50 research outputs found

    A machine-learning approach for automatic grape-bunch detection based on opponent colors

    Get PDF
    This paper presents a novel and automatic artificial-intelligence (AI) method for grape-bunch detection from RGB images. It mainly consists of a cascade of support vector machine (SVM)-based classifiers that rely on visual contrast-based features that, in turn, are defined according to grape bunch color visual perception. Due to some principles of opponent color theory and proper visual contrast measures, a precise estimate of grape bunches is achieved. Extensive experimental results show that the proposed method is able to accurately segment grapes even in uncontrolled acquisition conditions and with limited computational load. Finally, such an approach requires a very small number of training samples, making it appropriate for onsite and real-time applications that are implementable on smart devices, usable and even set up by winemakers

    Automatic grape bunch detection in vineyards based on affordable 3D phenotyping using a consumer webcam.

    Get PDF
    This work presents a methodology for 3-D phenotyping of vineyards based on images captured by a low cost high-definition webcamera. A novel software application integrated visual odometry and multiple-view stereo components to create dense and accurate three-dimensional points clouds for vines, properly transformed to millimeter scale. Geometrical and color features of the points were employed by a classification procedure that reached 93% of accuracy on detecting points belonging to grapes. Individual bunches were automatically delimited and their volumes estimated. The sum of the estimated volumes per vine presented a coefficient of correlation of R = 0.99 to the real grape weight observed in each vine after harvesting.SBIAgro 2017

    Applications of Image Processing in Viticulture: A Review

    Get PDF
    The production of high quality grapes for wine making is challenging. Significant progress has been made in the automated prediction of harvest yields from images but the analysis of images to predict the quality of the harvest has yet to be fully addressed. The quality of wine produced depends in part on the quality of the grapes harvested and therefore on the presence of disease in the vineyard. There is potential for automated early detection of disease in grape crops through the development of accurate techniques for image processing. This paper presents a review of current research and highlights some of the key challenges for geo-computation (image processing, computer vision and data mining techniques) to inform the management of vineyards and highlights the key challenges for in-field image capture and analysis. An exploration of potential applications for the knowledge generated by imaging techniques is then presented. This discussion is driven by the current interest in the effect of rapid and dramatic climate change on the production of wine and focuses on how this information might be utilized to inform the design and validation of accurate predictive models

    Constraint-based automated reconstruction of grape bunches from 3D range data for high-throughput phenotyping

    Get PDF
    With increasing global population, the resources for agriculture required to feed the growing number of people are becoming scarce. Estimates expect that by 2050, 60 % more food will be necessary. Nowadays, 70 % of fresh water is used by agriculture and experts see no potential for new land to use for crop plants. This means that existing land has to be used efficiently in a sustainable way. To support this, plant breeders aim at the improvement of yield, quality, disease-resistance, and other important characteristics of the crops. Reports show that grapevine cultivation uses more than three times of the amount of fungicides than the cultivation of fruit trees or vegetables. This is caused by grapevine being prone to various fungal diseases and pests that quickly spread over fields. A loose grape bunch architecture is one of the most important physical barriers that make the establishment of a fungal infection less likely. The grape bunch architecture is mostly defined by the inner stem skeleton. The phenotyping of grape bunches refers to the measurement of the phenotypes, i.e., the observable traits of a plant, like the diameter of berries or the lengths of stems. Because of their perishable nature, grape bunches have to be processed in a relatively short time. On the other hand, genetic analyses require data from a large number of them. Manual phenotyping is error-prone and highly labor- and time-intensive, yielding the need for automated, high-throughput methods. The objective of this thesis is to develop a completely automated pipeline that gets as input a 3D pointcloud showing a grape bunch and computes a 3D reconstruction of the complete grape bunch, including the inner stem skeleton. The result is a 3D estimation of the grape bunch that represents not only dimensions (e.g. berry diameters) or statistics (e.g. the number of berries), but the geometry and topology as well. All architectural (i.e., geometrical and topological) traits can be derived from this complete 3D reconstruction. We aim at high-throughput phenotyping by automatizing all steps and removing any requirement for interaction with the user, while still providing an interface for a detailed visualization and possible adjustments of the parameters. There are several challenges to this task: ripe grape bunches are subject to a high amount of self-occlusion, rendering a direct reconstruction of the stem skeleton impossible. The stem skeleton structure is complex, thus, the manual creation of training data is hard. We aim at a cross-cultivation approach and there is high variability between cultivars and even between grape bunches of the same cultivar. Thus, we cannot rely on statistical distributions for single plant organ dimensions. We employ geometrical and topological constraints to meet the challenge of cross-cultivar optimization and foster efficient sampling of infinitely large hypotheses spaces, resulting in Pearson correlation coefficients between 0.7 and 0.9 for established traits traditionally used by breeders. The active working time is reduced by a factor of 12. We evaluate the pipeline for the application on scans taken in a lab environment and in the field

    End-to-end deep learning for directly estimating grape yield from ground-based imagery

