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Determining macromolecular structures from X-ray data with resolution worse

than 3 Å remains a challenge. Even if a related starting model is available, its

incompleteness or its bias together with a low observation-to-parameter ratio

can render the process unsuccessful or very time-consuming. Yet, many

biologically important macromolecules, especially large macromolecular

assemblies, membrane proteins and receptors, tend to provide crystals that

diffract to low resolution. A new algorithm to tackle this problem is presented

that uses a multivariate function to simultaneously exploit information from

both an initial partial model and low-resolution single-wavelength anomalous

diffraction data. The new approach has been used for six challenging structure

determinations, including the crystal structures of membrane proteins and

macromolecular complexes that have evaded experts using other methods, and

large structures from a 3.0 Å resolution F1-ATPase data set and a 4.5 Å

resolution SecYEG–SecA complex data set. All of the models were

automatically built by the method to Rfree values of between 28.9 and 39.9%

and were free from the initial model bias.

1. Introduction

Hardware and software advances have contributed greatly to

the deposition of over 100 000 crystal structures in the Protein

Data Bank (PDB; Berman et al., 2003). Yet, despite the rapid

growth in the number of macromolecular crystal structures

determined, as of September 2017 over 93% of PDB deposi-

tions relate to diffraction data collected to a resolution better

than 3.0 Å, while over 98% of depositions relate to diffraction

data collected to resolutions better than 3.5 Å. Valuable

information can be obtained from low-resolution structures

(Schröder et al., 2010). For example, biologically important

macromolecules, including large macromolecular assemblies,

membrane proteins and receptors, tend to result in crystals

that diffract relatively poorly. Unfortunately, solving crystal

structures from low-resolution data is difficult and time-

consuming and can fail. While the extensive number of entries

in the PDB means that a starting model for such structures can

often be obtained by molecular replacement (MR), a poor

observation-to-parameter ratio and potential model bias from

the MR solution can complicate subsequent model building
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and refinement. Observation-to-parameter ratios can be

improved by combining incomplete MR model information

with information from anomalously scattering sulfur, phos-

phate, halogen or metal atoms or selenomethionine residues

engineered into the protein to solve the structure, a technique

referred to as MR-SAD (see, for example, Baker et al., 1995;

Schuermann & Tanner, 2003; Panjikar et al., 2009). However, a

poor starting MR model, low-resolution data, a weak anom-

alous signal, radiation damage or crystal anomalies such as

translational noncrystallographic symmetry can often combine

to prevent structure solution.

Previously, we have shown that a SAD ‘combined’ protocol

(Skubák & Pannu, 2013) can substantially improve the success

rate and quality of models built from an experimental SAD

map. By definition, an experimentally determined map is free

from any bias that may be introduced into a molecular-

replacement-based model. Here, we expand the protocol to

MR-SAD to allow (re)building from a potentially biased and

incomplete model obtained by molecular replacement,

computational modelling or any other external source. The

new MR-SAD algorithm combines the information from an

initial partial model with SAD data and density modification

to extend the limits of successful low-resolution structure

solution. Current methods (de La Fortelle et al., 1997; Panjikar

et al., 2009; Adams et al., 2010) represent and transfer phase

information using Hendrickson–Lattman coefficients

(Hendrickson & Lattman, 1970), where the phase information

estimated from the constantly changing macromolecular and

anomalous scatterer substructure models is statically passed

between the different steps of the structure-solution process.

Furthermore, current methods assume independence (Read,

1997) of the Hendrickson–Lattman coefficients when

combining phase information. Our algorithm overcomes these

shortcomings and provides phase estimates by simultaneously

taking into account the diffracted intensities, macromolecular

and substructure models, and the modified electron density,

while modelling the errors in both the current structural

models and the experimental data on which these are based.

Furthermore, the new MR-SAD algorithm uses likelihood-

based gradient maps (de La Fortelle et al., 1997) to find any

missing anomalous atoms at any step in the structure-solution

process. We have applied the new algorithm to a number of

low-resolution (3.0–4.5 Å) single-wavelength anomalous

diffraction data sets for which incomplete partial models were

available and we automatically obtained solutions that have

evaded experts using other methods.

