure access control policies.

To support PrBAC scenarios such as Separation of Duty (SoD) and Absence of

Other Users (AOU), we proposed the frst iteration of our Context-Aware System to

Secure Enterprise Content (CASSEC). CASSEC took a wireless, infrastructure-based

approach to achieve the localization of occupants within a monitored space which

enables geo-spatial RBAC [15, 33]. A wireless, infrastructure-based approach makes

the system more resilient to malicious attacks; we assumed, for example, the least

amount of trust in users since users may attempt to circumvent the access control

process by not manually reporting their location or providing false location data.

In addition, the architectural model allowed a fuid context-sensitive authorization

process, thereby enabling zero interaction authorization (i.e., it did not require user

intervention). We frst showed how to enforce SoD by using Bluetooth MAC addresses

of Client devices of nearby occupants as proof-of-location, which enabled the system

to determine who was in a given space. We then showed how to enforce AOU by

exploiting the degradation of WiFi received signal strength as a result of human-

induced interference when people are near access points, which enabled the system to

determine how many people were in a given space. With such information obtained

passively by a Proximity Module (PM), the Authorization Server (AS) component

was able to enforce PrBAC policies whenever an authenticated Client requested from

49

the Enterprise Content Server (ECS) component access to resources depending on

the presence, or lack thereof, of users. Figure 4.1 displays CASSEC’s architectural

components.

Fig. 4.1. CASSEC’s proximity-based access control architecture. Ar-
rows indicate secure wireless network communication.

Our frst iteration of CASSEC, however, has several drawbacks. First, it does not

take into account the phenomena of radio signals permeating through walls. Mul-

tiple proximity modules residing in adjacent proximity zones would simultaneously

detect the same Bluetooth-enabled Client, when in fact, the Client only existed in

one of said proximity zones. As a result, such a benign occurrence is automatically

inferred as malicious activity. Given that Bluetooth’s omni-directional transmission

range is 10m (˘33 ft), the number of false attack detections may increase in standard

enterprise settings, such as small oÿces or conference rooms. A non-negligible false

detection rate is a major drawback that hinders the practicality and ease-of-adoption

50

of the solution. Second, the system was susceptible to observable Bluetooth manipu-

lation (see Section 4.7), such as an unauthorized individual obtaining an authorized

user’s phone, whether by theft or voluntary provision. If such an attack occurs, the

unauthorized individual can gain access to restricted resources s/he would normally

otherwise not have access to.

To address such context monitoring issues, we further investigate techniques that

leverage existing contextual information from both the physical and computing realms.

Contextual information extracted from the environment can help a context-aware sys-

tem in inferring the situation of entities within that environment. However, being able

to infer the correct or more probable conclusion w.r.t. the situation of an entity highly

depends on the reliability of the extracted contextual information. Reliability could

be measured, for example, by the level of accuracy, precision, or security in using a

technique or technology (e.g., occupancy detection or biometric authentication) to

extract or process contextual information. With respect to security, a context-aware

system may also need to adapt its access control decisions to the degree of reliability

of such information. Given the dynamic nature of EED scenarios and idiosyncratic

phenomenon observed in radio-based occupancy detection technologies, it is essential

that context-aware systems emulate a sentient characteristic when making inferred de-

cisions: confdence. Access control policies should incorporate confdence constructs

when specifying contextual restrictions.

In this chapter, we thus propose a major extension to CASSEC, which we refer

to as CASSEC 2.0, by adding confdence constructs to the location and role con-

structs in PrBAC policies. In addition, we conduct a feasibility study to show that

the approach is viable within an enterprise environment, which can be achieved via

preexisting technologies and solutions integrated within the enterprise’s mobile IT in-

frastructure. Through the location construct, a policy can specify that resource access

authorization is granted only if the context-aware system can determine to a specifed

probability that a user is in a room. We employ Bluetooth Low Energy (BLE) capa-

bilities of PMs and Clients to perform continuous co-proximity authentication, and

51

use BLE beacons transmitted during this authentication phase to provide a certain

degree of confdence that the Client is in a particular proximity zone, even when mul-

tiple PMs in adjacent rooms detect the same Client. Through the role construct, a

policy can specify that access to resources is only granted if the system can determine

with high confdence whether the current user of a Client device is the true owner of

the device. We leverage accelerometer and fngerprint sensors within smartphones to

achieve behavioral and physiological biometric authentication. Behavioral biometric

authentication is achieved by passively analyzing the gait patterns of the Client’s

current user via the smartphone’s accelerometer. Although human gait is behavioral

and resistant to signifcant change over time, various factors can slightly infuence the

extracted gait features at runtime [73]. Consequently, if the Client cannot passively

identify the current user through runtime gait measurements with high levels of as-

surance, the Client will take an active approach and request the user to authenticate

him/herself via the fngerprint sensor (i.e., physiological biometric authentication)

when the user next requests access to resources.

The CASSEC 2.0 system has thus the following contributions:

1. Confdence Constructs: We incorporate confdence specifers into context-based

access control policies. More specifcally, we incorporate such specifers into

PrBAC’s role and location constructs, thereby enabling the CASSEC 2.0 sys-

tem to factor in the degree of reliability of contextual information during au-

thentication and authorization processes.

2. Feasibility Study: We conduct a feasibility study to show that the approach

of CASSEC 2.0 is viable in a practical enterprise setting. We leverage solu-

tions within an enterprise’s preexisting IT infrastructure to evaluate confdence

constructs, and apply such constructs to biometric and co-proximity authenti-

cation.

3. Co-Proximity Authentication: We provide a timed challenge-response proto-

col using BLE beacons as our underlying co-proximity authentication technol-

52

ogy. The protocol prevents an adversary, who has modifed his device’s unique

user ID, from impersonating another user. However, our study shows that us-

ing distance-bounding techniques over BLE beacons is a feasible defense only

against a sophisticated attacker able to execute relay attacks under a certain

adversarial model.

4. Biometric Authentication: We leverage behavioral and physiological biometric

authentication to evaluate confdence specifers. Our study shows that our ap-

proach is feasible as we are able to verify that the current user of the Client

device is the true owner with high confdence when the phone is placed on the

hip and within the pocket, respectively.

The chapter is organized as follows. Section 4.1 introduces proximity-based scenar-

ios and specifc examples that motivate this work. We then briefy discuss background

information on biometric authentication techniques in Section 4.2. We provide in Sec-

tion 4.3 a PrBAC policy specifcation for CASSEC 2.0. Section 4.4 establishes our

system’s assumption. Section 4.5 introduces the architecture and underlying com-

ponents of our approach. Section 4.6 discusses implementation details followed by

a report of data collected from our use case study. We analyze the security of our

approach in Section 4.7. Section 4.8 concludes the chapter.

4.1 Motivating Scenarios

In what follows, we present scenarios motivating the need for context-aware sys-

tems in which access to sensitive resources must be controlled based on proximity

parameters.

Consider a military organization with monitored government facilities such as

restricted military bases or buildings. Military personnel are assigned roles that refect

ranking and privileges. The roles General and Private are assigned to the highest- and

lowest-ranking personnel in the army, respectively. In terms of accessing restricted

facilities or resources, the former is granted many privileges, while the latter has very

53

few. Consider also the role Civilian, which indicates an individual operating outside

of the military organization, and who is granted no privileges. Suppose that three

military personnel, two Generals and one Private, are granted access to documents

classifed up to the level of top secret and restricted, respectively, according to a

multi-level security model.

Separation of Duty Scenario. A document classifed as top secret is highly

sensitive, and requires that at least two personnel with the role General be present

in order for it to be accessed. The document is accessed via desktop terminal and is

stored within a designated, but restricted oÿce in which only Generals are allowed to

enter.

This scenario refects the security principle SoD. That is, two or more people are re-

sponsible for cooperatively completing a task. In addition, the circumstances requires

that said document must be accessed at a specifc location.

Absence of Other Users Scenario. A document classifed as restricted, but

with the additional caveat "for your eyes only", requires that a specifc Private can

access it via smartphone mobile, however, only if no other individuals are present at

the time of access.

Such an absence-based restriction not only includes military personnel of various

rankings, but also individuals that assume the role of Civilian. Civilians are often

temporarily recruited to work on military projects, but are highly monitored and

usually given only the set of privileges needed to complete the project and nothing

more. We note that, unlike the SoD scenario, in this AOU scenario the document can

be accessed via the Private’s smartphone device in any location including locations

that Civilians may have access to. Therefore, less infrastructure is required as it is

not necessary to know the identity of every person in the Private’s vicinity.

54

4.2 Background

Biometric information characterizes measurable human biological features [74].

Most biometric features are unique per person and can be found in every individual.

In the context of security, biometric authentication refers to techniques that rely on

such features to uniquely identify and validate the identity of an individual. Human

biometrics can be classifed into two types: physiological and behavioral. Physiologi-

cal biometric authentication is based on static physical attributes such as fngerprints,

iris, retina, or facial features, whereas behavioral biometric authentication relies on

identifable characteristics of a user’s behavior that typically do not change over time

such as keystroke dynamics, signature, or gait.

At a high level, biometric authentication has two phases: enrollment and authen-

tication. Before authentication can occur, an individual must frst be enrolled into

the system by extracting and storing his/her biometric data within a template. Later

in the authentication phase when the identity of the individual must be verifed, the

biometric data collected at runtime is compared to the previously constructed tem-

plate. From this comparison, a similarity matching score is produced, and whether

an individual is accepted/rejected (i.e., non-/identifed) depends on a threshold set

for the system. In this system, we employ both physiological and behavioral bio-

metric authentication for user verifcation using two techniques: fngerprint and gait

recognition. Modern mobile devices already have integrated solutions to enroll and

authenticate users via fngerprint scanning technology [31]. However, such devices

lack gait recognition solutions. We therefore only describe user verifcation via gait

recognition below.

User Verifcation via Gait Recognition

Lee and Grimson defned gait as "an idiosyncratic feature of a person that is

determined by, among other things, an individual’s weight, limb length, footwear, and

posture combined with characteristic motion. Hence, gait can be used as a biometric

55

measure to recognize known persons and classify unknown subjects" [73]. Empirical

evidence supports this defnition as researchers have conducted experiments which

analyzed over 700 users’ gait patterns and found gait patterns to be unique [75]. As

a result, it is possible to verify whether the user of a mobile device is the true owner

of that device.

Gait recognition for the purpose of user verifcation is not novel [74], nor is it the

focus of this chapter. The main approaches to measuring and analyzing gait biometric

are machine vision, foor sensor, and wearable sensor. Deploying additional hardware

incurs additional costs, as is the case in the frst two approaches. Fortunately, state-of-

the-art cellular devices are embedded with a set of sensors, including accelerometers,

which have now become a standard for modern smartphones. Consequently, we only

employ a wearable sensor approach. We leverage a recent work proposed by Ren et

al. [76] for several reasons: (1) it utilizes readily available accelerometers embedded

within smartphones to detect possible user spoofng in mobile healthcare systems;

(2) it takes into account the fact that computational resources are limited on mobile

devices; and (3) it is robust to variations in users’ walking speed. See Section 4.5 for

more details.

4.3 Policy Specifcation

Several research e˙orts have focused on the design of access control policy lan-

guages [32, 33, 41, 42, 77, 78]. In this section we introduce a simple, yet expressive

policy specifcation (Table 4.1) that leverages existing policy languages. We adopt

the syntactical structure of XACML, which is an XML-based language for access con-

trol, and apply it in defning proximity-based RBAC policies for CASSEC 2.0. The

terms in quotes ’ ’ represent static tokens. The terms in italics indicate functions.

As it is standard in RBAC policies, a role is a job function that represents a

set of privileges to perform actions on objects. An object is a data construct that

is acted upon by a subject that has assumed a role. An action is an appropriate

56

Table 4.1.
PrBAC policy language

<Policies> ::= ’Begin’ <policy-list> ’End’

<policy-list> ::= <policy> <policy-list> | <policy>

<policy> ::= <role-predicate> <object> <action> (<context>)

<role-predicate> ::= <role> (<confdence>) | <ranking>’(’<role>’)’ (<confdence>)

<confdence> ::= <digit>

<digit> ::= [’0’-’9’]

<ranking> ::= equal | inferior | superior

<action> ::= read | write | delete ...

<context> ::= <obligation> <location-constraint> | <obligation> <location-constraint> <proximity-

constraints>

<obligation> ::= prior | while

<location-constraint> ::= <topology> <location> (<confdence>)

<topology> ::= in | out | adjacent ...

<proximity-constraints> ::= <proximity-constraint> <proximity-constraints> | <proximity-constraint>

<proximity-constraint> ::= <cardinality> <digit> <role-predicate> <location-constraint>

<cardinality> ::= at_least | at_most

57

Fig. 4.2. Two example proximity-based access control policies.

operation that can be applied to an object. We assume that users of our system

may be mobile, and therefore, we incorporate usage controls regarding continuity of

access [42]. An obligation specifes that certain constraints must be satisfed prior

to or while accessing an object. A topology indicates a relation between the role and

the location within the spatial domain. Often in enterprise environments, access to

restricted resources is contingent on not only the presence (or absence) of other people,

but the relation towards the individual requesting access. A role-predicate specifes

a specifc role or relational function that takes the role of the requesting user and

outputs a ranking relative to that role (i.e., superior(roleOfRequestingUser)). Last,

an entity designated to enforce a policy may need prerequisites to be fulflled, at least

to a certain in extent. A confdence indicates the numerical threshold at which a

requirement must be fulflled, otherwise anything below that threshold is considered a

policy violation. For example, specifying a role (General) with a confdence constraint

(80%) semantically states that the system must be "80%" sure that the current user

is the General. Figure 4.2 provides two examples of access control policies to specify

58

the restrictions in SoD scenario and AOU scenario. The policy on the left refers

to the SoD scenario: at least two Generals must be present in order to access the

TopSecretDocument. The policy on the right refers to the AOU scenario: the Private

can access the ResctrictedDocument only if no one else is around.

4.4 Threats and Assumptions

We make the following assumptions about the proposed system and the adversary.

Each user, including the adversary, has full access to his/her device. Each device has

been preauthorized by the IT admin for BYOD use. Preauthorization consists of

verifying that (1) the device supports hardware-backed cryptographic key generation

and storage and (2) the device’s sensors, including Bluetooth, accelerometer, and

fngerprint sensors, are functioning correctly. Consequently, we assume IT admins can

be trusted. Each device must generate asymmetric cryptographic keys via Androids

Hardware-Backed Keystore [31], in which the public key for that device is uploaded

to a server for later use while the unexportable private key is stored securely in

hardware. We trust the Android access control system, which includes the Android

middleware and Linux Kernel, to correctly enforce all security policies. Physical

security or video monitoring is employed to prevent the adversary from compromising

proximity modules and entering the environment with foreign objects such as a non-

secured phone. We only consider a passive adversary, and not active adversary. That

is, the adversary has control of the communication channel, but is not able to inject

new packets or compromise transmitted packets. The adversary is only able to relay

packets transmitted between parties. In other words, the attacker posses standard

Dolev-Yao capabilities [79]. We also consider insider threats to the organization. In

particular, malicious employees may attempt to circumvent our context-aware access

system through collusion. Last, we assume each proximity module has access to

the public keys of Client devices, which can be retrieved on demand or during the

installation of the proximity module.