    Full text link
    Yield estimation is a powerful tool in vineyard management, as it allows growers to fine-tune practices to optimize yield and quality. However, yield estimation is currently performed using manual sampling, which is time-consuming and imprecise. This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards. Continuous data collection using a vehicle-mounted sensing kit combined with collection of ground truth yield data at harvest using a commercial yield monitor allowed for the generation of a large dataset of 23,581 yield points and 107,933 images. Moreover, this study was conducted in a mechanically managed commercial vineyard, representing a challenging environment for image analysis but a common set of conditions in the California Central Valley. Three model architectures were tested: object detection, CNN regression, and transformer models. The object detection model was trained on hand-labeled images to localize grape bunches, and either bunch count or pixel area was summed to correlate with grape yield. Conversely, regression models were trained end-to-end to predict grape yield from image data without the need for hand labeling. Results demonstrated that both a transformer as well as the object detection model with pixel area processing performed comparably, with a mean absolute percent error of 18% and 18.5%, respectively on a representative holdout dataset. Saliency mapping was used to demonstrate the attention of the CNN model was localized near the predicted location of grape bunches, as well as on the top of the grapevine canopy. Overall, the study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale. Additionally, the end-to-end modeling approach was able to perform comparably to the object detection approach while eliminating the need for hand-labeling

    Cloud Computing for Effective Cyber Security Attack Detection in Smart Cities

    Get PDF
    An astute metropolis is an urbanized region that accumulates data through diverse numerical and experiential understanding. Cloud-connected Internet of Things (IoT) solutions have the potential to aid intelligent cities in collecting data from inhabitants, devices, residences, and alternative origins. The monitoring and administration of carrying systems, plug-in services, reserve managing, H2O resource schemes, excess managing, illegal finding, safety actions, ability, numeral collection, healthcare abilities, and extra openings all make use of the processing and analysis of this data. This study aims to improve the security of smart cities by detecting attacks using algorithms drawn from the UNSW-NB15 and CICIDS2017 datasets and to create advanced strategies for identifying and justifying cyber threats in the context of smart cities by leveraging real-world network traffic data from UNSW-NB15 and labelled attack actions from CICIDS2017. The research aims to underwrite the development of more effective intrusion detection systems tailored to the unique problems of safeguarding networked urban environments, hence improving the flexibility and safety of smart cities by estimating these datasets

    Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera

    Get PDF
    AbstractPrecision agriculture relies on the availability of accurate knowledge of crop phenotypic traits at the sub-field level. While visual inspection by human experts has been traditionally adopted for phenotyping estimations, sensors mounted on field vehicles are becoming valuable tools to increase accuracy on a narrower scale and reduce execution time and labor costs, as well. In this respect, automated processing of sensor data for accurate and reliable fruit detection and characterization is a major research challenge, especially when data consist of low-quality natural images. This paper investigates the use of deep learning frameworks for automated segmentation of grape bunches in color images from a consumer-grade RGB-D camera, placed on-board an agricultural vehicle. A comparative study, based on the estimation of two image segmentation metrics, i.e. the segmentation accuracy and the well-known Intersection over Union (IoU), is presented to estimate the performance of four pre-trained network architectures, namely the AlexNet, the GoogLeNet, the VGG16, and the VGG19. Furthermore, a novel strategy aimed at improving the segmentation of bunch pixels is proposed. It is based on an optimal threshold selection of the bunch probability maps, as an alternative to the conventional minimization of cross-entropy loss of mutually exclusive classes. Results obtained in field tests show that the proposed strategy improves the mean segmentation accuracy of the four deep neural networks in a range between 2.10 and 8.04%. Besides, the comparative study of the four networks demonstrates that the best performance is achieved by the VGG19, which reaches a mean segmentation accuracy on the bunch class of 80.58%, with IoU values for the bunch class of 45.64%

    Assessing Berry Number for Grapevine Yield Estimation by Image Analysis: Case Study with the Red Variety “Syrah”

    Get PDF
    Mestrado em Engenharia de Viticultura e Enologia (Double degree) / Instituto Superior de Agronomia. Universidade de Lisboa / Faculdade de Ciências. Universidade do PortoThe yield estimation provides information that help growers to make decisions in order to optimize crop growth and to organize the harvest operations in field and in the cellar. In most vineyard estates yield is forecasted using manual methods. However, image analysis methods, which are less invasive low cost and more representative are now being developed. The main objective of this work was to estimate yield through data obtained in the frame of Vinbot project during the 2019 season. In this thesis, images of the grapevine variety Syrah taken in the laboratory and in the vineyards of the “Instituto Superior de Agronomia” in Lisbon were analyzed. In the laboratory the images were taken manually with an RGB camera, while in the field vines were imaged either manually and by the Vinbot robot. From these images, the number of visible berries were counted with MATLAB. From the laboratory values, the relationships between the number of visible berries and actual bunch weight and berry number were studied. From the data obtained in the field, it was analyzed the visibility of the berries at different levels of defoliation and the relationship between the area of visible bunches and the visible berries. Berry-by-berry occlusion showed a value of 6.4% at pea-size, 14.5% at veraison and 25% at maturation. In addition, high and significant determination coefficient were obtained between actual yield and visible berries. The comparison of estimated yield, obtained using the regression models with actual yield, showed an underestimation at all the three phonological stages. This low accuracy of the developed models show that the use of algorithms based on visible berry number on the images to estimate yield still needs further researchN/
    corecore