339 research outputs found

    Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank

    Get PDF
    Motivation: Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better fit their corresponding experimental data, passing the benefits of new methods in crystallography on to a wide base of non-crystallographer structure users

    Correcting pervasive errors in RNA crystallography through enumerative structure prediction

    Full text link
    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models

    Cryo-EM map interpretation and protein model-building using iterative map segmentation.

    Get PDF
    A procedure for building protein chains into maps produced by single-particle electron cryo-microscopy (cryo-EM) is described. The procedure is similar to the way an experienced structural biologist might analyze a map, focusing first on secondary structure elements such as helices and sheets, then varying the contour level to identify connections between these elements. Since the high density in a map typically follows the main-chain of the protein, the main-chain connection between secondary structure elements can often be identified as the unbranched path between them with the highest minimum value along the path. This chain-tracing procedure is then combined with finding side-chain positions based on the presence of density extending away from the main path of the chain, allowing generation of a Cα model. The Cα model is converted to an all-atom model and is refined against the map. We show that this procedure is as effective as other existing methods for interpretation of cryo-EM maps and that it is considerably faster and produces models with fewer chain breaks than our previous methods that were based on approaches developed for crystallographic maps

    A new MR-SAD algorithm for the automatic building of protein models from low-resolution X-ray data and a poor starting model

    Get PDF
    Determining macromolecular structures from X-ray data with resolution worse than 3 Å remains a challenge. Even if a related starting model is available, its incompleteness or its bias together with a low observation-to-parameter ratio can render the process unsuccessful or very time-consuming. Yet, many biologically important macromolecules, especially large macromolecular assemblies, membrane proteins and receptors, tend to provide crystals that diffract to low resolution. A new algorithm to tackle this problem is presented that uses a multivariate function to simultaneously exploit information from both an initial partial model and low-resolution single-wavelength anomalous diffraction data. The new approach has been used for six challenging structure determinations, including the crystal structures of membrane proteins and macromolecular complexes that have evaded experts using other methods, and large structures from a 3.0 Å resolution F1-ATPase data set and a 4.5 Å resolution SecYEG–SecA complex data set. All of the models were automatically built by the method to Rfree values of between 28.9 and 39.9% and were free from the initial model bias

    An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography.

    Get PDF
    SACLAのX線自由電子レーザーを用いた新規タンパク質立体構造決定に世界で初めて成功. 京都大学プレスリリース. 2015-09-14.Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) holds great potential for structure determination of challenging proteins that are not amenable to producing large well diffracting crystals. Efficient de novo phasing methods are highly demanding and as such most SFX structures have been determined by molecular replacement methods. Here we employed single isomorphous replacement with anomalous scattering (SIRAS) for phasing and demonstrate successful application to SFX de novo phasing. Only about 20,000 patterns in total were needed for SIRAS phasing while single wavelength anomalous dispersion (SAD) phasing was unsuccessful with more than 80,000 patterns of derivative crystals. We employed high energy X-rays from SACLA (12.6 keV) to take advantage of the large anomalous enhancement near the LIII absorption edge of Hg, which is one of the most widely used heavy atoms for phasing in conventional protein crystallography. Hard XFEL is of benefit for de novo phasing in the use of routinely used heavy atoms and high resolution data collection

    Features and development of Coot

    Get PDF
    Coot is a molecular-graphics program designed to assist in the building of protein and other macromolecular models. The current state of development and available features are presented

    Re-refinement from deposited X-ray data can deliver improved models for most PDB entries

    Get PDF
    An evaluation of validation and real-space intervention possibilities for improving existing automated (re-)refinement methods
    corecore