59

Fig. 4.3. CASSEC 2.0’s access control framework.

4.5 System Design

In this section, we describe our CASSEC 2.0 platform that securely supports the

SoD scenario and the AOU scenario described in Section 4.1. We adhere to design

goals from the previous work, which include providing a secure, automated, and gen-

eralized architecture with responsibilities of each system component clearly defned.

In CASSEC 2.0’s architecture, we assume the least amount of trusted parties as pos-

sible. Our context-aware system proactively monitors and collects information about

the environment in lieu of manual intervention by entities within that environment.

Specifcally, we do not rely on users, possibly malicious, to manually report their

location. Therefore, we choose an infrastructure-based approach that uses wireless

hardware to localize occupants within a monitored space. In the rest of the section,

we defne our interpretation of the term proximity and then provide an overview of the

architectural components of CASSEC 2.0 and how they relate to our access control

framework.

60

4.5.1 Proximity Zone

We rely on geographical proximity, which indicates that two entities are located

within a certain distance in the physical space [43]. That is, in our work, proximity

of a user is defned by a region of space monitored by a proximity module. The user

must be within the region of space in order to gain access. We refer to this region

of monitored space as a proximity zone. The level of precision in determining the

location of a user and the proximity of other users is application dependent [9, 18].

4.5.2 Components

Access Control

Here we describe the architectural components tasked with enforcing our PrBAC

policies.

Enterprise Content Server (ECS): The ECS, which acts as the Policy Enforcement

Point (PEP), delivers enterprise resources to users who request access. By designing

this component as a server, a heterogeneous network of end-users’ devices can be

serviced. Therefore, access to resources can be requested from desktop terminals or

mobile devices.

Authorization Server (AS): The AS hosts the access control decision-making en-

gine of the authorization framework. After a user has been authenticated by the AS

via login credentials, it returns an authentication token to the Client device. The

token, which is submitted to the ECS by the Client, is used to associate an authenti-

cated user with authorized roles. The AS itself is composed of two sub-components:

Policy Decision Point (PDP) and Policy Information Point (PIP). We discuss in more

detail the construction of the authentication token and AS’s sub-components later in

Section 4.5.3.

61

Contextual Information

In order to extract contextual information from the environment, we take both an

active and passive approach. We use the terms active and passive to indicate whether

or not users are required to physically interact with the entity collecting contextual

information. The components involved in contextual information acquisition are as

follows:

Client: A Client is a device used to request access to a resource by a user. If

the request is granted, a user can view the data on the device (e.g., desktop terminal

or mobile smartphone). Unlike their desktop counterparts, smartphone devices allow

mobility with respect to embedded sensors and network connectivity. Consequently,

in our prototype system, we take an active approach to user verifcation via biometric

authentication by utilizing a smartphone as the Client device. That is, the Client

is also designated to verify that the current user of the device is the true owner of

the device. We note that solutions have been developed that take a passive approach

to the collection of biometric features, which may be more secure. If we were to

take a passive approach to biometric authentication, the example policies in Figure

4.2 would also include confdence thresholds under the role specifer since the AS is

designated to evaluate if policies are adhered to. We discuss this further in Section

4.7.

Proximity Module (PM): The role of the PM is to collect and analyze contextual

information in order to detect the proximity of users. This detection process occurs

periodically, and proximity-related information is sent to the AS. Although a PM is

the set of physical devices that determine proximity, we consider them as independent

of the PIP as the PIP is the entity that directly communicates with the PDP. Users

do not physically interact with the PM in our prototype system, and therefore it is

considered passive.

Our architectural components are shown in Figure 4.1. We do not discuss crypto-

graphic schemes to protect network communication between the entities in our system

62

model. We assume that an underlying secure network infrastructure is in place, as

usual in enterprise environments. Although the fgure only shows one PM and conse-

quently only one proximity zone, in practice an enterprise building will have multiple

PMs, possibly one for each room.

4.5.3 Access Control Framework

The PDP is the specifc entity that is delegated to make access decisions. It

maintains a database of PrBAC policies. Given these policies, the PDP frst verifes

if someone is a user of the system. The PDP then retrieves the latest information

regarding the user’s location and the presence of other users from the PIP. Such

information allows the PDP to determine the set of authorized geo-spatial roles if

proximity constraints are satisfed. Next, the PDP constructs and returns to the

Client an authentication token. The token, at minimum, contains a generated tem-

porary ID. It may also contain an expiration date. As such, the token is utilized as a

session identifer. Last, the PDP maintains a database mapping of session IDs to the

set of active authorized geo-spatial roles for each user. This mapping is also sent to

the PEP each time a role is authorized.

The PEP’s role, implemented as part of the ECS, is to enforce proximity restric-

tions for enterprise content. During a request, a Client submits an authentication

token to the ECS. The PEP extracts the temporary session ID from the token. The

PDP continually updates the PEP of mappings of session IDs to a set of active au-

thorized geo-spatial roles. First, the mapping makes it possible to enforce access

restrictions according to the roles associated with that ID. Second, it also enables it

to service multiple Client devices simultaneously. Third, this design anonymizes users

as the PEP does not have any information that identifes users such as locations and

credentials.

The PIP’s role is to store and maintain contextual information about an enter-

prise’s proximity zones. Each PM, after co-proximity authentication of Clients, is

63

required to transmit four pieces of information to the PIP: a proximity zone identi-

fer, the number of people detected, a list of captured UIDs1 and corresponding RSS

values of BLE beacons, and a timestamp. The PIP then records the collected data

into its context database. Instead of the PIP polling the PM for information, we

minimize communication by requiring that the PM updates the AS only when char-

acteristics of the proximity zone changes. In addition, this clear designation of duties

also minimizes overhead in both the PM and AS. Considering the dynamic nature of

the environment, the PIP must update the PDP as frequently as the occurrences of

updates to the context database. Such updates allow the PDP to continuously check

for any instance of proximity-based violations by users. At the time of violation, the

PDP invalidates the relevant session ID mappings by associating existing session IDs

with newly recomputed authorized geo-spatial roles, if any, according to PrBAC poli-

cies. The PDP then remotely informs the PEP of invalid mappings while providing

new authorized ones. The PDP can also alert the enterprise’s administrators to take

appropriate action. Such a design makes the system completely automated by only

requiring users to be authenticated once by the AS.

4.5.4 Co-Proximity Authentication

Radio signals permeate through walls, and therefore it is possible that two PMs lo-

cated in two adjacent rooms may detect the same Client device, even though in reality

the Client is located in one of the rooms. However, such signals exhibit attenuation

as they pass through walls. We leverage this phenomena to determine the likelihood

that a Client is in a given room. In particular, we analyze the RSS values from BLE

beacons to initiate the co-proximity authentication process, which determines that a

legitimate Client is within a specifc proximity zone.

Overview. The protocol to authenticate the user’s co-proximity to a PM consists

of two phases: the initialization phase and the location authentication phase. First,
1We assume that each user of the system has an identifer unique to that user.

64

the initialization phase establishes a temporary session key (SK) securely shared and

only accessible between a PM and a Client. Next, the SK is later used in the location

authentication phase, in which a timed challenge-response protocol is executed. The

crux of authenticating the user’s co-proximity is analyzing the content of the beacon

as well as the measured round trip time. We explain both phases in detail below.

Initialization Phase. The initialization phase is activated once the user enters

�2, that is, the concentric region as indicated by BLE’s Near ranging measurement

(i.e., between 1-3m from the PM as displayed in Figure 4.4). Placing a PM at the

center of an average sized conference room (e.g., ̆ 6m x 6m) allows the PM to detect

and monitor the movements of any Client device that enters the room. In addition,

positioning in such a way may minimize the overlapping of concentric regions of two

adjacent PMs’ proximity zones. Once the Client enters �2, the PM generates a tem-

porary SK and encrypts it with the Client’s public key. As stated in Section 4.4,

the public key can be retrieved from the authorization server on demand or during

the installation of the PM. The SK is a one-time pad which consists of a string of

bits generated using a cryptographically secure pseudo-random number generator.

The encrypted SK (Step 1 in Figure 4.5) is then sent to the Client via the AS on a

secure out-of-band channel, which is then decrypted at the Client using the Client’s

hardware-bound private key. The Client fnalizes the initialization phase by respond-

ing with an acknowledgement of message receipt, which is relayed back to the PM.

We note that there are a number of methods to securely exchange temporary session

keys. For example, the PM could purely rely on BLE beacons to transmit the en-

crypted SK, thereby minimizing communication with the server. However, we did not

choose this mode of transmission because of limited data capacity in BLE beacon’s

advertising data structures [23].

Authentication Phase. The PM will continue to monitor and track the Client’s

movements. The authentication phase is activated once the user enters �1, that is,

the concentric region as indicated by BLE’s Immediate ranging measurement (i.e., less

than 1m from the PM). At this point, the PM initiates a timed challenge-response

65

Fig. 4.4. A Proximity Module’s proximity zone regions.

Fig. 4.5. CASSEC 2.0’s co-proximity authentication protocol.

protocol with the target Client. The PM generates a fresh nonce (string of random

bits), embeds the nonce into a BLE beacon, and transmits the beacon. Upon suc-

66

cessful transmission, the PM records the time of transmission and precomputes the

expected response. Upon reception, the Client calculates an XOR value, using the

nonce and the SK as the two inputs. XOR operations are simple and require minimal

CPU cycles to compute as opposed to other widely-used cryptographic schemes with

non-negligible encryption/decryption times [80]. Leveraging XOR operations thus

allows the Client to minimize the time to calculate a response to the challenge, and

subsequently package and transmit the response within a BLE beacon. Upon recep-

tion of the Client’s response beacon, the PM calculates the RTT value and verifes

that the precomputed value matches the received value. If the values match and the

RTT is less than or equal to a specifed threshold (RT TT H), the PM informs the

AS that the specifc Client’s location has been authenticated with 100% confdence,

otherwise the PM and Client must repeat both the initialization and authentication

phases. We discuss how we determined RT TT H in Section 4.7. Both phases must

be repeated since information about the temporary session key that is generated in

the initialization phase is leaked in the authentication phase. An attacker can simply

perform an XOR of the nonce, which was transmitted in cleartext, and the Client’s

response beacon to calculate the session key.

To address circumstances resulting in proximity zones partially overlapping, we

take a binary approach. In the case that multiple PMs detect and authenticate a

Client via BLE beacons simultaneously given that BLE beacons can travel several

meters, for simplicity, we classify a Client to be in one of the corresponding rooms

with 100% confdence only if information sent by a PM meet two conditions: (1) the

RSS value (measured from the beacon) is the strongest of all RSS values detected by

other PMs; (2) the number of people detected and captured UIDs match. Otherwise,

there is 0% confdence in the Client’s location. The left policy in Figure 4.2 pro-

vides an example of PrBAC policy that specifes that the entity enforcing the policy

must determine that the General is in fact located in the GeneralsRoom with 100%

confdence to grant access to the TopSecretDocument.

67

4.5.5 Biometric Authentication

User verifcation via biometric authentication is isolated to the only active com-

ponent in our prototype system, that is, the Client. We specifcally develop an An-

droid application that leverages the smartphone’s capabilities to scan fngerprints

and measure acceleration in order to achieve physiological and behavioral biometric

authentication, respectively. User verifcation is abstractly a two phase process (see

Section 4.2): the enrollment and authentication phases. With respect to security,

it is vital that enterprise administrators proctor the enrollment phase in-person to

confrm that biometric measurements taken by a Client device match the true owner

of the device. Fingerprint scanning and the collection of walking traces are achieved

and easily integrated into our application using Android’s Fingerprint Authentication

and Sensor Manager APIs2. To ensure the privacy of users, the fngerprint and gait

templates constructed during the enrollment phase never leave the device.

We implemented the behavioral component of the user verifcation framework in

a similar fashion as proposed by Ren et al. [76]. The framework consists of three

components, which can be abstracted to the enrollment and authentication phases

previously mentioned: Step Cycle Identifcation, Step Cycle Interpolation, and Sim-

ilarity Comparison. The components are built on the fact that human gait should

be cyclic in nature, and hence should exhibit high correlation. Here, a step cycle is

the period defned by the two consecutive heel strikes on the same leg (see Figure

4.6(a)). The Step Cycle Identifcation component identifes step cycles in a walking

trace, and then uses the extracted features to construct and store a biometric tem-

plate. Although smartphone accelerometers provide signals in three dimensions, the

framework extracts only the signals from the vertical direction to identify impacts

caused by heel strikes. Figure 4.6(b) displays a walking trace with identifed cyclical

heel strike impacts. Users usually walk at varying speeds, which would negatively

impact the verifcation process if the template and the runtime measurements are of
2We do not elaborate on implementation details as Android provides detailed instructions and sam-
ples to utilize Android Fingerprint Authentication and acceleration measuring [31].

68

(a) (b)

Fig. 4.6. 4.6(a) is an illustration of a complete gait cycle from the
initial heel strike to the terminal heel strike (from [81]). 4.6(b) displays
preliminary measurements of accelerometer signals of a walking trace
in the vertical direction we collected using a Nexus 6P smartphone.
Orange lines indicate step cycles identifed by heel strike impacts.

traces with di˙erent speeds. Addressing this potential problem, the Step Cycle Inter-

polation phase enables robust user verifcation by normalizing identifed step cycles of

di˙erent lengths into fxed lengths. Figure 4.7 displays the interpolated accelerometer

signals, recorded using a Nexus 6P, of slow (slower than 0.7 m/s), normal (about 0.7

- 1.1 m/s), and fast (about 1.1 - 1.4 m/s) walking traces to a fxed length of 400

samples. The fgure demonstrates that step cycles are highly correlated regardless of

walking speed. Last, user authentication is performed in the Similarity Comparison

phase, which utilizes a weighted Pearson correlation coeÿcient (PCC) based method.