2. Methods

Two MR-SAD pipelines (Fig. 1) have been implemented in

the CRANK2 (Skubák & Pannu, 2013) structure-solution

software to simultaneously combine information from a

partial model and anomalous scattering in the structure-

solution process. The pipelines differ in how much information

is used from the starting model that is typically obtained by

molecular replacement. The source code implementing the

pipelines and the multivariate function described in the

following sections is released as an open source.

2.1. Pipelines and algorithm

The ‘rebuilding’ pipeline uses the refined MR model, as

shown by the dashed line in Fig. 1, the improved anomalous

substructure and the ‘best’ (Blow & Crick, 1959) MR-derived

electron density for subsequent rebuilding and model

improvement with the ‘combined’ experimental phasing,

phase-combination and model-refinement algorithm. The

‘substructure-only’ pipeline removes any possible MR-

inherited protein model bias: the MR model is only used to

improve the anomalous substructure and only the anomalous

substructure is input into the ‘combined’ algorithm.

Both pipelines start with multiple iterations of refinement

of the input partial model using the REFMAC SAD log-

likelihood function (Skubák et al., 2004) and detection of

additional anomalous scatterers from SAD log-likelihood

gradient maps (denoted as ‘Refinement and substructure

completion’ in Fig. 1). If none or a very small portion of the

anomalous substructure is present in the initial model,

anomalous scatterers are detected using anomalous difference

maps in the first iteration, followed by SAD log-likelihood

gradient map detection in the following iterations.
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Figure 1
Flow chart for the ‘substructure-only’ and ‘rebuilding’ pipelines.



Furthermore, substructure atoms with occupancies refined

below a certain threshold are removed from the substructure

model.

For the rebuilding pipeline, the best electron density

obtained from the refinement and substructure-improvement

step is used both for initial rebuilding of the refined model and

as input for crystal-space density modification. The rebuilt

model, the modified map and the substructure are then

all used by the combined experimental phasing, phase-

combination and model-refinement function. The function

provides a refined model and the actual best map that are used

in the next iterations of crystal-space density modification and

model building.

For the substructure-only pipeline, only the improved

substructure is input into the initial iteration of the combined

function, along with the data. In this special case, the function

reduces to the experimental phasing SAD likelihood function

that generates an ‘experimental’ electron-density map: an

‘unbiased’ map phased solely from the substructure and the

SAD data. The experimental density is then input to density

modification and the resulting modified map is used by the

SAD phase-combination function, skipping the model-

building branch of the algorithm in this iteration. Finally, the

resulting best density is used for density modification and

initial model building and the ‘combined’ algorithm procedure

is iterated for the specified number of cycles.

2.2. Multivariate likelihood function

The core of the MR-SAD pipelines consists of the

‘combined’ model-building function that simultaneously

considers the anomalous substructure, the phase-improved

electron density and the partial model, and dynamically

refines the protein and anomalous substructure models using a

maximum-likelihood treatment based on multivariate prob-

ability distributions:
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We are unaware of an analytical solution to the above

integral, so our algorithm evaluates the integral numerically.

The gradient of the logarithm of this general function is used

to determine anomalous atoms that are currently missing (i.e.

log-likelihood gradient maps) and thus considers information

from the diffraction data, the current anomalous and non-

anomalous atomic coordinates, phasing, density modification

and model building all together. Determining missing anom-

alous atoms is often essential for MR-SAD, since incomplete

molecular replacement models often do not contain all of the

anomalous scatterers and a complete anomalous model can

substantially improve the electron density.