We apply defense-in-depth within the authentication phase. We frst use Pearson

correlation coeÿcients when computing the similarity between the gait template and

the walking trace runtime measurements. Users are only verifed if similarity scores

are above a predefned threshold (see Section 4.6.4). If similarity scores fall below the

threshold, the user is then required to perform authentication via fngerprint scanner

when the user attempts to access the phone. We are unable to set a threshold for

fngerprint authentication as we rely on the Client device’s integrated fngerprint

solution. If the user neither can be verifed via behavioral nor physiological biometric

69

authentication, the Client ensures that sensitive enterprise content is inaccessible by

locking the device3. In addition, the Client can alert enterprise administrators for

possible user spoofng.

Fig. 4.7. Step cycle interpolation applied to walking traces collected
using our Nexus 6P smartphone at three di˙erent speeds: slow, nor-
mal, and fast.

4.6 Prototype Implementation

4.6.1 The ECS

The ECS was implemented in PHP and hosted on a remote commercial server.

The resources that it could serve to Clients were simple text fles. We implemented

user interfaces (UI) in order for Clients to request access to specifc fles. The ECS

provides a function that can be remotely invoked via URL: sessAuth(mappings). The

function is invoked by the AS to update the ECS regarding the active geo-spatial

roles for Clients in the event that location updates refect proximity violations.
3We build an application on the Client using Android’s Device Administration API, which includes
the device lock ability [31].

70

4.6.2 The AS

The AS was also implemented in PHP and hosted on the same server as the ECS.

We implemented the UI in order for Clients to pass in authentication credentials via

a login page. The AS provides two functions that can be remotely invoked via URLs:

auth(user,psswd) and addEntry(pzoneID,numOfPpl, UIDs+RSSs, time). The frst

function is invoked by a Client via the UI and the second is invoked by the PM to

update proximity information within the context database.

4.6.3 The PM

As in any basic positioning system, a PM incorporates a transmitter and a receiver.

We defne a transmitter as a wireless-enabled device that is a source of contextual

information regarding the occupants within a proximity zone. A receiver is a wireless-

enabled device that acts as a sink for such contextual information.

We utilize BLE-enabled smartphones and WiFi access points (APs) as transmit-

ters. In regards to smartphones, we embed three values into BLE beacons to support

co-proximity authentication. Generally, these devices periodically broadcast their 48-

bit Bluetooth MAC addresses with a less than 10 meter range indoors when Bluetooth

is enabled. However, since Android 6.0, the MAC address found in a BLE beacon

is replaced with a random value at various intervals to protect user privacy [31].

User privacy is not a concern within the enterprise scenarios that CASSEC targets.

Disabling this feature would require modifying the Android OS, which reduces the

deployability of our solution. Therefore, we cannot rely on this hardware address to

identify users. Instead, in CASSEC 2.0, we embed a 48-bit UID into BLE’s local name

data structure using Android’s BluetoothAdapter.getDefaultAdapter().setName(UID).

The BLE beacon data protocol is limited with respect to the amount of custom data

we are able to embed within a beacon. As a result, the nonce, as well as the one-time

pad SK generated by the PM, is restricted to 12-bytes. With the remaining space, we

embed a 16-byte service UUID which enables Clients and Proximity Modules to com-

71

municate under a beacon service. We require that users of the system permanently

enable their smartphones’ Bluetooth. Such a requirement can be easily enforced by

Enterprise Mobility Management services [20]. WiFi APs transmit data over signals

that can be measured. However, such signals are signifcantly infuenced by the en-

vironment. We rely on the interference of signals as a result of human activity to

determine the number of occupants in a proximity zone.

The PM was implemented as two physical devices: a Pixel C tablet running

Android Oreo (API 26 v8.0) and a laptop using Python running Linux. For brevity,

we refer to these devices as simply the PM. The PM was charged with periodically

scanning signals produced by BLE and WiFi devices. Beacon scan settings were

set to SCAN_MODE_LOW_LATENCY from the ScanSettings API, while WiFi

signals were scanned every 10 seconds. The PM extracts the UIDs of beacons from

nearby occupants’ smartphones. The UIDs are used as proof-of-location once co-

proximity authentication has been established, which determines who is in a given

space. The PM also measures the received signal strength from a designated WiFi

AP. The receiver processes the measured WiFi RSS value and determines how many

occupants are in a given space. Last, the receiver publishes the UIDs, beacon RSS

values, and the number of occupants to the authorization server only when previously

collected contextual information changes.

We note that the various components of the CASSEC 2.0’s system architecture

can be integrated into the same physical component when implemented. For example,

a smartphone mobile device can act both as Client and transmitter because the

same device used to request access to a resource is the same device that periodically

broadcasts its Bluetooth data structures. Similarly, a desktop terminal can act both

as Client and receiver because it can also be used to scan and process WiFi and

Bluetooth contextual information.

72

4.6.4 Use Case

In this section, we evaluate features of the CASSEC 2.0 prototype system in

order to provide clear insights into addressing the issues raised in Section 4.1. We

measure the performance of the system’s biometric and co-proximity authentication

components to prove the feasibility of securing enterprise content under a proximity-

based access control model.

Deployment

We deployed our hardware and tested our prototype system in a two bedroom

apartment whose layout is shown in Figure 4.8. We now briefy describe the hardware

utilized in our platform.

The Wireless-N (802.11n) WiFi AP transmitter was a Motorola SURFBoard

SBG6580, indicated in blue, that supports two frequency bands which are 2.5GHz

and 5.0GHz. We chose the higher-frequency band to take advantage of additional

channels that are less prone to interference than 2.4GHz. The receiver was a Dell

Latitude E6430, indicated in green, equipped with a BCM4313 802.11bgn wireless

network adapter and a Dell Wireless 380 Bluetooth 4.0. The transmitter and the

receiver were placed 3 meters apart and were elevated 1 meter above the foor. The

Bluetooth-enabled transmitters used in our study were Samsung S3 GT-i9300 and

Nexus 6P. The Nexus 6P, which has a fngerprint scanner and an accelerometer that

supports a 200Hz sampling rate, was used for biometric collection and analysis.

Use Case Evaluations

Evaluation 1: Selecting Frequency Channel. Given a wireless link between

a transmitter and a receiver, an individual crossing the line of sight between the two

communicating wireless sensors a˙ects the RSS measured by the receiver. However,

the change in RSS depends on the frequency channel [9]. Our goal is to determine

73

Fig. 4.8. The blueprint of a two-bedroom apartment in which the
prototype system had been deployed. The blue markers and green
markers indicate the positions of WiFi access points and laptops, re-
spectively. The dotted lines indicate the two possible positions for
each human, and transitions simply require moving two steps with-
out changing body orientation. The red dots represent the current
positions of the humans standing still while facing the laptop.

which channel is the best for detecting human activity based on our particular WiFi-

enabled devices. We test 2 non-overlapping 40MHz channels: Channel A (5180MHz)

and Channel B (5220MHz). The experimental setup is as follows. Throughout the

complete test, we continuously measure the RSS value sampling twice per second.

Every 30 seconds we change the number of individuals obstructing the LOS by 1

starting from zero to two, and then in a decreasing fashion. The occupants were

situated equidistant from each receiver. A Python script was written to automatically

begin the test. The tests were conducted in Bedroom 1.

The results in Figure 4.9 demonstrate that there is no signifcant di˙erence in

measurement variation in human-induced interference in RSS signals between Chan-

nel A and Channel B. At frst, Channel A appears to be more consistent as the level

74

Fig. 4.9. RSS measurements of wireless links on di˙erent frequency
bands when human bodies obstruct the line of sight (LOS). The blue
circles indicate the number of humans in the LOS within each 60-
sample period (i.e., every 30 seconds).

of signal interference in samples 60 - 120 aligns with values in samples 180 - 240 when

the number of individuals increases from zero to one and two to one, respectively.

This is not observed in Channel B during that period. However, the values for Chan-

nel A appear to indicate the presence of a number of individuals di˙erent from the

number of individuals actually present from samples 330 onward. This fuctuation

is not observed in Channel B. Although Figure 4.9 shows the results of only one

complete test, we performed this test 3 times and observed similar changes in values.

Given these observations, we select Channel B as a means for testing in the rest of

the study.

We also make some general observations about human-induced RSS changes. We

observed distinct variances in signal strength almost every 30 seconds (multiple of

60 units in Figure 4.9). First, by initiating the test with no individuals obstructing

the LOS, we were able to establish a baseline for the signal strength between the

transmitter and receiver. The RSS value remained always constant within that time

period up until to two seconds after the 30 second mark. That is, using our existing

75

hardware, we were able to determine that once we increase the number of individuals

by one, the individuals must remain in the LOS for at least one second for the receiver

to observe some interference from human activity. Such phenomena was also observed

at the beginning or end of each period. Second, regardless of the selected channel,

when the LOS is obstructed by an individual the RSS on average decreases. In

addition, distinct dBm drop ranges exist depending on the number of individuals.

Therefore we can infer the presence or absence of humans based on RSS’ ranges. For

example, in Channel A, we consistently observed a drop range of 6-8 dBm between

30-60, 90-120, 150-180, and 210-240 seconds. We note that our observations are likely

to change using di˙erent WiFi-enabled hardware.

Evaluation 2: WiFi Detection Accuracy. The goal here is to test the WiFi

localization component of our PM. Specifcally, we implemented a simple algorithm

to detect the number of people within the LOS based on our observations of human-

induced RSS changes from Evaluation 1. The setup to this test is similar to the setup

for Evaluation 1, except that we perform the test in both Bedrooms 1 and 2. We

conduct the test on Channel B.

Table 4.2 displays the results. The system was able to detect with strong accuracy

(89%) the number of occupants obstructing the line of sight in Bedroom 1. At certain

points, sporadic fuctuations occurred that caused the system to return an incorrect

number. On the other hand, the system was only able to detect occupancy with

43% accuracy in Bedroom 2. After further analysis (by performing Evaluation 1 in

Bedroom 2), we observed the human-induced interference was slightly di˙erent in RSS

levels. Although the physical layouts of Bedroom 1 and 2 are identical, there may be

other (unseen) environmental factors that also infuenced the RSS levels to slightly

di˙er between the two rooms. For example, such factors may include overlapping

wireless networks (possibly using the same channel) from neighboring apartments,

appliances and electronics emitting radio frequency interference, and simply walls

and foors blocking wireless signals in di˙erent ways depending on the location of

access points [71].

76

Table 4.2.
WiFi detection accuracy.

Location Detection

Bedroom1 89%

Bedroom2 43%

Evaluation 3: Gait Recognition Detection Latency. The goal here is to

determine the required length of a walking trace to identify the true owner of a Client

device using gait recognition. CASSEC was developed with certain enterprises in

mind that desire high assurances that sensitive enterprise content on end-users’ de-

vices is well protected. We therefore set the pre-defned threshold to 0.8. A single

user participated in this study using a Nexus 6P smartphone device to record and

analyze accelerometer values. In order to execute the test, the user performed the

enrollment and authentication phases. We frst collected from the user six 60-second

walking traces at normal speed: the frst and subsequent fve traces to be used for

gait template construction and runtime measurements in the enrollment and authen-

tication phases, respectively. Then, in the enrollment phase, n, n = 5, 6, ...60, gait

templates were constructed for the user which were derived from extracting n seconds

from the frst trace. Next, in the authentication phase, we extracted n seconds from

each of the subsequent traces to analyze and compare biometric templates with run-

time measurements that are of corresponding lengths. In its entirety, we repeated

this test twice; di˙erentiating the two by placement of the smartphone device: on the

hip and within the pocket.

Figure 4.10 displays the results of the test. We frst note that all similarity scores

produced were at least greater or equal to the predefned threshold. On average, the

system was able to detect that the current user of the Client device is the true owner

with approximately 91% and 89% confdence (i.e., similarity score) when the phone is

placed on the hip and within the pocket, respectively. The system only required fve

77

seconds of each walking trace to make such an assertion. We also observe that longer

traces eventually produce higher levels of confdence in identifying the true owner

because more gait features were extracted, and therefore more identifying features

can be determined during the authentication phase.

Fig. 4.10. Average similarity score by varying the duration of user
profle trace and runtime measurement trace.

Extracting more gait features over a longer period of time produces higher levels

of confdence while in the pocket as compared to on the hip. Upon further analysis

of individual traces from both the hip and pocket, it appears that hip traces have

increased oscillations that are not quite periodic. Particularly, we observed that there

are more variations in-between the heel strikes as compared to pocket traces. First,

the Step Cycle Identifcation component may falsely identify when the user’s leg comes

in contact with the ground if oscillations closely resembles heel strikes. Second, the

gait recognition program assumes a cyclic nature, and thus if no repetition occurs

within these sporadic oscillations, correct heel strikes, which occur outside of the

oscillations, may not be properly analyzed as well. It is evident that the hip is

continuously gyrating, and therefore, has a periodic motion. However, we believe

that the increased (and erroneous) variations are the result of the method in which

78

we attached the device to the hip. While the device is securely fastened and fushed

with the hip clip in order to minimize erroneous movement of the device, it is diÿcult

to replicate such a secure grip with the hip clip itself as it is attached to the wearer’s

clothing. However, while placed in the pocket, the device is resistant to minor shu˜ing

because it is pressed against the user’s clothing and leg. Nevertheless, the results of

this test demonstrate that feasibility to detect the true owner of the Client device

with high confdence when placed within the pocket or attached to the hip, even

considering the inherent erroneous data that is acquired while the device is attached

to the hip.

As stated in Section 4.2, the development of gait recognition techniques for user

verifcation is outside the scope of this work. We emphasize that this work is a

feasibility study that demonstrates the application of biometric techniques such as

gait authentication to securing enterprise content under a proximity-based access

control model solely using one mobile device. We refer readers to the work by Ren et

al. [76] for an extensive user evaluation of the gait authentication technique we have

leveraged.

Evaluation 4: Robustness Against Di˙erent Walking Speeds. The goal

here is to test the robustness of the system against various walking speeds. We

applied the same methodology as Evaluation 3 with an exception. We also compare

the biometric template constructed from the normal walking trace to fve runtime

measurements collected from the user for both slow and fast walking speeds.

Figure 4.11 displays the results of the test. Similarity score calculations derived

from the normal and fast walking traces were at least greater or equal to the predefned

threshold of 0.8. However, in a few instances, our system was unable to authenticate

the current user as the true owner of the device. 07% of the similarity scores calcu-

lated, which we consider negligible, fell within the range of [0.7,0.8). Nevertheless,

we can observe in any walking trace, including the slow walking trace, that there is

a positive correlation between the trace length and the similarity scores produced.

79

Fig. 4.11. Average similarity score calculated by comparing the nor-
mal walking biometric template with both the slow and fast runtime
measurement walking traces.

That is, the system can reliably determine the user with increasing confdence over a

longer period of time.

Evaluation 5: Capturing BLE Beacon RTT Values. One type of distance-

bounding technique uses the elapsed time between two devices for distance estimation.

Our goal for this test is to apply such a technique to BLE and determine if indeed

that the round trip time of beacons is a function of distance. We exchanged beacons

between two BLE-capable devices (Pixel C tablet and Nexus 6P smartphone) and

recorded 100 RTT values at various distances. The devices were laid down across a

wooden desk with the front screen facing upwards. Figure 4.12 shows the distribution

of RTT values measured between the two devices. We note that displayed values

refect distance estimation as implemented in our co-proximity authentication. We

frst observed that most of the RTT values, at each distance, are centered around the

median (the black line within the inner quartile range). For example, at distances of

1ft, 4ft, and 6ft, the RTT values are centered around approximately 81ms (± 1ms),

80

while at a distance of 2ft, RTT values are centered around 77ms. We also observed

that the IQR, the box that spans the frst and third quartiles, are centered in between

72ms and 86ms. Consequently, no signifcant statistical variations of RTT values exist

when the PM and the Client device executed the timed challenge-response protocol

at distances between 1-6ft. Moreover, we produced similar results when we applied

the same experimental process, but instead separated the devices with a 1ft wall. We

discuss the security implications in Section 4.7.

Fig. 4.12. Distribution of round trip time of 100 Bluetooth Low En-
ergy beacons each at various distances, exchanged between a Proxim-
ity Module and a Client.

4.7 Security Analysis

In this section, we present a security analysis of our CASSEC 2.0 platform to

analyze attacks aiming at circumventing its PrBAC restrictions. Below, we provide

81

various attack vectors that could be used and, subsequently, a means to mitigate the

threat or minimize the attack vector surface.

4.7.1 Bluetooth Manipulation

In our previous work, when a PM publishes a MAC address to the PIP, it attests

that a specifc individual is at a specifc proximity zone. A malicious user may attempt

to root his/her device and modify the MAC address in order to impersonate another

user of the system. In CASSEC 2.0, however, such malicious modifcation of MAC

addresses would do no harm for two reasons: (1) we rely on UIDs that are dynamically

embedded into data structures within BLE beacons; and (2) Android Oreo (API 26

v8.0) automatically randomizes the MAC addresses of beacons. Moreover, an attacker

that roots his device to dynamically alter beacon UIDs (through a modifed and

unauthorized custom OS) to impersonate a legitimate user would fail the challenge-

response protocol for several reasons including the attacker’s inability to access the

legitimate user’s private key, which is bound to the user’s Client device hardware (i.e.,

not exportable). In addition, Samsung has demonstrated via Samsung KNOX 2.0, a

custom Android OS intended for enterprise environments [20], hardware and software

security features that leave the device inoperable once it detects a root attack, which

is a suÿcient mechanism to defend against malicious modifcation of the OS.

One attack that malicious users may attempt is masking their smartphones’ Blue-

tooth peripheral services by either disabling the Bluetooth or simply leaving the

device in another room. Although we require that Bluetooth be permanently enabled

on users’ devices, we do not incorporate an enforcement mechanism within the phone

to meet such requirement. However, our system is able to detect if the violation of

such requirement occurs. The WiFi localization technique is able to determine the

number of occupants in the room. If the number of occupants and the number of

UIDs, which are published to the PIP, for a given room do not match, the PDP will

infer such malicious behaviour and subsequently revoke access to resources. In ad-

82

dition, appropriate actions can be taken by the system administrator. We also note

that Android provides Device Administrator APIs for BYOD scenarios, which allow

enterprises to take control of sensitive resources and modify system confgurations on

their employees’ devices. Through such APIs, an enterprise can then permanently

enable Bluetooth services.

Another attack vector involves an unauthorized individual obtaining an autho-

rized user’s phone, whether by theft or voluntary provision. If such an attack occurs,

then the unauthorized individual can gain access to restricted resources. In reality,

this sort of attack exploits social engineering and/or insider threats that are usually

already covered as part of an enterprise’s global security e˙orts. Nevertheless, in our

extended system, we mitigate this previously unaddressed attack vector by incorpo-

rating mechanisms that are able to determine biometric signatures for every user in

the system. In particular, we employ behavioral (i.e., dynamic gait analysis) and

physiological (i.e., fngerprint analysis) biometric authentication, which ensures that

unauthorized users will not be able to bypass security by using someone else’s device.

One of the objectives of this work is to address context monitoring issues including

adversarial context manipulation via passive attacks (e.g., malicious relay of BLE

beacons). However, we emphasize that if we relax assumptions stated in Section

4.4 and elevate the adversary’s capabilities to active attacks, we envision two active

attack vectors the adversary could employ that would not circumvent the security of

the system: packet injection and Denial-of-Service (DoS). An astute active attacker

would determine that an advantage cannot be gained by injecting packets at either

Step 3 or Step 4 of the co-proximity authentication protocol (Figure 4.5). Intercepting

the BLE beacon that encapsulates nonce at Step 3 and transmitting a new malicious

beacon that encapsulates a nonce’, which would be now received by the Client, is

unnecessary. The original nonce is transmitted in cleartext, thereby allowing the

adversary to simply record the observed value, which may be potentially used in Step

4. However, the attacker again would not need to inject packets in Step 4 since the

attacker has acquired the information needed (i.e., nonce) to extract and calculate the

83

temporary session key (SK) from the BLE beacon sent by the Client. Knowledge of

nonce and SK also does not violate the security of the system (see Section 4.5.4). In

summary, injecting attacker-generated BLE beacons would serve no purpose towards

the goal of fooling the CASSEC 2.0 system into establishing co-proximity between

the PM and the Client.

Given that intercepting and subsequently injecting malicious BLE beacons be-

tween the PM and the Client would serve no purpose towards circumventing co-

proximity authentication, an active attacker may instead rely on DoS attacks. A

malicious user may attempt a DoS attack by acquiring a high-powered Bluetooth-

enabled device [82–84]. Specifcally, the user frst adjusts the special device to mimic

his original (or another user’s) smartphone’s UID, and then boosts the signal strength.

As a consequence, receivers in di˙erent rooms within a certain radius may incorrectly

publish the proof-of-location. Therefore, the PDP will believe that multiple viola-

tions are occurring. First, the system is inherently resistant to such attack. Because

of signal attenuation, proximity modules, which have lower transmission capabilities

than of the adversary’s high-powered device, may not be able to transmit the chal-

lenge beacon to the malicious device, which may be potentially far from the proximity

module. However, if reception of the challenge does occur, several methods could be

employed to counteract this attack. For example, our study shows that the majority

of beacon RTT values fell between 72ms and 86ms. The PM could invalidate the

challenge, thereby invalidating the corresponding response, after 86ms has elapsed.

We emphasize that we are describing this DoS attack under the assumption that

the attacker is able to somehow relay the temporary session key (once it has been

decrypted) from his Client to the special device, otherwise the objective of the DoS

attack would be to simply waste computing resources by repeatedly initiating the

co-proximity authentication process.

The results in Section 4.6.4 demonstrated that no signifcant statistical varia-

tions of RTT values exist when the PM and the Client device executed co-proximity

authentication at distances between 1-6ft. Consequently, time-based distance esti-

84

mation techniques that rely on BLE beacons as its underlying technology are not

reliable methods for di˙erentiating between adjacent proximity zones within an en-

terprise environment. However, such techniques may be resistant to an adversary’s

attempts to execute relay attacks when the Client is far away, that is, outside the

enterprise environment. Let us assume the adversary’s attack takes the form of a

ghost-and-leech attack vector [85] in which the adversary employs two relay devices

(APM, AC) that are each within 6ft of the PM and the Client, respectively, and the

two malicious devices communicate over a high-speed connection. Let us also assume

that APM and AC have similar hardware and software to that of the Client and PM,

respectively. The total RTT (RT TT) is the sum of the RTT values between the PM

and APM (RT TP M), APM and AC (RT TP MC), which consists of RTT values be-

tween the network communication nodes that support the high speed connection, and

AC and the Client (RT TC). The communication relationship between said entities is

visually depicted as:

PM — APM · · · AC — Client

RT TT = RT TP M + RT TP MC + RT TC

It is diÿcult to approximate RT TP M and RT TP MC because their values are sig-

nifcantly infuenced by and dependent on many factors (e.g., communication nodes’

connection medium, network traÿc load, propagation delay, etc.). However, since the

beacon transmission between AC and Client simulates the transmission between the

PM and the Client as consequence of employing similar hardware and software, we

are able to approximate RT TC to 81ms based on our study. In addition, the triangle

inequality theorem ensures us that RT TP M + RT TP MC > RTTC since the path from

the PM to the Client is not a direct route. Thus, the RTT threshold (RT TT H) should

be set to 81ms for each legitimate proximity module to prevent relay attacks when

the Client is outside the enterprise environment.

85

4.7.2 WiFi Manipulation

We leverage the WiFi signal interference caused by human activity to determine

the number of occupants in a given room. A malicious user could attempt a DoS

by disrupting WiFi signals. That is, an attacker could acquire a special device that

would, for example, completely nullify WiFi signals [82–84]. Another means to cir-

cumvent the system would be to obstruct the LOS with something other than a

human body such as a chair. Therefore, in either case, when the receiver processes

the signal interference, it may publish an incorrect number of users within that room.

However, the authorization server will detect violations because inconsistencies will

exist within the PIP.

Regardless of whether Bluetooth or WiFi manipulation is employed, the scenarios

that we address make it more diÿcult to circumvent CASSEC 2.0. That is, in both

the SoD Scenario and the AOU scenario, multiple users with mutual interests must

collude and agree in order to attempt bypassing the system.

4.7.3 True Continuous Authentication

Our passive biometric authentication scheme only provides continuous authentica-

tion while the Client smartphone device is within the user’s pocket. It is possible that

an authorized user, whom the Client had previously authenticated, simply removes

the device from the pocket, and subsequently gives the device to an unauthorized user.

Consequently, the device is unlocked and its content is accessible by the unauthorized

user. Therefore, other biometric authentication must be used. While there are both

active and passive biometric authentication solutions, passive solutions should be

used to maximize usability as they would not require users to actively authenticate

themselves. To protect against such an attack, other passive biometric techniques to

continually authenticate while the user is holding the phone should be used. Some

biometric features that could be analyzed and passively authenticated include timing

of keystrokes, touchscreen behavior, face, retina, or iris [74,86,87]. In fact, passive fa-

86

cial recognition technology has been recently (Nov, 2017) integrated into the Apple’s

new fagship mobile device: iPhone X [88].

4.8 Conclusions

In this chapter, we propose a proximity-based context-aware access control mech-

anism that also incorporates constraints concerning the confdence about user and

location information. Such constraints allow the system to make decisions based

on the degree of reliability of extracted contextual information. We have integrated

such mechanisms into CASSEC 2.0 and have conducted a feasibility study to show

our approach is viable in practice. We have evaluated our confdence constructs and

collected some data by implementing behavioral and physiological biometric authenti-

cation and extending the occupancy detection mechanism with a robust co-proximity

authentication protocol that is resistant against relay attacks. However, occupants

were required to stand in the line of sight for at least one second to detect human

activity and subsequently the number of occupants within a room. CASSEC 2.0

also implicitly assumes that remote enterprise content is only accessible online and is

never stored on the end-user’s device. In order to continue productivity, the end-user

may need to download enterprise content to the device. Therefore, an enforcement

mechanism must exist on the end-user’s device to secure the content. We address

these concerns in the next chapter. We investigate other localization techniques with

higher accuracy and more robust detection. In addition, we investigate client-side

technology to isolate enterprise content from all other device content and enforce

proximity-based access control policies on enterprise content.

87

5. A CONTEXT-BASED CONTAINERIZATION SYSTEM

Platform-level EMM systems enable enterprises to deploy and manage containers,

which contain sensitive enterprise content, to end-users’ devices. However, we ar-

gue that given the dynamic nature of EED scenarios as users are assumed to be

mobile, EMM systems must also consider the context in which containers (i.e., per-

sonas) are employed. In this chapter, we present the design of our Context-Based,

Multi-Enterprise Containerization (MERC) context-aware system (CAS) that utilizes

our prototype PBS to infuence the behavior of containers. The MERC architecture

limits employees’ accesses to work personas and enterprise content within them dy-

namically and passively through the enforcement of context-based constraints. The

novelty of our system is twofold. First, our system is the frst to apply both location-

and proximity-based (hereinafter, context/ual) constraints to containers. Second, we

utilize sound to determine a device’s logical location. We observe that many pro-

posed PBSs are radio-based, and objects of various size, shape, and material in the

environment can obstruct the propagation path of radio signals, thus diminishing the

accuracy. For example, the work by Bocca et al. [9] demonstrates the e˙ect of human

interference on the propagation path of radio signals. Instead, we leverage the unique

characteristics of sound that make it suitable for supporting PBSs. First, unlike radio

signals, sound is inherently localized as it cannot penetrate walls or propagate over

long distances. Second, it does not require a line-of-sight, as with GNSS systems

whose signal degrades if a device is within a building. Third, the audio frequency of

sound can be shifted so that it is inaudible to the human ear (i.e., ultrasound). To

detect the proximity of other users, we also leverage Bluetooth Low Energy (BLE)

capabilities of mobile devices as standardized BLE protocols provide proximity rang-

ing measurements. We implemented our custom Android operating system (OS),

MERCOS, on Pixel C and Nexus 6P, which OEMs can readily incorporate into their

88

proprietary EMMs (e.g., Samsung KNOX [20]). Enterprises can also readily deploy

our custom PBS using devices with microphones, speakers, and Bluetooth pervaded

in existing mobile IT and building infrastructures [89]. Last, we extend Android

Device Administration policies with proximity-based constraints to infuence persona

behavior.

The contributions of this chapter can be summarized as followed:

1. Position-Based Containerization: We propose a context-based containerization

policy enforcement scheme to control EED devices based upon positional con-

straints. Di˙erent from existing containerization architectures, our approach is

the frst to introduce proximity-based constraints to Android containers.

2. Position-Based Service: We investigate the feasibility of a novel application of

ultrasound to determine a user’s location. We also evaluate proximity-based

detection via BLE. Our results produced high accuracy, with 100% location de-

tection accuracy and a maximum false negative rate of 4% in proximity detection

accuracy while introducing a minor impact on battery life, thus demonstrating

the feasibility and e˙ectiveness of our solution.

3. Secure Beacon Protocol: We propose an acoustic-based protocol that addresses

several signifcant challenges in supporting a multi-enterprise position-based

architecture, including interoperability, privacy, and security.

This chapter is organized as follows. Section 5.1 introduces motivational position-

based scenarios. We provide additional background information on PBSs in Section

5.2. Sections 5.3 and 5.4 introduce our approach followed by the implementation and

technical details in Section 5.5. We next report our experimental results in Section

5.6. We analyze the security of our approach in Section 5.7. Section 5.8 concludes

the chapter.