In the above equations, |Fo
+|, |Fo

�| are the observed structure-

factor amplitudes for the two reflections in a Bijvoet/Friedel

pair, while |Fm
+|, �m

+ , |Fm
�|, �m

� are the structure-factor ampli-

tudes and phases for the current model including anomalously

scattering atoms and |Fdm|, �dm are the structure-factor

amplitude and phase after density modification. aij is the ijth

element of the inverse of the full 5 � 5 covariance matrix �5

for all structure factors (Fo
+, Fo

�, Fm
+, Fm

�, Fdm), while cij is the

ijth element of the 3 � 3 submatrix �3 of �5 consisting of the

model structure factors (Fm
+, Fm

�, Fdm). The �5 covariance

matrix comes from a multivariate Gaussian complex distri-

bution of structure factors: the starting point for the derivation

of the distribution shown in (1) and (2). It not only contains

information about the correlation between all involved

structure factors, but can also incorporate refinable error

terms. For example, the covariance-matrix element a13 =

hFo
+(Fm

+)*i = D(�jfj + fj
00), where the summation is over all j

atoms in the unit cell and fj and fj
00 are the atomic scattering

factors. D is a Luzzati parameter (Luzzati, 1952) that can

account for errors in an incomplete model and also for model

bias, and thus shows how information from a molecular

replacement starting model can be incorporated and opti-

mized by the likelihood function.

2.3. Structure-solution setup

CRANK2 v.2.0.137 was used to run all of the jobs. Table 1

gives information on all of the diffraction data, the partial

models and the anomalous scatterer(s). The diffraction data,

the partial model and the anomalous scatterer(s), along with

the protein sequence and the scattering factors (f 0 and f 00),

were all input into CRANK2. The number of molecules in the

asymmetric unit, obtainable from the molecular-replacement

solution, was also input for data sets where the default esti-

mation from Matthews coefficients incorrectly estimated this

number. Furthermore, all of the CRANK2 jobs were started

with five refinement and substructure-improvement cycles

instead of the current CRANK2 default of three, and a

minimum of 15 cycles of combined model-building cycles

instead of the default of five.

The combined function, implemented in the program

REFMAC5 (v.5.8.0155; Murshudov et al., 2011), was used by

CRANK2 for all of the reciprocal-space refinement, phasing

and phase combination. Furthermore, CRANK2 used Parrot

(v.1.0.4; Cowtan, 2010) for crystal-space density modification
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and Buccaneer (Cowtan, 2006; v.1.6.3 was used for all data sets

apart from the SecYEG–SecA complex, where the older

v.1.6.1 was used owing to a weak density-filtering regression)

for model building. Density modification by Parrot included

solvent flattening, histogram matching and, for data sets with

multiple monomers in the asymmetric unit, automatic NCS

operator determination and NCS averaging. NCS averaging

was not performed for F1-ATPase as the subunits are in

different conformations. The programs MOLREP (Vagin &

Teplyakov, 2010) and Phaser (McCoy et al., 2007) were used to

obtain the initial MR models. All these programs form part of

the CCP4 suite (v.7.0.020; Winn et al., 2011). CRANK2 is

generally available from the CCP4 website (http://

www.ccp4.ac.uk) and is best run from the new CCP4i2

graphical user interface (Potterton et al., 2018).

For the SecYEG–SecA complex data set, a resolution cutoff

of 7.0 Å and a lower r.m.s. threshold (4.25� rather than the

default 4.75�) were used in the substructure-completion and

refinement step. These adjustments of the default CRANK2

parametrization were not needed for any of the other data sets

and could be specific to very low-resolution data.

3. Results

Here, we show the results of the pipelines on six low-

resolution data sets from six different proteins, each with

relatively weak anomalous signals, containing crystallographic

anomalies and/or with only incomplete molecular-replace-

ment models available (Table 1). A plot of the anomalous

signal-to-noise ratio {the absolute value of the Bijvoet differ-

ence divided by its standard deviation [|�F |/�(�F)]} as a

function of resolution for all data sets is shown in Fig. 2. The

poor quality of the initial models for all data sets is indicated

by Rfree values of around 50% (Table 2).

3.1. Novel low-resolution structures determined

‘Data set 1’, ‘data set 2’ and the extracellular region of the

adhesion G protein-coupled receptor in complex with a

monobody (Salzman et al., 2016; GPCR ECR–Mb) represent

novel crystal structures where highly complete models have

been automatically produced and refined with our new

method, but were not solved by the other multiple automatic

and manual approaches that were tested. The identities of data

sets 1 and 2 are withheld since the crystal structures derived

from these have not yet been published.

The crystals that gave data sets 1 and 2 both exhibited

translational noncrystallographic symmetry (tNCS), a crys-

tallographic anomaly in which two or more molecules are in

similar orientations in the asymmetric unit, resulting in

systematically strong and weak diffraction intensities that

often complicate structure solution and refinement. The

crystal structure from data set 1 was solved in a unit cell

containing tNCS, while an approximation that the tNCS is

modelled by crystallographic translational symmetry turned
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Table 2
Rfree values for models after molecular replacement and after the
automated CRANK2 pipelines.