89

5.1 Motivating Scenarios

The MERC specifcally targets enterprises that are currently using EMM systems

to manage employees’ devices, but require that such systems be context-aware. In

terms of access control, such systems aim to secure access to sensitive content on

employees’ devices by adapting access authorizations to the current context without

explicit user intervention. Below, we describe two scenarios motivating the need to

incorporate context-aware capabilities within EMM systems.

Consider an enterprise setting in which two, but independent enterprise organiza-

tions exist. Each enterprise allows enterprise containers, containing sensitive content,

to exist on employees’ devices. Each employee, regardless of the enterprise, is assigned

a role that refects the privileges granted to that employee within the respective orga-

nization. NekSec, the frst enterprise, is a network security consulting agency whose

objective is to identify security vulnerabilities within a client’s computer network in-

frastructure. Banker, the second enterprise, is a fnancial institution that provides

online banking facilities to its customers. Two relevant roles within NekSec and

Banker are (network) Supervisor and Consultant. With respect to accessing enter-

prise content, the role Supervisor grants an employee many privileges. The privileges

assigned to the Consultant role vary depending on whether the consultant is an ex-

ternal or internal entity to the organization. However, we focus on the former in our

paper, which is further discussed below.

Location-based Containerization Scenario. An enterprise container belong-

ing to NekSec is deployed to Alice’s, a NekSec Consultant, smartphone. The con-

tainer’s content is highly sensitive as it contains confdential information regarding

NekSec’s clients. The enterprise requires that the container must only be accessible

on NekSec’s campus.

The scenario refects a real world circumstance in which an employee only has ac-

cess to resources while the employee is on premise. For example, an employee would

normally only be able to access his/her enterprise user account via stationary ter-

90

minals; the terminals do not leave the work premise. However, implications of EED

must be considered. The dual use of mobile devices allows employees to remotely

access resources that otherwise would not be accessible outside of the enterprise set-

ting. Therefore, such circumstances require that containers (e.g., user accounts or

personas) must only be accessible at specifc locations.

Proximity-based Containerization Scenario. Banker’s network Supervisor

has hired Alice to investigate the possible existence of insider threats and the leakage of

confdential fnancial information through the institution’s network-enabled computing

devices. Similarly, to conduct her investigation, a Banker container with confden-

tial network security data has been deployed to Alice’s smartphone, but can only be

accessed within a designated oÿce on Banker’s campus. In addition, only employees

with the role of Supervisor or higher are authorized to be within Alice’s immediate

proximity while in the oÿce.

This scenario also refects real world circumstances; in fact, 23% of enterprises make

EED available to contractors [19]. Consultants are often hired to temporarily pro-

vide their expertise on an on-going project, but are only granted a limited set of

privileges required to execute their duties. In addition, investigating the existence

of nefarious activities executed by employees is of a sensitive nature; Banker should

be extremely cautious not to alert low level employees that are concluded to have

malicious intent. Consequently, such circumstances require that containers must only

be accessible depending on proximity-based information.

5.2 Background

Besides BLE (Chapter 2), acoustic communication is also a possible technology for

both geofencing and microlocation PBSs [90, 91]. By applying coding schemes, data

can be transmitted and received through the air using acoustic hardware in mobile

devices. Various coding schemes (e.g., on-o˙ keying) have been proposed that encode

data into sound by modulating sound wave properties, such as frequency, amplitude,

91

or phase which a˙ect the bit rate, bit error rate, and range of transmission [90, 91].

As our work targets EED scenarios, we are particularly interested in encoding mecha-

nisms that allow reliable acoustic communication using audio signals not perceivable

to humans. That is, we embed location-based information in ultrasonic signals that

operate at frequencies above 18 kHz, which is understood to be frequencies at which

adult humans are unable to detect. Developing or determining the optimal encoding

scheme that allows eÿcient transmission of ultrasonic signals is outside the scope

of the paper. We utilize a third-party sound-based, data communication SDK [92]

to embed and extract location information within ultrasonic signals. With such a

SDK, we are able to transmit data at the speed of sound, which is approximately 340

m/s [26] at standard temperature and pressure.

5.3 Design Goals, Challenges, and Assumptions

The design of a multi-enterprise CAS that utilizes a PBS to infuence the behavior

of containers introduces several challenges:

Interoperability: We consider the dynamic nature of users in EED scenarios

involving individuals using their devices for multiple enterprises. The CAS must

therefore address the occupancy detection problem [18], that is, who is and/or how

many people are in a given space. As such, we aim to make our position-based

architecture and secure beacon protocol interoperable so to allow a device’s secure

container to be infuenced even when the device owner moves from one enterprise

environment to another.

Privacy: Another design goal is to ensure the confdentiality of enterprise build-

ing infrastructures. Some PBSs (e.g., iBeacons) transmit cleartext positional data,

thereby divulging information particular to a given enterprise. Our system protects

such information as enterprises may desire confdentiality.

Security: One design goal is to minimize the trust placed in users of the system.

Specifcally, we do not rely on users, possibly malicious, to manually report their

92

location or proximity to others. Instead, the system takes a proactive approach by

automatically monitoring entities within the environment. In that way, we make

access to personas secure and as fuid as possible.

Ease of Integration: Another design goal is to maximize ease of integration

into enterprises’ IT infrastructures. First, we must consider the method in which

we incorporate context-based constraints into existing OEMs’ containerization solu-

tions. Second, we intentionally employ sensor technology already integrated into IT

infrastructures, thereby removing deployment costs.

Flexibility: As each enterprise environment is unique, we also aim to make the

specifcation of locations as fexible as possible.

Performance: Given that users are assumed to be mobile, continuity of access

must be considered; CASs should be readily updated when context changes. For

instance, a persona should be quickly activated/deactivated once an employee en-

ters/leaves the workplace. As such, we aim to minimize and simplify the steps in the

communication process between the architectural components while not impacting

system performance.

5.3.1 Assumptions

We make the following assumptions about the proposed system and the adversary

attempting to view content (i.e., information regarding the current investigation) on

Alice’s device. Each employee/contractor, including the adversary, has full access to

his/her device. Each device has been preauthorized by the IT admin for EED use.

Preauthorization consists of (1) deploying a work persona to the device in which the

IT admin controls and (2) verifying that the device’s acoustic and Bluetooth sensors

are functioning correctly. Consequently, we assume IT admins can be trusted. We

trust the Android access control system, which includes the Android middleware

and Linux Kernel, to correctly enforce all security policies. Our ultrasonic beacon

protocol requires the exchange of cryptographic keying material between MERC’s

93

architectural components to protect communication. We assume that such material

is secured. Physical security or video monitoring is employed to prevent the adversary

from compromising positioning modules and entering the environment with foreign

objects such as a non-secured phone/camera so as to confgure a remote monitoring

device within Alice’s designated oÿce room.

5.4 MERC System Architecture

In this section, we describe the MERC architecture. We frst describe the archi-

tectural components for the sake of defning terms. Next, we provide an overview of

the system.

5.4.1 Client-Server Architecture

Client: A Client is a device that is operated by a user to access enterprise content,

and in our work, content includes persona, applications, and data. We focus on

smartphones, but the same techniques are also applicable to desktops.

Enterprise Policy Server (EPS): The EPS component hosts policies and dissem-

inates them to employees’ devices when required. By designing this component as

a server, a heterogeneous network of end-users’ devices can be serviced. Therefore,

access to resources can be requested from desktop terminals or mobile devices.

Positioning Module (PM): The role of the PM is to detect the positions (i.e.,

location and proximity) of Clients by periodically collecting and analyzing contextual

information.

We note that the various components of MERC’s architecture may not be inte-

grated into the same physical component. In our proof-of-concept implementation,

for example, the PM only provides location verifcation support by transmitting peri-

odic ultrasonic beacons, which Clients consume. In addition, a Client consumes/emits

BLE beacons to determine the proximity of other Clients. We depict the prototype’s

architecture in Figure 5.1.

94

Fig. 5.1. Processing of beacons within MERC’s architecture.

5.4.2 Overview

The operations of the MERC are centered around enterprises’ mobile IT manage-

ment. Each enterprise has enterprise members that deploy personas. We defne an

enterprise member as the entity which deploys, controls, and manages a persona. An

enterprise member could be either the IT admin (of a business/corporation) or simply

an end-user; we, however, focus only on the duties of the former because enterprises

desire to have full control over employees’ personas.

Client Registration. Each enterprise has an Enterprise ID (EID)1 that is com-

municated to Clients. This EID serves two purposes: (1) as an unique identifer for

an enterprise; (2) as information regarding the top-level locations that belong to the

particular enterprise.

Persona Deployment. We leverage Android facilities to deploy personas on

our platform. The persona deployment is achieved through the development of a

custom device admin application built using Android’s Device Administration APIs.

Use of such APIs increases the MERCOS’s ease of adoption as current IT admins
1The creation and management of unique EIDs are neither delegated to MERCOS or enterprises.
AFW, through Google Enterprise solutions, handles such operations [93].

95

would have already built a device admin to control their employees’ devices running

AFW, which MERCOS is built upon. Once the device admin is downloaded to an

employee’s device, the device admin creates a new persona dedicated to work-related

activities. At this point, a clean userspace containing the same list of applications as

the default persona, including the device admin, will be instantiated. However, unlike

the rest, the device admin is the only application that is removed completely from

the default persona as its duties only lie in the created persona. Once the persona-

creation process is completed, the device admin must register a legitimate EID, acting

as a persona ID, via our custom interface.

Activating Personas & Deploying Policies. End-users authenticate their

logical location by passively consuming, via Clients, an ultrasonic beacon that is par-

tially encrypted with two di˙erent keys. The Ultrasonic Beacon (Figure 5.1) contains

several pieces of information, including an EID, a Location ID (LID), timestamps,

and a policy number. The ultrasonic beacons are periodically sent every 10 seconds

by a PM. The EID and LID describe a Client’s general (e.g., NekSec’s campus) and

specifc (building 10, room 100) location, respectively.

We apply defense-in-depth by employing three layers of defense to access content

on the Client. First, the Client extracts the EID from the beacon, and compares the

identifer with previously registered EIDs. If there is a matching EID, the Client acti-

vates the associated persona, otherwise, the default persona is activated. We use the

term "activate" to simply indicate that a persona is brought to the foreground, and

thus, all other personas are not visible since they execute in the background. Unlike

the frst defense layer, the second and third layers are handled by the device admin.

Android delegates the responsibility of screen-locking a persona to the device ad-

min [31]. However, the device admin allows the screen lock to receive user input only

if the policy number is decipherable. Such defense-in-depth ensures legitimate ac-

cess authorizations, regardless of an attacker attempting a replay or denial-of-service

attack (see Section 5.7).

96

At this point, the Client forwards the beacon’s LID to the device admin, which

is within the Client’s active persona. As the device admin is built by the enterprise,

it is aware of the EPS’ remote address, and thus forwards the LID to the EPS for

processing (requestMapping in Figure 5.1). The content of the LID dictates the

content of the EPS’ response message. Each LID is tied to a unique policy, and

this association is confgured by the enterprise member. The EPS responds with the

policy number and the policy itself.

To minimize communication between the Client and the EPS, the device admin

stores the policy number sent by the EPS. Whenever the device admin extracts a

policy number from the ultrasonic beacon, the device admin compares it with previ-

ously stored values. If a value previously exists, the matching policy is adhered to,

otherwise, the device admin forwards the LID to the EPS to retrieve the appropriate

policy.

Encryption Keys. As previously stated, ultrasonic beacons are partially en-

crypted using two keys (Figure 5.1): Key1 is a periodically updated symmetric key

generated by and stored on the EPS. It is used to encrypt a LID and a timestamp.

Such encryption ensures the confdentiality of an enterprise’s building infrastructure

as per our design goal. Key2 is the private key component of an asymmetric pair

generated by the EPS. The private key is used to encrypt a policy number and a

timestamp. The public component, which is stored within an X.509 certifcate down-

loaded to a Client device, is used for decryption. Such encryption minimizes the

communication between the Client and EPS while maintaining high security since

the policy number is used to apply an associated policy previously downloaded to the

Client, and therefore obviating the need to contact the EPS as frequently as ultrasonic

beacons are broadcasted.

Detecting Proximity. The policies a system can enforce are dependent on the

underlying technology. Similarly to ultrasonic beacons, each Client scans for BLE

beacons every 10 seconds. Particularly, we utilize BLE to detect if other users are

within Near reach (c.f. to Section 5.2). That is, the proximity zone (Figure 5.1)

97

encompasses the area within 3 meters around a Client. We selected Near for the

maximum range as we believe that if, for example, any employee with an inferior

role to that of the Supervisor is within 3 meters of Alice, then it is a clear indica-

tion that the employee is able to visually observe content on Alice’s device he/she

is unauthorized to view. We emphasize that this hard-coded metric of proximity is

implementation specifc as we rely on BLE’s four-step ranging measurements. We

assume that the device admin maintains a database that maps Bluetooth MAC ad-

dresses to user IDs, which can be easily retrieved from an enterprise’s preexisting

RBAC system that is incorporated into the EPS. We chose the Client (rather than

the EPS) to track user movements so that Clients can immediately react to proximity

violations and minimize communication with the EPS.

5.4.3 Proximity-Based Device Admin Policies

Much work has been done in the design of policy languages [17, 33, 41, 77]. How-

ever, we extend CASSEC’s PrBAC policy specifcation [17] and integrate it into

Android’s existing Device Administration policy specifcation (MercBAC), thereby

enabling MERC to enforce restrictions based on Separation of Duty and Absence

of Other Users. The device admin is solely responsible for enforcing policies on the

persona such as password confguration or device force lock, and similar to Android’s

permission model, the device admin must request the privilege to exercise such ca-

pabilities through a security metadata fle stored within the application’s binary. We

do not modify this fle. Instead, the device admin reads a MercBAC policy, written

by the IT admin, which is stored within the application’s data directory. The device

admin must ensure the current context violates the policy’s contextual constraints

prior to exercising force lock (DevicePolicyManager.lockNow()), for example, thereby

applying proximity-based access control to personas. In this way, we increase the

ease-of-adoption and resiliency to change in MERCOS as a subset of these policy

98

features are pre-built into the stock Android OS. Figure 5.2 provides an example

MercBAC device admin policy that refects the scenario presented in Section 5.1.

Fig. 5.2. Example proximity-based MercBAC policy.

5.4.4 The EID and LID

We take advantage of preexisting data structures for EIDs. An IT admin is re-

quired to perform a registration process with Google which entails claiming and veri-

fying an enterprise domain name (e.g., www.example.com) to use Android For Work

(AFW). In addition, an Eddystone UID Namespace is generated by selecting the frst

10 bytes of a SHA-1 hash of the domain name. The MERC uses the Eddystone UID

as the EID to describe top-level locations.