Molecular-replacement
solution†

Substructure-only
pipeline‡

Rebuild
pipeline‡

Data set 1 49.8 32.6 29.8
Data set 2 53.7 28.9 32.3
GPCR ECR–Mb 48.6 39.1 38.4
AAA-ATPase 47.5 39.0 40.9
F1-ATPase 46.5 34.8 33.8
SecYEG–SecA 51.8 39.9 39.6

† The Rfree values after REFMAC5 ‘jelly-body’ refinement of the molecular-replacement
solution using 50, 75 or 100 refinement cycles, whichever provided the best value. ‡ The
Rfree values after REFMAC5 ‘jelly-body’ refinement of the model output by CRANK2
using an additional 0, 25 or 50 refinement cycles, whichever provided the best value.

Figure 2
The anomalous signal-to-noise ratio versus resolution for all data sets.

Table 1
Crystal and molecular-replacement model statistics.

Final PDB
code

Resolution
(Å)

Anomalous
scatterer(s)

No. of
residues

Correct MR
residues† (%)

Incorrect MR
residues† (%)

R.m.s.d., correct
residues (Å)

Data set 1 ‡ 3.6 Se 800 42.5 23.5 1.6
Data set 2 ‡ 3.2 Se 378 60.8 12.9 1.7
GPCR ECR–Mb 5kvm 3.0 I 459 49.7 11.7 1.5
AAA-ATPase 4d80 3.6 Se 1776 75.2 22.1 1.7
F1-ATPase 2w6f 3.0 S, P 3587 46.7 2.3 0.9
SecYEG–SecA 3din 4.5 Se 2886 47.9 40.7 1.7

† For the initial MR models, a residue is considered to be ‘correct’ if its C� position is at most 4 Å distant from a deposited (or best known for data sets 1 and 2) C�* position and at least
one of the C� neighbours is at most 4 Å distant from a C�* neighbour. All other residues, i.e. residues not satisfying these criteria, are considered to be ‘incorrect’. The percentages are
relative to the total number of residues. ‡ The refined models for data sets 1 and 2 have not yet been deposited in the PDB.



out to be a more successful strategy for the solution of the

crystal structure from data set 2. The diffraction data in data

set 2 also suffered from radiation damage, as observed by a

decrease in the observable diffraction limit during data

collection. The structure solution, which was carried out

during the 2016 CCP4/APS Crystallographic School (http://

www.ccp4.ac.uk/schools/APS-2016/), proved that the data set

was particularly challenging. Using either the substructure-

only or the rebuilding pipeline, both structures have been

clearly built, as seen from the low Rfree values for the final

models (Table 2).

An MR solution for the GPCR ECR–MB complex was

found with a search model obtained using the Rosetta energy

function (DiMaio et al., 2011), as search models from the PDB

failed to provide an MR solution. Noncrystallographic

symmetry averaging could not aid in structure solution. Both

pipelines in the current version of CRANK2 successfully built

the model in just a few model-building iterations.

The structure of the vacuolar protein sorting 4 AAA-

ATPase (Caillat et al., 2015) complex is also a novel structure

solved by our new algorithm from a diffraction data set

extending to 3.6 Å resolution. The ability of CRANK2 to

improve the Rfree from 48 to 39% was important in solving the

structure. Unlike for the other data sets, the quality of the

protein model was already crucially improved in the first step

of the pipeline, which consisted of SAD refinement iterations

that added or replaced 34 of the total of 42 selenium-

substructure atoms.

The above four novel test cases exhibit the power of the

new algorithm to obtain a solution when other methods fail.

The last two test cases are examples of previously solved

structures that show the anomalous signal and resolution

limits of the two pipelines.