The intentional naming system proposed by Adjie-Winoto et al. [94] is an attribute-

value naming system with nested attribute-value pairs. Such a naming architecture

provides signifcant fexibility in defning location-based information of broad res-

olutions. As such, we adopt this attribute-value system to construct a LID. The

advantage is that the particular construction of a LID is defned by each enterprise

IT admin instead of uniformly. Here, we use a simple construction of the following

form: [building = B [foor = F [room = R]]].

www.example.com

99

5.5 Prototype Implementation

5.5.1 Client

We made minor modifcations to the Android OS to support MERCOS. We frst

created and exposed a new system API called switchPersona(string eid). This API

switches the persona, and is called whenever a new EID is detected from an ul-

trasonic beacon. For simplicity, we allow device admins to register an EID within

Android’s "settings.db", which is a database managed by the Settings application,

via the Settings.Global interface. In this way, the database can be globally accessed

no matter which persona is currently active. Normally, third-party applications can

only read from Settings.Global, and not write. To ensure that the device admins

are the only entities with the write privilege, we call Android’s DevicePolicyMan-

ager.getActiveAdmins() function. It returns a package name list of all device admin

applications, but only one should exist as the enterprise controls the list of applica-

tions that exist within the work persona. Prior to updating the EID database, we

verify that the package name of the entity attempting to update the EIDs is autho-

rized to do so. Read access to EIDs is not a privacy concern since they are constructed

based on enterprises’ public web domain [31].

To send/receive ultrasonic beacons, we integrate a third-party sound-based, data

communication SDK [92] into our custom device admin which operates at frequencies

above 18 KHz (i.e., frequency range inaudible to the human ear). The reader may

wonder why we integrate such a feature at the application level rather than the system

level. We believe that this is suÿcient as modern smartphones already silently process

audio in the background via application-level programs. For example, the Google

Now application allows the Android OS to respond to voice-commands [95]. So in

reality, the ability to read ultrasonic beacons would be integrated into the Google

Now application so that it can be a system-wide functionality. The device admin also

periodically scans for BLE beacons every 10 seconds using the android.bluetooth.le

https://android.bluetooth.le
https://settings.db

100

APIs [31]. Nearby users are identifed by maintaining a SQL database which contains

a mapping from BLE MAC addresses to user IDs.

5.5.2 EPS

The EPS was implemented in PHP and hosted on a remote commercial server. It

disseminates policy fles to Clients. The EPS provides a function that can be remotely

invoked via URL: getPolicy(NetMsg) (Figure 5.1). The function is invoked by Clients

whenever a new policy number is detected in ultrasonic beacons.

5.6 Experimental Results

5.6.1 Deployment

In this section, we report experimental results. First, we deployed our MERC

prototype in one of our campus buildings. Figure 5.3 displays the schematics of our

tested area. The green (benign) and red (malicious) circles and arrows indicate the

placements and facing directions of PMs, respectively. A large, grid-patterned rect-

angle points out a sub-area of an enterprise environment that contains only one PM.

The gray-flled circles indicate the current positions of Clients. The gray, circular

outlines indicate the possible positions of Clients during testing. Second, our modif-

cations to the Android source code were tested on the Android Pixel C tablet device

running Android Nougat (API 22 v7.0). Last, each PM was a Dell A215 Multimedia

Speaker, and each speaker was connected to a device capable of playing MP3s. All

experiments were conducted in areas in which the ambient noise were minimal.

5.6.2 Experiments

Experiment 1: Enterprise Setting Suitability. An enterprise may place

PMs in arbitrary locations such as an oÿce or a large sitting area (e.g., auditorium).

Therefore, it is necessary to understand how messages embedded in ultrasounds will

101

Fig. 5.3. Testing area which contains our positioning module (PM#)
and Clients (C#). Arrows indicate the directions PMs are facing.

propagate. Specifcally, the goal of the experiment is to determine if the Client is able

to capture location information at varying distances away from a PM. The Client (C1)

was placed at six di˙erent positions away from the PM (PM1), and at each position,

PM1 transmitted 10 ultrasonic beacons at its maximum possible amplitude.

Figure 5.4 shows results of this experiment. C1 was able to detect beacons with

strong accuracy, at least 90%, up to 30m away from PM1. However, at a distance of

36m, C1 was only able to detect beacons with 60% accuracy. The lower detection

rate at 36m was expected as it is a natural phenomena that everyone observes on

a daily basis. That is, there is a direct correlation between the distance between a

source of sound and a listener and the likelihood of the sound being heard. Therefore,

a speaker that can emit sounds at larger volumes would be able to transmit beacons

to Clients at farther distances. Nevertheless, this experiment has demonstrated that

ultrasonic beacons can be detected with 100% accuracy in most enterprise settings

since such settings (i.e., oÿces and meetings rooms) are signifcantly smaller than

24m on the longest sides [89].

102

Fig. 5.4. Capturing location information at varying distances.

Experiment 2a and 2b: Collisions. Sound waves can transmit arbitrarily far,

and sounds from varying sources can mesh together. If multiple PMs are placed in

relatively close proximity, the ultrasounds may also blend together. We must deter-

mine if placing PMs in isolated areas that are in proximity, but demarcated by walls

or closed doors will cause any interference with Clients. We explain in the security

analysis below that an adversary is unable to transmit valid ultrasonic beacons. How-

ever, we temporarily relax our video monitoring assumption (Section 5.1), thereby

enabling an attacker to transmit beacons on the same ultrasonic frequency to cause

collisions via malicious PMs (red PMs in Figure 5.3) from adjacent rooms/areas. We

perform two experiments to determine the extent in which an adversary can perform

a Denial-of-Service attack with the constraint that the adversary is using the same

hardware deployment acquired by hijacking legitimate PMs. In Experiment 2a, C2

and PM2 are placed within a closed-door room situated roughly 3 and 6 meters away

from PM3, respectively. PM3 is pressed against and facing a 1 ft (˘0.3 m) thick

wall. In Experiment 2b, C2 and PM2 remain in the same positions, but PM3 is now

pressed against and facing the room’s door. A notable di˙erence between the two

experiments is that, although still demarcated by some obstruction, PM3 may have

a likelier chance to permeate through the room as cracks exist around the door that

sound can travel through.

103

Table 5.1.
Location detection rates

Experiment PM2 PM3

2a 100% 0%

2b 100% 6%

2b0 77% 57%

In each experiment (Table 5.1), each PM begins transmission, at maximum vol-

ume, of 30 ultrasonic beacons at a specifed time using a time-based activation pro-

gram. In Experiment 2a, C2 did not detect beacon collisions as it identifed 100%

of PM2 ’s beacons and 0% of PM3 ’s beacons. Such results demonstrate that sound

is indeed inherently localized as the attacker could not successfully penetrate the ob-

structing wall(s). In Experiment 2b, C2 detected beacon collisions as it identifed

100% and 6% of PM2 ’s and PM3 ’s beacons, respectively. We performed Experi-

ment 2b once more (i.e., 2b0), but we instead increase the adversary’s attack power

by leaving PM3 at full volume while reducing PM2 ’s volume by half. As a result,

C2 identifed 77% and 57% of PM2 ’s and PM3 ’s beacons, respectively. Such results

demonstrate that under a certain adversarial model, an attacker can cause collisions.

Given the unprecedentedly fne-grained nature of EED scenarios that we envision for

MERC (e.g., di˙erent LID per room), processing beacons from adjacent rooms/areas

would cause the Client to continuously switch containers or apply the wrong policies.

Such erratic behavior is a major issue w.r.t. security, and it would also potentially

ruin the user experience. To address this issue, we implemented a temporal local-

ization analysis mechanism to determine the correct candidate to enforce in a set of

beacons recently heard by a Client. We frst determine which beacon is consumed

more frequently, but using only this criteria is insuÿcient as an attacker could simply

increase the rate of transmission of malicious beacons. Therefore, beacons must also

104

Table 5.2.
Proximity detection rates of two stationary BLE devices

Distance Rm1 Rm2 Rm3

2m FNR: 0% FNR: 0% FNR: 4%

4m FPR: 2% FPR: 0% FPR: 0%

be consumed at a valid transmission rate, otherwise the attack is detectable. We

discuss this further in Section 5.7.

Experiment 3: Proximity Detection. We test the proximity detection method

which relies on BLE beacons. The device admin is confgured to enforce the Mer-

cBAC policy in Figure 5.2. In particular, we test if Alice’s Client can accurately

determine the distance to the unauthorized user. Two BLE-enabled devices were

used to conduct the experiment: a Nexus 6P smartphone (C1) and a Pixel C tablet

(C2) acting as Alice’s and the unauthorized user’s Clients, respectively. We repeated

this experiment twice; di˙erentiating the two by placement of the stationary Clients:

a distance of 2m (< Near) and 4m (>= Near) between each other which indicates

attack and non-attack instances, respectively. We use the following metric to evaluate

the e˙ectiveness of the proximity detection. False negative rate (FNR) is defned as

the percentage of attack instances in which C1 mistakenly evaluates as non-attack

instances. False positive rate (FPR) is defned as the percentage of non-attack in-

stances in which C1 mistakenly evaluates C2 as attack instances. We performed

the experiment three times, each on the 1st, 2nd, and third (Figure 5.3) foor of an

isolated room. C2 emitted 100 BLE beacons with each fve seconds apart.

Table 5.2 presents the false positive rates and false negative rates of proximity

detection under varying distances. C1 precisely evaluated C2 as Near when C2

was placed 2m away, with a 4% FNR in the worst case. When Clients were sit-

uated 4m apart, a FPR of 2% was observed in the worst case. Such occurrences

can be attributed to possible interferences caused by the environment since BLE is

105

a radio-based technology, and such technology is susceptible to signal attenuation.

The experiment has demonstrated that if unauthorized employees enter Alice’s vicin-

ity, with high accuracy, the device admin would be able to force lock the persona.

However, an enterprise may consider a 4% FNR non-negligible as personas would be

inaccessible in such instances. We leave the investigation of alternative proximity

technologies for future work.

Experiment 4: Battery Consumption. Mobile devices are resource con-

strained, and continually probing sensors can tax the device. The Clients are con-

tinually listening for ultrasonic and BLE beacons. The goal of this experiment is to

observe the consumption of the device’s battery. We monitored the device’s battery

percentage when running both the unmodifed OS and our customized system, sepa-

rately. We performed this experiment three times on each system. Towards this goal,

we set WindowManager class’s FLAG_KEEP_SCREEN_ON which is an Android

mechanism to force the screen to never turn o˙. It is vital that this fag is set as it

ensures that the listening service is not temporarily halted or shutdown by the stock

Android resource management system. We logged the battery consumption every

hour.

Figure 5.5 shows results of this experiment. As observed from the graph, the

average performance impact of MERCOS is minimal as compared to the non-modifed

OS. The maximum di˙erence observed each hour was 2%. An explanation for this

result is that Android already silently processes audio in the background when the

unmodifed OS is used (e.g., Google Now application’s voice-activation services). The

processing of ultrasonic beacon in MERCOS takes precedent over the voice-activation

services. Thus, the only additional processing that is performed in our custom OS

is the scanning of BLE beacons. Therefore, integrating features of our CAS into

resource-constrained devices is practical.

106

Fig. 5.5. Average battery consumption of a Client.

5.7 Security Analysis

We discuss possible attacks to our system, and means to to prevent or mitigate

them.

5.7.1 Attacking Ultrasonic Beacons

Replay Attack. An attacker may attempt a simple replay attack. The goal of

the attack is to confuse the MERC system to activate an incorrect persona and policy

on a Client. The attack is executed by recording a previously transmitted ultrasonic

message and re-transmitting it at a di˙erent time or location. We protect the system

from replay attacks by embedding temporal information within the beacon. The

components in the system must have loosely synchronized clocks. We extract the

timestamps and compare them to the current time, and then determine if the time

di˙erence exceeds a specifed threshold. In the midst of Experiment 1, at a distance of

24m, prior to signal degradation at 30m, we averaged the elapsed time in milliseconds

to transmit, receive, and process 30 ultrasonic beacons. The longest sides of most

oÿces or meeting rooms are signifcantly smaller than 24m, which we believe refects

the maximum distance an ultrasonic beacon must travel. On average, the complete

107

process took approximately 1.33 seconds. Although the longest elapsed time recorded

was 2.5 seconds, all other recorded times fell well below two seconds. As a result,

we set our threshold to two seconds. Therefore, the system would be able to detect

malicious activity under the threat of a simple attacker.

In this chapter, we do not consider a sophisticated attacker that is able to exe-

cute a wormhole attack [96]. A wormhole attack is similar to a replay attack except

that the adversary tunnels the beacon through a "wormhole". Defending against

such an attack is quite challenging as the wormhole allows the re-transmission at a

di˙erent location with minimal delay, possibly within milliseconds. A sophisticated

method to address both attacks would be to employ ultrasonic distance-bounding

techniques [26, 97]. Such techniques were not investigated for several reasons. First,

recently proposed techniques require special hardware, and modern smartphones are

not currently capable of handling such a task. Second, given the scenarios that we

envision for MERC, such a feature would incur signifcant overhead for each architec-

tural component. For these reasons, MERC would not satisfy the main goals of the

paper as ease of integration and interoperability would be signifcantly reduced.

Denial-of-Service. In Experiment 2, we addressed the issue of collisions as re-

sult of benign position modules in adjacent rooms. However, an attacker can execute

a denial-of-service (DOS) attack by physically tampering with or altering the bea-

cons that are transmitted from PMs. For example, an attacker may tamper with

a benign PM to transmit audio shifted to a frequency that will negate legitimate

ultrasonic beacons. If this occurs, the Clients may consume data that is corrupted

and indecipherable; persona activation and policy deployment will not function prop-

erly. It is diÿcult to defend against such a DOS attack, but it can be detected. The

results in Experiment 1 and 2 demonstrate high accuracy with respect to detecting

beacons. Consequently, repetitious consumption of indecipherable beacons can be in-

ferred as malicious activity, especially if enterprises appropriately place benign PMs

as to minimize collisions between those devices. Another practical method that can

be immediately employed is Android’s Geofences APIs [31]. A geofence is a circular

108

area defned by a latitude, longitude, and radius, which can be specifed by the device

admin. The device admin thus becomes more context aware as it is alerted when-

ever a user enters/exits the geofence. Experiencing GPS signal attenuation is not a

cause for concern since the device admin would instead place a geofence to entirely

encompass, for example, NekSec’s campus. An expected EID is thus established once

a Alice enters the campus, otherwise, a DOS attack can be inferred. Last, physical

security could also be utilized by delegating the responsibility of monitoring for ma-

licious location devices to sentries placed throughout the campus. Nevertheless, the

security of personas would still be ensured if enterprises apply defense-in-depth as

described in Section 5.4.2.