3.2. Long-wavelength sulfur-SAD F1-ATPase data sets

The structure of bovine mitochondrial F1-ATPase was

initially solved after a time-consuming search to obtain a

suitable heavy-atom derivative isomorphous to the native

crystal (Abrahams et al., 1994). An attractive alternative to

avoid the problem of searching for heavy-atom derivatives is

to use the intrinsic sulfur signal and merge data from multiple

isomorphic crystals (Liu et al., 2012). Long-wavelength sulfur-

SAD data sets from multiple crystals of bovine mitochondrial

F1-ATPase were collected at 6 keV and merged to produce a

high-multiplicity data set extending to 3.0 Å resolution. We

were unable to determine the positions of the over 70 intrinsic

weakly anomalous S and phosphate atoms contained in the

crystal structure using substructure-detection programs on the

diffraction data alone, despite a systematic search through a

large number of trials in a wide resolution-cutoff range (3.0–

6.0 Å) and various other ad hoc optimization attempts.

However, on inputting just the trimeric � chain from a 6.0 Å

resolution F1-ATPase model (Sanchez-Weatherby et al., 2009)

obtained by molecular replacement, CRANK2 could find the

anomalous substructure and the substructure-only pipeline

built a nearly complete model to an Rfree of 34.6%. To our

knowledge, this represents the largest sulfur-SAD structure

solved just from the SAD data and the positions of the

anomalous substructure.

3.3. SecYEG–SecA SAD data set at 4.5 Å resolution

Crystals of the SecYEG–SecA protein-translocation

complex (Zimmer et al., 2008) from Thermotoga maritima

diffracted to 4.5 Å resolution and the resulting data set

contained anomalous signal from selenomethionine-derivatized

SecYEG. The authors originally solved the structure by

molecular replacement, NCS and cross-crystal averaging,

experimental MAD phases from selenomethionine-derivatized

SecYEG and interative manual model building and refine-

ment. To test our new MR-SAD protocol, we started from a

molecular-replacement solution obtained from the 7.5 Å

resolution structure of Aquifex aeolicus SecYEG and Bacillus

subtilis SecA by the same authors (PDB entry 3dl8) that

resulted in an Rfree factor of 51.8% after ‘jelly-body’ refine-

ment in REFMAC5 (Murshudov et al., 2011). Despite the very

low-resolution data and the poor starting model, both pipe-

lines could automatically build the structure to an Rfree of less

than 40%.

4. Discussion

For low-resolution data sets with a poor starting model, it

appears to be essential to have an accurate and continually

updating representation of the anomalous and non-anomalous

model and an accurate error model and to combine the

information from phasing, density modification and model

building simultaneously. We believe that this is the reason that

our method is able to succeed in these challenging cases.

In all of the reported structure determinations, both pipe-

lines performed equally well, as judged by the Rfree values of

the models obtained (Table 2), with only small differences

observed for all of the data sets. However, substantial differ-

ences between the pipelines could be observed in some cases if

suboptimal parameters were used in data processing or

structure solution: for example, only the rebuilding pipeline

succeeded in building the structure from ‘data set 2’ processed

at 3.0 Å resolution rather than 3.2 Å. Therefore, we suggest

running both of the pipelines simultaneously for highly chal-

lenging data sets.

Intuitively, the advantage of the substructure-only pipeline

is that the structures built can be considered to be free of bias

from the starting molecular-replacement model. However, the

correlations between the initial MR density map and the

density maps from both CRANK2 pipelines were approxi-

mately the same in all cases. This suggests that at least for

these test cases a larger number of cycles of the rebuilding

pipeline can remove the bias from the initial MR model.

Future work may exploit models from the substructure-only

pipeline to efficiently combine the results with the models

from the rebuilding pipeline and the starting model itself to

further improve the structure-solution process: combination

of models from different structure-solution methods has
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already been shown to be effective (van den Bedem et al.,

2011).

Finally, the pipelines discussed here not only present an

immediate solution to structural biologists attempting to solve

structures from low-resolution X-ray data sets, but provide a

mathematical framework that can be applied to free-electron

laser data, three-dimensional macromolecular electron crys-

tallography or electron microscopy. For example, the algo-

rithm can be adapted for native sulfur-SAD phasing from

X-ray free-electron data (Batyuk et al., 2016). Yet, since the

algorithm is general and uses the observed data and

measurement errors directly together with combining all steps

in structure solution, the full power of the method can be

exploited if the errors and unmerged observed data are

considered for the different experiments rather than assuming

the data and error model from X-ray crystallography.
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