5.7.2 Attacking BLE Beacons

Rooting. A possible attack to our system involves a user rooting his/her Client,

and maliciously modifying the Bluetooth MAC address. In this way, the Client can

impersonate another user of the system. To mitigate such an attack, an enterprise

must employ hardware and software mechanisms (e.g., Android’s dm-verity) that

enhance device security. For example, Samsung KNOX 2.0 is a custom Android

OS which has a low-level security feature that leaves the device inoperable once it

detects a root attack [20], which is a suÿcient mechanism to defend against malicious

modifcation of the MAC address (or any root-based attack targeting MERC).

Masking BLE. The simplest attack malicious users could execute is to mask

their MAC address by either disabling the Bluetooth peripheral on the Client or sim-

ply leaving it in another room. By doing so Clients will be unable to correctly enforce

proximity constraints. There are several measures that can be taken against such

attack. First, an enterprise simply has to enforce mandatory enabling of Bluetooth

through the device admin application, which completely controls the settings and con-

fgurations of the Clients. Second, accidental or malicious misplacing of the Client

can be addressed by supplementing the system with a facility to detect the number

109

of individuals in a room. For example, the system by Oluwatimi et al. [17] takes

an infrastructure-based approach (i.e., independent of the Clients) utilizing signal

attenuation of WiFi radios caused by human interference to achieve occupant local-

ization. Therefore, if the number of individuals in a room and the number of MAC

addresses do not match, the system will infer malicious behavior, and subsequently

revoke access to resources.

Unauthorized Device User. Another attack vector involves an unauthorized

individual obtaining an authorized user’s phone, whether by theft or voluntary pro-

vision. Such an attack would allow an individual to gain unauthorized access to

persona content. To mitigate such a threat, biometric techniques can be employed.

For example, Draÿn et al. [98] demonstrate that it is possible to passively detect

that a mobile device is being used by a non-authorized user by modeling user key-

board interactions. Wang et al. [99] explore biometric signatures using WiFi-based

techniques to determine the identity of an individual. Using such techniques, it is

therefore possible to associate an individual with a device.

5.8 Conclusion

In this chapter, we investigate the feasibility of introducing context-based con-

straints to containers under a multi-enterprise context. Contextual information is

supplied by our prototype PBS that relies on ultrasonic2 and Bluetooth Low Energy

beacons to address occupancy detection. With such information, proximity-based

constraints can be e˙ectively and eÿciently enforced on Android’s personas, which,

to the best of our knowledge, has never been investigated. We also demonstrate how

to allow multiple context-aware systems from di˙erent enterprises to serve a feet of

devices while maintaining privacy, security, scalability, and interoperability. Serving

devices in such a manner is accomplished via our secure ultrasonic beacon protocol.

2Careful construction and transmission of ultrasonic signals must be taken to prevent adverse e˙ects
on the human body [100].

110

6. CONCLUSION

In this dissertation, we investigated various aspects of context-aware systems that is

applicable to mobile systems technology within enterprise environments. We specif-

ically asked how do we capture contextual information, incorporate contextual con-

straints into access control policies, and enforce contextual access control policies?

To those ends, we frst proposed a modifed version of the Android operating system

called CBAC (Chapter 3) that enables end-users to confgure context-based policies

for mobile applications. The context-based policies were used in the decision process

by our custom OS to determine whether a mobile application, possibly malicious, has

access to content (i.e., data and resources) that exists on the device depending on the

context in which the content was requested. In this system, contextual constraints

consisted of spatio-temporal parameters (i.e., location and time) which included the

user being able to specify logical locations. Location-based information was captured

via the end-user’s device using the WiFi peripheral. We specifcally triangulated the

user’s position by analyzing the surrounding WiFi access points and their RSSI levels.

While the security of enterprise content may depend on the presence of others,

we also proposed a proximity-based mobile architecture. The proposed architecture

CASSEC 2.0 (Chapter 4) supports context-based access control decisions based on

the location of the user requesting access and the proximity of other users in a mon-

itored area, so that the appropriate privileges to access remote enterprise content

is automatically granted. In addition, we extend the PrBAC model to incorporate

confdence constructs that would allow the system’s access control decisions to be in-

fuenced by the degree of reliability of extracted contextual information. We evaluate

our confdence constructs by implementing two new authentication mechanisms. Co-

proximity authentication employs our time-based challenge-response protocol, which

leverages Bluetooth Low Energy beacons as its underlying occupancy detection tech-

davidsego
Highlight

111

nology. Biometric authentication relies on the accelerometer and fngerprint sensors

to measure behavioral and physiological user features to prevent unauthorized users

from using an authorized user’s device.

Fig. 6.1. High-level characteristics of each context-aware system.

We also proposed the MERC (Chapter 5) system which addresses the issue of

applying proximity-based constraints to the management of end-user devices via mo-

bile containerization techniques and technologies when end-users may be employed

by or consult for multiple enterprises. As enterprise content may be downloaded

to end-users’ devices, MERC, our custom Android OS, ensures that the content is

isolated from non-enterprise related content via platform-level containerization (i.e.,

personas). MERC then applies location-based and proximity-based constraints to the

secure containers and their content. Contextual information is captured via a device’s

microphone and Bluetooth peripheral. Our novel approach uses ultrasonic sound that

is inaudible to the human ear to determine a user’s location. We then use Bluetooth

Low Energy technology to determine proximity of other users. We demonstrate how

to integrate context-based constraints into Android Device Administration policies

in order for an enterprise to restrict employees’ access to containers’ content based

on the proximity of other employees. Distinguishing characteristics of each of the

previously mentioned systems are highlighted in Figure 6.1.

112

In the future, we will investigate how to enhance system security by incorporating

more contextual information. Experiment 2 in Section 5.6 demonstrates that adjust-

ing the amplitude of ultrasonic beacons a˙ects the transmission distance. We can

potentially exploit phenomenon such as this to support micro-position access control

policies. For example, in a large sitting area containing tens of employees, a single

high-level employee may instead use his smartphone device as a positioning mod-

ule to support micro-position transmission of ultrasonic beacons. In this way, the

high-level employee may adjust the device’s volume to minimal levels to impose tem-

porary restrictions on only low-level employees’ devices that are within a few feet.

One limitation of the proposed proximity-based systems presented in this work is

the inability to deduce potential shoulder-surfng attacks. Shoulder-surfng attacks

exemplify proximity-based situations in which an authorized user accessing sensitive

content via his mobile device is unaware of an unauthorized user in the immediate

vicinity, thereby leaving the authorized user’s sensitive content vulnerable to poten-

tial information leakage. The most interesting aspect of this constructed scenario is

that current proximity-based access control systems, including ones presented in this

dissertation, would apply access control constraints regardless of whether the attack

is possible. The unauthorized user may be situated in front of the authorized user,

outside of the device’s front screen peripheral. We intend to also develop the ex-

pressiveness of proximity-based access control policies and rely on micro-positioning

technologies to resolve such contentious access control decisions.

Amongst the proposed systems, techniques, technologies, and context-based poli-

cies, which is the best strategy to employ? There is no one-size-ft-all approach; a

specifc solution may be only applicable to a specifc problem or scenario. An enter-

prise that desires to integrate a context-aware access control system into its mobile

IT infrastructure must frst answer several questions, which include which content

must be protected, who or what must the content be protected from (e.g., construct-

ing the adversarial model), and what it means for the content to be secured (e.g.,

sustaining desirable properties under intelligent adversaries)? Once such questions

davidsego
Highlight

davidsego
Highlight

113

are answered, the enterprise must determine the set of contextual information within

the physical or computing realm that can be leveraged to provide more dynamic

and robust access control mechanisms, while minimizing the cost of deploying the

technologies required to implement such security facilities. This dissertation exam-

ines various security requirements and real-world context-based problem scenarios

and subsequently proposes several example context-aware access control solutions to

address those scenarios.

davidsego
Highlight

REFERENCES

114

REFERENCES

[1] A. K. Dey, “Providing architectural support for building context-aware appli-
cations,” PhD dissertation, Georgia Institute of Technology, 2000.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware sys-
tems,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4,
pp. 263–277, 2007.

[3] R. Technologies, “Use cases,” http://www.redwall.us/resources/Downloads/
Redwall-Mobile-Use-Cases.pdf.

[4] I. M. Santos, “Use of students personal mobile devices in the classroom:
Overview of key challenges,” in Proceedings of World Conference on E-Learning
in Corporate, Government, Healthcare, and Higher Education 2013, T. Basti-
aens and G. Marks, Eds. Association for the Advancement of Computing in
Education (AACE), October 2013, pp. 1585–1590.

[5] Y. Song, “Bring your own device (BYOD) for seamless science inquiry in a
primary school,” Computers & Education, vol. 74, pp. 50–60, 2014.

[6] B. Shebaro, O. Oluwatimi, D. Midi, and E. Bertino, “Identidroid: Android can
fnally wear its anonymous suit,” Transactions on Data Privacy 7, 2014.

[7] B. Shebaro, O. Oluwatimi, and E. Bertino, “Context-based access control sys-
tems for mobile devices,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 12, no. 2, pp. 150–163, 2015.

[8] “Project proposal,” http://hfd.olin.edu/sa2013/s_engr3220-unibros/proposal.
php.

[9] M. Bocca, O. Kaltiokallio, and N. Patwari, “Radio tomographic imaging for am-
bient assisted living,” in Evaluating AAL Systems Through Competitive Bench-
marking. Springer, 2012, pp. 108–130.

[10] W. Liu, X. Li, and D. Huang, “A survey on context awareness,” in 2011 Inter-
national Conference on Computer Science and Service System (CSSS). IEEE,
2011, pp. 144–147.

[11] L. L. N. Laboratory, “Controlled items that are prohibited on LLNL property,”
https://www.llnl.gov/about/controlleditems.html.

[12] M. Conti, V. T. N. Nguyen, and B. Crispo, “Crepe: Context-related policy
enforcement for Android,” in Proceedings of the 13th International Conference
on Information Security, ser. ISC’10. Springer-Verlag, 2011, pp. 331–345.

https://www.llnl.gov/about/controlleditems.html
http://hfid.olin.edu/sa2013/s_engr3220-unibros/proposal
http://www.redwall.us/resources/Downloads

115

[13] A. Kushwaha and V. Kushwaha, “Location based services using Android mo-
bile operating system,” International Journal of Advances in Engineering and
Technology, vol. 1, no. 1, pp. 14–20, 2011.

[14] S. Kumar, M. A. Qadeer, and A. Gupta, “Location based services using
Android,” in Proceedings of the 3rd IEEE International Conference on Internet
Multimedia Services Architecture and applications, ser. IMSAA’09, 2009, pp.
335–339.

[15] M. S. Kirkpatrick and E. Bertino, “Enforcing spatial constraints for mobile
RBAC systems,” in Proceedings of the 15th ACM Symposium on Access Control
Models and Technologies. ACM, 2010, pp. 99–108.

[16] A. Gupta, M. Miettinen, N. Asokan, and M. Nagy, “Intuitive security policy
confguration in mobile devices using context profling,” in IEEE International
Conference on Social Computing, ser. SOCIALCOM-PASSAT ’12. IEEE Com-
puter Society, 2012, pp. 471–480.

[17] O. Oluwatimi, D. Midi, and E. Bertino, “A context-aware system to secure
enterprise content,” in Proceedings of the 21st ACM on Symposium on Access
Control Models and Technologies. ACM, 2016, pp. 63–72.

[18] S. K. Ghai, L. V. Thanayankizil, D. P. Seetharam, and D. Chakraborty, “Occu-
pancy detection in commercial buildings using opportunistic context sources,”
in 2012 IEEE International Conference on Pervasive Computing and Commu-
nications Workshops (PERCOM Workshops), 2012, pp. 463–466.

[19] H. Schulze, “BYOD & mobile security 2016 spotlight report,”
http://crowdresearchpartners.com/wp-content/uploads/2016/03/
BYOD-and-Mobile-Security-Report-2016.pdf, March 2016.

[20] O. Oluwatimi, D. Midi, and E. Bertino, “Overview of mobile containerization
approaches and open research directions,” IEEE Security & Privacy, vol. 15,
no. 1, pp. 22–31, 2017.

[21] N. Elenkov, Android Security Internals: An In-depth Guide to Android’s Secu-
rity Architecture. No Starch Press, 2014.

[22] M. Vossiek, L. Wiebking, P. Gulden, J. Wieghardt, C. Ho˙mann, and P. Heide,
“Wireless local positioning,” Microwave Magazine, IEEE, vol. 4, no. 4, pp. 77–
86, 2003.

[23] F. Zafari, I. Papapanagiotou, and K. Christidis, “Microlocation for internet-
of-things-equipped smart buildings,” IEEE Internet of Things Journal, vol. 3,
no. 1, pp. 96–112, 2016.

[24] A. Larchikov, S. Panasenko, A. V. Pimenov, and P. Timofeev, “Combining
RFID-based physical access control systems with digital signature systems to
increase their security,” in Software, Telecommunications and Computer Net-
works (SoftCOM), 2014 22nd International Conference. IEEE, 2014, pp. 100–
103.

[25] M. Moreno, J. L. Hernandez, and A. F. Skarmeta, “A new location-aware au-
thorization mechanism for indoor environments,” in Advanced Information Net-
working and Applications Workshops (WAINA), 2014 28th International Con-
ference. IEEE, 2014, pp. 791–796.

http://crowdresearchpartners.com/wp-content/uploads/2016/03

116

[26] K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Capkun,
“Proximity-based access control for implantable medical devices,” in Proceed-
ings of the 16th ACM Conference on Computer and Communications security.
ACM, 2009, pp. 410–419.

[27] R. Bruno and F. Delmastro, “Design and analysis of a bluetooth-based indoor
localization system,” in IFIP International Conference on Personal Wireless
Communications. Springer, 2003, pp. 711–725.

[28] Y. Jiang, X. Pan, K. Li, Q. Lv, R. P. Dick, M. Hannigan, and L. Shang,
“Ariel: Automatic wi-f based room fngerprinting for indoor localization,” in
Proceedings of the 2012 ACM Conference on Ubiquitous Computing. ACM,
2012, pp. 441–450.

[29] B. Balaji, J. Xu, A. Nwokafor, R. Gupta, and Y. Agarwal, “Sentinel: Occu-
pancy based HVAC actuation using existing wif infrastructure within com-
mercial buildings,” in Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems. ACM, 2013, p. 17.

[30] T. Saelim, P. Chumchu, and T. Mayteevarunyoo, “Design and performance
evaluation of novel location-based access control algorithm using IEEE 802.11
r,” Journal of Convergence Information Technology, vol. 10, no. 4, p. 33, 2015.

[31] Android, “Android developer’s guide,” http://developer.Android.com.

[32] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-based Access Control.
Artech House, 2003.

[33] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca, “GEO-RBAC: a spa-
tially aware RBAC,” in Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies. ACM, 2005, pp. 29–37.

[34] S. M. Chandran and J. B. Joshi, “LoT-RBAC: a location and time-based RBAC
model,” in Web Information Systems Engineering–WISE 2005. Springer, 2005,
pp. 361–375.

[35] S. Aich, S. Sural, and A. K. Majumdar, “STARBAC: Spatiotemporal role based
access control,” in On the Move to Meaningful Internet Systems 2007: CoopIS,
DOA, ODBASE, GADA, and IS. Springer, 2007, pp. 1567–1582.

[36] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahamad, and G. D.
Abowd, “Securing context-aware applications using environment roles,” in Pro-
ceedings of the 6th ACM Symposium on Access Control Models and Technolo-
gies, ser. SACMAT ’01. ACM, 2001, pp. 10–20.

[37] G. Zhang and M. Parashar, “Context-aware dynamic access control for pervasive
applications,” in Proceedings of the Communication Networks and Distributed
Systems Modeling and Simulation Conference, 2004, pp. 21–30.

[38] D. Kulkarni and A. Tripathi, “Context-aware role-based access control in perva-
sive computing systems,” in Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies, ser. SACMAT ’08. ACM, 2008, pp. 113–122.

http://developer.Android.com

117

[39] R. Sandhu, K. Ranganathan, and X. Zhang, “Secure information sharing en-
abled by trusted computing and PEI models,” in Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications security. ACM,
2006, pp. 2–12.

[40] S. K. Gupta, T. Mukheriee, K. Venkatasubramanian, and T. Taylor, “Proximity
based access control in smart-emergency departments,” in Pervasive Computing
and Communications Workshops, 2006. PerCom Workshops 2006. 4th Annual
IEEE International Conference. IEEE, 2006, pp. 5–pp.

[41] M. S. Kirkpatrick, M. L. Damiani, and E. Bertino, “Prox-RBAC: A proximity-
based spatially aware RBAC,” in Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems.
ACM, 2011, pp. 339–348.

[42] J. Park and R. Sandhu, “The UCON ABC usage control model,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 7, no. 1, pp. 128–174,
2004.

[43] A. Gupta, M. S. Kirkpatrick, and E. Bertino, “A formal proximity model for
RBAC systems,” Computers & Security, vol. 41, pp. 52–67, 2014.

[44] C. Stach and B. Mitschang, “Privacy management for mobile platforms–a re-
view of concepts and approaches,” in Mobile Data Management (MDM), 2013
IEEE 14th International Conference, vol. 1. IEEE, 2013, pp. 305–313.

[45] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android permission
model and enforcement with user-defned runtime constraints,” in Proceedings
of the 5th ACM Symposium on Information, Computer and Communications
Security. ACM, 2010, pp. 328–332.

[46] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These aren’t the
droids you’re looking for: Retroftting Android to protect data from imperious
applications,” in Proceedings of the 18th ACM conference on Computer and
Communications Security. ACM, 2011, pp. 639–652.

[47] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-stealing
smartphone applications (on Android),” in International Conference on Trust
and Trustworthy Computing. Springer, 2011, pp. 93–107.

[48] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: Trading pri-
vacy for application functionality on smartphones,” in Proceedings of the 12th
Workshop on Mobile Computing Systems and Applications. ACM, 2011, pp.
49–54.

[49] G. Russello, B. Crispo, E. Fernandes, and Y. Zhauniarovich, “Yaase: Yet an-
other Android security extension,” in Privacy, Security, Risk and Trust (PAS-
SAT) and 2011 IEEE 3rd International Conference on Social Computing (So-
cialCom), 2011, pp. 1033–1040.

[50] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fne-grained mandatory
access control on Android for diverse security and privacy policies,” in The 22nd
USENIX Security Symposium (USENIX Security 13), 2013, pp. 131–146.

118

[51] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “MOSES: Supporting
operation modes on smartphones,” in Proceedings of the 17th ACM symposium
on Access Control Models and Technologies. ACM, 2012, pp. 3–12.

[52] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically rich
application-centric security in Android,” Security and Communication Net-
works, vol. 5, no. 6, pp. 658–673, 2012.

[53] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry,
“Practical and lightweight domain isolation on Android,” in Proceedings of the
1st ACM Workshop on Security and Privacy in Smartphones and Mobile De-
vices, ser. SPSM ’11. ACM, 2011, pp. 51–62.

[54] A. Gupta, A. Joshi, and G. Pingali, “Enforcing security policies in mobile
devices using multiple personas,” in International Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services. Springer, 2010,
pp. 297–302.

[55] O. Oluwatimi and E. Bertino, “An application restriction system for bring-your-
own-device scenarios,” in Proceedings of the 21st ACM on Symposium on Access
Control Models and Technologies. ACM, 2016, pp. 25–36.

[56] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: An information-fow tracking sys-
tem for realtime privacy monitoring on smartphones,” ACM Transactions on
Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[57] P. Kodeswaran, V. Nandakumar, S. Kapoor, P. Kamaraju, A. Joshi, and
S. Mukherjea, “Securing enterprise data on smartphones using run time infor-
mation fow control,” in 2012 IEEE 13th International Conference on Mobile
Data Management. IEEE, 2012, pp. 300–305.

[58] D. Feth and C. Jung, “Context-aware, data-driven policy enforcement for smart
mobile devices in business environments,” in International Conference on Secu-
rity and Privacy in Mobile Information and Communication Systems. Springer,
2012, pp. 69–80.

[59] J. Leyden, “Your phone may not be spying on you now - but it
soon will be,” https://www.theregister.co.uk/2013/04/24/kaspersky_mobile_
malware_infosec, 2013.

[60] R. Templeman, Z. Rahman, D. Crandall, and A. Kapadia, “Placeraider: Virtual
theft in physical spaces with smartphones,” arXiv preprint arXiv:1209.5982,
2012.

[61] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang,
“Soundcomber: A stealthy and context-aware sound trojan for smartphones.”
in The Network and Distributed System Security Symposium, vol. 11, 2011, pp.
17–33.

[62] O. G. Consortium, “Open GIS simple features specifcation for SQL. revision
1.1,” 1999.

https://www.theregister.co.uk/2013/04/24/kaspersky_mobile

119

[63] M. Shehab, G. Cheek, H. Touati, A. C. Squicciarini, and P.-C. Cheng, “User
centric policy management in online social networks,” in Policies for Dis-
tributed Systems and Networks (POLICY), 2010 IEEE International Sympo-
sium. IEEE, 2010, pp. 9–13.

[64] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, and K. Vaniea, “More
than skin deep: Measuring e˙ects of the underlying model on access-control
system usability,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2011, pp. 2065–2074.

[65] L. F. Cranor and S. Garfnkel, Security and Usability: Designing Secure Systems
that People Can Use. O’Reilly Media, Inc., 2005.

[66] K. Fisler and S. Krishnamurthi, “A model of triangulating environments for pol-
icy authoring,” in Proceedings of the 15th ACM Symposium on Access Control
Models and Technologies. ACM, 2010, pp. 3–12.

[67] I. F. Progri, “Wireless-enabled GPS indoor geolocation system,” in IEEE/ION
Position, Location and Navigation Symposium, 2010.

[68] C. Feng, W. S. A. Au, S. Valaee, and Z. Tan, “Received-signal-strength-based
indoor positioning using compressive sensing,” IEEE Transactions on Mobile
Computing, vol. 11, no. 12, pp. 1983–1993, 2012.

[69] S. Ali-Loytty, T. Perala, V. Honkavirta, and R. Piché, “Fingerprint kalman flter
in indoor positioning applications,” in 2009 IEEE Control Applications,(CCA)
& Intelligent Control,(ISIC). IEEE, 2009, pp. 1678–1683.

[70] A. S. Paul and E. A. Wan, “Rssi-based indoor localization and tracking using
sigma-point kalman smoothers,” IEEE Journal of Selected Topics in Signal
Processing, vol. 3, no. 5, pp. 860–873, 2009.

[71] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A. Boano,
and M. Alves, “Radio link quality estimation in wireless sensor networks: a
survey,” ACM Transactions on Sensor Networks (TOSN), vol. 8, no. 4, p. 34,
2012.

[72] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry,
“Towards taming privilege-escalation attacks on Android.” in The Network and
Distributed System Security Symposium, vol. 17, 2012, p. 19.

[73] L. Lee and W. E. L. Grimson, “Gait analysis for recognition and classifcation,”
in Proceedings of the 5th IEEE International Conference on Automatic Face
and Gesture Recognition. IEEE, 2002, pp. 148–155.

[74] A. Alzubaidi and J. Kalita, “Authentication of smartphone users using behav-
ioral biometrics,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3,
pp. 1998–2026, 2016.

[75] T. T. Ngo, Y. Makihara, H. Nagahara, Y. Mukaigawa, and Y. Yagi, “The
largest inertial sensor-based gait database and performance evaluation of gait-
based personal authentication,” Pattern Recognition, vol. 47, no. 1, pp. 228–237,
2014.

120

[76] Y. Ren, Y. Chen, M. C. Chuah, and J. Yang, “User verifcation leveraging gait
recognition for smartphone enabled mobile healthcare systems,” IEEE Trans-
actions on Mobile Computing, vol. 14, no. 9, pp. 1961–1974, 2015.

[77] A. Anderson, “XACML profle for role based access control (RBAC),” OASIS
Access Control TC Committee Draft, vol. 1, p. 13, 2004.

[78] T. Moses et al., “Extensible access control markup language (XACML) version
2.0,” Oasis Standard, vol. 200502, 2005.

[79] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Trans-
actions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[80] Y. Kumar, R. Munjal, and H. Sharma, “Comparison of symmetric and asym-
metric cryptography with existing vulnerabilities and countermeasures,” Inter-
national Journal of Computer Science and Management Studies, vol. 11, no. 03,
2011.

[81] T. Søndrol, “Using the human gait for authentication,” Master’s thesis, Gjøvik
University College (Gjøvik, Norway), 2005.

[82] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee, “Identifying
unique devices through wireless fngerprinting,” in Proceedings of the 1st ACM
Conference on Wireless Network Security. ACM, 2008, pp. 46–55.

[83] S. Banerjee and V. Brik, “Wireless device fngerprinting,” in Encyclopedia of
Cryptography and Security. Springer, 2011, pp. 1388–1390.

[84] Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device fngerprinting in wireless
networks: Challenges and opportunities,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 94–104, 2016.

[85] Z. Kfr and A. Wool, “Picking virtual pockets using relay attacks on contact-
less smartcard,” in 1st International Conference on Security and Privacy for
Emerging Areas in Communications Networks, SecureComm. IEEE, 2005, pp.
47–58.

[86] H. Saevanee and P. Bhattarakosol, “Authenticating user using keystroke dy-
namics and fnger pressure,” in The 6th International Conference on Consumer
Communications and Networking Conference (CCNC). IEEE, 2009, pp. 1–2.

[87] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos, “Progressive authentica-
tion: Deciding when to authenticate on mobile phones.” in USENIX Security
Symposium, 2012, pp. 301–316.

[88] Apple, “iphone x,” https://www.apple.com/iphone-x.

[89] B. Haskins, A. Nilssen, and A. Davis, “The evolution of the confer-
ence room and the technology behind it,” http://cp.wainhouse.com/content/
evolution-conference-room.

[90] A. Madhavapeddy, D. Scott, and R. Sharp, “Context-aware computing with
sound,” in International Conference on Ubiquitous Computing. Springer, 2003,
pp. 315–332.

http://cp.wainhouse.com/content
https://www.apple.com/iphone-x

121

[91] B. Carrara and C. Adams, “On acoustic covert channels between air-gapped
systems,” in International Symposium on Foundations and Practice of Security.
Springer, 2014, pp. 3–16.

[92] Pronto.ly, “Ultrasonic handsfree authentication technology,” http://www.
prontoly.com/.

[93] Android, “Android enterprise,” https://enterprise.google.com/Android.

[94] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and
implementation of an intentional naming system,” SIGOPS Operating Systems
Review, vol. 33, no. 5, pp. 186–201, Dec. 1999.

[95] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli, “Audroid: Preventing attacks on
audio channels in mobile devices,” in Proceedings of the 31st Annual Computer
Security Applications Conference. ACM, 2015, pp. 181–190.

[96] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless net-
works,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 2, pp.
370–380, 2006.

[97] C. Medina, J. C. Segura, and S. Holm, “Feasibility of ultrasound positioning
based on signal strength,” in The International Conference on Indoor Position-
ing and Indoor Navigation (IPIN). IEEE, 2012, pp. 1–9.

[98] B. Draÿn, J. Zhu, and J. Zhang, “Keysens: Passive user authentication through
micro-behavior modeling of soft keyboard interaction,” in Mobile Computing,
Applications, and Services. Springer, 2013, pp. 184–201.

[99] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding and
modeling of wif signal based human activity recognition,” in Proceedings of the
21st Annual International Conference on Mobile Computing and Networking.
ACM, 2015, pp. 65–76.

[100] B. Smagowska and M. Pawlaczyk-Łuszczy«ska, “E˙ects of ultrasonic noise on
the human body—a bibliographic review,” International Journal of Occupa-
tional Safety and Ergonomics, vol. 19, no. 2, pp. 195–202, 2013.

https://enterprise.google.com/Android
https://prontoly.com
http://www
https://Pronto.ly

VITA

122

VITA

Oyindamola Oluwatimi was born and raised in Washington, D.C. He was awarded

the Dozoretz National Institute for Mathematics and Science full scholarship to attend

Norfolk State University, from which he graduated magna cum laude in 2011 with

his bachelor’s degree in computer science. He was then admitted into the computer

science PhD program at Purdue University which was funded by the Purdue Doctoral

Fellowship and GEM Fellowship.

Oyindamola’s research area was mobile security and privacy. In particular, he

focused on developing and enhancing access control techniques for devices within

mobile information technology infrastructures. In addition, Oyindamola investigated

the use of contextual information extracted from the environment, within the physical

and computing realms, to infuence access control decisions in context-aware systems.

Oyindamola had participated in several internships at various institutions and

companies including Iowa State University, Texas A&M University, University of Cali-

fornia Los Angeles, Johns Hopkins University Applied Physics Laboratory, Soonchun-

hyung University in South Korea, and Harris Corporation. In addition, during the

last two years of his PhD program at Purdue University, Oyindamola interned at

Analog Devices Inc. as a software engineer.

	Applications of Context-Aware Systems in Enterprise Environments
	Recommended Citation

